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Abstract
A cellular automaton for simulating territories is presented. In it, cells have a certain amount of markings of two different
groups. The amount of markings for each group gets higher based on the amounts of that group in neighboring cells and the
amount of markings of the opposite group in the current cell to simulate an avoidance tendency. The markings also decay at a
certain rate. Depending on the parameters, the simulation can end up in a mixed state, where there are no clear territories, or
a segregated state, where both groups have a large amount of connected cells where they are dominant. Small changes in these
parameters can change the outcome significantly. Unless an unconsidered combination of parameters changes it, this model
is not the most realistic. It could however have uses in more influence-based processes, such as the spread and boundaries of
languages or religion.

1. Introduction

The formation of territories between groups is a complex process.
It can of course be found between humans in gangs or tribes, but
also in nature struggles for space are common, with ants [HL80]
and bacteria [GMLF19] for example. Creating models of these phe-
nomena can result in a better understanding of them and allows the
possibility to act on them.

A model for simulating the evolution of gang territories already
has been made previously by utilizing a random-walk approach
[AB18]. This means that in a two-dimensional lattice, after each
time interval, agents (i.e. gang members) take a step in a random
direction, of which the probabilities are weighted to prefer avoid-
ance of rival gang territory. During this, they leave behind markings
to signify their territory.

Simulating these agents, whose numbers can be into the tens of
thousands, is computationally expensive, however. Using another
approach would allow for faster and more expansive simulations.
One possibility for such an approach would be a cellular automa-
ton. Here, each cell on the lattice has a state, and with each time in-
terval it updates its state depending on the state of the cells around
it. This can be used in simulations about competition for space,
as shown by Young [You84] in the context of skin pattern forma-
tion. An adaptation of the aforementioned random-walk model still
needs to be made though.

The question to be answered in this paper is therefore: "Does
a cellular automaton for simulating territories, using only territo-
rial markings, get similar outcomes as a random-walk algorithm?"
Answering this would mean the construction of a cellular automa-
ton that provides comparable results to a random-walk model mod-
elling the same gang territory problem. Specifically, only the state

of the territories will be used for this, without any agents, to see
whether a model of this kind would be sufficient. As stated before,
this could be a much more scalable model due to the simplified
dynamics.

The paper is be structured as follows. section 2 explains re-
lated concepts and literature. In section 3, the model and algo-
rithm are discussed. After this, section 4 describes the experiments
performed and outlines the results of them. section 5 then follows
with a discussion of the results. section 6 contains the conclusion
and recommendations for possible future research. Lastly, section 7
talks about the ethical aspects of the research.

2. Related Literature

In this section, all the prerequisite knowledge and outcomes from
previous research is listed.

2.1. Cellular automata

Cellular automata consist of a lattice with discrete cells, and each
of these cells has a discrete state, which updates every time step
to a potentially new state depending on the states of its surround-
ing cells, also known as the ’neighborhood’ [Wol83]. The way in
which the neighborhood affects the cell is dependant on predefined
update rules. This can be done in any possible number of dimen-
sions. Depending on the possible states and update rules, they can
generate interesting patterns. The best-known example of a cellular
automaton is "Conway’s Game of Life" or simply "Life" [Gar70].
Here, the number of dead or alive cells is counted in the consid-
ered cell and the eight cells directly around it. Then, depending on
these amounts, it is determined whether the cell should be dead or
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alive in the next iteration. With these rules, a myriad of complex
behaviours can occur.

For a regular cellular automaton, the set of states a cell can take
on is finite. However, it is also possible to use a cellular automa-
ton with continuous states. This is called a "continuous cellular au-
tomaton" [Wol02, p. 155-160], and is what will be used for the
model described in this paper.

2.2. Modelling skin patterns

A cellular automaton for situations where the occupancy of space
is the defining characteristic is used by Young [You84] to simulate
skin patterns. Here, there are colored and uncolored cells. The col-
ored cells produce activators and inhibitors. The activators try to
convert nearby cells to colored ones, while the inhibitors make far
away cells uncolored.

This can be converted to a cellular automaton by making cells
get a positive effect from cells inside a certain radius, but a negative
effect from ones between that radius and a larger one. If the sum of
all these values is then positive the cell becomes colored, and if it
negative it becomes uncolored. A sum of 0 means the cell will keep
its state. Eventually, it converges to have a stable state where none
of the cells change anymore.

With this model, skin patterns found on certain animals are
present in the final state. Depending on the parameters set, this can
be spotted, but also striped.

