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a b s t r a c t 

This study proposes a framework to analyze accelerated degradation testing (ADT) data in the presence 

of inspection effects. Motivated by a real dataset from the electric industry, we study two types of effects 

induced by inspections. After each inspection, the system degradation level instantaneously reduces by a 

random value. Meanwhile, the degrading rate is elevated afterwards. Considering the absence of obser- 

vations due to practical reasons, we employ the expectation–maximization (EM) algorithm to analytically 

estimate the unknown parameters in a stepwise Wiener degradation process with covariates. Moreover, 

to maintain the level of generality for the adaption of the method in various scenarios, a confidence den- 

sity approach is utilized to hierarchically estimate the parameters in the acceleration link function. The 

proposed methods can provide efficient parameter estimation under complex link functions with multiple 

stress factors. Further, confidence intervals are derived based on the large-sample approximation. Simu- 

lation studies and a case study from Schneider Electric are used to illustrate the proposed methods. The 

results show that the proposed model yields a remarkably better fit to the Schneider data in comparison 

to the conventional Wiener ADT model. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction and motivation 

Reliability tests are widely used to predict product lifetime in 

arious industries. A successfully planned and conducted reliabil- 

ty test can provide important information supporting managerial 

ecisions under a reasonable test budget, thereby reducing both 

rospective costs and risks. In order to shorten the test duration, 

onventional life tests are commonly conducted under elevated 

tresses to accelerate the failures of test units. In recent decades, 

ith the advances in sensors and monitoring technologies, degra- 

ation tests become preferable to life tests in the sense that they 

an predict reliability characteristics over time without the con- 

ern of censoring ( Meeker, Escobar, & Lu, 1998 ). In a typical degra-

ation test, discrete degradation measurements are taken and the 

bserved degradation paths are then employed to make inferences 

bout the product reliability. Degradation paths are usually mod- 

led based on a quality characteristic (QC), such as the brightness 

f displays and battery life of electronic devices ( Wang, Tang, Bae, 

 Xu, 2018 ). 
∗ Corresponding author. 

E-mail address: p.chen-6@tudelft.nl (P. Chen). 
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When utilized for lifetime prediction, the structure and pat- 

ern of degradation data are desired to be as simplistic as pos- 

ible to relieve the modeling complexity and computational bur- 

en. However, under practical usage or even controlled experimen- 

al conditions, degradation paths may inevitably behave atypical 

atterns from time to time. In degradation tests, since the stress 

evels are strictly controlled, the degradation paths of test sys- 

ems are usually deemed to be stable during most of the test time. 

evertheless, some interventions to the test systems may be un- 

voidable due to various practical concerns. A common exercise is 

hat engineers have to alter the test conditions temporarily to ob- 

ain degradation measurements. For example, many reliability tests 

re conducted under certain combinations of temperature and hu- 

idity, where test chambers that provide such environments are 

mployed. Typical degradation tests of this kind can be found in 

eeker and Escobar (1998 , Chapter 21) and references therein. 

o take effective degradation measurements, the involvement of 

anual inspection or/and precise instruments are mandatory, yet 

he exercise is difficult, if not impossible under the test environ- 

ent. In such cases, the test units have to be removed from the 

hamber temporarily, which results in the change of test environ- 

ents. Although the duration of measurement is usually short or 

ven negligible compared to the whole test duration, the drastic 

hange of test environments may still cause substantial changes 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2020.11.041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.11.041&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:p.chen-6@tudelft.nl
https://doi.org/10.1016/j.ejor.2020.11.041
http://creativecommons.org/licenses/by/4.0/


X. Zhao, P. Chen, O. Gaudoin et al. European Journal of Operational Research 292 (2021) 1099–1114 

o

t

w

s

t

d

M

t

a

d

c

d

k

w

t

t

m

s

d

i

a

l

e

c

d

t

s

l

n

o

o

a

e

T

r

l

a

f

d

i

2

m

t

o

e  

d

d

t

c

u

r  

r

t

F

m

(  

&  

2

n

Y

p

p

g

a

L

t

m

m

B

n

o

n

c

a

i

o  

c

t

m

2

c

a

t

d

e

Y

t

f

l

i

 

t

i

c

u

c

i

3

3

u  

t  

t

S

t

b  

t

l

v

r

z

S

c

y

y

z

n system degradation levels. Another reason of atypical degrada- 

ion paths lies in the intervening nature of inspections. In other 

ords, certain types of inspections may inherently influence the 

ystem degradation ( Zhao, Gaudoin, Doyen, & Xie, 2019 ). One of 

he examples is the destructive test, where inspections can cause 

irectly destructive effects to the test systems ( Shi, Escobar, & 

eeker, 2009 ). Considering the aforementioned issues, we propose 

o model the effects brought by inspections in degradation tests 

nd afterwards investigate parameter estimation upon such testing 

ata. 

The research to be proposed is motivated by a real experiment 

arried out by Schneider Electric with the objective to reveal the 

egradation characteristic of an electrical distribution device. As a 

ey part of the device, a mechanical linkage corrodes over time, 

hich is a dominant cause of performance degradation. To quantify 

he degradation level of the device, engineers measure the torque 

hat is needed to separate the linkage. A higher torque implies a 

ore severe condition of corrosion. On the one hand, since the in- 

pection separates the linkage, the grown corrosion is physically 

isassembled, leading to a reduction in the degradation level dur- 

ng the inspection. On the other hand, the inspection causes dam- 

ge to the integrity of surface treatments in the linkage, which 

eads to a higher rate of corrosion. Obviously, the two types of 

ffects are opposite with respect to the system health. Another 

oncern of the problem is the difficulty in revealing the accurate 

egradation reduction during the inspection. To follow a basic rule 

o inspect systems, engineers tend to minimize the influence of in- 

pection and therefore only measure the torque that separates the 

inkage. Once a measurement is obtained, the inspection is termi- 

ated immediately. Consequently, the measurement process may 

nly capture the degradation level before inspections yet fail to 

bserve degradation reduction. Although the engineers can give an 

pproximation of the degradation reduction from the prior knowl- 

dge or other experiments, the accurate value can never be known. 

hus, the reduction effect is a hidden variable that cannot be di- 

ectly utilized for statistical inference. 

By employing the experiment from Schneider Electric as an il- 

ustrative example, the study aims at establishing a framework to 

nalyze accelerated degradation tests with complex inspection ef- 

ects. In general, the proposed method can be applied to model 

egradation data in the presence of environmental covariates and 

nterventions that exert both positive and negative effects. 

. Literature review 

With the fast emergence of system monitoring technologies, 

odeling and inference of degradation data now play a vital role in 

he research area of reliability engineering and its interfaces with 

ther areas, such as mechanical engineering ( Wang & Tsui, 2017 ), 

nergy ( Lin et al., 2017 ), electrical engineering ( Si, 2015 ) etc. Degra-

ation analysis not only subsumes approaches to model relevant 

ata, but also creates alternative planning methods of reliability 

ests for life prediction. 

Interest in accelerated degradation test (ADT) has grown in re- 

ent decades owing to its successful applications to various prod- 

cts and systems, such as LED lamps, lithium-ion batteries and 

ail tracks ( Ye & Xie, 2015 ). Initiated by Meeker et al. (1998) ,

egression-based general path models are widely used for degrada- 

ion modeling in ADT ( Hong, Duan, Meeker, Stanley, & Gu, 2015 ). 

urther, due to clear physical explanations and appealing mathe- 

atical tractability, stochastic processes such as Wiener processes 

 Hu, Lee, & Tang, 2015 ), gamma processes ( Tsai, Sung, Lio, Chang,

 Lu, 2016 ) and inverse Gaussian processes ( Ye, Chen, Tang, & Xie,

014 ) start to play an influential role in ADT modeling and plan- 

ing. For a more detailed overview, one can be referred to Limon, 

adav, and Liao (2017) . To date, several new considerations on ADT 
1100 
lanning and analysis emerged in the literature to tackle more 

ractical issues. To name a few, Tseng and Lee (2016) proposed a 

eneral exponential-dispersion model to characterize degradation 

nd gave the optimal ADT plans in analytical forms. In Li, Wu, Ma, 

i, and Kang (2018) , random fuzzy theory was adopted to model 

he uncertainty in ADT data. Wang and Tsui (2017) considered 

ultiple stresses in ADT for rubber sealed O-rings. With regard to 

odel uncertainty, Liu, Li, Zio, Kang, and Jiang (2017) applied the 

ayesian modeling averaging approach to model ADT data. 

In real problems, it is common that a degradation path can- 

ot be characterized by models in regular forms such as linear 

r typical nonlinear ones (e.g., polynomial, logarithm and expo- 

ential models). The reasons behind an atypical degradation path 

an be rather complex. For example, Hong et al. (2015) proposed 

 degradation modeling approach by utilizing dynamic weather- 

ng covariates to characterize irregular degradation paths. In some 

ther studies ( Bae, Yuan, Ning, & Kuo, 2015; Wang et al., 2018 ),

hange-point detection and modeling were discussed for degrada- 

ion data. Adaptive and dynamic methods for online degradation 

odeling have also prevailed in the literature ( Si, 2015; Zhai & Ye, 

018 ). 

Apart from these, human interventions to industrial systems 

an also be a pivotal cause of atypical degradation path, and 

 common example is imperfect maintenance ( Mercier & Cas- 

ro, 2019 ). Surprisingly, despite plentiful extant works on atypical 

egradation paths, we can only find very scant research in the lit- 

rature that addressed similar issues in ADT problems. Xiao and 

e (2016) discussed the ADT planning problem with random ini- 

ial degradation levels. In Ye, Hu, and Yu (2019) , the initial per- 

ormance of test units were considered to allocate units to stress 

evels. Nevertheless, these works did not incorporate the effect of 

nspection as described in Section 1 . 

