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1
INTRODUCTION

This chapter gives an introduction to the application that is considered in this thesis: pho-
tonic beamforming for aircraft-satellite communication. This is done by explaining the
concept of beamforming, which is a signal processing technique, in the first section. The
section proceeds by explaining the concept of photonic beamforming, as well as the cur-
rent challenges in this field. In the second section, the core idea of this thesis is introduced:
to provide a data-driven automatic tuning method for photonic beamforming using sur-
rogate models. The third and final section shows an outline of this thesis.

1
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2 1. INTRODUCTION

1.1. PHOTONIC BEAMFORMING FOR AIRCRAFT-SATELLITE COM-
MUNICATION

W IRELESS communication systems have been playing an important role in our daily
lives for many years. The need to stay connected has been increasing and will

probably continue to increase, until it is possible to surf the world wide web, contact
other people, or watch live television from anywhere on the planet. Though the re-
quired technology is already available, one example where there are more challenges
than normal is the implementation of telecommunication techniques on moving vehi-
cles such as trains and aircrafts. Especially for aircrafts on intercontinental flights there
is the particular challenge that no ground connections are available when flying over
sea. In this case, satellite connections are a logical alternative. In order to establish a
satellite connection, a high-gain antenna needs to be mounted on the aircraft. However,
typical high-gain antannae like dish antennae need to be put in a separate radome for
protection, causing aerodynamic resistance (and therefore more fuel consumption) and
requiring adaptations to the structure of the aircraft. Furthermore, the antenna has to
be mechanically steered towards the satellite all the time, but the required mechanical
parts can wear down and require regular maintenance.

Figure 1.1: Two possible antennae for aircraft-satellite communication: a mechanically steered
dish antenna (top), which needs to be protected when mounted on top of an aircraft, and an elec-
tronically steered phased array antenna (bottom), which can be integrated into the body of the
aircraft. Adapted from [1].

As an alternative, an electronically steered phased array antenna has been proposed
that can be integrated in the body of the aircraft [1]. See Figure 1.1. This type of antenna
makes use of the concept of beamforming, explained in the remainder of this chapter,
and has many advantages compared to a dish antenna: there is no aerodynamic drag
and there are no movable parts, allowing for a high tuning speed and accuracy. These
advantages stem from the fact that a phased arra antenna consists of an array of antenna
elements that send (for a transmit antenna array) or receive (for a receive antenna array)
the same signal with a certain phase difference in such a way that the corresponding
wavefront travels in the desired direction. Changing the direction of the wavefront is
done by changing the phase difference between the antenna elements. This is done with
a beamformer.

Recent advances in the field of microwave photonics [2], a field where radio-frequency
(RF) signals are processed in the optical domain, gave rise to photonic beamformers that
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Figure 1.2: The purpose of photonic beamformers in this thesis explained. Photonic beamformers
are a type of beamformer, which is a system that is used to steer a phased array antenna. Just like a
dish antenna, a phased array antenna is a type of high gain antenna and can therefore be used for
the purpose of aircraft-satellite communication. However, phased array antennae do not rely on
mechanical movement for steering, giving them many advantages compared to dish antennae.

change the phase or group delay response of each antenna element in the optical do-
main. Photonic beamformers have several advantages over their electronic counterparts
such as low size, low weight, low loss, large bandwidth, and immunity to electromagnetic
interference. These advantages are even greater for photonic beamformers that are inte-
grated on a chip [3]. Such a beamformer has been proposed in earlier work [4], and this
system will be the main system under consideration in this thesis. See Figure 1.2 for the
relations between the systems described in this chapter.

The remainder of this chapter is organized as follows. Section 1.1.1 explains the con-
cept of beamforming for phased array antennae and how they can be steered towards
a satellite without any movable parts. Section 1.1.2 explains the advantages of photonic
beamforming and gives a description of the full phased array antenna system with an in-
tegrated photonic beamformer. Section 1.1.3 provides further details on the type of pho-
tonic beamformer considered in this thesis. Section 1.1.4 explains the main challenges
to get this beamformer system to work properly for the application of aircraft-satellite
communication. Section 1.2 explains the approach taken in this thesis to tackle these
challenges. This chapter finishes with the outline of the thesis in Section 1.3.

1.1.1. BEAMFORMING

Beamforming is a signal processing technique used to steer the direction of a phased ar-
ray antenna. Since a phased array antenna consists of several antenna elements close to-
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Antenna elements

Figure 1.3: Beamforming for a phased array antenna explained. Each antenna element transmits
the same signal after a certain time delay. This delay can be chosen in such a way that constructive
interference occurs in a certain direction, making it possible to transmit a highly directional signal
with a high gain and a focussed beam.

gether, and each element is an omnidirectional antenna, the signal arriving at or leaving
the array can be heavily interfered because of a phase mismatch between the antenna
elements. However, by adapting the phase or time delay of each antenna element, con-
structive interference occurs in a certain direction, while destructive interference occurs
in the other directions. See Figure 1.3 for an illustration of beamforming with a trans-
mit phased array antenna. The same concept holds for a receive antenna. The relation
between phase and time delay is explained later in this section.

The beamformer system adds either a phase shift or a time delay to each antenna
element. It matters a lot which of the two is used: time delays allow the antenna to op-
erate under much larger bandwidths [5]. This is because of the effect of the time delay
or phase shift on the beam direction. Suppose that several identical antenna elements
are positioned along a single line. Let d be the distance between two consecutive an-
tenna elements and let c be the speed of light in vacuum. Then the beam angle θ of the
wavefront generated by the phased array antenna is given by

θ = sin−1
(

c∆t

d

)
(1.1)

for a time delay ∆t between two consecutive antenna elements and

θ = sin−1
(

c∆φ

−2πd f

)
(1.2)

for a phase shift∆φ between two consecutive antenna elements. Here, f is the frequency
of the RF signal. The phased array antenna is steered by varying either the phase shift or
time delay of each antenna element in such a way that the beam angle is changed to the
desired direction.

In general, the phase and time delay of a signal are related as follows: if a signal
y(t ) is a delayed version of a signal x(t ), that is, y(t ) = x(t −∆t ), then this can be de-
scribed in Fourier domain as Y ( jω) = e− jω∆t X ( jω). The phase of Y is then equal to
∠Y ( jω) = ∠

{
e− jω∆t e j∠X ( jω)|X ( jω)|} = −ω∆t +∠X ( jω). In other words, the phase dif-

ference between two delayed signals is a linear function of the frequency, with slope −∆t
in the case of angular frequency ω, and slope −2π∆t in the case of frequency f . This is
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where the term −2π f in (1.2) comes from. Note: the negative derivative of the phase
with respect to angular frequency is called the group delay.

From (1.1)-(1.2) it can be seen that the beam angle depends on the frequency of the
signal if phase shifters are used, but not if a time delay is used. A frequency-dependent
beam angle has the undesirable effect that the gain is decreased and the beam width
is increased for systems operating under a large bandwidth. On the other hand, using a
time delay instead of phase shifters makes the beam angle independent of the frequency,
allowing the system to operate under much larger bandwidths. This is a necessity in
modern applications like aircraft-satellite communication. Conventional beamformers
make use of phase shifters that provide a phase shift ∆φ as a constant function of the
frequency and are therefore not fit for these applications. In contrast, so called true time
delay systems [5] provide a phase shift that is a linear function of the frequency f in the
bandwidth of interest, with a slope equal to −2π∆t , making (1.1) and (1.2) equivalent.
Section 1.1.2 shows how such a linear phase response can be achieved.

1.1.2. PHOTONIC BEAMFORMING
One way to provide a linear phase response for each antenna element is via photonic
beamforming. As mentioned earlier, photonic beamformers have many advantages com-
pared to electronic beamformers, such as high bandwidth and low loss. In photonic
beamforming, the signal processing is done in the optical domain. For the case of a
transmit phased array antenna, this means that the signal to be transmitted is first con-
verted from the RF frequency range to the optical frequency range via optical modula-
tion. Then the signal is split into multiple paths that each get a frequency-dependent
phase shift, after which it is converted back to an electrical signal using photodetectors.
The same procedure is used in a receive phased array antenna, but in reverse order. See
Figure 1.4.

Figure 1.4: Photonic beamforming schematic for a transmit phased array antenna (top) and a
receive phased array antenna (bottom). AE stands for antenna element, E/O and O/E stand for
electro-optical and opto-electrical respectively. Dashed arrows indicate electrical signals, while
solid arrows indicate optical signals.
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There exist several ways to do photonic beamforming. With switchable delay lines [6],
a set time delay is given to the optical signal, and the correct time delay is achieved by
switching to the desired path of a particular length. However, the disadvantage of this
method is that only a discrete number of delays can be used, which in turn limits the res-
olution of the beam angle of the phased array antenna. An alternative solution that does
provide continuous tuning is to use a wavelength-tunable laser in combination with a
dispersive optical element [7–10]. These methods provide a linear phase response over
a large frequency range, but the tunable lasers are relatively expensive and the optical
components are bulky.

The most compact photonic beamformer systems make use of integrated optical
components [3, 4, 11–14]. These systems are based on integrated all-pass filters that
shape the phase response of each path in the photonic beamformer. The used filters can
be categorized into infinite impulse response (IIR) filters based on optical resonance
techniques [4, 11], and finite impulse response (FIR) filters [12–14]. The IIR filters are
realized by optical ring resonators and can provide a linear phase response either over
a large bandwidth, or with a large slope (corresponding to a large group delay), but not
both. On the other hand, the FIR filters, realized by Mach-Zehnder interferometers, have
a better trade-off between bandwidth and maximum group delay [14]. However, so far
these have been limited to only one such filter for each path of the photonic beamformer.
By putting several optical ring resonators in series for each path of the photonic beam-
former, both the bandwidth and the maximum group delay can be increased, at the cost
of having a more complex system [4, 15]. It is precisely this last disadvantage that will be
tackled in this thesis.

1.1.3. OPTICAL RING RESONATOR-BASED PHOTONIC BEAMFORMING

The photonic beamformer that has been investigated in this work uses optical ring res-
onators to provide the necessary delays. Optical ring resonators can be used to provide a
linear phase response over a large bandwidth for one of the paths in the photonic beam-
former [4, 15]. This is best visualized by looking at the group delay response of a beam-
former path, which is equal to − 1

2π times the derivative of the phase response (or just −1
times the derivative if angular frequencies are used). In order to achieve a linear phase
response, the group delay response should be a constant function of the frequency. How-
ever, the group delay response τ of one optical ring resonator is a nonlinear function of
the frequency f , given by:

τ( f ) = T

(
r 2 − r c cos z

r 2 + c2 −2r c cos z
+ r c cos z − r 2c2

r 2c2 +1−2r c cos z

)
, (1.3)

c =p
1−κ, (1.4)

z = 2π f T +ϕ. (1.5)

Here, r is a constant related to the loss of the ring, T is the roundtrip time in seconds,
and κ and ϕ are variables that can be adjusted by heater actuators. See Figure 1.5.

In order to achieve an approximately constant group delay response, several ring
resonators can be put in series. The total group delay is then the sum of the group delays
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Figure 1.5: (left) Group delay response of one optical ring resonator, and a desired group delay
response. (right) Group delay response of a cascade of three optical ring resonators, and a desired
group delay response. The individual group delay response of each ring resonator is denoted by
the dotted lines.

of each individual ring resonator i :

τtotal =
n∑

i=1
τi ( f ), (1.6)

with n the total number of ring resonators. See Figure 1.5. Not only does this method
achieve a larger bandwidth, also larger delays can be achieved when compared with an
individual ring resonator.

The ring resonators need to be tuned correctly in order to achieve the desired group
delay response. This is done by adjusting two heater actuators per ring: one that con-
trols the phase ϕ, and one that controls the coupling constant κ. Changing ϕ gives a fre-
quency shift to the group delay response, while changing κ changes the width and height
of the group delay response. Since a perfectly constant group delay response cannot be
achieved, the goal in tuning the optical ring resonators is to minimize the difference be-
tween the ideal constant group delay response τ∗ and the actual group delay response:

min
κ1,...,κn ,ϕ1,...,ϕn

∫ fmax

fmin

L
(
τtotal( f ,κ1, . . . ,κn ,ϕ1, . . . ,ϕn)−τ∗)

d f , (1.7)

for a certain bandwidth [ fmin, fmax] and for a certain loss function L, such as a quadratic
loss function.

1.1.4. CHALLENGES IN PHOTONIC BEAMFORMING
Though the minimization problem (1.7) is a well-defined nonlinear optimization prob-
lem, convergence to the global optimum cannot be guaranteed by most standard solvers.
This is because the objective function is not a convex function of the variables κ and
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φ. Nevertheless, good results have been obtained with standard nonlinear optimization
solvers in the past [16, 17]. The other standard method of tuning this particular pho-
tonic beamformer is a manual tuning method, where the group delay is measured with
a vector network analyser, and the heater voltages are tuned by hand one at a time until
the desired group delay is achieved [4, 11]. There are however several challenges that
prevent both the manual tuning method and the nonlinear optimization method from
being used in practice.

HEATER CROSSTALK

First of all, the variables κ and φ are controlled by heater actuators. However, there is
a quadratic relation between these variables and their heater voltages, which needs to
be taken into account [16, Sec. 3.6]. Even more importantly, the heaters influence each
other by means of electrical and thermal crosstalk [16, App. B]. This means that adjusting
the voltage of one heater does not only result in a change in the corresponding variable
κ or φ, but also in the variables of other optical ring resonators. In order for the nonlin-
ear optimization method to work, both the quadratic relation and the crosstalk can be
compensated for by determining the exact crosstalk effects and all the required heater
model parameters, but this is a time-consuming procedure. On the other hand, none of
this is necessary for the manual tuning method, but since only one heater is tuned at a
time with this method, the tuning process is severely hampered by the crosstalk.

PARAMETER SENSITIVITY

Even when the heater crosstalk is included in the system model, this can only be done
up to a certain precision. And not only the relation between the different heater voltages
and the variables κ andφ needs to be modeled, there are also model parameters for each
optical ring resonator such as the round-trip time T and the loss parameter r in (1.1)
that need to be modeled accurately. These last two parameters are generally given by the
manufacturer of the optical ring resonator, but may be slightly inaccurate due to fabri-
cation errors or material inhomogenieties. While the precision is generally high enough
for all practical purposes of the optical ring resonator, these small inaccuracies can have
a large influence as they propagate throughout the optimization procedure (1.7).

SCALAR OBJECTIVE AND MEASUREMENT NOISE

Finally, it should be noted that the objective function in (1.7) will most likely not be used
in a final application. Typical applications use measures like the signal power or signal-
to-noise ratio as the objective, as these can be measured more easily than frequency-
dependent objectives. Just like the objective in (1.7), this gives one scalar value for each
setting of heater voltages. This is very different from the manual tuning method, where
the measured group delay is used, which is a function of the frequency rather than a
scalar value. A benefit of the manual tuning method compared to the nonlinear op-
timization method is that it takes measurement noise into account. By averaging the
group delay measurements over time, the noise is reduced, making the tuning process
slower (since it takes time to average over several measurements) but more accurate.
Measurement noise is not considered in (1.7) since no physical measurements are used.
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1.1.5. CRITERIA FOR AN AUTOMATIC TUNING METHOD FOR PHOTONIC BEAM-
FORMERS

This thesis aims to develop a novel automatic tuning method for optical ring resonator-
based photonic beamformers. By looking at the challenges in the previous subsection,
we can see that the method should satisfy the following criteria:

• The method should take heater crosstalk into account.

• The method should not be sensitive to model parameters.

• If feedback from measurements will be used, the method should be able to oper-
ate with scalar-valued measurements and not be sensitive to measurement noise.
Furthermore, the number of measurements used should be as low as possible to
prevent the method from being too slow.

Besides these criteria, the method should operate in real time. In this case, this
means that the time it takes to find the optimal heater voltages should be within the
same order of magnitude as the time it takes to check how well the system is tuned if the
heaters are set to those voltages.

There are also criteria that depend on the exact application and beamforming system
that is used. An example of such a criterion is that the phase response of the beamformer
should be accurate up to 11.25◦ [11] in the bandwidth of interest.

