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out specific targets. Targetless, non-automated calibration methods
are time-consuming and labor-intensive. Existing advanced methods
have proven that automatic calibration methods based on edge fea-
tures are effective, and most focus on the extraction and matching
of single features. The proposed method matches 2D edges from Li-
DAR’s multi-attribute density map with image-derived intensity gra-
dient and semantic edges, facilitating 2D-2D edge registration. We
innovate by incorporating semantic feature and addressing random
initial setting through the PnP problem of centroid pairs, enhancing
the convergence of the objective function. We introduce a weighted
multi-frame averaging technique, considering frame correlation and
semantic importance, for smoother calibration. Tested on the KITTI
dataset, it surpasses four current methods in single-frame tests and
shows more robustness in multi-frame tests than MulFEAT. Our algo-
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ing a balance between network complexity and robustness. Future
enhancements may include using machine learning to convert sparse
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Abstract

In autonomous driving, environmental perception, crucial for navigation and decision-
making, depends on integrating data from multiple sensors like cameras and LiDAR.
Camera-LiDAR fusion combines detailed imagery with precise depth, improving envi-
ronmental awareness. Effective data fusion requires accurate extrinsic calibration to
align camera and LiDAR data under one coordinate system. We aim to calibrate the
camera and LiDAR extrinsic automatically and without specific targets. Targetless,
non-automated calibration methods are time-consuming and labor-intensive. Existing
advanced methods have proven that automatic calibration methods based on edge fea-
tures are effective, and most focus on the extraction and matching of single features.
The proposed method matches 2D edges from LiDAR’s multi-attribute density map
with image-derived intensity gradient and semantic edges, facilitating 2D-2D edge reg-
istration. We innovate by incorporating semantic feature and addressing random initial
setting through the PnP problem of centroid pairs, enhancing the convergence of the
objective function. We introduce a weighted multi-frame averaging technique, consid-
ering frame correlation and semantic importance, for smoother calibration. Tested on
the KITTI dataset, it surpasses four current methods in single-frame tests and shows
more robustness in multi-frame tests than MulFEAT. Our algorithm leverages seman-
tic information for extrinsic calibration, striking a balance between network complexity
and robustness. Future enhancements may include using machine learning to convert
sparse matrices to dense formats for improved optimization efficiency.
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Introduction 1
Over the past decade, autonomous driving technology has evolved and gained tremen-
dous attention from researchers. One important module of autonomous driving is
environment perception [8], [9], [10], which involves critical tasks like object detection,
semantic recognition, depth complementation, and prediction [11]. These tasks are
essential for an autonomous driving system to accurately understand its surroundings,
and they heavily rely on data gathered from various sensors mounted on the vehi-
cle, as shown in Figure 1.1. Under this circumstance, sensor fusion techniques allow
combining data from multiple sensors for more accurate, reliable and comprehensive
environment sensing [12]. This amalgamation of data from different sources, such as
cameras, LiDAR (Light Detection and Ranging), Radar (Radio Detection and Rang-
ing), and ultrasonic sensors, allows the system to compensate for the limitations of
individual sensors. For instance, while cameras provide detailed visual information,
they can be affected by lighting conditions or obstructions. LiDAR sensors offer pre-
cise distance measurements but can struggle in adverse weather conditions. By fusing
data from these diverse sources, an autonomous vehicle can form a more robust and
detailed understanding of its surroundings [13], which is critical for safe navigation and
decision-making.

Figure 1.1: Sensor fusion application scenarios. [1]

Multi-sensor fusion techniques, renowned for their ability to provide a more robust
and synergistic perception of the environment, have found extensive application in
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various industries [14]. These techniques bring together data from different sensors,
such as cameras, LiDAR, and IMUs (Inertial Measurement Units) to create a compre-
hensive understanding of the surroundings. However, implementing these techniques
involves overcoming several challenges. Extrinsic calibration is one of the critical issues
in multi-sensor fusion systems, for example, Camera-LiDAR calibration, Camera-IMU
calibration, and LiDAR-IMU calibration. The characteristics and application scenarios

Table 1.1: Characteristics of common vehicle-mounted sensors.

Category Advantages Limatations Main applications

Camera
High resolution;
Color and texture
recognition;

Limited field-of-view;
Sensitive to light and
weather (fog);

Object detection and tracking;
(e.g. pedestrian and traffic
signs)

Mmw-Radar

Wide range;
Strong penetration;
Not easily affected
by light and weather;

Not sensitive to horizontal
objects; Unimageable and
only 2D detection;

Adaptive Cruise Control (ACC);
Anti-collision system;

LiDAR

Wide field-of-view
and range;
Not easily affected by
light;

Low resolution;
High cost;
3D object detection;
Sensitive to rain and
small interference;

Object detection and tracking;
Simultaneous localization
and mapping

IMU

Velocity and acceleration
provided;
Accurate location;
High working frequency;

Unable to recognize objects;
Unable to provide surroundings
perception;

Navigation and path planning;
Simultaneous localization
and mapping;

Ultrasound

Strong detection ability
at close range;
Low cost and small size;
Not easily affected by
light and weather;

Limited range detection;
Limited field-of-view;
Slow response;
Sensitive to object materials;

Blind spot monitoring;
Parking assist;

of some of the main in-vehicle sensors: camera, radar, LIDAR, ultrasound, IMU/GPS
are presented in Table 1.1. In multi-sensor autonomous driving systems, cameras and
LiDAR sensors can provide complementary information to enhance the capabilities of
various applications. Cameras offer color and texture information, while LiDAR pro-
vides accurate depth information. By calibrating these sensors together, a more com-
prehensive and accurate perception of the environment can be achieved, which is crucial
for tasks such as object detection, tracking, and scene understanding in autonomous
vehicles and robotics. Camera-LiDAR calibration helps in associating the data from
both sensors correctly. Matching 2D image features with their corresponding 3D points
in the LiDAR data can be challenging without proper calibration. Accurate data asso-
ciation is essential for tasks like Simultaneous Localization And Mapping (SLAM) [15].
Calibration can also mitigate the limitations and inaccuracies of individual sensors.
For example, camera distortion and lens effects can be corrected, and LiDAR align-
ment issues can be resolved, which can increase the overall robustness and accuracy of
the sensor suite [16]. To sum up, an accurate extrinsic calibration is a prerequisite for
many multi-sensor fusion tasks.
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1.1 Sensor Calibration

Sensor calibration involves both temporal calibration (clock synchronization) and spa-
tial calibration. Usually, the system needs to be time-calibrated before spatial cal-
ibration can be completed. Sensor spatial calibration can be divided into intrinsic
calibration and extrinsic calibration in a multi-sensor system, both stand for different
functions and are critical for accurate perception and navigation [17].

1.1.1 Intrinsic Calibration

In the camera-LiDAR calibration system, intrinsic calibration determines the internal
optical characteristics of a camera sensor, and these characteristics include the focal
length, optical center, and lens distortion coefficients of the camera or optical sensors.
These parameters are inherent to the sensor and are independent of the position or
orientation in which it is placed. Through intrinsic calibration, we can correct image
distortions due to the optical nature of the sensor and ensure the accuracy of the
measured data.

1.1.2 Camera-LiDAR Extrinsic Calibration

Extrinsic calibration establishes the spatial transformation between different sensors or
between a sensor and the world, which is critical for sensor fusion, where data from dif-
ferent sensors need to be combined to create a coherent model of the environment. This
usually includes the position and orientation of the sensor relative to a known refer-
ence frame. The camera-LiDAR extrinsic calibration problem involves determining the
spatial relationship between the camera sensor system and the LiDAR sensor system.
The transformation of the LiDAR coordinate system to the camera coordinate system
can be achieved by a combination of rotations and translations, which describe the
orientation and position of the LiDAR coordinate system with respect to the camera
coordinate system.

In autonomous vehicles, intrinsic calibration ensures that the data from each sensor
is accurate and can be trusted for detailed analysis. Extrinsic calibration allows the
vehicle to integrate this data into a unified model of its surroundings. For instance, the
vehicle can overlay the precise distance measurements from a LiDAR sensor onto the
visual data from cameras to understand the environment in detail and make informed
navigation decisions.

1.2 Motivation

The motivation for Camera-LiDAR extrinsic calibration lies in the need to accurately
align and synchronize data from cameras and LiDAR sensors in a multi-sensor setup.
This calibration is crucial for applications such as autonomous vehicles, robotics, and
augmented reality, where precise spatial alignment between the camera and LiDAR

3



is essential. By determining the accurate transformation between the coordinate sys-
tems of the camera and LiDAR, one can seamlessly fuse information from both sensors,
enabling more effective perception, object recognition, and scene understanding. Cal-
ibration ensures that the data from each sensor is correctly mapped to a common
reference frame, facilitating coherent and accurate analysis in various applications.

Calibration plays a key role in ensuring that the data from each sensor is accurately
projected onto a unified reference frame. This alignment is critical for conducting a
coherent and precise analysis across a spectrum of applications. In autonomous driving,
for example, the synergy of camera and LiDAR data facilitates advanced navigation ca-
pabilities, allowing for the accurate detection and classification of various road elements,
obstacles, and dynamic entities like pedestrians and other vehicles. In robotics, this
calibration is integral for tasks requiring spatial awareness and interaction with complex
environments. Similarly, in augmented reality applications, aligning real-world and vir-
tual elements seamlessly is imperative for creating immersive and realistic experiences.

Furthermore, the process of Camera-LiDAR extrinsic calibration involves sophisticated
algorithms and precise measurements. It typically includes the use of calibration pat-
terns or environments and advanced software to calculate the relative positions and
orientations of the sensors. This calibration process not only compensates for physical
misalignments but also accounts for the intrinsic characteristics of each sensor type,
such as the camera’s lens distortions and the LiDAR’s range accuracy.

Traditional methods of Camera-LiDAR calibration involving calibration plates and
manual selection of features have long been the standard approach in the field. These
methods, while effective, are often labor-intensive, time-consuming, and reliant on con-
trolled laboratory environments. However, recent advancements in Camera-LiDAR
calibration have sparked a paradigm shift, with a growing emphasis on exploring au-
tomatic, automatic, and targetless calibration approaches that offer several advantages
over their traditional counterparts.

1.3 Related Works

In this section, we delve into the evolution of extrinsic calibration between a camera
and LiDAR, along with a review of relevant research. The prevailing extrinsic cali-

Table 1.2: Categories of Camera-LiDAR extrinsic calibration methods.

Category Target-based Targetless

Manual
Existing calibration reference target; Non-existent calibration reference target;

Artificial feature selection. Artificial feature selection.

Automatic
Existing calibration reference target; Non-existent calibration reference target;

Algorithmic feature extraction. Algorithmic feature extraction.

bration techniques predominantly center on one-shot extrinsic estimation. Table 1.2
shows the categories of Camera-LiDAR extrinsic calibration methods. According to
[3], these methods can be broadly classified into two categories: target-based and tar-
getless calibration, contingent on the presence of an extrinsic target as the reference
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point. Additionally, they can be further categorized as automatic or manual calibration,
depending on whether features are extracted automatically.

1.3.1 Target-based Calibration Methods

The manual target-based extrinsic parameter calibration approach requires engineers to
manually specify the correspondence between the LiDAR point cloud and the camera
image.

Figure 1.2: Principle of extrinsic calibration using the chessboard as a reference target. [2]

This process can be aided by calibration boards, an example is a checkerboard as shown
in Figure 1.2, which enforces geometric constraints between 3D points in the point
cloud and corresponding image pixels. This enables accurate estimation of the extrinsic
parameters. Zhang and Pless [18] first proposed a spatial calibration framework between
a camera and LiDAR. This method uses a chessboard as the calibration target and
imposes geometric constraints on the relative pose according to the position of the
visible laser point on the chessboard to estimate the extrinsic parameters. Unnikrishnan
and Hebert [19] also used a checkerboard as a target, manually selecting 3D laser
points along the edges of the checkerboard pattern, and aligning these points with the
checkerboard plane in the camera image. These specified calibration targets impose
geometric constraints between corresponding 3D points in point clouds and pixels in
images, which enable the agent to estimate extrinsic parameters.

Manual target-based calibration methods require not only extrinsic targets but also
a manual selection of ’feature points’. An automatic target-based calibration method
with targets was proposed by Geiger et al. [20] applying a corner point detection
algorithm on checkerboards as alignment feature points, avoiding manually selecting
feature points. Nunez et al. [21] modified on [18], using IMU (Inertial Measurement
Unit) sensor to decrease the number of points needed for a robust calibration. The
laser points are moved in three different planes to form a set of virtual 3D points,
which are verified by the powerful RANSAC planar analysis. Toth et al. [22] used a
spherical target for automatic extrinsic parameter calibration, estimating the extrinsic
parameters through geometric constraints on the same sphere center.
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1.3.2 Automatic Targetless Calibration Methods

The accuracy of traditional target-based extrinsic calibration depends heavily on the
quality and precise placement of the targets used in the process. Calibration involves
the physical setting of the target and possible multiple measurements for verification,
which is very time-consuming. At the same time, this process requires the experimenter
to have experience in operating the sensor and certain domain knowledge to ensure
that the calibration points are accurately set and measured. Hence, More and more
scholars are turning to targetless extrinsic parameter calibration. Scaramuzza et al. [23]
manually select pairs of points between 3D LiDAR points and image pixels and then
estimate extrinsic parameters by solving a PnP (Perspective-from-n-Points) problem.
However, this manual targetless approach still does not get rid of manual participation,
and the selection of feature points is subjective.

