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Chapter 2
Topology-Driven Performance Analysis
of Power Grids

Hale Çetinay, Yakup Koç, Fernando A. Kuipers and Piet Van Mieghem

Abstract Direct connections between nodes usually result in efficient transmission
in networks. Such electric power transmission is governed by physical laws, and an
assessment purely based on direct connections between nodes and shortest pathsmay
not capture the operation of power grids. Motivated by these facts, in this chapter, we
investigate the relation between the electric power transmission in a power grid and
its underlying topology. Initially, we focus on synthetic power grids whose underly-
ing topology can be structured as either a path or a complete graph. We analytically
compute the impact of electric power transmission on link flows under the normal
operation and under a link failure contingency using the linearised DC power flow
equations. Subsequently, in various other graph types, we provide empirical results
on the link flow, the voltage magnitude and the total active power loss in power
grids using the nonlinear AC power flow equations. Our results show that in a path
graph, as an assessment based on shortest paths holds, however, the electric power
transmission can lead to substantial amount of link flows, active power loss and volt-
age drops, especially in large path graphs. On the other hand, adding few links to a
path graph could significantly improve those performance indicators of power grids,
but at a cost: the resulting meshed topology decreases the control over power grids
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as a direct assessment between the shortest paths and the electric power transforma-
tion is lost. Additionally, a meshed topology with loops increases the redundancy in
the design to ensure a safe operation under a link failure contingency.

2.1 Introduction

Many researchers analyse power grids from a graph topological point of view
[1, 2]. Various topology metrics (such as nodal degree, clustering coefficient) have
been proposed to assess the vulnerability or to locate the critical components of
power grids [3–5]. Those purely topological approaches, however, may fail to fully
capture the physical and operational specific features of power grids whose operation
are governed by physical laws.

In this chapter, we take an extended graph theoretical approach [6–8] bymodelling
the electrical properties such as flow allocation according to Kirchhoff’s laws and
the impedance values of transmission lines in power grids. We investigate the impact
of network topology on the key performance indicators of power grids, which we
take as the node voltage, the link flow, the total power loss and the served electric
demand.

Initially,we focus on theoperationbyconsidering twoextremegraphs. In synthetic
power grids whose underlying topology is either a path or a complete (full-mesh)
graph, we analytically derive the steady-state operating conditions under normal
operation and under a random link failure (removal) contingency using the linearised
DC power flow equations. Subsequently, in various other graphs, we empirically
investigate the relation between the topology and the key performance indicators
using the nonlinear AC power flow equations [9].

The remainder of this chapter is organized as follows. Section2.2 investigates the
electric power transmission in path and complete graphs under normal operation. In
Sect. 2.3, we focus on single link failure contingencies in those graphs, and derive the
impact of a random link failure on the steady-state link flows. Section2.4 presents
our empirical results on the key performance indicators in various graphs both under
normal operation and single link failure contingencies. Section2.5 concludes the
chapter.

2.2 DC Power Flow Analysis in Path and Complete Graphs

A connected simple graph (i.e., a graph with no parallel duplicate links or self-loops)
lies between a complete graph and a tree graph. In a complete graph, every pair
of distinct nodes is connected by a link. On the other hand, a tree has no cycles;
consequently, any two nodes are connected by exactly one path.

The direct connections between nodes usually result in an efficient transmission
in a network. The distances between the nodes in a complete graph are shortest com-
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pared to the other graphs, in which multiple hops are needed to reach the destination.
In power grids, different than the typical transmissions based on the shortest paths,
the electric power transmission is governed by physical laws. Therefore, an assess-
ment based on purely the direct connections between nodes may not be enough to
draw conclusions. In this section, we investigate the electric power transmission in
those extreme graph types.

We model power grids with N buses (nodes), and L lines (links) by a weighted
graph G(N , L). We useN to denote the set of N nodes and L to denote the set of L
links with equal weights, b. Every link lik ∈ L is associated with a maximum flow
capacity Cik that represents the maximum power flow that can be afforded by the
corresponding line, and a rest flow capacity αik = Cik − | fik | where | fik | is the flow
through the link lik under normal operation. We assume a single upstream supply
node, and treat the remaining N − 1 downstream nodes as demand nodes. Without
loss of generality, we label the supply node as node 1, and take the total electric
power demand of the network as (N − 1)p where p ≥ 0 is a constant. Throughout
Sects. 2.2 and 2.3, we adopt the slack-bus independent solution to the DC power flow
equations [10], which could approximate the steady-state operation under the DC
power flow assumptions [11].