1.2. DATA-DRIVEN APPROACH TO PHOTONIC BEAMFORMING
Because both the manual tuning method and the nonlinear optimization method above
have several drawbacks, a new method is developed in this thesis for the automatic tun-
ing of a ring resonator-based photonic beamformer. Ideally, this new method will have
the advantages but not the disadvantages of the manual tuning method and the non-
linear optimization method. Of course, the new method should also overcome the chal-
lenges and satisfy the criteria given in the previous section. The advantage of the manual
tuning method is that feedback from measurements is used to keep tuning the heater ac-
tuators until the system is tuned correctly, but the main disadvantage of this method is
that it cannot be used in a real application since it is not automatic. The advantage of
the nonlinear optimization method is that an algorithm is used to automatically tune
the system, but with no feedback from measurements the algorithm requires a perfect
model in order to get good results as will be shown in this thesis.

The core idea in this thesis is to use a so-called surrogate model for the relation be-
tween the system parameters (heater voltages) and the performance of the system (e.g.,
signal power). This surrogate model is continually improved using feedback from mea-
surements instead of just relying on physical models. Nonlinear optimization methods
are applied to the surrogate model instead of the original objective to update the heater
voltages. This procedure results in a data-driven automatic tuning method.

The scientific literature is full of optimization techniques where a surrogate model is
used instead of the original objective [18–20]. This class of optimization algorithms often
works better than most other classes of optimization algorithms in this data-driven set-
ting. For example, traditional derivative-based methods like gradient descent or quasi-
Newton methods [21] require a derivative of the objective function. If this derivative is
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not available, they can approximate the derivatives from the given data points, but this
approach is very sensitive to noise in the data. On the other hand, derivative-free meth-
ods [22] such as the Nelder-Mead method or genetic algorithms [23] are less susceptible
to noise, but require a high number of data points in order to generate good results. Sur-
rogate modeling methods typically also provide estimates for the derivative of the ob-
jective function, without the need for additional measurements.They are generally de-
signed in such a way that they are able to deal with noise while not requiring too many
data points. However, existing surrogate modeling methods like Bayesian optimization
or sequential Kriging optimization [24–27] suffer from one drawback that makes them
unfit for the application considered in this thesis: they become slower as the number of
data points increases. A real-time automatic tuning method for a photonic beamformer
will have to somehow circumvent this drawback.

1.2.1. RELATED RECENT WORK
Besides the methods mentioned in this chapter so far, during this research project a
number of relevant studies have emerged independently and simultaneously elsewhere.
Since these studies had not yet been published at the time of this project, they have not
been taken into account in this thesis. However, a short discussion about these studies
is given in Chapter 6.

In [28], a photonic beamformer based on Mach-Zehnder interferometers rather than
optical ring resonators was investigated. This system was also automatically tuned using
a data-driven approach: the output signal of the system was measured, and the delays
of the beamformer were adjusted using a derivative-free optimization algorithm.

In [29], the drawback of Bayesian optimization techniques, namely their computa-
tion time becoming slower over time, is overcome by using a combination of random
features and Thompson sampling. The method was applied to a materials science ap-
plication, namely determining the atomic structure of a crystalline interface.

Other techniques that solve the same problem in Bayesian optimization, for example
those based on sparsity, either do not solve the problem completely or introduce other
disadvantages [30].

1.3. OUTLINE OF THIS THESIS
In this thesis, a data-driven automatic tuning method for photonic beamforming is de-
veloped. The method is compared with the two methods mentioned in this chapter,
namely the manual tuning method and the nonlinear optimization method, as well as
with state-of-the-art surrogate modeling methods. The latter comparison is made not
just for the application of photonic beamforming, but also for other applications.

CHAPTER 2
In this chapter, first principles modeling is compared to surrogate modeling on a simula-
tion of a photonic beamformer. The former uses the nonlinear optimization procedure
as explained in this introduction. The latter uses the proposed data-driven procedure,
where the relation between the κ andφ variables from Sec. 1.1.3 and the mean square er-
ror between the group delay response and the desired delay is approximated. This func-
tion approximation is done using a surrogate model. A nonlinear solver is then used on
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this surrogate model to find the κ and φ variables that minimize the mean square error.

This chapter is based on the following publication:

L. Bliek, M. Verhaegen and S. Wahls, Data-driven Minimization with Random Feature
Expansions for Optical Beam Forming Network Tuning, 16th IFAC Workshop on Control
Applications of Optimization (CAO’2015) 48, 166 (2015).

CHAPTER 3
In this chapter, the data-driven approach from Chapter 2 is adapted to develop an on-
line optimization algorithm. The surrogate model used in this algorithm is updated ev-
ery time a new measurement becomes available. This makes it possible to converge
towards the minimum of the original objective function: the mean square error between
the group delay response and the desired delay. The algorithm is applied to a simulation
of a photonic beamformer like the one described in this introduction, to a toy example,
and to two different applications: optical coherence tomography and robot arm control.
The algorithm is compared to similar state-of-the-art surrogate modeling algorithms,
and theoretical results are given that provide insight in how to configure the algorithm
in practice.

This chapter is based on a joint work with H.R.G.W. Verstraete, with an equal contribu-
tion from both parties, and also appears in:

H.R.G.W. Verstraete, Optimization-based adaptive optics for optical coherence tomogra-
phy, Ph.D. thesis, Delft University of Technology (2017).

This chapter is based on the following publication:

L. Bliek, H. R. G. W. Verstraete, M. Verhaegen and S. Wahls, Online Optimization With
Costly and Noisy Measurements Using Random Fourier Expansions, IEEE Transactions
on Neural Networks and Learning Systems 29, 167 (2018).

In this publication, H.R.G.W. Verstraete focused more on the programming and practical
use and on the OCT application, while L. Bliek focused more on the theorems and proofs
and on the beamforming application.

CHAPTER 4
In this chapter, the algorithm from Chapter 3 is applied to the photonic beamformer
described in this introduction, not just on a simulation of this system. The beamformer
is described as being part of a phased array transmit antenna that is fully integrated on a
chip. The purpose of the described system is to provide broadband Internet connections
on board an aircraft, using the Ku band.

This chapter is based on the following publication:

L. Bliek, S. Wahls, I. Visscher, C. Taddei, R. B. Timens, R. Oldenbeuving, C. Roeloffzen, M.
Verhaegen, Automatic Tuning of a Novel Ring Resonator-based Photonic Beamformer for
a Transmit Phased Array Antenna, arXiv e-prints, arXiv:1808.04814 (2018).
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CHAPTER 5
In this chapter, the algorithm from Chapter 3 is adapted in such a way that the surro-
gate model used to approximate the original objective becomes convex and sparse. This
makes it possible to get fast implementations of the algorithm, and to use convex opti-
mization solvers on the surrogate model. Different adaptations of the same algorithm
are applied to a toy example, to the problem of hyper-parameter optimization for hand-
written digit classification using deep learning, and to a simulation of a photonic beam-
former.

This chapter is based on the following publications:

L. Bliek, M. Verhaegen, and S. Wahls, Online function minimization with convex random
relu expansions, 2017 IEEE 27th International Workshop on Machine Learning for Signal
Processing (MLSP), 2017.

APPENDIX

The appendix describes two adaptations of the algorithm from Chapter 3. One is to use
a sliding window on the measurements used by the algorithm, where only the most re-
cent measurements are used to fit the surrogate model. This makes it possible to use
the algorithm on applications where the objective function changes over time, which is
the case in aircraft-satellite communication. The other adaptation exploits the fact that
most of the applications considered in this thesis have objective functions with a convex
or pseudoconvex shape. This is done by adding a variable offset to the surrogate model.
These two adaptations are applied to confocal fluorescent microscopy and compared to
a hill climbing algorithm. The adaptations have also been used in Chapter 4.
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2
DATA-DRIVEN MINIMIZATION

WITH RANDOM FEATURE

EXPANSIONS FOR OPTICAL BEAM

FORMING NETWORK TUNING

This paper proposes a data-driven method to minimize objective functions which can be
measured in practice but are difficult to model. In the proposed method, the objective is
learned directly from training data using random feature expansions. On the theoretical
side, it is shown that the learned objective does not suffer from artificial local minima far
away from the minima of the true objective if the random basis expansions are fit well
enough in the uniform sense. The method is also tested on a real-life application, the
tuning of an optical beamforming network. It is found that, in the presence of small model
errors, the proposed method outperforms the classical approach of modeling from first
principles and then estimating the model parameters.

Parts of this chapter have been published in [1].
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BEAM FORMING NETWORK TUNING

2.1. INTRODUCTION

T HE control community can roughly be divided in two groups: a model-based group
and a data-based group [2]. The former takes the classical approach of building a

model from first principles, estimating system parameters from data, followed by control
design or the minimization of some objective. The data-driven approach skips these first
steps and immediately utilizes data for some control or optimization objective. While
model-based control can be a powerful tool, some problems are difficult to model. In
such cases, it can become very difficult to take model errors and uncertainties into ac-
count [3]. In the data-driven approach, control design or objective minimization is done
directly after gathering data, using black-box models instead of first principles. This ap-
proach is beneficial when no first principles are available or when a system is too com-
plex to be modeled accurately. However, data-based techniques can also be beneficial
when there is a model, but some parts of the model are uncertain or unknown.

The core idea of the method proposed in this paper is to directly measure the ob-
jective that is to be minimized, instead of estimating a system model which is then
plugged into an objective. The objective is approximated with random feature expan-
sions (RFEs) [4], and this approximation of the objective is then minimized. Fast algo-
rithms for function approximation using RFEs exist. Their strength lies in the simplicity
of the algorithms: training is done with a single linear regression step, even though the
approximation can still be nonlinear.

Approximating an unknown function and then minimizing this approximation, how-
ever, could be troublesome if the approximation contains artificial local minima that
were not present in the true objective function. This paper shows that, with high prob-
ability, the local minima of the approximation with RFEs lie close to the local minima of
the true objective function if the objective is approximated well enough.

Besides this theoretical result, the method is tested in a real-life application, the
tuning of an optical beamforming network (OBFN). OBFNs are used to process signals
from different antenna elements in such a way that they add up in phase, resulting in
direction-sensitive signal reception [5]. Actuators on the OBFN can be used to control
the signal delays. If the desired delay is known, the problem of tuning the OBFN can
be written as an optimization problem [5, Appendix A]. The objective to be minimized
is the difference between the delay provided by the OBFN and the desired delay. Since
accurate (but complex) models are available for this problem, a model-based approach
can be used to solve it. However, this paper will show that very small uncertainties in
the model can have a large detrimental effect on the objective minimization, while the
proposed data-based method circumvents this.

RFEs and the proposed method are explained in more detail in Section 2.2. Sec-
tion 2.3 investigates whether the approximation with RFEs is fit for optimization by pro-
viding a theorem about the local minima of this approximation. Section 2.4 provides
more details about the OBFN tuning problem, how the proposed method is used in this
application and compared with other methods, as well as simulation the results. Con-
clusions are presented in Section 2.5.
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2.2. RANDOM FEATURE EXPANSIONS
Many nonlinear systems can be modeled by a combination of nonlinear and linear sub-
systems, and several identification algorithms for such systems are available [6]. In ma-
chine learning, these subsystems are often static, and several methods for function ap-
proximation are available. As an example of a static linear subsystem that follows a non-
linearity, consider the output weights ck in a multilayer perceptron with linear output
neurons

f̂ (x) =
D∑

k=1
ckΦ(wT

k x+bk ). (2.1)

Here, f̂ denotes the neural network, x ∈ Rl is the input, D is the number of hidden neu-
rons, Φ is a nonlinear function like a sigmoid or a Gaussian, and the other parameters
are weights. The linear weights found in kernel expansions

f̂ (x) =
N∑

k=1
ckΦ(x,xk ), (2.2)

with N the number of training samples, are another example. The weights in a multi-
layer perceptron are usually trained with some kind of gradient descent algorithm [7].
For kernel machines, convex optimization techniques are often used [8], but the storage
and computation costs can become high when the number of training samples becomes
large.

Recently, both machine learning fields (neural networks and kernel methods) have
started to investigate a technique that had been used mainly as a heuristic before more
thoroughly: the use of random features [4, 9, 10]. For neural networks, this technique
can be interpreted as randomly initializing the weights wk and biases bk , after which the
training of ck becomes a linear least squares problem [11, 12]. For kernel methods, this
can be interpreted as approximating the kernel with an inner product of randomized
feature mappings [4]. No matter the interpretation, in this paper a RFE will be denoted
as

f̂ (x) :=
D∑

k=1
ckΦ(wT

k x+bk ) = cTΦ(Wx+b), (2.3)

with W ∈RD×l and b ∈RD×1 being fixed matrices drawn from suitably chosen continuous
probability distributions, Φ : Rl → Rn a bounded non-constant piece-wise continuous
function (e.g. a sigmoid or sinusoid) that operates element-wise on a vector , c ∈ RD a
vector of linear coefficients, and D the number of random features.

Although random features have been used mostly because of their practical value,
more and more theoretical results are becoming available [12–14]. These results show
that random features can be used to approximate any continuous function with high
accuracy, without the need for a kernel trick or nonlinear optimization.

Suppose that the target function f has been sampled at randomly chosen locations
x1, . . .xN ∈ [−1,1]l . The corresponding noisy samples of f are denoted by

yn = f (xn)+εn , (2.4)
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where the εn are, for example, realizations of white Gaussian noise. Now the function f
can be fitted by solving the linear least squares problem

min
c

||y−Gc||2 +λ||c||2 (2.5)

with y ∈RN being the vector of samples yn and

G = [Φ(Wx1 +b) · · ·Φ(WxN +b)]T . (2.6)

The regularization parameter λ > 0 helps to avoid overfitting of the model to the data,
which would impair its performance on new, previously unseen inputs, and to ensure
that there is a unique solution to (2.5) . This problem has the following solution [15]:

ĉ = (GT G+λI )−1GT , (2.7)

which leads to a direct method for fitting f with RFEs.

2.3. THEORETICAL RESULTS
After computing (2.7), the RFE model (2.3) can be used efficiently as an approximation
of the target function f . However, this does not necessarily mean that it is a good surro-
gate for f when performing optimization. We need to investigate whether the extreme
points of f̂ are close to the extreme points of f . To show that this is not trivial, Figure 2.1
shows an approximation that increases in accuracy, but introduces many artificial ex-
treme points.

The main result of this paper comes in the form of a theorem that claims that the ex-
treme points of f̂ are, with high probability, close to the extreme points of f if f̂ is a good
enough approximation of f in the uniform sense. The result is theoretical in the sense
that although we do know that such an approximation exists, we have no guarantee that
the method from the previous section finds it.

In this section, the weights wk of the random basis expansion defined in (2.3) are
assumed to be i.i.d. normally distributed, wk ∼ N (0,σ2I), while the weights bk are as-
sumed to be i.i.d. uniform on [0,2π]. The nonlinearity Φ is assumed to be the cosine
function, which gives the RFE the interpretation of an approximated Gaussian kernel [4].

The following is a summary of well-known results from the literature:

Corollary 1. Assume that f is continuous and fix any δ ∈ (0,1) and ε > 0. Then, there
exists a constant D0 = D0( f ,δ,ε) such that, for any D ≥ D0 and randomly chosen i.i.d.
weights w1, . . . ,wD and biases b1, . . . ,bD ,

C :=
{

c ∈RD : ‖ f − f̂ ‖∞ ≤ ε, sup
k

|ck | ≤ γ( f )/D

}
6= ; (2.8)

with probability at least 1−δ. Here, f̂ is as in (2.3), γ( f ) denotes a constant that depends
only on f , and

‖ ·‖∞ := sup
x∈X

| · (x)|. (2.9)
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Figure 2.1: The functions f̂δ provide a better and better approximation of f for δ→ 0 since ‖ f −
f̂δ‖∞ ≤ δ, but they suffer from artificial extreme points that are distant from any extreme point of
f .
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This result shows that with high probability there exists a vector of weights c such that
the RFE f̂ approximates f up to arbitrary precision, as long as the number of features is
large enough. It does not guarantee that the least squares approach of Section 2.2 results
in exactly these weights. This corollary will be proved in the appendix.

Our main result is the following theorem.

Theorem 2. Let f : X →R, X ⊂Rd compact, be two times differentiable with continuous
second derivative. Furthermore, assume that f has only finitely many critical points

{v1, . . . ,vK } := {
x ∈X : ∇ f (x) = 0

}
in X . Then, for any δ ∈ (0,1) and ε > 0, there exists a constant D0 = D0( f ,δ,ε) such that
any random basis expansion f̂ defined in (2.3) with coefficient vector c ∈ C (see (2.8))
satisfies

∇ f̂ (x) = 0 =⇒ min
k=1,...,K

‖vk −x‖ ≤ ε

with a probability of at least 1−δ whenever D ≥ D0.

