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Selecting Technologies in Aircraft Conceptual
Design Using Probabilistic Inversion

Martijn N. Roelofs,∗ Dorota Kurowicka,† and Roelof Vos‡

Delft University of Technology, 2600AA Delft, Zuid-Holland, The Netherlands

https://doi.org/10.2514/1.C035985

Technology forecasting is anessential startingpoint for conceptualdesignof anycomplex engineeringsystem. In fact,

many research projects are focused on developing a small set of promising technologies to a suitable readiness level.

However, selecting a set of technologies from a larger pool is a nontrivial task, opposed by uncertainty and subjective

tradeoffs. This paper proposes a probabilistic method to represent technologies and quantify their effects, while

accounting foruncertainty.Usingprobabilistic inversion, technologies canbe selected froma larger set tomeet a certain

combination of requirements. Several test cases illustrate the method and how it may be used in conceptual design

projects. It is concluded that probabilistic inversion enables answering technology development and selection queries,

which would be challenging to answer with traditional deterministic approaches, or purely forward uncertainty

propagation approaches.

Nomenclature

e = Oswald factor
F = cumulative distribution function
I = indicator function
k = impact factor
MF = fuel mass
MMTO = maximum takeoff mass
MOE = operating empty mass
MP = payload mass
MZF = zero-fuel mass
N = Gaussian distribution function
p�⋅� = probability
q = interquantile
R = range
s = sample
X, Y, Z = random vectors
x = sample vector, optimization vector
α = Copula shape parameter
Δ = difference
δ = deflection angle
μ = mean
σ = standard deviation
τ = Kendall’s tau

Subscripts

cl = climb
cr = cruise
des = descent
e = Oswald factor
f = flap
i = ith entry
M = mass
max = maximum
OEM = operating empty mass
req = requirement

tot = total
0 = initial

I. Introduction

D URINGconceptual design, decisions aremade regardingwhich
configurations and technologies to include in an engineering

system. For example, questions arise on which wing movables to
employ and where to position them, what material and structural
layout is optimal for the wing box, whether to use a hydraulic or an
electric actuator system, and so on. We call such questions inverse
(design) queries because they involve working from a computed
quantity of interest back to the input variables and figuring out how
the latter should change to satisfy certain requirements. Typically,
such design decisions are supported by deterministic investigations;
the different options are represented in some simulation model, and
quantities of interest (QOI) are computed for a specific or small set of
designs or missions. Such an approach provides poor generalization
of the conclusions because these are specific to the design or mission
chosen. Therefore, very little can be concluded about the performance
of a certain technology or configuration across the board.
Many design queries can be answered with optimization ap-

proaches. When including uncertainty, one can use either robust
design optimization or reliability-based design optimization [1–3].
These approaches usually convert a probability distribution into
scalar measures like mean and variance.Moreover, they tend to focus
on specific designs and/or missions. However, technology selection
takes place when the precise designs and missions are still unknown.
Design space exploration is a solution that avoids this issue. The high-
dimensional design space can be visualizedwith cobweb plots. These
display the joint distribution of the variables and can subsequently be
used to single out regions (i.e., value ranges of variables) of interest
[4]. Cobweb plots can only be used to analyze the current design
space and show which ranges of variables influence other variables.
Figuring out how the design space should change to achieve certain
goals is not possible and requires other methods.
More robust and reliable decisions may be made when uncer-

tainty is included in the analyses [5]. Chakraborty and Mavris [6]
confirm that statement in practice, by comparing more-electric
system architectures with conventional ones probabilistically. Tech-
nology impact forecasting (TIF) [7,8] generalizes the workflow of
probabilistic evaluation of technologies. Only forward uncertainty
propagation is performed, however, so inverse problems cannot be
directly addressed.
After the technology impacts are evaluated, different approaches to

ranking and selecting the technologies (or portfolios) are available.
Gatian and Mavris [9–11] use an approach very similar to TIF and
perform portfolio selection using a probability of success and a
signal-to-noise ratiometric, which summarize cumulative distribution
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function (CDFs) into a scalar value, such that alternatives can be
compared. Although these measures aim to capture as much of the
CDF as possible, information is still lost. Instead, Jimenez andMavris
[12] determine Pareto-optimal solutions, which are the set of tech-
nologies that lie on a Pareto front of the objectives.A similar approach
[13] uses stochastic dominance to remove design alternatives (i.e.,
technology portfolios) from the complete set, leaving decisionmakers
with only optimal alternatives, to reduce the risk of incorrect deci-
sions. While these approaches do retain the full information of the
CDFs, it becomes harder to rank the technologies because crossing
CDFs do not exhibit stochastic dominance and subjective judgment is
needed to prefer one solution over another.
Even though all of the mentioned research uses probability theory,

there are alternatives: Bayesian theory, possibility theory [14], inter-
val analysis [15,16], and Dempster–Schafer (D-S) theory [17–19].
Akram et al. [20–24] use D-S theory for a technology valuation
process–technology portfolio analysis. While there are strong argu-
ments against theories other than (subjective) probability theory
[25,26], the most relevant argument in the current context is that only
Bayesian theory supports the inverse problem, besides probability
theory. Unfortunately, the Bayesian inverse techniques are computa-
tionally expensive for continuous or larger problems.
This paper investigates probabilistic inversion (PI) to support

technology development and selection. The hypothesis is that this
approach circumvents the drawbacks associated with optimization
and design space exploration approaches and is a useful means to
prioritize technologies when their specification and effects are uncer-
tain. Forward uncertainty propagation is performed through sampling
(similar to TIF), and PI is employed to answer inverse (design)
queries. Probabilistic inversion is explained in Sec. II. The application
consisting of themodel, the input variables, and their distributions are
discussed in Sec. III. Two test cases are performed on this application.
First, a single technology is analyzed with both forward uncertain
quantification (UQ) and PI in Sec. IV. Second, a set of three tech-
nologies is assessed, and PI is used to infer which technologies are
most suitable tomeet user-imposed requirements in Sec.V.Themerits
anddrawbacks of themethod are discussed in Sec.VI, and the paper is
concluded in Sec. VII by establishing that probabilistic inversion is a
powerful method for technology prioritization for selection during
conceptual design and offers possibilities that conventional optimi-
zation or design space exploration techniques do not.

II. Methodology

PI is employed in this paper to solve inverse queries. The aim is to
find thevalues for some input values that achieve certain goals defined
on the output variables. In this section, the principles behind PI are
discussed, and the algorithms to solve PI problems are presented.
Before diving into PI itself, though, an overview of how PI fits in

with uncertainty quantification and propagation is provided in Fig. 1.
The first part of the method, uncertainty quantification and propaga-
tion, is common to other approaches [7–11]. This part entails setting
up the input variables and their (joint) distributions. Not all existing
approaches employ joint distributions, but it is not unique toPI. In this
paper, the joint distributions are specified using copulas, which are
explained in Sec. II.B. All the variable distributions are then sampled
N times, and each sample is propagated through the analysis
models that compute the QOI. The sampling procedure is indifferent
to the type of model, so any black box input–output model works.

Therefore, the models can be anything from physics-based simula-
tions to design codes to surrogate models. The output samples are
used to construct CDFs on the QOI. Further metrics may be derived
from these CDFs to support decision making. When the output does
not satisfy certain goals, traditional approaches require an iterative
procedure, indicated by the dashed line in Fig. 1. Rather simply, the
input is changed iteratively to obtain the desired output.
This is where PI comes in. Instead of adopting an iterative pro-

cedure, PI is one additional step that is conducted after the uncertainty
propagation. Constraints are imposed on any of the variables (input
and output), and PI figures out how the distributions of the other
variables change to satisfy those constraints. The updated distribu-
tions are used to answer design queries or technology prioritization
queries.

