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ABSTRACT

De Vriend, H.J. and Stive, M.J.F., 1987, Quasi-3D modelling of nearshore currents. In: P.P.G.
Dyke (Editor), JONSMOD ’88. Coastal Eng., 11: 565-601.

Existing concepts of wave-induced nearshore current models, in the cross-shore vertical plane
(2DV) and depth-integrated (2DH), are combined to a quasi-3D mathematical model. This com-
bination is tested for reproducing correct results in 2DV and 2DH situations, The importance of
the various contributions to the wave-induced secondary circulation in the vertical plane is inves-
tigated for realistic parameter ranges, which leads to the conclusion that both the non-breaking
and the breaking fraction of a random wave field in the surf zone generate important secondary
currents.

Additional computations show the relevance of a 3D-approach of nearshore currents, even in
seemingly simple situations like a plane sloping beach with obliquely incident waves.

INTRODUCTION

The physical understanding and the mathematical modelling of hydrody-
namical processes in the nearshore zone are of increasing interest, not only to
coastal engineering and coastal zone management, but also to many other dis-
ciplines, such as oceanography of shallow seas, ecology and geology. The last
two decades have brought substantial progress at these points, in the modelling
of short waves (generation, propagation, dissipation) as well as in the mod-
elling of complex tidal and wave-induced currents. Also the understanding and
modelling of coastal sediment transport have made an important step foreward
in this period.

As a result of these developments, the mathematical modelling of coastal
morphology has come within reach and various institutes all over the world
are developing such models now. So far, most of these models are formulated
in a single vertical plane (Bailard, 1982; Dally and Dean, 1984; Swain and
Houston, 1984; Stive and Battjes, 1984; Stive, 1985, 1986) or in terms of depth-
integrated quantities (Fleming and Hunt, 1976; Coeffé and Péchon, 1982;
McAnally et al., 1984; De Vriend, 1986a). Only very few take account of the
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spatially three-dimensional character of the phenomena (Farmer and Wald-
rop, 1977; Koutitas et al., 1985; McAnally et al., 1986; also see De Vriend,
1986hb).

At present it seems as though mathematical models in two spatial dimen-
sions, either horizontal or in the vertical plane, are not sufficient for many
practical applications. The integration of these two classes of models, and
eventually a new generation of fully 3D models is needed. As a first step to-
wards this integration, a quasi-3D model of nearshore currents is developed,
on the basis of existing concepts of 2DH (horizontal plane) and 2DV (vertical
plane) current models. The results is a combination of a depth-integrated model
and a vertical profile technique.

MORPHOLOGICAL COMPUTATION PROCEDURE

Before going into the specific aspects of 3D wave and current models, they
are put into the context of a combined morphological computation procedure.
To that purpose an aggregate flow chart is given in Fig. 1.

The principal assumptions underlying the computation procedure are:

— a one-way interaction between the components of the model, as indicated in
the flow chart; and

— applicability of a vertical similarity approximation to all 3D-dependent vari-
ables in the system.

In terms of the computational algorithm, the former assumption implies that

each constituent model can be run with the results from the other models as

fixed parameters and that the modules in Fig. 1 can be treated one by one in

the indicated sequence. Hence, this procedure is a generalization of the so-

called quasi-steady computation procedure, a very common approach in mor-

phological models.

For the wave motion, the assumptions imply that the mild-slope approxi-
mation applies (Berkhoff, 1976) and that current refraction can be disre-
garded or modelled using a rough estimate of the current field. For the time-
mean current they imply that it is nearly horizontal and that the shallow-water
approximation applies.

The consequences of these assumptions are given further attention in the
next sections, where the wave module is discussed briefly and the net current
modules are presented in detail.

THE WAVE MODULE

There is a wide variety of mathematical models describing the generation,
propagation and dissipation of waves in the coastal zone, so there seems to be
a choice of possibilities to fill in the wave module. Each model, however, has
been developed and tested primarily for separate application, i.e. to provide
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Fig. 1. Aggregate flow chart.

final results that are not processed in a subsequent chain of models. In a com-

pound model like the present one, the wave model is subject to specific require-

ments, such as:

- the need of different output quantities (e.g. the wave-induced driving forces
and the near-bottom orbital velocity);

- a sufficient numerical accuracy of the results, to stand their further process-
ing (involution, numerical differentiation); and

- it must not give rise to spurious interactions with the other models, neither
physical, nor numerical.

Consequently, caution has to be exercised in selecting the wave model (cf. De

Vriend, 1985b; Dingemans et al., 1987).

For the kind of morphological models concerned here, it is not yet quite clear
how these requirements work out. Current research at Delft Hydraulics, on the
interaction of the modules in a morphological model without secondary flow
(De Vriend, 1986b), indicates that some degree of diffraction is needed in the
wave model, in order to obtain realistic results. The picture is still incomplete,
however, and a lot of work remains to be done in the complicated field of model
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interactions. For the time being, a trial-and-error procedure seems to be the
only feasible approach.

A reasonable first shot for nearshore applications seems to be a wave model
without energy production by wind input or dissipation by bottom friction,
with propagation based on linear wave theory and with breaking-induced dis-
sipation formulated according to Battjes and Janssen (1978). The latter for-
mulation has proved quite useful in nearshore current models (Dingemans et
al., 1987) and in cross-shore morphological models (Stive and Battjes, 1984;
Stive, 1985, 1986). Theoretically, the wave-induced driving forces can be de-
rived from the radiation stress gradients. A numerically and physically more
robust and transparent formulation, however, relates the force to the energy
dissipation rate. It was first mentioned by Longuet-Higgins (1970) and Battjes
(1974) for refracting wave fields. Its validity for wave fields with refraction
and diffraction was recently shown by Dingemans et al. (1987).

NEARLY HORIZONTAL WAVE- AND TURBULENCE-AVERAGED FLOW

The starting point of the current model are the Reynoldfs equations for tur-
bulence-averaged flow. If, apart from the wave-induced orbital motion, the cur-
rent involves no strong vertical accelerations, the time-mean pressure can be
approximated by:

prpy—p{W*) (1)
in which

D =pressure,

Pn =hydrostatic pressure,

p =mass density of the fluid,

w =vertical component of the wave orbital velocity,

{..> =average over the waves.

If, in addition, the Boussinesq-hypothesis is adopted to model the Reynolds
stress terms, the wave- and turbulence-averaged horizontal momentum equa-
tions can be written as:

du du OJu Jdu 10p, 09 du d du) d( du
gt T Wax Ty T War TV 5oy +ax(”ﬁ;)Jray(”tay)Jraz(”‘EE)

—%(<a2>—<w2>)—a‘9—y(<aﬁ>>—§—z~<<aw>) )

dv v v dv 16p, [ v\ a8/ av\ o/ o
6t+u6x+ uay+waz+fcu— *p dy +6x<”“5§> +—a;(vt—é;)+£<vt~a—z->

d d
— 3 (CA0Y) () = () ~2-(C0) (3)
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with

X,y =horizontal co-ordinates in a cartesian system,

z =vertical co-ordinate in this system,

U, v, w =wave- and turbulence-mean velocity components,
Dy =pn+pg(z— {2 ) =total hydrostatic pressure,

fe = coriolis coefficient

g =acceleration due to gravity,

{zs) =mean water level,

v, =turbulence viscosity (eddy viscosity),

i, O =horizontal components of the wave orbital velocity.
Together with the corresponding equation of continuity:

du dv dw

Tt 3 +o-=0 (4)

these equations describe the wave- and turbulence-averaged current, which
may still be time-dependent on a time-scale much larger than the wave period
or the time-scale of turbulence.

