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Abstract

Voltage imaging using genetically encoded voltage indicators (GEVIs) enables high-
speed, population-scale monitoring of neural activity, but it suffers from significant noise
due to low photon yield and high frame rates. Effective denoising is essential to recover
meaningful signals from such data. In this study, we present a comparative evaluation
of three state-of-the-art denoising methods, SUPPORT, DeepCAD-RT, and PMD, on
both synthetic and real voltage imaging datasets. Our analysis considers spatial and
temporal signal quality, as well as computational efficiency. We find that each method
has distinct advantages, and the most suitable choice depends on the specific require-
ments of the imaging application. SUPPORT is well-suited for tasks requiring spatial
detail, PMD offers strong temporal stability and speed, and DeepCAD-RT provides an
efficient, balanced alternative. These insights aim to support researchers in selecting
and refining denoising tools for real-world neuroscience workflows.

Figure 1: Overview of the project. The pipeline begins with noisy voltage imaging in-
puts and applies each method to assess performance in terms of spatial accuracy (PSNR,
SSIM), temporal stability (tSNR), and computational efficiency (inference speed and mem-
ory usage). Key findings highlight SUPPORT’s strength in spatial reconstruction, PMD’s
advantage in temporal denoising and runtime, and DeepCAD-RT’s computational efficiency.

1 Introduction
Voltage imaging with genetically encoded voltage indicators (GEVIs) has become an impor-
tant tool in modern neuroscience. It provides a powerful optical method to monitor rapid
changes in membrane potential. This enables high-speed, population-scale monitoring of
the electrical activity of neurons with millisecond precision [1]. Despite its significance, a
central limitation of this technique is that it produces very noisy results. This is due to
the inherently low photon yield (light level) of GEVIs, especially under the high temporal
resolution (frame rate), which is required to capture action potentials. The results are often
in a poor signal-to-noise ratio (SNR), making it difficult to distinguish real neural activity
from background noise. Consequently, effective denoising has become a critical step in the
voltage imaging analysis pipeline.
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Traditional denoising techniques, such as Gaussian smoothing or wavelet filtering, often
fall short in this context. These methods tend to introduce temporal distortions or spatial
blurring that can obscure fast neural signals and fine morphological features [2]. To address
this, more advanced approaches specifically tailored for voltage imaging data have been
introduced. These approaches use either model-based statistical methods or data-driven
neural architectures. Notable among these are SUPPORT [3], DeepCAD-RT [4], and Penal-
ized Matrix Decomposition (PMD) [5], each offering distinct trade-offs between denoising
quality, temporal performance, and computational efficiency.

While these methods have demonstrated improved reconstruction performance, prior
evaluations have largely centered on a limited set of image-quality metrics, and often on
isolated datasets [4, 5, 6]. Less attention has been given to systematic comparisons across
both synthetic and real imaging conditions. In particular, few studies evaluate computa-
tional efficiency and performance under varying noise levels. Comprehensive assessments of
the trade-offs between spatial accuracy, temporal fidelity, and practical runtime efficiency
are yet to be explored. This gap limits our ability to make informed choices about which
denoising strategies are best suited for specific experimental needs or resource constraints.

To address this gap, we pose the central research question of this study: How do
three state-of-the-art denoising methods, SUPPORT, DeepCAD-RT, and PMD,
compare in terms of spatial performance, temporal stability, and computational
efficiency when applied to voltage imaging data with varying levels of noise?

This study aims to fill that gap by conducting a comparative evaluation of three leading
denoising approaches, SUPPORT, DeepCAD-RT, and PMD, on both synthetic and real volt-
age imaging datasets. Our evaluation framework is designed to examine each method across
multiple axes: spatial reconstruction fidelity, temporal signal stability, and computational
efficiency. By standardizing the evaluation conditions and applying consistent metrics, we
seek to characterize each method’s strengths and limitations and to provide a practical guide
for researchers selecting denoising tools in voltage imaging workflows.

The remainder of this paper is organized as follows. Section 2 reviews background liter-
ature on voltage imaging and specialized denoising methods. Section 3 introduces the three
methods evaluated in this study. Section 4 outlines the experimental design, datasets, and
evaluation metrics. Section 5 presents the comparative results. Section 6 discusses responsi-
ble research considerations. Section 7 explores the broader implications of our findings and
potential limitations. Section 8 concludes with a summary and suggestions for future work.

2 Background
Voltage imaging is a powerful optical technique that enables the direct visualization of
membrane potential dynamics in neurons with high temporal resolution. By using GEVIs or
synthetic voltage-sensitive dyes, it provides a means to monitor electrical activity across pop-
ulations of neurons in animals, complementing traditional electrophysiological approaches
[7]. The method is particularly valuable for studying fast neuronal events, such as action
potentials and subthreshold fluctuations, which are critical for understanding brain function
at the cellular and network levels. However, voltage imaging faces significant challenges: the
fluorescent signals are typically weak and rapidly varying, making them highly susceptible
to noise from photon shot noise, motion artifacts, and background fluorescence.