The rest of the paper is organized as follows. In Section 3 , a sys-

ematic approach to model construction and parameter estimation 

s established for ADT data with inspection effects. Section 4 dis- 

usses the uncertainty quantification of parameter estimators. Sim- 

lation studies are carried out in Section 5 . Section 6 presents the 

ase study from Schneider Electric. Finally, conclusions are drawn 

n Section 7 . 

. Degradation models with inspection effects 

.1. Preliminaries 

Consider a degradation test with M stress levels and N i test 

nits are allocated to stress level i, where i = 1 , . . . , M. For the jth

est unit under stress i, as which we call unit (i, j) for simplicity, a

otal of O i j inspections are carried out at time epochs τi j1 , . . . , τi jO i j 
. 

ince an instant degradation reduction occurs upon each inspec- 

ion, we denote the degradation level before the reductive effect 

y y −
i jk 

for the k th inspection for unit (i, j) , with k = 0 representing

he initial inspection prior to the test. Meanwhile, the degradation 

evel after the reductive effect is denoted by y + 
i jk 

. We introduce a 

ariable z i jk to model the proportion of degradation reduction with 

espect to y −
i jk 

for the k th inspection of unit (i, j) as follows: 

 i jk = 

y −
i jk 

− y + 
i jk 

y −
i jk 

, 0 ≤ z i jk ≤ 1 . (1) 

The notational details are illustrated in Fig. 1 . As mentioned in 

ection 1 , y −
i jk 

is usually observable whereas y + 
i jk 

is relatively diffi- 

ult to reveal. Thus, for notational simplicity, we subset the data to 

 

− and z that are given by 

 

− = { y −
i jk 

, i = 1 , . . . , M, j = 1 , . . . , N i , k = 0 , . . . , O i j } , 

 = { z i jk , i = 1 , . . . , M, j = 1 , . . . , N i , k = 0 , . . . , O i j } . 



X. Zhao, P. Chen, O. Gaudoin et al. European Journal of Operational Research 292 (2021) 1099–1114 

Time

D
eg

ra
da

tio
n 

pa
th

Fig. 1. Illustration for notations by a possible sample path of degradation for unit j

tested under environment i . 
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o further facilitate degradation modeling, we let �y = { �y i jk , i = 

 , . . . , M, j = 1 , . . . , N i , k = 1 , . . . , O i j } , where �y i jk = y −
i jk 

− y + 
i j(k −1) 

.

onsidering the notation in (1) , we can rewrite �y i jk as 

y i jk = y −
i jk 

− y −
i j(k −1) 

(1 − z i j(k −1) ) . 

.2. Wiener degradation model and inspection effect 

We employ the Wiener process as the baseline model to char- 

cterize the inherent generation of degradation for system of inter- 

st. More concretely, if we assume that the system operates with- 

ut any intervention, the degradation path of the system can be 

odeled by a drifted Wiener process. The Wiener process features 

ndependent Gaussian increments over non-overlapping time pe- 

iods, which enables its wide application in degradation model- 

ng. A drifted Wiener process { W (t) ; t ≥ 0 } can be characterized by

rift and diffusion parameters, denoted by μ and σ, respectively. 

n this manner, it gives W (t) = μt + σB(t) , where B(·) is a stan-

ard Brownian motion. The increment �W (t − s ) = W (t) − W (s )

or any t > s follows a normal distribution with mean μ(t − s ) and

ariance σ 2 (t − s ) , i.e., �W (t − s ) ∼ N(μ(t − s ) , σ 2 (t − s )) . In the

resence of inspection effects, i.e., nonzero z i jk ’s, the degradation 

ath no longer follows the conventional Wiener process. Neverthe- 

ess, according to the aforementioned properties, given z i jk ’s, �y i jk 

re independent increments of a Wiener process and they follow: 

y i jk ∼ N(μi jk �τi jk , σ
2 �τi jk ) . (2) 

here μi jk is the degradation rate between the (k − 1) th and k th 

nspection for test unit (i, j) and �τi jk = τi jk − τi j(k −1) . Note that if 

he inspection has no effect on the system degradation, then z i jk ’s 

re 0 for all i, j and k, and the degradation path can be modeled by

 conventional drifted Wiener process. Note that in the proposed 

odel, we use a flexible notational convention in the sense that 

i jk and O i j can be different for different test units, implying that 

he proposed methods can be well applied to unbalanced data set 

n terms of time and number of observations. 

Next, experimental factors as covariates are introduced into the 

odel. The majority of research on degradation tests has suggested 

o use parametric models to link μ and covariates x i ( Jakob, Kim- 

elmann, & Bertsche, 2017 ). We use f acc ( x i ) to denote the baseline

egradation rate under stress x i and the acceleration model can 

e formulated in either parametric or nonparametric manners. The 
1101 
arametric acceleration model can take various forms based on the 

hysical mechanism of degradation and factors involved in the test. 

he selection of f acc ( x i ) is not the main focus of the study, and

ome brief discussions regarding the Schneider example are given 

n Appendix A . Moreover, the complexity in f acc ( x i ) may impede 

he inferential efficiency under various specific models. Under dif- 

erent forms of f acc ( x i ) , we wish to maximize the generalizability 

f the proposed model. Towards this end, we treat f acc ( x i ) as sep-

rate parameters first and then employ a hierarchical analysis in 

ection 3.6 for further inferences. 

To capture the effect of degradation rate increase after the k th 

nspection, a function g(k ;ω ) is introduced, where ω is a vector of 

nknown parameters. To benchmark the effect, we use g(k ;ω ) as 

n added term to the baseline degradation rate and therefore we 

ssume g(0 ;ω ) ≡ 0 . Then, the degradation rate between the (k −
) th and k th inspection for test unit (i, j) is given by 

i jk = f acc ( x i ) + g(k ;ω ) . (3) 

One implicit assumption from (3) is that the increase effect of 

egradation rate brought by inspections and stress variables x i are 

ndependent. In other words, we assume that the inspection effect 

n degradation rate only depends on k and does not interact with 

nvironmental stresses. Since the degradation rate increases with 

he number of inspections, g(k ;ω ) is a non-decreasing function. 

he simplest forms are polynomial, e.g., the first and second order 

olynomial models are given as follows: 

(k ;ω) = ωk, g(k ;ω ) = ω 1 k 
2 + ω 2 k. 

ithout loss of generality, we assume g(k ;ω) = ωk for analytical 

implicity in the following analysis. 

Recall that we have introduced z i jk earlier to describe the pro- 

ortion of degradation reduction. A beta distribution is employed 

o model the unconditioned z i jk , for any realization of z i jk , denoted 

y z, the density function is given by 

f Beta (z; u, v ) = 

�(u + v ) 
�(u )�(v ) 

z u −1 (1 − z) v −1 , 0 ≤ z ≤ 1 , (4)

here u and v are the shape parameters of the beta distribution. 

t is worth mentioning that beta distribution has been widely used 

o model the effect of the imperfect repair ( Zhang, Gaudoin, & Xie, 

015 ). 

emark. If y + 
i jk 

is unobservable, u and v cannot be estimated from 

he model due to the absence of z under the frequentist setting. 

owever, engineers may manage to approximately quantify the re- 

uctive effect from domain expertise or preliminary experiments. 

or the example from the Schneider Electric, engineers can carry 

ut a different type of experiment to measure the degradation lev- 

ls before and after the first inspection at t = 0 and model the re-

uctive effects, though it is inapplicable during the ADT as it takes 

uch longer time to obtain the reductive measurements. In the 

resence of the described available data at t = 0 , it is easy to fit

 beta distribution to the observed reductive measurements. Other 

ypes of models to characterize z can also be used after uncom- 

licated modifications to the likelihoods in the following contents 

n the section and density functions in Appendix B . It is note- 

orthy that the Bayesian method can be an appealing alternative, 

here u and v can be characterized by some prior distributions 

t first. The computational burden can be an important issue in 

ayesian inference, especially when z is unobservable ( Bernardo 

t al., 2003 ). Further, in this paper, we presume that z i jk ’s are in-

ependent random variables. The assumption is valid if the inspec- 

ion effects of degradation reduction are instantaneous and do not 

nteract over time. In realistic applications, the effects can inter- 

ct over time under stress environments. In such cases, a joint dis- 

ribution can be employed to characterize the interdependence of 
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 i jk ’s. However, the introduction of interdependence leads to more 

omplicated likelihoods, which hinders the tractability of estima- 

ors. Monte Carlo EM algorithm can be useful in implementing the 

forementioned extensions ( Levine & Casella, 2001 ). 

In Sections 3.3 and 3.4 , we will discuss the modeling of degra- 

ation data under two different scenarios. In the first one, the 

egradation levels before and after the inspection are observable 

o that all the parameters in the model can be estimated through a 

omplete likelihood. In the second one, only the degradation levels 

efore the inspection can be obtained for inference, under which 

ase parameters u and v are given a priori to facilitate the estima- 

ion of other unknown parameters. 