2.2.1 Electric Power Transmission in a Path Graph

We investigate the electric power transmission from the supply node 1 to the single
demand node N in a path graph (whose nodes are labeled consecutively). The mag-
nitude | f 1→N

ik | of the flow through a link lik between node i and node k = i + 1 is
found as (see Sect. 2.6.1)

| f 1→N
ik | = b|(θi − θk)|

= p(N − 1) ∀lik ∈ L, (2.1)

where b is the reciprocal of the line reactance and θi is the phase angle of the voltage
at node i .

Equation (2.1) shows that the resulting link flows due to the electric power trans-
mission are all the same, and their values increase with the increasing graph size N
and unit power demand p. This linear correlation between the size and the magni-
tudes of link flows could lead to substantial flows and result in congestion problems,
especially in large graphs.

On the other hand, in a path graph, the electric power is transferred through a
single path between the supply and the demand node. Consequently, an assessment
based on shortest paths holds, which can ease the supervision of the network operator.
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2.2.2 Electric Power Transmission in a Complete Graph

Similar to Sect. 2.2.1, we investigate the electric power transmission from the supply
node 1 to a single (randomly chosen) demand node m in a complete graph. The
magnitude | f 1→m

ik | of the resulting flow through a link lik is found as (see Sect. 2.6.2)

| f 1→m
ik | =

⎧
⎪⎨

⎪⎩

2(N−1)p
N if lik = l1m,

(N−1)p
N if lik ∈ {(B(1) ∪ B(m)

) \ l1m
}
,

0 otherwise,

(2.2)

where B(i) denotes the direct neighbors of node i .
Equation (2.2) indicates that three different magnitudes of link flow exist during

the electric power transmission: (a) The flow through the link between the supply
and the demand node is maximum, whereas (b) the flows through the links to the
other neighbors of those nodes are half of that maximum flow, and (c) the remaining
links that are not direct neighbors of either the supply or the demand node have zero
flows.

Comparing the magnitudes of link flow in a path graph in Eq. (2.1) and a complete
graph in Eq. (2.2) shows that the maximum link flow due to the electric power trans-
mission from the supply node to a demand node is dramatically lower in a complete
graph. However, the distribution of the flows through links in a complete graph is
not homogeneous, thus the relation between the total decrease in the magnitudes of
link flow and the total number of links added to a path graph is not linear.

2.3 DC Power Flow Analysis in Path and Complete Graphs
After a Random Link Failure

Single line failures are common in power grids. Therefore, as well as under the
normal operation, the operation after a link failure (removal) is important to assess
the reliability of power grids [12]. In this section, we theoretically investigate the
effect of a random link failure on link flows in path and complete graphs using the
linearised DC power flow equations. In addition, to quantify the effect of link failure
contingencies in a graph, we calculate the theoretical robustness function of those
graphs, which we define as the expected fraction of served demands after a random
link failure.

2.3.1 Random Link Failure in a Path Graph

First, we focus on the effect of a single link failure in path graphs. Just before the
link failure takes place, we assume that all demand nodes have a unit electric power
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demand of p, which we refer to as the symmetrical distribution of demands. In other
words, the supply node transfers a unit electric power of p to every other demand
node, resulting in the magnitude | fik | of the flow through link lik between node i and
node k = i + 1 before the failure

| fik | = p(N − i). (2.3)

As the graph under investigation is a path graph with no cycles, the removal of
any link lik between node i and node k = i + 1 partitions the graph (see Sect. 2.6.3),
and this partition removes in total p × (N − i) demand from the graph according to
Eq. (2.3). Therefore, the closer the link failure is to the supply node 1, the worse is
the effect on the served demands.

The continuity of the operation of the network depends on the location of the
failed link. If the failed link is adjacent to the supply node, then the supply node is
isolated from the demand nodes and the network faces a complete blackout. If the
failure probabilities of the links are the same in a path graph, the probability pb that
a random link failure leads to a complete blackout is pb = 1

L = 1
N−1 .