The presence of noise in voltage imaging data poses significant obstacles to accurate
analysis and interpretation. High levels of noise can obscure rapid voltage transients, such
as action potentials, leading to false negatives or missed spikes. In some cases, noise may
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even mimic real signals, resulting in false positives and misinterpretation of neuronal ac-
tivity. Moreover, noise degrades signal-to-noise ratio (SNR), making it difficult to detect
subtle subthreshold events that are essential for understanding synaptic integration and
network dynamics. Temporal noise can also distort the timing of events, which is particu-
larly problematic for studying precise spike timing and synchrony across neurons. Spatially,
noise complicates the identification of active regions, especially when imaging densely packed
neural tissue. As a result, without effective denoising, voltage imaging data may lead to
inaccurate conclusions about neuronal behavior and network function. These difficulties
necessitate robust denoising algorithms to recover reliable voltage traces without distorting
the underlying physiological signals, making denoising a crucial preprocessing step in voltage
imaging analysis.

Matrix factorization-based denoising algorithms, such as Principal Component Analysis
(PCA) [8], Non-negative Matrix Factorization (NMF), and Penalized Matrix Decomposition
(PMD) [5], have been widely used to extract structured signals from noisy voltage imaging
data. These methods decompose the data matrix, typically representing spatial and tem-
poral components, into a low-rank approximation, isolating dominant signal patterns while
suppressing unstructured noise. They are computationally efficient, interpretable, and well-
suited for separating overlapping neural signals in population recordings [9]. However, their
effectiveness relies heavily on the assumption that neural activity lies in a low-dimensional
subspace, which may not hold in the presence of complex or sparse firing patterns. Ad-
ditionally, these methods often struggle with preserving fast, transient events like action
potentials, as such signals may be relegated to higher-rank components or interpreted as
noise. Matrix factorization also typically assumes linear signal structure and lacks the flex-
ibility to model nonlinear dynamics or spatial inhomogeneities, limiting its performance in
challenging in vivo imaging conditions [6].

Deep learning-based denoising methods have appeared as a powerful alternative to tra-
ditional model-driven approaches, offering greater flexibility and expressiveness in capturing
the complex spatiotemporal structure of voltage imaging data. Unlike matrix factorization
techniques, deep neural networks can learn nonlinear and high-dimensional signal repre-
sentations, making them well-suited for the intricate dynamics and variability of neuronal
activity. However, supervised deep learning approaches typically require paired noisy and
clean data for training, an impractical requirement in voltage imaging, where high-fidelity
ground truth is unavailable [10]. To overcome this limitation, researchers have developed
self-supervised denoising strategies that train models directly on noisy data by leveraging
statistical properties of noise. Notable examples include Noise2Noise [11], Noise2Void [12],
and Noise2Self [13], which have shown impressive results in fluorescence microscopy [14].
Building on these ideas, several methods have been tailored specifically for imaging time-
series data. For instance, DeepCAD-RT [4] extends the DeepCAD [15] framework by re-
constructing masked frames from local temporal windows, while DeepInterpolation [16] uses
a Noise2Noise-inspired training setup to interpolate entire frames from neighboring ones.
DeepSeMi [17] introduces an asymmetric prediction strategy using transformed patches, and
DeepVID [18] combines temporal and spatial masking to exploit redundancy across both do-
mains. SUPPORT [3] further enhances spatiotemporal modeling by predicting pixel values
using full contextual information across time and space. These methods have demonstrated
substantial improvements in signal-to-noise ratio and recovery of fine-scale neuronal signals,
yet challenges remain in balancing denoising performance with computational efficiency and
ensuring generalization across diverse imaging conditions.

An important and often overlooked consideration in denoising voltage imaging data is
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the trade-off between spatial and temporal performance. High spatial performance refers
to a method’s ability to accurately preserve fine anatomical details and sharp structural
boundaries. High temporal performance implies maintaining the fidelity of fast-changing
signals such as action potentials or subthreshold voltage fluctuations over time [3]. Denois-
ing methods that aggressively suppress noise may improve visual clarity and enhance spatial
signal-to-noise ratio (e.g., through spatial smoothing or filtering), but this often comes at
the cost of blurring or distorting rapid temporal events. Conversely, methods optimized for
temporal fidelity may retain noisy fluctuations to avoid corrupting true dynamic signals,
potentially preserving timing accuracy but introducing spatial artifacts or noise residuals
[19]. Achieving a balance between these two aspects is particularly challenging in voltage
imaging, where both fine spatial structures and millisecond-scale voltage dynamics are crit-
ical for accurate interpretation [20]. Different denoising approaches tend to prioritize one
domain over the other, either explicitly through their architecture or implicitly through their
loss functions and training objectives [3, 4, 6, 18]. As such, understanding this trade-off is
crucial when selecting or designing denoising algorithms for specific neuroscience applica-
tions, where the relative importance of spatial precision versus temporal accuracy may vary
depending on the experimental goal.