.3. Inspection effect modeling with complete observations 

As preliminaries for the following analyses, this part aims at es- 

ablishing data modeling framework via maximum likelihood es- 

imation (MLE). The complete log-likelihood function of θc under 

ata ( y −, z ) can be represented by 

og L ( θc | y −, z ) = log p 
(
y −| z , θc 

)
+ log p( z | θc ) 

= 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

(
− 1 

2 
log 2 π − 1 

2 
log �τi jk − log σ

)
−

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

{ [
y −

i jk 
− y −

i j(k −1) 

(
1 − z i j(k −1) 

)
− μi jk �τi jk 

]2 

2 σ 2 �τi jk 

} 

+ 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j +1 ∑ 

k =1 

[
log �(u + v ) − log �(u ) − log �(v ) 

+ (u − 1) log z i j(k −1) + (v − 1) log 
(
1 − z i j(k −1) 

)]
, (5) 

here μi jk = f acc ( x i ) + ωk . Note again that we assume that z i jk ’s

re mutually independent and they are also independent of y and 

he environmental factors. Under the current model setting, the 

nknown parameters in the model can be summarized by θc = 

f acc ( x i ) , i = 1 , . . . , M, ω, σ 2 , u, v ) T . If the effect of degradation re-

uction can be observed, the problem is simplified to a standard 

LE problem with all observations available in (5) . Further, since 

arameters u and v are independent of other parameters in the 

odel, the likelihood involving u and v can be independently max- 

mized via the observations z i jk . The remaining part of the likeli- 

ood can also be maximized by numerical methods. 

.4. Inspection effect modeling with hidden effect observations 

When y + 
i jk 

is unobservable, the effect of degradation reduction 

annot be captured, which makes u and v in the model ines- 

imable. This kind of information can also be quantified by a beta 

istribution as described in (4) . As discussed before, we assume 

hat the pilot distribution of z is known and characterized by u 0 
nd v 0 , respectively. By holding the property of independence of 

 i jk ’s. the following log-likelihood is to be maximized to estimate 

= ( f acc ( x i ) , i = 1 , . . . , M, ω, σ 2 ) : 

og L ( θ| y −, z ) = log p 
(
y −| z , θ)

= 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

(
− 1 

2 
log 2 π − 1 

2 
log �τi jk − log σ

)
−

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

{ [
y −

i jk 
− y −

i j(k −1) 

(
1 − z i j(k −1) 

)
− μi jk �τi jk 

]2 

2 σ 2 �τi jk 

} 

. 

(6) 

ue to the absence of z i jk , the log-likelihood cannot be maximized 

n its current form. Alternatively, we resort to the expectation–

aximization (EM) algorithm to obtain the parameter estimates. 
1102 
he EM algorithm is an iterative method to find the MLE for sta- 

istical models with latent variables. Following its first introduc- 

ion by Dempster, Laird, and Rubin (1977) , the EM algorithm has 

een studied extensively from both theoretical and practical per- 

pectives ( McLachlan & Krishnan, 2007 ). Specifically, in reliability 

ngineering, the EM algorithm is commonly used to capture latent 

andom effect in life and degradation models ( Chen & Ye, 2017; 

uan & Wang, 2018 ). Apart from the EM algorithm, the hidden 

emi-Markov model was used for health diagnosis and prognosis 

ith latent effects in Dong and He (2007) . A two-stage approach 

as proposed in Lee, Hu, and Tang (2017) to estimate the model 

rom time-censored ADT data. The Kalman filtering technique has 

lso been prevailingly employed in the remaining life estimation 

ased on degradation models ( Si, Wang, Hu, & Zhou, 2014 ). The 

M algorithm consists of two steps: (1) the E-step in which the 

onditional expectation of the complete log-likelihood with respect 

o incomplete data is completed; (2) the M-step in which the ex- 

ected log-likelihood is maximized to generate parameter estima- 

ion at the current iteration. Denote the conditional expectation of 

he complete log-likelihood at iteration n by Q 

(
θ| θ(n ) 

)
, we have 

 

(
θ| θ(n ) 

)
= 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j 

(
−1 

2 

log 2 π − 1 

2 

log �τi jk − log σ
)

− 1 

2 σ 2 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

1 

�τi jk 

[ (
y −

i jk 
− y −

i j(k −1) 

− f acc ( x i )�τi jk − ωk �τi jk 

)2 + 2 y −
i j(k −1) 

(
y −

i jk 
− y −

i j(k −1) 

− f acc ( x i )�τi jk − ωk �τi jk 

)
E 

(
z i j(k −1) | y −, θ

(n ) 
)

+ 

(
y −

i j(k −1) 

)2 
E 

(
z 2 i j(k −1) | y −, θ

(n ) 
)] 

. (7) 

n the expectation step, we need to compute E 

(
z i j(k −1) | y −, θ

(n ) 
)

nd E 

(
z 2 

i j(k −1) 
| y −, θ

(n ) 
)
, Unfortunately, the conditional distribution 

f z i j(k −1) cannot be identified as a known random distribution. We 

ave to resort to numerical methods to evaluate the expected val- 

es with respect to z i j(k −1) . Related details are given in Appendix B .

ext, the first order derivatives of Q 

(
θ| θ(n ) 

)
are provided for its 

aximization. Following previous analyses, we also treat f acc ( x i ) 

s unknown parameters. Thus, 

∂Q 

(
θ| θ(n ) 

)
∂ f acc ( x i ) 

= − 1 

σ 2 

[
f acc ( x i ) 

N i ∑ 

j=1 

O i j ∑ 

k =1 

�τi jk 

−
N i ∑ 

j=1 

O i j ∑ 

k =1 

[ 
y −

i jk 
− y −

i j(k −1) 
+ y −

i j(k −1) 
E 

(
z i j(k −1) | y −, θ

(n ) 
)]

+ ω 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk 

]
. (8) 

y solving ∂ Q 

(
θ| θ(n ) 

)
/∂ f acc ( x i ) = 0 , we obtain the following

quation: 

f (n +1) 
acc ( x i ) = A 

(n ) 
i 

− B i ω 

(n ) , (9) 

here 

 

(n ) 
i 

= 

∑ N i 
j=1 

∑ O i j 

k =1 

[ 
y −

i jk 
− y −

i j(k −1) 
+ y −

i j(k −1) 
E 

(
z i j(k −1) | y −, θ

(n ) 
)] 

∑ N i 
j=1 

∑ O i j 

k =1 
�τi jk 

, 
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 i = 

∑ N i 
j=1 

∑ O i j 

k =1 
k �τi jk ∑ N i 

j=1 

∑ O i j 

k =1 
�τi jk 

. 

urther for ω, we have 

∂Q 

(
θ| θ(n ) 

)
∂ω 

= − 1 

σ 2 

[
−

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 

(
y −

i jk 
− y −

i j(k −1) 

+ y −
i j(k −1) 

E 

(
z i j(k −1) | y −, θ

(n ) 
)

+ 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk f acc ( x i ) + ω 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 2 �τi jk 

]
(10) 

f which the solution is followed by 

ω 

(n ) = D 

(n ) −
M ∑ 

i =1 

f acc ( x i ) F i , (11) 

here 

 = 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 2 �τi jk , 

 

(n ) = 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 

[ 
y −

i jk 
− y −

i j(k −1) 
+ y −

i j(k −1) 
E 

(
z i j(k −1) | y −, θ

(n ) 
)] 

, 

 i = 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk . 

o plug Eq. (9) to Eq. (11) , the following equation is obtained 

ω 

(n ) = D 

(n ) −
M ∑ 

i =1 

(
A 

(n ) 
i 

− B i ω 

)
F i , (12) 

hich yields the estimates of ω and f acc ( x i ; δ) given by 

 

(n +1) = 

D 

(n ) −∑ M 

i =1 A 

(n ) 
i 

F i 

C −∑ M 

i =1 B i F i 
, f (n +1) 

acc ( x i ) = A 

(n ) 
i 

− B i ω 

(n +1) . (13) 

hen for σ 2 , likewise we have 

∂Q 

(
θ| θ(n ) 

)
∂σ 2 

= − 1 

2 σ 2 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j + 

1 

2 σ 4 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

1 

�τi jk 

[ (
y −

i jk 
− y −

i j(k −1) 

− f acc ( x i )�τi jk − ωk �τi jk 

)2 + 2 y −
i j(k −1) 

(
y −

i jk 
− y −

i j(k −1) 

− f acc ( x i )�τi jk − ωk �τi jk 

)
E 

(
z i j(k −1) | y −, θ

(n ) 
)

+ 

(
y −

i j(k −1) 

)2 
E 

(
z 2 i j(k −1) | y −, θ

(n ) 
)] 

. (14) 

he root of the equation can be easily obtained by solving 

σ 2 
)(n +1) 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j = 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

1 

�τi jk 

[ (
y −

i jk 
− y −

i j(k −1) 

− f acc ( x i )�τi jk − ωk �τi jk 

)2 + 2 y −
i j(k −1) 

×
(
y −

i jk 
− y −

i j(k −1) 
− f acc ( x i )�τi jk 

−ωk �τi jk 

)
E 

(
z i j(k −1) | y −, θ

(n ) 
)

+ 

(
y −

i j(k −1) 

)2 
E 

(
z 2 i j(k −1) | y −, θ

(n ) 
)] 

. (15) 

hrough (9) –(15) , the current iteration of the EM algorithm is real- 

zed. The iterations are continued until the convergence of param- 

ter estimators. 
1103 
.5. Guess of initial estimates and ending of iterations 

To start the aforementioned EM algorithm, starting estimates 
(0) 

are needed. The convergence speed of the algorithm hinges 

n the selection of θ
(0) 

. Here, we utilize the mean of the z i jk to

pproximately obtain θ
(0) 

. It is obvious that E(z i jk ) = u 0 / (u 0 + v 0 ) .
herefore, to use E(z i jk ) rather than unobservable z i jk , we have 

y −
i jk 

−
v 0 y −i j(k −1) 

u 0 + v 0 

)
∼ N 

(
f acc ( x i )�τi jk + ωk �τi jk , σ

2 �τi jk 

)
, (16) 

here the left-hand-side term is completely observable and af- 

er the manipulation of a typical MLE, θ
(0) 

can be given as in 

ppendix C . 

