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Abstract. In this paper we develop one dimensional non-linear ADER schemes for the

shallow water system with source terms. In contrast to conventional schemes we adopt

a formulation given in terms of the free surface elevation and water discharge. Data

reconstruction is performed using ENO polynomials both for the conservative variables

and for the bottom elevation. The scheme is accurate up to forth order both in time

and in space; essentially non-oscillatory results are obtained for discontinuous solutions

both for the steady and unsteady case. The resulting numerical schemes can be applied to

several realistic cases characterized by non-uniform geometries.

1 INTRODUCTION

The one-dimensional shallow water equations have a wide range applications in open
channel flows and river flows. In these cases source terms appear in the governing equa-
tions due to non-horizontal bed profile, bottom friction and variable channel width. A
number of second-order Godunov-type schemes has been proposed to solve the shallow
water with source terms (see 1,2). The evaluation of the source term may require ad-hoc
formulation, for example in 3 an upwind method is proposed for the treatment of the bed
slope source term. In 4 data reconstruction is carried out in terms of the free surface ele-
vation and a second order numerical scheme is developed which is able to reproduce both
steady and unsteady solutions. This method is based on a particular data reconstruction
of the free surface elevation, called the surface gradient method; moreover recostructed
data are employed in a MUSCL-Handcock finite volume method with the HLL Riemann
solver.
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In this paper we propose an ADER scheme based on ENO5 data reconstruction for
the solution of the shallow water equations with a source term due to bottom slope. In
order to obtain a well-balanced scheme the variables are given with respect to a staggered
grid, as show in Figure 1. For the free surface elevation and water discharge the so-called
cell-centred approach is adopted, while the bottom elevation is given at the cell interfaces.

The source term and the numerical fluxes are evaluated using the solution of the Deriva-
tive Riemann problem; the resulting numerical method is of arbitrary order of accuracy
and reproduces smooth and discontinuous solutions, both steady and unsteady.

2 Formulation of the problem

The shallow water equations can be written in conservative form for the simple case
of an horizontal bed channel and vanishing bottom friction. In the case of a shallow flow
over a generic bed profile a source term in the governing equations appears (see 1,2):

∂D

∂t
+

∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(

Q2

D
+

1

2
gD2

)

= −gD
∂b

∂x

(1)

where D is the flow depth, Q is the water discharge, b(x) is the bottom elevation, t and
x are time and the spatial independent variable respectively, g is the acceleration due to
gravity.

Figure 1: Formulation of the problem, (left) data reconstruction, (right) control volume and generalized
Riemann problem.

In the case of equations with source terms standard numerical schemes do not perform
satisfactory, particulary for the steady case. We note that in the literature regarding
well-balanced schemes there are two different definitions of steady flow, the first consists
in vanishing velocities everywhere in the computational domain, the second refers to the
case of steady solution with non vanishing velocities. Standard explicit schemes for the
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shallow water with source terms do not converge to the exact solution also in the first
case.

In order to design a numerical method able to reproduce both steady and unsteady
solutions we follow 4 and propose a formulation, given in term of the free surface elevation
h = D + b. Using this notation system (1) becomes:

∂h

∂t
+

∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(

Q2

h − b
+

1

2
gh2 − gbh

)

= −gh
∂b

∂x

(2)

System (2) is hyperbolic with eigenvalues λ(i) and right eigenvectors R(i):

λ(1) = u − a, λ(2) = u + a

R(1) =

(

1
u − a

)

, R(2) =

(

1
u + a

)

where u = Q/D is the flow velocity and a =
√

gD is the celerity.
The two main advantages of the formulation (2) are that the model reproduces in

the right way the physics of the problem, and it is possible to use the well known exact
Riemann solver proposed by 6 in order to evaluate the numerical fluxes between disjoint
computational volumes.

3 Numerical scheme

System (2) can be written in the following conservative form:

∂U

∂t
+

∂F

∂x
= S (3)

where the unknown vector U, the flux vector F and the source term S are given by

U =

(

h
Q

)

, F =

(

Q
Q2

h−b
+ 1

2
gh2 − ghb

)

, S =

(

0
−gh ∂b

∂x

)

.

