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This study proposes a framework to analyze accelerated degradation testing (ADT) data in the presence
of inspection effects. Motivated by a real dataset from the electric industry, we study two types of effects
induced by inspections. After each inspection, the system degradation level instantaneously reduces by a
random value. Meanwhile, the degrading rate is elevated afterwards. Considering the absence of obser-
vations due to practical reasons, we employ the expectation-maximization (EM) algorithm to analytically
estimate the unknown parameters in a stepwise Wiener degradation process with covariates. Moreover,
to maintain the level of generality for the adaption of the method in various scenarios, a confidence den-
sity approach is utilized to hierarchically estimate the parameters in the acceleration link function. The
proposed methods can provide efficient parameter estimation under complex link functions with multiple
stress factors. Further, confidence intervals are derived based on the large-sample approximation. Simu-
lation studies and a case study from Schneider Electric are used to illustrate the proposed methods. The
results show that the proposed model yields a remarkably better fit to the Schneider data in comparison
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to the conventional Wiener ADT model.
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1. Introduction and motivation

Reliability tests are widely used to predict product lifetime in
various industries. A successfully planned and conducted reliabil-
ity test can provide important information supporting managerial
decisions under a reasonable test budget, thereby reducing both
prospective costs and risks. In order to shorten the test duration,
conventional life tests are commonly conducted under elevated
stresses to accelerate the failures of test units. In recent decades,
with the advances in sensors and monitoring technologies, degra-
dation tests become preferable to life tests in the sense that they
can predict reliability characteristics over time without the con-
cern of censoring (Meeker, Escobar, & Lu, 1998). In a typical degra-
dation test, discrete degradation measurements are taken and the
observed degradation paths are then employed to make inferences
about the product reliability. Degradation paths are usually mod-
eled based on a quality characteristic (QC), such as the brightness
of displays and battery life of electronic devices (Wang, Tang, Bae,
& Xu, 2018).
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When utilized for lifetime prediction, the structure and pat-
tern of degradation data are desired to be as simplistic as pos-
sible to relieve the modeling complexity and computational bur-
den. However, under practical usage or even controlled experimen-
tal conditions, degradation paths may inevitably behave atypical
patterns from time to time. In degradation tests, since the stress
levels are strictly controlled, the degradation paths of test sys-
tems are usually deemed to be stable during most of the test time.
Nevertheless, some interventions to the test systems may be un-
avoidable due to various practical concerns. A common exercise is
that engineers have to alter the test conditions temporarily to ob-
tain degradation measurements. For example, many reliability tests
are conducted under certain combinations of temperature and hu-
midity, where test chambers that provide such environments are
employed. Typical degradation tests of this kind can be found in
Meeker and Escobar (1998, Chapter 21) and references therein.
To take effective degradation measurements, the involvement of
manual inspection or/and precise instruments are mandatory, yet
the exercise is difficult, if not impossible under the test environ-
ment. In such cases, the test units have to be removed from the
chamber temporarily, which results in the change of test environ-
ments. Although the duration of measurement is usually short or
even negligible compared to the whole test duration, the drastic
change of test environments may still cause substantial changes

0377-2217/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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on system degradation levels. Another reason of atypical degrada-
tion paths lies in the intervening nature of inspections. In other
words, certain types of inspections may inherently influence the
system degradation (Zhao, Gaudoin, Doyen, & Xie, 2019). One of
the examples is the destructive test, where inspections can cause
directly destructive effects to the test systems (Shi, Escobar, &
Meeker, 2009). Considering the aforementioned issues, we propose
to model the effects brought by inspections in degradation tests
and afterwards investigate parameter estimation upon such testing
data.

The research to be proposed is motivated by a real experiment
carried out by Schneider Electric with the objective to reveal the
degradation characteristic of an electrical distribution device. As a
key part of the device, a mechanical linkage corrodes over time,
which is a dominant cause of performance degradation. To quantify
the degradation level of the device, engineers measure the torque
that is needed to separate the linkage. A higher torque implies a
more severe condition of corrosion. On the one hand, since the in-
spection separates the linkage, the grown corrosion is physically
disassembled, leading to a reduction in the degradation level dur-
ing the inspection. On the other hand, the inspection causes dam-
age to the integrity of surface treatments in the linkage, which
leads to a higher rate of corrosion. Obviously, the two types of
effects are opposite with respect to the system health. Another
concern of the problem is the difficulty in revealing the accurate
degradation reduction during the inspection. To follow a basic rule
to inspect systems, engineers tend to minimize the influence of in-
spection and therefore only measure the torque that separates the
linkage. Once a measurement is obtained, the inspection is termi-
nated immediately. Consequently, the measurement process may
only capture the degradation level before inspections yet fail to
observe degradation reduction. Although the engineers can give an
approximation of the degradation reduction from the prior knowl-
edge or other experiments, the accurate value can never be known.
Thus, the reduction effect is a hidden variable that cannot be di-
rectly utilized for statistical inference.

By employing the experiment from Schneider Electric as an il-
lustrative example, the study aims at establishing a framework to
analyze accelerated degradation tests with complex inspection ef-
fects. In general, the proposed method can be applied to model
degradation data in the presence of environmental covariates and
interventions that exert both positive and negative effects.

2. Literature review

With the fast emergence of system monitoring technologies,
modeling and inference of degradation data now play a vital role in
the research area of reliability engineering and its interfaces with
other areas, such as mechanical engineering (Wang & Tsui, 2017),
energy (Lin et al., 2017), electrical engineering (Si, 2015) etc. Degra-
dation analysis not only subsumes approaches to model relevant
data, but also creates alternative planning methods of reliability
tests for life prediction.

Interest in accelerated degradation test (ADT) has grown in re-
cent decades owing to its successful applications to various prod-
ucts and systems, such as LED lamps, lithium-ion batteries and
rail tracks (Ye & Xie, 2015). Initiated by Meeker et al. (1998),
regression-based general path models are widely used for degrada-
tion modeling in ADT (Hong, Duan, Meeker, Stanley, & Gu, 2015).
Further, due to clear physical explanations and appealing mathe-
matical tractability, stochastic processes such as Wiener processes
(Hu, Lee, & Tang, 2015), gamma processes (Tsai, Sung, Lio, Chang,
& Lu, 2016) and inverse Gaussian processes (Ye, Chen, Tang, & Xie,
2014) start to play an influential role in ADT modeling and plan-
ning. For a more detailed overview, one can be referred to Limon,
Yadav, and Liao (2017). To date, several new considerations on ADT
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planning and analysis emerged in the literature to tackle more
practical issues. To name a few, Tseng and Lee (2016) proposed a
general exponential-dispersion model to characterize degradation
and gave the optimal ADT plans in analytical forms. In Li, Wu, Ma,
Li, and Kang (2018), random fuzzy theory was adopted to model
the uncertainty in ADT data. Wang and Tsui (2017) considered
multiple stresses in ADT for rubber sealed O-rings. With regard to
model uncertainty, Liu, Li, Zio, Kang, and Jiang (2017) applied the
Bayesian modeling averaging approach to model ADT data.

In real problems, it is common that a degradation path can-
not be characterized by models in regular forms such as linear
or typical nonlinear ones (e.g., polynomial, logarithm and expo-
nential models). The reasons behind an atypical degradation path
can be rather complex. For example, Hong et al. (2015) proposed
a degradation modeling approach by utilizing dynamic weather-
ing covariates to characterize irregular degradation paths. In some
other studies (Bae, Yuan, Ning, & Kuo, 2015; Wang et al., 2018),
change-point detection and modeling were discussed for degrada-
tion data. Adaptive and dynamic methods for online degradation
modeling have also prevailed in the literature (Si, 2015; Zhai & Ye,
2018).

Apart from these, human interventions to industrial systems
can also be a pivotal cause of atypical degradation path, and
a common example is imperfect maintenance (Mercier & Cas-
tro, 2019). Surprisingly, despite plentiful extant works on atypical
degradation paths, we can only find very scant research in the lit-
erature that addressed similar issues in ADT problems. Xiao and
Ye (2016) discussed the ADT planning problem with random ini-
tial degradation levels. In Ye, Hu, and Yu (2019), the initial per-
formance of test units were considered to allocate units to stress
levels. Nevertheless, these works did not incorporate the effect of
inspection as described in Section 1.

The rest of the paper is organized as follows. In Section 3, a sys-
tematic approach to model construction and parameter estimation
is established for ADT data with inspection effects. Section 4 dis-
cusses the uncertainty quantification of parameter estimators. Sim-
ulation studies are carried out in Section 5. Section 6 presents the
case study from Schneider Electric. Finally, conclusions are drawn
in Section 7.

3. Degradation models with inspection effects
3.1. Preliminaries

Consider a degradation test with M stress levels and N; test
units are allocated to stress level i, where i = 1, ..., M. For the jth
test unit under stress i, as which we call unit (i, j) for simplicity, a
total of O;; inspections are carried out at time epochs t;j; Tijoy;-
Since an instant degradation reduction occurs upon each inspec-
tion, we denote the degradation level before the reductive effect
by Yiik for the kth inspection for unit (i, j), with k = 0 representing
the initial inspection prior to the test. Meanwhile, the degradation
level after the reductive effect is denoted by y;;k. We introduce a
variable z;j, to model the proportion of degradation reduction with
respect to Yiik for the kth inspection of unit (i, j) as follows:

.....