A. Probabilistic Inversion

Probabilistic design, in the most general form, requires finding
input random vector X ∈ RN (with some properties) to a particular

modelG:RN ↦ RM that yields output vector Y ∈ RM with a prespe-
cified distribution. In otherwords,wewant to findX such thatG�X� ∼
Y (where ∼ denotes having the same distribution); hence, invert the
function G over random variables. This process is called PI [27].
For some simpler types of models, PI can be carried out with

Bayesian methods. In many applications, however, the functionG is
very complicated, so the distribution of G�X� is found via simula-
tions. In such cases, PI can be performed via sample reweighting [28],
which avoids inverting the functionG, by reweighting the samples of
inputs and outputs of the model to satisfy specified constraints. The
sample reweighting process is as follows. For a set of samples

�x�i�1 ; : : : ; x�i�N � generated by sampling fromX, a set of output samples

is computed as �
y�i�1 ; : : : ; y�i�M

�
� G

�
x�i�1 ; : : : ; x�i�N

�

The sample file si � �x�i�1 ; : : : ; x�i�N ; y�i�1 ; : : : ; y�i�M �, i � 1; : : : K is

obtained (shown in Fig. 1), where each sample has the same proba-
bility p�si� � 1∕K. The idea is to find a different than uniform
distribution over the samples. That is, the weights wi have to be
found, such that resampling with these weights leads to a new set of
samples that satisfies the requirements on Y and X.
To make this problem computationally tractable, the requirements

on Y andX are in the form of quantiles or percentiles of variables in Y
and X or functions of these variables. In this simplified form, PI
via sample reweighting can be viewed as an optimization problem to
find weights �w1; : : : ; wK� which minimize relative information with
respect to the uniform distribution subject to linear constraints corre-
sponding to percentiles of variables in Y and X or their functions. In
theory, there are many distributions that could satisfy the imposed
constraints, which is why the minimum relative information gives the
distribution closest to the starting distribution, in other words, the
uniformdistribution. Ifwewere only interested incomputing themean,
then updating the sample weights and computing E�X� �P

wi ⋅ xi
would suffice. However, we are interested in the full distributions,
which requires resampling with the new weights to construct them.
In principle, this problem can be solved with help of optimization

software. In this paper, however, the PI problem via sample reweight-
ing is solved with the Iterative Proportional Fitting (IPF) algorithm,

Fig. 1 Overview of the method in three steps: uncertainty quantification, propagation and probabilistic inversion. The information from PI can be used
for subsequent technology selection.
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introduced in Ref. [29]. This algorithm is much faster than optimi-
zation approaches. IPF starts with a uniform distribution over the
samples and then iteratively reweights them to satisfy the imposed
constraints, one constraint at the time. If the optimization problem
is feasible, IPF converges and provides a minimally informative
solution to the problem with respect to the starting distribution
[30]. IPF will not converge when the problem does not have a
solution. In this case, algorithms that minimize infeasibility are
proposed, such as PARFUM [31] and PREJUDICE [32,33].

1. Iterative Proportional Fitting

IPF iteratively reweights samples to satisfy the imposed con-
straints. Those constraints are provided as percentiles for a set of
variables. Even if the complete sample set contains all variables X,
IPF only requires the constrained variables Z ⊆ X ∪ Y ∪ H�X;Y�.
Thus,Z is a subset ofX,Y, and functions of these two. The samples of
Z are presented as a matrix,

Z �

2
6664
z11 · · · z1M

..

. . .
. ..

.

zK1 · · · zKM

3
7775 (1)

where K is the number of samples andM is the number of variables
in Z.
For each variable Zm, a vector of percentiles is specified. From

these percentiles, the interpercentiles qm are derived. For example,
the 5, 50, and 95% percentiles are specified for Zm: then,
qm � �0.05; 0.45; 0.45; 0.05�. All vectors qm are stored in the set
Q � fqmg. It is defined as a set of vectors rather than amatrix because
this allows for different amounts of percentiles to be specified for
different variables.
For each percentile, the value of the corresponding variable has to

be specified. Thus, let Qm � jqmj be the amount of quantile con-
straints qm on the variable Zm. Then, rm has length jrmj � Qm − 1,
where each entry rmj is computed as

∀ j � 1; : : : ; Qm − 1:rmj ≡ P�Zm ≤ rmj� �
Xj
i�1

qi (2)

For all variables, the vectors rm are collected into a setR � frmg.
The matrix Z, the interpercentile set C, and the constraint valuesR

together are the inputs to the IPF algorithm. The algorithm starts by
creating a set of indicator matrices, which specify which samples
belong towhich interpercentiles. Therefore, for each variable, there is

a matrix Am ∈ RK×Qm given by

Am
ij �

8>><
>>:
Zim ∈ �−∞; rm;1� if j � 1

Zim ∈ �rm;Qm−1;∞� if j � Qm

Zim ∈ �rm;j−1; rm;j� otherwise

(3)

Thus, each column corresponds to an interpercentileqm;j, and each

row evaluateswhether thevalue of that sample inZ iswithin the range
specified by rm for that interpercentile. The setA � fAmg is the last
piece of information IPF requires.
IPF starts with an initial vector of sample probabilities p, which

is the uniform distribution over the samples. Thus, each values
pi � p�si� � 1∕K. Then, an outer loop runs through a prescribed
number of iterations. During each iteration, the vector p is updated
for each variable separately. Therefore, an inner loop runs over the
variables Zm and performs the following operation:

p 0
i �

XQm

j�1

Am
ij

piqjP
i∈Am

⋅j
pi

(4)

This process is shown in Fig. 2. After each inner loop iteration, pi

is set to p 0
i . As such, IPF updates p to satisfy each quantile constraint

on each variable one at a time,while possibly violating the constraints

over a previous variable. However, as the iterations proceed (and if
the problem has a solution), the constraints for each variable will be
satisfied [27,30].

2. Error of IPF

The outer-loop of IPF runs over a prescribed number of iterations,
but it could happen that IPF reaches satisfactory convergence before
that limit is reached, or instead does not converge on time. With
the constraints and the vector p, the achieved percentiles can be
computed and compared to the specified percentiles. This provides
a measure of the error of IPF at any given iteration.
The constraints, specified by the combination of the quantiles

Q and their values R, can be written as a linear combination of the
sample probability vector p. They form the constraint set C, which
contains for all m � 1; : : : ;M and j � 1; : : : ; Qm the following
equality:

Cj;m:
XK
i�1

piA
m
ij � qj;m (5)

Essentially, each constraint counts the number of samples that
would fall within a certain interpercentile, given the new probabilities

pi. Thus, there are jCj �
P

M
m�1 Qm constraints: one for each combi-

nationof percentile andvariable inZ. The setC can nowbewritten as a
set of linear equations C ⋅ p � q ⋅ C is a jCj × K matrix, with each
entryC�j;m�;i � Am

ij. Thevectorpof lengthK containspi, andq are the

percentiles, reshaped into a vector of length jCj. The vector q should
have the same values as the corresponding entries inQ. As a measure
of the error, the maximum absolute value of q − C ⋅ p is taken.

3. PARFUM

IPF may not always converge, especially when the provided con-
straints make the problem infeasible. In such cases, an approximate

Fig. 2 Flow chart of the IPF algorithm. The outer loop runs over a
prescribed maximum number of iterations, while the inner loop iterates
over all variablesm.
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algorithm may be used. PARFUM is such an algorithm [31], which
works similarly to IPF. Unlike IPF, however, PARFUM updates each
variable separately on each iteration [identical to Eq. (4)],

pm
i �

XQm

j�1

Am
ij

piqjP
i∈Am

⋅j
pi

(6)

after which a mean is taken of the weights for each sample. In this
case, the geometric mean is used:

pi �
 YM

m�1

pm
i

! 1
M

(7)

When the problem is feasible, this gives the same result as IPF.
When the problem is infeasible, PARFUM provides a minimally
informative solution thatminimizes the distance to the constraints [27].