Integration of (3) over the control volume Ii =
[

xi− 1

2

, xi+ 1

2

]

in the x− t plane Iix∆t gives:

Un+1

i
= Un

i
− ∆t

∆x

(

F
i+1

2

− F
i−1

2

)

+ ∆tSi (4)

Here the cell average of the solution Un

i
at time level tn, the time average of the flux F

i+1

2

at cell interface xi+ 1

2

, time-space average of the source term Si over the control volume
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are given by

Un

i
=

1

∆x

∫ x
i+1

2

x
i−

1
2

U (tn, x) dx, F
i+1

2

=
1

∆t

∫ tn+∆t

tn
F
(

xi+ 1

2

, t
)

dt,

Si =
1

∆t∆x

∫ tn+∆t

tn

∫ x
i+1

2

x
i−

1
2

S (x, t) dxdt.

Equation (4) involving integral averages is an exact relation, but can be used to con-
struct numerical methods to compute approximate solutions to (3). In order to solve
(3) numerically the computational domain is divided into many disjoint control volumes.
Then approximate numerical fluxes and approximate numerical source are defined and
denoted by the same symbols F

i+1

2

and Si then equation (4) is a conservative one step

scheme to solve (3).
In order to construct a numerical method for the solution of (3) we use the so called

cell centred approach for the unknown vector U. The bottom elevation, which appears
only in the formulation for the fluxes F

i+1

2

, is given using the interface centered approach;
the averaged values bi+ 1

2

are defined as

bi+ 1

2

=
∫ xi+1

xi

b (x) dx.

In order to develop high order numerical schemes we use the ADER methods for the
evaluation of the numerical fluxes and of the numerical source term. This approach
consists of a suitable definition of both F

i+1

2

and Si in such a way that the resulting
numerical solution is of arbitrary high order of accuracy both in time and in space. By
the order of accuracy of the numerical scheme we mean the convergence rate of the
numerical solution to the exact solution when the mesh is refined with a fixed Courant
number.

The ADER approach consists in three steps:

1. reconstruction of the pointwise values of the solution starting from the cell averages;

2. solution of the derivative Riemann problem and evaluation of the intercell fluxes
F

i+1

2

;

3. evaluation of the numerical source Si by integrating a time-space Taylor expansion
of the solution inside the control volume.

The point wise values of the solution at time level tn are evaluated from the cell averages
using high order polynomials. In this paper we use the ENO5 reconstruction procedure
in order to avoid spurious oscillations, leading to a non-linear numerical scheme. We note
that the reconstruction is performed both for the unknown vector U and for the bottom
elevation b, as shown in figure 1.
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After the data reconstruction we solve the following Derivative Riemann problem:

∂tU + ∂xF (U) = S (U) ,

U (x, 0) =

{

UL (x) = pi (x) , x < xi+ 1

2

,

UR (x) = pi+1 (x) , x > xi+ 1

2

(5)

where pi (x) denotes the reconstructed polynomial in the i-th cell. Please note that the
value bi+ 1

2

as well as its spatial derivative are known.

Following 7 we find the approximate flux at cell interface using an appropriate Gaussian
rule:

Fi+ 1

2

=
N
∑

α=0

F
(

Ui+ 1

2

(γα∆t)
)

Kα (6)

where γα are suitable Gaussian coefficients. The vector Ui+ 1

2

(τ) is the solution of the

DRP problem (5) which is expressed as a Taylor expansion:

Ui+ 1

2
(τ) = Ui+ 1

2

(

0+
)

+
r−1
∑

k=1

[

∂
(k)
t Ui+ 1

2

(

0+
) τk

k!