In recent years, automatic and targetless methods have gradually emerged, which no
longer rely on extrinsic reference targets. According to [3], automatic targetedless
methods can be divided into four categories based on the way information is ex-
tracted from the environment, information theory-based methods, feature-based meth-
ods (or appearance-based methods), ego-motion-based methods, and deep-learning-
based methods. In the following subsections, We will focus on discussing the different
types of automatic and targetless methods.

1.3.2.1 Information-based Methods

The method based on information theory estimates extrinsic parameters by maximizing
the similarity transformation between the LiDAR sensor and the camera. The basic
principle is as follows:

T̂ = argmax
T

MI((projT(P
L), I) (1.1)

where PL denotes the 3D points generated by the LiDAR, I denotes the camera im-
age, projT describe the project function from the set of 3D points to the image w.r.t.
the extrinsic matrix T, and MI(·) denotes the corresponding information metric that
measures the similarity between two data distributions.

Pandey et al. [24] estimate the extrinsic parameters by maximizing the mutual infor-
mation between the point cloud and image features, where the marginal and joint prob-
abilities of two sensor features can be obtained from the normalized marginal and joint
histograms of the reflectivity and grayscale intensity values of the points co-observed by
the laser scanner and camera. Similarly, Taylor and Nieto use the normalized mutual
information (NMI) between the surface normal of point cloud and gray-scale intensity
of image [25], and they further combined this method with the NMI of reflectivity and
gray-scale intensity [26]. On this basis, Irie et al. [27] additionally used the statistical
characteristics of point cloud depth discontinuity and image edge, and used bagged
least-squares mutual information (BLSMI) instead of NMI as a measure.
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1.3.2.2 Motion-Based Methods

Ego-motion based methods exploit the motion transformation of sensors mounted on
the traveling vehicle to estimate the extrinsic parameter. Hand-eye calibration problem
is a classic approach to solving extrinsic calibration, the transformation between the
camera and the gripper is calculated by solving the equation AX = XB, as illustrated
in Figure 1.3.

Figure 1.3: Hand-eye calibration physical model. [3]

Taylor and Nieto [28] use iterative closed points (ICP) and structure-from-motion (SfM)
algorithms to estimate the motion of LiDAR and camera respectively, and solve the
extrinsic transformation by observing the same motion of both sensors. In their fur-
ther work, [29], they use visual odometry to obtain the camera’s motion and combine
scene vision on the motion-based calibration framework. Meanwhile, they designed the
hand-eye equations from a probabilistic approach to include the uncertainty in each
sensor reading, which allows for the simultaneous calibration of all sensors and helps
to estimate the uncertainty of the final calibration. Hand-eye-based methods do not
require initial calibration parameters and overlapping fields of view. However, the accu-
racy of motion estimation for the sensors affects the performance of ego-motion-based
methods.

1.3.2.3 Feature-Based Methods

Feature-based automatic targetless calibration methods aim to extract and match com-
mon features of LiDAR point cloud and camera images. These features usually rep-
resent stable geometric or semantic elements in the surrounding environment, such as
lines, corners, edges, and more semantic elements. González-Aguilera et al. use the
Förstner operator [30] to extract and match corner and circular points from a camera
image and point cloud projected image. Scale-invariant feature transform (SIFT) is a
popular operator for detecting and matching local features in images. Point features
extracted by SIFT are invariant to image translation, scaling, and rotation. Böhm
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and Becker [31] use SIFT to define descriptor similarity, and estimate the extrinsic
parameters when maximizing such similarity. However, SIFT and SURF rely on tex-
ture information for feature extraction, and these methods may have difficulty finding
matching features in environments lacking texture (e.g., smooth walls).

Levison and Thrun [32] extracted ’edges’ and aligned them through a defined spatial
geometrical relation, where edges are recognized from the points by calculating the
differences in depth between neighboring points and filtering out points whose values
of differences are below a preset threshold. Castorena et al. [33] further extended the
edge extraction by first generating a dense depth map by upsampling the point cloud,
and then extracting the edges by calculating gradient changes in depth. The challenge
of edge alignment is that the characteristics of each sensor modality (such as sampling
mode and measured information) are significantly different, and the extracted edge
emphasis will also be different. Continuous edge extraction of point clouds is difficult
to implement in 3D. Zhang et al. [7] converted the 3D-2D edge alignment problem to
2D-2D edge alignment, projected the point cloud scan onto the surface of the cylinder
and expanded it, and added a multi-feature density map to optimize the edge extraction
process.

Another efficient way is by matching the semantic information of the scene, nevertheless,
the extraction of semantic features is more difficult than the extraction of geometric
features and is hard to implement with simple mathematical operators. Zhu et al. [34]
employ the Pyramid Scene Parsing Network (PSPNet) to semantically segment each
camera frame and use it to construct an optimization objective for extrinsic parameter
estimation. The strength of the semantic edges is emphasized by applying a distance
transform to the mask and an inverse distance transform to the background. Smooth
and continuous cost functions can be obtained when the point cloud falls into different
positions of the mask. However, poor segmentation quality or coarse LiDAR scan may
degrade the calibration accuracy. Liu et al.[35] applied pre-trained SPVNA and pre-
trained SDCNet for semantic segmentation of point clouds and images respectively, and
designed a differentiable semantic alignment loss using gGradient-based optimization
to estimate the extrinsic parameters. This requires that both networks need to share
the same labels, and the semantic alignment loss is formulated to be insensitive to
translation errors due to the limitations of pre-trianed models. Luo et al. [36] apply the
Segmented Anything Model (SAM) on the images to optimize the extrinsic parameters
by maximizing the consistency of the points projected within each image mask, where
the point cloud consistency is described by a combination of intensities, normal vectors,
and classes derived from certain segmentation methods.

1.3.2.4 Deep-Learning-based Methods

Recently, deep learning has made breakthroughs in automatic feature engineering and
achieved excellent performance on multiple tasks. Some use deep learning networks to
effectively extract semantic features in images and point clouds for registration, such
as SOIC [34], SemAlign [37], and SemCal [35], some are end-to-end models such as
RegNet [38], CalibNet [39], LCCNet [40] and DeepI2P [41]. However, the development
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and computing costs of end-to-end deep learning models are extremely high, require a
large amount of data training, and are often difficult to implement in actual projects.

1.3.3 Summary

Traditional methods of Camera-LiDAR calibration involving calibration plates and
manual selection of features have long been the standard approach in the field. These
methods, while effective, are often labor-intensive, time-consuming, and reliant on con-
trolled laboratory environments. However, recent advancements in Camera-LiDAR
calibration have sparked a paradigm shift, with a growing emphasis on exploring au-
tomatic, automatic, and targetless calibration approaches that offer several advantages
over their traditional counterparts. Feature extraction based on geometric information
and feature extraction based on semantics each have their own merits. Geometric infor-
mation can be described by intuitive mathematical formulas, and the implementation is
relatively simple. Semantic information usually relies on small and medium-sized net-
works. Using pre-trained networks can avoid using a large amount of data for training.
Although semantic information can identify categories in the scene, the edges of the
mask are often ambiguous. Our approach combines semantic and geometric features,
similar to [36], where the gradient edges of the image are blended with semantic edges
to match the blended features of the point cloud.

1.4 Objectives and Improvements

In this study, we mainly focus on the development and analysis of autonomous, tar-
getless extrinsic calibration algorithms for camera-LiDAR systems. We explore various
related algorithms and present an enhanced version that draws inspiration from the
recent work [7], incorporating several improvements. Our experimental validation and
performance assessments are carried out using the well-regarded and widely recognized
KITTI dataset, renowned for its relevance and authority in the field. The main contri-
butions of this paper are as follows:

• An easy-to-implement edge-based feature registration algorithm is proposed.

• Involving semantic edges using an advanced SMA model on image edge extraction.

• Edges based on distance discontinuity and edges based on projection map com-
pletion are simultaneously considered in point cloud edge extraction.

• Using fast density completion on point cloud projection map completion.

• Solving the PnP problem using semantic-based prime thus avoiding random initial
settings on extrinsic parameters estimation.

• Multi-frame weighted average and the scene similarity is proposed and explored.
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1.5 The Outline of Thesis

The outline of the thesis is shown below:

• Chapter 1: Introduction

• Chapter 2: Problem Formulation: Camera-LiDAR extrinsic calibration framework

• Chapter 3: Proposed methods

• Chapter 4: Experiments and results

• Chapter 5: Conclusions and future work

In the opening chapter of this thesis, we delve into the research context and under-
score the significance of calibrating extrinsic parameters between cameras and LiDAR.
This sets the stage for a comprehensive exploration of the topic. Then we present a
comparative analysis of existing literature on extrinsic parameter calibration. Here,
we scrutinize both non-automatic and automatic methods, as well as targeted and
untargeted approaches. The emphasis, however, is placed on automatic untargeted al-
gorithms, discussing their nuances in detail. Chapter 2 is dedicated to explicating the
sensor coordinate systems and the mathematical framework underpinning the extrinsic
reference calibration of the camera and LiDAR. This chapter serves as the bedrock for
the development and explanation of the algorithm proposed in Chapter 3. Chapter 4
involves rigorous experimentation and analysis using the KITTI dataset. This empir-
ical investigation aims to validate the theoretical models and algorithms discussed in
previous chapters. In the final chapter, a macro-analysis of the whole work in terms of
future improvements will be reflected.
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Problem Formulation:
Camera-LiDAR Extrinsic
Calibration Framework 2
This chapter introduces the fundamental concepts and methodologies that underpin the
integration of camera and LiDAR systems. We begin by exploring the basic principles
of camera coordinates and LiDAR set-up parameters, laying the groundwork for under-
standing how these two distinct technologies can complement each other. The camera’s
role in capturing high-resolution imagery and LiDAR’s proficiency in generating precise
3D spatial data is pivotal in creating a comprehensive perception system.

The intricacies of imaging and the mechanics of 3D space rotation and translation are
then introduced to grasp how images and spatial data are transformed and interpreted
in a unified system. The ability to convert and understand these transformations
is central to effectively merging the visual and spatial data. We then transition to
exploring general 3D-3D and 3D-2D transformations, which are key to aligning and
integrating data from different sensor modalities.

Lastly, the chapter focuses on the specific process of projecting LiDAR data onto cam-
era imagery. This projection is a critical step in sensor fusion, as it allows for the
direct combination of LiDAR’s spatial measurements with the camera’s visual data.
The content discussed in this chapter is foundational to developing a camera-LiDAR
calibration algorithm.

2.1 Camera Coordinate System and Imaging Principle

Before discussing the LiDAR to image projection, we first introduce the coordinate
system conversion from the camera coordinate to the image plane. Suppose there
is a point [xC , yC , zC ]T in space, which is the same as the presentation in the camera
coordinate system, where Z is the vertical distance from the point to the camera optical
center (origin). Let the intersection of this point with the image plane be point [xI , yI ]T .
The simulation of the projection of a point in space to the image plane is shown in Figure
2.1, from which, we can find the relation between a camera point and its imaging point:

xI =
fxx

C

zC
, yI =

fyy
C

zC
(2.1)

However, the real center of the image coordinate system is in the upper left corner of
the image, while Equation 2.1 assumes that the origin is at the center of the image. To
deal with the offset, let the coordinates of the pixel corresponding to the optical center
on the image be (cx, cy), which is also referred to as the principal point offset.
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Figure 2.1: The general imaging principle of projecting a point in space from the camera
coordinate system to the image plane

Then, the modified formula of Equation 2.1 is given by

xI =
fxx

C

zC
+ cx, yI =

fyy
C

zC
+ cy (2.2)

which is equivalent to

zC
[
xI

yI

]
=

fx 0 cx
0 fy cy
0 0 1

xC

yC

zC

 (2.3)

where [xI , yI ]T is the coordinate of the projected on the image, and

fx 0 cx
0 fy cy
0 0 1

 is

usually referred to as the intrinsic parameter matrix.

2.2 LiDAR Coordinate System and Point Cloud Scanning
Model

Point cloud refers to a data set of spatial points scanned by a 3D LiDAR device. Each
point cloud contains 3D coordinates (x, y, z) and reflection intensity (r), where reflection
intensity is related to the surface material of the target object, the laser incident angle,
the laser wavelength, and the energy density of the LiDAR.