2.3. Random-walk model

The model for simulating gang territories by Alsenafi and Barbaro
(from here on out called the random-walk model) [AB18] is what
will be adapted into a cellular automaton in this paper. While this
model is made in the context of simulating gangs, this paper gen-
eralizes this to groups in the light of ethical concerns (see subsec-
tion 7.1). Therefore, from here on out "gangs" will be referred to as
"groups" and "graffiti" as "markings".

In the random-walk model, N agents divided over two groups
(A and B) walk around in biased random directions on a two-
dimensional lattice S of size L × L and leave their markings be-
hind. This lattice has periodic boundary conditions, meaning that
for cells on the edges the cell on the opposite edge is a neighbor as
well. This can be imagined as a torus shape – the grid wraps around
and does not have edges. The probability of an agent of group i
moving from one cell (x1, y1) to a neighbouring cell (x2, y2) is:

Mi(x1 → x2, y1 → y2, t) =
e−βξ j(x2,y2,t)

∑(x̃,ỹ)∼(x1,y1) e−βξ j(x̃,ỹ,t)
(1)

with i ∈ {A,B} and j ̸= i. Several variables and parameters can be
found: ξi(x,y, t) is the density of markings left behind by agents of
group i, and β ≥ 0 is the parameter that indicates the avoidance of
the other group’s markings. (x̃, ỹ) ∼ (x1,y1) represents all neigh-
bours of (x1,y1).

As can be seen from Equation 1, the probability of an agent go-
ing to a specific neighboring cell is influenced by two things: the
avoidance and the opposite group’s markings. If the target cell has

Figure 1: A visualization of a red agent moving to a different cell
in the random-walk model [AB18]. A darker shade of blue indi-
cates more markings of the opposite group. The size of the arrows
denote the probability of moving to the neighboring cell. If a cell
is a darker shade of blue, the arrow is smaller to denote a smaller
probability of going there for the agent.

a relatively high amount of markings from the opposite group, the
agent is more likely to avoid that cell. Additionally, if the avoidance
parameter β is set to a higher value this effect will be amplified. A
lower β would result in the agents caring less about the opposite
group’s markings during their decision making. An abstract visual-
ization of this process can be seen in Figure 1.

The expected agent density ρi(x,y, t +δt) of gang i for each cell
(x,y) with a time step δt can then be calculated as follows:

ρi(x,y, t+δt)= ρi(x,y, t)+δt ∑
(x̃,ỹ)∼(x,y)

ρi(x̃, ỹ, t)Mi(x̃→ x, ỹ→ y, t)

−δt ρi(x,y, t) ∑
(x̃,ỹ)∼(x,y)

Mi(x → x̃, y → ỹ, t) (2)

If the model is considered with discrete time steps (i.e. δt = 1), the
first and last terms cancel out and the new agent density is only
dependant on the agents coming in from neighboring cells.

The expected updated graffiti density after every time step is
then:

ξi(x,y, t +δt) = ξi(x,y, t)− (λ ·δt)ξi(x,y, t)+(γ ·δt)ρi(x,y, t)
(3)

where λ ∈ [0,1] is the decay rate of graffiti, and γ ∈ [0,1] is the
probability for an agent to put down graffiti.

Running this model with a well-mixed starting state on a 100×

© 2023 The Author(s)



M. P. van Bijsterveldt / A cellular automaton for modelling territories 3

Figure 2: Evolution of a well-segregated state from the random
walk model. A red or blue color means the respective group has
a majority in graffiti there, and a green color means the amount
is equal. L = 100, NA = NB = 100 000, λ = γ = 0.5, δt = 1 and
β = 2 · 10−5. Increasingly large connected territories from both
groups can be seen. Adapted from [AB18, p. 771].

100 lattice with 100 000 agents for each group, λ = γ = 0.5, δt = 1,
and a low avoidance of β = 1 · 10−6 keeps the state well-mixed,
meaning no clear large connected territories have formed. Increas-
ing β to 2 ·10−5 gives a well-segregated state, where those do form,
as seen in Figure 2.

2.3.1. Order parameter

In the random-walk model, an order parameter is also used. This
is a value that signifies the order in a certain state, i.e. how mixed
or segregated it is. A value of 0 indicates a completely well-mixed
state, while a value of 1 occurs when one group controls the entire
lattice. Thus, the order parameter is always in between those two
for realistic states.