]

, ∂
(k)
t Ui+ 1

2

(

0+
)

=
∂k

∂tk
Ui+ 1

2

(

0+
)

. (7)

where 0+ = limt→0+ t. The leading term Ui+ 1

2

(0+) can be evaluated once the boundary

extrapolated values UL

(

xi+ 1

2

)

and UR

(

xi+ 1

2

)

are known, by the solution of conventional
Riemann problem with piecewise constant data:

∂tU + ∂xF (U) = 0

U (x, 0) =







UL

(

xi+ 1

2

)

, x < xi+ 1

2

UR

(

xi+ 1

2

)

, x > xi+ 1

2

evaluated for
(

x − xi+ 1

2

)

/t = 0. We call Ui+ 1

2

(0+) the Godunov state, which in this paper

is evaluated using the exact Riemann solver6. The remaining terms in (7) are computed

by replacing all time derivatives ∂
(k)
t Ui+ 1

2

(0+) by spatial derivatives ∂(k)
x Ui+ 1

2

(0+) by
means of the Cauchy-Kowalesky procedure. The unknown spatial derivatives at t = 0+
are found from the following linearised Riemann problems:

∂t

(

∂(k)
x U

)

+ A
(

Ui+ 1

2

(

0+
))

∂x

(

∂(k)
x U

)

= 0

∂(k)
x U (x, 0) =







∂(k)
x UL

(

xi+ 1

2

)

, x < xi+ 1

2

,

∂(k)
x UR

(

xi+ 1

2

)

, x > xi+ 1

2

where the matrix A
(

Ui+ 1

2

(0+)
)

is reported in Appendix. The boundary extrapolated val-

ues ∂(k)
x UL

(

xi+ 1

2

)

and ∂(k)
x UR

(

xi+ 1

2

)

are evaluated using the polynomials pi (x), pi+1 (x)
obtained by the ENO reconstruction procedure.
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To evaluate the source term we perform integration by parts:

∆t∆xSi =
∫ ∆t

0

∫ x
i+1

2

x
i−

1
2

(

−gh
∂b

∂x

)

dxdt =

= −g
∫ ∆t

0

(

hb|x
i+1

2

− hb|x
i−

1
2

)

dt + g
∫ ∆t

0

∫ x
i+1

2

x
i−

1
2

b
∂h

∂x
dxdt

(8)

The first integral is evaluated using suitable Gaussian point and the Taylor expansion of
the interface state in time (10). The second integral in (8) is approximated by a Gaussian
integration rule:

g
∫ ∆t

0

∫ x
i+1

2

x
i−

1
2

b
∂h

∂x
dxdt = g

N
∑

α=1

[

N
∑

l=1

(

b(xα)
∂

∂x
h(xα, τl)

)

Kl

]

Kα. (9)

3.1 Riemann solver for the linearised equations

The ADER approach requires the solution of several linearised Riemann problem for
the space derivatives of the unknowns h and Q. The linear Riemann problem to be solved
for any order of spatial derivative has the same structure as the homogeneous linearised
problem for the unknowns h and Q:

∂h

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+
(

gD − u2
) ∂h

∂x
+ 2u

∂Q

∂x
= 0.

(10)

For simplicity here we report the solution h∗ and Q∗ for (10); it is easy to obtain linear
solutions for all the space derivatives involved in the ADER expansion substituting h by
∂nh
∂xn and Q by ∂nQ

∂xn . Please refer to 6 for further details on the solution procedure, here we
report the final results:

(

h∗

Q∗

)

=











































(

hL

QL

)

, λ+, λ− > 0
(

hR+hL

2
+ 1

2a
[u (hR − hL) − (QR − QL)]

QR+QL

2
− a

2
(hR − hL) − 1

2a
[u (QR − QL) − u2 (hR − hL)]

)

,
λ+ > 0,
λ− < 0

(

hR

QR

)

, λ+, λ− < 0

4 Numerical tests

4.1 Steady solution

Following 1,2,3 and 4 the first numerical test is the fully steady test. In such condition
the proposed model reproduces exactly the horizontal free surface elevation and zero
velocity in the whole numerical domain.
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The test under steady condition is more interesting sincen there are several different
configuration characterized by smooth or discontinuous solutions, depending on the values
of the parameters, namely the channel discharge Q, the boundary conditions for the free
surface elevation h (x = 0) and h (x = L), where L is the channel length and the maximum
height of the bed profile bmax. Figures 2 and 3 show the numerical results of the standard
test case of a subcritical flow over a parabolic bump.