Generating a 3D point cloud image requires only the point cloud coordinates vector
[xL, yL, zL]T of each scanned point. Using function points3d from Mayavi to generate
an interactive point cloud panorama, the effect is as shown below

12



Figure 2.2: LiDAR point cloud panorama view

LIDAR devices emit a series of laser pulses and calculate the position and distance
of an object based on sending laser pulses and measuring the time it takes for those
pulses to reflect back from the object. LIDAR systems include rotating components,
and the rotating components of LIDAR allow the laser to emit pulses at different angles,
thus enabling it to scan the entire surrounding environment. LiDAR set-up has several
important parameters that affect the sparsity and distribution of point clouds. Table
2.1 explains these device parameters. The number of channels and angular resolution

Table 2.1: Important LiDAR parameters and their physical meaning.

Device parameters Description

Number of Channels The number of laser beams in vertical direction

Vertical Resolution The angular resolution in the vertical direction

Horizontal Resolution The angular resolution in the horizontal direction

Horizontal Field of View (FoV) The total angular coverage in the horizontal direction

Vertical Field of View (FoV) The total angular coverage in the vertical direction

Range The furthest observable distance of LiDAR

affect the sparseness of the point cloud, and the FOV and range affect the observation
range of the LiDAR. Figure 2.3 shows the LiDAR scanning model.

As mentioned before, LiDAR point cloud data have an uneven spatial distribution.
Besides, due to the self-occlusion of three-dimensional objects in the scene, LiDAR can
only detect a part of the surface of the three-dimensional object, which also leads to
the fact that point cloud data can only represent a part of the geometric information
of the object.
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Figure 2.3: LiDAR scanning model.

Although the point cloud map is not as visual as the image, the scanned points can
roughly record the size and shape of the obstacle and the surroundings and terrain. This
characteristic can be used to cluster or remove certain characteristic surfaces through
the characteristics of point cloud distribution.

2.3 6-DOF Rigid Body Transformation in 3D space

The coordinates transformation between two different three-dimensional space coordi-
nate systems usually entails a combination of three-dimensional rotation and transla-
tion, which is exactly a 6-DoF (Six degrees of freedom) problem. Describing the trans-
lation is straightforward and requires only a vector, denoted as t = [x, y, z]T . However,
describing the rotation in three-dimensional space is more complicated. There are
several ways to express a rotation in three-dimensional space, including Euler angles,
axis-angle representation (rotation vector), quaternion, and rotation matrix. Among
them, the rotation matrix R ∈ R3×3 can be uniquely converted from other represen-
tation ways. Each representation has its advantages and disadvantages, depending on
the specific application and requirements. In this section, we will discuss several math-
ematical ways of describing rotations and their conversion to the rotation matrix. In
particular, some important properties of the rotation matrix will be introduced. Fi-
nally, the transformation of points in 3D space will be explained to help us formulate
extrinsic parameter problems.

2.3.1 Euler Angles and Rotation Matrix

A concise way to express rotations is by decomposing them into three fundamental ro-
tations, as illustrated in Equations 2.4–2.6. These equations represent rotations around
the x-, y-, and z-axes within the right-handed Cartesian coordinate system, respectively.

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (2.4)
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Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (2.5)

Rz(α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 (2.6)

where γ, β, and α are also called roll, pitch and yaw. Figure 2.4 shows the geometric
interpretation of the 6 degrees of freedom problem.

Figure 2.4: Axis representation of rotation and translation in 6-DOF rigid body transforma-
tion.

Any 3-dimensional rotation matrix R ∈ R3×3 can be used with these three angles to
characterize, and can be expressed as the product of the three basic rotation matrices
in Equation 2.7. That is, first rotate around the z-axis by α degrees, then rotate around
the y-axis by β degrees, and finally rotate around the x-axis by γ degrees.

R(α, β, γ) = Rz(α)Ry(β)Rx(γ)

=

cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ


(2.7)

where α, β, γ ∈ [0, π). This rotation representation is also called intrinsic rotation
whose Tait–Bryan angles are α, β, γ, about axes z, y, x, respectively. Similarly, we
have extrinsic rotation as:

R(α, β, γ) = Rx(γ)Ry(β)Rz(α)

=

cos β cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ
cos β sin γ sinα sin β sin γ + cosα cos γ cosα sin β sin γ − sinα cos γ
− sin β sinα cos β cosα cos β


(2.8)

which represents an extrinsic rotation whose Euler angles are α, β, γ, about axes x,
y, z, respectively. Equation 2.8 is actually equivalent to Equation 2.7. The order of
matrices product is from left to right and not commutative.
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For the Euler angle representation using the z-y-x rotation order, the transformation
from the rotation matrix to the Euler angle can be calculated by Equation 2.9 to 2.12.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.9)

where rij denotes the element of the rotation matrix, where i denotes the row number
and j denotes the column number. Each row and column represents the rotation
component on different axes.

α = arctan(r21, r11) (2.10)

β = arcsin(−r31,
√
r231 + r233) (2.11)

γ = arctan(r32, r33) (2.12)

It should be noted that when using Euler angles to represent rotation, when β angle
approaches ±90 degrees, there may be situations where the pose cannot be uniquely
determined. In this case, only the sum or difference of α and γ can be found. Around
this angle, the rotation around the yaw axis and the rotation around the horizontal
axis (roll) will be coupled, resulting in the loss of the ability to control independently.
This situation is called Gimbal Lock.

2.3.2 Axis-Angle Representation and Quaternion

Rotation can also be determined by a unit vector e = [ex, ey, ez]
T that represents the

direction of the axis of rotation, and an angle of rotation around this axis θ. By
Rodrigues’ rotation formula, the rotation matrix determined by the axis and angle is
given by

R(e, θ)

=

 cos θ + (1− cos θ)e2x (1− cos θ)exey − (sin θ)ez (1− cos θ)exez + (sin θ)ey
(1− cos θ)eyex + (sin θ)ez cos θ + (1− cos θ)e2y (1− cos θ)eyez + (sin θ)ex
(1− cos θ)ezex + (sin θ)ey (1− cos θ)ezey + (sin θ)ex cos θ + (1− cos θ)e2z


= exp

θ

 0 −ez ey
ez 0 −ex
−ey ex 0


(2.13)

Although the axis-angle representation of rotation only requires one axis and the angle
of rotation around that axis, there are actually four parameters involved in forming
the rotation matrix. Similarly, a rotation can also be defined using a quaternion. A
quaternion is defined by

q = q0 + q1i+ q2j + q3k (2.14)

where q0 is a real value, and q1, q2, q3 are complex values. The corresponding rotation
matrix is

R(q) =

1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 − q0q1) 1− 2(q21 + q22)

 (2.15)
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2.3.3 Properties of Rotation Matrix

Rotation matrix has several important properties that are crucial to understanding and
applying rotation operations in 3D space. For R ∈ R3×3, The following are some basic
properties of rotation matrices:

Property 1: The rotation matrix has orthogonality, and its row vectors and column
vectors are unit vectors and are orthogonal to each other. The orthogonal property
maintains the length and angle of vectors and does not change the relative relationship
of vectors in space.

RTR = U (2.16)

Property 2: The determinant of the rotation matrix is ±1, which ensures that the
volume expansion factor of the matrix is 1 and does not change the spatial volume.

det |R| = ±1 (2.17)

Property 3: The inverse of a rotation matrix is equal to its transpose. The inverse
matrix realizes the undoing of the rotation and returns to the state before the rotation.

RT = R−1 (2.18)

Measuring the rotation error between two rotations, represented by matrix R1 and
R2 is not a simple subtraction. Consider one point is rotated through R1, and the
other point is rotated through R2. The former needs to reach the same state as the
latter point after undergoing a rotation ∆R. Utilizing Equations 2.16 and 2.18, the
’difference’ between two rotations R1 and R2 can be determined by

∆R = R−1
1 R2 = RT

1R2 (2.19)

where ∆R serves as a metric for measuring the error between the two rotations.

2.3.4 General Conversion Between 3D Coordinate Systems

The transformation of the 3D coordinate system is a 6-degree-of-freedom problem,
represented by rotation and translation. With a clear definition of rotation and relation
with Euler angles, transforming a three-dimensional point (x, y, z) from coordinate
system A to coordinate system B is given byx′

y′

z′

B

= R

xy
z

A

+ t (2.20)

where R is rotation matrix, and t is translation matrix.
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2.4 LiDAR to Camera Image Projection

Sections 2.1 and 2.2 have established that camera images and LiDAR point cloud data
are captured in distinct coordinate systems. Consequently, when integrating these
images with point clouds for sensor fusion, it is essential to perform a coordinate trans-
formation, which is Camera-LiDAR calibration. From Figure 2.5 we can see that:

Camera image coordinates:

• The coordinate values in an image are always positive.

• The origin is located in the upper left-hand corner of the image.

• The coordinates take integer values only.

LiDAR point cloud coordinates:

• The coordinate values in the point cloud can be positive or negative.

• The origin is located in the center of the 3D point cloud space (LiDAR coordinate
system).

• The coordinates can take any real numbered values.

Figure 2.5: Camera and LiDAR coordinate system

Now we consider the situation that the coordinates of a point in the world coordinate
system are different from its representation in the camera coordinate system. In such
cases, it’s essential to first transform the other coordinates into the camera coordinate
system before projecting the point onto the image plane. From Equation 2.3, we already
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have the conversion formula from the camera to the image plane, based on this, the
general coordinate system conversion formula from the world to the image plane is as
follows

zC
[
xI

yI

]
= K[CWR

xW

yW

zW

+C
W t] (2.21)

where [xW , yW , zW ]T is a vector of coordinates of a point in the world coordinate system.
For the sake of clarity, (·)ba refers to operation (·) from a to b, this definition is also
adopted in the following sections. C

WR ∈ R3×3 is the relative rotation between the world
coordinate system and the camera coordinate system, and accordingly C

W t ∈ R1×3 is
the relative translation vector between the world coordinate system and the camera
coordinate system.

Rewrite Equation 2.21 using the homogeneous coordinates form, we have

zC

xI

yI

1

 = K
[
C
WR|CW t

] 
xW

yW

zW

1

 =

fx 0 cx
0 fy cy
0 0 1

rxx rxy rxz tx
ryx ryy ryz ty
rzx rzy rzz tz



xW

yW

zW

1

 (2.22)

Define the notation of used calibration parameters for convenience as follows:

• P
(i)
rect ∈ R3×4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Projection matrix after rectification

• R
(0)
rect ∈ R3×3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectifying rotation matrix of camera 0

• C
LT ∈ R4×4 . . . . . . . . . . . . . . . . . . . . Transformation matrix from LiDAR to camera 0

• C
LR ∈ R3×3 . . . . . . . . . . . . . . . . . . . . . . . . . . Rotation matrix from LiDAR to camera 0

• C
Lt ∈ R1×3 . . . . . . . . . . . . . . . . . . . . . . . . .Translation matrix from LiDAR to camera 0

where i ∈ 0, 1, 2, 3 is the camera index. For binocular cameras or multiple cameras, the
camera index is used to number the cameras. All these parameters above are necessary
for calibrating the cameras intrinsically and intrinsically.

An example of a camera calibration file is shown in Figure 2.6.

Figure 2.6: Example of a calibration configuration file.
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where the calibration parameter matrices for each frame are recorded in row-major
order [6].

P0 ∼ P3 stores the entries of the rectifying projection matrices of camera 0, 1, 2, and

3, respectively. The projection matrix after rectification P
(i)
rect, also referred to as the

intrinsic parameter matrix, is determined only by the camera intrinsic matrix, which is
given by

P
(i)
rect =

f (i)
u 0 c

(i)
u −f (i)

u b
(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0

 , i = 0, 1, 2, 3 (2.23)

where b
(i)
x denotes the baseline (in meters) concerning reference camera 0, f

(i)
u and f

(i)
v

are the focal lengths of the camera, and c
(i)
u and c

(i)
v are the principal point offsets. The

principal axis of the camera is the line perpendicular to the image plane and passing
through the vacuum, and its focal point with the image plane is called the principal
point. The principal point offset is the position of the principal point relative to the
image plane.

R0 rect stores the entries of the rectifying rotation matrix of camera 0, denoted as

R
(0)
rect, which enables to make the image planes coplanar.

Tr velo to cam stores the entries for the concatenation of the rotation matrix and
translation matrix from LiDAR to camera 0. To built the transformation matrix C

LT,
use the following equation

C
LT =

[
C
LR

C
Lt

0 1

]
(2.24)

where the rotation matrix C
LR and the translation matrix C

LT are together called the
extrinsic parameter matrix. They together describe how to transform the point from
the LiDAR coordinate system to the camera coordinate system.