The proof is given in the appendix.

2.4. APPLICATION: TUNING OF AN OPTICAL BEAM FORMING

NETWORK
As a real-life application, we consider the tuning of an optical beam-forming network
(OBFN) architecture proposed by [16] for applications such as aircraft-satellite commu-
nication. OBFNs are used in phased arrays, where several antenna elements are placed
in an array. All antenna elements receive the same signal, but with different time delays
as illustrated in Figure 2.2. The time delays between the different received signals can
be calculated if the shape of the phased array and the reception angle of the incoming
signal are known, as is the case in aircraft-satellite communication. OBFNs aim at im-
proving the signal-to-noise ratio of the incoming signal. Therefore, the received signals
are first aligned through proper compensation of their individual delays and then com-
bined. OBFNs convert the incoming electric signals into the optical domain and process
them using optical ring resonators, which offers several advantages such as compactness
and low weight, low loss, and large bandwidth [17].

The main components of the OBFNs are optical ring resonators (ORRs) [18]. ORRs
can provide a tunable time delay to signals, but only over a small frequency band. Cas-
cades of multiple ORRs can provide a constant delay over larger bandwidths [19], but it
was found that the number of required ORRs can be reduced if the ORRs are organized in
tree topologies such as the one depicted in Figure 2.3 [5, Chapter 3]. In the OBFN under
consideration, ORRs are combined in a binary tree topology, as illustrated in Figure 2.3,
providing different constant delays for each path in the tree over a large bandwidth.

The group delay τi of the i -th ORR depends on the frequency ω as follows (modified
from [5, p. 22]):

τi (ω,κi ,φi ) = Ti
r 2

i − ri
p

1−κi cos(ωTi +φi )

r 2
i +1−κi −2ri

p
1−κi cos(ωTi +φi )
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Antenna elements

Wavefront

Figure 2.2: A phased array antenna. If a wave arrives at the array under an angle, each antenna
element receives the same signal after a certain time delay that can be calculated if the distance
between antenna elements is known.

Figure 2.3: Binary tree-based 4×1 optical beamforming network (OBFN) consisting of four optical
ring resonators (ORRs), from [16].

+Ti
ri
p

1−κi cos(ωTi +φi )− r 2
i (1−κi )

r 2
i (1−κi )+1−2ri

p
1−κi cos(ωTi +φi )

. (2.10)

Here, κi and φi are a coupling and phase shift variable, which can be controlled with
chromium heaters, and

ri = r̄ +∆ri , Ti = T̄ +∆Ti (2.11)

are the loss parameter and the round-trip time of the i -th ORR respectively, centered
around their averages r̄ and T̄ . The (small) deviations ∆ri and ∆Ti are caused by fabri-
cation errors and material inhomogeneities, and are unknown in practice.

The group delay d j of the path connecting the j -th antenna element to the output is
given by the sum of the group delays of all the ORRs in the path [19]:

d j (ω,κ,φ) =
R∑

i=1
pi jτi (ω,κi ,φi ), (2.12)

where κ,φ are vectors containing the κi and φi for the i -th ORR, R is the total number
of ORRs in the OBFN, and pi j ∈ {0,1} indicates whether the i -th ORR appears in the j -th
path (1) or not (0).
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The goal is to find the values for κi and φi that provide the desired delays d∗
j over a

set of target frequenciesω1, . . . ,ωL for all OBFN paths j = 1, . . . ,P . Since this problem has
no exact solution in general, we aim at minimizing the mean-square error

MSE(κ,φ) := 1

LP

L∑
k=1

P∑
j=1

(
d∗

j −d j (ωk ,κ,φ)
)2

(2.13)

instead, where k sums over the frequencies of interest, and L is the number of frequen-
cies considered. Although this is a non-convex problem, good results have been ob-
tained when the mean-square error was minimized with standard black-box nonlinear
optimization techniques [5, Appendix A]. However, since the exact values of the param-
eters (2.11) are unknown in practice, [5] assumed that

r1 = . . . = rR = r̄ , T1 = . . . = TR = T̄ . (2.14)

In our notation, this corresponds to the minimization of the objective function

MSE(κ,φ) := 1

LP

L∑
k=1

P∑
j=1

(
d∗

j − d̄ j (ωk ,κ,φ)
)2

, (2.15)

where d̄ j is given by (2.12) with ri = r̄ and Ti = T̄ for all i . In this section it will however
become clear that, even if the ri and Ti deviate only slightly from their average values r̄
and T̄ , this can have a large effect on the outcome of the optimization. Although param-
eter estimation techniques could be used to estimate these perturbations, model errors
can never be eliminated completely. Therefore, this paper proposes to use the method
from Section 2.2 as an alternative. This leads to a third objective function that is learned
directly from training data:

�MSE(κ,φ) := f̂ (κ,φ) = cΦ
(

W
[
κ

φ

]
+b

)
, (2.16)

where c, W and b are obtained by the procedure described in Section 2.2. That is, the
function MSE(κ,φ) is seen as an unknown target function that we want to approximate.
Random values for x = [κT ,φT ]T are chosen as the input samples. Then the path group
delays d̂ j are calculated for each x using (2.12), but disturbed with white Gaussian mea-

surement noise with variance σ2. Using these disturbed d̂ j in (2.13) gives noisy mea-
surement samples yn that can be used for finding c. The W and b are not chosen in an
optimal way, but randomly as described in Section 2.3.

In order to compare our approach with [5], the fmincon function from MATLABr
was used to minimize all three objective functions (2.13)-(2.16). The same box con-
straints for the variablesκ andφwere used. The number of training samples was chosen
as N = 1024, the variance of the measurement noise was chosen atσ2 = 1, the basis func-
tionΦ(x) = cos(x) was used, and the varianceσ2

W of the elements in W, the Tikhonov reg-
ularization parameter λ, and the number of basis fuctions D were chosen using random
hyperparameter optimization [20].

The perturbations ∆ri were chosen randomly from a uniform distribution over
[− 1

2σ∆r , 1
2σ∆r ], with 7 different interval lengths σ∆r = 10−7, . . . ,10−1. With this scheme
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Figure 2.4: Mean square errors for the OBFN delay tuning problem with four different methods:
optimization based on the true model (MSE), based on a model with averaged parameters (MSE),
where the accuracy of the estimates is determined by the parameter perturbations, and based
on the learned objective (�MSE). The fourth model uses a finite difference approach on averaged
measurements. For each parameter perturbation level, the methods were repeated 1000 times,
with the mean shown in the graphs and the standard deviation shown as shaded areas in the figure.

and with the estimate r̄ = 0.95, the loss parameter ri would never go above 1, which
is physically impossible for a passive OBFN system. The perturbations ∆Ti were chosen
randomly from a uniform distribution over [− 1

2σ∆T , 1
2σ∆T ] with a varying interval length

of σ∆T = 10−10σ∆r , since the estimate of T̄ = 1.38 ·10−10 is about 10 orders of magnitude
smaller than r̄ .

Figure 2.4 shows the results for minimizing the three objective functions with in-
creasing parameter perturbations, averaged over 1000 runs. The standard deviation of
the mean square errors is indicated by the shaded areas. A fourth curve shows the re-
sults of a benchmark method, where measurements are first averaged to reduce mea-
surement noise and then minimized with a finite difference approach, using the same
measurement noise with σ2 = 1 and number of measurements N = 1024.

It can be seen that for parameter perturbations close to 0, the minimization of the
learned error �MSE gives worse results than the minimization of MSE. It also gives a larger
standard deviation, showing the random nature of the method. However, as the parame-
ter disturbance increases, the quality of the solution of minimizing MSE decreases, while
the minimization of �MSE still gives results that are comparable to MSE. This change hap-
pens quickly, when the parameter disturbances are still quite small (around a variation
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of 10−5 for ri and 10−15 for Ti ).

2.5. CONCLUSION
In this paper, it was proposed to use random basis expansions for the minimization
of unknown objectives. Instead of deriving a model from first principles, estimating
model parameters, and minimizing some objective derived from this model, the pro-
posed method learns the objective function to be minimized directly from data. Random
basis expansions were used to approximate the objective function, and it was shown that
this approximation does not suffer from artificial local minima if trained ideally. The
method was tested on a real life application, namely the tuning of an optical beamform-
ing network. In the presence of model uncertainties, the proposed method outperforms
the classical approach.

2.6. APPENDIX: AUXILIARY RESULTS
We start by proving Corollary 2.8, followed by some auxiliary results, followed by the
proof of Theorem 2.

Proof. (Corollary 1)
Since f is continuous, we can approximate it by f̃ (x) = ∑∞

k=1βk exp(−σ‖x− xk‖2) with∑∞
k=1 |βk |2 <∞ such that ‖ f − f̃ ‖∞ < ε

3 [21, Exa. 1]. Note that f̃ belongs to the reproduc-
ing kernel Hilbert space (RKHS) generated by the Gaussian kernel. By [14, Thm. 4.2], we
can find f̌ ∈F , where F is a certain dense subset of this RKHS, such that ‖ f̃ − f̌ ‖∞ < ε

3 .

Finally, by [14, Thm. 3.2], there exists an expansion (2.3) with ‖ f̌ − f̂ ‖∞ <∞ with a coeffi-
cient vector belonging to C with probability at least 1−δwhenever D ≥ D0 for a suitably
chosen D0. The triangle inequality now shows that

‖ f − f̂ ‖∞ ≤ ‖ f − f̃ ‖∞+‖ f̃ − f̌ ‖∞+‖ f̌ − f̂ ‖∞ ≤ ε.

The coefficients used in the proof of [14, Thm. 3.2] satisfy supk |ck | < γ( f )/D because, in
the notation of [14, proof of Thm. 3.2], γ( f ) = ‖ f̌ ‖p <∞.

Lemma 3. Let δ ∈ (0,1) and let f̂ be an approximation of f with coefficient vector c ∈ C

(see (2.8)). Then there exist D0 = D0( f ,δ) and a constant M <∞ such that

∥∥∥∥ ∂2 f̂
∂x2

i

∥∥∥∥∞ < M

with probability at least 1−δ whenever D ≥ D0, for all i .

Proof. Note that for all D ≥ D0 with probability 1−δ∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞ = sup
x∈X

∣∣∣∣∣− D∑
k=1

ck cos(wT
k x+bk )w2

k,i

∣∣∣∣∣≤ γ( f )

D

D∑
k=1

w2
k,i ,

if the coefficient vector c belongs to the set C in 2.8. Here we have used that ‖cos‖∞ ≤ 1
and Corollary 1. The term

∑D
k=1 w2

k,i can be written as σ2 ∑D
k=1 z2

k = σ2X , with σ2 the
variance of wk,i and the zk being standard normally distributed variables. Now, X is a
χ2(D)-distributed random variable which has the following Chernoff bound [22, p. 3f]:

P(X ≥ M) ≤ e−t M (1−2t )−D/2, ∀t ∈ (0,1/2),
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where t is free to be chosen. Choosing for example t = 1/4 in (2.18) below gives the
following bound:

P

(∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞ ≥ M

)
≤P

(
γ( f )

D
σ2X ≥ M

)
(2.17)

=P
(

X ≥ DM

σ2γ( f )

)
≤ e

− DM
4σ2 γ( f )

(
1

2

)−D/2

(2.18)

=
(

1

2
e

M
2σ2 γ( f )

)−D/2

(2.19)

If M > 2ln(2)σ2γ( f ), this last quantity will converge to 0 as D →∞. Therefore, for fixed
δ ∈ (0,1) and M > 2ln(2)σ2γ( f ) there exists a D0 such that

P

(∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞ < M

)
= 1−P

(∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞ ≥ M

)
≥ 1−δ

whenever D ≥ D0. Taking M = 2ln(2)σ2γ( f ), this concludes the proof.

Lemma 4. Let f be as in Theorem 2 and δ,ρ > 0. Then, there exists a constant D0 =
D0( f ,δ,ρ) such that a random basis expansion f̂ with c ∈ C satisfies

∥∥∥ ∂ f
∂xi

− ∂ f̂
∂xi

∥∥∥∞ ≤ ρ

with probability 1−δ whenever D ≥ D0, for all i .

Proof. Let ei be the unit vector [0, . . . ,0,1,0, . . . ,0]T . Taylor’s theorem in Lagrange form [23,
p.880] implies ∥∥∥∥∥∂ f (x)

∂xi
− ∂ f̂ (x)

∂xi

∥∥∥∥∥
≤

∣∣∣∣∣ f (x+hei )− f (x)− ( f̂ (x+hei )− f̂ (x))

h

∣∣∣∣∣
+h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)

≤ 1

h

∣∣ f (x+hei )− f̂ (x+hei )
∣∣+ 1

h

∣∣ f (x)− f̂ (x)
∣∣

+h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)

≤2‖ f − f̂ ‖∞
h

+h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)

.

Note that
∥∥∂2 f /∂x2

i

∥∥
∞ is bounded since ∂2 f /∂x2

i is continuous by assumption and the

set X is compact. By Lemma 3, there exists a D (1)
0 such that

h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)
≤ ρ/2
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with probability at least 1−δ(1) whenever D ≥ D (1)
0 , if we choose h = 1

4ρ/max

{
M ,

∥∥∥∥ ∂2 f
∂x2

i

∥∥∥∥∞
}

.

By Theorem 1, for the same h, there exists D (2)
0 such that 2‖ f − f̂ ‖∞

h ≤ ρ/2 with probability

at least 1−δ(2) whenever D ≥ D (2)
0 . Taking D0 = max{D (1)

0 ,D (2)
0 } and choosing δ(1) and δ(2)

such that (1−δ(1))(1−δ(2)) = 1−δ, we have

P

(∥∥∥∥∥∂ f (x)

∂xi
− ∂ f̂ (x)

∂xi

∥∥∥∥∥≤ ρ
)

≥P
(

2‖ f − f̂ ‖∞
h

+h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)
≤ ρ

)

≥P
(

2‖ f − f̂ ‖∞
h

≤ ρ/2, h

(∥∥∥∥∥∂2 f

∂x2
i

∥∥∥∥∥∞+
∥∥∥∥∥∂2 f̂

∂x2
i

∥∥∥∥∥∞
)
≤ ρ/2

)
≥ 1−δ

whenever D ≥ D0, for all i .

Lemma 5. Let g : X → R be continuous with finitely many roots r1, . . . ,rn , n ≥ 1, and fix
any ε> 0. Then, there exists ρ > 0 such that

|g (x)| < ρ =⇒ min
j=1,...,n

‖r j −x‖ < ε.

Proof. Define G : X → R, G(x) := |g (x)|, Bε(r) := {x ∈X : ‖r−x‖ < ε}, and
Gε : X \

⋃n
j=1 Bε(r j ) → R, Gε(x) := G(x). The function Gε is continuous and defined on

a compact set. Therefore, it attains its minimum

ρ := min
x∈X \

⋃n
j=1 Bε(r j )

Gε(x) > 0.

Thus, whenever |g (x)| = G(x) < ρ for some x ∈ X , x cannot belong to the domain of Gε.
Instead, it is x ∈⋃n

j=1 Bε(r j ) as claimed.

Using the lemmas above, we are ready to prove Theorem 2.

Proof. (Theorem 2)
First, choose ρ > 0 small enough such that∣∣∣∣∂ f (x)

∂xi

∣∣∣∣< ρ ∀i =⇒ min
j=1,...,n

‖v j −x‖ < ε (2.20)

(possible by Lemma 5). Now, choose D0 large enough such that∥∥∥∥∥ ∂ f

∂xi
− ∂ f̂

∂xi

∥∥∥∥∥∞ < ρ ∀i (2.21)
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with probability at least 1−δ (possible by Lemma 4). Then, as claimed,

∇ f̂ (x) = 0 =⇒ ∀i

∣∣∣∣∂ f (x)

∂xi

∣∣∣∣=
∣∣∣∣∣∂ f (x)

∂xi
− ∂ f̂ (x)

∂xi

∣∣∣∣∣ (2.21)< ρ

(2.20)=⇒ min
j=1,...,n

‖v j −x‖ < ε.
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ONLINE OPTIMIZATION WITH

COSTLY AND NOISY

MEASUREMENTS USING RANDOM

FOURIER EXPANSIONS
This paper analyzes DONE, an online optimization algorithm that iteratively minimizes
an unknown function based on costly and noisy measurements. The algorithm maintains
a surrogate of the unknown function in the form of a random Fourier expansion (RFE).
The surrogate is updated whenever a new measurement is available, and then used to
determine the next measurement point. The algorithm is comparable to Bayesian opti-
mization algorithms, but its computational complexity per iteration does not depend on
the number of measurements. We derive several theoretical results that provide insight
on how the hyper-parameters of the algorithm should be chosen. The algorithm is com-
pared to a Bayesian optimization algorithm for an analytic benchmark problem and three
applications, namely, optical coherence tomography, optical beam-forming network tun-
ing, and robot arm control. It is found that the DONE algorithm is significantly faster
than Bayesian optimization in the discussed problems, while achieving a similar or better
performance.