Given the critical role of denoising in recovering meaningful signals from noisy voltage
imaging data, there is a practical need to systematically evaluate the performance of estab-
lished denoising methods under realistic conditions. While traditional matrix factorization
techniques such as PMD [5] offer interpretable and computationally efficient solutions, they
may struggle with preserving fast, transient features characteristic of voltage signals. In
contrast, recent advances in self-supervised deep learning, exemplified by methods such as
DeepCAD-RT [4] and SUPPORT [3], promise to better capture the nonlinear and dynamic
properties of neuronal activity without requiring clean training targets. These methods rep-
resent two major classes of denoising approaches, model-based (PMD) and learning-based
(DeepCAD-RT, SUPPORT), each with distinct assumptions and operational regimes. By
analyzing and comparing these methods on a common voltage imaging dataset, this study
aims to clarify their relative strengths and limitations.

3 Overview of Selected Denoising Methods
To evaluate the strengths and weaknesses of current voltage imaging denoising techniques,
we focus on three representative methods: SUPPORT [3], DeepCAD-RT [4], and PMD [5].
These methods were chosen because they cover both deep learning-based and traditional
approaches, and they represent some of the most widely used or promising tools for de-
noising fast, noisy imaging data. SUPPORT [3] has already become a benchmark in the
field: it outperforms other classic frame-based denoisers, and has seen rapid adoption with
public code and citations [3]. DeepCAD-RT [4] is widely used in high-speed fluorescence
microscopy, especially calcium imaging, because of its real-time denoising capability, cross-
platform software support, and demonstrated improvements in practical experiments [4].
Finally, PMD [5] remains a strong traditional baseline; its low-rank factorization has stood
the test of time in multiple imaging domains due to its robustness and speed, making it a
common comparison point in literature [3, 6]. In contrast, newer or less specialized alterna-
tives often fall short in voltage imaging. Methods like DeepInterpolation [16], DeepVID [18],
or basic wavelet-based filters [2] have been consistently outperformed by the three selected
approaches [3, 6]. These alternatives are either not tailored for the rapid dynamics of voltage
signals or make strong assumptions about noise, which limits their effectiveness.
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PMD [5] is a model-driven technique that assumes the observed data can be approxi-
mated as a combination of a few dominant spatial and temporal patterns. It decomposes
the data into a low-rank matrix that captures structured signals and a sparse residual that
accounts for noise or outliers. PMD is appealing due to its simplicity, speed, and inter-
pretability. However, it operates under linear assumptions and may miss subtle or complex
features-especially rapid transients like action potentials, that do not align well with the
low-rank structure.

In contrast, DeepCAD-RT [4] is a self-supervised deep learning method that leverages
convolutional neural networks to denoise calcium or voltage imaging data. It works by
reconstructing masked frames from neighboring frames in small temporal windows. This
enables the model to learn both spatial and temporal patterns without requiring clean
ground truth data. DeepCAD-RT is especially effective at enhancing the signal-to-noise
ratio and preserving smooth activity patterns but may struggle with extremely sparse or
highly localized events if temporal context is too limited.

SUPPORT [3] represents a more recent and advanced approach. It also follows a self-
supervised learning paradigm but makes full use of the spatiotemporal context to predict
each pixel. By integrating information from both nearby pixels and nearby frames, SUP-
PORT achieves high-fidelity denoising, even in data with low signal-to-noise ratio or fast,
complex dynamics. Its design is well-suited to the challenges of voltage imaging, where both
spatial and temporal continuity are essential to recover meaningful signals.

These three methods offer fundamentally different perspectives on how to approach de-
noising: PMD is deterministic and model-based, DeepCAD-RT uses local learning from deep
neural networks, and SUPPORT integrates global spatiotemporal learning. Comparing them
side-by-side is valuable for understanding how different design choices affect denoising per-
formance, particularly in the context of preserving fast voltage dynamics. This comparison
can help researchers choose the appropriate method for their specific needs and inform the
development of more effective hybrid or next-generation algorithms.

4 Experimental Setup

4.1 Datasets
To evaluate and compare the denoising performance of the mentioned methods, we selected
both synthetic and real voltage imaging datasets. This dual approach allows us to assess each
method under controlled, ground-truth-aware conditions as well as in realistic, biologically
complex settings.