Equations (2) and (3) include one other assumption, which can be ex-
plained as follows. Let the instantaneous velocity component U be given by:

U=u+i+u' (5)
in which u’ denotes the turbulent velocity fluctuation, then it is assumed that:
(UPy=u?+a?y +{u') (6)

This means that turbulence and wave motion are assumed to be uncorrelated.
In view of the “first-shot” approach, this seems reasonable for a combination
of waves and currents.

Outside the bottom boundary layer, the last term in either momentum equa-
tion is neglected with regard to the corresponding Reynolds stress term, since
the horizontal and vertical velocity components of the orbital velocity are ap-
proximately 90 degrees out of phase, whereas the turbulent velocity compo-
nents are much less so.

SIMILARITY APPROACH

The basic idea of the current model is a similarity approach, assuming that
each dependent variable can be written in the form:

u=zai(x>y:t)fi<z.—h)2b> (7)

in which 2, denotes the bottom level and h the water depth for z,= (2. The
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quantity ; is independent of z and the vertical distribution function f; is in-
variant, or at most weakly varying, with x and y.

If the series in eqn. (7) would be extended to an infinite number of terms,
this approach would correspond with the formal separation of variables. In the
present model, it is attempted to define the constituents in such a way, that a
truncated series of only a few terms yields a good approximation of the solution.

The dependent variables in the current model are the pressure p, (or the
mean water surface elevation {z,)) and the velocity components u, v and w.
Besides, the system requires a turbulence closure, relating v, to the velocity
field.

The series (7) for the total hydrostatic pressure simply reduces to:

Pn=Dn(x,y,t) (8)

which reflects the assumption of hydrostaticity.
The current is split into what will be called a “primary” and a “secondary”
current, according to the definition:

u=u,+u, with up=ﬁ(x,y,t)fp<z——h—zh) and U,=0 (9)
v=u,+v, with v,,:ﬁ(x,y,t)fp(z_th) and 7,=0 (10)

in which the suffix p denotes the primary current, the suffix s the secondary
current and the overbar the depth-averaged value. So, by definition, the depth-
averaged flow is determined entirely by the primary current.

It has to be noted that the definitions (9) and (10) are not unique, as long
as the vertical distribution function f, is not specified. Besides, u, and v, remain
to be written as a similarity series like eqn. (7). These points will be considered
in the next sections.

Once the horizontal components of the primary and the secondary flow ve-
locity have been defined, the vertical components follow from the equation of
continuity (4):
dw, du, du,
—me—————Ft and —=-—-

dz dx  dy 0z Jdx dy
For simplicity, an algebraic turbulence closure is adopted, relating v, algebra-
ically to the local flow velocity. Besides, v, is assumed to be described by the
one-term similarity “series’”:

(11)

v, =7, (x,y,t) ¢(z‘hz*’) (12)

in which the depth-average 7, and the vertical distribution function ¢ remain
to be specified.
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TURBULENCE MODEL

The Boussinesq hypothesis combined with an algebraic relationship be-
tween the turbulence viscosity and the flow velocity has often been applied
with success in models of large-scale steady or slowly varying flow in shallow
water. In coastal models, the presence of short waves and their effects on the
turbulent exchange of momentum have to be taken into account.

Compared with the steady flow case, the principal short-wave effects are:

- an increase of the turbulence production and the eddy viscosity, due to the
wave orbital motion; and ' )
- if the waves are breaking: an increase of the turbulence production and the

eddy viscosity.

Investigations of the near-bottom velocity distribution for combinations of
waves and currents have led various authors (Lundgren, 1972; Grant and Mad-
sen, 1979; Asano and Iwagaki, 1984; Coffey and Nielsen, 1984; Van Kesteren
and Bakker, 1984) to essentially the same concept of incorporating the wave
effects on the mean current velocity. The velocity distribution is modelled as
if there were no waves, only the bottom roughness length, is given a higher
value to account for the velocity reduction in the wave boundary layer. So the
eddy viscosity distributions commonly applied in steady or weakly varying flow
models can be utilized here, as well.

It has to be noted that, in terms of the present definitions, this concept
pertains only to the primary velocity outside the wave boundary layer. If the
mean velocity inside this layer has to be described, the eddy viscosity has to be
adjusted there. As a first approximation, Coffey and Nielsen (1984) propose a
constant value of v, in a part of the wave boundary layer:

vi=xu,6(1-36/h) for 2z—z,<0d (13)

in which x is Von Karman’s constant and u, is the current friction velocity.

The possibly enhanced vertical mixing due to the wave orbital motion is
assumed not to affect the vertical distribution function of the eddy viscosity,
but only its depth-averaged value. In most models, the increase of 7, is incor-
porated via the increase of the current friction velocity u,:

7, =Ku.h (14)

in which K is a constant that remains to be determined.

Breaking waves give rise to an additional production of turbulence. Starting
from the similarity of the flow in a spilling breaker with that in a wake, Stive
and Wind (1986) estimate the eddy viscosity in the region below the trough
level in breaking waves without a primary current at 0.01 ch, where ¢ denotes
the celerity of the waves. The authors explicitly state, however, that on the
basis of the available data they are not able to specify the vertical distribution
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of v,, so that their estimate rather pertains to the effect of wave breaking on
7,. On the other hand, Battjes (1983) proposes to relate the horizontal diffu-
sion coefficient in wave-driven current computations to the mean rate of wave-
energy dissipation per unit area, D:
U =Myh(D/p)** (15)
in which M, is a constant, supposed to be of the order O(1) (also see Visser,
1984).

For the present model, which has to cover combinations of breaking waves
and strong currents, expressions (14) and (15) for ¥, have to be combined and
the vertical distribution function ¢ has to be specified. By lack of further in-

formation, a more or less heuristic approach is chosen. The separate eddy vis-
cosities due to currents and breaking waves are simply added, to yield:

7, =K u h+Mh(D/p) "3 (16)

I T (2)
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Fig. 2, Vertical distributions of shear stress, turbulence and primary velocity. Data points: meas-
ured values (after Van Doorn, 1981). Curves: several theories, see legend; LOG is usual logarithmic
model, N is Nielsen’s (1985) model and present is present model.
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in which M is a constant, not necessarily equal to M;. A theoretical basis to
assess the correct value of M is still lacking; a pragmatic choice of 0.025 is
discussed in a next section.
The assessment of the vertical distribution function is based on the follow-
ing observations:
— the turbulence production by spilling breakers is strongest in the upper part
of the vertical (Stive and Wind, 1982);
—the primary velocity distribution is fairly insensitive to the vertical distri-
buticn of v, in the upper part of the vertical (De Vriend, 1981); and
~ the wave-induced undertow (Stive and Wind, 1986), but also other types of
secondary flow, e.g, curvature-induced (De Vriend, 1981) or coriolis-induced
(Kalkwijk and Booij, 1986), are described fairly well with a constant eddy
viscosity in the upper part of the vertical.
Hence, a constant eddy viscosity for z—2,> +h seems to be appropriate as a
first guess.
The resulting turbulence model consists of eqns. (12) and (14), with the
vertical distribution function (also see Fig. 2):

Pl e=re, for0<{ < FL,
¢(C)= ¢(¢)|currant fOIFCo-ﬂCQ% (17)
Ple=y for{ >4

in which { = (z—2,)}/h is the normalized vertical coordinate and F is the bot-
tom roughness amplification factor ( Nielsen, 1985), which is a function of the
near-bottom orbital velocity, the current velocity, etc. Its specification is given
in the next section.