This chapter is based on a joint work with H.R.G.W. Verstraete, with an equal contribution from both parties,
and also appears in: H.R.G.W. Verstraete, Optimization-based adaptive optics for optical coherence tomogra-
phy, Ph.D. thesis, Delft University of Technology (2017).
Parts of this chapter have been published in [1].
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3.1. INTRODUCTION

M ANY optimization algorithms use the derivative of an objective function, but often
this information is not available in practice. Regularly, a closed form expression

for the objective function is not available and function evaluations are costly. Exam-
ples are objective functions that rely on the outcome of a simulation or an experiment.
Approximating derivatives with finite differences is costly in high-dimensional prob-
lems, especially if the objective function is costly to evaluate. More efficient algorithms
for derivative-free optimization (DFO) problems exist. Typically, in DFO algorithms a
model is used that can be optimized without making use of the derivative of the under-
lying function [2, 3]. Some examples of commonly used DFO algorithms are the simplex
method [4], NEWUOA [5], BOBYQA [6], and DIRECT [7]. Additionally, measurements
of a practical problem are usually corrupted by noise. Several techniques have been
developed to cope with a higher noise level and make better use of the expensive ob-
jective functions evaluations. Filtering and pattern search optimization algorithms such
as implicit filtering [8] and SID-PSM [9] can handle local minima resulting from high
frequency components. Bayesian optimization, also known as sequential Kriging opti-
mization, deals with heteroscedastic noise and perturbations very well. One of the first
and best known Bayesian optimization algorithms is EGO [10]. Bayesian optimization
relies on a surrogate model that represents a probability distribution of the unknown
function under noise, for example Gaussian processes or Student’s-t processes [11–14].
In these processes different kernels and kernel learning methods are used for the co-
variance function [15, 16]. The surrogate model is used to decide where the next mea-
surement should be taken. New measurements are used to update the surrogate model.
Bayesian optimization has been successfully used in various applications, including ac-
tive user modeling and reinforcement learning [17], robotics [18], hyper-parameter tun-
ing [12], and optics [19].

Recently, the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm was
proposed in [20]. It is similar to Bayesian optimization, but simpler and faster. The
DONE algorithm uses random Fourier expansions [21] (RFEs) as a surrogate model. The
nature of the DONE algorithm makes the understanding of the hyper-parameters eas-
ier. In RFE models certain parameters are chosen randomly. In this paper, we derive a
close-to-optimal probability distribution for some of these parameters. We also derive
an upper bound for the regularization parameter used in the training of the RFE model.

The advantages of the DONE algorithm are illustrated in an analytic benchmark prob-
lem and three applications. We numerically compare DONE to BayesOpt [14], a Bayesian
optimization library that was shown to outperform many other similar libraries in [14].
The first application is optical coherence tomography (OCT), a 3D imaging method based
on interference often used to image the human retina [20, 22, 23]. The second applica-
tion we consider is the tuning of an optical beam-forming network (OBFN). OBFNs are
used in wireless communication systems to steer phased array antennas in the desired
direction by making use of positive interference of synchronized signals [24–29]. The
third application is a robot arm of which the tip has to be directed to a desired posi-
tion [30].

This paper is organized as follows. Section 3.2 gives a short overview and provides
new theoretical insights on random Fourier expansions, the surrogate model on which
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the DONE algorithm is based. We have noticed a gap in the literature, where approx-
imation guarantuees are given for ideal, but unknown RFE weights, while in practice
RFE weights are computed via linear least squares. We investigate several properties
of the ideal weights and combine these results with existing knowledge of RFEs to ob-
tain approximation guarantees for least-square weights. Section 3.3 explains the DONE
algorithm. Theoretically optimal as well as more practical ways to choose the hyper-
parameters of this algorithm are given in Section 3.4. In Section 3.5 the DONE algorithm
and BayesOpt are compared for a benchmark problem and for the three aforementioned
applications. We conclude the paper in Section 3.6.

3.2. RANDOM FOURIER EXPANSIONS
In this section, we will describe the surrogate model that we will use for optimization.
There is a plethora of black-box modeling techniques to approximate a function from
measurements available in the literature, with neural networks, kernel methods, and of
course classic linear models probably being the most popular [31–33]. In this paper,
we use random Fourier expansions (RFEs) [21] to model the unknown function because
they offer a unique mix of computational efficiency, theoretical guarantees and ease of
use that make them ideal for online processing. While general neural networks are more
expressive than random Fourier features, they are difficult to use and come without theo-
retical guarantees. Standard kernel methods suffer from high computational complexity
because the number of kernels equals the number of measurements. RFEs have been
originally introduced to reduce the computational burden that comes with kernel meth-
ods, as will be explained next [21, 34, 35].

Assume that we are provided N scalar measurements yi taken at measurement points
xi ∈Rd as well as a kernel k(xi ,x j ) that, in a certain sense, measures the closeness of two
measurement points. To train the kernel expansion

gK M (x) =
N∑

i=1
ai k(x,xi ), (3.1)

a linear system involving the kernel matrix [k(xi ,x j )]i , j has to be solved for the coef-
ficients ai . The computational costs of training and evaluating (3.1) grow cubicly and
linearly in the number of datapoints N , respectively. This can be prohibitive for large
values of N . We now explain how RFEs can be used to reduce the complexity [21]. As-
suming the kernel k is shift-invariant and has Fourier transform p, it can be normalized
such that p is a probability distribution [21]. That is, we have

k(xi −x j ) =
∫
Rd

p(ω)e−iωT (xi−x j )dω. (3.2)

We will use several trigonometric properties and the fact that k is real to continue the
derivation. This gives

k(xi −x j ) =
∫
Rd

p(ω)cos(ωT (xi −x j ))dω

=
∫
Rd

p(ω)cos(ωT (xi −x j ))
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+p(ω)
∫ 2π

0
cos(ωT (xi +x j )+2b)dbdω

= 1

2π

∫
Rd

p(ω)
∫ 2π

0
cos(ωT (xi −x j ))

+cos(ωT (xi +x j )+2b)dbdω

= 1

2π

∫
Rd

p(ω)
∫ 2π

0
2cos(ωT xi +b)

·cos(ωT x j +b)dbdω

= E[2cos(ΩT xi +b)cos(ΩT x j +b)]

≈ 2

D

D∑
k=1

cos(ωT
k xi +bk )cos(ωT

k x j +bk ), (3.3)

if ωk are independent samples of the random variable Ω with probability distribution
function (p.d.f.) p, and bk ∈ [0,2π] are independent samples of the random variable b
with a uniform distribution. For ck =∑N

i=1
2
D ai cos(ωT

k xi +bk ) we thus have:

gK M (x) ≈
D∑

k=1
ck cos(ωT

k x+bk ). (3.4)

Note that the number of coefficients D is now independent of the number of measure-
ments N . This is especially advantageous in online applications where the number of
measurements N keeps increasing. We use the following definition of a random Fourier
expansion.

Definition 1. A Random Fourier Expansion (RFE) is a function of the form g :Rd →R,

g (x) =
D∑

k=1
ck cos(ωT

k x+bk ), (3.5)

with D ∈ N, the bk being realizations of independent and identically distributed (i.i.d.)
uniformly distributed random variables bk on [0,2π], and with theωk ∈Rd being realiza-
tions of i.i.d. random vectorsΩk with an arbitrary continuous p.d.f. pΩ. The bk and the
Ωk are assumed to be mutually independent.

We finally remark that there are other approaches to reduce the complexity of ker-
nel methods and make them suitable for online processing, which are mainly based on
sparsity [36–39]. However, these are much more difficult to tune than using RFEs [35].
It is also possible to use other basis functions instead of the cosine, but the cosine was
among the top performers in an exhaustive comparison with similar models [40]. More-
over, the parameters of the cosines have intuitive interpretations in terms of the Fourier
transform.

3.2.1. IDEAL RFE WEIGHTS
In this section, we deal with the problem of fitting a RFE to a given function f . We de-
rive ideal but in practice unknown weights c. We start with the case of infinitely many
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samples and basis functions (see also [41, 42]), which corresponds to turning the corre-
sponding sums into integrals.

Theorem 6. Let f ∈ L2(Rd ) be a real-valued function and let

c̄(ω,b) =
{ 1

π | f̂ (ω)|cos(∠ f̂ (ω)−b), b ∈ [0,2π],
0, otherwise.

(3.6)

Then, for all x ∈Rd ,

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω. (3.7)

Here, | f̂ | and ∠ f̂ denote the magnitude and phase of the Fourier transform f̂ (ω) =∫
Rd f (x)e−iωT xdx. The sets L2 and L∞ denote the space of square integrable functions

and the space of all essentially bounded functions, respectively.

Proof. For b ∈ [0,2π], we have

c̄(ω,b) = 1

π
| f̂ (ω)|cos(∠ f̂ (ω)−b)

= 1

π
Re

{
f̂ (ω)e−i b

}
. (3.8)

Using that f (x) is real, we find that

f (x) =Re

{
1

(2π)d

∫
Rd

f̂ (ω)e iωT xdω

}
=Re

{ 1

(2π)d

∫
Rd

(
f̂ (ω)e iωT x 1

2π

∫ 2π

0
1db+

f̂ (ω)e−iωT x
∫ 2π

0
e−2i bdb︸ ︷︷ ︸
=0

)
dω

}

=Re

{
1

π

1

(2π)d

∫
Rd

∫ 2π

0
f̂ (ω)e−i b

1

2

[
e i (ωT x+b) +e−i (ωT x+b)

]
dbdω

}
=Re

{
1

π

1

(2π)d

∫
Rd

∫ 2π

0
f̂ (ω)e−i b cos(ωT x+b)dbdω

}
(3.8)= 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω. (3.9)

For b ∈ [0,2π], we have another useful expression for the ideal weights that is used
later on in this section, namely

c̄(ω,b) = 1

π
Re

{
f̂ (ω)e−i b

}
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= 1

π
Re

{∫
Rd

f (x)e−i (ωT x+b)dx
}

= 1

π

∫
Rd

f (x)cos(ωT x+b)dx. (3.10)

The function c̄ in Theorem 6 is not unique. However, of all functions c that satisfy
(3.7), the given c̄ is the one with minimum norm.

Theorem 7. Let c̄ be as in Theorem 6. If c̃ :Rd × [0,2π] →R satisfies

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)cos(ωT x+b)dbdω a.e. (3.11)

then ||c̃||2
L2 ≥ ||c̄||2

L2 = (2π)d

π || f ||2
L2 , with equality if and only if c̃ = c̄ in the L2 sense.

Proof. First, using Parseval’s theorem and
∫ 2π

0 cos(a −b)2db = π for any real constant a,
note that

||c̄||2L2 =
∫
Rd

∫ 2π

0
c̄(ω,b)2dbdω

(3.6)=
∫
Rd

∫ 2π

0

1

π2 | f̂ (ω)|2 cos(∠ f̂ (ω)−b)2dbdω

=
∫
Rd

1

π2 | f̂ (ω)|2
∫ 2π

0
cos(∠ f̂ (ω)−b)2dbdω

=
∫
Rd

1

π
| f̂ (ω)|2dω

= (2π)d

π

∫
Rd

f (x)2dx = (2π)d

π
|| f ||2L2 . (3.12)

Assume that c̃(ω,b) = c̄(ω,b)+q(ω,b). Then we get∫
Rd

f (x)2dx

(3.11)=
∫
Rd

f (x)
1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)cos(ωT x+b)dbdωdx

= 1

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)

∫
Rd

f (x)cos(ωT x+b)dxdbdω

(3.10)= π

(2π)d

∫
Rd

∫ 2π

0
c̃(ω,b)c̄(ω,b)dbdω

= π

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)2 + c̄(ω,b)q(ω,b)dbdω

(3.12)=
∫
Rd

f (x)2dx+ π

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)q(ω,b)dbdω. (3.13)

Following the above equality we can conclude that
∫
Rd

∫ 2π
0 c̄(ω,b)q(ω,b)dbdω = 0. The

following now holds:

||c̃||2L2 = ||c̄ +q ||2L2
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=
∫
Rd

∫ 2π

0
c̄(ω,b)2 +2c̄(ω,b)q(ω,b)+q(ω,b)2dbdω

= ||c̄||2L2 +||q ||2L2 ≥ ||c̄||2L2 . (3.14)

Furthermore, equality holds if and only if ||q ||L2 = 0. That is, the minimum norm
solution is unique in L2.

These results will be used to derive ideal weights for a RFE with a finite number of ba-
sis functions as in Definition 1 by sampling the weights in (3.6). We prove unbiasedness
in the following theorem, while variance properties are analyzed in Appendix 3.8.

Theorem 8. For any continuous p.d.f. pΩ with pΩ(ω) > 0 if | f̂ (ω)| > 0, the choice

Ck = 2

D(2π)d

| f̂ (Ωk )|
pΩ(Ωk )

cos(∠ f̂ (Ωk )−bk ) (3.15)

makes the (stochastic) RFE G(x) =∑D
k=1 Ck cos(ΩT

k x+bk ) an unbiased estimator, i.e., f (x) =
E[G(x)] for any x ∈Rd .

Proof. Using Theorem 6, we have

f (x) = 1

(2π)d

∫
Rd

∫ 2π

0
c̄(ω,b)cos(ωT x+b)dbdω

= EΩ1,b1

[
1

(2π)d pb(b1)pΩ(Ω1)
c̄(Ω1,b1)cos(ΩT

1 x+b1)

]

= EΩ1...D ,b1...D

[
D∑

k=1

2πc̄(Ωk ,bk )

D(2π)d pΩ(Ωk )
cos(ΩT

k x+bk )

]
(3.6)= E

[
D∑

k=1

2

D(2π)d

| f̂ (Ωk )|
pΩ(Ωk )

cos(∠ f̂ (Ωk )−bk )

cos(ΩT
k x+bk )

]
= E [G(x)] . (3.16)

These ideal weights enjoy many other nice properties such as infinity norm conver-
gence [43]. In practice, however, a least squares approach is used for a finite D . This is
investigated in the next subsection.

3.2.2. CONVERGENCE OF THE LEAST SQUARES SOLUTION
The ideal weights c̄ depend on the Fourier transform of the unknown function f that we
wish to approximate. Of course, this knowledge is not available in practice. We therefore
assume a finite number of measurement points x1, . . . ,xN that have been drawn inde-
pendently from a p.d.f. pX that is defined on a compact set X ⊆ Rd , and corresponding
measurements y1, . . . , yN , with yn = f (xn)+ηn , where η1, . . . ,ηN have been drawn inde-
pendently from a zero-mean normal distribution with finite variance σ2

H . The input and
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noise terms are assumed independent of each other. We determine the weights ck by
minimizing the squared error

JN (c) =
N∑

n=1

(
yn −

D∑
k=1

ck cos(ωT
k xn +bk )

)2

+λ
D∑

k=1
c2

k

= ||yN −AN c||22 +λ||c||22. (3.17)

Here,

yN = [
y1 · · · yN

]T
,

AN =

 cos(ωT
1 x1 +b1) · · · cos(ωT

D x1 +bD )
...

. . .
...

cos(ωT
1 xN +b1) · · · cos(ωT

D xN +bD )

 , (3.18)

andλ is a regularization parameter added to deal with noise, over-fitting and ill-conditioning.
Since the parameters ωk ,bk are drawn from continuous probability distributions,

only the weights ck need to be determined, making the problem a linear least squares
problem. The unique minimizer of JN is

cN = (
AT

N AN +λID×D
)−1

AT
N yN . (3.19)

The following theorem shows that RFEs whose coefficient vector have been obtained
through a least squares fit as in (3.19) can approximate the function f arbitrarily well.
Similar results were given in [41–44], but we emphasize that these convergence results
did concern RFEs employing the ideal coefficient vector given earlier in Theorem 8 that
is unknown in practice. Our theorem, in contrast, concerns the practically relevant case
where the coefficient vector has been obtained through a least-squares fit to the data.