4.1.1 Synthetic dataset

For the synthetic dataset, we use data generated by Optosynth [21], a simulation framework
that produces realistic voltage imaging movies with access to ground truth signals. Op-
tosynth combines single-neuron morphologies and electrophysiological recordings from the
Allen Brain Atlas to simulate fluorescence responses to action potentials. For each frame, it
computes propagation delays across neuron structures, maps voltage to fluorescence using
reporter-specific dynamics, and adds background fluorescence. Optical blur is applied via
a point spread function, followed by the addition of pixel-wise Poisson-Gaussian noise to
simulate realistic imaging conditions.
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(a) Example frame without
noise (ground truth)

(b) Example frame with SNR
level 1

(c) Example frame with SNR
level 2

(d) Example frame with SNR
level 3

(e) Example frame with SNR
level 4

Figure 2: Example frames of Optosynth dataset [21]

In our experiments, we use a composite dataset consisting of five distinct synthetic
datasets, each capturing different neuron morphologies and activity patterns. Each dataset
includes four different SNR levels to represent a broad spectrum of imaging quality. We
refer to them as SNR levels 1 to 4, with level 1 corresponding to the lowest SNR and level 4
to the highest. Example frames are shown in figure 2 Every dataset variant contains 7,000
frames, resulting in a large and diverse benchmark that challenges denoising methods under
varying noise intensities and structural complexity.

This structured setup provides several key advantages. First, the inclusion of multiple
SNR levels allows for evaluating denoising models across different noise regimes, which is
critical for generalizability. Second, access to ground truth voltage traces for every pixel
enables precise quantitative evaluation of denoising performance, which is impossible in real
experimental data. Finally, the diversity across datasets ensures that models are exposed
to a wide variety of spatial and temporal dynamics, helping prevent overfitting to specific
neuron morphologies or firing patterns.

Due to limitations in time and computational resources, we used pre-generated data
released by the authors of Optosynth, which still retains the framework’s high fidelity and
variability, making it ideal for benchmarking purposes.

4.1.2 Real dataset

For the real dataset, we use recordings made publicly available by a previous study [22].
These recordings capture population-level neural activity in vivo, acquired using GEVIs and
high-speed optical imaging. The full dataset comprises 22 recordings, each containing on
average 10,000 frames, providing a rich and diverse collection of real-world voltage imaging
data. However, due to computational constraints, we limit our analysis to a representative
subset of 3 recordings selected to span different imaging conditions and neural dynamics.

Real datasets introduce unique challenges not present in synthetic data, such as biolog-
ical variability, motion artifacts, and complex, unknown noise distributions. These factors
make them essential for evaluating how well denoising methods generalize beyond controlled
synthetic settings to practical, real-world applications. Using even a subset of these record-
ings helps assess the robustness and applicability of our models under realistic experimental
conditions.

By including both synthetic and real data in our experiments, we aim to provide a
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comprehensive comparison: the synthetic data offers precise benchmarks for signal recovery
accuracy, while the real data tests each method’s effectiveness in preserving meaningful
neural dynamics under natural imaging conditions. This balanced evaluation strategy helps
ensure that our findings are both scientifically grounded and applicable to real neuroscience
workflows.

4.2 Experimental Conditions
To ensure a consistent and fair comparison between the three denoising method, we designed
the experimental setup around a controlled data split.

We employed a 20:80 data split, using the first 20% of the frames as the test set and
the remaining 80% as the training set. This choice was driven by the nature of SUPPORT,
which can be benefit from access to temporal context [3]. By placing the test set at the
beginning of the time series, we ensure that no future frames leak into the model training,
which would otherwise lead to inflated performance metrics due to temporal overlap [23].

PMD, being a traditional matrix factorization-based method, does not require training
and can be applied directly on the test set. While PMD operates independently of training
data, it is evaluated using the same test segment (first 20% of frames) for consistency.

4.3 Implementation Details
To maintain a consistent and reproducible evaluation pipeline, no hyperparameter tuning
was performed for any of the methods. Instead, we adopted the default training hyperpa-
rameters recommended by the original authors of SUPPORT and DeepCAD-RT. For specific
settings such as learning rates, loss functions, and optimizer choices, we refer readers to the
respective publications [3, 4].

Both SUPPORT and DeepCAD-RT were trained for 20 epochs, which we found sufficient
for stable convergence under the prescribed settings.

All experiments were conducted with an Intel Core i7-13650HX CPU and an NVIDIA
GeForce RTX 4060 GPU.

4.4 Evaluation Metric
To quantitatively assess the performance of denoising methods on voltage imaging data, we
employ three complementary metrics: Peak Signal-to-Noise Ratio (PSNR), the Structural
Similarity Index Measure (SSIM) [24], temporal Signal-to-Noise Ratio (tSNR). These met-
rics were selected to capture both spatial and temporal aspects of denoising quality, which
are critical in the context of voltage imaging, where preserving fine cellular structures and
fast transient dynamics are equally important. PSNR is applied exclusively to the Op-
tosynth dataset, where a clean ground-truth signal is available, enabling direct evaluation
of reconstruction accuracy. SSIM is used only on the real dataset, where no ground truth
exists, to assess the preservation of structural content relative to the raw input. tSNR is
computed for both datasets to evaluate temporal noise suppression across methods.