The order parameter is calculated as follows:

ε(t) =
(

1
2LN

)2

∑
(x,y)∈S

∑
(x̃,ỹ)∼(x,y)

(ρA(x,y, t)−ρB(x,y, t))

· (ρA(x̃, ỹ, t)−ρB(x̃, ỹ, t)) (4)

If the left and right part of the multiplication inside the sum have
the same sign they contribute positively, but if they are different
it will be a subtraction from the final value. The magnitude of the

Figure 3: Influence of β on the final order parameter for different
lattice sizes. NA = NB = 100 000, λ = γ = 0.5 and δt = 1. From
β = 0.5, the final value of the order parameter becomes higher with
an increase of β, up to around 1.5. This range is where the phase
transition occurs. From [AB18, p. 775].

contribution to the final result is determined by how large the dif-
ference is. The total is then normalized by dividing by 4, the total
number of cells, and the total amount of agents. This is intuitive,
as the first sum always gives 4 values between -1 and 1, the sec-
ond sum sums over every cell, and the values of the agent densities
depend on the total amount of agents available.

Overall, this value gets larger if neighboring cells both have the
same group’s agents as majority, and smaller if they have differ-
ent groups as majority. This means that for mixed states, the order
will be small, as there are a lot of neighboring cells with differing
groups. Conversely, for a state where each group has large con-
nected territories most neighboring cells will be controlled by the
same group, resulting in a large value.

One way in which the order parameter is used is to show the evo-
lution of the order over time. Additionally, the influence of param-
eters on the final outcome can be made visible. Plotting it against
β shows a phase transition, meaning that between certain β val-
ues it changes from a well-mixed state at low β values to a well-
segregated state at high values (Figure 3).

3. Methodology

In this section, the way in which the experiments were carried out is
described. First, in subsection 3.1 the designed cellular automaton
is described. Then, in subsection 3.2, an order parameter used for
analyzing states is defined.

© 2023 The Author(s)
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3.1. Model

The expected markings density in the random walk model (Equa-
tion 3) depends partially on the previous amount of the markings
in the current cell and neighboring cells, and partially on the agent
density. The agent density itself depends on surrounding states and
the markings therein. This dependence on a previous state of neigh-
bors is exactly what a cellular automaton relies on. Therefore, a
cellular automaton makes for a logical model as well here.

To investigate a different way of territory evolution, this cellular
automaton will work solely based on markings. Each of its cells
has two positive continuous values as its state: one for each group,
representing the markings density of that group. It has a predefined
size of L× L, and just like in the random-walk model the lattice
uses periodic boundary conditions. Part of the update rule is based
on Equation 3: The first two terms, regarding the influence of the
previous state, are similar: the only difference is the removal of the
δt factor, as we are using discrete time steps. However, the third
term uses agent density, which is not present in this model. There-
fore, a different way of accommodating this interaction between
neighboring cells is used.

Similar to how the movement probability for agents is deter-
mined in the random-walk model, the new value of the markings
of each group is based on the markings of the four cells directly
neighboring it. The average of these values is taken, and multiplied
by an exponential factor and a positive real number α. The expo-
nential factor uses the negative of an avoidance parameter β and
the markings of the opposite group in the current cell. This sig-
nifies the tendency of avoiding the other group’s territory: both a
larger avoidance value or more markings of the opposite color in
the current cell will lessen the effect of neighboring markings. The
factor α is then used to scale the influence of these neighboring
markings.

The final update rule is therefore:

ξi(x,y, t +1) = ξi(x,y, t)−λξi(x,y, t)

+αe−βξ j(x,y,t) ·
∑(x̃,ỹ)∼(x,y) ξi(x̃, ỹ, t)

4
(5)

with i ∈ {A,B} and j ̸= i. λ ∈ [0,1] represents the decay of mark-
ings, β ≥ 0 the avoidance of the opposite group’s markings, and
α ≥ 0 scales the influence of neighboring markings.

This update rule makes the model work in a way that can best
be conceptualized using influence or pressure. Instead of actively
avoiding certain cells or not, cells can be seen as receiving a certain
amount of pressure from surrounding cells. More markings in the
neighboring cells results in more pressure, but this can be lessened
by the current cell having a large amount of markings from the
opposite group. This is visualized in Figure 4.

In section 4 experiments are performed with this model to see if
behaviour and results similar to that of the random-walk model can
be recreated.