4. Grouped Sample Reweighting

For reasons that will become apparent in Sec. V, it is sometimes
desired to only reweight groups of samples simultaneously, instead
of individually for each sample as IPF and PARFUM do. This way,
the distributions over the variables in a group of samples are left
unaltered. To achieve this, the sample set is divided into P disjoint
groups. After PI is performed on the full vectorp, each sample has its

ownweight. However, now each sample in a group should receive the
same weight. This is done by simply taking the mean of the sample
weights for each group and assigning that weight to each sample in
the group:

∀si ∈ Pj; j � 1; : : : ; P :p�si� �
P

sk∈Pj
p�sk�

jPjj
(8)

Afterward, p is scaled to sum to 1. Note that, because solving
PI problems with grouped sample reweighting often is infeasible, the
PARFUM algorithm should be used instead of IPF. However, we

have not yet been able to prove that PARFUM with this additional
step converges.

B. Copulas

In many practical applications, multivariate distributions have to
be specified over the input variables, instead of just univariate dis-
tributions. This is the case when two or more input variables are

codependent. Copulas offer a general framework for specifying such
multivariate distributions using anyunivariatemarginals and a copula
function C that specifies the dependency structure between the
marginals [34]. The copula function C relates a set of real random
variables U1; : : : ; UN with standard uniform§ margins as

C�U1; : : : ; UN� � P�U1 ≤ u1; : : : ; UN ≤ uN� (9)

The significance of copulas is a result of Sklar’s theorem [35] that
states that any multivariate distribution H can be represented as a
copula function of its marginals,

H�X1; : : : ; XN� � C�F1�X1�; : : : ; FN�XN�� (10)

where Fi�Xi� � P�Xi ≤ xi�; in other words, it is the cumulative
distribution function of the variable Xi and represents its marginal
distribution. Because Fi:Xi ↦ �0; 1�, they are the Ui in Eq. (9).
To specify a multivariate distribution H, a copula should be

specified that captures the dependency as required. Because it has
standard uniformmargins, sampling froma copula is straightforward.

Then, knowing for each variable Xi the CDF Fi and its inverse F
−1
i ,

each sampled variableUi can be transformed into the values forXi as

follows:

Xi � F−1
i �Ui� (11)

The copula of a set of samples of Xi can be obtained by trans-
forming each Xi into copula space, in other words, its corresponding
Ui.When theCDFFi is known, this is trivial. However, when it is not
known, it may be estimated through kernel density smoothing, for
example. Alternatively, the ranks of the values inXi can be computed
and divided by the amount of samples in Xi plus 1:

Ui ∼
rank�Xi�
jXij � 1

(12)

Not any function is suitable as the copula functionC. The ones that
have been developed are roughly divided into two families: Gaussian
and Archimedean. The Archimedean family contains, among others,
the Clayton, Gumbel, and Frank copulas. It is not relevant for this text
to further elucidate these copulas and their differences.However, they
are so-called parametric copulas because they are governed by a
parameter that indicates the dependence strength. In the following,
this parameter is called α and can be computed from common
correlation coefficients, such as Kendall’s τ.

C. Example of Applying PI

Before continuing with a more realistic problem setting, a simple
example is discussed to show how probabilistic inversion works in
practice. Consider the mass breakdown of the maximum zero fuel
mass MZF computed as

MZF � MOE ⋅ �1 − kOEM� �MP (13)

whereMOE is the operating empty mass, kOEM is a percentage mass
reduction, and MP is the passenger or payload mass. This mass
breakdown is not representative of the real world and only is con-
structed for a simple demonstration of PI.
We assume that kOEM is uniform on the interval [0, 0.3] and is

independent of MOE and MP. The margins of MOE and MP are
assumed uniform on �1e4; 2e5� and �5.5e3; 7.7e4�, respectively.
These values are purely notional. In a real case, they would have to
be estimated from data or expert elicitation. Furthermore, from
engineering insight, it is logical that MOE and MP are correlated
because a higher payload mass leads to higher structural mass.
Conversely, nomore structural mass is present than strictly necessary
for a given payload mass. This dependency is modeled with a Frank
copula with α � 18.1915 corresponding to Kendall’s τ of 0.8. The
Frank copula is chosen because it is symmetric and has no tail
dependency. The value of 0.8 is chosen arbitrarily and should in real
applications be estimated from data or with an expert solicitation
procedure. The resulting scatter plot of samples from the joint dis-
tribution ofMOE and MP is shown in Fig. 3a.
Now, a given set of aircraft is considered for which MOE and MP

follow the uniform distributions as specified in the preceding para-
graph, and the percentage mass reduction is kOEM. Suppose that for
this range of aircraft some new technology can be considered that
allows to alter the distribution of kOEM. The question is how much
percentage MOE reduction is required for a given reduction in MZF.
The requirements on the distribution of MZF are specified in the

form of 5th, 10th, 30th, 50th, 70th, 90th, 95th, and 99th percentiles,
which are equal to 0.2428, 0.3353, 0.7440, 1.1605, 1.5740, 1.9721,

2.1083, and 2.2932 (all ×105), respectively. These values are 11%
smaller than the original distribution ofMZF.
PI requires the problem to be translated into a set of constraints.

Recall that constraints take the form of the quantiles Q and their
values R. Essentially, these are points on the CDFs that the practi-
tioner desires to obtain after performing PI.
We distinguish two different functions for constraints: either a con-

straint fixes a variable’s distribution so PI cannot alter it or it reflects a
newdistribution that is desiredby thedesigner. For the first function, the
percentiles of the original distributions can be specified as constraints.
However, that does not mean that the distributions are not changed by
PI at all. In case of a joint distribution, all linear combinations of the§A standard uniform distribution is a uniform distribution on [0, 1].
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variables would have to be constrained. Thus, a distribution can never
be fully constrained in a way that keeps it completely unaltered during
PI. Nonetheless, these constraints do limit the extent to which a
distribution is affected and are therefore sufficient. Examples of how
andwhy certain variables or their joint distributions are constrained can
be found later in Secs. V.A and V.B. The second constraint function
requires the percentiles of a new distribution. These percentiles may be
obtained from data or from expert elicitation or policy makers using
existing techniques. Naturally, they may be assumed to get an indica-
tion of the resulting responses.
For this example, a fixed set of aircraft is considered. Thus, MOE

andMP need to bekept relatively unchanged, and only thedistribution
of kOEM should be adjusted to the requirements on the distribution of
MZF. To that end,MOE andMP are constrained to keep their 5th, 10th,
30th, 50th, 70th, 90th, 95th, and 99th percentiles close to the original.
Thus, for each of these variables, each of the percentiles is specified
with the value of the original uniform distribution. Furthermore, to
keep the dependency betweenMOE andMP similar, the distribution of
the sum of MOE and MP is also constrained on the same eight
percentiles. Therefore, the dependency imposed by Fig. 3a should
remain identical. Dropping the constraints on the margins or depend-
ence of MOE and MP would permit PI to alter their distributions,
which would consequently reflect a different set of aircraft.
With the aforementioned constraints, the IPF algorithm is run,

and a new sample set is generated. The CDFs for the new samples are
shown in Fig. 4 (as dashed, red lines), with the original CDFs for
reference (as blue, solid lines). Notice that the CDFs ofMOE andMP

hardly have changed due to the constraints, while kOEM becomes
skewed to the right as expected.
To better illustrate what PI does, the probability density functions