4.4.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is a widely used metric in image processing that quantifies the fidelity of a denoised
image relative to a reference by comparing the mean squared error [3, 4, 6]. It is expressed
in decibels (dB), with higher values indicating closer agreement between the denoised and
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reference images. It is used in datasets where a clean ground truth is available (in the
Optosynth dataset), where it serves as a direct measure of reconstruction quality. For a
clean signal X and a noisy signal Y , it is defined as:

PSNR (X,Y ) = 10 log10

(
Imax

1
WH

∑W
x=1

∑H
y=1 [X(x, y)− Y (x, y)]

2

)
(1)

where W is the width of the signal, H is the height of the signal, and Imax is the maximum
possible value of signal intensity.

4.4.2 Structual Similarity Index Measure (SSIM)

SSIM [24] evaluates image similarity based on luminance, contrast, and structural informa-
tion. It ranges from 0 to 1, with values closer to 1 indicating higher structural similarity.
In the absence of ground-truth images (as in real datasets), SSIM can be computed relative
to the raw input to estimate how much structural information is preserved during denois-
ing. This helps identify methods that are overly aggressive and may smooth out important
spatial details.

4.4.3 Temporal Signal-to-Noise Ratio (tSNR)

Inspired by a previous work [19], tSNR is used to measure the temporal performance. It
measures the stability of pixel-wise signals over time by computing the ratio of the temporal
mean to the temporal standard deviation. Formally,

Temporal SNR(x) =
µ

σ
=

1
T

∑T
t=1 xt√

1
T

∑T
t=1(xt − µ)2

(2)

where µ is the temporal mean and T is the time series. It quantifies how effectively a de-
noising method reduces temporal fluctuations while retaining meaningful signal variations.
In the context of voltage imaging, where rapid changes in membrane potential are cap-
tured over time, a higher tSNR indicates better temporal clarity and reduced noise in the
recordings.

4.4.4 Computational Efficiency

In addition to denoising performance, we assessed the computational efficiency of each
method, as this is a critical factor for real-world applications, especially in high-throughput
or real-time imaging scenarios. For each method, we measured the runtime per sample (one
frame of 128× 512 from the Optosynth dataset [21]) needed to denoise the test set, as well
as the runtime per patch and peak GPU memory usage during training for the model-based
approaches (SUPPORT and DeepCAD-RT). Since both models are applied patch-wise dur-
ing training and inference, the overall computational cost scales approximately linearly with
the number of patches, which in turn scales with video resolution and length. To ensure a
fair comparison, the patch size was fixed to 150 × 100 × 100(t × x × y) for both training
and inference, following recommendations from previous work [3, 4]. The overlap factor
was set to 0.25 while training and 0.6 while inference, as recommended in [4]. These mea-
surements provide insight into the practical deployment costs of each approach. Including
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computational efficiency in the evaluation allows us to weigh the trade-offs between denois-
ing performance and resource consumption, thereby providing a more holistic comparison
across methods.

5 Results

5.1 Results on Optosynth dataset

Table 1: PSNR results in dB on Optosynth data for different denoising methods across
different SNR levels

SNR Level Method Mode PSNR Gain(dB) Mean PSNR Gain(dB)

1

SUPPORT 23.87 24.68
DeepCAD-RT 18.19 18.13
PMD 21.74 21.3

2

SUPPORT 23.93 24.34
DeepCAD-RT 16.42 16.35
PMD 16.71 16.33

3

SUPPORT 23.72 23.24
DeepCAD-RT 14.22 14.02
PMD 15.15 14.78

4

SUPPORT 23.57 22.06
DeepCAD-RT 12.77 12.35
PMD 20.46 19.86

Table 1 summarizes the PSNR gain in decibels for three denoising methods, SUPPORT
[3], DeepCAD-RT [4], and PMD [5], across varying SNR levels on the Optosynth dataset.
SUPPORT consistently outperformed the other methods, achieving the highest mode and
mean PSNR gains across all noise levels. Its performance remained remarkably stable, with
mean PSNR gains ranging from 22.06 dB to 24.68 dB. In contrast, DeepCAD-RT showed a
noticeable decline in PSNR gain as the SNR level increased, with its mean gain decreasing
from 18.13 dB at SNR level 1 to 12.35 dB at SNR level 4. PMD demonstrated intermediate
performance, with more fluctuation across SNR levels; notably, it achieved a relatively high
mean gain of 19.86 dB at SNR level 4, surpassing DeepCAD-RT at higher noise levels. These
results suggest that SUPPORT is robust to varying noise conditions, while PMD may be
preferable to DeepCAD-RT when denoising data with moderate to high SNR.