The failure and removal of any other link partitions the network and the remain-
ing network can continue functioning, though with decreased demands. As the total
demand of the network decreases after the link removal, the flows through the remain-
ing links decrease, and thus, there is no possibility for further cascading failures [13]
due to the insufficient rest flow capacity of the remaining links. Consequently, the
expected fraction E[Fs] of served demands after a random link failure is

E[Fs] = 1

N − 1
× (0 + 1 + · · · + N − 2)

N − 1
= N − 2

2(N − 1)
.

2.3.2 Random Link Failure in a Complete Graph

Next, we investigate a random link failure in a complete graph. After the removal of
a link, the flows are redistributed following Kirchhoff’s laws and the flows through
the remaining links may change. Due to the meshed topology of the graph, this
redistribution can lead to an increase or a decrease in flow through a particular
link [10].

Before a link failure happens, under symmetrical distribution of demands, i.e.,
when the supply node transfers a unit demand of p to every other demand node, the
magnitude | fik | of the flow through a link lik in a complete graph is

| fik | =
{
p if lik ∈ B(1),

0 otherwise.
(2.4)
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Following Eq. (2.4), two different magnitudes of link flows exist in a complete
graph under the symmetrical distribution of demands. As a result, a single link failure
and removal can result in two cases:

Failure of a Link with Zero Flow

When a link lik is removed from the graph, the flow | fik | through the link before
failure needs to be redistributed over the alternative paths between nodes i and k.
Since a redundant link lik does not transport any flow, its removal does not cause a
power redistribution.

Failure of a Link with Maximum Flow

When a used link lik is removed from the graph, the flow | fik | = p through the
link before failure is redistributed over alternative paths between nodes i and k. As
a result, the initial link lik failure may trigger further failures in the network if the
increase |� fab| = p

N−2 in the flow through a remaining link lab exceeds its rest flow
capacity αab (see Sect. 2.6.4),

|� fab| = p

N − 2
≥ αab. (2.5)

When the rest flow capacity αab is smaller than the required value in Eq. (2.5),
consecutive failures occur. After the initial failure of the used link lik , the flows
through all remaining used links exceed their maximum flow capacity, and fail in the
next stage of the failure. This isolates the supply node. Consequently, the remaining
network cannot match any demands, and it could face a complete blackout.

When the size N of the graph is 2, i.e., when there is only one link, the failure
of that link destroys the graph by separating the supply node from the demand node
regardless of the rest flow capacity αab of the link. For larger graphs, Eq. (2.5) shows
the required rest flow capacity αab of links is maximum when the size of the graph is
N = 3, whereas it decreases as N increases. This means the effect of a link removal
on the flows through the remaining links reduces with the size N of the graph.

Finally, we calculate the theoretical robustness function of a complete graph,
which is the expected fraction E[Fs] of served demands after a random link removal
from the underlying graph. Figure2.1 presents the theoretical robustness function
of a complete graph under the symmetrical distribution of demands. If the rest flow
capacity of the links is larger than the required value in Eq. (2.5), the remaining
links can tolerate the redistributed flows after a random link removal. The network
can continue to serve the same amount of total demand after any single link failure.
Therefore, in region II in Fig. 2.1, the fraction of served demands stays the same. On
the other hand, when the rest flow capacity of the links is smaller than the required
value in Eq. (2.5) in region I, the network continues its operation only if the failed
link is a redundant link with zero flow. Otherwise, when a used link with flow p
fails, the network faces complete blackout and cannot serve any demand. Therefore,
the expected E[Fs] fraction of served demands after a random link failure in region
I is calculated as
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Fig. 2.1 The expected E[Fs ]
fraction of served demands
versus the rest flow capacity
of the links after a random
link failure in a complete
graph under symmetrical
distribution of demands. The
figure is computed for N = 5

E[Fs] = 1 × pr + 0 × pu = N − 2

N
= 1 − 2

N
,

where pr = N−2
N represents the probability that the failed link is a redundant link

with zero flow and pu = 2
N represents the probability that the failed link is a used

link with flow p (see Eqs. (2.16) and (2.17)).
Comparing the effect of single link failures in a path and a complete graph shows

that a path (or a tree) cannot provide a back-up path after a link removal, and the total
served demand in the network definitely decreases. In addition, as the demands in
the network decrease, there is no possibility of cascading failures in a tree graph with
no loops. On the other hand, a meshed topology can provide back-up paths during
random link removals. Yet, the correct setting of design parameters, i.e., the rest flow
capacities of the links, is extremely important. If the rest flow capacity αab of the
links is smaller than in Eq. (2.5) and a used link fails, then the remaining links in a
complete graph cannot tolerate the redistributed flows. Consequently, a random link
removal in a complete graph could lead to more link and demand losses than a link
failure in a simple path graph.