LiDAR point cloud to image projection involves not only LiDAR-to-camera coordinate
conversion, but also camera-to-camera calibrations. This process is divided into the
following procedures:

Using homogeneous coordinates, several transformations such as translation and ro-
tation can be easily implemented by cascading several matrix-vector multiplications.
Therefore, denote the point cloud coordinates as pL = [xL, yL, zL, 1]T . First, a trans-
formation from LiDAR coordinates to reference camera coordinates is performed by

x =C
L T pL (2.25)

Then perform camera rectification based on the reference camera (camera 0), we have

x′ = R
(0)
rect

C
LT pL (2.26)

where R
(0)
rect is expanded into a 4×4 matrix by appending a fourth zero-row and column

and setting R
(0)
rect(4, 4) = 1. Distortion may be introduced into the image due to incon-

sistencies in the focal length of the lens over its diameter, thus the purpose of this step
is to make the projected image coplanar with the reference camera image.
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Finally, we project the point pL in the LiDAR coordinate system to the point pI =
[xC , yC , zC ]T on the image plane of the i-th camera by

pC = P
(i)
rect R

(0)
rect

C
LT pL (2.27)

where P
(i)
rect implements the projection of a point in the coordinate system of the refer-

ence camera (camera 0) onto the image plane of the i-th camera.

Normalizing the left side of Equation 2.27, and denote pI = [x
C

zC
, y

C

zC
, 1]T , we have

zCpI = P
(i)
rect R

(0)
rect

C
LT pL (2.28)

Considering that we use image data from the left color camera (camera 2), the projec-
tion equation is then given by

zCpI = P
(2)
rect R

(0)
rect

C
LT pL (2.29)

where P
(2)
rect and R

(0)
rect can be viewed as equal as the camera intrinsic K, C

LT is a
transformation matrix composed of extrinsic parameters of the system.

2.5 Problem Statement

In Section 2.3, we discussed the projection of a point pL in the LiDAR coordinate
system to the camera image plane. We now consider that in a pair of an image and
a LiDAR point cloud, there is a number of LiDAR points whose coordinate vectors
are stacked horizontally into a point set matrix for the certain frame, denoted as PL.
Following Equation 2.29, for each point pL

i in a certain frame, the projection equation
is given by

pC
i =

xC
i

yCi
zCi

 = KC
LTpL

i = KC
LT


xL
i

yLi
zLi
1

 , pI
i =

xC
i

zCi
yCi
zCi

 (2.30)

where the subscript of pL
i and pC

i represents the i-th LiDAR point of a certain frame
and the corresponding projected point, respectively.

Then we apply Equation 2.30 on the point set matrix PL, we have

PC =

xC
0 x

C
1 · · · xC

n

yC0 y
C
1 · · · yCn

zC0 z
C
1 · · · zCn

 = KC
LTPL = KC

LT


xL
0 x

L
1 · · ·xL

n

yL0 y
L
1 · · · yLn

zL0 z
L
1 · · · zLn

1 1 · · · 1

 , PI =

xC
0

zC0

xC
1

zC1
· · · x

C
n

zCn
yC0
zC0

yC1
zC1
· · · y

C
n

zCn

 (2.31)

If we have N frames, then for a certain frame, Equation 2.31 becomes

PC
k =

xC
k,0x

C
k,1 · · ·xC

k,n

yCk,0y
C
k,1 · · · yCk,n

zCk,0z
C
k,1 · · · zCk,n

 = KC
LTPL

k = KC
LT


xL
k,0x

L
k,1 · · ·xL

k,n

yLk,0y
L
k,1 · · · yLk,n

zLk,0z
L
k,1 · · · zLk,n

1 1 · · · 1

 , PI
k =

xC
k,0

zCk,0

xC
k,1

zCk,1
· · · x

C
k,n

zCk,n
yCk,0
zCk,0

yCk,1
zCk,1
· · · y

C
k,n

zCk,n


(2.32)
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For convenience of expression, we rewrite Equation 2.24 as

C
LT =

[
R t
0 1

]
(2.33)

where t = [tx, ty, tz]
T is the translation vector, and R is the rotation matrix. The 3×3

rotation matrix can represent a unique rotation, but there are redundant degrees of
freedom, which can be represented by three-dimensional Euler angles through certain
linear transformation R = f(ϕx, ϕy, ϕz). For the sake of clarity, we define the extrinsic
parameters θ = (ϕx, ϕy, ϕz, tx, ty, tz),

C
LT is only related to θ with K known, thus we

can rewrite Equation 2.30 as
pC
i = T (θ)pL

i (2.34)

where T (·) is a function that uniquely parameterized by θ.

The proposed framework is dedicated to sensory setups with global-shutter cameras
and 3D LiDARs that are rigidly attached. We assume that the camera is internally
calibrated and these parameters are fixed during the calibration. The extrinsic calibra-
tion can be determined by maximizing the registration function between the camera
and LiDAR:

θ̂ = argmax
θ

F(PC
k ,P

L
k |θ) (2.35)

which is equivalent to

{ ˆC
LT} = argmax

C
LT

F(PC
k ,P

L
k |CLT) (2.36)

According to Equation 2.24 and the properties of the rotation matrix, we can rewrite
Equation 2.36 as follows

{R̂, t̂} = argmax
R,t

F(PC
k ,P

L
k |R, t), s.t. RTR = U (2.37)

where U is the identity matrix, and the constraint is imposed by the property of the
rotation matrix we introduced in Section 2.3.3.

2.6 Summary

In this section, we present in detail the physical model of the camera-LiDAR system and
the framework of the calibration problem. As a prerequisite for the extrinsic calibration
problem, the LiDAR-to-camera image transformation undergoes two steps, one is the
3D-2D imaging process from the camera system to the image plane, which is involved
by the camera intrinsic, and the other is the 3D-3D transformation of the LiDAR
coordinate system to the camera coordinate system, i.e., the extrinsic parameters that
we estimate. The transformation or projection from the 3D to the 2D coordinate
system is described by a combination of rotation and translation. Due to the special
properties of the rotation matrix, we use the rotation matrix to describe the rotation in
the projection of a 3D point to a 2D plane. The great advantage of the rotation matrix is
its unique mathematical representation, however, the rotation matrix has nine entries,
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while describing rotations in space requires only a minimum of three variables, the Euler
angles. Given that rotation matrices and rotation angles can be transformed into each
other, the calibration of the camera-LiDAR extrinsic calibration is a 6-DoF problem,
and our goal is to find the optimal parameters to make the correct correspondence
between the two types of data (images and point clouds).
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Proposed Methods 3
Mis-calibration of the camera coordinate system and the LiDAR coordinate system will
result in unachievable cooperative perception for autonomous driving. As we discussed
in Chapter 1, a more efficient and automatic target-less epistemic calibration method is
our goal, past edge-feature-based camera-LiDAR extrinsic calibration methods mostly
ignore semantic features. We bring a new improvement that can be achieved by com-
bining traditional edge extraction and semantic edge extraction.

The foundational mathematical model for the transformation of coordinates between
camera and LiDAR systems was outlined in the preceding chapter. Building upon this,
this chapter introduces our proposed algorithm for extrinsic calibration of camera-
LiDAR systems, which is centered around the principle of edge alignment.

Figure 3.1: A Camera-LiDAR calibration framework.

Figure 3.1 explains a general framework of extrinsic parameter estimation, including
the processing of LiDAR point cloud and camera image, feature extraction, feature reg-
istration and parameter optimization. In this chapter, we will introduce the processing
techniques of images and point clouds, as well as the technical details of edge extraction
and extrinsic parameters estimation.
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3.1 One-shot Estimation

In this section, the one-shot estimation method is introduced. Figure 3.2 shows the
simplified pipeline.

Figure 3.2: One-shot estimation pipeline.

For the input images-points pairs, we perform image processing on the images to provide
high-quality images for subsequent image edge extraction. It is tricky for raw point
clouds to perform edge extraction directly, so we need to preprocess the point clouds
and mine the hidden edge information based on different attributes of the point clouds.
In the edge extraction part, we carry out edge detection in the 2D plane and design the
cost function for optimization. For the initial setting of extrinsic parameters, we use
semantic networks to extract the semantic center of mass and perform 3D-2D relational
alignment to achieve coarse calibration and use this result as the initial input.

3.2 Image Processing

Image quality and image edge extraction are affected by several factors, such as noise,
contrast, brightness and exposure. Noise introduces errors in edge extraction near noisy
points, compromising accuracy. Additionally, edges may be influenced by shadows
or highlights caused by lighting. Overexposure impacts image contrast, and contrast
variations can lead to insufficiently visible edges or incorrect identification of non-edges,
all of which can make edge extraction challenging. Therefore, before we extract the edge
of the image, exploiting image equalization and other image processing techniques can
help improve edge extraction results. Here we will explore various image processing
techniques designed to improve image quality, ultimately leading to enhanced edge
extraction.

Histogram Equalization (HE) is the most common image enhancement technique used
to improve the contrast and visibility of images. The first step is to compute the
histogram H(i) of the grayscale levels in the image:

H(i) =
M∑
x=1

N∑
y=1

δ(I(x, y), i) (3.1)
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where M × N is the size of the image (with M rows and N columns), I(x, y) is the
intensity of the pixel at position (x, y), and δ(a, b) is the Kronecker delta function,
which is 1 if a = b and 0 otherwise.

The Cumulative Distribution Function (CDF) of the histogram is calculated as follows

CDF (i) =
i∑

j=0

H(j) (3.2)

where i ranges from 0 to 255 in an 8-bit image.

The CDF is then normalized by the total number of pixels N in the image

CDFnorm(i) =
CDF (i)

N
(3.3)

Mapping the pixel intensities of the original image to new intensity levels is done
through Equation 3.4, which results in a more uniform distribution of intensity levels.
This mapping is done so that the histogram of the output image is as close to a uniform
distribution as possible, thus enhancing the overall contrast of the image.

i′ = round((L− 1) · CDFnorm(i)) (3.4)

where each pixel intensity i in the original image is assigned to a new intensity i′. L is
the number of possible intensity levels, L = 256 for an 8-bit image.

In the histogram equalization introduced earlier, the global image is directly equalized,
which is global histogram equalization, without taking into account the local image area
(local region). However, adaptive histogram equalization (AHE) allows the construction
of a mapping function using only the histogram distribution within a window of local
regions. AHE calculates the CDF for each local region and normalizes it as in HE. The
intensity of each color block is mapped using the respective normalized CDF, which
can enhance the local contrast.

Contrast Limited Adaptive Histogram Equalization (CLAHE) further optimizes AHE.
In CLAHE, each local histogram is clipped at a predefined threshold before the CDF
is computed. This threshold is usually a percentage of the maximum value of the
histogram. The excess counts in the clipped histogram are then redistributed evenly
across all intensity levels.
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(a) Original grayscale image (b) Histogram for the original image

(c) HE image (d) Histogram for the HE image

(e) CLAHE image (f) Histogram for the CLAHE image

Figure 3.3: Comparison of different image equalization methods on a grayscale image.

We perform HE and CLAHE on the original gray-scale image, and the comparison on
their histogram is shown in Figure 3.3. We can find that both equalization methods
change the contrast of the image, and HE makes the grayscale distribution uniform
globally. We magnify the local details, as depicted in Figure 3.4. It is evident that

(a) (b) (c)

Figure 3.4: Comparison of different image equalization methods on local areas of the grayscale
image

CLAHE exhibits better equalization performance compared to HE when processing
local details.

The previous results are based on grayscale image processing. If we perform CLAHE on
the color RGB image, we need to perform CLAHE on the grayscale images of the three
color channels respectively. The results are shown in the Figure 3.5. Noise filtering
in image processing is essential for enhancing image quality and preparing images for
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(a) Original RGB image (b) Histogram for the original RGB image

(c) CLAHE image (d) Histogram for the CLAHE image

Figure 3.5: Comparison between CLAHE on the RGB image and the original RGB image.

further processing like edge detection or object recognition. Two popular methods for
noise filtering are Gaussian filtering and Bilateral Filtering.

Bilateral filtering is a filtering technique used for image denoising. It preserves the edge
information of the image while reducing the effect of noise.

I ′(x, y) =
1

W

∑
(i,j)∈neighborhood

I(i, j) · w(i, j, x, y) (3.5)

where I ′(x, y) is the pixel value in the output image. W is the normalized sum of
weights. I(i, j) represents the coordinates of pixels in the neighborhood. w(i, j, x, y)
is the pixel intensity weight function, considering both intensity similarity and spatial
distance.

Gaussian filtering uses a Gaussian function (normal distribution) as a filter kernel to
perform a convolution operation on an image. Its purpose is to smooth the image and
reduce the noise in the image while blurring the details of the image.