- +
Yiik = Yijk
Yiik

The notational details are illustrated in Fig. 1. As mentioned in
Section 1, Yiik is usually observable whereas y:;k is relatively diffi-
cult to reveal. Thus, for notational simplicity, we subset the data to
¥y~ and z that are given by

y7={y;j,<,i=1,...,M,j=1,...,Ni,k=0,...,oij},

Zijk = . 0=z <1 (1)

Z:{Z,'jk,iz1,...,M,j=1,...,N,‘,k=0,...,0,‘j}.
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Degradation path

+
Yijo |

Time

Fig. 1. Illustration for notations by a possible sample path of degradation for unit j
tested under environment i.

To further facilitate degradation modeling, we let Ay = {Ay;j.i=
1,....Mj=1,....N,k=1,...,0;5}, where Ay;j =Yiik —yi*j(kq).
Considering the notation in (1), we can rewrite Ay;j as

AYije =Y = Yizoe) (1 = Zijk-1))-
3.2. Wiener degradation model and inspection effect

We employ the Wiener process as the baseline model to char-
acterize the inherent generation of degradation for system of inter-
est. More concretely, if we assume that the system operates with-
out any intervention, the degradation path of the system can be
modeled by a drifted Wiener process. The Wiener process features
independent Gaussian increments over non-overlapping time pe-
riods, which enables its wide application in degradation model-
ing. A drifted Wiener process {W (t);t > 0} can be characterized by
drift and diffusion parameters, denoted by © and o, respectively.
In this manner, it gives W(t) = ut + o B(t), where B(-) is a stan-
dard Brownian motion. The increment AW (t —s) = W(t) — W(s)
for any t > s follows a normal distribution with mean w(t —s) and
variance o2(t —s), i.e, AW(t —s) ~N(u(t —s),02(t —s)). In the
presence of inspection effects, i.e., nonzero z;'s, the degradation
path no longer follows the conventional Wiener process. Neverthe-
less, according to the aforementioned properties, given z;;’s, Ay;ji
are independent increments of a Wiener process and they follow:
AYijk ~ N(ije ATije, 02 ATijp). (2)
where (i is the degradation rate between the (k—1)th and kth
inspection for test unit (i, j) and AT = Tjj, — Tjjk—1)- Note that if
the inspection has no effect on the system degradation, then z;;’s
are 0 for all i, j and k, and the degradation path can be modeled by
a conventional drifted Wiener process. Note that in the proposed
model, we use a flexible notational convention in the sense that
Tk and O;; can be different for different test units, implying that
the proposed methods can be well applied to unbalanced data set
in terms of time and number of observations.

Next, experimental factors as covariates are introduced into the
model. The majority of research on degradation tests has suggested
to use parametric models to link p and covariates x; (Jakob, Kim-
melmann, & Bertsche, 2017). We use facc(%;) to denote the baseline
degradation rate under stress x; and the acceleration model can
be formulated in either parametric or nonparametric manners. The
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parametric acceleration model can take various forms based on the
physical mechanism of degradation and factors involved in the test.
The selection of fy.c(x;) is not the main focus of the study, and
some brief discussions regarding the Schneider example are given
in Appendix A. Moreover, the complexity in ficc(x;) may impede
the inferential efficiency under various specific models. Under dif-
ferent forms of ficc(x;), we wish to maximize the generalizability
of the proposed model. Towards this end, we treat fi.(x;) as sep-
arate parameters first and then employ a hierarchical analysis in
Section 3.6 for further inferences.

To capture the effect of degradation rate increase after the kth
inspection, a function g(k; @) is introduced, where ® is a vector of
unknown parameters. To benchmark the effect, we use g(k; ) as
an added term to the baseline degradation rate and therefore we
assume g(0; w) = 0. Then, the degradation rate between the (k —
1)th and kth inspection for test unit (i, j) is given by

Mijk = facc (%) + g(k; @). (3)

One implicit assumption from (3) is that the increase effect of
degradation rate brought by inspections and stress variables x; are
independent. In other words, we assume that the inspection effect
on degradation rate only depends on k and does not interact with
environmental stresses. Since the degradation rate increases with
the number of inspections, g(k; @) is a non-decreasing function.
The simplest forms are polynomial, e.g., the first and second order
polynomial models are given as follows:

glk; w) = wk, gk; ®) = w1k* + w7k.

Without loss of generality, we assume g(k; w) = wk for analytical
simplicity in the following analysis.

Recall that we have introduced z;j earlier to describe the pro-
portion of degradation reduction. A beta distribution is employed
to model the unconditioned z;;;, for any realization of z;;,, denoted
by z, the density function is given by

F'u+v)
rwr )

where u and v are the shape parameters of the beta distribution.
It is worth mentioning that beta distribution has been widely used
to model the effect of the imperfect repair (Zhang, Gaudoin, & Xie,
2015).

211 -2"1, 0<z<1, 4)

feta(z; U, V) =

Remark. If y,fk is unobservable, u and v cannot be estimated from

the model due to the absence of z under the frequentist setting.
However, engineers may manage to approximately quantify the re-
ductive effect from domain expertise or preliminary experiments.
For the example from the Schneider Electric, engineers can carry
out a different type of experiment to measure the degradation lev-
els before and after the first inspection at t = 0 and model the re-
ductive effects, though it is inapplicable during the ADT as it takes
much longer time to obtain the reductive measurements. In the
presence of the described available data at t =0, it is easy to fit
a beta distribution to the observed reductive measurements. Other
types of models to characterize z can also be used after uncom-
plicated modifications to the likelihoods in the following contents
in the section and density functions in Appendix B. It is note-
worthy that the Bayesian method can be an appealing alternative,
where u and v can be characterized by some prior distributions
at first. The computational burden can be an important issue in
Bayesian inference, especially when z is unobservable (Bernardo
et al., 2003). Further, in this paper, we presume that z;;’s are in-
dependent random variables. The assumption is valid if the inspec-
tion effects of degradation reduction are instantaneous and do not
interact over time. In realistic applications, the effects can inter-
act over time under stress environments. In such cases, a joint dis-
tribution can be employed to characterize the interdependence of



X. Zhao, P. Chen, O. Gaudoin et al.

z;ji’'s. However, the introduction of interdependence leads to more
complicated likelihoods, which hinders the tractability of estima-
tors. Monte Carlo EM algorithm can be useful in implementing the
aforementioned extensions (Levine & Casella, 2001).

In Sections 3.3 and 3.4, we will discuss the modeling of degra-
dation data under two different scenarios. In the first one, the
degradation levels before and after the inspection are observable
so that all the parameters in the model can be estimated through a
complete likelihood. In the second one, only the degradation levels
before the inspection can be obtained for inference, under which
case parameters u and v are given a priori to facilitate the estima-
tion of other unknown parameters.

3.3. Inspection effect modeling with complete observations

As preliminaries for the following analyses, this part aims at es-
tablishing data modeling framework via maximum likelihood es-
timation (MLE). The complete log-likelihood function of 6. under
data (y—,z) can be represented by

logL(fc|y~.2) = log p(y~ |z, 8c) + log p(z|0.)

M N; Oj

et

|

1 1
(_j log2m — 5 log Atij — 10go>

i

-
=
(<)

i

- 2
[yijk _yij(l<—1)(1 - Zije1y) — :“ijkATijk]
ZO'ZATijk

=

Il
—_

|

-
I
_
Il

M N; Oj+1
+3 3" " [logl(u+v) —logI'(u) — log ' (v)
i=1 j=1 k=1
+ (u—-"1logzjp_1)+ (v-1) log(l *Zij(kq))]» (5)

where f;ji = facc(X;) + wk. Note again that we assume that z;;'s
are mutually independent and they are also independent of y and
the environmental factors. Under the current model setting, the
unknown parameters in the model can be summarized by 6. =
(face®)),i=1,...,M, w,02,u,v)T. If the effect of degradation re-
duction can be observed, the problem is simplified to a standard
MLE problem with all observations available in (5). Further, since
parameters u and v are independent of other parameters in the
model, the likelihood involving u and v can be independently max-
imized via the observations z;;,. The remaining part of the likeli-
hood can also be maximized by numerical methods.

3.4. Inspection effect modeling with hidden effect observations

When ylf;k is unobservable, the effect of degradation reduction
cannot be captured, which makes u and v in the model ines-
timable. This kind of information can also be quantified by a beta
distribution as described in (4). As discussed before, we assume
that the pilot distribution of z is known and characterized by ug
and vg, respectively. By holding the property of independence of
zji’s. the following log-likelihood is to be maximized to estimate
0= (facc®),i=1,....M, w,02):

logL(@ly,z) = log P(Jf |z, 9)

0;;

0jj

i

D53

=1 j=1 k=1

_ _ 2
ik = Vi (1 = Zijoen) — HipA iz
ZO'ZAT,’jk

1 1
(—i log2m — 5 log At — loga)

(6)

Due to the absence of z;j, the log-likelihood cannot be maximized
in its current form. Alternatively, we resort to the expectation-
maximization (EM) algorithm to obtain the parameter estimates.