DIVISION OF THE FLOW EQUATIONS

Substitution of the definitions (9) and (10) into the x-momentum equation
(2) yields:

Oy Oy Oty ) Oty Oy Oy Ot Ol
T P v e T P MRl

du,  du, du, dug, | du, du,
b 2 e -3 hubos 23 . DRt
ax gy TWg, T, T T,

Lopa_0(, ) 3(, 00) 3, 30, 0, 00)
‘Eﬁx“ax(”t 6x>+6y(yt ay ) Toa\" ez )T ax\ " ox

d( du,\ d( Jdu, 4. o _—a_ N "
+é;(VL ay>+az<Vt ag)"ax(<u S = LW >) 6y(<uv>) (18)

'—fcvs+u’s

Substitution into the y-momentum equation (3) yields a similar result. Inte-
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gration of eqn. (18) from the bottom to a point above the highest water surface
elevation yields, after some elaboration:

du du  du | =, 0, ,—
6t+f ( 6x+ 5 ) fo0+= [ x](hu“)+6y[(hu505):l
1 1[ a —_ 4 -
+hl: :I(hupu ) +— [(hup )} [ x](husup)+(—9§[(husvp):|=
1<9pn d du a( odu 0( Ou.\, d( du,
xr n*-é’x(yt ﬂp)+3y( 8;>+ (yt ax>+ay(yt 6y>

E&_E&__i(a_sﬁz.{_a_&z e
ph  ph ph\ d0x = dy ph

(19)

in which 7y, and 7, are the bottom shear stress components related to the
primary and the secondary flow, respectively, and W, is the x-component of
the wind shear stress at the water surface. S, and S,, are components of the
radiation stress, defined as (Battjes, 1974):

{28 )

S= | PGy = (B7))dz ] pEC (2= Ca))?)  and
{zs)

So= | <ou) a2

Zh

(20)

Elimination of the pressure gradient term from eqns. (18) and (19) leads to
an equation that can be elaborated to:

i _(?.E.E Thbpx d au ) Thax _

az(”*' P >+ oh Taa\"az )T on T =
W, gy 188, 8 o 188,
oh 8 (( 2y —<(w >)_pha 3 (Lavy) oh Oy

+(fp_1)<%—?*fcﬁ)+(f2 fp)< —+vg-y—>+otherterms (21)

The “other terms” in this equation concern the vertical non-uniformity of the
advection of secondary flow momentum by the primary and the secondary cur-
rent, the advection of primary flow momentum by the secondary current and
the horizontal diffusion of primary and secondary flow momentum. For the
time being, all these terms will be disregarded.

Equation (21) is used for a further specification of the primary and the
secondary current. The primary current is defined such, that:
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9(, 0y, Tooy _
Gz(yt dz >+ ph =0 (22)

which implies that it is driven by the depth-invariant part of the forces (pres-
sure gradient, depth-averaged wave-induced force, depth-averaged wind force).

The direction of the primary bottom shear stress is assumed to coincide with
the depth-averaged flow direction. Hence, eqn. (22) describes the vertical dis-
tribution function of the primary flow and establishes the relationship between
the primary bottom shear stress and the depth-averaged velocity. This makes
the y-equivalent of this equation redundant.

Substitution of eqn. (22) into eqn. (21) leads to the following equation for
the secondary flow:

1 08,
ph dx

a . .. 148 da o ou
<o (o) (5-0) (88 ) ()

According to this equation, there are four sources of secondary flow, viz.:

—the wind shear stress at the water surface, which gives rise to a current ve-
locity with a vertical distribution that deviates from the primary current dis-
tribution and, if the coriolis-effect is important, even to a velocity direction
that varies along the vertical (Ekman, 1905; also see Memos, 1985; Davies,
1987; Jenkins, 1987); in the present concept, the deviations from the ficti-
tious velocity obtained by multiplying the depth-averaged wind-induced cur-
rent velocity with the primary velocity distribution function f, are considered
as secondary flow;

- the vertical non-uniformity of the wave-induced forces, related to the mass
flux above the wave through level and the return flow or undertow below this
level (Dyhr-Nielsen and Serensen, 1970; Stive and Wind, 1986);

— the vertical non-uniformity of the main flow acceleration, in time and due to
the coriolis-effect (also see Kalkwijk and Booij, 1986);

- the vertical non-uniformity of the advective accelerations of the main flow,
including the well-known curvature-induced secondary flow (Boussinesq,
1868), but also the deformation of the current profile due to downstream
accelerations (De Vriend, 1977).

In complex coastal areas, each of these secondary currents can have an impor-

tant effect on the morphological evolution. Therefore, each of them deserves

full attention when developing a mathematical model of coastal morphology.

Practical restrictions, however, allow for the evaluation of only one of them,

viz. the wave-induced secondary flow. In fact, this means that attention is fo-

cused on the surf zone of a nearly uniform coast, although the formulations
will be so general, that they basically allow for more complex situations.

G, 0Us) | Ths W 9 e
az(yt az>+ph +fcvs"ph+ax(<u >_<w >)'—




576

Without stating this explicitly, the secondary flow velocity was and will be
assumed small compared with the primary one, e.g. when neglecting the “other
terms’ in eqn. (21). This has to be kept in mind, especially when considering
the wind- and wave-induced currents, which can occur with a zero primary
velocity.

PRIMARY CURRENT
Vertical distribution of the primary velocity

With the similarity hypotheses (9), (10) and (12), eqn. (22) and its y-
equivalent can be rewritten to:

a( of, . Top P Top, P
9 — = Tboet_ Topy Tt , 24
ac(%) CT with CT pﬂtd pﬂtlj ( )
Together with the boundary conditions:
)
fole=r¢, =0 and ¢“f£ =0 (25)
ac =1

and the requirement f, =1 (by definition), this equation describes the vertical
distribution function f, and the constant C;, which establishes the relation
between the primary bottom shear stress and the depth-averaged velocity.

Elaboration for a parabolic distribution of ¢ ({) in the lower half of the water
column (see eqn. (17) and Fig. 2) yields, after some algebra and with F' = F
exp (F ~'—1), according to Nielsen (1985):

3 ' 1
. —m[lnC—ln(F {o)] for F{,<{ < 6
" 3 2 3 ,
“M[-% +4C-—§—ln(2F ()] for }<{<1
C. = 24 3 (27)

T5 1+31n (2F'C,)

Note that f, and C, are functions of x and y if In(F'{,) is. Compared with the
variations of the depth-averaged velocity, however, these quantities are as-
sumed to vary only weakly in space.