0 1 2 3 4 5 6 7 8 9 10
x[m]

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

h[
m

]

Figure 2: Free surface elevation in the case of smooth solution and parabolic bed profile, ADER2 numerical
method. (Q = 1m3/s, bmax = 0.3m, h (x = L) = 1m, N = 100, L = 10m)

Figures 4 and 5 show the numerical solution for the flow over a parabolic bump with
a stationary shock. We note that the numerical solution reproduces well both the free
surface elevation and the discharge. For this test problem we note that the position of the
shock is stationary and depends on the discharge, the maximum bottom elevation and on
the boundary conditions. We remark that it is possible to obtain an accurate numerical
solution as plotted in Figure 4 if we choose the spatial mesh in such a way that the shock
is positioned exactly between two numerical cells, in this case N = 280. Please note that
this procedure is not general because the position of the shock is not known a priori. In
other words, for the steady shock solution the refinement of the computational grid does
not always give more accurate results, as can be seen from Figure 4.
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Figure 3: Discharge in the case of smooth solution and parabolic bed profile, ADER2 numerical method.
(Q = 1m3/s, bmax = 0.3m, h (x = L) = 1m, N = 100, L = 10m)

4.2 Unsteady solution

Unfortunately, the unsteady reference solution for free surface water flows over a com-
plex topography is not available. Figure 6 shows the results for the standard test problem
of a dam break over a horizontal bed. We see that essentially non-oscillatory results are
obtained.

In figure 7 is reported an example of a dam break problem over a Gaussian bed profile;
under these conditions the solution displays two different shocks. The fist one is due to
the initial condition; the appears in the middle region of the flow due to the bottom slope.
The first shock propagates landward faster than the second, which is quasi stationary.

5 Density convergence test

5.1 Steady case

In order to evaluate the order of accuracy of the scheme we perform numerical tests
with a smooth bed profile, e.g.e a Gaussian or sinusoidal bottom profile. The maximum
bed elevation is chosen small enough such that the resulting solution does not have dis-
continuities of the free surface elevation. The mesh convergence study has been made
using both Gaussian and sinusoidal bed profiles for a fixed Courant number. For the
sinusoidal bed profile results are in agreement with the designed order of accuracy of the
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Figure 4: Free surface elevation in the case of discontinuous solution and parabolic bed profile, ADER2
numerical method. (Q = 1m3/s, bmax = 0.5m, h (x = L) = 1m, top N = 280, bottom N = 300,
L = 10m)
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Figure 5: Discharge elevation in the case of discontinuous solution and parabolic bed profile, ADER2
numerical method. (Q = 1m3/s, bmax = 0.5m, h (x = L) = 1m, top N = 280, bottom N = 300,
L = 10m)
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numerical scheme whereas for the Gaussian bed profile the achieved order of accuracy
does not match the designed one, in particular for the ADER4 scheme. As expected, the
forth-order scheme is the most accurate scheme.

Method N L1 error L1 order L∞ error L∞ order
ADER2 5 0.1171E-02 0.2484E-02

10 0.2802E-03 2.063 0.6061E-03 2.035
20 0.6173E-04 2.182 0.1361E-03 2.154
40 0.1467E-04 2.072 0.3096E-04 2.136
80 0.3583E-05 2.034 0.7296E-05 2.085

ADER 3 5 0.4894E-03 0.1113E-02
10 0.7690E-04 2.669 0.1488E-03 2.902
20 0.9915E-05 2.955 0.2004E-04 2.892
40 0.1288E-05 2.944 0.2565E-05 2.965
80 0.1645E-06 2.969 0.3234E-06 2.987

ADER 4 5 0.3025E-03 0.6851E-03
10 0.1914E-04 3.982 0.4409E-04 3.957
20 0.1193E-05 4.003 0.2924E-05 3.914
40 0.7200E-07 4.051 0.2230E-06 3.712
80 0.9164E-08 2.973 0.2621E-07 3.089

Table 1: Density convergence test for the steady and smooth case, sinusoidal bed profile (bmax = 0.01m,
Q = 1m3s−1, h (x = L) = 1m, Courant number=0.9)

5.2 Unsteady case

The unsteady flow test has been constructed by adding an additional source term to the
momentum equation so that the time dependent sinusoidal solutions for the free surface
and for the discharge over a sinusoidal bed profile are obtained:

h = h0 + a0 sin
(

2π
x

L

)

cos
(

2π
t

T0

)