Another issue of the EM algorithm is when to terminate the 

terations. The question poses a tradeoff between the estimat- 

ng precision and computational efficiency. Generally, it is a com- 

on criterion to terminate the iterations when the proportions 

f changes in absolute values of parameter estimators are smaller 

han critical values ε . It is a vector because different parameters 

ay have different critical values. For the problem described in the 

aper, parameters play different roles depending on how decision 

akers would utilize the estimates. For example, in terms of life 

rediction, f acc ( x i ) ’s are important for the extrapolation to under- 

tand the degradation rate under normal usage conditions, espe- 

ially in the presence of condition fluctuations, while ω is more 

seful if the device is frequently inspected. Regarding these relia- 

ility issues, ε can be properly determined to satisfy the required 

stimating accuracy. 

.6. A hierarchical analysis to estimate f acc ( x i ) 

In aforementioned analyses, f acc ( x i ) , i = 1 , . . . , M are treated as

nknown parameters for estimation. As one of the main objectives 

f the study, the estimation of degradation rate under normal 

sage condition is realized by a hierarchical method. Due to the 

ossible complexity in f acc ( x i ) , it could be onerous to derive 

nalytical iterative solutions to the parameters herein to the 

M algorithm. In view of this, the hierarchical method can pro- 

ide reasonable estimation and meanwhile keep the mathematical 

erivations in the paper directly adaptable in various scenarios. Liu, 

iu, and Xie (2015) reported a method to conduct meta-analysis 

f independent studies via a confidence density (CD) approach. In 

he paper, we employ a revised version of the confidence density 

o estimate the parameters δ in f acc ( x i ) , and we denote f acc ( x i )

y f acc ( x i ; δ) in the following context. As discussed in Appendix A , 

he form of f acc ( x i ; δ) depends on certain known physical mech- 

nisms. To ensure f acc ( x i ; δ) to be greater than zero, we take 

atural logarithm on it. Due to the invariance property of MLE, the 

LE of log f acc ( x i ; δ) is readily given by log ˆ f acc ( x i ; δ) . Three times 

ifferentiable mapping functions M = (M 1 , . . . , M M 

) ′ is used to 

ink log f acc ( x i ; δ) and the unknown parameter vector δ: 

og f acc ( x i ; δ) = M i ( δ) . (17) 

urther, following Xie and Singh (2013) , we can construct a CD 

or log f acc ( x i ; δ) , i = 1 , . . . , M, which is a multivariate normal

MN) distribution with mean 

(
log ˆ f acc ( x 1 ; δ) , . . . , log ˆ f acc ( x M 

; δ) 
)′ 

nd covariance matrix { [ I ( ̂ θ)] −1 
� ˆ θ ˆ θ

T } 1: M 

, where {·} 1: M 

denotes 

he M × M square matrix partitioned from the upper left in the 

riginal matrix and � denotes an element-wise division. Note 

hat δ is only involved in f acc ( x i ; δ) , thus we only use the first

rows and columns in the original covariance matrix in the 

odel described in Section 3.4 , and the parameters ω and σ 2 

re assumed known in the subsection. The covariance matrix is 

pproximated by the delta methods. For notational convenience, 
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e let ˆ V = { [ I ( ̂ θ)] −1 
� ˆ θ ˆ θ

T } 1: M 

. Additionally, we let V be the

ovariance matrix under true parameters. Then the CD for δ is 

iven in a form of MN distribution by 

 ( δ) = (2 π) −M/ 2 det ( ̂  V ) −1 / 2 exp 

(
−1 

2 

a 

T ˆ V 

−1 a 

)
, (18) 

here a is a M-dimensional column vector with each element 

iven by 

 i = log f acc ( x i ; δ) − log ˆ f acc ( x i ; δ) , i = 1 , . . . , M. 

y maximizing (18) , we obtain the point estimator of δ under CD, 

hich we denote by ˆ δCD : 

ˆ 
CD = arg max 

δ
h ( δ) . (19) 

The reason for using the CD estimation is twofold. First, as 

entioned previously, it facilitates the derivation of closed-form 

stimators under the EM framework. Second, the efficiency of es- 

imation is not compromised by the hierarchical operations by CD 

stimation. The following analyses are presented to justify the lat- 

er statement. Under a conventional MLE framework, if δ is directly 

sed to maximize the likelihood function in (6) , we can obtain the 

LE of δ given by 

ˆ 
DIR = arg max 

δ
L ( δ; y −, z ) . (20) 

or notational convenience, we let ζ = 

log f acc ( x 1 ; δ) , . . . , log f acc ( x M 

; δ) 
)′ 

and use L ( δ) and L ( ζ) to 

espectively represent the likelihood functions L ( δ; y −, z ) and 

 ( ζ; y −, z ) , where L ( ζ; y −, z ) denotes the likelihood under ζ. Thus,

e have ζ = M ( δ) . Moreover, let n = 

∑ M 

i =1 

∑ N i 
j=1 

O i j be the total

umber of observations in the test. 

emma 1. As n → ∞ , the direct estimator ˆ δDIR obtained from (20) is

onsistent and normally distributed. Specifically, 

 

1 / 2 
(

ˆ δDIR − δ
)

d −→ MN 

(
0 , 

[ 
J ( δ) 

T ˜ I ( ζ) J ( δ) 
] −1 

)
, (21) 

here ˜ I ( ζ) = V 

−1 and J ( δ) = ∂ M ( δ) /∂ δ is the Jacobian of M with

espect to δ. 

The proofs of the lemma and the following results are provided 

n Appendix D . Lemma 1 implies the asymptotic properties of the 

irect estimators ˆ δDIR via the delta method. Next, we focus on the 

D estimators ˆ δCD with the following lemma. 

emma 2. The first-order derivative of the log-confidence density 

unction log h ( ζ) ≡ log h ( δ) with respect to ζ, is asymptotically 

quivalent to the score function s ( δ) = ∂ log L ( δ) /∂ δ. 

According to Lemma 2 , the CD estimator ˆ δCD and direct esti- 

ator ˆ δDIR share exactly identical asymptotic properties. Therefore, 

e can introduce Theorem 1 in analogy to Lemma 1 immediately 

ollowing Lemma 2 . 

heorem 1. As n → ∞ , the CD estimator ˆ δCD is consistent and nor-

ally distributed. Specifically, 

 

1 / 2 
(

ˆ δCD − δ
)

d −→ MN 

(
0 , 

[ 
J ( δ) 

T ˜ I ( ζ) J ( δ) 
] −1 

)
, (22) 

here ˜ I ( ζ) = V 

−1 and J ( δ) = ∂ M ( δ) /∂ δ. 

The statements in the theorem show that the CD approach is 

symptotically as efficient as the direct estimation approach. To 

uantify the uncertainty in the CD estimators, we put forward 

orollary 1 based on Lemma 2 and Theorem 1 . 
1104 
orollary 1. The covariance matrix of n 1 / 2 
(

ˆ δCD − δ
)

can be consis- 

ently estimated by n ̂  	CD , where 

ˆ 
CD = 

[
− ∂ 2 

∂ δ∂ δ
T 

log h 

(
ˆ δCD 

)]−1 

, (23) 

emark. On the one hand, the confidence density based methods 

an address the aforementioned problem to hierarchically estimate 

arameters without imposing difficulties in the EM algorithm. On 

he other hand, as was advised in Liu et al. (2015) , the informa-

ion from independent studies can be well combined via the con- 

dence density. In the problem we have been focusing on in the 

aper, the proposed hierarchical analysis can be applied to degra- 

ation tests under different acceleration functions and finally yield 

ntegrated results for the parameters of interest, which could be a 

ubset or transformation of parameters that are already involved 

n those tests. 

In light of the previous analyses on the hierarchical estimation, 

e have justified the efficiency of the CD approach. The estima- 

ion of δ can be readily obtained via (19) . Due to the nonlinear 

nd non-additive properties of the Peck model, it is not intuitive to 

ompare the effects of environmental factors under the usage envi- 

onments, which could be of great interest to reliability engineers 

nd decision makers. The following proposition is given under the 

eck model to compare the effects brought by a single-unit change 

n temperature and relative humidity. 

roposition 1. (Intuitive comparison of effects under the Peck model) 

The baseline degradation rate at the reference environment 

f acc ( x ref ; δ) under parameters δ = (δ0 , E a , δ1 ) is more sensitive to 

emperature if 

E a 

11605 

· 1 

T K 

2 
ref 

· RH ref 

δ1 

> 1 , 

nd is more sensitive to relative humidity otherwise. 

The proposition can be straightforwardly justified by taking the 

rst-order derivative on f acc ( x ; δ) with respect to T K and RH, thus 

he proof is omitted. The proposition will be used for illustration in 

ection 6.2 . If acceleration models other than the Peck model are 

sed, similar statements can also be entertained for effect compar- 

son. 

. Uncertainty quantification of the estimated parameters 

To quantify the uncertainties in the parameter estimators is a 

ital task to enable and justify the adoption of the estimators in 

nowledge creation and decision making. Compared to point esti- 

ation, interval estimation is usually preferable in real problems. 

n this section, we discuss the large-sample based method to con- 

truct confidence intervals for estimated parameters. 

The assumptions of large-sample approximation are commonly 

tilized to provide asymptotic covariance matrix of parameter esti- 

ators from which confidence intervals are obtained. For complete 

atasets, a routine practice is to compute the Fisher information 

rom the log-likelihood directly, the elements in the Fisher infor- 

ation matrix I ( θ) are given by 

I ( θ) 
]

i j 
= E 

[
− ∂ 2 

∂ θi ∂ θ j 

log L ( θ| y −, z ) | θ
]
. (24) 

symptotically, ˆ θ follows a MN distribution, i.e., ˆ θ ∼ N( θ, 
[
I ( θ) 

]−1 
) . 

ince θ is also unknown, we can alternatively employ the observed 

nformation I ( ̂ θ) to compute the asymptotic covariance matrix of θ. 