Theorem 9. The difference between the function f and the RFE trained with linear least
squares can become arbitrarily small if enough measurements and basis functions are

used. More precisely, suppose that f ∈ L2 ∩L∞ and that supω∈RD ,b∈[0,2π]

∣∣∣ c̄(ω,b)
pΩ(ω)pb(b)

∣∣∣ <∞.

Then, for every ε> 0 and δ> 0, there exist constants N0 and D0 such that

∫
X

(
f (x)−

D∑
k=1

CN k cos(ΩT
k x+bk )

)2

pX(x)dx < ε (3.20)

for all N ≥ N0, D ≥ D0, 0 < λ ≤ NΛ with probability at least 1−δ. Here, CN k is the k-th
element of the random vector corresponding to the weight vector given in (3.19), andΛ≥ 0
is the solution to∣∣∣∣∣∣(AT

N AN +NΛ ID×D
)−1

AT
N yN

∣∣∣∣∣∣2

2
=

D∑
k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pb(bk )

)2

. (3.21)

The proof of this theorem is given in Appendix 3.7. In Section 3.4.2 we show how to
obtainΛ in practice.
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3.3. ONLINE OPTIMIZATION ALGORITHM
In this section, we will investigate the DONE algorithm, which locates a minimum of an
unknown function f based on noisy evaluations of this function. Each evaluation, or
measurement, is used to update a RFE model of the unknown function, based on which
the next measurement point is determined. Updating this model has a constant compu-
tation time of order O(D2) per iteration, with D being the number of basis functions. We
emphasize that this is in stark contrast to Bayesian optimization algorithms, where the
computational cost of adding a new measurement increases with the total number of
measurements so far. We also remark that the DONE algorithm operates online because
the model is updated after each measurement. The advantage over offline methods, in
which first all measurements are taken and only then processed, is that the number of
required measurements is usually lower as measurement points are chosen adaptively.

3.3.1. RECURSIVE LEAST SQUARES APPROACH FOR THE WEIGHTS
In the online scenario, a new measurement yn taken at the point xn becomes available
at each iteration n = 1,2, . . . These are used to update the RFE. Let an = [cos(ωT

1 xn +
b1) · · ·cos(ωT

D xn +bD )], then we aim to find the vector of RFE weights by minimizing the
regularized mean square error

Jn(c) =
n∑

i=1

(
yi −ai c

)2 +λ||c||22. (3.22)

Let cn be the minimum of Jn ,

cn = argmin
c

Jn(c). (3.23)

Assuming we have found cn , we would like to use this information to find cn+1 without
solving (3.23) again. The recursive least squares algorithm is a computationally efficient
method that determines cn+1 from cn as follows [45, Sec. 21]:

γn = 1/(1+an Pn−1aT
n ), (3.24)

gn = γn Pn−1aT
n , (3.25)

cn = cn−1 +gn(yn −an cn−1), (3.26)

Pn = Pn−1 −gn gT
n /γn , (3.27)

with initialization c0 = 0, P0 =λ−1ID×D .
We implemented a square-root version of the above algorithm, also known as the

inverse QR algorithm [45, Sec. 21], which is known to be especially numerically reliable.
Instead of performing the update rules (3.24)-(3.27) explicitly, we find a rotation matrix
Θn that lower triangularizes the upper triangular matrix in Eq. (3.28) below and generates
a post-array with positive diagonal entries:[

1 an P1/2
n−1

0 P1/2
n−1

]
Θn =

[
γ−1/2

n 0
gnγ

−1/2
n P1/2

n

]
. (3.28)

The rotation matrixΘn can be found by performing a QR decomposition of the transpose
of the matrix on the left hand side of (3.28), or by the procedure explained in [45, Sec. 21].
The computational complexity of this update is O(D2) per iteration.
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3.3.2. DONE ALGORITHM
We now explain the different steps of the DONE algorithm. The DONE algorithm is used
to iteratively find a minimum of a function f ∈ L2 on a compact set X ⊆Rd by updating
a RFE g (x) = ∑D

k=1 ck cos(ωT
k x+bk ) at each new measurement, and using this RFE as a

surrogate of f for optimization. It is assumed that the function f is unknown and only
measurements perturbed by noise can be obtained: yn = f (xn)+ηn . The algorithm con-
sists of four steps that are repeated for each new measurement: 1) take a new measure-
ment, 2) update the RFE, 3) find a minimum of the RFE, 4) choose a new measurement
point. We now explain each step in more detail.

Initialization
Before running the algorithm, an initial starting point x1 ∈X and the number of ba-

sis functions D have to be chosen. The parameters ωk and bk of the RFE expansion are
drawn from continuous probability distributions as defined in Definition 1. The p.d.f.
pΩ and the regularization parameter λ have to be chosen a priori as well. Practical ways
for choosing the hyper-parameters will be discussed later in Sect. 3.4. These hyper-
parameters stay fixed over the whole duration of the algorithm. Let P1/2

0 = λ−1/2ID×D ,
and n = 1.

Step 1: New measurement
Unlike in Section 3.2.2, it is assumed that measurements are taken in a recursive fash-

ion. At the start of iteration n, a new measurement yn = f (xn)+ηn is taken at the point
xn .

Step 2: Update the RFE
As explained in Section 3.3.1, we update the RFE model g (x) =∑D

k=1 ck cos(ωT
k x+bk )

based on the new measurement from Step 1 by using the inverse QR algorithm given
in (3.24)-(3.27). Only the weights ck are updated. The parameters ωk and bk stay fixed
through-out the whole algorithm.

Step 3: Optimization on the RFE
After updating the RFE, an iterative optimization algorithm is used to find a (possibly

local) minimum x̂n of the RFE. All derivatives of the RFE can easily be calculated. Using
an analytic expression of the Jacobian will increase the performance of the optimization
method used in this step, while not requiring extra measurements of f as in the finite
difference method. For functions that are costly to evaluate, this is a big advantage. The
method used in the proposed algorithm is an L-BFGS method [46, 47]. Other optimiza-
tion methods can also be used. The initial guess for the optimization is the projection of
the current measurement point plus a random perturbation:

xinit = PX (xn +ζn), (3.29)

where PX is the projection onto X . The random perturbation prevents the optimization
algorithm from starting exactly in the point where the model was trained. Increasing its
value will increase the exploration capabilities of the DONE algorithm but might slow
down convergence. In the proposed algorithm, ζn is chosen to be white Gaussian noise.
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Step 4: Choose a new measurement point
The minimum found in the previous step is used to update the RFE again. A pertur-

bation is added to the current minimum to avoid the algorithm getting trapped unnec-
essarily in insignificant local minima or saddle points [48]:

xn+1 = PX (x̂n +ξn). (3.30)

The random perturbations can be seen as an exploration strategy and are again cho-
sen to be white Gaussian noise. Increasing their variance σξ increases the exploration
capabilities of the DONE algorithm but might slow down convergence. In practice, we
typically use the same distribution for ξ and ζ. Finally, the algorithm increases n and
returns to Step 1.

The full algorithm is shown below in Algorithm 1 for the case X = [lb,ub]d .

Algorithm 1 DONE Algorithm

1: procedure DONE( f ,x1, N , lb,ub,D,λ,σζ,σξ)
2: Draw ω1 . . .ωD from pΩ independently.
3: Draw b1 . . .bD from Uniform(0,2π) independently.
4: P1/2

0 =λ−1/2ID×D

5: c0 = [0 . . .0]T

6: x̂0 = x1

7: for n = 1,2,3, . . . , N do
8: an = [cos(ωT

1 xn +b1) · · ·cos(ωT
D xn +bD )]

9: yn = f (xn)+ηn

10: g (x) = updateRFE(cn−1,P1/2
n−1,an , yn)

11: Draw ζn from N (0,σ2
ζ

Id×d ).
12: xinit = max(min(xn +ζn ,ub), lb)
13: [x̂n , ĝn] = L-BFGS(g (x),xinit, lb,ub)
14: Draw ξn from N (0,σ2

ξ
Id×d ).

15: xn+1 = max(min(x̂n +ξn ,ub), lb)

16: return x̂n

Algorithm 2 updateRFE

1: procedure UPDATERFE(cn−1,P1/2
n−1,an , yn)

2: Retrieve gnγ
−1/2
n , γ−1/2

n and P1/2
n from (3.28)

3: cn = cn−1 +gn(yn −an cn−1)
4: g (x) = [cos(ωT

1 x+b1) · · ·cos(ωT
D x+bD )]cn

5: return g (x)

3.4. CHOICE OF HYPER-PARAMETERS
In this section, we will analyze the influence of the hyper-parameters of the DONE algo-
rithm and, based on these results, provide practical ways of choosing them. The perfor-
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mance of DONE depends on the following hyper-parameters:

• number of basis functions D ,

• p.d.f. pΩ,

• regularization parameter λ,

• exploration parameters σζ and σξ.

The influence of D is straight-forward: increasing D will lead to a better performance
(a better RFE fit) of the DONE algorithm at the cost of more computation time. Hence,
D should be chosen high enough to get a good approximation, but not too high to avoid
unnecessarily high computation times. It should be noted that D does not need to be
very precise. Over-fitting should not be a concern for this parameter since we make use
of regularization. The exploration parameters determine the trade-off between explo-
ration and exploitation, similar to the use of the acquisition function in Bayesian opti-
mization [16, 17]. The parameter σζ influences the exploration of the RFE surrogate in
Step 3 of the DONE algorithm, while σξ determines exploration of the original function.
Assuming both to be close to each other, σζ and σξ are usually chosen to be equal. If in-
formation about local optima of the RFE surrogate or of the original function is available,
this could be used to determine good values for these hyper-parameters. Alternatively,
similar to Bayesian optimization the expected improvement could be used for that pur-
pose, but this remains for future work. The focus of this section will be on choosing pΩ
and λ.

3.4.1. PROBABILITY DISTRIBUTION OF FREQUENCIES
Recall the parameters ωk and bk from Definition 1, which are obtained by sampling in-
dependently from the continuous probability distributions pΩ and pb = Uniform(0,2π),
respectively. In the following, we will investigate the first and second order moments of
the RFE and try to find a distribution pΩ that minimizes the variance of the RFE.

Unfortunately, as shown in Theorem 12 in Appendix 3.8, it turns out that the optimal
p.d.f. is

p∗
Ω(ω) =

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2∫
Rd | f̂ (ω̃)|

√
cos(2∠ f̂ (ω̃)+2ω̃T x)+2dω̃

. (3.31)

This distribution depends on the input x and both the phase and magnitude of the
Fourier transform of f . But if both | f̂ | and ∠ f̂ were known, then the function f itself
would be known, and standard optimization algorithms could be used directly. Further-
more, we would like to use a p.d.f. for ωk that does not depend on the input x, since the
ωk parameters are chosen independently from the input in the initialization step of the
algorithm.

In calibration problems, the objective function f suffers from an unknown offset,
f (x) = f̃ (x +∆). This unknown offset does not change the magnitude in the Fourier
domain, but it does change the phase. Since the phase is thus unknown, we choose a
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uniform distribution for pb such that bk ∈ [0,2π]. However, the magnitude | f̂ | can be
measured in this case. Section 3.5.2 describes an example of such a problem. We will
now derive a way to choose pΩ for calibration problems.

In order to get a close to optimal p.d.f. for ωk that is independent of the input x
and of the phase ∠ f̂ of the Fourier transform of f , we look at a complex generalization
of the RFE. In this complex problem, it turns out we can circumvent the disadvantages
mentioned above by using a p.d.f. that depends only on | f̂ |.

Theorem 10. Let G̃(x) = ∑D
k=1 C̃k e iΩT

k x+bk , with Ωk being i.i.d. random vectors with a

continuous p.d.f. p̃Ω over Rd that satisfies p̃Ωk (ω) > 0 if | f̂ (ω)| > 0, and bk being random
variables with uniform distribution from [0,2π]. Then G̃(x) is an unbiased estimator of
f (x) for all x ∈Rd if

C̃k = f̂ (Ωk )e−i bk

D(2π)d p̃Ω(Ωk )
. (3.32)

For this choice of C̃k , the variance of G̃(x) is minimal if

p̃Ω(ω) = | f̂ (ω)|∫
Rd | f̂ (ω̃)|dω̃ , (3.33)

giving a variance of

Var[G̃(x)] = 1

D(2π)2d

(∫
Rd

| f̂ (ω)|dω
)2

− f (x)2.

(3.34)

Proof. The unbiasedness follows directly from the Fourier inversion theorem,

E
[
G̃(x)

]= D∑
k=1

∫
Rd

∫ 2π

0

f̂ (ωk )e−i bk e iωT
k x+bk

D(2π)d p̃Ω(ωk )2π
dbk p̃Ω(ωk )dωk

= D
∫
Rd

∫ 2π

0

f̂ (ω)e−i b

D(2π)d p̃Ω(ω)
e iωT x+b 1

2π
dbp̃Ω(ω)dω

= D
∫
Rd

f̂ (ω)

D(2π)d p̃Ω(ω)
e iωT xp̃Ω(ω)

∫ 2π

0

1

2π
dbdω

= 1

(2π)d

∫
Rd

f̂ (ω)e iωT xdω

= f (x). (3.35)

The proof of minimum variance is similar to the proof of [49, Thm. 4.3.1].

Note that the coefficients C̃k can be complex in this case. Next, we show that the
optimal p.d.f. for a complex RFE, p̃Ω, is still close-to-optimal (in terms of the second
moment) when used in the real RFE from Definition 1.
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Theorem 11. Let p̃Ω be as in (3.33) and let G with weights Ck be as in Theorem 8. Let
P be the set of probability distribution functions forΩk that are positive when | f̂ (ω)| > 0.
Then, we have

Ep̃Ω,pb [G(x)2] ≤p
3 min

pΩ∈P
EpΩ,pb [G(x)2]. (3.36)

The proof is given in Appendix 3.8. We now discuss how to choose pΩ in practice.
If no information of | f̂ | is available, the standard approach of choosing pΩ as a zero-

mean normal distribution can be used. The varianceσ2 is an important hyper-parameter
in this case, and any method of hyper-parameter tuning can be used to find it. However,
most hyper-parameter optimization methods are computationally expensive because
they require running the whole algorithm multiple times. In the case that | f̂ | is not ex-
actly known, but some information about it is available (because it can be estimated
or measured for example), this can be circumvented. The variance σ2 can simply be
chosen in such a way that pΩ most resembles the estimate for | f̂ |, using standard opti-
mization techniques or by doing this by hand. In this approach, it is not necessary to run
the algorithm at all, which is a big advantage compared to most hyper-parameter tuning
methods. All of this leads to a rule of thumb for choosing pΩ as given in Algorithm 3.

Algorithm 3 Rule of thumb for choosing pω

1: if | f̂ | is known exactly then
2: Set pΩ = | f̂ |/∫ | f̂ (ω)|dω.
3: else
4: Measure or estimate | f̂ |.
5: Determine σ2 for which the pdf of N (0,σ2Id×d ) is close in shape to

| f̂ |/∫ | f̂ (ω)|dω.
6: Set pΩ =N (0,σ2Id×d ).

3.4.2. UPPER BOUND ON THE REGULARIZATION PARAMETER
The regularization parameter λ in the performance criterion (3.17) is used to prevent
under- or over-fitting of the RFE under noisy conditions or when dealing with few mea-
surements. Theorem 9 guarantees the convergence of the least squares solution only if
the regularization parameter satisfies λ ≤ NΛ, where N is the total number of samples
andΛ is defined in (3.21). Here we will provide a method to estimateΛ.

During the proof of Theorem 9, it was shown that the upper boundΛ corresponds to
the λ that satisfies∣∣∣∣∣∣(AT

N AN +Nλ ID×D
)−1

AT
N yN

∣∣∣∣∣∣2

2
=

D∑
k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pb(bk )

)2

= M 2. (3.37)

The left-hand side in this equation is easily evaluated for different values of λ. Thus, in
order to estimateΛ, all we need is an approximation of the unknown right hand M 2.