H(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
(3.6)

I ′(x, y) =
∑
i

∑
j

I(x− i, y − j) ·H(i, j) (3.7)

where H(x, y) is a 2D Gaussian filter kernel whose size is controlled by sigma. I(x, y) is
the pixel value of the original image and I ′(x, y) is the pixel value of the filtered image.
The Gaussian filter kernel performs a convolution operation with the image, that is,
the filter kernel is slid over the image and a weighted average is applied to the pixel
values at each position.
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3.3 Point Cloud Pre-Processing

LiDAR data comprises multiple frames of raw point clouds, denoted as L = {PL
k |k =

0, 1, · · · , N}. In contrast to images, which only possess grayscale values for each point,
each point in PL

k is characterized by multiple ’values’ or attributes. Unlike traditional
imaging where pixel values represent intensity, LiDAR points convey richer information
about the environment. The point cloud data obtained through LiDAR scanning not
only provides the three-dimensional coordinates (x, y, z) of a point in 3D space, but also
provides the reflection intensity value r of the point, which we have already mentioned
in Section 3.3.

One important index is depth information, denoted as d representing the distance from
the LiDAR sensor to a point in the environment, which can be calculated by

d =
√

(xL)2 + (yL)2 (3.8)

which is the 2D Euclidean distance of a point in the LiDAR coordinate system.

Figure 3.6: Point attributes of a LiDAR point

In addition to these basic attributes, some ‘hidden’ attributes can be calculated by
different methods depending on the configuration of the LiDAR system and the specific
characteristics of the acquired data. Figure 3.6 shows the point attributes of a LiDAR
point. For example, the RANSAC planar segmentation algorithm can divide points
into planar or non-planar points, instructed by g, the DBSCAN clustering algorithm
can derive the class centroid for each point, denoted as o.

Point cloud preprocessing will take into account the characteristics of these attributes,
threshold filtering, RANSAC plane segmentation and DBSCAN classification methods
will be introduced in the following subsections.

3.3.1 Threshold Filtering

Threshold filtering stands as a straightforward and efficacious methodology for prepro-
cessing point cloud data. Implementing a height threshold facilitates the exclusion of
points below a designated elevation, which is particularly advantageous for the elimi-
nation of ground-level or low-lying objects from the dataset. Adjusting the threshold
for reflectivity value enables the selective retention or removal of points based on their
reflective intensity, a feature that is critical for distinguishing reflective objects such
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as traffic signals or automotive safety markings. Given the camera’s limited field of
view, it is efficient to excise LiDAR points that fall beyond this visual range, including
areas that are not within the direct line of sight, like the rear angles obscured from the
camera’s perspective. Furthermore, setting a distance range threshold is imperative, as
points situated too proximate or too distant may escape detection within the camera’s
imagery. Employing such a threshold aids in discarding points that lie outside the
valid operational range, thereby ensuring that the processed data remains relevant and
accurate for subsequent image analysis tasks. The number of point clouds processed
through threshold filtering will be greatly reduced, which will help improve the speed
of subsequent point cloud processing.

(a) un-processing depth projection map (b) un-processing reflectivity projection map

Figure 3.7: Un-processed LiDAR point cloud pano-view display

Figure 3.7a and 3.7b show the depth projection map and reflectivity projection map of
all point clouds in one frame.

(a) Height filtering (b) Reflectivity filtering

(c) FoV filtering (d) Range filtering

Figure 3.8: Thereshoding filtering of LiDAR point cloud

Figure 3.8 demonstrates the effect of threshold filtering on different attributes. Height
filtering can effectively remove part of the ground, and reflection value filtering can
retain reflective objects such as signal signs and poles. Angle filtering filters horizontal
angles of view beyond the camera’s front view. Range filtering can filter out objects
that are unclear (too close or too far) captured by the camera. These threshold filtering
methods can be applied before or after the RANSAC and DBSCAN algorithms to
reduce the amount of data calculation or clean the data again.
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3.3.2 RANSAC Plane Segmentation

Point cloud data is large and sparse, and there is noise, which the noise can be removed
by clustering the main objects, however, in the point cloud data, the ground points
account for a large part of the data, which will greatly affect the efficiency of the
clustering algorithm. When the ground points are projected onto the image plane,
they also occupy a large area of the image. In Fig.3.7a and 3.7b, the projection maps
based on the depth d and reflectivity intensity r of the points are drawn, respectively.
In the reflectivity projection map, the ground lane lines can be differentiated by the
discontinuity of reflectivity. In the depth projection map, there are a large number
of redundant ground points, and there are no effective features to be extracted. This
section describes the use of the RANSAC (Random Sample Consensus) algorithm to
separate point cloud ground points and non-ground points.

The principle of the RANSAC (Random Sample Consensus) algorithm in extracting
planes in a laser point cloud is based on iteratively selecting random samples to estimate
a planar model and verifying how many points in the entire dataset match this estimated
model. Algorithm 1 explains the basic steps and principles of the RANSAC algorithm
for extracting planes from a laser point cloud.

Algorithm 1 RANSAC plane segmentation [42]

Input: Point cloud PL ∈ R4×N with N points, number of iterations numIter, initial number
of inliers numInliers, threshold th

1: Create a all-zero vector l with length equal to PL

2: for i < numIter do
3: maybeInliers := Randomly selected n points from PL

4: maybeModel := Model parameters Ax+By + Cz +D = 0 fitted to maybeInliers
5: for n < N do
6: Calculate distn = |Axn+Byn+Czn+D|√

A2+B2+C2
for each point

7: if distn < th then
8: ln ← 1
9: end if

10: end for
11: if

∑
n ln > numInliers then

12: Update model parameters A, B, C, D
13: Update numInliers :=

∑
n ln

14: end if
15: end for
Output: Label sequence l ∈ R1×N

The algorithm randomly selects sample points (For planes, n = 3 points are usually
selected). These points are used to define a potential plane model Ax+By+Cz+D = 0.
Once the model is built, the algorithm checks how many points in the point cloud fit the
flat model. That is, the distance distn from each point to the plane is calculated and
compared with a predetermined threshold. Points whose distance is smaller than the
threshold are considered as inliers of the plane model. This process was repeated several
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times and each time a new sample of points was randomly selected and a new model
was built In all iterations, the model with the largest number of interior points was
considered the best estimate. This model is used to separate ground and non-ground
points in the point cloud.

(a) RANSAC FILTERING (b) DBSCAN CLUSTERING

Figure 3.9: Processed LiDAR point cloud pano-view map.

An example of the results of the RANSAC algorithm is shown in Figure3.9a, where
the ground is filtered out in the depth map. Large areas of the ground are effectively
removed while objects are retained. The strength of the RANSAC algorithm lies in its
robustness to outliers. Even if the data contains a large number of points that do not fit
the model (e.g. noise or other non-planar structures), RANSAC can efficiently identify
the planes that best fit the dataset. This makes it very effective in processing real
LiDAR data, especially in applications such as autonomous driving, robot navigation,
and 3D reconstruction.

3.3.3 DBSCAN Object Clustering

Density-Based Spatial Clustering with Applications to Noise (DBSCAN) is a non-
parametric algorithm for density-based clustering, which, given a set of points in a
given space, groups together tightly-packed points (points with many nearby neigh-
bors) and labels as outliers those points that are individually located in a low-density
region (where their nearest neighbors are too far away.) DBSCAN is one of the most
common and most frequently cited clustering algorithms [43].

DBSCAN requires two parameters: eps and the minimum number of points required
to form a dense region minPts. It starts with an arbitrary starting point that has not
been visited. This point’s eps-neighborhood is retrieved, and if it contains sufficiently
many points, a cluster is started. Otherwise, the point is labeled as noise. Note that
this point might later be found in a sufficiently sized eps-environment of a different
point and hence be made part of a cluster.

If a point is found to be a dense part of a cluster, its eps-neighborhood is also part of
that cluster. Hence, all points that are found within the eps-neighborhood are added,
as is their own eps-neighborhood when they are also dense. This process continues
until the density-connected cluster is completely found. Then, a new unvisited point is
retrieved and processed, leading to the discovery of a further cluster or noise. Through
DBSCAN clustering on point cloud data, points with the same local density can be
classified into the same category. The main purpose of object clustering is to separate
objects from each other and find the boundaries of objects. The algorithm principle of
DBSCAN clustering is shown in Algorithm 2.
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Algorithm 2 DBSCAN object clustering [43]

Input: Point cloud PL ∈ R4×N with N points, minimum number of points to form a cluster
minPts, cluster radius value eps

1: Create a cluster counter C := 0
2: Create a all-zero vector L with length equal to PL

3: Mark all points unvisited: L← −1
4: for each point p in PL do
5: if Lp! = −1 then
6: Neighbors set N := total number of points in the eps-range sphere given the center

point p
7: if N < minPts then
8: Lp := Noise
9: else if N > minPts then

10: C := C + 1
11: Update cluster label Lp ← C
12: Create a seed Set S := N \ {p}
13: for each point q in S do
14: if Lq = noise then
15: Lq ← C
16: else if Lq! = −1 then
17: Lq ← C
18: end if
19: Neighbors set N := total number of points in the eps-range sphere given the

center point q
20: if N > minPts then
21: Add new neighbors to seed set S := S ∪ N
22: end if
23: end for
24: end if
25: end if
26: end for
Output: Cluster labels vector L ∈ R1×N

Figure 3.9b shows an example of the depth projection map after performing DBSCAN
clustering. Compared with 3.9a, small objects in the distance are clustered out, while
main object points are remained and clustered.

DBSCAN algorithm is sensitive to the amount of data. The time complexity of DB-
SCAN is usually O(n log n), where n is the number of data points. As the amount of
data increases, the algorithm requires more time to calculate the neighborhood of each
point, thus affecting the performance of the algorithm. In practice, using the RANSAC
algorithm can separate ground points, and the amount of point cloud data will be
greatly reduced, which can effectively improve the speed of the DBSCAN algorithm.
In addition, since the edges that can be extracted from distant objects are too small or
fuzzy, in the actual clustering process, we set a range threshold that filters out distant
object points, and clusters only a limited range of objects.
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3.4 Edge Extraction

In this section, we describe the process and important algorithms for edge extraction
on images and edge extraction on point clouds. Firstly we will introduce the edge
extraction operators and their principles, which we use for edge extraction in both
images and point clouds. In the edge extraction part of the image, we introduce the
advanced Segment Anything Model (SAM) semantic model to assist in extracting the
image edges. Edge extraction for point clouds is more complex, the edges of a point
cloud can be considered to be composed of two parts, 3D edge points generated by
distance discontinuities and 2D edge extraction by projection map complementation,
the latter being parameterized by extrinsic parameters. We apply a fast projection map
complementation method to complement the projection maps with different features
separately and fuse all the edges as the edge features of the point cloud.

3.4.1 Edge Operator

The Sobel operator and the Canny operator are two common edge extraction operations
in image processing. The Sobel operator detects changes in the spatial brightness of an
image by calculating the vertical gradient and horizontal gradient of the image pixel
points, and regions of rapidly changing brightness, which usually correspond to edges.
The 3× 3 horizontal and vertical Sobel kernels are defined as

hx =

−1 0 1
−2 0 2
−1 0 1


hy =

−1 −2 −10 0 0
1 2 1

 (3.9)

where hx and hy represent the horizontal and vertical Sobel kernels, respectively. The
Sobel kernel is applied to the surrounding neighborhood of each pixel of an image to
calculate the gradient of that pixel in the horizontal and vertical directions. The Sobel
edge detection algorithm is illustrated in Algorithm 3.

Algorithm 3 Sobel Operator

Input: Image I
1: Calculate the horizontal gradient: Gx ← hx ∗ I
2: Calculate the vertical gradient: Gy ← hy ∗ I
3: Calculate an approximation of the gradient: G←

√
G2

x +G2
y

4: Calculate the direction of the gradient: Θ← arctan(Gy,Gx)
Output: Edge map G (with same dimension as I)

The Canny edge detector is a complicated and multi-step operator, employing tech-
niques like Non-Maximum Suppression and Hysteresis Thresholding. The detailed pro-
cedures are explained in Algorithm 4. These methods are applied to further refine the
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gradient of edges, effectively isolating the most probable edges with enhanced precision
and accuracy.

Algorithm 4 Canny Operator

Input: Image I, lower threshold maxV al, higher threshold minV al
1: Calculate the horizontal gradient: Gx ← hx ∗ I
2: Calculate the vertical gradient: Gy ← hy ∗ I
3: Calculate an approximation of the gradient: G←

√
G2

x +G2
y

4: Calculate the direction of the gradient: Θ← arctan(Gy,Gx)
5: for each pixel (i, j) in I do
6: if G(i, j) > maxGneighborA ,GneighborA then
7: G(i, j)← G(i, j)
8: else
9: G(i, j)← 0

10: end if
11: end for
12: for each pixel (i, j) in I do
13: if G(i, j) > maxV al then
14: G(i, j)← 1
15: else if G(i, j) < minV al then
16: G(i, j)← 0
17: else
18: if

∑i+1
i−1

∑j+1
j−1G(i, j) > 0 then

19: G(i, j)← 1
20: else
21: G(i, j)← 0
22: end if
23: end if
24: end for
Output: Edge map G (with same dimension as I)

Non-maximum suppression evaluates each pixel to check if its gradient is the maximum
when compared to the gradient of neighboring pixels along its gradient direction. This
process ensures that only the most prominent gradient values are preserved, effectively
highlighting the sharpest and most significant edges in the image.