For incomplete data sets with hidden observations as discussed 

n Section 3.4 , we adopt the approach from Oakes (1999) , where 

he Fisher information can be directly calculated via function Q . 
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Table 1 

Experimental design π for the test under treatment 1–9 (numbered in parenthesis). 

RH level Temperature level Total 

303.15 Kelvin 318.15 Kelvin 333.15 Kelvin 

(30 degree Celsius) (45 degree Celsius) (60 degree Celsius) 

60 (1) 16/49 (4) 8/49 (7) 4/49 4/7 

75 (2) 8/49 (5) 4/49 (8) 2/49 2/7 

90 (3) 4/49 (6) 2/49 (9) 1/49 1/7 

Total 4/7 2/7 1/7 1 

Table 2 

Parameters as input to simulation study. 

Model Parameter Value 

Peck model δ0 1 

E a 2 × 10 7 

δ1 3 

Increased degradation rate ω 1 

Diffusion parameter σ 2 0.3 

Degradation reduction (known) u 0 2 

v 0 3 
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ccordingly, the observed Fisher information can be computed by 

 

(
ˆ θ
)

= −

⎡ ⎣ 

∂ 2 Q 

(
θ| ̂ θ

)
∂ θ∂ θ

T 
+ 

∂ 2 Q 

(
θ| ̂ θ

)
∂ θ∂ ̂  θ

T 

⎤ ⎦ 

θ= ̂ θ

. (25) 

ote that the second term in the r.h.s. of the equation is viewed 

s the missing information due to the absence of z . Likewise, the 

symptotic confidence intervals for unknown parameters can be 

onstructed by the Fisher information. The derivation of (25) re- 

uires manipulations based on Appendix B , and the analytical 

etails of (25) are given in Appendix E . As a side note, for the

arameter σ 2 , the normal approximated confidence intervals are 

sually inappropriate. Alternatively,we build the confidence inter- 

als based on log σ 2 via the delta method. Further, the confidence 

ntervals of log σ 2 are transformed by an exponential operation to 

uantify the uncertainty in σ 2 . More approaches for uncertainty 

uantification based on EM algorithm can be found in Louis 

1982) and Meng and Rubin (1991) . 

. Simulation study 

To facilitate the simulation, we need to specify an experimen- 

al design of the degradation test. By letting N = 

∑ 

i N i be the total

est units and πi = N i /N be the proportion of test units allocated to 

tress i, we suppose that π = (π1 , . . . , πM 

) is a pre-specified exper- 

mental design for the simulation study. Without loss of generality, 

he test is assumed to allow for the change in temperature and hu- 

idity under the Peck model introduced in Appendix A . Addition- 

lly, three levels for each factor are specified and we follow a 4:2:1 

llocation rule for each factor ( Meeker & Escobar, 1998; Meeker & 

ahn, 1977 ). To be specific, the test plan allocates more test units 

o lower stress levels to avoid overwhelming extrapolation. The de- 

ailed plan is shown in Table 1 . 

Parameters are set as shown in Table 2 for the purpose of il- 

ustration. As a side note, the reference temperature and relative 

umidity are fixed at T K ref = 293 . 15 Kelvin (20 degree Celsius) and

H ref = 50% , respectively. 

To explore the effect of sample sizes, we will show results un- 

er N = 49 , 98 and 147 in the simulation studies. Test units are as-

umed to be inspected for 3 times. The following four sub-studies 

onstitute this section to explore the effectiveness of the proposed 

odel. 
1105 
.1. Estimates from the EM algorithm and confidence intervals 

First, point estimates are obtained from the EM algorithm un- 

er 10 0 0 simulation replicates for each sample size of interest. The 

onvergence criterion is set as ε = 0 . 001 (1 ‰ ) for all parameters.

n Table 3 , the mean bias and root mean squared error (RMSE) 

re shown under N = 49 , 98 and 147 . By observing the results, 

e can imply that the EM algorithm can accurately estimate the 

nknown parameters, with rather low mean bias and RMSE even 

nder moderate sample sizes. Moreover, the accuracy of the es- 

imation enhances with the increase in sample size. Specifically, 

ompared to other parameters, the estimation accuracy of σ 2 is 

elatively low but drastically improves over the sample size. A 

ossible reason behind this is that the estimation of σ 2 involves 

oth E(z i j(k −1) | y −, θ
(n ) 

) and E(z 2 
i j(k −1) 

| y −, θ
(n ) 

) as indicated in (15) ,

here more uncertainty of hidden variables are brought into the 

stimators. 

Further, with the extant point estimates, the confidence inter- 

als are constructed via the method proposed in Section 4 . Specif- 

cally, the (1 − α) × 100% confidence interval is given by 

ˆ 
i ± z α/ 2 

{ 
[ I ( ̂  θ)] ii 

} 1 / 2 
, 

here [ ·] ii denotes the i th diagonal element of a matrix and z α/ 2 

s the 1 − α/ 2 quantile of the standard normal distribution. In 

able 4 , the coverage probabilities and the average lengths are 

isted under the simulated datasets under three sample sizes. We 

ompute the 95% confidence intervals under large-sample approx- 

mation. As the sample size increases, the coverage probability be- 

omes closer to 0.95 and the average length is shortened. As seen, 

ven under a sample of 49, the confidence intervals perform well 

nd for most parameters over 90% of them can cover the true val- 

es. Again, influenced by the relatively large bias, the coverage 

robability of σ 2 is moderately lower under small sample sizes. 

ecall that we use the log σ 2 to construct confidence intervals for 
2 . The trick is proven to benefit the performance. A supporting 

xample is that under N = 49 , we obtain a coverage probability of 

.841 comparing to 0.750 where σ 2 is directly used to quantify the 

ncertainty. 

.2. Hierarchical analysis 

We now consider the estimation of δ in the Peck model by 

eans of the proposed hierarchical analysis. Likewise, the perfor- 

ance of point estimation and uncertainty quantification are listed 

n Table 5 and Table 6 , respectively. 

The results imply good performances with low mean bias and 

MSE for the point estimators as well as coverage probabilities 

hat are close enough to 0.95. It is worth noting that the hierar- 

hical analysis consumes limited computational efforts. For exam- 

le, point estimation together with uncertainty quantification un- 

er N = 147 only takes less than 1 seconds on a single Intel i5

ore. If hierarchical analysis is not employed, the complexity of 

f acc (·) will hinder the derivation of analytical results in the EM al- 

orithm, which could introduce enormous computational burdens 

o the problem. 

.3. Sensitivity analysis with respect to the degradation reduction 

ffect 

As discussed in Section 3 , the choice of u 0 and v 0 leans on the

xperience of engineers. Misspecification of the distribution for z 0 
ay occur and lead to higher bias of parameter estimation. Here, 

y assuming the true values of u 0 and v 0 to be 2 and 3, respec-

ively, we change the assumed values to explore the influence of 

isspecification under sample size N = 49 . Note that E(z ) = 0 . 4
0 
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Table 3 

Mean bias and RMSE of unknown parameters under N = 49 , 98 and 147. 

Parameter θ True 

value 

N = 49 N = 98 N = 147 

Bias RMSE Bias RMSE Bias RMSE 

f acc ( x 1 ) 2.104 0.011 0.264 −0.001 0.190 0.008 0.155 

f acc ( x 2 ) 4.110 0.010 0.283 0.005 0.202 0.004 0.162 

f acc ( x 3 ) 7.101 −0.005 0.344 0.004 0.250 0.006 0.200 

f acc ( x 4 ) 2.751 −0.001 0.288 0.003 0.206 0.001 0.173 

f acc ( x 5 ) 5.373 0.003 0.344 0.006 0.248 0.009 0.196 

f acc ( x 6 ) 9.284 −0.002 0.439 0.007 0.313 0.006 0.266 

f acc ( x 7 ) 3.511 0.013 0.343 0.003 0.247 0.011 0.204 

f acc ( x 8 ) 6.857 0.006 0.444 −0.006 0.316 0.012 0.256 

f acc ( x 9 ) 11.849 −0.001 0.647 −0.012 0.425 −0.004 0.358 

ω 1.000 −0.009 0.178 −0.003 0.130 −0.008 0.106 

σ 2 0.300 −0.044 0.075 −0.020 0.049 −0.009 0.037 

Table 4 

Coverage probability and average length of the 95% confidence intervals of θ under N = 49 , 98 and 147. 

Parameter θ N = 49 N = 98 N = 147 

Cov. prob. Avg. len. Cov. prob. Avg. len. Cov. prob. Avg. len. 

f acc ( x 1 ) 0.916 0.944 0.922 0.693 0.929 0.572 

f acc ( x 2 ) 0.915 1.032 0.930 0.758 0.944 0.627 

f acc ( x 3 ) 0.919 1.267 0.938 0.924 0.954 0.766 

f acc ( x 4 ) 0.918 1.044 0.933 0.766 0.948 0.633 

f acc ( x 5 ) 0.926 1.254 0.933 0.922 0.948 0.762 

f acc ( x 6 ) 0.927 1.665 0.951 1.215 0.949 1.002 

f acc ( x 7 ) 0.933 1.249 0.933 0.917 0.948 0.757 

f acc ( x 8 ) 0.927 1.647 0.946 1.201 0.941 0.993 

f acc ( x 9 ) 0.933 2.380 0.949 1.676 0.946 1.367 

ω 0.913 0.638 0.925 0.465 0.937 0.383 

σ 2 0.841 0.220 0.901 0.167 0.936 0.140 

Table 5 

Mean bias and RMSE of estimated δ under N = 49 , 98 and 147. 