A typical example of the primary velocity distribution according to eqn. (26)
is given in Fig. 2, together with the usual logarithmic profile and measurements
by Van Doorn (1981). Apparently, the distribution function (26) is not worse
than the logarithmic one and agrees rather well with the measured data in what
Coffey and Nielsen (1984) call the ‘log-layer’ of the flow. In their paper, Coffey
and Nielsen give a logarithmic velocity profile that agrees far better with the
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measured data than the profile labelled “present model” in Fig. 2. It has to be
noted, however, that the constant of proportionality in their profile is the
measured velocity at 0.2 h, instead of the imposed depth-averaged velocity (also
see Neilsen, 1985). Thus the influence of the discrepancy between measured
and calculated results in the upper half of the water column is eliminated.

The cause of the velocity reduction near the water surface is not quite clear,
but evidently it cannot be described with a 2DV steady current model using a
scalar turbulence viscosity, unless there is a negative effective shear stress near
the surface. As the major part of the sediment transport takes place in the
lower half of the water column, the results of the present model are acceptable
as a basis for the computation of the magnitude of the sediment transport by
the primary flow and the transport direction for a combination of a primary
flow and a wave-induced secondary flow.

However, if the secondary flow depends on the primary velocity profile, like
in the case of curvature- and coriolis-induced flows, this profile has to be cor-
rect throughout the water column. In cases where these types of secondary flow
are important, the present model results may be unacceptable.

Bottom shear stress

Making use of eqns. (16), (24) and (27), the relation between the bottom
shear stress and the depth-averaged velocity can be elaborated to:

- 1/2 1/3

E‘BzCT@[KhG"—*’) +Mh<2) :l With Gy = (@2+02)Y2  (28)
p h p p

If there are no waves, this expression should change into the Chézy-formula-

tion, i.e.:

'ér—z’jtot =C; atotK_\é—éatct (29)

in which C denotes Chézy’s factor. Elaboration of this expression, together
with eqn. (27) for F=1and {,=exp(—1—xCg~*), yields:

K:%K[l+<g—ln2>'\-/—é:| ~£K (30)

3 kC |~ 24

This value of K is assumed invariant for all combinations of waves and currents.
If there are only non-breaking waves, eqn. (28) reduces to:

1/2
(7) ~KC, i, (81)

Note that this is not necessarily an explicit expression in Ty, as C; depends on
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the bottom roughness amplification factor F, which in turn may be a function
of 7y, (e.g. see Van Kesteren and Bakker, 1984).
If Nielsen’s (1985) formulation is adopted, i.e.:

3
1/U
~ et et A 32
d 1+6(U*c) (82)

where U,,, is the friction velocity that would be experienced by the pure wave
motion and U, is the friction velocity for the mean current only, eqn. (31) is
explicit in Ty, However, without further measures this formulation leads to a
degeneration of the model for very high values of U,,/U,.. As such high values
will occur in practical situations, F' will be given an upper bound. Limiting the
effective bottom roughness to the thickness of the wave boundary layer, this
upper bound follows from:

Ci Uonp
1ot Forb 33
Fruc= i (33)

in which C; is the bottom friction factor for the wave motion (U,, =

CY?*U,), @ is the angular frequency of the waves and U,,, is the amplitude

of the near-bottom orbital velocity.

The validity of eqn. (28), including the effects of breaking waves, can be
tested by comparing the results of a longshore current computation for a uni-
form coast with measurement by Thornton and Guza (1986), taken at Lead-
better Beach, Santa Barbara, California, as part of the NST'S-project. Figure
3 shows the beach profile and the measured wave heights and longshore current
velocities, compared with the wave height distribution computed with the
Battjes and Stive (1985) wave dissipation model (=5, y=0.4) and the long-
shore current distributions obtained on the basis of these computed wave
heights from:

—the model proposed by Battjes (1974), with linear bottom friction and dis-
regarding lateral mixing, with C;=0.023;

—the model proposed by Thornton and Guza (1985), based on the same as-
sumptions and estimating the amplitude of the near-bottom orbital velocity
with a long-wave formula, with Cy=0.023;

— the present model, with M =0.025.

For the measurement series considered here (Feb.4), the various longshore

current distributions are not far apart and in good agreement with the meas-

ured data. Besides, additional numerical experiments made clear, that the
computed longshore current distributions are much more sensitive to the wave

height distribution than to their mutual differences. This means that, from a

uniform longshore current point of view, the present model agrees well with

commonly applied specific models.

The parameters C; in the linear friction models and M in the present model
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Fig. 3. Results for NSTS-campaign Feb. 4, 1980 at Leadbetter beach (measurements after Thorn-
ton and Guza, 1986); profiles of bottom elevation below MSL (d), longshore current (v), and
rms wave height (H,.,;) versus distance normal to shore (x). Data points: measured values. Curves:
computations with the several models, see legend; B & S is Battjes and Stive (1985), present is
present model, B is Battjes (1974 ), and T & G is Thornton and Guza (1986).

were adjusted to obtain a good fit with the measured data. The value of C; is
somewhat higher than expected from the grain roughness. The parameter M
can be considered as indicating the fraction of the breaking-induced turbulence
kinetic energy that penetrates below the trough level. The small value of this
parameter corresponds well with the findings of Svendsen (1986).

Depth-averaged velocity field

Leaving all terms concerning the secondary flow out of consideration and
adopting a Boussinesq hypothesis for the depth-averaged horizontal diffusion
terms, eqn. (19) can be elaborated to:

Qg+fg<a@+ga_“)_fcﬁ=_1%+l d <;7 hau)+1 6(_ au)

ot 3z oy 2o hoz\ "oz ) T han\ oy
Crﬁt— Fx Wx
2 u+ph+ph (35)

in which p. is an approximation of the total hydrostatic pressure (an un-
known) and F, denotes the x-component of the depth-averaged wave-induced
force per unit area.
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Together with the corresponding equation in the y-direction:

— - — 7 — 1 . —
%+F§(a§3+ 5—6—3) tfog= 2P0, 10 ( hau>+ i (ﬁth—(?—v>

at ax " Vay 29y Thoe\ax ) T hay\ ey
C.n, F, W,
— St (36)

and the depth-averaged equation of continuity:

191"+ d(uh) +6(vh)
at ox ay
it forms the well-known shallow-water equations. Program packages, solving
these equations on a routine basis, are amply available by now. The non-line-
arity of the bottom shear stress term, due to the fact that C, and 7, depend on
.1, can be dealt with in the usual way, by iteration or by estimation from the
results for the preceding time step. As was stated before, the usual formulation
of the wave-induced forces on the basis of the radiation stress gradients:
aS,, aS,, : 4S,, 0dS,,
dx  dy and  fy=-— dx Ay (38)
is formally correct, but it can give rise to spurious numerical effects (De Vriend,
1985b; Dingemans et al., 1987). These are mainly caused by the part of the
force field that, divided by ph, is irrotational and hence unable to drive a net
current (Battjes, 1974 ). If the water surface elevation induced by this irrota-
tional part of ¥/ph (e.g. the set-down in the wave shoaling area at a uniform
beach) is small compared with the water depth, it is preferable to retain only
the irrotational part. The corresponding part of the force can be written as
(Longuet-Higgins, 1970; Dingemans et al., 1987):

=0 (37)

F.=—

F;:B cos @ and F;,=2sin(7‘ (39)
Cw Cw

in which ¢, is the phase-celerity of the waves and @ is the direction of the energy

flux, with reference to the x-axis. So the part of the force that is able to drive

a net current is proportional to the energy dissipation rate per unit area, D,

and has the same direction as the wave energy flux.