Hysteresis threshold preserves strong edges and their connected edges through two
thresholds and discards weak edge intensity gradients. Any edge greater than maxV al
is considered a strong edge, while edges below minV al are defined as non-edges. Those
lying between these two thresholds are classified as edge or non-edge based on their
connectivity. If they are connected to ”strong edge” pixels, they are considered part of
the edge.

The Sobel operator is simple and fast to implement, with a small amount of calculation.
Although the Canny edge detection algorithm is relatively complex, it is effective in
suppressing noise and redefining ”edge” and ”non-edge”. In our edge detection step, we
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mix the two types of edges, superimposing the results of the Canny operator onto the
Sobel operator can strengthen those ”strong edges” while retaining the ”weak edges”.
The edge detector is defined in Algorithm 5.

Algorithm 5 Edge Detector

Input: Image I, edge operator mod
1: Calculate the Sobel edge: GSobel = Sobel Operator(I)
2: Calculate the Canny edge: GCanny = Canny Operator(I)
3: if mod = sobel then
4: G← GSobel

5: else if mod = canny then
6: G← GCanny

7: else if mod = mix then
8: G← 0.5GSobel + 0.5GCanny

9: end if
Output: Edge map G (with same dimension as I)

3.4.2 Image Edge Extraction

Camera data set C and LiDAR data set L representations are different. When two
sensors partially share the same field of view, we can calibrate both sensors by extracting
the edges of objects in the view and aligning the edges in the same view. Therefore
feature extraction is required before aligning the two modalities. Camera data consists
of multiple frames of images, C = {Ik|k = 0, 1, · · · , N}, and Ik(i, j) is the pixel value of
the image, where the subscript k represents the index of the image frame. The SMA
pre-trained model is first applied to the entire image to get a new segmented image
with several masks of differentiated objects, which are annotated as CSMA = {Mk|k =
0, 1, · · · , N}.
Figure 3.10 illustrates the procedure to obtain the edge intensity of the k-th frame image
EI

k. The pixel value E
I
k(i, j) indicates the edge strength (intensity) of the corresponding

image pixel.

Figure 3.10: Image edge feature extraction pipeline.

We have introduced several image processing techniques in Section 3.2. Before edge
extraction on the original image matrix I, we first preprocess the image to improve
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the image quality as shown by the steps inside the dotted box. Next, we perform
edge extraction on the enhanced image and the segmented semantic mask, respectively.
Before Gaussian smoothing, we blend two types of edge matrix. The significance of
Gaussian smoothing is to make the distribution of intensity values of edges from ’strong
edges’ to ’non-edges’ smoother.

(a) Image edge without Gaussian smoothing.

(b) Image edge with Gaussian smoothing.

Figure 3.11: Image edge w and w/o Gaussian smoothing.

Figure 3.11 shows the comparison between the extracted image edge and the smoothed
result. The smoothed result reflects a more uniform appearance than the non-smoothed
result.

3.4.3 Point Cloud Edge Extraction

The edge features of the point cloud can be exploited from its discontinuous depth as
described in [32]. For a certain point {xL

n , y
L
n , z

L
n}. Basically, the discontinuity intensity

ξ can be calculated by

ξn = max(qn−1 − qn, qn+1 − qn, 0) (3.10)

where q =
√
(xL

n)
2 + (yLn )

2 + (zLn )
2 is the range value.

In each scan, LiDAR emits a set of laser beams vertically along a specific number
of lines, scanning the surroundings. Significant differences in depth observed at the
boundaries between objects or between an object and its background indicate a higher
probability of being an edge. Using this property, neighboring points can be used to
calculate the depth discontinuity values along the emitted beams and as a method of
extracting edge strength.
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Figure 3.12: Projection map of depth discontinuity.

The projection map depicting the extracted depth discontinuity is illustrated in Figure
3.12. In this representation, the value assigned to each pixel correlates with the intensity
of the edge discontinuity. The larger the gray value (the brighter the pixel), the stronger
the edge, and vice versa. For enhanced visual clarity, the contrast within the figure
has been meticulously adjusted, ensuring that the contours of the edges are distinctly
visible.

Another way is to extract edges from the projected density map, this approach is
parameterized by θ. The density map Φ can be obtained by performing a complex
morphological algorithm [4] on the sparse projection map Ψ. The density completion
problem of sparse projection images can be expressed as follows

min
∥∥∥f̂(Ψ)− f(Ψ)

∥∥∥2

F
= 0 (3.11)

where Ψ is the sparse projection map of the point cloud, f(Ψ) = Φ is the ideal density

map. To find f̂ that approximates the mapping from sparse projected map to dense
map, realize f̂ via a series of morphological operations described in Figure 3.13.

Figure 3.13: The flowchart of a fast method to complete sparse projection images. [4]

Taking the densification of depth maps as an example, in the first step we perform
grayscale inversion. Applying a dilation operation on the original depth map will cause
a larger distance to cover a smaller distance, resulting in the loss of edge information
of closer objects. To solve this problem, the effective (non-null) pixel depth is linearly
inverted. This inversion allows the algorithm to preserve closer edges when applying
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the dilation operation. Next, we perform kernel dilation, filling empty pixels closest
to valid pixels first, since these pixels are most likely to share close depth values with
the valid depth. After the initial expansion step, there are still many holes with empty
values in the projection map. We then complete small hole closure using morphological
close operation. As can be seen from Figure 3.13, some small to medium-sized holes
in the projection map were not filled by the first two dilation operations. To fill these
small holes, an empty pixel mask is first computed, followed by a dilation operation.
This operation only fills empty pixels while leaving the previously calculated valid pixels
unchanged. The final fill step takes care of larger holes in the projection map that are
not completely filled from the previous steps. Large holes are filled by masked dilations
while leaving valid pixels unchanged.

After applying the previous steps, a blurring operation is performed on the resulting
density map, aiming to remove outliers and noise while maintaining local edges. With
all steps done, the final step is the inverse of the first step, depth Inversion, reverting
from the inverted depth values back to the original depth encoding.

Figure 3.14: Point cloud edge extraction from density map.

Similarly, we use the same algorithm to complete the reflectivity sparse projection map.
For the reflectivity density map, the boundaries between different low-reflective objects
cannot be obtained from the difference in reflection intensity, so we filter out the low-
reflectivity parts and thus highlight the boundary between highly reflective objects and
low-reflective objects.

In Section 3.3.3 we introduced the method of using DBSCAN clustering. By projecting
the filtered and clustered point cloud, we can obtain a sparse object projection map.
For the object projection map, we only need to use the closing operation to fill the gaps
between each cluster projection. The closing operation is effective in filling small holes
and cracks within an object without significantly changing the size of the object.

In this way, the edge extraction of the 3D environment becomes the edge extraction of
the 2D image. Figure 3.14 illustrates the edge extraction procedures from the dense
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map. By performing density complementation on the depth sparse projection map and
reflectivity sparse projection map, we can extract the edges δd and δr using the edge
extraction operator, and then perform morphological closure operations on the filtered
and clustered point cloud projections before edge extraction to obtain the edges δo.
The edge matrices have the same dimensions as the camera image. The preservation of
the real existing projected points can be achieved by performing the ”with operation”
between the obtained edge images and the points in the projection map. Finally, we
have the point cloud edge matrix EL(θ) under a certain extrinsic parameter θ.

(a) Depth dense completion map.

(b) Reflectivity dense completion map.

(c) Object dense map.

Figure 3.15: Density completion map of different projection images.

In Figure 3.15, the depth map provides depth visual differentiation, the reflection map
provides the boundaries between highly reflective objects and low reflective objects, and
the object map enhances the edges of dense clusters. In this way, the edge extraction of
the 3D environment becomes the edge extraction of the 2D image. For each projection
map of given extrinsic parameters, the density map can be obtained through density
completion for edge extraction, as shown in Figure 3.16.

Figure 3.16: Extracted point cloud mixed attribute edge projection map.

41



3.4.4 Feature Registration and Optimization

When the point cloud is projected onto the image plane, set the value of each projected
point pixel to the depth discontinuity, we get the depth discontinuity image denoted as
DL→I = DL(θ).

At the same time, depth and reflectivity can be used as weights on depth discontinuity
image DL(θ). We linearly add up the normalized reflectivity and inverse depth wL =
f(1/dL, rL), then we can get the weight image WL(θ) by the same way we get DL(θ).
The point of adding weights is that we place more trust in close ’edges’ and highly
reflective ’edges’.

Define the edge registration score (ERS) to evaluate the alignment score between the
edge of the point cloud projected onto the image plane and the edge of the camera
image:

J(θ) =
∑
(i,j)

{WL(θ)DL(θ)EI + EL(θ)EI} (3.12)

which is the objective function F(·) in equation (2.35) and (2.36). The larger the ERS,
the more valid edges are aligned.

Figure 3.17: Cost function heatmap on varied rotation angles.
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Figure 3.18: Cost function heatmap on varied translation vector.

A simple and easy-to-implement optimization method is the Barzilai and Borwein gra-
dient ascent method [44]. Define the numerical gradient of the registration function:

G(θ) =
J(θ + ϵ)− J(θ − ϵ)

2ϵ
(3.13)

The update function is defined as:

θk+1 = θk + αk
G(θk)

||G(θk)||
(3.14)

where the subscript k here denote the k-th iteration.

The Nelder-Mead method, also known as the simplex method, is an iterative numerical
optimization algorithm used for unconstrained optimization problems. Proposed by
John Nelder and Roger Mead in 1965 [45], this algorithm falls under the category of
direct search methods, meaning it does not require derivative information (gradient or
Hessian matrix) and relies solely on the evaluation of the objective function.
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Figure 3.19: The flowchart of the Nelder-Mead optimization algorithm. [5]

Figure 3.19 illustrates the Flowchart for the Nelder-Mead optimization algorithm. The
downhill simplex method starts with an initial simplex. For an N -dimensional opti-
mization problem, an (N +1)-dimensional simplex is initially constructed, the function
values of the vertices of the simplex are computed, and then the vertex function values
are updated and new vertices and simplexes are constructed step by step until the
convergence condition is reached.

The Nelder-Mead method is a derivative-free optimization method suitable for functions
whose derivatives are difficult to calculate or do not exist, as in our case, while the
Barzilai and Borwein method is more suitable for objectives that are smooth and whose
derivatives are existing and easy to calculate. In this case, the Nelder-Mead method may
be more stable when iterating irregular or noisy functions. The Barzilai and Borwein
method may encounter difficulties when dealing with highly nonlinear or multimodal
problems.
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3.5 Initial Setting and Coarse Estimation

Previous research did not place significant emphasis on setting initial extrinsic param-
eters. Often, they relied on random initial estimates or configurations grounded in
engineering experience. While this might not pose a significant challenge for engineers
with industrial expertise, minimizing human intervention enhances the automation of
the algorithm. Inspired by a calibration method based on semantic segmentation, a
coarse estimation method is designed to obtain the initial value of extrinsic parameters
[46].

Figure 3.20: Coarse estimation framework.

Figure 3.20 illustrates the semantic-based coarse extrinsic estimation pipeline. To
achieve semantic recognition in images, we employ the SDC Net along with the pre-
trained model available in [47]. For semantic recognition in point clouds, we opt for
the pre-trained SqueezeV3 network [48] to classify the semantic clusters.

Figure 3.21: Coarse estimation projection map.

Although the projection shown in Figure 3.21 is obviously not the correct parame-
ter, The coarse extrinsic parameter estimation method utilizing semantic segmentation
centroid pairing, swiftly guides us to the proximity of the optimal value for fine-tuning.
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3.6 Multi-frame Estimation Proposals

In Section 3.2, we discussed the issue of color histograms. Typically, histograms serve
as a representation of the distribution of pixel intensity or color values within an image.
The similarity ratio, derived from the comparison of two histograms, provides insight
into the degree of similarity or dissimilarity in pixel intensity distributions between
the two images. To illustrate this, we randomly selected three sets of images from a
sequence of consecutive frames. Each set consists of five consecutive pictures, and their
corresponding color histograms are depicted in Figure 3.22.

Figure 3.22: Histogram variation between frames.

We can see from the figure that the histograms of the images between consecutive
frames are highly similar, while the histograms of the groups that do not pass through
are more different. To measure this difference, define a metric to measure the histogram
similarity ratio in Equation 3.15.

ρ =
∑

k=b,g,r

∑
imin(H1

k(i), H
2
k(i))∑

i H
1
k(i) +

∑
iH

2
k(i)−

∑
imin(H1

k(i), H
2
k(i))

(3.15)

where Hk(·) represent the histogram on different color channel (b, g, r). The numerator
computes the intersection of two histograms. Denominator Computes the union of two
histograms. In this formula, we perform similarity calculations on the histograms of
each color channel separately, and then sum the results for all channels to get the overall
similarity ratio.