(PDFs) corresponding to theCDFs are shown in Fig. 5.Again, the red,
dashed lines show the PDFs after PI, while the blue, solid lines are the
original PDFs. The distribution over kOEM has shifted all theway to its

largest value. Observe the oscillatory nature of the PDFs for MZF,
MOE, andMP. This is an important effect of using percentiles rather
than complete distributions as constraints; thus, it is inherent to IPF. PI
picks sampleswithin each interpercentile and reweights those equally
to meet a certain percentile constraint. Therefore, the distributions
only match at the specified percentiles, and may vary in between.
A similar observation can be made for the bivariate distribution of

MOE andMP in Fig. 3. After PI (Fig. 3b), the scatter plot is different
than the original one. Clear discontinuities can be seen in the samples
corresponding to the oscillations of the PDFs shown in Fig. 5. None-
theless, the dependency between MOE and MP, measured as the
Pearson coefficient, remains almost identical to the initial value of
0.95, due to the constraint on the sum of these two variables.
If the constraints on MOE, MP, and their sum are not included,

the results of PI look very different. These are shown in Figs. 4 and 5
as dotted, red lines. From both figures, it becomes clear that kOEM is
hardly affected, while the distributions ofMOE andMP show a larger
deviation form the original. This is easily understood as PI picks the
most influential variables to achieve the constraints. In this case,
obviously,MZF is most easily reduced by reducing eitherMOE orMP

or both. From Fig. 5, we can furthermore observe that the PDFs are
smoother as PI has more freedom with a constraint only on MZF.
Thus, weights are redistributed more evenly over samples, and the
resulting PDFs and CDFs after resampling are smoother. Finally, the
correlation between MOE and MP also changes from 0.95 to some-
what below 0.94. That is not a big difference but shows that for more
complex problems and/or more constraints PI alters the dependency
between variables.

III. Application

The mission analysis method that is used to showcase PI in an
aircraft technology evaluation and selection setting is discussed in

Fig. 4 Cumulative distribution functions before and after PI.

a) Original distribution b) Distribution after PI

Fig. 3 Joint distribution betweenMOE andMP , modeled using a Frank copula, before and after PI.
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this section. Consecutively, the inputs to this method are presented
together with their probability distributions. Finally, the technologies
that are under investigation and how they are modeled are detailed.

A. Mission Analysis Method

A simplified mission is simulated and starts at zero altitude and
takeoff speedV0 as well as an assumed fuel massMF0

, then climbs to
cruise altitudehcr and accelerates to cruise speedVcr. The range flown
during climb is now computed, but the range flown during cruise or
descent is unknown. Therefore, descent is first computed backward
(because the final point is known), such that the range flown during
descent becomes known. The final point is at zero altitude and V0,
with zero fuel mass. When both climb and descent have been com-
puted, the range flown in cruise is known and is assumed to be flown
at constant altitude and speed. In its entirety, the mission analysis
function can be described as

�MF;R� � MA�MF0
; x� (14)

where x is a sample that holds a value for each of the input variables
(presented in Sec. III.C) other than the initial fuel mass estimateMF0

.

The functionMA returns both the consumed fuel massMF and range
flownR. At any point, the assumed initial fuelmassMF0

may turn out

to be insufficient (R < Rreq). Conversely, when the entire mission is

flown (R ≥ Rreq), residual fuel may remain (MF0
> MF). Therefore,

an outer iteration aims to find the particular value for MF0
that is

adequate to fly the specified range. That value gives the quantity of
interest: fuel burn. The outer iteration is implemented using a min-
imization-within-bounds algorithm, which minimizes the error in
fuel mass and range

ϵ�MF0
; R� � abs�MF∕MF0

− 1� � abs�R∕Rreq − 1� (15)

by adjustingMF0
as

argminMF0
ϵ�MF0

; R� (16)

For a fair comparison between aircraft and technologies, the block
fuel burn MF is not a suitable metric; heavier, long-range aircraft
consume more fuel, even if they are more efficient than lighter,
regional aircraft. Therefore, the payload-range energy efficiency
(PREE) [36] is used. However, this metric is based on energy con-

sumption and is defined as R ⋅MP ⋅ E−1, where E is the energy
consumed during an entire mission. Thus, this metric measures
efficiency, which has to be increased. However, in this paper, the
QOI has to be minimized, so the inverse of PREE is taken, and the
energy consumption is replaced with block fuel burn, resulting in

the PRE−1 metric. Thus, PRE−1 is the block fuel normalized with

range and payload mass, in other words,MF ⋅ �R ⋅MP�−1.
The mission analysis computations assume steady flight. Further-

more, thrust during climb is assumed to be a constant fraction Tcl of
the maximum thrust Tmax, and during descent, a constant fraction
Tdes is assumed. Finally, a speed–altitude profile is assumed, given by

dV

dh
� Vcr − V

hcr − h
(17)

during climb and the negative of that during descent. This profile is
not necessarily realistic but suffices for the current application, where
only differences between different inputs matter.

B. Cost Computation

Nodetailed costmodule is present in the currentmethod.However,
a cost metric is included in order to have a second objective that
conflicts with PRE−1. It can be interpreted as any kind of cost, for
example, recurring cost, nonrecurring cost, and/or direct operating
cost. The baseline aircraft is considered to have a normally distributed
cost with mean μ � 1 and standard variance σ � 0.05. Each tech-
nology adds some cost measure to this baseline distribution. Depend-
ing on these technology costs, the final cost for each portfolio may be
smaller or larger than the baseline.

C. Input Variables

In this section, the distributions and dependencies for the input
variables of the mission analysis are set up. Most researchers that
include uncertainty do not focus on how the probability distributions
should be obtained [37]. Characterizing those distributions for sub-
sequent analysis is a challenging task, which often relies on expert
judgment. Even though that is labor intensive and subjective, there is
no viable alternative presently, and Fig. 1 shows it is adopted here as
well. However, an alleviating remark is made by Cook and Jarrett [2],
who address the question of “How important is the choice of how to
represent input uncertainties mathematically in robust airfoil optimi-
zation?” as an example ofwhat effect the specific choice of uncertainty
distribution has on the outcome. The answer is that the difference
between probabilistic results (i.e., different probability distributions)
is insignificant, albeit their differencewith the deterministic cases was
large. In one case, even, the probabilistic optimum was Pareto dom-
inantwith respect to the deterministic one. Thus, includinguncertainty
is important. However, not just any distribution works, and especially
dependencies between variables have to be taken into account.
Table 1 shows all the inputs to the mission analysis method [x in

Eq. (14)]. Most of these variables are assigned a uniform distribution,
to reflect awide range of aircraft andmissions. Thrust-specific energy
consumption (TSEC) and specific energy (SE) are assigned a triangle
distribution because their mean is derived from data and the triangle
distribution allocates more probability mass around this value, while
having finite bounds. Finally, some variables are represented with
scalar values because they are aircraft independent and this way the
design space is reduced.

D. Technologies

In the ensuing case studies, three technologies are used to showcase
PI. The first, which is also investigated individually, is a second-
degree-of-freedom (2nd DOF) flap. This flap has two actuators that
independently control the extension and rotation of the flap, to allow it
to providemaneuver load alleviation (MLA) and camber optimization.