3.2. Order parameter

As can be seen in subsection 4.1 and 4.2, for some values a well-
mixed state is reached, and for others a well-segregated state. In

Figure 4: A visualization of how neighboring cells affect the cur-
rent one in the cellular automaton. A darker shade of blue means
more blue markings in the cell. The red in the center cell is an indi-
cation of how much red markings are there. The arrows denote the
influence of the blue markings on the center cell, which gets larger
if more blue markings are present in the neighboring cell. In the left
picture, a relatively lower value of red markings is present, mean-
ing the blue markings from surrounding cells have a lot of influ-
ence. In the right picture, the red value is higher, meaning the blue
from the surrounding cells has less influence, resulting in smaller
arrows. This process happens for both groups in every cell.

order to distinguish these in an exact – non-visual – way, and to
find the phase transition between them, an order parameter is used.

Simply replacing agent density with the amount of markings in
Equation 4 would not work. This is because in the random-walk
model, the number of agents is constant and can therefore be used
to normalize the order parameter. In the cellular automaton model,
the total amount of markings will vary per iteration. Thus, there is
nothing to scale with to ensure a normalized value.

To solve this, ratios between the markings of each group in each
cell are used instead. As outlined in subsubsection 2.3.1, the value
of this order parameter should be 0 for a perfectly-mixed state, and
1 for a perfectly-ordered state. The order parameter for this model
becomes:

ε(t) =
(

1
2L

)2
∣∣∣∣∣ ∑
(x,y)∈S

∑
(x̃,ỹ)∼(x,y)

ξA(x,y, t)−ξB(x,y, t)
ξA(x,y, t)+ξB(x,y, t)

·ξA(x̃, ỹ, t)−ξB(x̃, ỹ, t)
ξA(x̃, ỹ, t)+ξB(x̃, ỹ, t)

∣∣∣∣ (6)

Using this formula, if in a cell the amount of markings for both
groups is similar, the numerator and thus the fraction will be close
to 0. If the difference is very large, the numerator will approxi-
mately be equal to the larger group, as will the denominator, result-
ing in a value close to 1 or -1, depending on which group was the
larger one. Thus, after multiplication, the value will always be be-
tween -1 and 1. As each cell has 4 neighbours and there are L×L
cells, dividing by 4L2 (or (2L)2) after summation gives a normal-
ized value for the order parameter.

This order parameter will be used in subsection 4.3. There, the
order parameter over time for the examples given in subsection 4.1
and 4.2 can be found. With this, the evolution of the order over time
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Figure 5: A well-mixed state from a 100× 100 cellular automa-
ton at t = 0 and t = 1000. The used values for the parameters are
λ = α = 0.5 and β = 1 · 10−5. The color of each cell depends on
the ratio of red and blue markings in it: if the red group has more
markings the color will be redder, and the opposite for blue. A pur-
ple color means the cell has roughly the same amount for both.

can be seen. After this, the final order parameter is plotted against
β directly, to show the trend of how β affects the final result.

4. Results

In this chapter, the outcomes of the cellular automaton will be
shown. In subsection 4.1 and 4.2 examples of the model are shown:
one with a low avoidance (β = 1 · 10−5), and one with a high
avoidance(β = 2) respectively. For both instances a 100×100 cel-
lular automaton is used, with λ = 0.5 and α = 0.5. These values
are chosen as a starting point, as they roughly balance the influence
of the previous state of a cell and that of its neighbours. At t = 0,
every cell is randomly assigned a markings value of 1 of one of the
groups and 0 of the other. It should be noted here that if a different
starting value is used for each cell, β must change by the same fac-
tor but inverted to keep results the same. This is because if done so,
the exponential part in Equation 5 stays at the same value.

After this, in subsection 4.3, an analysis of the order parame-
ter is performed using the same parameters. Then it is shown how
changing a parameter, specifically λ, can change the outcome sig-
nificantly in subsection 4.4.

4.1. Well-mixed state

Using the parameters described above, with β = 1 · 10−5, a well-
mixed state is reached. From Figure 5 it can be seen that every cell
becomes a shade of purple. This is due to the graffiti of both groups
being roughly equal, thus resulting in an approximately even mix
between red and blue. β is thus indeed too small to create segrega-
tion, and the markings spread around evenly.