Given the histogram, we can calculate the histogram similarity ratio following Algo-
rithm 3.15. This similarity ratio ranges from 0 to 1, where 0 indicates no similarity
(complete dissimilarity), while 1 indicates perfect similarity. Figure 3.23 draws the con-
fusion matrix of calculated histogram similarity ratios between the chosen images set.
In [32] and [7], both proposed the method of estimating the sliding average. However,
this is a non-weighted average.
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Figure 3.23: Histogram correlation between frames.

Using the feature of Histogram similarity, we believe that when the correlation is lower
than 0.7, it means a change in the scene. Therefore, we propose weighted multi-frame
averaging to improve the results of a single frame, as shown in Figure 3.24.

Figure 3.24: Multiple frames averaging flowchart

For consecutive image frames, we filter the representative scene frames by histogram
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ratio with the following algorithm:

Algorithm 6 Scene selection with histogram similarity as threshold

Input: Image set {I|I1, I2, · · · }, threshold th
1: Histogram initial ρ = 1.0
2: Calculate the histogram h of the initial image I1
3: for each image Ii+1 in I do
4: Calculate the histogram hi+1 of the image Ii+1

5: Calculate the histogram similarity ρ between h and hi+1 according to (3.15)
6: if ρ < th then
7: S:=S

⋃
Ii+1

8: h← hi+1

9: end if
10: end for
Output: New image set {S|I1, Ik, · · · }

Similar scenes have a similar number of features (number of edges), and filtering frames
is to avoid the reuse of similar scenes in a set of consecutive frames. According to the
selected scenes, we can assign the weight of each newly selected scene according to
the ratio of the number of semantic pixels of a specific category. The more important
categories, such as cars, pedestrians, traffic signs, and poles, the greater the proportion,
we think This frame provides a more believable edge. Therefore, the weighted multi-
frames average method can be expressed as

J ′(θ) =
∑
j∈S

wjJj(θ) (3.16)

where S includes the index of selected scenes, the calculation of Jj(θ) follows the
Equation 3.12 but normalized. wj is the ratio of main semantic class pixels (vehicle,
pedestrian, cyclist, pole, traffic) to the total effective semantic pixels.

3.7 Summary

In this chapter, we first present a detailed description of the edge extraction operator
and its underlying operating principle, setting the stage for the subsequent processes.
The process of edge extraction is bifurcated into two distinct segments: image edge
extraction and point cloud edge extraction. Each segment employs specific techniques
and methodologies tailored to the unique characteristics of the data format - one for
the two-dimensional image data and the other for three-dimensional point cloud data.
This step is critical in preparing the data for the subsequent alignment phase. To
facilitate and refine the alignment process, we introduce the concept of edge similarity
scores. These scores serve as a quantitative measure of how well the edges from the two
datasets align with each other. By defining and computing these scores, we are able to
iteratively optimize the parameters of the calibration algorithm, ensuring a high degree

48



of accuracy and efficiency in the alignment. In summary, this section elaborates on our
innovative approach to camera-LiDAR extrinsic calibration, focusing on the techniques
of edge extraction, alignment, and the utilization of edge similarity scores for parameter
optimization.
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Experiments and Results 4
This chapter focuses on experiments and evaluations of extrinsic parameter estimation
using the KITTI dataset, a leading computer vision algorithm evaluation platform in
autonomous driving. We will detail the data platform, its format, and file structure
within the KITTI dataset. Experiments are conducted in both single-frame and multi-
frame formats across three scenes from the KITTI dataset, with subsequent results and
analysis.

4.1 KITTI Dataset

The KITTI collects 3D LiDAR point cloud information and 2D camera-captured im-
age data, which provides multiple reliable benchmarks and evaluations for autonomous
driving tasks, and many state-of-art multi-sensor fusion algorithms are evaluated based
on KITTI databases [49], [50], [51]. In addition, the KITTI dataset provides data
collected in multiple scenarios, therefore we select the KITTI dataset for our exper-
iments and evaluations, and this section describes the sensor configurations and the
data structure and composition of the KITTI dataset.

4.1.1 Sensor Configuration

The data is recorded using an eight-core i7 computer equipped with a RAID system,
running Ubuntu Linux and a real-time database.

Figure 4.1: Configuration of the sensors mounted on the data recording vehicle [6]
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The data collection vehicle is equipped with two color and two grayscale PointGrey
Flea2 video cameras (10 Hz, resolution: 1392×512 pixels, opening: 90◦×35◦), a Velo-
dyne HDL-64E 3D laser scanner (10 Hz, 64 laser beams, range: 100 m) and a GPS/IMU
localization unit with RTK correction signals (open sky localization errors is smaller
than 5 cm) [52]. The configuration of the camera, LiDAR, and GPS sensors equipped
on the recording vehicle are shown in Figure 4.1. The model of the sensors is listed as
follows:

• Inertial Navigation System (GPS/IMU): OXTS RT 3003

• Laserscanner: Velodyne HDL-64E

• Grayscale cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3M-C)

• Color cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C)

• Varifocal lenses, 4-8 mm: Edmund Optics NT59-917

In order to facilitate the calibration of sensor data, the direction of the camera and
LiDAR coordinate system are defined as follows:

• Camera: x = right, y = down, z = forward

• LiDAR: x = forward, y = left, z = up

• GPS/IMU: x = forward, y = left, z = up

Figure 4.2 shows the relative positions of the four stereo cameras, LiDAR, and GP-
S/IMU under the plane. The four cameras were numbered 0, 1, 2, and 3, where the
first two were left and right grayscale cameras, and the last two were left and right col-
ored cameras. Among these, camera 0 was used as a reference indicating the origin of
the camera reference coordinate system. To produce binocular stereo images, cameras
of the same type were mounted 54 cm apart.

Figure 4.2: Sensor setup [6]

In our experiments, we used the 3D object detection benchmark, which consists of a
total of 7481 training images and 7518 test images as well as the corresponding point
clouds, comprising a total of 80,256 labeled objects.
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4.1.2 Data Structure and Organization

In our experiments, the files involved and the data structure are explained in Figure
4.3. File image 0x contains the images captured by camera x. File velodyne points

stores the LiDAR point cloud data collected at the corresponding moment. File
calib cam to cam.txt and calib velo to cam.txt record the camera intrinsic and ex-
trinsic parameters respectively.

Figure 4.3: Structure of the KITTI raw data dataset

The color images captured by camera 2 are stored in 8-bit PNG format with a resolution
of 1242×375, and the atlas is as follows

Figure 4.4: Example of KITTI image data [6]

There are 5 scenarios in the KITTI image dataset, which are ’City’, ’Residential’, ’Road’
and ’Campus’, and ’Person’.
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The LiDAR point cloud data captured by Velodyne HDL-64E are stored in binary for-
mat, and each line in the point cloud file stores eight values, representing two points.
The sensor intrinsic parameters are given in Table 4.1. The Velodyne HDL-64E achieves

Table 4.1: Velodyne HDL-64E important parameters.

Device parameters Value

Number of Channels 64 lasers
Vertical Resolution 0.08 degree

Horizontal Resolution 0.35 degree
Horizontal Field of View (FOV) 360 degree (azimuth)
Vertical Field of View (FOV) 26.8 degree (elevation) (+2 up to −24.8 down)

Range 50 meters

360-degree environmental scanning by rotating its internal lens array. The entire device
rotates around a vertical axis and 64 laser beams scan multiple horizontal planes simul-
taneously. Due to the characteristics of multiple laser beams and high-speed rotation,
HDL-64E can generate higher-density point cloud data.

4.2 Results and Analysis

This section shows the experiments of the proposed method on three scenarios, city,
residential area and road (highway) scenarios. We compare with the methods in Table
4.2. The evaluation of multi-frame averaging is given in the last section.

Table 4.2: Summary of 5 camera-LiDAR extrinsic calibration methods.

Method Type
LiDAR Attribute —
Camera Attribute

Method Complexity

Pandey [24] MI
Reflectivity —
Grayscale intensity

+

Levinson and Thrun [32] Edge
Depth discontinuity —
Grayscale intensity difference

++

Castorena [33] Edge
Depth discontinuity —
Grayscale intensity difference

+++

Zhang (MulFEAT) [7] Edge
Depth & reflectivity discontinuity
+ Density distribution difference —
Grayscale intensity difference

++++

Proposed Edge

Depth & reflectivity discontinuity
+ Density distribution difference —
Grayscale intensity difference
+ 2D Semantic information

++++
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4.2.1 Comparison of Related Methods

In this section, we focus on comparing the following four classical and cutting-edge
approaches, one mutual information-based approach [24], and three feature-based ap-
proaches [32], [33] and [7]. In Table 4.2 and 4.3, we summarize these five methods for
camera-LiDAR extrinsic calibration.

Pandey’s method maximizes the (mutual information) MI of the two attributes, re-
flectivity value {ri; i = 1, 2, · · ·N} of the points and grayscale intensity value {Xi; i =
1, 2, · · ·N} of the corresponding image pixel upon which the 3D LiDAR point projects,
as shown below:

J(θ) = MI(r,X;θ) (4.1)

where MI(·) is the mutual information metric.

Levinson and Thrun maximize the summation of the depth discontinuities ξ times the
“edginess” D of the image. Each pixel in the grayscale image is set to the largest
absolute value of the difference between it and any of its 8 neighbors to obtain the edge
image E. The “edginess” of each pixel Dij is calculated by:

Di,j = α · Ei,j + (1− α) ·max
x,y

Ex,y · γmax(|x−i|,|y−j|) (4.2)

Then iterate over all 3D points, the overall measure of this method is

J(θ) =
∑

p ξp ·Di,j (4.3)

where (i, j) refers to the coordinates in image space onto which the 3D LiDAR point p
projects.

Castorena uses the depth discontinuity ξ to construct a high-resolution depth map
ϕθ ∈ RH×W , with the image I ∈ RH×W providing two gradient variations in both the
vertical and horizontal direction. Matching the edges of the depth map and intensity
image, the objective function is shown below:

F(θ) =
∑

k∈{x,y}
Ak(ϕθ)

Nk(ϕθ)
(4.4)

where the numerator and denominator are given by

Ak(ϕθ) =
∑
n∈Ωθ

wk,n |{∇kϕθ}n|

Nk(ϕθ) = (
∑
n∈Ωθ

wk,n)(
∑
n∈Ωθ

|{∇kϕθ}n|)
(4.5)

where ∇k is the gradient operation on depth image ϕθ along the direction k (hori-
zontal or vertical). The weight is imposed by the gradient change of image wk,n =
exp γ |{∇kI}n|. This equation is evaluated only at the point of the actual LiDAR mea-
surements Ωθ. The denominator works as a normalization factor that eliminates the
impact of differences in point numbers.
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MulFEAT constructs a multi-feature density map and matches the edge intensity of
the image, expressed as the sum of the edge strength multiplied by the probability of
being identified as an edge in the point cloud.

J(θ) =
Nm

Ne

N∑
n=1

P (EL
n) · EC

n (4.6)

where P (EL
n) =

1
3

∑
k∈{d,r,o}Ek(in, jn) is the edge probability of a LiDAR point obtained

from the multi-feature density map, EC
n is the edge intensity of the corresponding pixel

in the image where the 3D point projects.

Table 4.3: Objective forms of 5 methods.

Method Objective Optimization

Pandey [24] J(θ) = MI(r,X;θ)
Barzilai-Borwein
steepest
descent method

Levinson and Thrun [32] J(θ) =
∑all points

p ξp ·Di,j Grid search

Castorena [33] F(θ) =
∑

k∈{x,y}
Ak(ϕθ)
Nk(ϕθ)

FISTA

Zhang (MulFEAT) [7] J(θ) = Nm
Ne

∑N
n=1 P (EL

n) · EC
n

Barzilai-Borwein
steepest
descent method

Proposed Equation (3.12)
Nelder-Mead downhill
simplex method

The principle of Pandey’s method is relatively easy to understand, but all LiDAR point
data are used when calculating mutual information, which will bring a certain amount
of calculation. The complexity of Castorena and MulFEAT methods mainly comes from
the operations when completing sparse feature maps. Therefore, complex sparse feature
map completion parameterized by extrinsic parameters is not suitable to appear in the
cost function. In particular, MulFEAT does not project the point cloud to the image
plane, but uses a cylinder model to perform non-parametric projection. The proposed
method is far superior to these two methods in calculating sparse feature maps, and
can achieve real-time calculations, so it can still be projected to the image plane for
matching without the need for a virtual geometric model. Though Our method has high
requirements on computing power in the semantic model, the introduction of semantics
can solve the initial value problem and avoid random initial value settings.