2.4 Impact of Topology on Key Performance Indicators
of Power Grids

In Sects. 2.2 and 2.3, we focus on the theoretical analyses of electric power transmis-
sion in path and complete graphs. In this section, we focus on many other graphs and
empirically investigate the key performance indicators of power grids under normal
operation as well as under single link failure contingencies. In our analyses, we use
the AC power flow solver in Matlab [9] to calculate the steady-state operating condi-
tions under the symmetrical distribution of demands. In addition to the line reactance
x and the active power p values, we take into account the line resistance r and the
reactive power q values for a more practical model of power grids.
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2.4.1 Key Performance Indicators Under Normal Operation

For the safe and efficient operation of power grids, lower magnitudes of link flow and
total power loss, and higher values of node voltage (close to 1 per unit) are desired.1

In a power grid whose topology are modelled by the specific graph G, we define the
satisfaction degree of performance indicators of link flow ζ (G), node voltage ν (G)

and power loss η (G) as

ζ (G) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if max
lik∈L(G)

(| fik |
)

< p,

τ f − max
lik∈L(G)

(
| fik |

)

τ f −p if p ≤ max
lik∈L(G)

(| fik |
) ≤ τ f ,

0 if max
lik∈L(G)

(| fik |
)

> τ f ,

(2.6)

ν (G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if min
i∈N (G)

(
vi

)
< τv,

min
i∈N (G)

(
vi

)
−τv

1−τv
if τv ≤ min

i∈N (G)

(
vi

) ≤ 1,

1 if min
i∈N (G)

(
vi

)
> 1,

(2.7)

η (G) =

⎧
⎪⎨

⎪⎩

1 if τσ < 0,
τσ −σ(G)

τσ
≤ τ f , if 0 ≤ σ (G) ≤ τσ ,

0 if σ (G) > τσ ,

(2.8)

where | fik | is themagnitude of the flow through link lik , vi is themagnitude of voltage
at node i , σ (G) is the total active power loss, and L (G) and N (G) denote the set
of links and nodes of graph G, respectively. The performances in Eqs. (2.6)–(2.8)
are evaluated on a scale from 0 to 1 (see Fig. 2.2): The highest performance of 1
corresponds to ideal power grids in which the maximum link flow is equal to the
unit power demand p, the minimum voltage is equal to 1 per unit, i.e., no voltage
drop, and the total power loss is 0, i.e., a lossless power grid. Conversely, the lowest
performance of 0 corresponds to the maximum link flow τ f , the minimum node
voltage τv and the total power loss τσ . The requirements of τ f , τv and τσ are usually
determined by the specific grid codes of the operators.

Figure2.3 shows the variations of the key performance indicators under the sym-
metrical demand distribution throughout the topological transformation of the path
graph with 5 nodes and 4 links.2 Figure2.3 depicts that the performance indicator
of link flow is lowest in the path, and highest in the complete graph. We observe
that the cycle graph dramatically increases the performance indicator of link flow
by decreasing the maximum link flow compared to the path graph. Similar to the

1As we focus on the impact of electric power transmission from a supply node to demand nodes,
only voltage drops in the network are considered.
2We compute all possible ways to evaluate the transformation from the path to the complete graph,
which is only possible for small graphs.
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Fig. 2.2 The functions of the performance indicators of link flow ζ (G), node voltage ν (G) and
power loss η (G)

Fig. 2.3 The variations of the key performance indicators throughout the topological transformation
of the path graph G(5, 4) with 5 nodes and 4 links. The transformation towards the complete graph
G(5, 10) requires the addition of N (N−1)

2 − (N − 1) = 6 links, which can be performed in 26 − 1 =
63differentways.Thebold reddata point corresponds to the cycle graph.Theperformance indicators
are evaluated for r = 0.1, x = 0.1, p = 0.05, q = 0.01, τ f = 5p, τv = 0.9 and τσ = 0.2p
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Fig. 2.4 The variations of the key performance indicators in graphs with different sizes N . The
blue lower triangle (�), and green upper triangle (�) data points correspond to the graphs that are
constructed by adding one link to the path graph, and adding one link to the cycle graph, respectively.
The performance indicators are evaluated for r = 0.02, x = 0.02, p = 0.005,q = 0.001, τ f = 50p,
τv = 0.8 and τσ = 4p

link flows, the minimum voltage is lowest and the total power loss is highest in the
path graph. The complete graph, on the other hand, represents the operation at the
minimum voltage drop and total power losses, thus corresponding to the highest
values of key performance indicators.