Parameter δ True value N = 49 N = 98 N = 147 

Bias RMSE Bias RMSE Bias RMSE 

δ0 1 0.050 0.176 0.025 0.112 0.017 0.092 

E a ( ×10 7 ) 2 −0.039 0.2481 −0.020 0.160 −0.012 0.138 

δ1 3 −0.081 0.315 −0.031 0.187 −0.027 0.171 

Table 6 

Coverage probability and average length of the 95% confidence intervals of δ under N = 49 , 98 and 147. 

Parameter δ N = 49 N = 98 N = 147 

Cov. prob. Avg. len. Cov. prob. Avg. len. Cov. prob. Avg. len. 

δ0 0.933 0.542 0.944 0.389 0.957 0.319 

E a ( ×10 7 ) 0.944 0.692 0.941 0.508 0.958 0.419 

δ1 0.905 0.686 0.938 0.506 0.948 0.417 
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nd var (z 0 ) = 0 . 04 hold under true values. In Table 7 , we list the

ias and RMSE under four settings of misspecfied values of u 0 and 

 0 as follows: 

• High Mean: u 0 = 3 , v 0 = 2 , i.e., E(z 0 ) = 0 . 6 , var (z 0 ) = 0 . 04 ; 
• Low Mean: u 0 = 0 . 6 , v 0 = 2 . 4 , i.e., E(z 0 ) = 0 . 2 , var (z 0 ) = 0 . 04 ; 
• High Variance: u 0 = 1 . 2 , v 0 = 1 . 8 , i.e., E(z 0 ) = 0 . 4 , var (z 0 ) =

0 . 06 ; 
• Low Variance: u 0 = 9 . 2 , v 0 = 13 . 8 , i.e., E(z 0 ) = 0 . 4 , var (z 0 ) =

0 . 01 . 

As seen from the result, the misspecification of mean of z 0 
rings considerable bias to the estimators of f acc ( x i ) and ω, while 

he estimation of σ 2 suffers more when the variance is misspeci- 

ed. For extrapolating analysis based on the ADT data, f acc ( x i ) and 

play more important roles. For this purpose, engineers should 

ocus on evaluating the mean effect of degradation reduction for a 
1106 
etter estimation accuracy. To explore the influence of misspecifi- 

ation on the estimation of parameters in the Peck model, we carry 

ut the hierarchical methods to estimate δ and show the mean bias 

nd RMSE in Table 8 . The estimated δ suffers a considerable bias 

hen the mean of z 0 is misspecified, while the influence of mis- 

pecified variance exerts relatively smaller influence on the estima- 

ion accuracy. 

. Case study 

.1. Data from Schneider Electric 

Schneider Electric conducted a degradation test for a type of 

lectrical distribution device. A total of 104 test units underwent 

he test under four different settings of temperature and humid- 

ty. Specifically, two levels of temperature (313.15 Kelvin and 333.15 
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Table 7 

Mean bias and RMSE of unknown parameters θ under misspecified u 0 and v 0 . 

Parameter θ High mean Low mean High variance Low variance 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

f acc ( x 1 ) −0.662 0.712 0.644 0.704 0.065 0.273 −0.008 0.287 

f acc ( x 2 ) −0.566 0.642 0.539 0.625 0.052 0.305 −0.008 0.310 

f acc ( x 3 ) −0.531 0.640 0.465 0.595 0.032 0.352 0.009 0.397 

f acc ( x 4 ) −0.614 0.676 0.600 0.674 0.063 0.294 −0.010 0.312 

f acc ( x 5 ) −0.535 0.639 0.487 0.608 0.039 0.346 −0.008 0.366 

f acc ( x 6 ) −0.498 0.700 0.458 0.684 0.041 0.486 0.007 0.556 

f acc ( x 7 ) −0.574 0.671 0.550 0.662 0.054 0.352 −0.006 0.377 

f acc ( x 8 ) −0.529 0.699 0.441 0.654 0.025 0.450 −0.005 0.528 

f acc ( x 9 ) −0.471 0.835 0.394 0.811 −0.006 0.647 0.001 0.762 

ω 0.755 0.776 −0.733 0.761 −0.058 0.192 0.008 0.191 

σ 2 −0.025 0.071 0.005 0.071 −0.078 0.096 0.213 0.239 

Table 8 

Mean bias and RMSE of unknown parameters δ under misspecified u 0 and v 0 . 

Parameter δ High mean Low mean High variance High variance 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

δ0 −0.181 0.221 0.178 0.202 0.096 0.176 0.035 0.162 

E a ( 10 7 ) 0.152 0.262 −0.146 0.233 −0.052 0.187 −0.009 0.221 

δ1 0.252 0.328 −0.234 0.321 −0.105 0.210 −0.023 0.208 
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Fig. 2. Degradation test data under 4 stress levels. 
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elvin) and two levels of relative humidity (60% and 90%) are con- 

idered. Note that 313.15 Kelvin and 333.15 Kelvin are equivalent 

o 40 degree Celsius and 60 degree Celsius, respectively. The test 

hambers provide generally higher stresses than the usage condi- 

ion of the device, thus the test can be regarded as an ADT. The 

est data under each stress conditions are plotted in Fig. 2 . It can
1107 
e observed that the observation epochs ( τi jk ) and number of ob- 

ervations ( O i jk ) vary across the test units in the test. The specifi-

ations of the test are shown in Table 9 . Based on the discussions

ith engineers from Schneider, we propose to model the degrada- 

ion reduction effect by a beta distribution with parameters u 0 = 1 

nd v = 3 . 
0 
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Fig. 3. Convergence of the EM algorithm. 

Table 9 

Overview of the test from Schneider Electric. 

i T K i (in absolute Kelvin) RH i (in %) # of test units Duration 

1 313.15 60 28 0.9091 

2 313.15 95 24 0.9091 

3 333.15 60 28 0.9091 

4 333.15 95 24 1.4091 
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.2. Model estimation 

We proceed to the parameter estimation and uncertainty quan- 

ification. First, we are interested in how the parameter estimators 

onverge through the iterations. In Fig. 3 , the estimates at each it- 

ration are plotted. We compare results under proposed initial es- 

imates (see Section 3.5 ) against initial values of setting 0.1 for all 

arameters. As shown, the proposed initial values can speed up the 

onvergence of EM algorithm by selecting the initial values close to 

he MLE. Table 10 reports the MLE, asymptotic standard deviation 

nd 95% confidence intervals of θ (LB and UB represents the lower 

ound and upper bound of a confidence interval, respectively). We 

an observe that the lower bound 95% confidence interval of ω is 

ositive, which implies that the effect of degradation rate increase 

s significant. 

Next, the hierarchical analysis is carried out and the results are 

hown in Table 11 . It can be seen that both 

ˆ E a and 

ˆ δ1 are signifi-

antly positive. Thus, temperature and relative humidity both exert 

ccelerating influences on the degradation. 
1108 
At the current stage, it is not easy to tell how the environmental 

actors influence the degradation rate in intuitive senses, thus we 

tilize Proposition 1 evaluated at the CD estimate of δ as follows: 

ˆ E a 

11 , 605 

· 1 

T K 

2 
ref 

· RH ref 

ˆ δ1 

= 0 . 6189 , 

hich implies that under the usage environments, the baseline 

egradation rate is more sensitive to the change in relative hu- 

idity. From the practical point of view, it is of more significance 

o prevent the relative humidity from becoming overwhelmingly 

igh. 

To demonstrate the advantages of the proposed model, we per- 

orm a comparison with the conventional ADT model that over- 

ooks the inspection effects. Specifically, the conventional model 

ssumes linear Wiener degradation paths. Table 12 lists parameter 

stimates as well as the Bayesian information criterion (BIC) values 

nder various combinations of assumed u and v as well as under 

he conventional Wiener degradation model. We can observe a re- 

arkable improvement by considering the inspection effects. Un- 

er the BIC, the advantage of the proposed model is overwhelm- 

ng. Thus there is no further need for the comparisons under cri- 

eria with smaller penalty term of additional parameters, such as 

he Akaike information criterion (AIC). Specifically, we can observe 

hat the estimates of σ 2 under the proposed models (around 0.02 

o 0.03) are considerably smaller than that under the conventional 

odel (0.052). This implies that the proposed model can capture 

ore uncertainty systematically via the inspection effects, which 

s ignored by the conventional model. 
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Table 10 

MLE and confidence intervals of unknown parameters. 

Parameters 

f acc ( x 1 ) f acc ( x 2 ) f acc ( x 3 ) f acc ( x 4 ) ω σ 2 

MLE 0.2104 0.3403 0.2173 0.5042 0.0857 0.0230 

Asymptotic std 0.0573 0.0625 0.0569 0.0583 0.0264 0.0031 

LB of 95 % CI 0.0981 0.2177 0.1057 0.3899 0.0340 0.0168 

UB of 95% CI 0.3228 0.4629 0.3289 0.6185 0.1373 0.0292 

Table 11 

CD estimates and confidence intervals of parameters 

in f acc (·) . 

Parameters 

δ0 E a ( ×10 7 ) δ1 

CD estimate 0.1014 1.8154 1.4721 

Asymptotic std 0.0394 0.8454 0.3812 

LB of 95% CI 0.0214 0.1584 0.7251 

UB of 95% CI 0.1787 3.4723 2.2191 
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.3. Analyses of reliability characteristics 

The ultimate goal of degradation data modeling is to better 

nderstand the reliability and support related decision making. 

owards this end, reliability engineers usually make use of the 
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Fig. 4. Reliability curves and pointwise 80% confidence bands un

1109 
esults of the estimated model to infer reliability characteristics 

f interest. Some commonly used characteristics include mean 

ime to failure (MTTF) and life quantiles. By taking into account 

oth accelerated environmental factors and inspection effects, 

he proposed methods can generate some interesting results that 

iffer from those under conventional approaches. 