4.2.2 Scenario 1: Urban Road

The first example is a classic urban road scene with a pedestrian, a vehicle, a cyclist,
some traffic lights and signs, road poles, and urban buildings in the background. The
statistical diagram of various semantic categories in the image is shown in Figure 4.5.
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Figure 4.5: Histogram of pixel counts for semantic classes - Scenario 1: Urban road.

Figure 4.6 shows the calibrated image result. There is less greenery and therefore
less noise in the image for edge extraction. Clustering performs better in this scene,
there are multiple major objects that are completely separated from each other, which
means we have more edge information available from the depth discontinuity between
the objects and the background. Traffic lights and signs make the involvement of
reflection intensity information provide more edge information.

Figure 4.6: Qualitative error for one frame - Scenario 1: Urban road.

Figure 4.7 shows the loss curve on different methods. According to Bichi’s paper,
the gradient optimizer can get stuck because the method is fixing small displacements
online rather than searching globally for optimal values. In our improved method,
the initial value is estimated using semantic information, which allows a global search
around the initial value. The loss profile of the proposed method looks a little sharper
and is slightly better than Bichi’s method overall.
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Figure 4.7: Loss curve in 6-axis - Scenario 1: Urban road.

4.2.3 Scenario 2: Neighborhood Alley

The scene of the second example is a narrow road in an urban residential area with
parked vehicles on both sides of the road, no pedestrians or cyclists, and no greenery.
The statistics of the various semantic categories in the image are shown in Figure 4.8,
where construction and vehicles occupy the major pixels.

Figure 4.8: Histogram of pixel counts for semantic classes - Scenario 2: Neighborhood alley.
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Figure 4.9: Qualitative error for one frame - Scenario 2: Neighborhood alley.

Figure 4.9 shows the calibrated image result. Due to the special surface material of
the vehicles, specular reflection occurs on the surface of the vehicles in the near field,
causing some points to be lost. Conventional image processing recognizes the shadows
of buildings on the ground as edges, which can be avoided by using a semantic model.
In addition, the reflectivity can provide limited feature information due to the absence
of any traffic signs.

Figure 4.10: Loss curve in 6-axis - Scenario 2: Neighborhood alley.

Our approach performs best in all six dimensions, as shown in Figure 4.10. Due to
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the interference of building occlusion, the matching of mutual information intensity
and reflectance is not consistent, which may lead to poor performance of the mutual
information-based method in this case. Despite some fluctuations in the sixth dimen-
sion, which may be due to inaccurate extraction of horizontal edges at the vehicle, the
edges cannot be accurately restored when performing depth complementation due to
point cloud distortions and missing point clouds on both sides of the lens, and it is not
difficult to find that the point clouds of the vehicles on both sides are misaligned with
the visual vehicle, even in the true-value projected image.

4.2.4 Scenario 3: Highway

The third case is the highway, where the main objects of the scene are only the vehicles.
The statistical diagram of various semantic categories in the image is shown in Figure
4.11. In this case, although there is no interference from the shadows of the buildings,
the shadows of the vehicles give a false contour on the ground. Figure 4.12 shows the
calibrated image result.

Figure 4.11: Histogram of pixel counts for semantic classes - Scenario 3: High way (Road).

Figure 4.12: Qualitative error for one frame - Scenario 3: High way (Road).
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Figure 4.13: Loss curve in 6-axis - Scenario 3: High way (Road).

In Figure 4.13, Bichi’s method performs better in the sixth dimension, where the shad-
ows of the objects produced by the sunlight cause a mismatch in the maximum mutual
information, which makes the mutual information-based method very non-robust to
light, noise. In the loss curve for the sixth dimension, we see that the cost decreases
and then increases as the sixth dimension is shifted upwards, which should be due to
the fact that the point cloud has no information above the camera image field of view,
while the vehicle on the right side of the image frame and the bridge located at the
top both produce horizontal edges. Overall performance in the other dimensions is as
expected.

4.2.5 Multi-frame Evaluation

To verify our overall performance on multiple frames, we perform a multi-frame test on
100 frames of point cloud and images, and compare with MulFEAT methods, as shown
in Figure 4.14 and 4.15, and the quantitative results are shown in Table 4.4.
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Figure 4.14: Box plot of the multi-frames results of the proposed method.

Figure 4.15: Box plot of the multi-frames results of MulFEAT. [7]

The performance of the algorithm in different dimensions is slightly different. The Yaw
angle has the smallest error fluctuation. This may be because the true value of the Yaw
angle is close to 90 degrees and is more sensitive to angle changes. The error fluctuations
at the other two rotation angles are also within about ±1 degree. Residual fluctuations
in the vertical axis are more pronounced, probably because the point cloud does not
have matching data above the image frame, and changes in the vertical direction do
not cause a significant decrease in cost.

Table 4.4: Error analysis on multi-frame results.

rx(/rad) ry(/rad) rz(/rad) tx(/m) ty(/m) tz(/m)

Mean error −0.008057 0.006812 0.012980 −0.001834 −0.014615 −0.014337
Median error −0.002031 0.006373 0.011941 −0.001834 −0.14786 −0.014435

Our algorithm has proved robust and efficient, and there is no significant deviation
from the true value in the test.

According to the weighted average method we proposed in Section 3.6, we compare this
method with the unweighted average method. The result is shown in Figure 4.16.
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(a) Un-weighted result on 3 scenes.

(b) Weighted average result on 3 scenes.

Figure 4.16: Loss curves in 6-axis for multi-frame estimation. The orange, green, and purple
lines represent three different scene frames, the solid blue line is the result of the weighted
average method and the dashed blue line is the result of the unweighted average method

In the ry dimension, the results of the weighted average method are a little sharper at
the peaks, and in both the tx and tz dimensions, the loss curves of the weighted average
method become somewhat smoother, and the phenomenon of no-peak or double-peak
can be effectively avoided. Using a weighted average frame can reduce the proportion
of bad frames (the main object has a small number of pixels and limited features that
can be extracted) and effectively smoothes the loss curve.

4.3 Summary

In this chapter, we mainly compare five camera-LiDAR extrinsic calibration methods
from principle and experiment. Among the five methods presented, the feature-based
methods are single-feature to single-feature alignment, except for MulFEAT and the
proposed method. The mutual information-based methods also consider only single
attributes of the two modes. The complexity of such methods will be smaller, but
the robustness applied to different scenarios is not strong enough. We experimented
with the five methods in three scenarios, the overall performance of multi-feature-based
methods is better than single-feature-based methods, and our method has a steeper loss
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curve near the true value in most cases compared to MulFEAT, which is more conducive
to convergence.

Mutual information-based calibration methods are particularly sensitive to light and
shadows, which can lead to a mismatch in the entropy of the two attributes in the same
material region, and feature-alignment-based calibration methods also have certain re-
quirements on the scenes, but are better at resisting noise than mutual information-
based methods. The inclusion of multiple features will bring a trade-off between ro-
bustness, generalizability, and computational cost.
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Conclusion and Future Work 5
In this paper, we address the importance of the camera-LiDAR extrinsic parameter
calibration problem for various perception tasks in the field of autonomous driving,
establish a camera radar external parameter calibration model, and among the exist-
ing camera radar extrinsic parameter calibration methods, we focus on the automatic
targetless approach, synthesize the traditional geometric features and the semantic fea-
tures, and propose an improved semantic edge-based camera radar calibration method.
This section, as a summary of the whole paper, focuses on the innovations and limi-
tations of our approach compared to the existing methods, and suggests future work
that can be improved.

5.1 Challenges of Camera-LiDAR Extrinsic Calibration

Camera-LiDAR extrinsic calibration is critical to integrating data from both sensors
for accurate sensing in systems such as self-driving cars. There are several challenges
associated with this task:

Sensor differences: There are very significant differences in the way camera and
LiDAR sensors capture data.

• Dimensionality: Cameras record 2D images based on light intensity, while LiDAR
provides 3D spatial data based on time-of-flight measurements.

• Resolution: The spatial resolution of cameras is usually higher than that of Li-
DAR, and when we convert the 3D-2D calibration problem to 2D-2D planar cal-
ibration, this poses a challenge for correlation between data points due to the
sparsity and inhomogeneity of LiDAR projection.

• Field of view (FOV): The prerequisite of the feature-based approach is that cam-
era and LiDAR have enough overlapping FOV, though it is true under most
conditions, otherwise data fusion will be meaningless.

• Occlusion: Objects visible to one sensor may be occluded by data from another
sensor, resulting in incomplete data fusion.

Data synchronization: Even with data that has been synchronized by timestamps,
given the non-instantaneous nature of LiDAR scanning, points at different scanning
positions will be displaced due to the accumulation of velocity at a small time lag
as the vehicle undergoes relative displacement. As shown in Figure 5.1, the larger
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Figure 5.1: The non-instantaneous nature of LiDAR scanning for moving vehicles.

the relative velocity, the longer the LiDAR scanning interval and the larger the error,
causing some alignment difficulties.

Environmental factors: Different lighting conditions can significantly affect camera
data, but not LiDAR data, making consistent calibration difficult. Camera imaging
depends on the color, reflectivity, and texture of the object, which are independent
of LiDAR and can complicate data integration. As we discussed in our experiments,
shadows caused by buildings, light, or trees may introduce redundant edges, and we
will never be able to extract any edge information from LiDAR for such textures.

5.2 Innovations and Limitations

In this paper, we propose a semantically-assisted edge-based outer parameter estimation
method, where the random initial values can be solved by the PnP problem for semantic
point pairs. The laser point cloud is projected onto the 2D plane, and the 3D-2D
correlation is converted into 2D-2D correlation. gradient edges and semantic edges
are extracted and blended for the image, and for the point cloud, we blend the depth
discontinuity extracted directly from the 3D space and the edge extraction from the
blended feature density maps in 2D. The main innovations of this paper are as follows:

• Applying advanced SMA semantic model to image edge extraction, and utilize
semantic edges and gradient edges simultaneously.

• Using SDC Net and SqueezeSegV3 pre-trained network to perform semantic recog-
nition on images and point cloud, define semantic centroids, and solve the PnP
problem associated with three sets of semantic centroids of the same category to
find initial values close to the true value.

• A fast density map completion is applied and improved, which is faster than
Bichi’s density map completion algorithm.
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• Mining the semantic information of image scenes deeply and exploiting the seman-
tic correlation between scenes, the multi-frame averaging method is improved.

The results tested on the data set prove that our algorithm is robust and effective. Our
algorithm still has limitations due to the multiple challenges of LiDAR and camera
extrinsic calibration. The proposed algorithm has many hyperparameters, which need
to be set according to the sensor configuration and the volume of data. Although
we have not discussed the impact of these hyperparameters, unlike network model
parameters based on deep learning, they can still be reasonably explained. Algorithms
based on edge extraction are very much influenced by the scene, as we have shown in
the example in our experiments, when there are fewer main objects (people, cars, traffic
signs) in the frame, we do not have a clear object to extract the intensity of the edge
discontinuity created by the object and the background, and we are not able to find
potentially valid edges based on the difference in reflectivity intensity between highly
reflective objects and lowly reflective objects, so the edge characterization will become
very challenging, which in turn affects edge matching and optimization. Similarly, when
the main object appears on both sides of the camera’s field of view, the viewpoints of
the point cloud and the camera will be slightly different. At the same time, missing
point clouds may occur due to the relative motion of the point cloud or near-field
reflections. Having the main object too far or too close in the field of view is not good
for edge extraction and alignment. Although we can solve the disturbance caused by
shadows and light with a semantic model, there is no solution that can deal well with
the greening scene, which appears as having noisy and unclear edges in the image,
and sparse and discontinuous in the point cloud, and the contours of the greening are
difficult to define in both the image and the point cloud.

5.3 Future Work

Motion compensation for point clouds can be added to the pipeline of point cloud
preprocessing to mitigate motion distortion of objects in the image edges. Although
our approach takes into account semantic features, this is limited by the accuracy of
the semantic segmentation models, and future work could consider the use of more
advanced point cloud semantic segmentation models added to our existing pipeline. A
possible pipeline for estimating extrinsic parameters is shown in Figure 5.2.

If two semantic models with the same labels are used, we can use class masks to match
features for each class and can give different weights depending on the importance of
the class, e.g. we can give less weight to edges or masks of ground, greenery and more
weight to edges or submergence of people and vehicles.
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Figure 5.2: New proposed camera-LiDAR extrinsic calibration pipeline.

Considering the sparsity of the point cloud, the matrix or tensor that stores the electric
cloud is also sparse, for this reason, we can consider more complex machine learning
optimization models suitable for sparse data processing to improve the computational
speed of the algorithm.

Engineering problems arise when the system vibrates due to drastic changes in the
speed of the self-driving vehicle or exposure to strong lighting. This can lead to errors in
various factors between successive frames, requiring re-calibration of the LiDAR-camera
system. According to [53], the camera should be self-calibrating between successive
frames to ensure that the LIDAR camera’s external parameters are updated in a timely
manner.
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