Fig. 5 Probability density functions before and after PI.
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Therefore, it is modeled using three variables: δf;max, kM;flap, and ke.
The first is the maximum deflection of the flap, either upward or
downward. The second is the effect of maneuver load alleviation on
the structural weight, measured as a percentage of MOE. (A lighter
wing box can be designed when MLA effectively reduces the maxi-
mum load factor [38–40]). The third models the effect of camber
optimization [41] by being added to the aircraft’s Oswald factor. Its
distribution is estimated from Ref. [42]. Both δf;max and ke influence
the aircraft lift–drag polar as follows:

CD � CD0
� 5 × 10−5 ⋅ δf �

C2
L

πA�e� ke ⋅ δf�
(18)

In this equation, δf is measured in degrees; thus, ke is measured in

1∕ deg. The effect of δf for a fixed value of ke is shown in Fig. 6.

Essentially, an increasing flap deflection shifts the polar to the right,
while reducing induced drag, thus making the polar less steep.
In the mission analysis, the L∕D ratio is optimized at each point

during themission by varying the flap deflection angle δf in the range
�0; δf;max�. During climb and cruise,L∕D is maximized by the flap for

a given CL, as

argminδf∈�0;δf;max �CD (19)

while during descent, it is minimized for the steepest path:

argmaxδf∈�0;δf;max �CD (20)

All three technology-defining variables and their distributions are
shown in Table 2. It also shows the dependency imposed on δf;max

and kM;flap. This follows the insight that the higher the flap deflection

is, the more maneuver load alleviation is achieved. However, for

increasingly large deflections, more uncertainty is present in themass

reduction that is achieved. To model this effect, a rotated Clayton

copula is used, with α � 8, computed from a Kendall’s τ of 0.8. This
copula is shown in Fig. 7 in the leftmost plot.

The second technology is a rotating winglet downer, which is a

rotating element originating from the winglet’s base and pointing

downward. It deflects to alter the lift distribution around the wing tip

and consequently offers maneuver and gust load alleviation [43]. It is

modeled using a singlevariable kM;downerwhich also is a percentage of

MOE. When both this and the flap technology are present, the com-

bined effect is not simply the multiplication of both mass reduction

factors. Instead, kM;downer is expected to be closer to 1 when kM;flap is

low and vice versa. Therefore, a negative dependency has to be

imposed on these two variables. Furthermore, it is assumed that it is

impossible to reach either variable’sminimumwhen both are present.

For these reasons, this dependency ismodeled using aClayton copula

with α � −0.75, computed from a Kendall’s τ of−0.3. The resulting
joint distribution is shown in the center plot in Fig. 7. The rightmost

plot shows the dependency between δf;max and kM;downer, resulting

from the two previously mentioned dependencies. The combined

effect of the two technologies ktot � kM;flap ⋅ kM;downer. Thus, drawing

from the center distribution in Fig. 7, and applying this multiplication

to obtain ktot, the distributions in Fig. 8 are obtained. Observe that ktot
(in some cases) achieves more reduction than either kM;flap or

kM;downer alone, although not as much as the multiplication of their

minima (i.e., 0.8 ⋅ 0.9 � 0.72). Instead, the minimum of ktot lies
around 0.77.

In summary, the 2nd DOF flap and winglet downer offer a mass

reduction as follows:

Fig. 6 Lift-to-drag polars affected by flap deflection for notional 2nd
DOF flap.

Table 1 Input variables specification

Variable name Symbol Distribution Dependency

Cruise altitude, m hcr Uniform Independent

Cruise speed, m∕s Vcr Uniform Independent

Range, m R Uniform Independent

Payload mass, kg MP Uniform Correlated withMOE

Takeoff and landing speed, m/s V0 Scalar (45) Independent

Wing loading, N∕m2 W∕S Uniform Determines wing area S

Wing aspect ratio A Uniform Determines wing span b

Thrust-to-weight ratio T∕W Uniform Independent

Climb throttle Tcl Scalar (0.85) Independent

Descent throttle Tdes Scalar (0.05) Independent

Operating empty mass, kg MOE Uniform Correlated withMP

Clean zero-lift drag CD0
Uniform (0.01, 0.02) Independent

Thrust specific energy consumption, J∕�N ⋅ s� TSEC Triangle (600,750,900) Independent

Oswald factor e Scalar (0.7) Independent

Fuel specific energy, J∕kg SE Triangle (45 ⋅ 106, 46 ⋅ 106, 47 ⋅ 106) Independent

Time step, s Δt Scalar (30) N∕A

Table 2 Technology variables specification

Variable name Symbol Distribution Dependency

Maximum flap
deflection, deg

δf;max Uniform (0, 30) Correlated
with kM;flap

Flap mass impact kM;flap Uniform (0.8, 1) Correlated
with δf;max

Flap Oswald
efficiency, deg−1

ke Uniform
(0.012, 0.036)

Independent

Downer mass impact kM;downer Uniform (0.9, 1) Independent

Engine TSEC impact kTSEC Uniform (0.5, 0.99) Independent
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ΔM �

8>><
>>:
kM;flap ⋅MOE if only flap

kM;downer ⋅MOE if onlywinglet downer

ktot ⋅MOE if both flap andwinglet downer

(21)

The third technology is some engine improvement (e.g., better

turbine blade cooling, to increase turbine inlet temperature) that

improves the TSEC of the aircraft. It is modeled with kTSEC, also
shown inTable 2, and is independent from the other two technologies.
For each technology, the cost is determined through a deterministic

function of its characterizing variables or a random distribution or

both. These functions are crafted to give a spread in total cost, such

that a tradeoff between fuel burn and cost results. The cost impacts

and total cost are computed as

C0 � N �μ � 1; σ � 0.05�;
ΔC;flap � δf;max∕100;

ΔC;downer � N �μ � 0.1; σ � 0.02�;
ΔC;engine � �1 − kTSEC�∕5�N �μ � 0; σ � 0.05�; and

C � C0 � ΔC;flap � ΔC;downer � ΔC;engine

Here, N is a Gaussian distribution. Obviously, when a certain

technology is not included, its cost is not added to the total cost.

E. Verification

The mission analysis method is examined in this section. First, the

response of the model for a single aircraft and design point is

investigated. Second, a global sensitivity analysis is conducted to

study the response of themodel, in order to support the conclusions in

the subsequent test cases.

1. Mission Analysis for Single Aircraft

An Airbus A320 aircraft is notionally represented using the avail-

able input variables to study the various responses of the mission

analysis model. In Fig. 9, the results of the mission analysis for this

input are depicted. It is important to observe that, during climb and
descent, the flap deflection δf is always at its maximum value δf;max

and otherwise zero. This is a deficit in the lift–drag polar model

(explained in Sec. III.D); the polars for zero andmaximum deflection

cross in the very small region. Therefore,CL is either above or below

it, and the one with least drag in that region is chosen. During cruise,
the CL is within the transition range from zero to maximum deflec-

tion, and hence a gradual variation results. In a more realistic setting,

adverse effects of flap deflection, such as separation, have to be

modeled and will influence (i.e., limit) the flap deflection.
For the rest, the mission analysis computation behaves as

expected, with realistic values for all parameters (even though CL

almost reaches 5 as a result of the assumption for dV∕dh). This
conclusion is not enough to support the case studies, though. Tomake

conclusions about the effect of technologies, or do probabilistic

inversion, the sensitivity of this analysis method has to be measured
against the variables of interest.