1102

European Journal of Operational Research 292 (2021) 1099-1114

The EM algorithm is an iterative method to find the MLE for sta-
tistical models with latent variables. Following its first introduc-
tion by Dempster, Laird, and Rubin (1977), the EM algorithm has
been studied extensively from both theoretical and practical per-
spectives (McLachlan & Krishnan, 2007). Specifically, in reliability
engineering, the EM algorithm is commonly used to capture latent
random effect in life and degradation models (Chen & Ye, 2017;
Duan & Wang, 2018). Apart from the EM algorithm, the hidden
semi-Markov model was used for health diagnosis and prognosis
with latent effects in Dong and He (2007). A two-stage approach
was proposed in Lee, Hu, and Tang (2017) to estimate the model
from time-censored ADT data. The Kalman filtering technique has
also been prevailingly employed in the remaining life estimation
based on degradation models (Si, Wang, Hu, & Zhou, 2014). The
EM algorithm consists of two steps: (1) the E-step in which the
conditional expectation of the complete log-likelihood with respect
to incomplete data is completed; (2) the M-step in which the ex-
pected log-likelihood is maximized to generate parameter estima-
tion at the current iteration. Denote the conditional expectation of

the complete log-likelihood at iteration n by Q<0|0(")), we have

N 1 1
Q(0|0 ) :ZZOU<_§ log2m — 5 log Atyj, — logo)
i=1 j=1
0y

k=1

1
Atk

1
202

[(y;jk —Yijteen

N;

i=1 j=1

-

2 _ _ _
_facc (xi)Atijk - a)kATijk) + zyij(k_1) (yijk _yij(k—l)
— face (%) ATy — a)kATijk)E<Zij(k_1) ly~. 0<n)>

_ g™
+ Vi) E(Zizj<k71>|y 0" )]

In the expectation step, we need to compute E(z,-j(k,1)|y‘,0("))

(7)

2
and E(zi].(k_l)
of z;j(_1y cannot be identified as a known random distribution. We
have to resort to numerical methods to evaluate the expected val-

ues with respect to z;¢,_1). Related details are given in Appendix B.

ly—, 0(")>, Unfortunately, the conditional distribution

Next, the first order derivatives of Q(0|0(")> are provided for its

maximization. Following previous analyses, we also treat fi.c(x;)
as unknown parameters. Thus,

W == 02|:facc(xi) Z:E:A‘Cijk
j=1k=1
N Oy
i y - —
_Zz[yifk_yij(k—l)+yij(k_1>E<Zij(k-1>|y .0 )]
Jj=1k=1
N; 0j
+a)ZZkAt,-jk]. (8)
j=1k=1

By solving 8Q<0|0(”))/3facc(xi)=0, we obtain the following
equation:

(n+1)
acc

(x;) = Al(") - Bl-a)("), 9)

where
N; 0;j - - - - pm
2l 2k [yijk —Yijw-1) +yij(k—l)E<Zij(k*1)|y .0 )]
N; 0;j
21 2t Aiji

AW =

i )
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N; 0;j
Xl g kAT

) 0;; .
ZI}]':] 2 ko ATy
Further for w, we have
3Q<0|0(H)) 1 N; 0y
dw - Uz |: ZZ k< Uk z}(k—])
i=1 j=1 k=1
_ - )
+yij(k,1)E(zij(k—1)|y ,0 >
M N; Oy M N; 0y
+ Z Z kArijkfacc (Xi) +w Z Z sztijij s
i=1 j=1 k=1 i=1 j=1 k=1
(10)
of which the solution is followed by
M
Cw(n) = D(n) - Zfacc(xi)l:h (11)
i=1
where
M N; Oj
C= Z szTijk?
i=1 j=1 k=1
M N; O .
— — — _ n
D™ = Z k[yijk —Yija-1) +yz‘j(lH)E(zij(k—l)|J' .0 )]
i=1 j=1 k=1
N; OU
Fi = kAtl]k
j=1 k=1
To plug Eq. (9) to Eq. (11), the following equation is obtained
M
Co™ =D™ — 3" (A™ — Biw)F, (12)
i=1
which yields the estimates of w and faicc(%;; 6) given by
D™ —yM AMWE
w0 = T ZEA R i ) A0 B, (13)
C—>.iZ1 Bif;
Then for o2, likewise we have
oQ(010) 4 wm woN O
oo T 0 g0 2 1S O

2
_facc (Xi)ATijk - a)kAtijk) + 2y1}(k,1>()’,~}k _yi;(k—l)

— facc () AT — kafijk)E(Zij(k-u Iy, o(n))

_ 2 - g
+ (V1)) E(zl?j(,<_1)|y 0" )] (14)
The root of the equation can be easily obtained by solving
(n+1) G
)"0, -2 Y 50, e [T
i=1 j=1 i=1 j=1 k= jk
2
— face (¥) AT — wkATyy)” + Vi)
X (_y,—;k —yi3(k7]) - facc(xi)ATijk
—a)kAr,-jk)E (Zij(k—l) |y7, 0(")>
= YVE(Z2, oy, o™ 15
+ (yij(k—l)) Zijk-11Y ‘ (15)

Through (9)-(15), the current iteration of the EM algorithm is real-
ized. The iterations are continued until the convergence of param-
eter estimators.
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3.5. Guess of initial estimates and ending of iterations

To start the aforementioned EM algorithm, starting estimates
0 are needed. The convergence speed of the algorithm hinges
on the selection of 8. Here, we utilize the mean of the Zjj, to

approximately obtain 0 1t is obvious that E(z;j) = ug/(ug + Vo).
Therefore, to use E(z;) rather than unobservable z;;,, we have

(v

where the left-hand-side term is completely observable and af-
ter the manipulation of a typical MLE, 0 can be given as in
Appendix C.

Another issue of the EM algorithm is when to terminate the
iterations. The question poses a tradeoff between the estimat-
ing precision and computational efficiency. Generally, it is a com-
mon criterion to terminate the iterations when the proportions
of changes in absolute values of parameter estimators are smaller
than critical values &. It is a vector because different parameters
may have different critical values. For the problem described in the
paper, parameters play different roles depending on how decision
makers would utilize the estimates. For example, in terms of life
prediction, fycc(x;)’s are important for the extrapolation to under-
stand the degradation rate under normal usage conditions, espe-
cially in the presence of condition fluctuations, while w is more
useful if the device is frequently inspected. Regarding these relia-
bility issues, € can be properly determined to satisfy the required
estimating accuracy.

VoYijk-1)
Ug + Vo

ik ) ~ N(facc(xi)ATijk + a)kATijk’ GZATU’<)’ (16)

3.6. A hierarchical analysis to estimate facc(X;)

In aforementioned analyses, ficc(x;),i=1,...,M are treated as
unknown parameters for estimation. As one of the main objectives
of the study, the estimation of degradation rate under normal
usage condition is realized by a hierarchical method. Due to the
possible complexity in fic(x;), it could be onerous to derive
analytical iterative solutions to the parameters herein to the
EM algorithm. In view of this, the hierarchical method can pro-
vide reasonable estimation and meanwhile keep the mathematical
derivations in the paper directly adaptable in various scenarios. Liu,
Liu, and Xie (2015) reported a method to conduct meta-analysis
of independent studies via a confidence density (CD) approach. In
the paper, we employ a revised version of the confidence density
to estimate the parameters § in fic(x;), and we denote facc(x;)
by facc(%;; 8) in the following context. As discussed in Appendix A,
the form of fic(x;; ) depends on certain known physical mech-
anisms. To ensure faic(x;;8) to be greater than zero, we take
natural logarithm on it. Due to the invariance property of MLE, the
MLE of 10g facc (%;; 8) is readily given by 10g facc (%;; 8). Three times
differentiable mapping functions M = (My,..., My’ is used to
link log facc (%;; 8) and the unknown parameter vector §:

Ingacc(Xiia) :Mi(a)- (17)

Further, following Xie and Singh (2013), we can construct a CD
for log facc(x;;8),i=1,...,M, which is a multivariate normal

N R ’
(MN) distribution with mean (logfacc(xl; 3),...,10g facc(Rp; 8))

and covariance matrix {[I(@’)]‘1 @99T}1;M, where {-};.y denotes
the M x M square matrix partitioned from the upper left in the
original matrix and @ denotes an element-wise division. Note
that § is only involved in facc(x;; 8), thus we only use the first
M rows and columns in the original covariance matrix in the
model described in Section 3.4, and the parameters w and o2
are assumed known in the subsection. The covariance matrix is
approximated by the delta methods. For notational convenience,
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. A AnT
we let V= {[1(0)]"! @00 },.,. Additionally, we let V be the
covariance matrix under true parameters. Then the CD for § is
given in a form of MN distribution by

N 1 -~
h(8) = (27)~M?2 det(U)~1/2 exp (—iaTV*la), (18)
where a is a M-dimensional column vector with each element
given by

a; = 10g facc (X;; 6) - Ingacc(xﬁ 8), i=1,...,M

By maximizing (18), we obtain the point estimator of § under CD,
which we denote by dcp:

8o = arg msax h(d). (19)

The reason for using the CD estimation is twofold. First, as
mentioned previously, it facilitates the derivation of closed-form
estimators under the EM framework. Second, the efficiency of es-
timation is not compromised by the hierarchical operations by CD
estimation. The following analyses are presented to justify the lat-
ter statement. Under a conventional MLE framework, if 8 is directly
used to maximize the likelihood function in (6), we can obtain the
MLE of & given by

SDIR = argmsaxL(S;y*,z). (20)

For notational convenience, we let Iy
(log facc(®1; 8). ... 108 facc (Rpr; 6))/ and use L(8) and L(Z) to
respectively represent the likelihood functions L(8;y—,z) and
L(¢;y~,z), where L(¢; ¥, z) denotes the likelihood under ¢. Thus,
we have ¢ = M(8). Moreover, let n=3YM, Z’}i] 0;; be the total
number of observations in the test.

Lemma 1. As n — oo, the direct estimator SDIR obtained from (20) is
consistent and normally distributed. Specifically,

n'/2 (SDIR - 5) 4 MN (o, [J(é)Ti(C)J(&]_])

where 1(¢) =V-1 and J(8) = 9M(8)/08 is the Jacobian of M with
respect to 4.