Figure2.3 indicates that a meshed topology can improve the key performance
indicators compared to the path graph. We showed in Eq. (2.2) that the flow distribu-
tion in a complete graph due to an electric power transmission is not homogeneous,
which could explain the nonlinear relation between the total number of added links
to the path graph and the total increase in the key performance indicators in Fig. 2.3.
In particular, the cycle graph and the augmented cycles, i.e., the graphs constructed
from the cycle graph by adding links, are observed to affect the key performance
indicators dramatically.

In Fig. 2.4, we present the variations of key performance indicators in the graphs
with different sizes N . In the complete graphs, the maximum link flows are nearly
the same for all sizes N , which is in agreement with the theoretical calculations in
Eq. (2.4). In the other graphs, the maximum link flow increases with increasing size
N , decreasing the performance indicator of link flow.

From Fig. 2.4, we observe that theminimum values of node voltages are nearly the
same in the complete graphs, whereas they decrease dramatically in the path graphs
with increasing size N . On the other hand, the cycle topology increases the node
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voltages, thus also the performance indicator of node voltage, rapidly compared to
the path graph.

Similar observations hold for the performance indicator of power loss. In large
path graphs, the total active power loss of the network is high, which decreases the
performance indicator of power loss. On the other hand, a complete graph nearly
zeroes the power loss and the cycle topology significantly decreases the total loss
compared to a path graph.

Similar to Figs. 2.3 and 2.4 illustrates that a meshed topology can improve the
key performance indicators compared to a path graph. We conclude that the core
contributions to the key performance indicators arise from the first few links added
to a path graph. In particular, for larger graphs, a cycle topology can dramatically
increase the voltage magnitude and decrease total active power loss of the network
compared to the path graph. Consequently, adding a limited number of links to the
tree topology can still achieve higher levels of performance during the electric power
transmission between a supply and demand nodes.

2.4.2 Key Performance Indicators Under a Single Link
Failure Contingency

In this section, we investigate the effect of a single link failure in different graphs.
Initially, we focus on the effect of a link failure on the served demands of the network.
Figure2.5 illustrates the expected E[Fs] fraction of served demands after a random
link failure throughout the topological transformation of a path graph G(5, 4) with
5 nodes and 4 links. In Sect. 2.3, we show that any link removal from a path graph
partitions the graph. Figure2.5 also depicts that only a cycle or augmented cycles
can provide a back-up after any random link failure. The other graphs may partition
after a random link failure and can continue their operation only with a decreased

Fig. 2.5 The expected E[Fs ] fraction of served demands after a random link failure throughout the
topological transformation of a path graph with 5 nodes. The bold red data point corresponds to
the cycle graph. The remaining links are assumed to have enough rest flow capacity to handle the
redistributed flows due to a random link failure
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Fig. 2.6 The variations of the changes � in the key performance indicators after a link failure
throughout the topological transformation of a path graph with 5 nodes. The bold red data point
corresponds to the cycle graph. The performance indicators are evaluated for r = 0.1, x = 0.1,
p = 0.05, q = 0.01, τ f = 5p, τv = 0.9 and τσ = 0.2p

total demand, which usually improves the key performance indicators. Therefore, in
this subsection, we only focus on the graphs that can provide a back-up after any
random link failure.

To investigate and compare the effect of single link failures in each graph, we
removed one link at a time from the graph, and calculated the changes in the perfor-
mance indicators. We repeated this link failure contingency simulation for each link,
and compared all changes in the link flow, the node voltage and the active power
loss in the network. Figure2.6 illustrates the maximum resulting changes in these
key performance indicators after a link removal throughout the topological transfor-
mation of a path graph G(5, 4) with 5 nodes and 4 links. The performance indicator
of link flow can significantly decrease after a link failure in a cycle graph. For the
complete graph, on the other hand, we observe that the effect of a link failure on the
indicator of link flow is very small. Similar to the changes in the indicator of link
flow, the decreases in the performance indicators of node voltage and power loss are
highest in the cycle graph after a single link failure.