WAVE-INDUCED SECONDARY CURRENT
Three-layer concept
In order to describe the wave-induced secondary current, the water column

is divided into three layers:
- a surface layer, above the wave trough level;
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- a middle layer; and
- a bottom layer.
The surface layer contains the moving water surface, which makes a contin-
uum description of the water motion here particularly difficult. On the other
hand, this description, itself, is not of primary interest to the present model, if
only the effects of the top layer on the layers below can be identified. Svendsen
(1985) and Stive and Wind (1986) propose to consider only the area below
the wave trough level, and to take account of the surface layer effects via an
effective shear stress at the trough level, compensating for the momentum
decay above it, and via the condition that the net undertow must compensate
for the mass flux in the surface layer. This means that the surface layer model
is reduced to the formulation of the effective shear stress and the mass flux.
The rationale followed to derive the secondary flow equation (23) from the
general x-momentum equation (18) can also be applied to the area below the
wave trough level. Considering wave-induced currents only, this leads to the
following x-momentum equation for the middle layer:

_g_ aus Ttox = Thsy - _i N2 2
az<yt 9z )_p(zt_zb) +fc(Us_Us,r) -—ax( <u’ >—' <w >)

2t a
ng(mmdz (40)

2h

1
zt‘”“

1
2t —2p

I g ~2 72 J )
zbiaﬂu > —(W ))dz+$((uv>)—

in which 7, denotes the effective shear stress at the wave trough level z, and
Us . 18 the y-velocity component of the mean return current (undertow). In the
case of an irrotational wave field on a horizontal bottom, the right-hand part
of this equation is identically equal to zero. In a practical situation, with ran-
dom waves, breaking and non-breaking, in combination with a turbulent net
current on an uneven bottom topography, this is not exactly the case. Still the
right-hand part of eqn. (40) is assumed to be negligibly small for the non-
breaking fraction of the waves (also see Craik, 1982).

Stive and Wind (1986) show that the effective stress terms in egn. (40), as
far as they are due to breaking waves, are hardly varying with z. This means,
that for the breaking fraction of the waves the right-hand part of egqn. (40) is
also virtually equal to zero.

The coriolis-terms in eqn. (40) and its y-equivalent are usually small com-
pared with the other terms. Their principal effect is a tendency of the velocity
vector to rotate with z (Ekman, 1905). In general, this effect is negligible if
(e.g. see Neuman and Pierson, 1966):

o5 1/2
h<<<fyt) (41)
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Especially in the relatively shallow breaker zone, this will mostly be the case.
Then the reduced version of the equation becomes:

d Ol Tise = Ths
i — tsx T “hsx 42
az(”" dz ) (2 —2p) “

Without giving an exact proof, the shear stresses at the wave trough level and
at the bottom, as well as the mass flux in the surface layer, are assumed to have
the same direction as the wave-energy flux. As a consequence, the wave-in-
duced secondary current described by eqn. (42) will also have the direction of
the energy flux. So:

U =U,(x,y;0) cos 8 and v,=U,(x,y;{) sin g (43)

The velocity in the bottom layer, where the sediment concentrations are usu-
ally highest, can contribute substantially to the total sediment transport. Be-
cause of the natural irregularity of a mobile bottom, however, a detailed
description of this velocity hardly makes sense, unless it is needed to assess
the influence on the velocity in the middle layer. Therefore, the bottom layer
velocity due to non-breaking waves is assumed to be similar to Longuet-Hig-
gins’ (1953) “conduction solution” for progressive waves (also see Phillips,
1977 and Craik, 1982 ). For breaking waves, Stive and Wind (1986) show that
assuming a zero bottom shear stress leads to acceptable predictions of the sec-
ondary current outside the wave boundary layer. This means that for this part
of the current the bottom layer as such can be left out of consideration. Thus
the problem has been reduced to solving the velocity in the middle layer from
eqn. (42), both for the breaking and the non-breaking fraction of the waves.
In either cases the prescribed shear stress at the wave trough level provides an
upper boundary condition, whereas the lower boundary condition follows from
the zero shear stress approximation (breaking waves) or from matching with
the bottom layer solution (non-breaking waves). The integral condition of
continuity can be used to determine the remaining unknown constant (the
bottom shear stress for non-breaking waves, the mean return current velocity
for breaking waves). In the next sections these middle-layer solutions will be
considered in further detail, for non-breaking waves, for breaking waves and
for a random wave field with a fraction of breaking waves, respectively.

Secondary current induced by non-breaking waves

The secondary current model for the non-breaking part of the waves is very
much like Longuet-Higgins’ (1953) conduction solution for progressive waves,
as reformulated by Phillips (1977) and Craik (1982).

If there is no mean pressure gradient, the velocity in the bottom layer is given
by:
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52
Ui, =%r—]3 [83—{2(24Z)cosZ—2(1—Z)sinZ —exp(—2Z) }exp(—Z)] (44)
in which U, is the amplitude of the near-bottom orbital velocity and Z is the
vertical co-ordinate, scaled by the thickness J of the wave boundary layer.
In the present case, the mean pressure gradient cannot be disregarded be-
forehand, which means that there is an additional component of the bottom
layer velocity, described by:

0 0Up, _
62(”‘ i )_constant (45)

This equation is not essentially different from eqn. (22) and the resulting
velocity distribution will be similar to the near-bottom distribution of the pri-
mary flow. This means that the logarithmic part (In{) of the secondary veloc-
ity in the middle-layer has its point of zero intersection at { =F'({, and that
the corresponding bottom-layer velocity distribution is linear between { =0
and { =F{, (Nielsen, 1985).

According to Longuet-Higgins’ theory, there is a weak viscous boundary layer
near the liquid surface, responsible for a mean velocity outside this layer:

=2
agjz“b=U"c"’lze”"smh(21=awh) (46)

Although the present case is not exactly the same as the one considered by
Longuet-Higgins, this vorticity is assumed to be present at the wave trough
level, where it is imposed as a boundary condition to the velocity in the middle
layer. In terms of the shear stress, this condition reads:

Uik k:E
7o) =put|2t¥sinh(zkwh)=4ut|n w b

w w

(47)

in which E,;, denotes the energy density of the non-breaking wave field.

In the absence of a mean pressure gradient, the bottom boundary condition
for the middle-layer veiocity would follow from matching with the bottom-
layer solutions (44):

§U(2>rb
4 ¢,

In the presence of a mean pressure gradient, a compound bottom boundary
condition is imposed: a prescribed level of zero intersection F'{, (see eqn. (25)
sqq.) for the logarithmic part (In{) of U,,, and condition (48) for the remainder.

The integral condition of continuity implies that the mass flux in the surface
layer is compensated by a return current in the lower layers. For non-breaking
progressive waves, this mass flux follows from (Phillips, 1977):

Unblzh= (48)



584

Mo ~Ew (49)

whence

J.Unbdz=—E“b (50)
PCy

2b

The contribution of the bottom layer velocity U, to the integral amounts:

= ¢ 3 U%rb 3 kwa Eﬂb
J-Unbldz=5l\ U“ble"—éd cw  2sinh(2k,h) pe,

(51)

which is negligible as § <« h. This means that eqn. (50) applies to the middle
layer solution only.