Like in Section 3.4.1, it is assumed that no information about∠ f̂ is available, but that
| f̂ | can be measured or estimated. Under the assumptions that D is large and that pΩ
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is a good approximation of p̃Ω = | f̂ (ω)|/∫
Rd | f̂ (ω)|dω as in Algorithm 3, we obtain the

following approximation of M :

M = 2

(2π)d

√√√√ 1

D2

D∑
k=1

(
| f̂ (ωk )|
pΩ(ωk )

cos(∠ f̂ (ωk )−bk )

)2

≈ 2

(2π)d

√√√√ 1

D
E

[(
| f̂ (Ω1)|
pΩ(Ω1)

cos(∠ f̂ (Ω1)−b1)

)2]

= 2

(2π)d

√
1

2πD

∫
Rd

∫ 2π

0

| f̂ (ω)|2
pΩ(ω)

cos2(∠ f̂ (ω)−b)dbdω

=
p

2

(2π)d
p

D

√∫
Rd

| f̂ (ω)|2
pΩ(ω)

dω

≈
p

2

(2π)d
p

D

√∫
Rd

| f̂ (ω)|2
p̃Ω(ω)

dω

=
p

2

(2π)d
p

D

∫
| f̂ (ω)|dω= Ma . (3.38)

The squared cosine was removed as in Eq. (3.12). Using the exact value or an estimate of∫
Rd | f̂ (ω)|dω as in Algorithm 3 to determine Ma , we calculate the left-hand in (3.37) for

multiple values of Λ and take the value for which it is closest to M 2
a . The procedure is

summarized in Algorithm 4.

Algorithm 4 Rule of thumb for finding an estimate ofΛ

1: Run Algorithm 3 to get
∫
Rd | f̂ (ω)|dω.

2: Take N measurements to get AN and yN .
3: Determine Λ for which the left-hand side of (3.37) is close to M 2

a =
2

(2π)2d D

(∫ | f̂ (ω)|dω)2
.

3.5. NUMERICAL EXAMPLES
In this section, we compare the DONE algorithm to the Bayesian optimization library
BayesOpt [14] in several numerical examples.

3.5.1. ANALYTIC BENCHMARK PROBLEM: CAMELBACK FUNCTION
The camelback function

f (x) =
(

4−2.1x2
1 +

x4
1

3

)
x2

1 +x1x2 +
(−4+4x2

2

)
x2

2 , (3.39)

where x = [x1, x2] ∈ [−2,2]× [−1,1], is a standard test function with two global minima
and two local minima. The locations of the global minima are approximately (0.0898,−0.7126)
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and (−0.0898,0.7126) with an approximate function value of −1.0316. We determined
the hyper-parameters for DONE on this test function as follows. First, we computed the

Fourier transform of the function. We then fitted a function h(ω) = C
σ
p

2π
e−

ω2

2σ2 to the

magnitude of the Fourier transform in both directions. This was done by trial and error,
giving a value of σ = 10. To validate, two RFEs were fit to the original function using a
normal distribution with standard deviationσ= 10 (good fit) andσ= 0.1 (bad fit) forωk ,
using the least squares approach from Section 3.2.2. Here, we used N = 1000 measure-
ments sampled uniformly from the input domain, the number of basis functions D was
set to 500, and a regularization parameter of λ = 10−10 was used. The small value for λ
still works well in practice because the function f does not contain noise.

Let g (x) denote the value of the trained RFE at point x. We investigated the root mean
squared error (RMSE)

RMSE =
√√√√ 1

N

N∑
n=1

( f (xn)− g (xn))2, (3.40)

for the two stated values of σ. The good fit gave a RMSE of 5.5348 ·10−6, while the bad fit
gave a RMSE of 0.2321, which shows the big impact of this hyper-parameter on the least
squares fit.

We also looked at the difference between using the real RFE from Definition 1 and
the complex RFE from Theorem 10, for σ= 10, and for different values of D (D ∈ {10, 20,
40, 80, 160, 320, 640, 1280}). Fig. 3.1 shows the mean and standard deviation of the RMSE
over 100 runs. We see that the real RFE indeed performs similar to the complex RFE as
predicted by Theorem 13 in Appendix 3.8.

Using the hyper-parameters σ = 10 and λ = 10−10, we also performed 10 runs of
the DONE algorithm and compared it to reproduced results from [14, Table 1] (method
“BayesOpt1”). The number of basis functions D was set to 500, one of the smallest val-
ues with a RMSE of below 10−5 according to Fig. 3.1, and the initial guess was chosen
randomly. The exploration parameters σζ and σξ were set to 0.01. The resulting dis-
tance to the true minimum and the computation time in seconds (with their standard
deviations) for 50 and 100 measurements can be found in Table 3.1. As in [14], the com-
putation time for BayesOpt was only shown for 100 samples and the accuracy below 10−5

was not shown. It can be seen that the DONE algorithm is several orders of magnitude
more accurate and about 5 times faster when compared to BayesOpt for this problem.

3.5.2. OPTICAL COHERENCE TOMOGRAPHY
Optical coherence tomography (OCT) is a low-coherence interferometry imaging tech-
nique used for making three-dimensional images of a sample. The quality and resolu-
tion of images is reduced by optical wavefront aberrations caused by the medium, e.g.,
the human cornea when imaging the retina. These aberrations can be removed by using
active components such as deformable mirrors in combination with optimization algo-
rithms [20, 23]. The arguments of the optimization can be the voltages of the deformable
mirror or a mapping of these voltages to other coefficients such as the coefficients of
Zernike polynomials. The intensity of the image at a certain depth is then maximized to
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Figure 3.1: Mean and standard deviation of the root mean square error for a real and a complex
RFE over 100 runs.

Table 3.1: DONE vs BayesOpt on the Camelback function

Dist. to min. (50 samp.) Time (50 samp.)

DONE 2.1812 ·10−9 (8.3882 ·10−9) 0.0493 (0.0015)

BayesOpt 0.0021 (0.0044) -

Dist. to min. (100 samp.) Time (100 samp.)

DONE 1.1980 ·10−9 (5.2133 ·10−9) 0.0683 (0.0019)

BayesOpt < 1 ·10−5 (< 1 ·10−5) 0.3049 (0.0563)
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remove as much of the aberrations as possible. In [20] it was shown experimentally that
the DONE algorithm greatly outperforms other derivative-free algorithms in final root
mean square (RMS) wavefront error and image quality. Here, we numerically compare
the DONE algorithm to BayesOpt [14]. The numerical results are obtained by simulat-
ing the OCT transfer function as described in [50, 51] and maximizing the OCT signal.
The input dimension for this example is three. Three Zernike aberrations are consid-
ered, namely the defocus and two astigmatisms. These are generally the largest optical
wavefront aberrations in the human eye. The noise of a real OCT signal is approximated
by adding Gaussian white noise with a standard deviation of 0.01. The results are shown
in Fig. 3.2. For the DONE algorithm the same parameters are used as described in [20],
only λ is chosen to be equal to 3. The number of cosines D = 1000 is chosen as large as
possible such that the computation time still remains around 1 ms. This is sufficiently
fast to keep up with modern OCT B-scan acquisition and processing rates. The DONE
algorithm is compared to BayesOpt with the default parameters and to BayesOpt with
only one instead of 10 prior measurements, the latter is referred to as BayesOpt-1 init.
Other values for the parameters of BayesOpt, obtained with trial and error, did not result
in a significant performance increase. To use the BayesOpt algorithm, the inputs had to
be normalized between 0 and 1. For each input aberration, the region -0.45 µm to 0.45
µm was scaled to the region 0 to 1. The results for BayesOpt and DONE are very similar.
The mean error of the DONE algorithm is slightly lower than the BayesOpt algorithm.
However, the total average computation time for the DONE algorithm was 93 ms, while
the total average computation time of Bayesopt was 1019 ms.

3.5.3. TUNING OF AN OPTICAL BEAM-FORMING NETWORK

In wireless communication systems, optical beam-forming networks (OBFNs) can be
used to steer the reception or transmission angle of a phased array antenna [24] in the
desired direction. In the case of reception, the signals that arrive at the different an-
tenna elements of the phased array are combined in such a way that positive interfer-
ence of the signals occurs only in a specific direction. A device based on optical ring
resonators [25] (ORRs) that can perform this signal processing technique in the optical
domain was proposed in [26]. This OBFN can provide accurate control of the reception
angle in broadband wireless receivers.

To achieve a maximal signal-to-noise ratio (SNR), the actuators in the OBFN need
to be adapted according to the desired group delay of each OBFN path, which can be
calculated from the desired reception angle. Each ORR is controlled by two heaters that
influence its group delay, however the relation between heater voltage and group delay
is nonlinear. Even if the desired group delay is available, controlling the OBFN comes
down to solving a nonlinear optimization problem. Furthermore, the physical model
of the OBFN can become quite complex if many ORRs are used, and the models are
prone to model inaccuracies. Therefore, a black-box approach like in the DONE algo-
rithm could help in the tuning of the OBFN. Preliminary results using RFEs in an offline
fashion on this application can be found in [29]. Here, we demonstrate the advantage
of online processing in terms of performance by using DONE instead of the offline algo-
rithm in [29].

An OBFN simulation based on the same physical models as in [29] will be used in
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Figure 3.2: (a) The RMS wavefront error of DONE and BayesOpt averaged over 100 simulations
versus the number of iterations. (b) A boxplot of 100 final RMS wavefront errors after 100 iterations
for DONE and BayesOpt.On each box, the central line is the median, the edges of the box are the
25th and 75th percentiles, and the whiskers extend to the most extreme data points not considered
outliers. Outliers are plotted individually.
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this section, with the following differences: 1) the implementation is done in C++; 2)
ORR properties are equal for each ORR; 3) heater voltages with offset and crosstalk [28,
Appendix B] have been implemented; 4) a small region outside the bandwidth of interest
has a desired group delay of 0; 5) an 8×1 OBFN with 12 ORRs is considered; 6) the stan-
dard deviation of the measurement noise was set to 7.5·10−3. The input of the simulation
is the normalized heater voltage for each ORR, and the output is the corresponding mean
square error of the difference between OBFN path group delays and desired delays. The
simulation contains 24 heaters (two for each ORR, namely one for the phase shift and
one for the coupling constant), making the problem 24-dimensional. Each heater influ-
ences the delay properties of the corresponding ORR, and together they influence the
OBFN path group delays.

The DONE algorithm was used on this simulation to find the optimal heater voltages.
The number of basis functions was D = 6000, which was the lowest number that gave an
adequate performance. The p.d.f. pΩ was a normal distribution with variance 0.5. The
regularization parameter was λ = 0.1. The exploration parameters were σζ = σξ = 0.01.
In total, 3000 measurements were taken.

Just like in the previous application, the DONE algorithm was compared to the Bayesian
optimization library BayesOpt [14]. The same simulation was used in both algorithms,
and BayesOpt also had 3000 function evaluations available. The other parameters for
BayesOpt were set to their default values, except for the noise parameter which was set
to 0.1 after calculating the influence of the measurement noise on the objective function.
Also, in-between hyper-parameter optimization was turned off after noticing it did not
influence the results while being very time-consuming.

The results for both algorithms are shown in Fig. 3.3. The found optimum at each it-
eration is shown for the two algorithms. For DONE, the mean of 10 runs is shown, while
for BayesOpt only one run is shown because of the much longer computation time. The
dotted line represents an offline approach: it is the average of 10 runs of a similar pro-
cedure as in [29], where a RFE with the same hyper-parameters as in DONE was fitted
to 3000 random measurements and then optimized. The figure clearly shows the advan-
tage of the online approach: because measurements are only taken in regions where the
objective function is low, the RFE model can become very accurate in this region. The
figure also shows that DONE outperforms BayesOpt for this application in terms of ac-
curacy. On top of that, the total computation time shows a big improvement: one run
of the DONE algorithm took less than 2 minutes, while one run of BayesOpt took 5800
minutes.

The big difference in computation time for the OBFN application can be explained
by looking at the total number of measurements N . Even though the input dimension
is high compared to the other problems, N is the main parameter that causes BayesOpt
to slow down for a large number of measurements. This is because the models used in
Bayesian optimization typically depend on the kernel matrix of all samples, which will
increase in size each iteration. The runtime for one iteration of the DONE algorithm is,
in contrast, independent of the number of previous measurements.
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Figure 3.3: The mean square error of DONE and BayesOpt applied to the OBFN application, plot-
ted versus the number of iterations. For DONE, the values are averaged over 10 runs. For BayesOpt
only 1 run is shown. The dotted line is the result of fitting a RFE using 3000 random measurements
and optimizing that RFE, averaged over 10 runs.

3.5.4. ROBOT ARM MOVEMENT
The previous two examples have illustrated how the DONE algorithm outperforms BayesOpt
in terms of speed (both OCT and OFBN) and how its online processing scheme reduces
the number of required measurements compared to offline processing (OFBN), respec-
tively. The dimensions in both problems were three and 27, respectively, which is still
relatively modest. To illustrate that DONE also works in higher dimensions, we will now
consider a toy example from robotics. The following model of a three-link-planar robot,
which has been adapted from [30], is considered:

ai (k) = ui (k)+ sin

(
π/180

i∑
j=1

α j (k −1)

)
·9.8 ·0.05, (3.41)

vi (k) = vi (k −1)+ai (k), (3.42)

αi (k) =αi (k −1)+ vi (k), (3.43)

x(k) =
3∑

j=1
l j cos

(
π/2+π/180

i∑
j=1

α j (k)

)
, (3.44)

y(k) =
3∑

j=1
l j sin

(
π/2+π/180

i∑
j=1

α j (k)

)
. (3.45)

Here,αi (k) represents the angle in degrees of link i at time step k, vi (k) and ai (k) are the
first and second derivative of the angles, ui (k) ∈ [−1,1] is the control input, x(k) and y(k)
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denote the position of the tip of the arm, and l1 = l2 = 8.625 and l3 = 6.125 are the lengths
of the links. The variables are initialized as ai (0) = vi (0) =αi (0) = 0 for i = 1,2,3. We use
the DONE algorithm to design a sequence of control inputs ui (1), . . . ,ui (50) such that
the distance between the tip of the arm and a fixed target at location (6.96,12.66) at the
50-th time step is minimized. The input for the DONE algorithm is thus a vector contain-
ing ui (k) for i = 1,2,3 and k = 1, . . . ,50. This makes the problem 150-dimensional. The
output is the distance between the tip and the target at the 50-th time step. The initial
guess for the algorithm was set to a random control sequence with a uniform distribu-
tion over the set [−1,1] for each robot arm i . We would like to stress that this example has
been chosen for its high-dimensional input. We do not consider this approach a serious
contender for specialized control methods in robotics.

The hyper-parameters for the DONE algorithm were chosen as follows. The num-
ber of basis functions was D = 3000, which was the lowest number that gave consistent
results. The regularization parameter was λ = 10−3. The p.d.f. pΩ was set to a normal
distribution with variance one. The exploration parameters were set toσζ =σξ = 5·10−5.
The number of measurements N was set to 10000.

No comparison with other algorithms has been made for this application. The com-
putation time of the Bayesian optimization algorithm scales with the number of mea-
surements and would be too long with 10000 measurements, as can be seen in Table 3.2.
Algorithms like reinforcement learning use other principles, hence no comparison is
given. Our main purpose with this application is to demonstrate the applicability of the
DONE algorithm to high-dimensional problems. Figure 3.4 shows the distance to the tar-
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Figure 3.4: The mean distance to target for the robot arm at time step 50, after minimizing this
distance with DONE, plotted versus the number of iterations, averaged over 10 runs.

get at time step 50 for different iterations of the DONE algorithm, averaged over 10 runs
with different initial guesses. The control sequences converge to a sequence for which
the robot arm goes to the target, i.e., DONE has successfully been applied to a problem
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with a high input dimension. The number of basis functions required did not increase
when compared to the other applications in this paper, although more measurements
were required. The computation time for this example and the other examples is shown
in Table 3.2.

Table 3.2: Computation Time: DONE vs BayesOpt

Problem Method Input dim. N D Time (s)

Camelback
DONE 2 100 50 0.0683

BayesOpt 2 100 - 0.3049

OCT
DONE 3 100 1000 0.093

BayesOpt 3 100 - 1.019

OBFN
DONE 24 3000 6000 99.7

BayesOpt 24 3000 - 3.48 ·105

Robot arm DONE 150 10000 3000 99.1

3.6. CONCLUSIONS

We have analyzed an online optimization algorithm called DONE that is used to find
the minimum of a function using measurements that are costly and corrupted by noise.
DONE maintains a surrogate model in the form of a random Fourier expansion (RFE),
which is updated whenever a new measurement is available, and minimizes this surro-
gate with standard derivative-based methods. This allows to measure only in regions of
interest, reducing the overall number of measurements required. The DONE algorithm
is comparable to Bayesian optimization algorithms, but it has the distinctive advantage
that the computational complexity of one iteration does not grow with the number of
measurements that have already been taken.