(21)

The proofs of the lemma and the following results are provided
in Appendix D. Lemma 1 implies the asymptotic properties of the
direct estimators SDIR via the delta method. Next, we focus on the
CD estimators SCD with the following lemma.

Lemma 2. The first-order derivative of the log-confidence density
function logh(¢) =logh(8) with respect to &, is asymptotically
equivalent to the score function s(8) = dlogL(8)/d4.

According to Lemma 2, the CD estimator SCD and direct esti-

mator SDIR share exactly identical asymptotic properties. Therefore,
we can introduce Theorem 1 in analogy to Lemma 1 immediately
following Lemma 2.

Theorem 1. As n — oo, the CD estimator SCD is consistent and nor-
mally distributed. Specifically,

n'2 (SCD - 3) 4 MN (o, [J(s)Ti@)J(a)]]),

where 1(¢) = V-! and J(8) = M (8)/d8.

(22)

The statements in the theorem show that the CD approach is
asymptotically as efficient as the direct estimation approach. To
quantify the uncertainty in the CD estimators, we put forward
Corollary 1 based on Lemma 2 and Theorem 1.
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Corollary 1. The covariance matrix of n'/2 (SCD - 8) can be consis-

tently estimated by n3cp, where

by % _ogh(3 )
D [ 9898 0g ( CD)] )
Remark. On the one hand, the confidence density based methods
can address the aforementioned problem to hierarchically estimate
parameters without imposing difficulties in the EM algorithm. On
the other hand, as was advised in Liu et al. (2015), the informa-
tion from independent studies can be well combined via the con-
fidence density. In the problem we have been focusing on in the
paper, the proposed hierarchical analysis can be applied to degra-
dation tests under different acceleration functions and finally yield
integrated results for the parameters of interest, which could be a
subset or transformation of parameters that are already involved
in those tests.

In light of the previous analyses on the hierarchical estimation,
we have justified the efficiency of the CD approach. The estima-
tion of & can be readily obtained via (19). Due to the nonlinear
and non-additive properties of the Peck model, it is not intuitive to
compare the effects of environmental factors under the usage envi-
ronments, which could be of great interest to reliability engineers
and decision makers. The following proposition is given under the
Peck model to compare the effects brought by a single-unit change
in temperature and relative humidity.

(23)

Proposition 1. (Intuitive comparison of effects under the Peck model)
The baseline degradation rate at the reference environment
facc(Rpep; 8) under parameters § = (8q, Eq, 81) is more sensitive to
temperature if
Eq 1 RHref
11605 TKZ, &

and is more sensitive to relative humidity otherwise.

1,

The proposition can be straightforwardly justified by taking the
first-order derivative on fycc(x; 8) with respect to TK and RH, thus
the proof is omitted. The proposition will be used for illustration in
Section 6.2. If acceleration models other than the Peck model are
used, similar statements can also be entertained for effect compar-
ison.

4. Uncertainty quantification of the estimated parameters

To quantify the uncertainties in the parameter estimators is a
vital task to enable and justify the adoption of the estimators in
knowledge creation and decision making. Compared to point esti-
mation, interval estimation is usually preferable in real problems.
In this section, we discuss the large-sample based method to con-
struct confidence intervals for estimated parameters.

The assumptions of large-sample approximation are commonly
utilized to provide asymptotic covariance matrix of parameter esti-
mators from which confidence intervals are obtained. For complete
datasets, a routine practice is to compute the Fisher information
from the log-likelihood directly, the elements in the Fisher infor-
mation matrix I(@) are given by

1], = E|:—

Asymptotically, 8 follows a MN distribution, i.e., § ~ N(8, [1(0)]71).
Since @ is also unknown, we can alternatively employ the observed
information 1(9) to compute the asymptotic covariance matrix of 6.

For incomplete data sets with hidden observations as discussed
in Section 3.4, we adopt the approach from Oakes (1999), where
the Fisher information can be directly calculated via function Q.

2

5
36,90, (24)

logL(0|y,z)|0i|.
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Table 1
Experimental design m for the test under treatment 1-9 (numbered in parenthesis).
RH level Temperature level Total
303.15 Kelvin 318.15 Kelvin 333.15 Kelvin
(30 degree Celsius) (45 degree Celsius) (60 degree Celsius)
60 (1) 16/49 (4) 8/49 (7) 4/49 4(7
75 (2) 8/49 (5) 4/49 (8) 2/49 2[7
90 (3) 4/49 (6) 2/49 (9) 1/49 1/7
Total 4/7 2[7 1/7 1
Table 2
Parameters as input to simulation study.
Model Parameter  Value
Peck model So 1
Eq 2 x 107
61 3
Increased degradation rate w 1
Diffusion parameter o? 0.3
Degradation reduction (known)  ug 2
Vo 3

Accordingly, the observed Fisher information can be computed by

1(9) =—

Note that the second term in the r.h.s. of the equation is viewed
as the missing information due to the absence of z. Likewise, the
asymptotic confidence intervals for unknown parameters can be
constructed by the Fisher information. The derivation of (25) re-
quires manipulations based on Appendix B, and the analytical
details of (25) are given in Appendix E. As a side note, for the
parameter o2, the normal approximated confidence intervals are
usually inappropriate. Alternatively,we build the confidence inter-
vals based on logo? via the delta method. Further, the confidence
intervals of logo2 are transformed by an exponential operation to
quantify the uncertainty in o2. More approaches for uncertainty
quantification based on EM algorithm can be found in Louis
(1982) and Meng and Rubin (1991).

aZQ(m?)) 32Q<0|(?)

25
9000" (22)

9000 |
6=0

5. Simulation study

To facilitate the simulation, we need to specify an experimen-
tal design of the degradation test. By letting N = >"; N; be the total
test units and 7r; = N;/N be the proportion of test units allocated to
stress i, we suppose that & = (71, ..., Ty) is a pre-specified exper-
imental design for the simulation study. Without loss of generality,
the test is assumed to allow for the change in temperature and hu-
midity under the Peck model introduced in Appendix A. Addition-
ally, three levels for each factor are specified and we follow a 4:2:1
allocation rule for each factor (Meeker & Escobar, 1998; Meeker &
Hahn, 1977). To be specific, the test plan allocates more test units
to lower stress levels to avoid overwhelming extrapolation. The de-
tailed plan is shown in Table 1.

Parameters are set as shown in Table 2 for the purpose of il-
lustration. As a side note, the reference temperature and relative
humidity are fixed at TKef = 293.15 Kelvin (20 degree Celsius) and
RH,er = 50%, respectively.

To explore the effect of sample sizes, we will show results un-
der N =49, 98 and 147 in the simulation studies. Test units are as-
sumed to be inspected for 3 times. The following four sub-studies
constitute this section to explore the effectiveness of the proposed
model.
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5.1. Estimates from the EM algorithm and confidence intervals

First, point estimates are obtained from the EM algorithm un-
der 1000 simulation replicates for each sample size of interest. The
convergence criterion is set as &€ = 0.001 (1%.) for all parameters.
In Table 3, the mean bias and root mean squared error (RMSE)
are shown under N =49, 98 and 147. By observing the results,
we can imply that the EM algorithm can accurately estimate the
unknown parameters, with rather low mean bias and RMSE even
under moderate sample sizes. Moreover, the accuracy of the es-
timation enhances with the increase in sample size. Specifically,
compared to other parameters, the estimation accuracy of o2 is
relatively low but drastically improves over the sample size. A
possible reason behind this is that the estimation of o2 involves
both E(z;j_1)ly~.8™) and E(Z )y, 6™) as indicated in (15),
where more uncertainty of hidden variables are brought into the
estimators.

Further, with the extant point estimates, the confidence inter-
vals are constructed via the method proposed in Section 4. Specif-
ically, the (1 — &) x 100% confidence interval is given by

éiiza/zill(é)]n}]/z,

where [-]; denotes the ith diagonal element of a matrix and z, ),
is the 1 — /2 quantile of the standard normal distribution. In
Table 4, the coverage probabilities and the average lengths are
listed under the simulated datasets under three sample sizes. We
compute the 95% confidence intervals under large-sample approx-
imation. As the sample size increases, the coverage probability be-
comes closer to 0.95 and the average length is shortened. As seen,
even under a sample of 49, the confidence intervals perform well
and for most parameters over 90% of them can cover the true val-
ues. Again, influenced by the relatively large bias, the coverage
probability of o2 is moderately lower under small sample sizes.
Recall that we use the logo? to construct confidence intervals for
o2, The trick is proven to benefit the performance. A supporting
example is that under N = 49, we obtain a coverage probability of
0.841 comparing to 0.750 where o2 is directly used to quantify the
uncertainty.

5.2. Hierarchical analysis

We now consider the estimation of § in the Peck model by
means of the proposed hierarchical analysis. Likewise, the perfor-
mance of point estimation and uncertainty quantification are listed
in Table 5 and Table 6, respectively.

The results imply good performances with low mean bias and
RMSE for the point estimators as well as coverage probabilities
that are close enough to 0.95. It is worth noting that the hierar-
chical analysis consumes limited computational efforts. For exam-
ple, point estimation together with uncertainty quantification un-
der N = 147 only takes less than 1 seconds on a single Intel i5
core. If hierarchical analysis is not employed, the complexity of
facc(+) will hinder the derivation of analytical results in the EM al-
gorithm, which could introduce enormous computational burdens
to the problem.