The velocity in the middle layer, except for the constant 7, can be solved
from eqn. (42) and two out of the three conditions (47), (49) and (50). The
constant 7, follows from the remaining condition. More or less arbitrarily, the
combination of egns. (42) and {(47) and the compound bottom boundary con-
dition is chosen to solve for U,,. Then condition (50) remains to determine
Ths»

For the turbulence viscosity model defined before, the solution in the middle
layer can be written into the form of the similarity series (7), to yield:

Unb"—"Unblfm(() +Unb2f52(C) +Unb3 (52)
in which

@ o f™h _ 3Use .
Unb1=_p177: y nbz_‘pﬁtct y nb:x_z ¢, (03)
and

4 afm)_ , (afm) _ _

6C(¢ ac =1 with ¢6§ C',—Ct and f,,(0)=0 (54)
i afsz — . afsz _ ' _

ac(¢ ac)‘ 1 with ((b ac)o-ct and £, (F'{,)=0 (55)

For the compound ¢-distribution (17), the solutions of the systems (54) and
(55) read:
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Fig. 4. Vertical distribution functions for the wave-induced secondary flow (conditions TOW-
campaign Dec., 1982 at Egmond beach, location x =200 m; see Table 3).

[ 5
~ 2 In(1-0) for [ <
f51= 3 (56)
L12C2 —(21n2——1) for { >4
,
Sl Inl—In(F',)] +2: (1~ (1) for FC, <<}
fao= 3 | (57)
2 ' —_— — L
(L)~ 2+ (P L)~ (22 —1)  for (>

\

The vertical distribution functions f;, ({) and f,,({) are shown in Fig. 4. Mak-
ing use of eqns. (56) and (57), the integral condition of continuity (50) can
be elaborated to:

5 =3 5 Enb
Cl Unb1 +C2 Unb2+Unb3'_ _chth (58)
in which:
———Ct (21 2— 1)—-2——(31n2 2) (59)
S Dy (21 9— 1)+3—(31 2—2) c In(F'¢,) (60)
18 12 72¢, ¢ °

Combined with the bottom layer solution, expression (52) can be elaborated
to:

Unb = gnbx {fm (é’) —g—;‘faz(i) } + Unb:x{l—'cizfsz(c) }

E.

+ Unb:lfsb(C) pc hgt

_fsa(C) (61)
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in which, according to eqn. (44):

PRNEE R
—2(2+%)cos<%—c>:l (62)

and (cf. Nielsen, 1985):

5 1\ ¢
f52(€)=§th(1—'I;)FCD for (<F(, (63)

In order to have an indication of the relative importance of the various con-
stituents in eqn. (61), U, is elaborated for two sets of parameters (see Table
1), corresponding with the conditions during one of the NST'S-experiments at
Torrey Pines Beach, San Diego, California on Nov. 20,1978 (Guza and Thorn-
ton, 1985) and with those during one of the TOW-experiments at Egmond,
The Netherlands ( Derks and Stive, 1984 ), viz. case 18 documented in Battjes
and Stive (1985).

Inspection of Fig. 5 indicates that the secondary current is dominated by the
second and the fourth term of eqn. (61). The former expresses the effect of
the bottom shear stress arising from the oscillatory wave boundary layer, while
the latter compensates for the mass flux above wave trough level. With refer-
ence to the discussions of Figs. 7 and Fig. 8 further on, it is concluded that the
current velocities are relatively weak (note that the same scales are used
throughout Figs. 5, 7 and 8).

It has to be noted that under these conditions, where the coriolis-effect is
certainly not negligible, the actual velocity distributions can be quite different
from those presented herein (e.g. see Jenkins, 1987). Nevertheless, the latter
give an indication of the overall order of magnitude of the velocities and the
relative importance of their driving mechanisms. Besides, as soon as there is a
net current (e.g. tidal) superimposed, 7, will rise by orders of magnitude and
the coriolis-effect becomes much less important.

TABLE 1

Parameters for sample computations of Uy,

X h Hrms Tp Uurb b t _%_fl :
(m) (m) (m) (s) (m/s) (m*/s) f.h?
T. Pines 350 5.19 0.61 14.3 0.41 1.0X10-¢ 0.03

Egmond 2000 16.15 2.78 8.7 0.77 1.0x10"° 0.01
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Fig. 5. Constituents contributing to the wave-induced secondary flow below wave trough level;

conditions non-breaking waves (see Table 1) at Torrey Pines beach, NSTS-campaign Nov. 20,
1978 (left) and at Egmond beach, TOW-campaign Dec., 1982 (right).

Secondary current induced by breaking waves

The concept of the secondary current model for the breaking part of the
waves is the same as proposed by Stive and Wind (1986), but the elaboration
is somewhat different.

The shear stress at the bottom is taken equal to zero, which the same authors
show to yield quite acceptable secondary current velocities. The shear stress
at the wave trough level is described by the expression given by Stive and Wind
on the basis of earlier work by Svendsen (1984 and 1985):

1 _h\D
(br) = 6
Tes _<2+7l>cw (64)

in which A is the wave length at breaking. The second part of the factor in
brackets accounts for the contribution of the surface roller. Apart from the
factor in brackets, this expression shows a strong resemblance with expression
(39) for the wave-induced driving force. This is not surprising, as they are
both related to the same phenomenon: the momentum decay due to breaking.
The mass flux above the wave trough level is assumed to consist of two parts,
one due to the progressive character of the breaking waves [also see eqn. (49)]
and the other one due to the surface roller (Svendsen, 1984). This leads to:

Note the resemblance of the roller contributions in expressions (64) and (65).
This is a direct consequence of Svendsen’s approach of the water motion in the
surface layer.

The velocity in the middle layer follows from egn. (42) with 72 =0, the
shear stress condition (64) and the integral condition of continuity based on
eqn. (65). For the adopted turbulence viscosity model, the solution can be
written into the form:
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Ubr=Ubr1[f51(C)—Cl] +be’a (66)
in which

{br)
Ubn = L h T Mor (67 )

LR .
Py brs phl,

and the vertical distribution function £, ({) is identical to the one for non-
breaking waves, given by expression (56).

Figure 6 shows the resulting wave-induced currents for a laboratory experi-
ment with regular breaking waves (Buhr-Hansen and Svendsen, 1984), to-
gether with the corresponding model results for a constant eddy viscosity (Stive
and Wind, 1986). The two computed distributions turn out to be very similar
and they agree well with the measured data. So, also in this respect the present
model corresponds well with a verified specific model.

In order to estimate the relative importance of the constituents in eqn. (66),
Uy, is elaborated for two sets of parameters (see Table 2), again from Torrey
Pines Beach and from Egmond.

Figure 7 shows, that the second term of eqn. (66) is mainly responsible for
the depth-averaged net value of the secondary current and that the first term
is responsible for its vertical variation. The first term expresses the effect of
the shear stress at trough level arising from the wave momentum loss, while
the second term compensates for the mass flux above wave trough level. The
current velocities are relatively strong.

The present formulation is claimed to predict the breaking-induced second-
ary current velocity outside the bottom boundary layer. It provides no reliable
information on the velocity inside this layer, nor on the attending bottom shear
stress. Hence, a composition of the primary and secondary bottom shear stress
makes no sense in this model and caution should be exercised when evaluating
the magnitude and the direction of the sediment transport on the basis of these
results. From this point of view, the model needs further improvement, requir-
ing a more detailed investigation of the bottom layer current under breaking
waves (see Svendsen, 1985; Schiffer and Svendsen, 1986; Stive and De Vriend,
1987).