(11)

Q = Q0 −
a0L

T0
cos

(

2π
x

L

)

sin
(

2π
t

T0

)

(12)

b = b0 sin
(

2π
x

L

)

. (13)

where L is the longitudinal extension of the computational domain and T0 a suitable
time period. The new source term has been evaluated numerically by using Gaussian
integration over the control volume.
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Method N L1 error L1 order L∞ error L∞

ADER2 5 0.3570E-04 0.9711E-04
10 0.1171E-04 1.607 0.2866E-04 1.760
20 0.3045E-05 1.943 0.8188E-05 1.807
40 0.7605E-06 2.001 0.2121E-05 1.948
80 0.1893E-06 2.006 0.5428E-06 1.966

ADER3 5 0.2499E-04 0.7595E-04
10 0.3862E-05 2.693 0.8526E-05 3.155
20 0.5508E-06 2.809 0.1144E-05 2.897
40 0.7646E-07 2.848 0.1712E-06 2.740
80 0.1046E-07 2.868 0.3375E-07 2.342

ADER4 5 0.1607E-04 0.4548E-04
10 0.1969E-05 3.028 0.4682E-05 3.279
20 0.3078E-06 2.677 0.1901E-05 1.300
40 0.4470E-07 2.783 0.2685E-06 2.823
80 0.5129E-08 3.123 0.4873E-07 2.462

Table 2: Density convergence test for the steady and smooth case, Gaussian bed profile (bmax = 0.001m,
Q = 1m3s−1, h (x = L) = 1m, Courant number=0.9)

Method N L1 error L1 order L∞ error L∞

ADER 2 5 0.1520E-02 0.3328E-02
10 0.3891E-03 1.965 0.7958E-03 2.064
20 0.8029E-04 2.276 0.1807E-03 2.138
40 0.1816E-04 2.143 0.4053E-04 2.156
80 0.4337E-05 2.066 0.9466E-05 2.098

ADER 3 5 0.6630E-03 0.1258E-02
10 0.6481E-04 3.354 0.1493E-03 3.074
20 0.1023E-04 2.662 0.2106E-04 2.826
40 0.1322E-05 2.952 0.2712E-05 2.957
80 0.1647E-06 3.005 0.3415E-06 2.989

ADER 4 5 0.3720E-03 0.8252E-03
10 0.2775E-04 3.744 0.5868E-04 3.813
20 0.1438E-05 4.270 0.3117E-05 4.234
40 0.8418E-07 4.094 0.2151E-06 3.856
80 0.1085E-07 2.955 0.2237E-07 3.265

Table 3: Density convergence test for the unsteady and smooth case after t = 400s , (bmax = 0.01m,
a0 = 0.01m, Q0 = 1m3/s, T0 = 10000s, Courant number=0.9)
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Figure 6: Dam break over a horizontal bed profile. ADER3 numerical scheme; t = 30s, Courant num-
ber=0.9, N = 500.

13



G. Vignoli, E.F. Toro and V . Titarev

0 100 200 300 400 500 600
x [m]

0

1

2

3

4

5
el

ev
at

io
n 

[m
]

Free surface elevation
Bottom profile
Initial condition

0 100 200 300 400 500 600
x [m]

0

1

2

3

4

5

6

7

di
sc

ha
rg

e 
[m

3/
s]

Water discharge
Bottom profile

Figure 7: Dam break over a non horizontal profile. ADER3 numerical scheme. The solution displays two
shocks, both propagating landward, but with different celerities; t = 40s, Courant number=0.9, N = 500.
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6 Conclusions

We have proposed a framework for constructing arbitrary high order numerical schemes
for the solution of the shallow water equations with source term. The numerical method
reproduces the steady solution (horizontal free surface elevation and vanishing velocities)
without spurious oscillations.

Steady solutions are also well reproduced both in the smooth and in the discontinu-
ous case. Moreover we have shown that in the case of steady discontinuous solution a
refinement of the grid does not always give better numerical solution around discontinu-
ities. In this case better solutions are obtained when one cell interface is aligned with the
discontinuity.

The numerical method reproduces also unsteady solution and essentially non-oscillatory
results are obtained.
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