4.2. Segregated state

Again using the parameters from the introduction of this section,
but with β = 2 this time, a segregated state forms. In Figure 6 it
can be seen that the territories cluster together into increasingly

Figure 6: A well-segregated state from a 100× 100 cellular au-
tomaton at t = 0, t = 10, t = 100, t = 1000 and t = 5000. The used
values for the parameters are λ=α= 0.5 and β= 2. The state seen
at t = 1000 is a semi-stable state, which means it stays roughly like
that for hundreds of iterations before the blue group takes over.

large ones. At t = 1000, both groups have a connected territory. The
boundaries between them are blurry, as there the state is still some-
what mixed. These territories stay mostly unchanged for a large
amount of iterations, usually hundreds or even a couple thousand.
However, eventually one of the groups takes over and consumes
the entirety of the other. This can be seen at t = 5000, where the
blue group has almost entirely eradicated the red group. The part in
which the state is still semi-stable does have segregated territories,
and thus will be considered as such. The value of β is high enough
to let separated territories form.

© 2023 The Author(s)
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Figure 7: Order parameter for the well-mixed state in Figure 5.
λ = α = 0.5 and β = 1 ·10−5. Due to the mixed state it stays close
to 0.

4.3. Order parameter

The patterns shown in the evolution of the mixed and segregated
states can also be made visible using the order parameter. By plot-
ting the order parameter at each step of the cellular automaton, the
coming together of the territories into larger ones can be identified.

Figure 7 shows that for the well-mixed state the order parameter
quickly goes towards 0 and stays there. The spike at the start is
caused by the territories being more well-defined temporarily at
the start due to the way the cellular automaton is initialized.

In Figure 8 the evolution of the order parameter of the segre-
gated state shown in subsection 4.2 is plotted for a 1000 iterations.
It can be seen that the order parameter starts low but rises towards
a higher value, indicating that the territories get more coherent. At
around 0.7, the semi-stable state is reached. If we lengthen the time
axis to go up to t = 6000, as is shown in Figure 9, it can be seen
that the order parameter slowly declines at first, which likely hap-
pens due to increased mixing at the boundaries of the territories. At
approximately t = 4000 the value of the order parameter suddenly
starts to go up rapidly. This is the point at which the blue territory
starts to take over.

To show the effect of the avoidance on the order parameter,
in Figure 10 the order parameter after 1000 iterations is plotted
against β. A 1000 iterations is enough for the semi-stable segre-
gated states to form, while not yet reaching the time when one of
the groups takes over. For each of the β values sampled, the av-
erage of five different tries is taken to lessen the effect of outliers
(although some are still slightly visible). An upwards trend is vis-
ible, where low β values stay mixed and high values get to their
segregated states.

Figure 8: Order parameter for the segregated state in Figure 6 up
to t = 1000. λ = α = 0.5 and β = 2. It stays relatively steady from
approximately t = 400, indicating the semi-stable segregated state
has been reached.

Figure 9: Order parameter for the segregated state in Figure 6 up
to t = 6000. λ = α = 0.5 and β = 2. After a long period of slow
decline, a sudden increase can be spotted when the blue group takes
over.
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Figure 10: Order parameter after 1000 iterations plotted against
the avoidance parameter β. λ = 0.5 and α = 0.5. For each point
measured the value shown is the average of 5 different simulations
to eliminate outliers.

Figure 11: A segregated state from the cellular automaton at t = 0
and t = 1000, λ = 0.6, α = 0.5 and β = 2. The higher λ results in
less well-defined borders, but does form large connected territories.
Slightly redder and bluer patches can bee seen.

4.4. Influence of λ

By adjusting the decay rate λ, but keeping α = 0.5 and β = 2, the
clearness between territory boundaries changes. With an increase
of λ, which means graffiti decays more, the boundaries between
the (semi)-stable states begin to fade, but connected territories can
still (vaguely) be seen, as shown in Figure 11. Doing the oppo-
site, meaning graffiti decays less, gives more defined boundaries
between territories, but this comes at the expense of the grouping
of territories, as can be seen in Figure 12.

If we change λ to 0.48, both groups still have one big segre-
gated territory, as visible in Figure 13, but boundaries are now well-
defined. This difference in state is also visible in the order param-
eter, which now is even closer to 1 (Figure 14). Moreover, even

Figure 12: A segregated state from the cellular automaton at t = 0
and t = 1000, λ = 0.4, α = 0.5 and β = 2. The lower λ results in
more well-defined borders and a stable, converged state, but does
make the territories form less like large patches.

Figure 13: A well-segregated state from the cellular automaton at
t = 0 and t = 1000, λ = 0.48, α = 0.5 and β = 2. Territories are
large and connected, but the vague borders of Figure 6 are not
present anymore.

after 10000 steps the territories remain stable, indicating a stable,
converged state is reached.