As a theoretical result, we have shown that a RFE that is trained with linear least
squares can approximate square integrable functions arbitrarily well, with high prob-
ability. An upper bound on the regularization parameter used in this training proce-
dure was given, as well as an optimal and a more practical probability distribution for
the parameters that are chosen randomly. We applied the DONE algorithm to an ana-
lytic benchmark problem and to three applications: optical coherence tomography, op-
tical beam-forming network tuning, and a robot arm. We compared the algorithm to
BayesOpt, a Bayesian optimization library. The DONE algorithm gave accurate results
on these applications while being faster than the Bayesian optimization algorithm, due
to the fixed computational complexity per iteration.
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3.7. APPENDIX: PROOF OF CONVERGENCE OF THE LEAST SQUARES

SOLUTION
In this section, we show that using the least squares solution in the RFE gives a function
that approximates the true unknown function f . To prove this, we make use of the results
in [43] and of [52, Thm. 2] and [53, Key Thm.].

Proof of Theorem 9. Let the constant m > 0 be given by

m =
∣∣∣∣∣∣∣∣( 1

N
AT

N AN + λ

N
ID×D

)−1 1

N
AT

N yN

∣∣∣∣∣∣∣∣
2

, (3.46)

and define the set Cm = {c ∈ RD : ||c||2 ≤ m}. Note that Cm is a compact set. The least
squares weight vector

cN = (
AT

N AN +λID×D
)−1

AT
N yN

=
(

1

N
AT

N AN + λ

N
ID×D

)−1 1

N
AT

N yN , (3.47)

is also the solution to the constrained, but unregularized least squares problem (see [54,
Sec. 12.1.3])

cN = argmin
c∈Cm

1

N
||yN −AN c||22. (3.48)

Now, note that a decrease in λ leads to an increase in m. Since λ/N ≤Λ by assumption
and the upper boundΛ in Theorem 9 satisfies∣∣∣∣∣∣∣∣( 1

N
AT

N AN +Λ ID×D

)−1 1

N
AT

N yN

∣∣∣∣∣∣∣∣
2
= M , (3.49)

M =
√√√√ D∑

k=1

(
c̄(ωk ,bk )

(2π)d DpΩ(ωk )pb(bk )

)2

, (3.50)

we have that m ≥ M . We will need this lower bound on m to make use of the results
in [43] later on in this proof.

Recall from Section 3.2.2 that the vector yN depends on the function evaluations and
on measurement noise η that is assumed to be zero-mean and of finite variance σ2

H . We
first consider the noiseless case, i.e. yn = f (xn). For x ∈X , c ∈RD , let

E(x,c) = f (x)−
D∑

k=1
ck cos(ωT

k x+bk ). (3.51)

Using the Cauchy-Schwarz inequality, we have the following bound for all x ∈X , c ∈Cm :

E(x,c)2 = f (x)2 +
(

D∑
k=1

ck cos(ωT
k x+bk )

)2
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−2 f (x)
D∑

k=1
ck cos(ωT

k x+bk )

≤ f (x)2 +
(

D∑
k=1

ck cos(ωT
k x+bk )

)2

+2
∣∣ f (x)

∣∣ ∣∣∣∣∣ D∑
k=1

ck cos(ωT
k x+bk )

∣∣∣∣∣
≤ f (x)2 +

D∑
k=1

|ck |2 +2
∣∣ f (x)

∣∣√√√√ D∑
k=1

|ck |2

≤ f (x)2 +m2 +2 f (x)m

≤ (|| f ||∞+m
)2 . (3.52)

Note that E(x,c) is continuous in c and measurable in x. Let now Xn denote i.i.d. random
vectors with distribution pX. Using Theorem [52, Thm. 2] we get, with probability one,

lim
N→∞

sup
c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣= 0. (3.53)

Since almost sure convergence implies convergence in probability [55, Ch. 2], we also
have:

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣> ε)= 0 ∀ε> 0. (3.54)

We will need this result when considering the case with noise. For the case with noise,
i.e. yn = f (xn)+ηn , let

Ẽ(x,η,c)2 =
(

f (x)+η−
D∑

k=1
ck cos(ωT

k x+bk )

)2

= E(x,c)2 +2ηE(x,c)+η2. (3.55)

Using the properties of the noise η with p.d.f. pH , this gives the following mean square
error: ∫

R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

=
∫
X

E(x,c)2pX(x)

(∫
R

pH (η)dη

)
dx

+2
∫
X

E(x,c)

(∫
R
ηpH (η)dη

)
pX(x)dx

+
∫
X

pX(x)

(∫
R
η2pH (η)dη

)
dx

=
∫
X

E(x,c)2pX(x)dx+
∫
X

E(x,c)E[Hn]︸ ︷︷ ︸
=0

pX(x)dx+E[H 2
n]
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=
∫
X

E(x,c)2pX(x)dx+σ2
H . (3.56)

Here, Hn is a random variable with distribution pH . For any choice of ε0,ε1,ε2,ε3 > 0
such that ε1 +ε2 +ε3 = ε0, we have, following a similar proof as in [56, Thm. 3.3(a)]:

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

Ẽ(Xn , Hn ,c)2 −
∫
X

∫
R

Ẽ(x,η,c)2pX(x)pH (η)dxdη

∣∣∣∣∣> ε0

)

= P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 + 2

N

N∑
n=1

HnE(Xn ,c)

+ 1

N

N∑
n=1

H 2
n −

∫
X

E(x,c)2pX(x)dx−σ2
H

∣∣∣∣∣> ε0

)

≤ P

(
sup

c∈Cm

{∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣
+

∣∣∣∣∣ 2

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣+
∣∣∣∣∣ 1

N

N∑
n=1

H 2
n −σ2

H

∣∣∣∣∣
}
> ε0

)

≤ P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣
+ sup

c∈Cm

∣∣∣∣∣ 2

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣+
∣∣∣∣∣ 1

N

N∑
n=1

H 2
n −σ2

H

∣∣∣∣∣> ε0

)

≤ P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣> ε1

or sup
c∈Cm

∣∣∣∣∣ 2

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣> ε2

or

∣∣∣∣∣ 1

N

N∑
n=1

H 2
n −σ2

H

∣∣∣∣∣> ε3

)

≤ P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

E(Xn ,c)2 −
∫
X

E(x,c)2pX(x)dx

∣∣∣∣∣> ε1

)

+P

(
sup

c∈Cm

∣∣∣∣∣ 2

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣> ε2

)

+P

(∣∣∣∣∣ 1

N

N∑
n=1

H 2
n −σ2

H

∣∣∣∣∣> ε3

)
.

Of these last three probabilities, the first one is proven to converge to zero in (3.54), while
the last one converges to zero by the weak law of large numbers. For the second probabil-
ity, we can make use of Theorem [52, Thm. 2] again, noting that ηnE(xn ,c) is continuous
in c. We use (3.52) to get ∣∣ηE(x,c)

∣∣≤ |η|(|| f ||∞+m
) ∀x,η,c. (3.57)
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Again, since uniform convergence implies convergence in probability, and since E[HnE(Xn ,c)] =
E[Hn]E[E(Xn ,c)] = 0 for all n, using Theorem [52, Thm. 2] gives the desired convergence
in probability

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

HnE(Xn ,c)

∣∣∣∣∣> ε2

)
= 0 ∀ε2. (3.58)

Together with the other two convergences and (3.57) we get:

lim
N→∞

P

(
sup

c∈Cm

∣∣∣∣∣ 1

N

N∑
n=1

Ẽ(Xn , Hn ,c)2

−
∫
R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

∣∣∣∣> ε)= 0. (3.59)

The following bound follows from (3.52) and (3.56):

0 ≤
∫
R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη

≤ (|| f ||∞+m
)2 +σ2

H . (3.60)

In light of this bound, [53, Key Thm.] now implies that the mean square error between
the output of the RFE with least squares weight vector and the noisy measurements is
approaching its ideal value as the number of samples increases. More precisely, for any
choice of ε4 > 0 and δ1 > 0, there exists an N0 such that, for all N > N0,∣∣∣∣∫

R

∫
X

Ẽ(x,η,CN)2pX(x)pH (η)dxdη

−
∫
R

∫
X

Ẽ(x,η,C0)2pX(x)pH (η)dxdη

∣∣∣∣< ε4 (3.61)

with probability at least 1−δ1. Here, CN denotes the vector cN as a random variable as
it depends on the input and noise samples and on the samplesω1, . . . ,ωD ,b1, . . . ,bD , and
C0 ∈Cm minimizes

∫
R

∫
X Ẽ(x,η,c)pX(x)pH (η)dxdη. Next, it is shown that the same holds

for the mean square error between the least-squares RFE outputs and the unknown,
noise-free function values.

According to [43, Thm 3.2], for anyδ2 > 0, with probability at least 1−δ2 w.r.t.Ω1, . . . ,ΩD

and b1, . . . ,bD , there exists a c ∈Cm with the following bound1:

∫
X

(
f (x)−

D∑
k=1

ck cos(ΩT
k x+bk )

)2

pX(x)dx < γ(δ2)2

D
,

γ(δ2) = sup
ω,b

∣∣∣∣ 1

(2π)d

c̄(ω,b)

pΩ(ω)pb(b)

∣∣∣∣
(√

log
1

δ2
+4r

)
,

1The weights found in the proof of the cited theorem satisfy c ∈Cm if m ≥ M , which was shown in the beginning
of this appendix. Here we also made use of the result from Theorem 6 of this paper to get what is denoted
with α in [43]. We have also used, with the notation of [43], that || f − f̂ ||µ ≤ || f − f̂ ||∞.
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r = sup
x∈X

||x||2
√
σ2d +π2/3, (3.62)

with σ2 denoting the variance of pΩ. For this particular c, (3.55), (3.56) and (3.62) imply
that ∫

R

∫
X

Ẽ(x,η,c)2pX(x)pH (η)dxdη< γ(δ2)2

D
+σ2

H . (3.63)

Since C0 ∈ Cm minimizes the left-hand in the equation above by definition, we also
have that ∫

R

∫
X

Ẽ(x,η,C0)2pX(x)pH (η)dxdη< γ(δ2)2

D
+σ2

H (3.64)

with probability at least 1−δ2. Since the event in (3.64) only depends onΩ1, . . . ,ΩD and
b1, . . . ,bD , while the event in (3.61) only depends on the input and noise samples, we can
combine these two equations as follows. For any choice of ε4 > 0, δ1 > 0 and δ2 > 0, there
exists an N0 such that, for all N > N0,∫

R

∫
X

Ẽ(x,η,CN)2pX(x)pH (η)dxdη< ε4 + γ(δ2)2

D
+σ2

H (3.65)

with probability at least (1−δ1)(1−δ2). Using (3.56) now gives the following result. For
any choice of ε4 > 0, δ1 > 0 and δ2 > 0, there exists an N0 such that, for all N > N0, we
have ∫

X
E(x,CN)2pX(x)dx < ε4 + γ(δ2)2

D
(3.66)

with probability at least (1−δ1)(1−δ2).
Choosing D0,ε4,δ1 and δ2 such that D0 > γ(δ2)2/(ε−ε4) and (1−δ1)(1−δ2) = δ con-

cludes the proof.

3.8. APPENDIX: MINIMUM-VARIANCE PROPERTIES
The following theorem presents the probability density function forΩk that minimizes
the variance of a RFE at a fixed measurement location x.

Theorem 12. Given x, the p.d.f. p∗
Ω that minimizes the variance of the unbiased estimator

G(x) = ∑D
k=1 Ck cos(ΩT

k x+bk ) as defined in Theorem 1, with Ck as defined in Theorem 8,
is equal to

p∗
Ω(ω) =

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2∫
Rd | f̂ (ω̃)|

√
cos(2∠ f̂ (ω̃)+2ω̃T x)+2dω̃

. (3.67)

For this choice of pΩ, the variance is equal to

1

2D(2π)2d

(∫
Rd

| f̂ (ω)|
√

cos(2∠ f̂ (ω)+2ωT x)+2dω

)2

− f (x)2. (3.68)
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Proof. The proof is similar to the proof of [49, Thm. 4.3.1]. Let qΩ be any p.d.f. of Ωk

that satisfies qΩ(ω) > 0 if | f̂ (ω)| > 0. Let VarqΩ,pb be the variance of G(x) under the as-

sumption that pΩ = qΩ, pb = Uniform(0,2π), and Ck = 2
D(2π)d

| f̂ (Ωk )|
qΩ(Ωk ) cos(∠ f̂ (Ωk )−bk ).

According to Theorem 8, this choice for Ck makes sure that G(x) is an unbiased estima-
tor, i.e., f (x) = E[G(x)]. The variance of G(x) can be computed as:

VarqΩ,pb [G(x)]

= VarqΩ,pb

[
D∑

k=1
Ck cos(ΩT

k x+Bk )

]
= D VarqΩ,pb

[
C1 cos(ΩT

1 x+B1)
]

= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
qΩ(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2qΩ(ω)dbdω− f (x)2. (3.69)

For the stated choice of p∗
Ω, using

∫ 2π

0
cos(∠ f̂ (ω)−b)2 cos(ωT x+b)2db

=
∫ 2π

0

1

4
(1+cos(2∠ f̂ (ω)−2b))(1+cos(2ωT x+2b))db

=
∫ 2π

0

1

4
db + 1

4

∫ 2π

0
cos(2∠ f̂ (ω)−2b)db

+ 1

4

∫ 2π

0
cos(2ωT x+2b)db

+ 1

4

∫ 2π

0
cos(2∠ f̂ (ω)−2b)cos(2ωT x+2b)db

=2π

4
+ 1

8

∫ 2π

0
cos(2∠ f̂ (ω)+2ωT x)

+cos(2∠ f̂ (ω)−2ωT x−4b)db

=2π

4
+ 2π

8
cos(2∠ f̂ (ω)+2ωT x)

=π
4

(cos(2∠ f̂ (ω)+2ωT x)+2) (3.70)

we get:

Varp∗
Ω

,pb
[G(x)]+ f (x)2 = Ep∗

Ω
,pb

[G(x)2]

= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
p∗
Ω(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2p∗
Ω(ω)dbdω
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= D

2π

∫
Rd

1

p∗
Ω(ω)

(
2

D(2π)d

)2

| f̂ (ω)|2∫ 2π

0
cos(∠ f̂ (ω)−b)2 cos(ωT x+b)2dbdω

= D

2π

∫
Rd

1

p∗
Ω(ω)

(
2

D(2π)d

)2

| f̂ (ω)|2

π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)dω (3.71)

(3.67)= D

2π

(
2

D(2π)d

)2 (∫
Rd

| f̂ (ω)|
√
π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)dω

)2

= 1

2D(2π)2d

(∫
Rd

| f̂ (ω)|
√

(cos(2∠ f̂ (ω)+2ωT x)+2)dω

)2

(3.72)

This gives the value of the optimal variance. To show that the variance is indeed optimal,
compare it with any arbitrary p.d.f. qΩ using Jensen’s inequality:

Varp∗
Ω

,pb
[G(x)]+ f (x)2

= D

2π

(
2

D(2π)d

)2
(∫
Rd

| f̂ (ω)|
qΩ(ω)

√
π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)qΩ(ω)dω

)2

Jensen≤ D

2π

(
2

D(2π)d

)2 ∫
Rd

| f̂ (ω)|2
qΩ(ω)2

π

4
(cos(2∠ f̂ (ω)+2ωT x)+2)qΩ(ω)dω

(3.70)= D

2π

∫
Rd

∫ 2π

0

(
2

D(2π)d

| f̂ (ω)|
qΩ(ω)

cos(∠ f̂ (ω)−b)

)2

cos(ωT x+b)2qΩ(ω)dbdω

(3.69)= VarqΩ,pb [G(x)]+ f (x)2. (3.73)

This shows that the chosen p.d.f. p∗
Ω gives the minimum variance.

The following theorem compares the second moments in real and complex RFEs for
different probability distributions.