2. Global Sensitivity Analysis

A sensitivity analysis (SA) is performed to study the response of

the model with respect to changes in its input. This information

supports the conclusions that are drawn from PI in the various test

cases in the following sections. For example, when PI modifies the
distribution of one variable significantly, while another is hardly

affected, there are two possible explanations. The first explanation

is that the former variable simply is more effective in reaching the

goal that PI is set out to achieve, even though both variables have a

measurable influence on that goal. In contrast, the second explanation
is that the model used to generate the samples is insensitive to the

latter variable; hence, PI only changes the former because it is the

only variable explaining the variance in the goal.
Commonly, sensitivity analyses are conducted around a particular

point in the design space (local SA). This type of analysis is justified
when investigating a specific design, rather thanawide range.Forwhat

is currently of interest, a wide range of aircraft designs, global sensi-

tivity analysis is a more appropriate tool. It is performed as follows.
There are two quantities of interest in this study:PRE−1 and cost. A

sensitivity analysis is only conducted on the first, as for cost there are

linear equations with the technology impact variables, and as such,

we already know the sensitivities are nonzero. ForPRE−1, the product

moment correlation, rank correlation, and correlation ratio are com-

puted. The first is a measure of the strength of a linear association of

two variables, on a scale from −1 to 1. Rank correlation is similar,

except that itmeasures howwell the twovariables follow amonotonic
function. Finally, correlation ratio provides a sense of the extent to

which a variable’s variance explains another variable’s variance. It is

measured on a scale from 0 to 1. Therefore, unlike the other two, the

correlation ratio does not give a direction of influence.
To study the sensitivity of the mission analysis method, the sensi-

tivity of PRE−1 is computed with respect to the variables in Table 1,

without any of the technologies. The results are shown in Fig. 10,

where the sensitivities are sorted fromhighest to lowest, in an absolute

sense. It becomes clear that CD0
and TSEC are most influential. That

Fig. 7 Dependencies between the three variables δf;max, kM;flap, and kM;downer characterizing the 2nd DOF flap and winglet downer.

Fig. 8 Dependencies between the 2nd DOF flap and winglet downer

mass impacts and their combined effect ktot. These plots are the result of
combining those from Fig. 7 with the fact that ktot � kM;flap ⋅ kM;downer.
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MF is in third place is surprising, as it is the variable that is measured,
except that it is not yet normalized withR andMP. Therefore, wemay
conclude there are other variables explaining the variance inMF other
than R and MP. Each variable’s direction of influence agrees with
engineering instinct. Therefore, it is concluded that the mission
analysis behaves as expected and shows good sensitivity with respect
to the input variables.
A similar sensitivity analysis only includes the technology impact

variables from Table 2, in the dataset where all three technologies
are included. This gives the sensitivities in Fig. 11, which are as
expected, except for the sign of kM;downer. Thus, kM;downer has a
negative correlation, while the same sign as kM;flap is expected

because the two are effectively the same. To check correct operation
of the mission analysis, the sensitivity study was repeated for when
only the downer technology is included, which indeed shows the
correct sign for kM;downer.

The sensitivity analyses show that the QOI PRE−1 is sufficiently
affected by the technologies and the other input variables. Thus, PI
should have little to no bias toward certain variables as a result from
model insensitivities.

IV. PI for Single Technology

Even though PI shows most potential over conventional
approaches in the case of multiple objectives, this section starts with
a single technology and a single objective. This is because relevant
design queries can be answered using this approach and it is a suitable
stepping stone for the more involved multi-objective technology
prioritization in the next section.
For a single technology, queries regarding what technology

impacts are required for a given reduction of x% in QOI y might be
of interest. Such questions are easily posed in PI, by constraining y

Fig. 9 Mission analysis results showing variation of altitude, mass, L∕D, T∕D, δf , and CL with range flown.

Fig. 10 Sensitivity measures of PRE−1 with respect to the variables in Table 1.
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and observing the changes in the technology parameters. This section
shows how PI enables answering such queries, specifically for the
2ndDOF flap technology, introduced in Sec. III.D.Next, the use of PI
to study technology maturation is presented.

A. Inverse Query: Technology State Required for Prescribed Benefit

Studying what values the technology variables should attain for a
given change in one or more QOI is done using PI. The technology
variables (δf;max, kM;flap, and ke) are allowed tomove freely, while the
other input variables are held fixed. A distribution is specified on

PRE−1 that reduces it by some amount for each percentile. The same
bivariate distributions betweenMOE andMP and between δf;max and

kM;flap are constrained as well. The results in Fig. 12 follow intuition:

the median PRE−1 has reduced by 15%, as specified. Correspond-
ingly, the maximum flap deflection has shifted to the right, as has ke.
The deflection’s median went from 17 to 23 deg: an increase of 35%.
At the same time, its variance reduced by 40%. The median of ke

increased by 13%, from 0.0245 to 0.0277, with a variance reduction
of 14%. As expected, the distribution for kM;flap shifts to the left, as a

result of the increase in δf;max. Likewise, cost has increased. The fact

that variance is reduced is attributed to the constraint on PRE−1

having lower variance than the original distribution. The correspond-
ing PDFs are shown in Fig. 13.
While traditional approaches may be able to obtain statistical

measures such as themean andvariance, PI provides a full distribution
for the variables of interest, to fulfill certain goals. With pure forward
propagation approaches, that is only attainable through iteratively
updating the input distributions and propagating these through the
models.

B. Alternative Use of PI: Investigating Technology Maturation

Technology maturation can be modeled by updating the input
distributions of the technology variables [9]. However, running the
analysis models again to generate thousands of samples is Time-

Fig. 12 Cumulative distribution functions for 2ndDOF flap technologywith original (blue) distributions and for a 15%PRE−1 reduction (red, dashed).
The vertical lines represent the medians of the two curves.

Fig. 13 Probability density functions for 2nd DOF flap technology with original (blue) distributions and for a 15% PRE−1 reduction (red, dashed).

Fig. 11 Sensitivity measures of PRE−1 with respect to the variables in Table 2.
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Consuming. With PI, the same result can be achieved, provided the

updated distributions arewithin the rangeof the original distributions.

Where the traditional approach requires propagating N samples

through the analysis models twice, the PI approach only requires a
single forward propagation pass.
For the 2nd DOF flap, the distributions of δf;max and ke are

adjusted. The flap deflection now follows a triangle distribution from

12 to 30 deg, with its peak at 20 deg. The Oswald efficiency impact is
also provided with a triangle distribution from 0.02 to 0.036, with a

peak at 0.03. In both cases, the range of values is less than the original,

uniform distribution. Furthermore, more probability mass is located

around the expected values: 20 deg and 0.03, respectively. Finally,

because the dependency of δf;max with kM;flap (recall Fig. 7, leftmost

plot) has to be maintained, kM;flap is given an updated uniform

distribution corresponding with the range of values for δf;max.

To set up the PI problem, the new distributions on δf;max, kM;flap,

and ke are imposed as constraints. Furthermore, the joint distributions

ofMOE andMP and δf;max and kM;flap are constrained, as are all input

variables that should remain unchanged. As Fig. 14 illustrates, the
results from forward uncertainty propagation and PI are virtually

identical. The only noticeable difference lies in the lower percentiles

of the δf;max and ke CDFs. This is simply a result of not constraining

PI at even lower percentiles. Regardless, the updated CDFs of cost

and fuel burn show the same effect. The corresponding PDFs are
shown in Fig. 15.
Comparing the median (50 percentiles) of these two QOI, a 3%

cost increase and an 8% fuel burn (per passenger kilometer) are

measured. Furthermore, the variance of cost decreased by 51% and
for fuel burn decreased by 20%. For the forward propagation, a 3%
cost increase and 9% fuel burn reduction are computed. Thus, as
Fig. 14 already shows, the two approaches give an almost identical
result. However, the variance reduction using forward propagation is
more pronounced: 59% as opposed to 30% for PI. This is attributed to
the discrepancy in lower percentiles, mentioned earlier.
It should be reemphasized that the approach employed in this

section only works when the matured technology distributions lie
within the originally sampled distributions. That is because PI can
only reweight existing samples; therefore, samples outside the original
set cannot be created or inferred. However, the modified distributions
should not necessarily have the same shape as the original ones.