5.3. Sensitivity analysis with respect to the degradation reduction

effect

As discussed in Section 3, the choice of ug and vy leans on the
experience of engineers. Misspecification of the distribution for z;
may occur and lead to higher bias of parameter estimation. Here,
by assuming the true values of uy and vy to be 2 and 3, respec-
tively, we change the assumed values to explore the influence of
misspecification under sample size N =49. Note that E(zg) = 0.4
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Table 3
Mean bias and RMSE of unknown parameters under N = 49,98 and 147.
Parameter 6 True N=49 N =098 N = 147
value - ; -
Bias RMSE Bias RMSE Bias RMSE
face(%1) 2.104 0.011 0.264 —0.001 0.190 0.008 0.155
face(%2) 4.110 0.010 0.283 0.005 0.202 0.004 0.162
face(3) 7.101 —0.005 0.344 0.004 0.250 0.006 0.200
face(X4) 2.751 —~0.001  0.288 0.003 0.206 0.001 0.173
Face (%) 5373 0.003 0.344 0.006 0.248 0.009 0.196
Face(Xg) 9284  -0.002 0.439 0.007 0.313 0.006 0.266
face(%7) 3.511 0.013 0.343 0.003 0.247 0.011 0.204
Face (%) 6.857  0.006 0.444 -0.006 0316 0.012 0.256
Face (%) 11.849  —0.001  0.647 -0.012  0.425 -0.004 0.358
w 1.000  —0.009 0.178 —-0.003  0.130 —-0.008  0.106
o2 0300  -0.044 0075 —0.020 0.049 —0.009  0.037
Table 4
Coverage probability and average length of the 95% confidence intervals of # under N = 49, 98 and 147.
Parameter 6 N=49 N=098 N = 147
Cov. prob.  Avg. len. Cov. prob.  Avg. len. Cov. prob.  Avg. len.
face(%1) 0.916 0.944 0.922 0.693 0.929 0.572
face(%2) 0.915 1.032 0.930 0.758 0.944 0.627
facc(%3) 0.919 1.267 0.938 0.924 0.954 0.766
face(X4) 0.918 1.044 0.933 0.766 0.948 0.633
face(X5) 0.926 1.254 0.933 0.922 0.948 0.762
face(X6) 0.927 1.665 0.951 1.215 0.949 1.002
face(%7) 0.933 1.249 0.933 0.917 0.948 0.757
face (Xg) 0.927 1.647 0.946 1.201 0.941 0.993
face(®9) 0.933 2.380 0.949 1.676 0.946 1.367
w 0.913 0.638 0.925 0.465 0.937 0.383
o? 0.841 0.220 0.901 0.167 0.936 0.140
Table 5
Mean bias and RMSE of estimated § under N = 49, 98 and 147.
Parameter § True value N =49 N =98 N =147
Bias RMSE Bias RMSE Bias RMSE
8o 1 0.050 0.176 0.025 0.112 0.017 0.092
Eq (x107) 2 —0.039 0.2481 —0.020 0.160 —0.012 0.138
81 3 —0.081 0.315 —0.031 0.187 —0.027 0.171
Table 6
Coverage probability and average length of the 95% confidence intervals of § under N = 49, 98 and 147.
Parameter & N=49 N =098 N = 147
Cov. prob.  Avg. len. Cov. prob.  Avg. len. Cov. prob.  Avg. len.
8o 0.933 0.542 0.944 0.389 0.957 0.319
Eq (x107) 0.944 0.692 0.941 0.508 0.958 0.419
81 0.905 0.686 0.938 0.506 0.948 0.417

and var(zg) = 0.04 hold under true values. In Table 7, we list the
bias and RMSE under four settings of misspecfied values of uy and
Vg as follows:

e High Mean: uy =3, vy = 2, i.e,, E(zg) = 0.6, var(zg) = 0.04;
Low Mean: ug = 0.6, vg = 2.4, i.e, E(zg) = 0.2, var(zy) = 0.04;
High Variance: ug=1.2, v9g=1.8, ie., E(zg) =0.4,var(zy) =
0.06;

Low Variance: ug=9.2, v9=13.8, ie, E(zg) =0.4,var(zy) =
0.01.

As seen from the result, the misspecification of mean of zj
brings considerable bias to the estimators of fic(%;) and w, while
the estimation of o2 suffers more when the variance is misspeci-
fied. For extrapolating analysis based on the ADT data, fycc(%;) and
w play more important roles. For this purpose, engineers should
focus on evaluating the mean effect of degradation reduction for a
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better estimation accuracy. To explore the influence of misspecifi-
cation on the estimation of parameters in the Peck model, we carry
out the hierarchical methods to estimate § and show the mean bias
and RMSE in Table 8. The estimated & suffers a considerable bias
when the mean of z; is misspecified, while the influence of mis-
specified variance exerts relatively smaller influence on the estima-
tion accuracy.

6. Case study
6.1. Data from Schneider Electric

Schneider Electric conducted a degradation test for a type of
electrical distribution device. A total of 104 test units underwent
the test under four different settings of temperature and humid-
ity. Specifically, two levels of temperature (313.15 Kelvin and 333.15
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Table 7

Mean bias and RMSE of unknown parameters 6 under misspecified ug and vo.
Parameter 6 High mean Low mean High variance Low variance

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

face(®1) -0.662  0.712 0.644 0.704 0.065 0.273 —0.008  0.287
face(%2) —0.566  0.642 0.539 0.625 0.052 0.305 —0.008 0.310
face(x3) —0.531  0.640 0.465 0.595 0.032 0.352 0.009 0.397
face(Xa) -0.614  0.676 0.600 0.674 0.063 0.294 -0.010 0.312
face(X5) -0.535  0.639 0.487 0.608 0.039 0.346 —0.008  0.366
face(X6) —0.498  0.700 0.458 0.684 0.041 0.486 0.007 0.556
facc(®7) -0.574 0671 0.550 0.662 0.054 0.352 -0.006 0377
face(x3) -0.529  0.699 0.441 0.654 0.025 0.450 —0.005  0.528
face(%9) -0.471  0.835 0.394 0.811 —0.006  0.647 0.001 0.762
w 0.755 0.776 -0.733  0.761 -0.058  0.192 0.008 0.191
o? -0.025 0.071 0.005 0.071 —0.078  0.096 0.213 0.239

Table 8

Mean bias and RMSE of unknown parameters § under misspecified uy and vy.
Parameter § High mean Low mean High variance High variance

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
8o -0.181  0.221 0.178 0.202 0.096 0.176 0.035 0.162
Eq (107) 0.152 0.262 -0.146  0.233 -0.052  0.187 —0.009 0.221
81 0.252 0.328 -0.234 0.321 -0.105  0.210 —0.023  0.208
TK=313.15, RH=60 TK=313.15, RH=95
127+ 1.2 1
17 1 1

o
fe))

Degradation level
o
0]

0.4 1
0.2 : :
1 1.5 1 1.5
Time Time
TK=333.15, RH=60 TK=333.15, RH=95
127
(0]
>
2 41
C
K]
]
©
©
(@)
[0
o
0.5 1 1.5
Time Time

Fig. 2. Degradation test data under 4 stress levels.

Kelvin) and two levels of relative humidity (60% and 90%) are con- be observed that the observation epochs (7;j,) and number of ob-
sidered. Note that 313.15 Kelvin and 333.15 Kelvin are equivalent servations (0;j,) vary across the test units in the test. The specifi-
to 40 degree Celsius and 60 degree Celsius, respectively. The test cations of the test are shown in Table 9. Based on the discussions
chambers provide generally higher stresses than the usage condi- with engineers from Schneider, we propose to model the degrada-
tion of the device, thus the test can be regarded as an ADT. The tion reduction effect by a beta distribution with parameters ug = 1
test data under each stress conditions are plotted in Fig. 2. It can and vy = 3.
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No. of iterations
Fig. 3. Convergence of the EM algorithm.
Table 9 At the current stage, it is not easy to tell how the environmental

Overview of the test from Schneider Electric.

factors influence the degradation rate in intuitive senses, thus we

utilize Proposition 1 evaluated at the CD estimate of § as follows:

— = 0.6189,

i TK; (in absolute Kelvin) ~ RH; (in %)  # of test units =~ Duration

1 31315 60 28 0.9091 E, 1 RHy
2 31315 95 24 0.9091 e

3 33315 60 28 0.9091 11,605 TKZ, &,
4 33315 95 24 1.4091

6.2. Model estimation

We proceed to the parameter estimation and uncertainty quan-
tification. First, we are interested in how the parameter estimators
converge through the iterations. In Fig. 3, the estimates at each it-
eration are plotted. We compare results under proposed initial es-
timates (see Section 3.5) against initial values of setting 0.1 for all
parameters. As shown, the proposed initial values can speed up the
convergence of EM algorithm by selecting the initial values close to
the MLE. Table 10 reports the MLE, asymptotic standard deviation
and 95% confidence intervals of # (LB and UB represents the lower
bound and upper bound of a confidence interval, respectively). We
can observe that the lower bound 95% confidence interval of w is
positive, which implies that the effect of degradation rate increase
is significant.

Next, the hierarchical analysis is carried out and the results are
shown in Table 11. It can be seen that both £, and §; are signifi-
cantly positive. Thus, temperature and relative humidity both exert
accelerating influences on the degradation.
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which implies that under the usage environments, the baseline
degradation rate is more sensitive to the change in relative hu-
midity. From the practical point of view, it is of more significance
to prevent the relative humidity from becoming overwhelmingly
high.