Table 2 presents the mean tSNR gain in decibels achieved by three denoising methods
across varying SNR levels on the Optosynth dataset. PMD consistently delivered the highest
tSNR gain across all noise conditions, with gains ranging from 7.31 dB at SNR level 4 to 16.62
dB at SNR level 1. SUPPORT showed strong performance at low SNRs, particularly at SNR
level 1 and 2, but its tSNR gain declined more sharply at higher SNR levels. DeepCAD-RT
exhibited a similar decreasing trend, with its tSNR gain dropping from 12.54 dB at SNR level
2 to 6.05 dB at SNR level 4. Overall, the results indicate that while all methods improve
temporal signal quality, PMD is most effective across all SNR levels, particularly at the
lower end, whereas the benefits of SUPPORT and DeepCAD-RT diminish more noticeably
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Table 2: tSNR results in dB on Optosynth data for different denoising methods across
different SNR levels

SNR Level Method Mean tSNR Gain (dB)

1

SUPPORT 12.66
DeepCAD-RT 11.24
PMD 16.62

2

SUPPORT 12.28
DeepCAD-RT 12.54
PMD 15.87

3

SUPPORT 10.08
DeepCAD-RT 8.69
PMD 11.28

4

SUPPORT 7.01
DeepCAD-RT 6.05
PMD 7.31

as the underlying data becomes less noisy.
Considering both PSNR and tSNR results (Tables 1 and 2), a clear trade-off emerges

between spatial and temporal denoising performance among the three evaluated methods.
SUPPORT consistently delivers the highest spatial denoising quality, with the largest PSNR
gains across all SNR levels, maintaining strong performance even as noise decreases. How-
ever, its tSNR gains are more moderate and decline significantly at higher SNR levels,
indicating reduced effectiveness in preserving temporal dynamics in cleaner data. In con-
trast, PMD excels in temporal performance, achieving the highest tSNR gains across all
SNR levels, particularly under strong noise conditions. Although its spatial performance is
generally lower than SUPPORT’s, it remains competitive, especially at higher SNR levels
where it even outperforms DeepCAD-RT. DeepCAD-RT shows the weakest performance
overall, with both PSNR and tSNR gains decreasing as SNR improves, suggesting it is less
robust under varying noise conditions. These findings highlight a fundamental trade-off:
SUPPORT prioritizes spatial fidelity, PMD favors temporal consistency, and DeepCAD-RT
underperforms in both dimensions under these conditions. Depending on the application,
the choice of denoising method should balance this trade-off to align with the primary ob-
jective, whether accurate spatial structure or stable temporal signal is more critical.

5.2 Results on real dataset
Figure 3 presents a visual comparison of denoising results from the three methods on the
same example frame, alongside the corresponding raw signal. The raw signal appears noisy,
with significant background fluctuations obscuring the underlying structures. All three de-
noising methods effectively suppress the noise and enhance the visibility of neuronal features.
SUPPORT and PMD produce smoothened outputs with improved clarity over the raw sig-
nal, while DeepCAD-RT stands out by revealing slightly sharper and more distinct neuronal
structures. This suggests that DeepCAD-RT not only reduces noise but also preserves fine
details more effectively, offering improved visual fidelity in the denoised output.
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(a) Example frame of raw signal (b) Example frame of SUPPORT denoised
signal

(c) Example frame of DeepCAD-RT denoised
signal

(d) Example frame of PMD denoised signal

Figure 3: Example raw and denoised frames of real dataset

Table 3: tSNR and SSIM results comparison on the real dataset for different denoising
methods

Method Mean tSNR Gain (dB) Mean SSIM

SUPPORT 4.37 0.915
DeepCAD-RT 4.36 0.922
PMD 4.42 0.918

Table 3 presents a comparison of denoising performance on the real dataset using mean
tSNR and mean SSIM. All three denoising methods substantially improve the temporal SNR
compared to the raw input, with PMD achieving the highest mean tSNR gain (4.42 dB),
followed closely by SUPPORT (4.37 dB) and DeepCAD-RT (4.36 dB). While the differences
in tSNR are minor, they suggest that all methods are similarly effective at suppressing
temporal noise. Regarding structural preservation, DeepCAD-RT yields the highest mean
SSIM (0.922), indicating it best preserves spatial structures relative to the noisy input.
PMD and SUPPORT also perform well, with SSIM values of 0.918 and 0.915, respectively.
Overall, PMD offers the best balance between temporal denoising and spatial fidelity, while
DeepCAD-RT is slightly more conservative in denoising but excels at retaining structural
information. SUPPORT, while still effective, appears to be marginally more aggressive,
potentially sacrificing some spatial detail for denoising strength.