V. PI for Technology and Portfolio Selection

In contrast to the previous test case, all three technologies are
investigated here. Rather than inspecting a single technology, the
differences between all portfolios resulting frommultiple technologies
can be studied. A portfolio is simply a set of included technologies,
represented as a vector, where each entry corresponds to a technology
and is 1 when it is included and 0 otherwise. Thus, there are 2n

portfolios in total,wheren is the amount of technologies.Additionally,
the strength of PI is showcased: dealing with multiple objectives.

Rather than only having PRE−1 as goal, cost is a goal as well.
For the present paper, the resulting CDFs for PRE−1 and cost are

depicted in Fig. 16 for each portfolio. It becomes clear that in terms of

PRE−1 portfolios with technology 3 (third digit is 1) perform better

Fig. 15 Probability density functions for 2nd DOF flap technology with original (blue) distributions for δf;max and ke. After technologymaturation, the
PDFs are computedwith PI (red, dotted) andwith forward uncertainty propagation (black, dashed). The horizontal axis tickmarks are the 5th, 50th, and
99th percentiles, in that order.

Fig. 14 Cumulative distribution functions for 2ndDOF flap technologywith original (blue) distributions for δf;max andke. After technologymaturation,
the CDFs are computed with PI (red, dotted) and with forward uncertainty propagation (black, dashed). The horizontal axis tickmarks are the 5th, 50th,
and 99th percentiles, in that order.
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than the ones without it. The portfolio with all technologies included
(111) performs best (it is farthest parent to the left), which can be
expected because none of the technologies was defined to have
negative effects on fuel burn. Second best is the portfolio 101, which
combines technologies 1 and 3. The worst portfolio is the baseline

(000). Thus, already from that figure, if PRE−1 is the only require-
ment, an ordering and selection of the portfolios can be made.
However, with cost (see Fig. 16) there is an opposite trend: the more
technologies included in a portfolio, the higher the cost. So here,
portfolio 111 performs worst (farthest to the right), and the baseline
performs best. There is a different spread in the CDFs for cost, so
when constraints are imposed on fuel burn and cost simultaneously,
there is no direct way of telling which portfolio performs best.
Consequently, concluding which technologies are most promising
is not directly observable anymore.

A. Technology Prioritization with Multiple Objectives

The strength of PI lies in its ability to deal with multiple, possibly
conflicting, goals. However, the way in which the constraints are set
up affects what query is posed to PI and provides different results. For
this study, the multi-objective constraint should guide the obtained
samples toward the Pareto front of fuel burn and cost. That way, we
learn which distribution of portfolios is closest to the Pareto front.
Thus, this distribution gives the best tradeoff between the objectives.
As pointed out by Binois et al. [44], there is an analogy between

Pareto fronts and the level curves of a copula.¶ The zero-level curve of
a copula corresponds to the Pareto front of the multivariate distribu-
tion that the copula represents. To redistribute the samples closer to
the Pareto front, new margins have to be specified for the objective

variables. However, specifying newmargins alters the copula as well

because the copula is computed from the margins as explained in

Sec. II.B. This is not desired because the dependency captured by this

copula is a result of themodel and should be treated as a physical fact.

Therefore, the copula itself has to be constrained. Such a constraint

can be implemented as the sum on the margins in copula space (the

variables Ui in Sec. II.B). Furthermore, this sum has to be updated

every iteration of IPF, because IPF updates the margins on every

iteration. The quantiles of the sum are kept constant, though, as that

will fix the copula.

To demonstrate this procedure, both a PRE−1 target and cost

target are specified. The PRE−1 target are the percentiles of the 111

portfolio CDF. The cost target are the percentiles of the baseline CDF

(000 portfolio). These are the extremes of the sample space, as shown

in Fig. 16.

IPF performs exactly as intended with the constraints on the mar-

gins of PRE−1 and cost and a constraint on their copula. The margins

are satisfied, and the copula is hardly affected, as Figs. 17 and18 show.

The obtained CDFs (see Fig. 17) match the specified CDF perfectly at

the constrained percentiles. From the 95th percentile on, the CDFs do

notmatch, which is to be expected due to the discrete nature of PI. The

level curves after PI (red, dashed lines in Fig. 18) are in the same

location as the initial ones (black, solid), although they wiggle around

these somewhat. That is a result of the discrete constraints, in combi-

nation with only a relatively small subset of samples receiving most

of theweight after PI. It can be shown that the copulas before and after

PI are very similar by computing the Pearson correlation coefficients.

In copula space, the correlation initiallywas−0.3956, while after PI, it
is −0.3871, a difference of only 2%. When the constraints are less

stringent, even better agreement is obtained.

The previous results may be further explained by focusing on what

happens in sample space. The bivariate distribution of PRE−1 and

Fig. 17 Comparison of initial, specified, and obtained CDFs for PRE−1 and cost, using PI with a multi-objective constraint.

Fig. 16 CDFs of PRE−1 and cost for multiple portfolios.

¶A level curve of a multivariate function f is formed by all solutions, fxg
where f�x� � c, in other words, where the function f has a given value c.
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cost is shown in Fig. 19 on the left, with the level curves of the two-
dimensional CDF. These level curves are similar to the ones of the
copula in Fig. 18. The center plot in Fig. 19 shows how these level
curves shift after PI, due to the updated margins. All except the 95th
percentile lines have moved toward the lower left corner; thus, reduc-

ing both PRE−1 and cost. Furthermore, the lines are closer together;
the updated 90th percentile is on the initial 50th percentile, and the
updated 50th percentile is on the initial 10th percentile. Therefore, the
reweighted samples are squeezed into a region closer to the Pareto

front. In the right plot in Fig. 19, the updated bivariate distribution is
shown. Clearly, only few samples remain after reweighting, which
explains the nonsmooth results observed in Figs. 17 and 18.
As a result of the multi-objective constraint, the portfolio and

technologies frequencies in the resampled set have changed as well.
This is the result we are looking for, and it is shown in Fig. 20. These
frequencies are simply the amount of samples that contain a certain
portfolio or technology, with respect to the total number of samples.
The changewith respect to the initial sample set is shown because not
every portfolio or technology is equally represented in the initial set
(i.e., the initial frequencies are not uniformly distributed).
Mainly portfolios 001 and 101 have receivedmoreweight, leaving

technology 3 to see an increase in frequency as well. Technology 1
only suffers a small decrease, while technology 2 clearly does not
satisfy the imposed constraint. When selecting a portfolio, it should
be 101 as it is most featured in the resampled set, while technology 3
should receive most development resources.

B. Technology Prioritization Using Grouped Sample Reweighting

The previous results were obtained with individual sample
reweighting. However, the grouped sample reweighting approach
should be considered as well. The difference between the individual
sample reweighting and grouped sample reweighting approaches can
be considered by observing Fig. 21. On the left, the bivariate distri-
butions for each portfolio of PRE−1 and cost are shown. This is the
entire sample space that PIworkswith.When constraints are imposed
and PI is performed, only a subset of these samples remains. The
center plot in Fig. 21 shows this for individual sample reweighting. It
becomes clear that a lot of samples receive near-zero weight to move
the overall bivariate distribution to the bottom-left corner. Moreover,
the shapes of the colored bivariate distributions (each corresponding

Fig. 19 Comparison of bivariate distribution of PRE−1 and cost, before and after PI with a multi-objective constraint.

Fig. 20 Portfolio and technology frequency shifts using PI with a multi-objective constraint.