To demonstrate the advantages of the proposed model, we per-
form a comparison with the conventional ADT model that over-
looks the inspection effects. Specifically, the conventional model
assumes linear Wiener degradation paths. Table 12 lists parameter
estimates as well as the Bayesian information criterion (BIC) values
under various combinations of assumed u and v as well as under
the conventional Wiener degradation model. We can observe a re-
markable improvement by considering the inspection effects. Un-
der the BIC, the advantage of the proposed model is overwhelm-
ing. Thus there is no further need for the comparisons under cri-
teria with smaller penalty term of additional parameters, such as
the Akaike information criterion (AIC). Specifically, we can observe
that the estimates of o2 under the proposed models (around 0.02
to 0.03) are considerably smaller than that under the conventional
model (0.052). This implies that the proposed model can capture
more uncertainty systematically via the inspection effects, which
is ignored by the conventional model.
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face(X3) Jace(Ra) w o?

0.2173 0.5042 0.0857 0.0230
0.0569 0.0583 0.0264 0.0031
0.1057 0.3899 0.0340 0.0168
0.3289 0.6185 0.1373 0.0292

results of the estimated model to infer reliability characteristics
of interest. Some commonly used characteristics include mean
time to failure (MTTF) and life quantiles. By taking into account
both accelerated environmental factors and inspection effects,
the proposed methods can generate some interesting results that
differ from those under conventional approaches.

First, we are curious about the reliability under different en-
vironmental conditions, which is one of the main purposes of

Table 10
MLE and confidence intervals of unknown parameters.
Parameters
facc (xl) facc (xZ)
MLE 0.2104 0.3403
Asymptotic std 0.0573 0.0625
LB of 95 % CI 0.0981 0.2177
UB of 95% CI 0.3228 0.4629
Table 11
CD estimates and confidence intervals of parameters
in facc(‘)-
Parameters
8o Eq (x107) &
CD estimate 0.1014  1.8154 1.4721
Asymptotic std 0.0394  0.8454 0.3812
LB of 95% CI 0.0214  0.1584 0.7251
UB of 95% CI 0.1787  3.4723 2.2191

6.3. Analyses of reliability characteristics
The ultimate goal of degradation data modeling is to better

understand the reliability and support related decision making.
Towards this end, reliability engineers usually make use of the
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the ADT. Four combinations of temperature and relative humidity
are considered. An appealing property of the Wiener degradation
model is that the lifetime follows an inverse Gaussian distribu-
tion, under which the reliability function is analytical. By assuming
the threshold to be 0.5, the reliability curves and 80% pointwise
confidence bands subject to estimation uncertainty are shown in
Fig. 4. High temperature (TK = 303.15 Kelvin or 30 degree Celsius)
or high humidity (RH = 70%) shortens the lifetime. Further, the ef-

High TK (TK=303.15K, RH=50%)

O 1 1
0 5 10 15 20 25

Time

1High TK and RH (TK=303.15K, RH=70%)

0.8 1

0.6 1

047 1

027 1
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Time

Fig. 4. Reliability curves and pointwise 80% confidence bands under different environmental conditions with no inspection.
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Table 12
Performance comparison between the proposed model and the conventional model.
Model under Parameters BIC
(u,v)
facc (xl ) facc (XZ) facc (X3 ) facc (X4) w o 2
(0.5,0.5) 0.194 0.368 0.257 0.570 0.187 0.022 521
(0.5,1) 0.190 0.331 0.211 0.525 0.102  0.023 -511
(0.5,3.5) 0.197 0.300 0.191 0.455 0.028 0.026  —480
(1,0.5) 0.353 0.552 0.386 0.708 0216  0.028  -461
(1,1) 0.255 0.427 0.290 0.595 0.183  0.020 -543
(1,3) 0.210 0.340 0.217 0.504 0.086 0.023 512
2,1) 0.350 0.532 0.373 0.694 0.245 0.040 -363
(2,2) 0.289 0.452 0.308 0.609 0.186  0.028  —466
(2,8) 0.227 0.339 0.224 0.485 0.064 0.026 478
Conventional 0.145 0.188 0.124 0.272 NA 0.052 299
rrrrr ® yt=0 ) @yt =0
————— ¢y =015 10} ooyt =015
""" mooyt=030] ’ L ool yT = 0.30
,,,,, A .yt =045 oAyt =045
) @ 1+ ‘ i
s %
- (3 > ®
= So08F 1
i | = L o
s o 0.6 @
g L [0} m L S
m g @ = 04 - *
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Fig. 5. ML estimated mean and 0.1 quantile of RUL under different k and y™.

fect of relative humidity seems more significant, which validates
the statement from Proposition 1. Practically, managers should
keep the device working in cool and dry environments to pro-
long its lifetime. Additionally, due to the extrapolation of factors in
ADTs, there exists considerable variability in the reliability curves,
especially under lower TK and RH, of which decision makers need
to beware. More conservative decisions are usually suggested in
the presence of larger model uncertainty.

As the company’s another objective is to predict the remaining
useful life (RUL) for devices of different age and inspection history,
under the estimated model, we plot the mean RUL and 0.1 RUL
quantile under different combinations of current degradation level
(y*) and historical times of inspection (k) in Fig. 5. As is in accor-
dance with intuitions, a higher y* or k leads to smaller RUL. To
be more specific, the mean RUL decreases in proportion to the in-
crease in y*, while the influence of k is more significant when it is
smaller. The behavior of 0.1 RUL quantile is similar except a faster
decrease in the quantile when y* becomes higher. It is notewor-
thy that, in the presence of inspections, the reliability function in
a general form over a time horizon from zero to infinity is onerous
to derive due to the randomness in both degradation levels and the
effect of inspections. Decision makers can employ the RUL distri-
bution with given inspected degradation levels, which is tractable,
to characterize the reliability characteristics and support future
decisions.
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For a better exposition of degradation paths under different in-
spection intervals, we simulate and plot the expected degradation
path and confidence bands in Fig. 6. We set the same scale for x-
and y-axes for comparison. Obviously, more frequent inspections
lead to faster degradation despite the existence of degradation re-
duction effect. Interestingly, we observe that the uncertainty in the
degradation paths is the smallest when At =0.1. It is probably a
result of tradeoff between the uncertainties in the two types of
inspection effects. For the studied device, it may not be wise to in-
spect the system too frequently. Nevertheless, the decision maker
should consider the risk of unexpected failures under limited in-
formation.

7. Concluding remarks

We focus on an atypical degradation modeling problem moti-
vated by a real example. As a first attempt to deal with partially
observable data with manifold inspection effects, the study utilizes
the EM algorithm to iteratively derive the parameter estimators.
Further, a hierarchical confidence density is used to accurately es-
timate the acceleration model. Uncertainty quantification is carried
out via large-sample approximation. The manipulation of the pro-
posed model can be widely applied to different types of ADT data.
Simulation studies validate the proposed methods and show satis-
factory estimating performance under different sample sizes. The
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Fig. 6. Expected degradation paths and pointwise 90% confidence bands under different inspection intervals.

computational burden is significantly reduced by the hierarchical
analysis. A case study from Schneider Electric demonstrates the ad-
vantage of the model over conventional degradation models. A se-
ries of reliability analyses based on the estimation results are pro-
vided to explore managerial insights from practical perspectives.

The involvement of inspection effects can be further investi-
gated for reliability modeling and management. Bayesian methods
can be explored to characterize the hidden inspection effects. Dy-
namic approaches to system inspection and maintenance optimiza-
tion based on the current model are of interest to effectively man-
age industrial systems. As is mentioned in Section 3.6, it is also
useful to combine the information from different tests, which puts
forward some opportunities for future research. For more detailed
extensions to solve real industrial problems, relevant discussions
of other degradation models such as the gamma processes and in-
verse Gaussian processes and more models for inspection effects
can be further explored.
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Appendix A. Acceleration mechanism and link functions

The appendix discusses the acceleration mechanism under two
common experimental factors: temperature and humidity. Note
that we only consider the parametric form of link function facc(%;)
in (3) here. To establish parametric models for fycc(%;), some do-
main knowledge on the physical failure mechanism is required.
Otherwise, it is suggested to employ nonparametric extrapolating

111

methods to predict the degradation rate at use conditions. By de-
noting the parametric form of ficc(®;) by facc(X;; 8), a Peck model
is used for the joint modeling of temperature and relative humid-
ity (Peck, 1986). To be specific,
1 1 RH; \*
o= it~ 7))
face (Xi: 8) = S0 exp 11605 \TK,et TK;/)) \RH,
where x; = (TK;, RH;) is the vector of absolute temperature and rel-
ative humidity at stress level i, and X, = (TKef, RHyer) is covariate
vector at reference stress level, which is often set at the covari-
ate values under the use condition. The unknown parameters are

8 = (8¢, Eq, 81)T, where E, is the activation energy that is constant
to a material and &, characterizes the effect of humidity.