Secondary current in a random surf zone

In a surf zone with random waves, only part of the waves are breaking, say
a fraction § (0< g, <1). If mutual interaction between the waves is left out
of consideration, this means that the secondary current velocities for the
breaking and the non-breaking waves have to be added with appropriate weight
factors.

Combining eqns. (52) and (66) in this way yields:
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Fig. 6. Wave-induced secondary flow: comparison between measurements and theory for a mono-
chromatic wave train on a constant slope (measurements after Buhr-Hansen and Svendsen, 1984).
Data points: measured values, Curves: computations with the several models, see legend; S & W
is Stive and Wind (1986), S & W with t(b) =0 is Stive and Wind (1986) with bottom shear
stress neglected, and present is present model.
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Fig. 7. For legend, see Fig. 5; conditions full breaking waves (see Table 2).

TABLE 2

Parameters for sample computations of Uy,

X h Hrms Tp Qb D ﬂt < 2ﬁ‘- >&
(m) (m) (m) (s) (-) (N/ms)  (m*/s) f. R
T. Pines 106 0.33 0.12 14.3 1.00 5.6 1.5x1073 18.2

Egmond 50 1.60  0.89 87 100 104.1 19X 102 11.2
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Urb = (71‘1)1" [fs1(C) "Cl] + Urbm[fsx(g) _Cl] + Utbz [fsz(C) ‘"CZ]
+ ﬁrbzsa + Urbab + Urmfsb(C) (68)
in which £, ({), f,({), f ({), C, and C, are given by expressions (56), (57),

(63), (59) and (60) respectively. After some elaboration, the gquantities
U, Usny, Us, and Uy, can be written as:

U = (1 — Gy 24kwwh£ (69a)
i)
0=t e (e ) 0
Oyone = — (1-8)) Cﬁlgt (71a)
U,b,b=-—Qb(1+7h)p l’;{t (71b)
D= (1 Qb)?fU“" (72)

in which E denotes the energy density of the total wave field.

The relative importance of the various donstituents of U, is estimated, once
again, for parameter sets from the experiments at Torrey Pines Beach and at
Egmond (see Table 3).

Detailed inspection of Fig. 8 shows that in the random breaking situation
the effects expressed by terms 2...5 of eqn. (68) contribute to the secondary
current. The terms 2 and b are due to the breaking wave fraction and compa-
rable to the terms 1. and 2 of eqn. (66). The terms 3 and 4 are due to the non-
breaking wave fraction and comparable to the terms 2 and 4 of eqn. (61). The

TABLE 3

Parameters for sample computation of Uy,

X h I:[l.ms Tp Qh D ’7& 2‘71 :
(m) (m)  (m) (s) () (N/ms) (m?%s) f.h?
T.Pines 190 151  0.44 143 043 288 L1x10"2 10.8

Egmond 200 4.13 1.68 8.7 0.32 1164 5.1%1072 7.1
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Fig. 8. For legend, see Fig. 5; conditions random breaking waves (see Table 3).

relatively high secondary current velocities are nearly equally due to the break-
ing and the non-breaking waves.

A comparison with the measured data from Torrey Pines Beach is given in
Fig. 9. The wave energy decay prediction [Battjes and Stive (1985) model,
x=>5.0 and y =0.5] was calibrated on the basis of the measured orbital velocity
variance in the frequency range 0.05<f<0.5 Hz. The velocity measurements
were conducted at elevations of 0.4 m to 1.0 m above the bed. Taking account
of the inherent inaccuracy of the measured, wave-induced cross-shore veloci-
ties, the agreement is good, for the magnitude of the velocity as well as for its
cross-shore distribution of the velocity. For the purpose of comparison also the
prediction for the Egmond Beach is given. The wave energy decay prediction
is according to the method proposed by Battjes and Stive (1985). It is noted
that the storm conditions in this case generate strong secondary currents.

RELATIVE IMPORTANCE OF WAVE-INDUCED SECONDARY CURRENTS
Cross-shore sediment transport

The importance of the wave-induced secondary current is difficult to judge
from its magnitude alone, especially from a morphological point of view. A
comparison with the longshore current velocity is elucidating, as will be shown
hereafter, but it provides insufficient information on the morphological impact
of the secondary flow, In this respect, a better picture can probably be obtained
by comparing the cross-shore sediment transport rate due to this current with
the transport rates due to other mechanisms acting in the cross-shore plane
(wave asymmetry, bottom slope).

This idea can be worked out on the basis of the sediment transport formu-
lation proposed by Bailard (1982), which was elahorated and applied in prac-
tice by Stive (1985, 1986):

ul®y oz
tan ¥ dx

92
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in which

Iy ~=Iinstantaneous cross-shore sediment transport rate,

B, =constant for the bed-load part of the transport,

u =instantaneous near-bottom velocity,

¥ =internal angle of friction of the sediment,

B, =constant for the suspended-load part of the transport,

€, =a constant (usually taken 0.02), and

W =fall velocity of the sediment.

Assuming the near-bottom current velocity to be small compared with the wave
orbital velocity near the bottom and estimating the odd moments of the orbital
velocity on the basis of second-order Stokes theory with a locked but non-zero
phase lag @, between the two components, Stive (1985, 1986) elaborates this
formula to:

<lx> = <iasb> + <iass> + <incb> + <incs > - <islb> - <isls> (74)
in which
9 Uorb 9 Ugrb
Clgeh ) = 16 mcos@, {lass ) =§Bsmws¢z (75)
Cinen D =~§Bb U2 (U (ines Y =6.4 B, Ul {u (76)
dz, . &, B, 0z 02,
<leb> -—-16 Uorb 9% > <]'sls> =80 W U‘" ax (77)

Making use of these results, effective transport velocities can be defined for
the bed-load and suspended-load parts of the transport components due to
wave asymmetry and bottom slope effects:

U= G230 =it ™
Usee =§Tt::%<u> =3§7z cwsinllzfr(bkwh) cosfs (79)

b = <j::°>> uy =11 g}{iﬁ 92 (80)
Uy, = <<“> (ud =12 WUorb %— (81)

These effective transport velocities provide a reference for the near-bottom
secondary current velocity. As an example, they are elaborated for the two
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sections at Torrey Pines Beach and Egmond, with tang=0.6, ¢,==0.02, W=0.28
and assuming cos go=1— @,. Furthermore, U, is related to the orbital veloc-
ity variance as U= (2U.qa) }, such that a monochromatic wave field of veloc-
ity amplitude U, has the same variance as the random wave field. The results
are shown in Fig. 10, together with the near-bottom values of (1—8,) U, and
@, Uy, Apparently, there are two important contributions to the sediment
transport, represented by the wave-induced secondary current and the asym-
metry-induced effective current in the bottom layer. In low-frequency or swell
conditions (Torrey Pines) the latter dominates and in high-frequency or storm
conditions (Egmond) the former dominates. These conclusions coincide with
the common suggestion that low-frequency waves build up a coast and that
high-frequency waves erode it.