5.3 Computational Efficiency

Table 4: Training peak memory used and speed for SUPPORT and DeepCAD-RT

Method Peak Memory (GB) Training Speed (patch/s)

Support 5.5 1.21
DeepCAD-RT 3.7 3.12
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Figure 4: Inference runtime per sample (s) for different denoising methods across dataset
sizes

Table 4 compares the training performance of SUPPORT and DeepCAD-RT. DeepCAD-
RT exhibits notably better efficiency, with a lower peak memory usage of 3.7 GB and a
faster training speed of 3.12 patches per second, compared to SUPPORT’s 5.5 GB and 1.21
patches per second. This indicates that DeepCAD-RT is more resource-efficient and better
suited for faster model development. Figure 4 shows the inference speeds of different de-
noising methods. DeepCAD-RT achieves an inference speed of 19.44 samples per second,
outperforming SUPPORT, which runs at 9.36 samples per second. PMD records the highest
inference speed at 52.26 samples per second; however, as a non-model-based method, it is
not directly comparable in terms of training performance. Nonetheless, its fast inference
makes it attractive for scenarios where speed is prioritized over model-based learning. Over-
all, DeepCAD-RT provides a strong balance between training efficiency and fast inference,
making it a practical choice for real-time or large-scale denoising tasks.

6 Responsible Research
In conducting this study, we adhered to principles of transparency, reproducibility, and eth-
ical integrity, as emphasized in the ACL Responsible Research Checklist [25]. All datasets
used in this work are publicly available, and appropriate citations are provided to acknowl-
edge the original sources. In particular, we clearly distinguish between synthetic and real
datasets to avoid any ambiguity in evaluation scenarios, and we make no unjustified claims
about generalizability beyond the tested data.

We have ensured that the methodological comparisons are fair and unbiased. The exper-
imental setup was carefully designed so that each method was evaluated under equivalent
conditions, with no selective tuning or omission of results. Hyperparameter settings followed
defaults from the respective original publications, and performance metrics were computed
on shared test sets to allow valid comparisons. Wherever subjective evaluation (such as
visual inspection) was involved, it was supplemented by quantitative metrics to reduce bias.
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We are concerned about reproducibility. The implementations of all denoising methods
used in this study are publicly available through their respective official repositories. De-
tailed descriptions of model architectures, training procedures, and hyperparameters can be
found in the original publications. To ensure consistency and facilitate replication of our
results, we fixed all random seeds across experiments and documented the complete experi-
mental setup. At the end of this section, we provide access to all relevant repositories and
datasets needed to reproduce this study.

With regard to potential societal impacts, this research is focused on improving signal
quality in voltage imaging, a domain with implications in neuroscience and biomedical re-
search. We acknowledge that although denoising enhances interpretability, it may also risk
introducing artifacts or over-smoothing, particularly in the absence of ground truth data.
We encourage careful, domain-aware interpretation of results when applying these methods
to real-world experimental data.

No personally identifiable information or human subjects data were used in this study.
Our work poses minimal ethical risk and remains within the bounds of responsible compu-
tational research.

Code and data availability
Python implementation of SUPPORT: https://github.com/NICALab/SUPPORT/ [3].
Python implementation of DeepCAD-RT: https://github.com/cabooster/DeepCAD-RT/
[4]. Python implementation of PMD: https://github.com/paninski-lab/funimag/ [5].
The Optosynth dataset can be accessed from the Google Cloud bucket found at gs://broad-
dsp-cellmincer-data [6]. The real dataset can be accessed at https://zenodo.org/records/
10020273 [22], specifically 00_02.tif, 00_03.tif, 01_01.tif in voltage_HPC2.zip/HPC2.

7 Discussion

7.1 Comparative Analysis
The results presented provide a comprehensive comparison of three prominent denoising
methods, SUPPORT [3], DeepCAD-RT [4], and PMD [5], evaluated on both synthetic and
real voltage imaging datasets. Each method offers unique strengths and limitations, and
their performance varies depending on the metric and dataset context.

SUPPORT demonstrates superior spatial denoising performance, achieving the highest
PSNR gains across all SNR levels in the Optosynth dataset, and competitive tSNR and SSIM
on real data. This suggests that SUPPORT is highly effective in enhancing image clarity and
reducing pixel-level noise without significantly compromising temporal fidelity, particularly
at lower SNRs. This aligns with the conclusion of previous research [3, 6, 18]. However,
its declining tSNR performance in higher SNR conditions, along with its relatively high
computational demands, indicates a trade-off that may limit its scalability or applicability
in real-time imaging workflows.

PMD, by contrast, excels in temporal denoising, as evidenced by the highest tSNR gains
across all noise regimes. This makes it an appealing option for analyses that rely on the sta-
bility and integrity of time-series signals. While its PSNR is lower than that of SUPPORT,
its competitive SSIM [24] and rapid inference speed highlight its utility in applications where
quick processing is essential. Nonetheless, as a non-trainable, factorization-based method,
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PMD lacks adaptability and may struggle with datasets that deviate from its implicit as-
sumptions about noise or signal structure.