Eq

(A1)

Appendix B. Density function of z;;_1)

Given observable y~ and 0("), we have
f (y*; o, Z)f (z; 0("))

—. pm
£(y0™)
® J/I}k—)’fj(k,n(1—2)—Mf;k)ATijk
0/ ATijic
B o Vi Vijer, 1=X) =150 Aty
0 o/ ATiji
To facilitate further analysis in Appendix E, the equation can be
elaborated into the following form:

fz. (z|y* 0(")) — F(2) fpeta(z; Uo, Vo)
o F @) feea 3, vo)

Fare <z|y-, 0<n>> _

)fBeta (2; o, Vo)

)fBeta (x; ug, Vo)dx

(B.1)
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where

2
(yi_j(kq)z) + 2Y501)2 (y;k Vi1 ~ M;,k ATuk)
2(02)" Aty

F(z) =exp |: :|
(B.2)

Moreover, the first-order derivatives of f with respect to 6™ are
given by

0o (2070™) 57 (2)fera 2 0, 0) J§ ) era 6, v
9™ - ; _ 2
! fo F (%) fpeta (X; U, Vp)dx
F(2) fpeta(2; Uo, Vo) fol ]:éi (%) fpeta (X: Ug, Vp)dx

2
I:fol F(2) faeta (X o, Uo)dx]

(B.3)

where fé, (z)’s are calculated by

Fys z
/ _ ij(k=1)
Fhuctn) @) = ()™
FYii 1.2k
(k-1)
Fo(z) = ——
(02)(”)
_ 2 _ _ _
FL@)=F (yij(k—l)z) + zyij(k—l)z(yijk —Yijoe—1y ~ //“uk Afuk) .

m7?
2|:(O'2) :I ATijk

(B.4)
Appendix C. Expression for initial guesses of starting points
Following the analytical results in Section 3.4, we can calculate

the initial values of parameter estimates by the following equa-
tions:

(0) _ D-X¥ AR
@ = I E
0
a(cc) (‘(Y(I))) =A; - Bia)(o)
( ) Zl 1 Z] 1 01] - G
where

N =0ij [+ _ _
Zj:l Zkzjl [yijk _-yij(k—l) +yij(k—l)u0/(u0 + UO)]

Ai = N; 0y
2oit1 2y ATiji

M N Oy
D=3 "> kWi~ Yiju-r) + Yijento/ (Uo + Vo).

i=1 j=1 k=1

M N Oy 5
G= ZZZ A‘L’ " {( Uk _y;j(k—l) - facc(XE)ATijk — kaTijk)

i=1 j=1 k=1

+2Y41) (yi]k = Vit — face R ATy — kaTijk)Uo/(“o + 1)

+ V) [/ (o + vo)? + uovo/[ (tto + v0)? (ttg + v + 1)]]}.

Appendix D. Technical proofs in Section 3.6
D.1. Proof of Lemma 1
In the following proof, we assume that the regularity conditions

described in Appendix B in Liu et al. (2015) hold for the likelihood
contributions and ¢ is identifiable in the form of likelihood under
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the current model. As a side note, we are using the denominator-
layout notations. Further, let L*(¢) = L(§) under ¢ = M(8). We ap-
ply the Taylor approximation as follows:

ad
38 lOgL(SDIR) ~ logL(S) + 5 7 log L(8) Gor—$). (D)
The Lh.s. of the equatlon is zero and further we obtain
38 lOgL(S) 1®' 7 lOgL (9] (D.2)
and

logL(8) :J(6>T[ 1ogL*<<:>]J<8> =—J(®'T (IO,

(D.3)
where T'(¢) is the observed Fisher information matrix. By plugging
(D.2) and (D.3) to (D.1), the form of n!/2 <3D1R - 6) is rewritten by

9 9
3608" acaL’

"2 (8o - ) = [J(S)T r@)J(s)] <J®)" [nmaa; log L*(;)}.

It is well known that as n — oo, I'(¢£)/n converges to 1(¢) in prob-
ability. As implied in Liu et al. (2015), the random part of the equa-
tion follows MN distribution:

71/21 logL*(&) LY MN(O, i(;))

9¢
which can immediately imply that n!/2 (SDIR —8) follows a MN

n

distribution with zero mean, indicating the consistency of SDIR. The
covariance matrix of dpr is then obtained by

var ' (8o - 8) | = [J(S)TT(C)J(S)]_] < J@) 1)) x [J(S)Ti(é‘)](ﬁ)]_]

identity

- [roricne]”

This completes the proof of Lemma 1.
D.2. Proof of Lemma 2

We can rewrite logh(8)/08 as

81%";(5) _ IV E - M@)).

For dlogL(8)/08, a Taylor approximation is employed and we ob-

tain

dlogL(d)
a6

(D.4)

=@’ 10g L*(¢)

9

logL* () + a; logL* (8)(¢ - c)}

~J(8) [ 5%
SO [0-V"1 -] =18 V(& -M@). (D5)

As seen, (D.4) and (D.5) are equal under the Taylor approximation.
Thus, they have the same asymptotic properties, which completes
the proof.

Appendix E. The observed Fisher information from the method
in Oakes (1999)

The following second-order derivatives of Q are given and used
for the construction of the Fisher information in (25):

82Q Ni  0ij 82Q .
m'(a 0) ;;Aﬁ]k’ Wl(a_a)
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N; Oy

= ,\4 facc(x,)ZZAfuk

j=1 k=1

N; Oj

Z Z [ l]k 1](k—1)
j=1 k=1

Ni

Hijo-nE (Zu(k nly™ )]+ Z

j=1k

92Q A
R =0y =—
0 face (Xﬁ 3)860 I ) =
1
G2«

|(0 0)=-

3(02

9’Q

G0 =8)=

)
N—

+.Vi_j(k_1)E<zij(k—1) ly=.0

M N 0 R M N 0Oy
+ZZZI<ATijkfacc(xi)+@ZZZkZATijki|y
i=1 j=1 k=1 i=1 j=1 k=1
90 (6016™)
A J0=b) -
3(02)

M N;

ZZOU

i=1 j=1

z
o

i ij

M
55 [ (Vi = Vi — Facelt) A
i=1

6
] Afuk

T
=
i
[R

)

~OkAT) + 2y — fac®) ATy

U(k 1)

A _ 2 2 )
Zij-n Y ,0>+(yij(k_1)) E<zij(k—1>|3’ 0)]
The second-order derivatives directly provide the first term in

the r.h.s. of (25). For the second term, derivatives can be di-
rectly taken on (8) to (15) with respect to 6™ and replace o™

Uk U(k 1)

\_/\_/

—(l)kAT,]k

with 8. Specifically, we need to compute 8E<zij(k,1)|y‘, 9)/39 and

8E(zi2j(k7])|y—, 9)/89, Combining the results from (B.1) to (B.4) in

Appendix B, analytical results can be obtained to finally compute
(25) from:

aE<Zu(k nly~ 0) 10 fz 1)<Z|y 0)

/ — zdz,
90 0 d6;
8E<Zi2j(k—l)|y_’a> 1 afzmk—l)(zly_’ é) 2
= = / = z°dz.
0 9,’ 0 0 9,'
References

Bae, S. J., Yuan, T, Ning, S., & Kuo, W. (2015). A Bayesian approach to modeling
two-phase degradation using change-point regression. Reliability Engineering &
System Safety, 134, 66-74. https://doi.org/10.1016/j.ress.2014.10.009.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., West, M.,
et al. (2003). The variational Bayesian em algorithm for incomplete data:
With application to scoring graphical model structures. Bayesian Statistics,
7(453-464), 210.

Chen, P, & Ye, Z.-S. (2017). Random effects models for aggregate lifetime data. IEEE
Transactions on Reliability, 66(1), 76-83. https://doi.org/10.1109/TR.2016.2611625.

Dempster, A. P, Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1), 1-38.

Dong, M., & He, D. (2007). Hidden semi-Markov model-based methodology for
multi-sensor equipment health diagnosis and prognosis. European Journal of Op-
erational Research, 178(3), 858-878. https://doi.org/10.1016/j.ejor.2006.01.041.

Duan, F, & Wang, G. (2018). Exponential-dispersion degradation process models
with random effects and covariates. IEEE Transactions on Reliability, 67(3), 1128-
1142. https://doi.org/10.1109/TR.2018.2849087.

1113

European Journal of Operational Research 292 (2021) 1099-1114

Hong, Y., Duan, Y., Meeker, W. Q., Stanley, D. L., & Gu, X. (2015). Statistical methods
for degradation data with dynamic covariates information and an application to
outdoor weathering data. Technometrics, 57(2), 180-193. https://doi.org/10.1080/
00401706.2014.915891.

Hu, C.-H,, Lee, M.-Y,, & Tang, ]. (2015). Optimum step-stress accelerated degrada-
tion test for Wiener degradation process under constraints. European Journal of
Operational Research, 241(2), 412-421. https://doi.org/10.1016/j.ejor.2014.09.003.

Jakob, F, Kimmelmann, M., & Bertsche, B. (2017). Selection of acceleration mod-
els for test planning and model usage. IEEE Transactions on Reliability, 66(2),
298-308.

Lee, M. Y., Hu, C. H,, & Tang, ]J. (2017). A two-stage latent variable estimation proce-
dure for time-censored accelerated degradation tests. IEEE Transactions on Reli-
ability, 66(4), 1266-1279. https://doi.org/10.1109/TR.2017.2731680.

Levine, R. A., & Casella, G. (2001). Implementations of the Monte Carlo EM algo-
rithm. Journal of Computational and Graphical Statistics, 10(3), 422-439. https:
//doi.org/10.1198/106186001317115045.

Li, X.-Y., Wu, ]J.-P, Ma, H.-G,, Li, X., & Kang, R. (2018). A random fuzzy accelerated
degradation model and statistical analysis. IEEE Transactions on Fuzzy Systems,
26(3), 1638-1650. https://doi.org/10.1109/TFUZZ.2017.2738607.

Limon, S., Yadav, O. P,, & Liao, H. (2017). A literature review on planning and analysis
of accelerated testing for reliability assessment. Quality and Reliability Engineer-
ing International, 33(8), 2361-2383. https://doi.org/10.1002/qre.2195.