Finally, in Fig. 2.7, we present the variations of key performance indicators after
a link failure in graphs with different sizes N . Similar to the theoretical calculation
in Eq. (2.5), the effect of a link failure on the remaining link flows slightly decreases
with the increasing size N in the complete graphs. On the other hand, in cycle graphs,
the change in the magnitude of the flow through a remaining link can significantly
increase with the increasing size N , which decreases the related performance indi-
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Fig. 2.7 The variations of the changes � in the key performance indicators after a link failure in
graphs with different sizes N . The green upper triangle (�) data points correspond to the graphs
that are constructed by adding one link to the cycle graph. The performance indicators are evaluated
for r = 0.02, x = 0.02, p = 0.005, q = 0.001, τ f = 50p, τv = 0.8 and τσ = 4p

cator. In the worst case, when one of the links adjacent to the supply node fails in a
cycle graph, it operates as a path graph with the same size N after the link failure.
Therefore, the performance indicator of link flow in a cycle graph under a single link
failure contingency becomes the performance indicator of link flow in a path graph
under normal operation.

Similar to the changes in the performance indicator of link flow after a link failure,
the indicators of node voltage and power loss slightly decrease in a complete graph
with increasing size N . In the other graphs, however, the decrease in the key perfor-
mance indicators could be drastic. Although under the normal operation, the cycle
and the augmented cycles can provide higher values of the performance indicators;
after a link failure, large drops on the key performance indicators in those graphs are
expected.

2.5 Conclusion

In this chapter, we investigated the impact of topology on the electric power transmis-
sion and the performance of power grids. By utilizing a graph theoretical approach,
we first focused on two extreme graphs, complete and path graphs, and analysed
the electric power transmission under normal operation and under single link failure
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contingencies.We showed that in complete graphs, due to the redistributed flows, the
survival of power grids from a random link failure depends on the rest flow capacity
of the remaining links. Consequently, when the rest flow capacities are insufficient
to handle the redistributed flows, a single link failure could result in more link and
demand loss in a complete graph than in a path graph.

Subsequently, we empirically investigated the effect of the electric power trans-
mission on the link flow, the node voltage and the active power loss in power grids in
various other graphs.Our results show that adding few links to a path graph can signif-
icantly improve these key performance indicators of power grids compared to a path
graph. However, at the same time, the performance indicators could also remarkably
decrease after a link failure. Consequently, throughout a topological transformation
towards a meshed topology with loops, redundancies in the design parameters of
power grids are needed to ensure safety under normal operation and as well as under
single link failure contingencies.

Acknowledgements This work was supported in part by Alliander N.V.

Appendix

2.6 DC Power Flow Equations in Extreme Graph Types

We model power grids with N buses (nodes), and L transmission lines (links) by a
weighted graph G(N , L). The N × N weighted adjacency matrix W specifies the
interconnection pattern of the graph G(N , L): wik is non-zero only if the nodes
i and k are connected by a link; otherwise wik = 0. In the slack-bus independent
solution of the DC power flow equations [10], the relation between the phase angles

 = [θ1 . . . θN ]T of node voltages, and the power input P = [p1 . . . pN ]T is given as
[10]


 = Q+P, (2.9)

where Q+ is the pseudo inverse of the Laplacian Q of the weighted graph G(N , L).

2.6.1 Operating Conditions in a Path Graph

For a path graph, whose nodes are numbered consecutively and links have equal link
weights b > 0, the structure of weighted Laplacian Q can be written as
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Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b −b 0 . . . 0 0
−b 2b −b 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −b 2b −b
0 0 . . . 0 −b b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In order to findQ+ in Eq. (2.9), we use the definition [14] of the pseudo-inverse of

LaplacianQ+ = X̂diag
(

1
μk

)
X̂T , where the N × (N − 1)matrix X̂ consists of all the

normalized eigenvectors of Q, except for the eigenvector u belonging to eigenvalue

μ = 0, and where the (N − 1) × (N − 1) diagonal matrix diag
(

1
μk

)
contains the

positive eigenvalues of Laplacian Q.
The positive eigenvalues μk and the corresponding normalized eigenvector ele-

ments X̂(v, k) of the weighted Laplacian of a path graph are [8]