DeepCAD-RT shows relatively lowest performance in both PSNR and tSNR on synthetic
data, particularly as SNR improves. However, it achieves the highest SSIM on real data,
indicating that it preserves structural integrity effectively, an important consideration for
qualitative analyses or visual inspection tasks. Additionally, its lower memory footprint and
faster training and inference times make it a practical choice in scenarios where computa-
tional efficiency is critical. While it underperforms in raw denoising metrics, its architectural
simplicity and speed offer significant advantages, especially if further optimized.

7.2 Limitations and Future Works
One key limitation highlighted in our study is that DeepCAD-RT was used with default
parameters and without task-specific optimization. While previous research has shown that
DeepCAD-RT underperforms compared to SUPPORT and PMD, the performance gap may
be narrower with proper fine-tuning [3, 4, 6]. Given its relatively lightweight design and
potential for fine-tuning, future work could explore whether targeted training strategies,
architectural enhancements, or loss function modifications might boost its performance,
particularly for temporal signal preservation. For instance, incorporating temporal regular-
ization or hybrid losses that jointly optimize for both spatial and temporal fidelity could
potentially improve DeepCAD-RT’s applicability in voltage imaging.

Another important consideration is the generalizability of the evaluated methods. While
the Optosynth dataset [21] offers high realism and diversity, and real datasets provide bi-
ological genuineness, the scope of the evaluation remains limited to specific types of neu-
ronal structures, imaging conditions, and signal dynamics. Expanding future evaluations
to include more diverse datasets, such as recordings from different brain regions, imaging
modalities (e.g., two-photon vs. widefield), or different types of voltage indicators, would
provide a more robust assessment of model performance under varied biological and technical
conditions.

To enhance future comparative evaluations, studies can consider incorporating labeled
datasets with annotated regions of interest (ROIs). ROI-based ground truth enables more
precise and biologically meaningful benchmarking of denoising methods, particularly within
regions where neural signals are expected to occur. This approach allows for assessing
how effectively each method preserves signal fidelity within relevant structures, rather than
relying solely on global metrics such as PSNR or SSIM. Such targeted evaluations offer
a more functionally relevant basis for comparison, better reflecting the practical utility of
denoising in neuroscience applications.

Moreover, while PSNR, tSNR, and SSIM [24] are valuable for quantifying denoising per-
formance, they may not fully capture the biological relevance of the output. In practical
neuroscience applications, the end goal of denoising is often not just visual clarity, but ac-
curate interpretation of neural signals, such as spike detection, population dynamics, or
connectivity inference. Future studies should incorporate task-specific downstream metrics
such as event detection accuracy, spike timing precision, or classification accuracy in be-
haviorally relevant tasks. These functional metrics would provide a more application-driven
perspective on denoising quality and reveal whether improvements in conventional image
metrics translate to enhanced scientific insight.
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7.3 Summary
In summary, our comparative analysis underscores the multifactorial nature of denoising in
voltage imaging. Each method represents a distinct point in the trade-off space between
spatial accuracy, temporal fidelity, structural preservation, and computational efficiency.
Although SUPPORT remains the most robust in terms of spatial denoising, PMD offers un-
matched speed and temporal performance, and DeepCAD-RT offers limited benefits overall,
but remains notable for structural preservation and computational efficiency.

8 Conclusions and Future Work
This study conducted a comparative analysis of three modern denoising methods, SUP-
PORT, DeepCAD-RT, and PMD, for voltage imaging data. Through evaluations on both
synthetic and real datasets, we examined each method’s strengths in terms of spatial fi-
delity, temporal stability, and computational efficiency. The results highlight that no single
method is universally best. Instead, each offers specific advantages depending on the denois-
ing objective. SUPPORT emphasizes spatial clarity, PMD excels in temporal consistency
and speed, and DeepCAD-RT shows a balance with efficient, structure-preserving denoising.

As discussed, the choice of method should be guided by the specific priorities of the
imaging task, whether that is preserving fine structural detail, stabilizing time-series sig-
nals, or ensuring fast and resource-efficient processing. This reinforces the importance of
evaluating denoising tools not only by traditional metrics but also by how well they serve
practical goals in real neuroscience workflows.

Looking forward, future work can build on the limitations and opportunities identified
in the discussion. In particular, refining evaluation metrics to include task-specific or bio-
logically grounded criteria, exploring ROI-based benchmarking, and expanding the scope of
datasets would offer more functionally relevant insights. Moreover, further development of
existing models, especially lightweight architectures like DeepCAD-RT, could enhance per-
formance through targeted optimization. These directions will help bridge the gap between
algorithmic improvements and their real-world scientific utility.
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