Lin, Y., Su, Y., Cheng, Y., Tao, L., Noktehdan, A., Chong, ., ... Jin, H. (2017). Lithium-
ion battery capacity fading dynamics modelling for formulation optimization: A
stochastic approach to accelerate the design process. Applied Energy, 202, 138-
152. https://doi.org/10.1016/j.apenergy.2017.04.027.

Liu, D., Liu, R. Y., & Xie, M. (2015). Multivariate meta-analysis of heterogeneous stud-
ies using only summary statistics: efficiency and robustness. Journal of the Amer-
ican Statistical Association, 110(509), 326-340. https://doi.org/10.1080/01621459.
2014.899235.

Liu, L, Li, X.-y., Zio, E., Kang, R., & Jiang, T.-m. (2017). Model uncertainty in accel-
erated degradation testing Analysis. IEEE Transactions on Reliability, 66(3), 603-
615. https://doi.org/10.1109/TR.2017.2696341.

Louis, T. A. (1982). Finding the observed information matrix when using the EM
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 44(2),
226-233.

McLachlan, G., & Krishnan, T. (2007). The EM algorithm and extensions: 382. John
Wiley & Sons.

Meeker, W. Q., & Escobar, L. A. (1998). Statistical methods for reliability data. John
Wiley & Sons.

Meeker, W. Q., Escobar, L. A, & Lu, C. J. (1998). Accelerated degradation tests:
modeling and analysis. Technometrics, 40(2), 89-99. https://doi.org/10.1080/
00401706.1998.10485191.

Meeker, W. Q., & Hahn, G. J. (1977). Asymptotically optimum over-stress tests to es-
timate the survival probability at a condition with a low expected failure prob-
ability. Technometrics, 19(4), 381-399.

Meng, X.-L, & Rubin, D. B. (1991). Using EM to obtain asymptotic variance-
covariance matrices: The SEM algorithm. Journal of the American Statistical Asso-
ciation, 86(416), 899-909. https://doi.org/10.1080/01621459.1991.10475130.

Mercier, S., & Castro, . (2019). Stochastic comparisons of imperfect maintenance
models for a gamma deteriorating system. European Journal of Operational Re-
search, 273(1), 237-248. https://doi.org/10.1016/j.ejor.2018.06.020.

Oakes, D. (1999). Direct calculation of the information matrix via the EM. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 61(2), 479-482.
https://doi.org/10.1111/1467-9868.00188.

Peck, D. S. (1986). Comprehensive model for humidity testing correlation. In Pro-
ceedings of the 24th international reliability physics symposium (pp. 44-50). https:
//doi.org/10.1109/IRPS.1986.362110.

Shi, Y., Escobar, L. A., & Meeker, W. Q. (2009). Accelerated destructive degradation
test planning. Technometrics, 51(1), 1-13.

Si, X. S. (2015). An adaptive prognostic approach via nonlinear degradation model-
ing: Application to battery data. IEEE Transactions on Industrial Electronics, 62(8),
5082-5096. https://doi.org/10.1109/TIE.2015.2393840.

Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2014). Estimating remaining useful life
with three-source variability in degradation modeling. IEEE Transactions on Reli-
ability, 63(1), 167-190.

Tsai, T.-R,, Sung, W.-Y,, Lio, Y. L., Chang, S. I, & Lu, J.-C. (2016). Optimal two-variable
accelerated degradation test plan for gamma degradation processes. IEEE Trans-
actions on Reliability, 65(1), 459-468. https://doi.org/10.1109/TR.2015.2435774.

Tseng, S.-T., & Lee, 1.-C. (2016). Optimum allocation rule for accelerated degradation
tests with a class of exponential-dispersion degradation models. Technometrics,
58(2), 244-254. https://doi.org/10.1080/00401706.2015.1033109.

Wang, D., & Tsui, K.-L. (2017). Statistical modeling of bearing degradation sig-
nals. IEEE Transactions on Reliability, 66(4), 1331-1344. https://doi.org/10.1109/
TR.2017.2739126.

Wang, P, Tang, Y., Bae, S. J., & Xu, A. (2018). Bayesian approach for two-phase degra-
dation data based on change-point Wiener process with measurement errors.
IEEE Transactions on Reliability, 67(2), 688-700. https://doi.org/10.1109/TR.2017.
2785978.

Xiao, X., & Ye, Z. (2016). Optimal design for destructive degradation tests with ran-
dom initial degradation values using the Wiener process. IEEE Transactions on
Reliability, 65(3), 1327-1342. https://doi.org/10.1109/TR.2016.2575442.

Xie, M.-g., & Singh, K. (2013). Confidence distribution, the frequentist distribution
estimator of a parameter: A review. International Statistical Review, 81(1), 3-39.
https://doi.org/10.1111/insr.12000.


https://doi.org/10.1016/j.ress.2014.10.009
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0002
https://doi.org/10.1109/TR.2016.2611625
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0004
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0004
https://doi.org/10.1016/j.ejor.2006.01.041
https://doi.org/10.1109/TR.2018.2849087
https://doi.org/10.1080/00401706.2014.915891
https://doi.org/10.1016/j.ejor.2014.09.003
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0009
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0009
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0009
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0009
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0009
https://doi.org/10.1109/TR.2017.2731680
https://doi.org/10.1198/106186001317115045
https://doi.org/10.1109/TFUZZ.2017.2738607
https://doi.org/10.1002/qre.2195
https://doi.org/10.1016/j.apenergy.2017.04.027
https://doi.org/10.1080/01621459.2014.899235
https://doi.org/10.1109/TR.2017.2696341
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0017
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0017
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0018
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0019
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0019
https://doi.org/10.1080/00401706.1998.10485191
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0021
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0021
https://doi.org/10.1080/01621459.1991.10475130
https://doi.org/10.1016/j.ejor.2018.06.020
https://doi.org/10.1111/1467-9868.00188
https://doi.org/10.1109/IRPS.1986.362110
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0026
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0026
https://doi.org/10.1109/TIE.2015.2393840
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0028
https://doi.org/10.1109/TR.2015.2435774
https://doi.org/10.1080/00401706.2015.1033109
https://doi.org/10.1109/TR.2017.2739126
https://doi.org/10.1109/TR.2017.2785978
https://doi.org/10.1109/TR.2016.2575442
https://doi.org/10.1111/insr.12000

X. Zhao, P. Chen, O. Gaudoin et al.

Ye, Z.-S., Chen, L.-P, Tang, L. C., & Xie, M. (2014). Accelerated degradation test plan-
ning using the inverse Gaussian process. IEEE Transactions on Reliability, 63(3),
750-763. https://doi.org/10.1109/TR.2014.2315773.

Ye, Z.-S., Hu, Q., & Yu, D. (2019). Strategic allocation of test units in an accelerated
degradation test plan. Journal of Quality Technology, 51(1), 64-80. https://doi.org/
10.1080/00224065.2018.1545495.

Ye, Z.-S., & Xie, M. (2015). Stochastic modelling and analysis of degradation for

highly reliable products. Applied Stochastic Models in Business and Industry, 31(1),
16-32.

1114

European Journal of Operational Research 292 (2021) 1099-1114

Zhai, Q., & Ye, Z.-S. (2018). Degradation in common dynamic environments. Techno-
metrics, 60(4), 461-471. https://doi.org/10.1080/00401706.2017.1375994.

Zhang, M., Gaudoin, O., & Xie, M. (2015). Degradation-based maintenance deci-
sion using stochastic filtering for systems under imperfect maintenance. Euro-
pean Journal of Operational Research, 245(2), 531-541. https://doi.org/10.1016/].
ejor.2015.02.050.

Zhao, X., Gaudoin, O., Doyen, L., & Xie, M. (2019). Optimal inspection and replace-
ment policy based on experimental degradation data with covariates. IISE Trans-
actions, 51(3), 322-336. https://doi.org/10.1080/24725854.2018.1488308.


https://doi.org/10.1109/TR.2014.2315773
https://doi.org/10.1080/00224065.2018.1545495
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0037
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0037
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0037
http://refhub.elsevier.com/S0377-2217(20)31000-6/sbref0037
https://doi.org/10.1080/00401706.2017.1375994
https://doi.org/10.1016/j.ejor.2015.02.050
https://doi.org/10.1080/24725854.2018.1488308

	Accelerated degradation tests with inspection effects
	1 Introduction and motivation
	2 Literature review
	3 Degradation models with inspection effects
	3.1 Preliminaries
	3.2 Wiener degradation model and inspection effect
	3.3 Inspection effect modeling with complete observations
	3.4 Inspection effect modeling with hidden effect observations
	3.5 Guess of initial estimates and ending of iterations
	3.6 A hierarchical analysis to estimate 

	4 Uncertainty quantification of the estimated parameters
	5 Simulation study
	5.1 Estimates from the EM algorithm and confidence intervals
	5.2 Hierarchical analysis
	5.3 Sensitivity analysis with respect to the degradation reduction effect

	6 Case study
	6.1 Data from Schneider Electric
	6.2 Model estimation
	6.3 Analyses of reliability characteristics

	7 Concluding remarks
	Acknowledgments
	Appendix A Acceleration mechanism and link functions
	Appendix B Density function of 
	Appendix C Expression for initial guesses of starting points
	Appendix D Technical proofs in Section 3.6
	D.1 Proof of Lemma 1
	D.2 Proof of Lemma 2

	Appendix E The observed Fisher information from the method in Oakes (1999)
	References