Fig. 18 Comparison of copula level curves of PRE−1 and cost, before
and after PI with a multi-objective constraint.
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to one portfolio) change as a result. That means the underlying
distributions of the variables for each portfolio have shifted (similar
to the single technology case in Sec. IV). This effect is desired when
one is interested inwhichportfolio has themost potential to satisfy the
imposed goals, when its initial distributions are not set in stone. On
the contrary, when the distributions for each portfolio arewell defined
and should not be allowed to change, the grouped approach is needed.
Its result is shown in the rightmost plot, where the bivariate distribu-
tions of two portfolios remain, while all others have zero probability
mass. The shapes of these bivariates have not changedwith respect to
the leftmost plot.
The grouped sample reweighting has to be performed using PAR-

FUM, because it is very likely the IPF will not converge. That is
because there is too little room to play when only theweight of entire
portfolios may be changed. For this reason, PARFUM will also not
achieve the specifiedmargins exactly butwill get as close as possible.
The distance between the initial, obtained, and specified CDFs can be
computed using the metric presented by Cook and Jarrett [45]. This
shows for PRE−1 that the initial distance to the specified constraint is

6.1 ⋅ 10−5, and after PI it is 5.1 ⋅ 10−5. Similarly, for cost, the initial
distance is 0.24, and after PI, it is 0.055. Because the distance after PI
is not zero, the constraints are not satisfied exactly. Nonetheless, the
distance clearly reduces, which shows that PARFUM moves toward
those constraints. It is the direction in which the portfolio weights
change that we are interested in. These frequency shifts are shown in
Fig. 22. Technology 3 is clearly the best choice, as it is also the only
portfolio that receives increased weight, alongside the baseline port-
folio. This is not too different from the individual sample reweighting
result, except that technology 1 has completely dropped from the
resampled set.

VI. Discussion

This paper presents a method to select from among a set of tech-
nologies based on the probabilistic assessment of several quantities of

interest. Conventional approaches to this problem do not employ

uncertainty. Instead, deterministic points are picked at which the

technologies are evaluated and selected on. In this section, the merits

of the current probabilistic approach are discussed, compared to the

conventional approach. Furthermore, some drawbacks are identified

as well.
Using probability distributions instead of deterministic values not

only reflects uncertainty during the conceptual design phase but also

allows inclusion of difficult-to-quantify QOI. Take the cost in this

paper, for example, which is only reflected using engineering insight

to increase with higher technology performance. AGaussian noise is

added to introduce uncertainty in that assumption. The actual value of

the cost metric does not matter, as only the relative change is of

importance. Similar approaches can be taken to include strategic

preferences, or metrics such as reliability or aesthetics. The fact that

a distribution is used rather than a deterministic, fixed point reduces

the bias of assumptions made during this process.
Another argument favoring the use of a probabilistic approach is

when the effect of technologies are highly nonlinear in theQOI. In the

present paper, the effect of each technology is fairly linear, which

shows in Fig. 16 as parallel CDFs. As soon as the CDFs cross each

other more, the benefit of a technology over another becomes more

ambiguous. Consequently, picking a deterministic point at which to

evaluate them becomes more difficult and arbitrary.
IPF requires a set of samples, which is why sampling is used as

the uncertainty propagation technique. The obvious disadvantage of

sampling is the computational cost. Thousands of samples are no

exception (we used 10,000 to 20,000 samples in this paper), and for

each sample, the analysis method has to be run. This incurs signifi-

cant computational time, especially for more advanced simulations

(our simple mission analysis takes a couple of seconds to run, so

for all samples, several hours are required). In future studies, there-

fore, strategies to reduce the amount of required samples should

be researched. One idea is to not compute all portfolios, but only a

Fig. 22 Portfolio and technology frequency shifts using PI with a multi-objective constraint, grouped sample reweighting and run with PARFUM.

Fig. 21 Bivariate distribution of PRE−1 and cost: left, when no constraints are imposed, in other words, before PI; center, when themargins of cost and

PRE−1 are constrained and with individual sample reweighting; and, right, when the margins of cost and PRE−1 are constrained with grouped sample
reweighting.
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subset that covers the design space efficiently. Nonetheless, this
issue is common to conventional sample-based approaches as well.
Conversely, PI itself is very fast and incurs no significant time
expenditure.
However, because PI only relies on a sample file, any analysis

method can be used. Therefore, black box simulations and complex
function can be employed easily. The only restriction is, again, that it
is fast enough to generate thousands of samples.
Another effect of PI only relying on a sample file is that it can never

exceed the boundaries defined by those samples. Thus, PI is confined
to the design space covered by the initial sample set. If, however,
distributions after PI would skew toward the limits of their range, that
would indicate that the design space is not large enough and a more
optimal solution may be found outside of the existing samples.
As the previous paragraph suggests, PI may be used to iteratively

redefine the starting distributions and dependencies for the analysis.
In some cases, PI incurs a dependency between variables that should
not be there, requiring a statement of independence. Otherwise, PI
may generate a dependency that was not modeled but should be
present from a physical or model perspective. Then, this dependency
can be included in subsequent runs of the analysis routine.
With respect to the accuracy of the results, two things can be said.

First, PI is devised to provide an approximation of the inverse of a
stochastic function. Therefore, besides the inputs and outputs being
random variables, the redistribution of these variables due to PI is
approximate. That is a result of the discretization of the constraints,
and the resampling rather than inverting of the function. Second, after
reweighting, the original samples are resampled.Whenever sampling
occurs, there is an associated sampling bias, due to the random nature
of a sampling process. This is expected to havevery little influence on
the CDFs after PI, but it could show some shift in the portfolio and
technology frequency computations. Thus, it is advised to perform
resampling multiple times and take an average of the results, or show
an error bar. Nonetheless, the deviations due to sampling bias are
expected to be small, and when a large difference in frequency is
observed after PI, this likely outweighs any possible sampling bias.
Optimization approaches are an alternative to performing function

inversion. When the metrics used for optimization are in the form
of probability distributions, only some scalar measures of those
distributions (e.g., mean and variance) are actually used as objective
functions. PI uses the entire distribution directly, thus keeping more
information. Furthermore, PI easily handles multiple objectives,
without requiring some weighted combination of the objectives as
optimization approaches do. Finally, while optimization approaches
aim to find a minimum objective value, PI only targets a specified
value. It therefore is less inclined to push the boundaries of the design
space. However, which of the two methods is more appropriate
depends on the problem at hand. For technology prioritization, how-
ever, we advocate the use of PI.
PI also differs from design exploration methods in that it defines

a new design space that satisfies the specified requirements, rather
than only selecting subsets of the initial design space that meet those
requirements. In other words, design space exploration can only indi-
cate the direction to move toward, while PI specifies the path to take.

VII. Conclusions

The merits of a probabilistic approach toward technology evalu-
ation and selection are exposed in this paper. Rather than evaluating
a deterministic, fixed point design (e.g., only one specific aircraft
and mission), a technology is evaluated for an entire space of aircraft
and missions. Using probabilistic inversion, target distributions
on QOI are set, which consequently result in different distributions
on the input variables. This shows how the technology variables (and
possibly others) need to change in order to achieve certain require-
ments. Similarly, when multiple technologies are combined into
portfolios, the combined effects are quantified, and probabilistic
inversion shows how the frequency of the technologies should change
to achieve certain goals. Multi-objective goals can be imposed
on PI, without having to be converted to a single-objective function,
as usually is done in design optimization. Moreover, PI can be used

with any analysis method because it only relies on a set of samples
obtained from the analyses. However, that limits the complexity of
the model, due to computational time constraints. Thus, PI appears to
be a powerful tool during conceptual design to explore the technology
design space and prioritize technologies for selection.
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