First, we are curious about the reliability under different en- 

ironmental conditions, which is one of the main purposes of 

he ADT. Four combinations of temperature and relative humidity 

re considered. An appealing property of the Wiener degradation 

odel is that the lifetime follows an inverse Gaussian distribu- 

ion, under which the reliability function is analytical. By assuming 

he threshold to be 0.5, the reliability curves and 80% pointwise 

onfidence bands subject to estimation uncertainty are shown in 

ig. 4 . High temperature (T K = 303 . 15 K elvin or 30 degree Celsius ) 

r high humidity ( RH = 70% ) shortens the lifetime. Further, the ef- 
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Table 12 

Performance comparison between the proposed model and the conventional model. 

Model under 

(u, v ) 
Parameters BIC 

f acc ( x 1 ) f acc ( x 2 ) f acc ( x 3 ) f acc ( x 4 ) ω σ 2 

(0.5,0.5) 0.194 0.368 0.257 0.570 0.187 0.022 −521 

(0.5,1) 0.190 0.331 0.211 0.525 0.102 0.023 −511 

(0.5,3.5) 0.197 0.300 0.191 0.455 0.028 0.026 −480 

(1,0.5) 0.353 0.552 0.386 0.708 0.216 0.028 −461 

(1,1) 0.255 0.427 0.290 0.595 0.183 0.020 −543 

(1,3) 0.210 0.340 0.217 0.504 0.086 0.023 −512 

(2,1) 0.350 0.532 0.373 0.694 0.245 0.040 −363 

(2,2) 0.289 0.452 0.308 0.609 0.186 0.028 −466 

(2,8) 0.227 0.339 0.224 0.485 0.064 0.026 −478 

Conventional 0.145 0.188 0.124 0.272 NA 0.052 −299 
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Fig. 5. ML estimated mean and 0.1 quantile of RUL under different k and y + . 
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ect of relative humidity seems more significant, which validates 

he statement from Proposition 1 . Practically, managers should 

eep the device working in cool and dry environments to pro- 

ong its lifetime. Additionally, due to the extrapolation of factors in 

DTs, there exists considerable variability in the reliability curves, 

specially under lower T K and RH, of which decision makers need 

o beware. More conservative decisions are usually suggested in 

he presence of larger model uncertainty. 

As the company’s another objective is to predict the remaining 

seful life (RUL) for devices of different age and inspection history, 

nder the estimated model, we plot the mean RUL and 0.1 RUL 

uantile under different combinations of current degradation level 

 y + ) and historical times of inspection ( k ) in Fig. 5 . As is in accor-

ance with intuitions, a higher y + or k leads to smaller RUL. To 

e more specific, the mean RUL decreases in proportion to the in- 

rease in y + , while the influence of k is more significant when it is

maller. The behavior of 0.1 RUL quantile is similar except a faster 

ecrease in the quantile when y + becomes higher. It is notewor- 

hy that, in the presence of inspections, the reliability function in 

 general form over a time horizon from zero to infinity is onerous 

o derive due to the randomness in both degradation levels and the 

ffect of inspections. Decision makers can employ the RUL distri- 

ution with given inspected degradation levels, which is tractable, 

o characterize the reliability characteristics and support future 
ecisions. f

1110 
For a better exposition of degradation paths under different in- 

pection intervals, we simulate and plot the expected degradation 

ath and confidence bands in Fig. 6 . We set the same scale for x -

nd y -axes for comparison. Obviously, more frequent inspections 

ead to faster degradation despite the existence of degradation re- 

uction effect. Interestingly, we observe that the uncertainty in the 

egradation paths is the smallest when �τ = 0 . 1 . It is probably a

esult of tradeoff between the uncertainties in the two types of 

nspection effects. For the studied device, it may not be wise to in- 

pect the system too frequently. Nevertheless, the decision maker 

hould consider the risk of unexpected failures under limited in- 

ormation. 

. Concluding remarks 

We focus on an atypical degradation modeling problem moti- 

ated by a real example. As a first attempt to deal with partially 

bservable data with manifold inspection effects, the study utilizes 

he EM algorithm to iteratively derive the parameter estimators. 

urther, a hierarchical confidence density is used to accurately es- 

imate the acceleration model. Uncertainty quantification is carried 

ut via large-sample approximation. The manipulation of the pro- 

osed model can be widely applied to different types of ADT data. 

imulation studies validate the proposed methods and show satis- 

actory estimating performance under different sample sizes. The 
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Fig. 6. Expected degradation paths and pointwise 90% confidence bands under different inspection intervals. 
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omputational burden is significantly reduced by the hierarchical 

nalysis. A case study from Schneider Electric demonstrates the ad- 

antage of the model over conventional degradation models. A se- 

ies of reliability analyses based on the estimation results are pro- 

ided to explore managerial insights from practical perspectives. 

The involvement of inspection effects can be further investi- 

ated for reliability modeling and management. Bayesian methods 

an be explored to characterize the hidden inspection effects. Dy- 

amic approaches to system inspection and maintenance optimiza- 

ion based on the current model are of interest to effectively man- 

ge industrial systems. As is mentioned in Section 3.6 , it is also 

seful to combine the information from different tests, which puts 

orward some opportunities for future research. For more detailed 

xtensions to solve real industrial problems, relevant discussions 

f other degradation models such as the gamma processes and in- 

erse Gaussian processes and more models for inspection effects 

an be further explored. 
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ppendix A. Acceleration mechanism and link functions 

The appendix discusses the acceleration mechanism under two 

ommon experimental factors: temperature and humidity. Note 

hat we only consider the parametric form of link function f acc ( x i ) 

n (3) here. To establish parametric models for f acc ( x i ) , some do-

ain knowledge on the physical failure mechanism is required. 

therwise, it is suggested to employ nonparametric extrapolating 
1111 
ethods to predict the degradation rate at use conditions. By de- 

oting the parametric form of f acc ( x i ) by f acc ( x i ; δ) , a Peck model

s used for the joint modeling of temperature and relative humid- 

ty ( Peck, 1986 ). To be specific, 

f acc ( x i ; δ) = δ0 exp 

(
E a 

11605 

(
1 

T K ref 

− 1 

T K i 

))(
RH i 

RH ref 

)δ1 

, (A.1) 

here x i = (T K i , RH i ) is the vector of absolute temperature and rel-

tive humidity at stress level i, and x ref = (T K ref , RH ref ) is covariate

ector at reference stress level, which is often set at the covari- 

te values under the use condition. The unknown parameters are 

= (δ0 , E a , δ1 ) 
T , where E a is the activation energy that is constant

o a material and δ1 characterizes the effect of humidity. 

ppendix B. Density function of z i j(k−1) 

Given observable y − and θ
(n ) 

, we have 

f z i j(k −1) 

(
z| y −, θ

(n ) 
)

= 

f 

(
y −; θ(n ) 

, z 

)
f 

(
z; θ(n ) 

)
f 

(
y −; θ(n ) 

)
= 

φ
(

y −
i jk 

−y −
i j(k −1) ( 1 −z ) −μ(n ) 

i jk 
�τi jk 

σ
√ 

�τi jk 

)
f Beta ( z; u 0 , v 0 ) ∫ 1 

0 

(
y −

i jk 
−y −

i j(k −1) ( 1 −x ) −μ(n ) 
i jk 

�τi jk 

σ
√ 

�τi jk 

)
f Beta ( x ; u 0 , v 0 ) d x 

.

o facilitate further analysis in Appendix E , the equation can be 

laborated into the following form: 

f z i j(k −1) 

(
z| y −, θ

(n ) 
)

= 

F(z) f Beta ( z; u 0 , v 0 ) ∫ 1 F(z) f Beta ( x ; u 0 , v 0 ) d x 
, (B.1) 
0 

https://doi.org/10.13039/501100001809
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here 

(z) = exp 

[ 

−
(
y −

i j(k −1) 
z 
)2 + 2 y −

i j(k −1) 
z 
(
y −

i jk 
− y −

i j(k −1) 
− μ(n ) 

i jk 
�τi jk 

)
2 
(
σ 2 
)(n ) 

�τi jk 

] 

. 

(B.2) 

oreover, the first-order derivatives of f with respect to θ
(n ) 

are 

iven by 

∂ f z i j(k −1) 

(
z| y −, θ

(n ) 
)

∂θ (n ) 
i 

= 

F 

′ 
θi 
(z) f Beta ( z; u 0 , v 0 ) 

∫ 1 
0 F( x ) f Beta ( x ; u 0 , v 0 ) d x [ ∫ 1 

0 F(x ) f Beta ( x ; u 0 , v 0 ) d x 
] 2 

−
F(z) f Beta ( z; u 0 , v 0 ) 

∫ 1 
0 F 

′ 
θi 
(x ) f Beta ( x ; u 0 , v 0 ) d x [ ∫ 1 

0 F(z) f Beta ( x ; u 0 , v 0 ) d x 
] 2 ,

(B.3) 

here F 

′ 
θi 
(z) ’s are calculated by 

 

′ 
f acc ( x i ) 

(z) = 

Fy −
i j(k −1) 

z (
σ 2 
)(n ) 

, 

 

′ 
ω (z) = 

Fy −
i j(k −1) 

zk (
σ 2 
)(n ) 

, 

 

′ 
σ 2 (z) = F 

(
y −

i j(k −1) 
z 
)2 + 2 y −

i j(k −1) 
z 
(
y −

i jk 
− y −

i j(k −1) 
− μ(n ) 

i jk 
�τi jk 

)
2 

[ (
σ 2 
)(n ) 

] 2 
�τi jk 

. 