However, by changing λ by this light amount, the well-mixed
state can’t be reached anymore. Instead, it looks approximately
mixed for a while, but then suddenly separates into stable large
territories.

5. Discussion

The cellular automaton described in this paper does produce well-
mixed and segregated states for the parameters used in subsec-
tion 4.1 and 4.2. However, in particular for the segregated states,
the structures of the territories that can be seen while it gets to
the semi-stable state (Figure 6) look different from those in the
random-walk model (Figure 2). Additionally, the eventual domi-
nance of one of the groups is a noticeable difference from what
happens in the random-walk model.

Just like in the random-walk model, the change from mixed to
segregated can be seen when looking at the order parameter plotted

© 2023 The Author(s)
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Figure 14: The order parameter plot over time corresponding to
Figure 13. The order parameter is closer to 1 compared to the one
in Figure 8. λ = 0.48, α = 0.5 and β = 2.

against β in Figure 10. Compared to the random-walk model (Fig-
ure 3) it rises way slower however, and as such does not have the
abrupt sharp phase transition that occurs with that one.

Another difference from the random-walk model is that the pa-
rameters do not work in the same way, as seen in subsection 4.4.
A slight change in λ changes the way the result looks and behaves
significantly. By looking at how the order parameter behaves when
comparing different combinations of the parameters, this behaviour
could be further investigated in future research.

The cellular automaton does have the advantage that it takes less
iterations for the final states to be reached. In the random-walk
model, t goes up into the hundreds of thousands before the final
state is achieved. For the model from this paper, the (semi-)stable
states are reached before t = 1000. Thus, computation times are
shorter.

Overall, with the parameters used for this paper, the cellular au-
tomaton is not a replacement for the random-walk model. The pa-
rameters do not change the outcome in quite the same way, and
the results come close but do not mimic those of the random-walk
model.

6. Conclusion

The question to be answered was whether it is possible to con-
struct a cellular automaton which has comparable outcomes to the
random-walk model, by only using markings. While the random-
walk model uses agents walking around and leaving behind their
markings, the developed model uses the influence of the markings
of cells around it to determine how it should update its own amount
of markings.

With the model used it is possible to get end results which are
similar to those of the random-walk model, but the way in which
they evolve differs. The influence of the parameters which are

present in both – λ and β – is also not equal. The model is thus
not a substitution for the random-walk model.

However, there is a possibility that a certain combination of pa-
rameters that was not found in this research does generate more
comparable results. As seen in this paper, a small change of a pa-
rameter can make outcomes vary quite drastically. Thus, a more
in-depth analysis of parameters could be performed in the future
by comparing the values of the order parameter generated by their
combinations.

While it may be less realistic for territorial evolution simulations,
it can potentially be useful for other processes. The cellular automa-
ton provides a way of simulating processes based on influence or
pressure instead of moving agents. Examples of this could occur in
more sociological areas, such as how languages, religions, or cul-
tures spread and mix at their borders. Thus, in future research it
could be interesting to apply the model to these scenarios and see
how it compares to the real world.

7. Responsible research

This section concerns ethical concerns; both in the content of the
research and the reproducibility.

7.1. Ethics

The observant reader might have noticed the paper about the
random-walk model talks about gangs. Gangs are usually affili-
ated with crime. This means that a model that models their terri-
tories and evolution of them can be used by law enforcement to
act against this, before it actually happens. This is called predictive
policing. This is a major ethical concern, as this often results in a
self-reinforcing effect [EFN∗18]. This problem only gets worsened
by the fact that gangs are often more present in less well-off com-
munities, and thus this self-reinforcement will only lead to them
becoming even more marginalized [KHA∗99].

Because of this, in this paper I have chosen to use the word
"group" instead of "gang" like in the paper of Alsenafi and Barbaro
to signify that it is a simulation and not necessarily a direct con-
version from real-world dynamics. Additionally, a model like this
has relevance outside of gang territories, such as in nature, where
territorial processes happen too, like with ants [HL80] and bacte-
ria [GMLF19].

As the term "graffiti" does not make sense outside of the context
of gangs, the broader term of "markings" is used to signify how
groups claim territory.

7.2. Reproducibility

To ensure the research performed in this paper can be verified, the
model is clearly presented (in subsection 3.1). Together with the
mentioning of what parameters are used, the results are easily re-
produced, or even expanded upon.
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