μk = 2b

(

1 − cos

(
πk

N

))

,

X̂(v, k) =
√
2√
N

× cos

(
πkv

N
− πk

2N

)

,

where 1 ≤ k ≤ N − 1, and 1 ≤ v ≤ N . Then, the elements q+
ik of the pseudo-inverse

of the Laplacian are

q+
ik =

N−1∑

v=1

X̂(i, v)X̂(k, v)

μv

. (2.10)

Inserting the elements of pseudo-inverse in Eq. (2.10) and the power input P =
[(N − 1)p, 0, . . . , 0,−(N − 1)p]T into the DC power flow equations in Eq. (2.9)
results in the operating conditions, i.e., the phase angles 
 of node voltages, when
the electric power is transferred from the supply node 1 to the demand node N :

θi = p × (N − 1) × (q+
i1 − q+

i N )

= p(N − 1)(N − 2i + 1)

2b
. (2.11)

2.6.2 Operating Conditions in a Complete Graph

For a complete graph with equal link weights b > 0, the structure of the weighted
Laplacian Q can be written as



52 H. Çetinay et al.

Q = b(NI − J), (2.12)

where J is the all-one matrix, and I is the identity matrix. Using the definition of
pseudo-inverse of the Laplacian [14]

Q+ = (Q + αJ)−1

(

I − 1

N
J
)

, (2.13)

where α > 0 is a scalar, and choosing the scalar α = b, the pseudo-inverse of the
weighted Laplacian of a complete graph can be found as

Q+ = (Q + bJ)−1

(

I − 1

N
J
)

= 1

Nb

(

I − 1

N
J

)

= 1

N 2b
(NI − J). (2.14)

From Eq. (2.9), the phase angles 
 of node voltages when the electric power
transferred from the supply node 1 to the demand node N can be found as


 = Q+P

= 1

bN 2

⎡

⎢
⎢
⎢
⎢
⎣

(N − 1) −1 . . . −1

−1
. . .

...
...

. . . −1
−1 . . . −1 (N − 1)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

(N − 1)p
0
...

−(N − 1)p

⎤

⎥
⎥
⎥
⎦

= p

bN

⎡

⎢
⎢
⎢
⎣

(N − 1)
0
...

−(N − 1)

⎤

⎥
⎥
⎥
⎦

.

2.6.3 Single Link Failure in a Path Graph

The failure and removal of a link lik from a network partitions its underlying graph
if the equality between the reactance xik of the link and the effective resistance rik
between its node pairs satisfies [10]

xik = rik .

When the underlying topology is a path graph, the effective resistance rik between
nodes i and k = i + 1 can be written as

rik = |i − k| × xik,

meaning that the removal of any link lik partitions the path graph.
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2.6.4 Single Link Failure in a Complete Graph

When a link lik with flow | fik | = p is removed from the graph, the flow | fik | = p
through the link before its removal is redistributed over alternative paths between
nodes i and k. Hence, the final flow through an arbitrary remaining link lab can be
written as the sum of the previous state of the network, i.e., the previous flow through
the link between nodes a and b when link lik is present, and the flow resulting from
the change of the state due to the removal of link lik . The change in the flow � fab
through a remaining link lab can be calculated as [10]

� fab = wab × (rak − rai + rbi − rbk)

2(1 − wik × rik)
× p, (2.15)

where wab is the weight of the link lab and rak is the effective resistance between the
nodes a and k.

The effective resistance between any two distinct nodes in the complete graph
with equal link weights b is 2

bN . Therefore, the numerator (rak − rai + rbi − rbk) of
Eq. (2.15) is nonzero and its magnitude is equal to |rak − rai + rbi − rbk | = 2

bN only
when the removed link lik and the observed link lab share a node. Then,

|� fab| =
{
0 if lik ∩ lab = ∅,

p
N−2 otherwise.

If the failure probabilities of the links in a complete graph are the same, we can
calculate the probability pr that a failed link is a redundant link with zero flow, and
the probability pu that a failed link is a used link with non-zero flow as

pr = (N − 1)(N − 2)

2
× 2

N (N − 1)
= N − 2

N
= 1 − 2

N
, (2.16)

pu =(N − 1) × 2

N (N − 1)
= 2

N
, (2.17)

where pu + pr = 1.
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