(B.4) 

ppendix C. Expression for initial guesses of starting points 

Following the analytical results in Section 3.4 , we can calculate 

he initial values of parameter estimates by the following equa- 

ions: 
 

 

 

 

 

ω 

(0) = 

D −∑ M 
i =1 A i F i 

C−∑ M 
i =1 B i F i 

, 

f (0) 
acc ( x i ) = A i − B i ω 

(0) , (
σ 2 
)(0) ∑ M 

i =1 

∑ N i 
j=1 

O i j = G, 

here 

 i = 

∑ N i 
j=1 

∑ O i j 

k =1 

[
y −

i jk 
− y −

i j(k −1) 
+ y −

i j(k −1) 
u 0 / ( u 0 + v 0 ) 

]
∑ N i 

j=1 

∑ O i j 

k =1 
�τi jk 

, 

D = 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 
(
y −

i jk 
− y −

i j(k −1) 
+ y −

i j(k −1) 
u 0 / ( u 0 + v 0 ) 

)
, 

G = 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

1 

�τi jk 

{(
y −

i jk 
− y −

i j(k −1) 
− f acc ( x i )�τi jk − ωk �τi jk 

)2 

+ 2 y −
i j(k −1) 

(
y −

i jk 
− y −

i j(k −1) 
− f acc ( x i )�τi jk − ωk �τi jk 

)
u 0 / ( u 0 + v 0 ) 

+ 

(
y −

i j(k −1) 

)2 [
u 2 0 / (u 0 + v 0 ) 2 + u 0 v 0 / 

[
(u 0 + v 0 ) 2 (u 0 + v 0 + 1) 

]]}
. 

ppendix D. Technical proofs in Section 3.6 

.1. Proof of Lemma 1 

In the following proof, we assume that the regularity conditions 

escribed in Appendix B in Liu et al. (2015) hold for the likelihood 

ontributions and ζ is identifiable in the form of likelihood under 
1112 
he current model. As a side note, we are using the denominator- 

ayout notations. Further, let L ∗( ζ) ≡ L ( δ) under ζ = M ( δ) . We ap-

ly the Taylor approximation as follows: 

∂ 

∂ δ
log L ( ̂  δDIR ) ≈ ∂ 

∂ δ
log L ( δ) + 

∂ 

∂ δ∂ δ
T 

log L ( δ)( ̂  δDIR − δ) . (D.1) 

he l.h.s. of the equation is zero and further we obtain 

∂ 

∂ δ
log L ( δ) = J ( δ) 

T ∂ 

∂ ζ
log L ∗( ζ) (D.2) 

nd 

∂ 

∂ δ∂ δ
T 

log L ( δ) = J ( δ) 
T 

[
∂ 

∂ ζ∂ ζT 
log L ∗( ζ) 

]
J ( δ) = −J ( δ) 

T ˜ �( ζ) J ( δ) ,

(D.3) 

here ˜ �( ζ) is the observed Fisher information matrix. By plugging 

D.2) and (D.3) to (D.1) , the form of n 1 / 2 
(

ˆ δDIR − δ
)

is rewritten by 

 

1 / 2 
(

ˆ δDIR − δ
)

= 

[
J ( δ) 

T ˜ �( ζ) 

n 
J ( δ) 

]−1 

× J ( δ) 
T 

[
n −1 / 2 ∂ 

∂ ζ
log L ∗( ζ) 

]
. 

t is well known that as n → ∞ , ˜ �( ζ) /n converges to ̃  I ( ζ) in prob-

bility. As implied in Liu et al. (2015) , the random part of the equa-

ion follows MN distribution: 

 

−1 / 2 ∂ 

∂ ζ
log L ∗( ζ) 

d −→ MN 

(
0 , ̃  I ( ζ) 

)
, 

hich can immediately imply that n 1 / 2 
(

ˆ δDIR − δ
)

follows a MN 

istribution with zero mean, indicating the consistency of ˆ δDIR . The 

ovariance matrix of ˆ δDIR is then obtained by 

ar 

[ 
n 1 / 2 

(
ˆ δDIR − δ

)] 
= 

[ 
J ( δ) 

T ˜ I ( ζ) J ( δ) 
] −1 

× J ( δ) 
T ˜ I ( ζ) J ( δ) ︸ ︷︷ ︸ 

identity 

×
[ 

J ( δ) 
T ˜ I ( ζ) J ( δ) 

] −1 

= 

[ 
J ( δ) 

T ˜ I ( ζ) J ( δ) 
] −1 

. 

his completes the proof of Lemma 1 . 

.2. Proof of Lemma 2 

We can rewrite log h ( δ) /∂ δ as 

∂ log h ( δ) 

∂ δ
= J ( δ) 

T ˆ V 

−1 ( ̂  ζ − M ( δ)) . (D.4) 

or ∂ log L ( δ) /∂ δ, a Taylor approximation is employed and we ob-

ain 

∂ log L ( δ) 

∂ δ
= J ( δ) 

T ∂ 

∂ ζ
log L ∗( ζ) 

≈J ( δ) 
T 

[
∂ 

∂ ζ
log L ∗( ̂  ζ) + 

∂ 2 

∂ ζ∂ ζT 
log L ∗( ̂  ζ)( ζ − ˆ ζ) 

]
= J ( δ) 

T [
0 − ˆ V 

−1 ( ζ − ˆ ζ) 
]

= J ( δ) 
T ˆ V 

−1 ( ̂  ζ − M ( δ)) . (D.5) 

s seen, (D.4) and (D.5) are equal under the Taylor approximation. 

hus, they have the same asymptotic properties, which completes 

he proof. 

ppendix E. The observed Fisher information from the method 

n Oakes (1999) 

The following second-order derivatives of Q are given and used 

or the construction of the Fisher information in (25) : 

∂ 2 Q 

∂ f 2 acc 

(
x i ; δ

) | ( θ = 

ˆ θ) = − 1 

ˆ σ 2 

N i ∑ 

j=1 

o i j ∑ 

k =1 

�τi jk , 
∂ 2 Q 

∂ f acc 

(
x i ; δ

)
∂ σ 2 

| ( θ = 

ˆ θ)
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L  

L  

L  
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L  

L

M  

M  

M

M  

M

M

O

P

S  

S

S  

T  

T

W

W  

X

X

= 

1 

ˆ σ 4 

[ 

ˆ f acc ( x i ) 

N i ∑ 

j=1 

O i j ∑ 

k =1 

�τi jk −
N i ∑ 

j=1 

O i j ∑ 

k =1 

[
y −

i jk 
− y −

i j(k −1) 

+ y −
i j(k −1) 

E 

(
z i j(k −1) | y −, ̂  θ

)] 
+ ˆ ω 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk 

] 

, 

∂ 2 Q 

∂ f acc 

(
x i ; δ

)
∂ ω 

| ( θ = 

ˆ θ) = − 1 ̂ σ 2 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk , 

∂ 2 Q 

∂ω 

2 
| ( θ = 

ˆ θ) = − 1 ̂ σ 2 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 2 �τi jk . 

∂ 2 Q 

∂ ω∂ σ 2 
| ( θ = 

ˆ θ) = 

1 

ˆ σ 4 

[
M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 

(
y −

i jk 
− y −

i j(k −1) 

+ y −
i j(k −1) 

E 

(
z i j(k −1) | y −, ˆ θ

)
+ 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k �τi jk ̂
 f acc ( x i ) + ˆ ω 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

k 2 �τi jk 

]
, 

∂Q 

(
θ| θ(n ) 

)
∂ 
(
σ 2 
)2 

| ( θ = 

ˆ θ) = 

1 

2 ̂  σ 4 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j 

+ 

1 

ˆ σ 6 

M ∑ 

i =1 

N i ∑ 

j=1 

O i j ∑ 

k =1 

1 

�τi jk 

[ (
y −

i jk 
− y −

i j(k −1) 
− ˆ f acc ( x i )�τi jk 

− ˆ ω k �τi jk 

)2 + 2 y −
i j(k −1) 

(
y −

i jk 
− y −

i j(k −1) 
− ˆ f acc ( x i )�τi jk 

− ˆ ω k �τi jk 

)
E 

(
z i j(k −1) | y −, ̂  θ

)
+ 

(
y −

i j(k −1) 

)2 
E 

(
z 2 i j(k −1) | y −, ̂  θ

)] 
. 

he second-order derivatives directly provide the first term in 

he r.h.s. of (25) . For the second term, derivatives can be di- 

ectly taken on (8) to (15) with respect to θ
(n ) 

and replace θ
(n ) 

ith 

ˆ θ. Specifically, we need to compute ∂ E 
(

z i j(k −1) | y −, ̂  θ
)
/∂ ̂  θ and 

 E 

(
z 2 

i j(k −1) 
| y −, ̂  θ

)
/∂ ̂  θ. Combining the results from (B.1) to (B.4) in 

ppendix B , analytical results can be obtained to finally compute 

25) from: 

∂E 

(
z i j(k −1) | y −, ̂  θ

)
∂ ̂  θi 

= 

∫ 1 

0 

∂ f z i j(k −1) 

(
z| y −, ̂  θ

)
∂ ̂  θi 

zd z, 

∂E 

(
z 2 

i j(k −1) 
| y −, ̂  θ

)
∂ ̂  θi 

= 

∫ 1 

0 

∂ f z i j(k −1) 

(
z| y −, ˆ θ

)
∂ ̂  θi 

z 2 d z. 
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