Combined nearshore current velocity
The importance of the wave-induced secondary flow for the nearshore cur-
rent field can be estimated by comparing it with the wave-induced longshore

current along a uniform beach. The depth-averaged longshore current velocity
in such a situation can be derived from eqns. (28) and (39), to yield:

sin 0 (82)

The near-bottom secondary velocity in the saturated surf zone is entirely dom-
inated by the breaking-induced undertow, described by eqn. (66). For conve-
nience, only the near-bottom velocity due to the effective shear stress 7™ is
considered, which implies a conservative estimate:

h\ Dk C
Up, = — l+7'—) — 83
g ( 7 )peut T, (83)

with 0.15 as a typical value of the last factor (it is noted that {,~0.8 has been
used as an estimate throughout).

In the present model, the vertical variation of the primary velocity is de-
scribed by f, ({), which goes to zero at the bottom, whereas Uy, has a finite
value there. Hence a comparison of the velocities at the bottom makes no sense.
Moreover, the model gives a very strong vertical variation of the ratio of cross-
shore and longshore velocities near the bottom, so that selecting another near-
bottom level for such a comparison is difficult, as well, Therefore, a pragmatic
approach is chosen, with 0.5 7 as a representative value of the near-bottom
primary velocity.

As U\, has the direction of the wave energy flux, its composition with 0.5 &
yields:

| Ueor, | ={{0.5 0+ Uy, sin 0) + UZ, cos?6}}/* (84)
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; 2=1/2
Dh_ 025 C-2—0.15C! %+7}—1 }Sinze +0.023(%+7}—]> jl (85)
PCy Ty A A

050;1—015(§+7%>

0.5 0+ Uy, sin 6

Uycosf
® —015(§+7%)

Taking 0.6 and 0.05 as typical values of C, and h/A, respectively, the primary
flow contribution to the factor in brackets in eqn. (85) amounts 0.69 sin?6 and
the secondary flow contribution becomes —0.21 sin?6+0.016. The multipli-
cation factor of tan @ in eqn. (86) equals 5.5 in that case, which means that
for 6=5°, «=26° (i.e. the representative velocity vector deviates 64° from
the longshore direction), and for 8 =30°, a="72° (i.e. still a deviation angle
of 18° with respect to the longshore direction). This leads to the conclusion,
that even for large angles of wave incidence the wave-induced secondary cur-
rent has a substantial influence on the magnitude and the direction of the
nearshore current velocity.

As an illustration of the role of these secondary currents, Fig. 11 gives the
combined nearshore current velocity for a few salient points at Leadbetter
Beach and at Egmond, at various vertical positions. The incident wave con-
ditions for these cases are as given in Table 4.

Moreover, in Fig. 11 an interesting result is given for the horizontal velocity
vector at several vertical positions from the TOW-campaign on 17 Nov., 1982
at Egmond beach. This result for one specific location in the surf zone was
produced to investigate the feasibility of simultaneous velocity measurements
in one vertical. The longshore flow is primarily due to the tidal current and the
cross-shore flow is primarily due to the nearly shore-normal wave-breaking.
Lack of information on the precise boundary conditions of this situation pre-
vents a comparison with a prediction, but the results of Fig. 11 corroborate the
foregoing conclusions. Qualitatively, they also agree with findings from case
studies of nearshore morphology (e.g. see Greenwood and Sherman, 1984).

tan o= tan ¢ (86)

TABLE 4

Incident wave conditions

H,.. T, 6
(m) (s) (deg)
T, Pines 0.57 14.3 18.4

Egmond 2.78 8.7 15.0
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If the secondary flow strongly influences the near-bottom velocity, it will
influence the current-induced sediment transport to roughly the same extent.
Hence it must be doubted whether horizontally two-dimensional models of
nearshore morphology will ever be able to produce realistic results on the basis
of depth-averaged velocities only.

CONCLUSIONS AND FURTHER RESEARCH

The investigations described herein have shown, that is is possible, with the
adopted type of turbulence modelling, to combine depth-integrated and verti-

0.8 0.4
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h 2,93 m h =2.00m h=1.00m
0.8 0.4 Hrms= 0.68 m Hrms= 0.59 m Hrms= 0.34 m
£=0,007 0.8 0.4
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0s 0s 0s
LS X = 200m Ls x = 150m LS x = 50m
h =4,12n h =2.66m h =1.59m
Hrms= 1.67 m 0.8 Hrms= 1.37 m s> 0.89 m
' 0.4
0.4 0.4
0.8 £=10.006 8
7 Y
£=0.009
£=0.004
0s 08 0S
LS x = 80m
h =369m
Hr‘ms= 1,36 m
0.33 .46
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—» 01 m/s
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0s

Fig. 11. Nearshore current velocity vector due to primary and secondary flow at selected locations
and heights. Top: present model prediction for NSTS-campaign Feb. 4, 1980 at Leadbetter beach;
middle: present model prediction for TOW-campaign Dec., 1982 at Egmond beach; bottom: ob-
served velocity vector TOW-campaign 17 Nov., 1982 at Egmond beach induced by alongshore
tidal flow and shore-normal wave-breaking (measurements after Derks and Stive, 1984).
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cally two-dimensional current models in a consistent manner to a quasi-3D
model. From a computational point of view, this model is only a minor exten-
sion of the depth-integrated one, which makes it economically attractive. The
investigated subsets of this model, describing:

— the vertical distribution of an imposed current in the presence of waves,

— the depth-averaged longshore current velocity along a uniform coast, and

- the undertow in the surf zone at a uniform coast

corresponds well with existing specific models and with measurements from
laboratory and field experiments.

The model provides the possibility to estimate the importance of the various
components of the wave-induced secondary flow, relative to each other, to the
primary velocity and to the effective transport velocities for the cross-shore
sediment transport components due to wave asymmetry and bottom slope ef-
fects. The mutual comparison of the various components of the wave-induced
secondary flow leads to the conclusion, that a random wave field in the surf
zone generates important secondary currents ( as was found out for monochro-
matic breaking waves before by many other investigators) and that none of
the components of the random wave breaking-induced flow is systematically
predominant.

The comparison with the primary current and the effective cross-shore
transport velocities reveals that the random wave breaking-induced undertow
is always important compared with the wave-induced longshore current veloc-
ity and compared with the other cross-shore transport agents in the surf zone.
These results indicate that horizontally two-dimensional mathematical models
of nearshore morphological evolutions are not likely to be able to produce re-
alistic results on the basis of depth-averaged velocities only.

The model described herein must be considered as a ‘““first shot”, based on
rather crude assumptions and simplifications and hence open to substantial
improvement. Some essential constituents of the model, such as:

— the turbulence modelling;

- the bottom boundary condition for the primary flow; and

— the boundary conditions for the secondary flow

are more or less generalized elaborations of concepts that have been developed
and tested for the isolated phenomena they are claimed to describe. It is quite
thinkable that these concepts have to be revised when applied in situations
with an arbitrary combination of random waves and turbulent flow. Besides,
the model in its present form, with its inconsistent treatment of the bottom
boundary layer of the secondary flow, is likely to cause problems in the sedi-
ment transport computation when incorporated in a morphological model. So,
also from this point of view the model needs further improvement.

This leads to the following suggestions for further research:

- investigation of the interaction of waves and turbulent flow in the vertical
plane, including the modelling of turbulence; and, derived from this,
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- investigation and mathematical modelling of secondary flows due to other
causes {curvature, coriolis); ’

- incorporation of the coriolis-effect (Ekman-effect) and wind-induced sec-
ondary flow;

- comparison of quasi-3D model results with those from fully 8D models (cf.
Koutitas and Gousidou-Koutita, 1986).
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