Theorem 13. Let p̃Ω, p∗
Ω, G̃ and G be as in Theorems 10 and 12. Then

1p
3
Ep∗
Ω

,pb
[G(x)2] ≤ Ep̃Ω,pb [G(x)2] ≤p

3 Ep∗
Ω

,pb
[G(x)2], (3.74)

1

2
Ep̃Ω,pb [G̃(x)2] ≤ Ep̃Ω,pb [G(x)2] ≤ 3

2
Ep̃Ω,pb [G̃(x)2]. (3.75)

Proof. From

1 ≤
√

(cos(2∠ f̂ (ω)+2ωT x)+2) ≤p
3, (3.76)

and from (3.67) and (3.33) it follows that

1p
3

p∗
Ω(ω) ≤ p̃Ω(ω) ≤p

3p∗
Ω(ω),
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1p
3

1

p∗
Ω(ω)

≤ 1

p̃Ω(ω)
≤p

3
1

p∗
Ω(ω)

. (3.77)

Combining the above with (3.71) yields:

1p
3
Ep∗
Ω

,pb
[G(x)2]

= 1p
3

1

2D(2π)2d

∫
Rd

1

p∗
Ω(ω)

| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

≤ 1

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

= Ep̃Ω,pb [G(x)2]

≤p
3

1

2D(2π)2d

∫
Rd

1

p∗
Ω(ω)

| f̂ (ω)|2(cos(2∠ f̂ (ω)+2ωT x)+2)dω

=p
3 Ep∗

Ω
,pb

[G(x)]. (3.78)

Combining (3.76) with (3.34) yields:

1

2
Ep̃Ω [G̃(x)2]

= 1

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2dω

≤ 1

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2

(cos(2∠ f̂ (ω)+2ωT x)+2)dω

= Ep̃Ω,pb [G(x)2]

≤ 3

2D(2π)2d

∫
Rd

1

p̃Ω(ω)
| f̂ (ω)|2dω

= 3

2
Ep̃Ω [G̃(x)2]. (3.79)
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4
AUTOMATIC TUNING OF A RING

RESONATOR-BASED PHOTONIC

BEAMFORMER FOR A PHASED

ARRAY TRANSMIT ANTENNA

We present a novel photonic beamformer for a fully integrated transmit phased array an-
tenna, together with an automatic procedure for tuning this system. Such an automatic
tuning procedure is required because the large number of actuators makes manual tun-
ing practically impossible. The antenna system is designed for the purpose of broadband
aircraft-satellite communication in the Ku-band to provide satellite Internet connections
on board the aircraft. The goal of the beamformer is to automatically steer the transmit
antenna electronically in the direction of the satellite. This is done using a mix of phase
shifters and tunable optical delay lines, which are all integrated on a chip and laid out in
a tree structure.

The Ku-band has a bandwidth of 0.5 GHz. We show how an optical delay line is auto-
matically configured over this bandwidth, providing a delay of approximately 0.4 ns. The
tuning algorithm calculates the best actuator voltages based on past measurements. This
is the first time that such an automatic tuning scheme is used on a photonic beamformer
for this type of transmit phased array antenna. We show that the proposed method is able
to provide accurate beamforming (< 11.25◦ phase error over the whole bandwidth) for two
different delay settings.

Parts of this chapter have been published in [1].
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Antenna elements

Figure 4.1: Beamforming for a phased array antenna explained. Each antenna element transmits
the same signal after a certain time delay. This delay can be chosen in such a way that constructive
interference occurs in a certain direction, making it possible to transmit a highly directional signal
with a high gain and a focused beam.

4.1. INTRODUCTION

B EAMFORMERS are used to steer the beam of a phased array antenna by controlling
the phase added to the signal at each antenna element (AE) [2]. This can be done by

providing either a phase shift or a time delay to the signal. When the phase or delay of
the signal corresponding to each AE has been set correctly according to the desired beam
angle, signals are received or transmitted in the desired direction, while other directions
are suppressed. This results in a highly directional antenna system for which the beam
angle can be adapted without any mechanical movement. See Figure 4.1 for the case of
a transmit phased array antenna. A receive antenna uses the same principle, but in this
work we only consider a transmit antenna.

In order to get the same signal to each AE with a certain delay, a beamformer for a
transmit phased array antenna consists of splitters and delay elements. These can be
arranged in a tree structure to reduce the required number of delay elements [3–5]. The
beamformer considered in this work is part of a transmit phased array antenna system
with 1536 AEs. It uses a tree structure with four different splitting stages, as shown on
the top of Figure 4.2. This system is designed to be used for aircraft-satellite communi-
cation in order to satisfy the ever-increasing demand of high-speed Internet on board of
aircrafts. This large number of AEs is required to make sure that the signals have enough
power when they arrive at the satellite [6, 7]. The system establishes an uplink with the
satellite in the Ku-band (14.0 to 14.5 GHz frequency range). This is the range used to
provide satellite Internet connections on board the aircraft. Therefore, the system will
operate under a bandwidth of 0.5 GHz.

The delay that needs to be provided for one path of the tree structure depends on the
distance between the AEs, which has been chosen to be 1.03 cm in this work as explained
later. AEs that are close together correspond to only a small delay difference. This is why
the middle of Figure 4.2 contains different types of beamformers: radio frequency (RF)
beamformers are better suited for very small delay values, while photonic beamformers
(explained in the Results section) are better suited for larger delay values [3]. The bottom
of Figure 4.2 shows a top view of how the AEs are situated on the full antenna system that
consists of 24 transmit tiles. The transmit tiles are 8.24 by 8.24 cm in size and contain
8×8 AEs each, resulting in a 1×1536 transmit scheme with 1536 AEs in total. Both the
photonic and RF beamformers are integrated in the transmit tile, giving rise to a modular
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Figure 4.2: From top to bottom: tree structure of the full beamformer system with 1536 antenna
elements (the highlighted path is explained in the remainder of the figure). Photonic and RF beam-
former systems, where dashed arrows indicate signals in RF domain and solid arrows indicate sig-
nals in the optical domain (the photonic beamformers are shown in more detail in Figure 4.3). Full
antenna system architecture with 24 transmit tiles containing 64 antenna elements each.

system.

The antenna system is an adapted version of an earlier proposed phased array re-
ceiver [7] that is to be used in transmit mode. In order to tune the beamformer actu-
ators of these earlier phased array antenna systems, either a manual tuning procedure
was used [3, 4], which is only possible for a small number of actuators, or a nonlinear
optimization algorithm based on a physical model of the system was used [5, Sec. 6].
However, the approach that uses a nonlinear optimization algorithm is very sensitive to
model errors [8], requires a labor-intensive measurement procedure for certain parts of
the physical model [5, App. B], and can not be used while the system is already running.
In this work we describe the beamformer for the transmit phased array antenna from
Figure 4.2 together with its requirements, and we show how to tune this system with a
different optimization algorithm. This online algorithm is not sensitive to model errors
and can be used while the system is running.

4.2. FULLY INTEGRATED TRANSMIT PHASED ARRAY ANTENNA

4.2.1. BEAMFORMER REQUIREMENTS

In order to determine the requirements of the beamformer, the delay between the AEs
needs to be calculated. This depends on two factors: the angle of the beam, and the dis-
tance between the AEs. For rectangular array grids, the latter should be equal to half the
wavelength corresponding to the highest frequency used in the application [3, Sec. V],
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Figure 4.3: Photonic beamformer design with several highlighted subsystems. Subsystems 1. and
3. belong to the 1×24 photonic beamformer in Figure 4.2, while the other three subsystems belong
to the 1×4 photonic beamformer. Dashed arrows indicate signals in RF domain and solid arrows
indicate signals in the optical domain. The small circles indicate the presence of on-chip optical
ring resonators. Power and phase responses of the signal at several locations on the chip are shown
on the bottom, where the desired phase response is indicated by a dashed line.

which is 14.5 GHz in this case. This leads to a distance of 1.03 cm between two consecu-
tive AEs. As for the beam angle, this is chosen to be no more than 60 degrees compared
to the normal (i.e. a beam sent straight upwards). The maximum delay τmax that needs
to be provided by each beamformer in Figure 4.2 can now be calculated as follows:

τmax = sin(60◦)dmax/c0, (4.1)

where dmax is the maximum distance between the centers of the different elements of the
beamformer and c0 is the speed of light. For the rightmost RF beamformer in Figure 4.2,
dmax =

p
2 ·0.0103 m (distance between the centers of two diagonally intersecting AEs),

for the other RF beamformer dmax =
p

2 ·2 ·0.0103 m, for the 1×4 photonic beamformer
dmax =

p
2·4·0.0103 m, and for the 1×24 photonic beamformer dmax =

p
52 +12·0.0824 m.

This leads to the following maximum delays for each beamformer in Figure 4.2: τmax = 42
ps for the rightmost RF beamformer, τmax = 84 ps for the other RF beamformer, τmax =
168 ps for the 1× 4 photonic beamformer, and τmax = 1.214 ns for the other photonic
beamformer.

After calculating the maximum delays for each beamformer subsystem, the require-
ments for the phase can be calculated. The phase response of each beamformer should
be a linear function of the frequency, with a slope equal to −2πτ, where τ is the required
delay. Traditionally, phase shifters are used for beamformer subsystems, which provide
a phase shift that is a constant function of the frequency. In other words, phase shifters
provide a linear phase response with a slope of 0. For very small delays (e.g. τmax < 100
ps in this case), using such a constant phase response with a slope of 0 instead of −2πτ
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gives a negligible slope mismatch, but for larger delays this mismatch will have a nega-
tive influence on the antenna beam. This problem is called beam squint.

The effects of beam squint are negligible in the two RF beamformer subsystems in
Figure 4.2. Therefore, these beamformers are based on phase shifters that change the
phase of the RF signal. The photonic beamformers, however, need to deal with larger
delays. Therefore, they make use of optical delay lines rather than phase shifters. The
key principle here is that the RF signals are converted to the optical domain, where their
phase is adjusted accordingly, and then they are converted back to RF domain. This
combination of RF and photonic signal processing has many advantages such as low
loss, low weight, and large bandwidth, especially when implemented on a chip [9]. In
this work, each transmit tile from Figure 4.2 is connected to a corresponding chip, as
explained later on in this section.

The way the photonic beamformers provide a linear phase response with the correct
slope is by using a cascade of optical ring resonators as tunable optical delay lines, ar-
ranged in a tree structure [3, 4, 10]. These ring resonators control the phase response
of the signal by using thermo-optic heater actuators. Though some fluctuations in the
phase response are allowed, these fluctuations should not be larger than 11.25◦ [4].

4.2.2. PHOTONIC BEAMFORMER CHIP DESIGN

Figure 4.3 shows the chip design of the photonic beamformers. The chip contains opti-
cal ring resonators that each belong to different subsystems. The effect of the different
subsystems on the frequency response of the signal is shown as well. An RF splitter (sub-
system 1. in Figure 4.3) makes sure that the same baseband signal arrives at all of the 24
transmit tiles shown in Figure 4.2. Each transmit tile is connected to one chip containing
photonic and RF beamformer systems. The photonic beamformers use a combination of
TriPleX™ waveguide technology [11] and indium phosphide (InP). TriPleX™ is a silicon
nitride planar waveguide technology developed by LioniX International.

The corresponding power response of the signal entering the chip in Figure 4.3 is
that of a broadband signal centered around the frequency fRF = 14.25 GHz in the Ku-
band. This signal is modulated on an optical carrier with a Mach-Zehnder modulator
(electrical-to-optical conversion), after which the optical signal consists of the carrier fc

in the THz range and two sidebands. One of these sidebands is suppressed by the optical
sideband filter (OSBF, subsystem 2. in Figure 4.3). This is done to reduce the required
bandwidth[3]. After this stage the signal goes through a cascade of five ring resonators
(subsystem 3. in Figure 4.3) that supply the required delay for one branch of the 1×24
beamformer. As mentioned earlier, the maximum delay that needs to be provided by the
1×24 beamformer is τmax = 1.214 ns. This should be no problem for a cascade of five
ring resonators, as beamforming with a cascade of only three ring resonators has been
illustrated for delays of more than 1.2 ns with a bandwidth of 0.5 GHz using a manual
tuning approach [12].

The signal then arrives at a 1× 4 optical beamforming network (OBFN, susbystem
4. in Figure 4.3), consisting of an optical splitter and more ring resonators. These ring
resonators provide a linear phase response for a maximum delay of 168 ps, as calculated
earlier in this section. As seen in the phase response in Figure 4.3, the linear phase re-
sponse is only provided in the region of interest, the sideband around frequency fc + fRF .
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However, the OBFN only makes sure that this linear phase response has the correct slope,
not the correct absolute phase. The last subsystem (subsystem 5. in Figure 4.3) provides
an additional phase shift so that the correct phase response is provided at the sideband
and also at the carrier frequency fc . This is again done with optical ring resonators, using
a principle called separate carrier tuning (SCT) [13]. Finally, the signal is converted back
to RF domain with photodetectors (optical-to-electrical conversion).

The ring resonators in the beamformer subsystems are all actuated with two heaters:
one for the phase, and one for the tunable coupling [12, 14]. By changing the voltages
of these two heater actuators for several ring resonators, the magnitude and phase re-
sponse of the subsystems can be altered. There are 27 ring resonators shown in Fig-
ure 4.3, resulting in 54 heaters. Three other heaters in the OSBF subsystem and three
heaters in the 1-to-4 splitter are not shown in the figure but increase the number of
heaters to 60. So the total number of heaters in the two photonic beamformer stages
is 24×60 = 1440. One of the main reasons for investigating automatic procedures is that
tuning all these heaters correctly by hand would not be practical.

4.3. AUTOMATIC TUNING RESULTS

4.3.1. AUTOMATIC TUNING METHOD
In this paper we look at an automatic tuning procedure for one branch of the OBFN
subsystem. The traditional approach to automatically tune one branch of the photonic
beamformer is to use a nonlinear optimization algorithm that minimizes a performance
metric [5, Sec. 6]. An example performance metric is the mean square error (MSE) be-
tween the desired and actual phase response of the system (φD ( f ,V ) and φP ( f ,V ) re-
spectively):

min
V

∑
k

(
φD ( fk ,V )−φP ( fk ,V )

)2 . (4.2)

Here, V represents a vector of actuator voltages while the fk represent the different fre-
quencies that are relevant to the system. The actual phase response φP ( f ,V ) can be
calculated from physical models of the heaters and optical ring resonators.

The procedure described above has several disadvantages. First of all, we have shown
in earlier work that even very small errors in the physical model can have a large detri-
mental effect on the accuracy of the procedure [8]. Such model errors can never com-
pletely be avoided. Second, although physical models are available for each system com-
ponent, the heater actuators influence each other by means of electrical and thermal
crosstalk. This crosstalk can also be modeled, but this requires a number of measure-
ments that is at least equal to the square of the number of heater actuators [5, App. B].
This becomes a problem when the number of heater actuators is large, and it gives even
more room for model errors. Finally, the procedure has to be performed before actu-
ally running the system, and any changes to the system are not automatically taken into
account.

To avoid the drawbacks mentioned above, recently automatic tuning algorithms based
on machine learning techniques have been derived [8, 15, 16]. These algorithms use sys-
tem measurements in the performance metric. Instead of calculating the phase response
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Figure 4.4: Schematic for the automatic tuning method.

from physical models, the phase response is measured directly:

min
V

∑
k

(
φD ( fk ,V )−φM ( fk ,V )

)2 . (4.3)

Here, φM ( f ,V ) denotes the measured phase response. This data-based algorithm learns
the relation between the actuator voltages and the performance metric in (4.3) and chooses
those voltages that optimize this metric. After several iterations, the algorithm converges
to a setting of actuator voltages V with the best performance according to the data-based
performance metric (4.3). Here, each iteration consists of updating the performance
metric with the measured phase response, finding the optimal values for V , and set-
ting the actuator voltages to these values and performing a new measurement. In this
work this is done with the data-based online nonlinear extremum-seeker (DONE) algo-
rithm [15]. See Figure 4.4. This algorithm is especially designed for systems where the
measurements take some time to be performed, where measurement noise is present,
and where the relation between the MSE and the actuators is too complicated to model
accurately. The beamformer system described in this paper is an example of such a sys-
tem. Using such an automatic tuning procedure on this system with over a thousand
actuators is unavoidable if it is ever to be used in a real life application. Besides this,
the DONE algorithm only uses the MSE in (4.3), which is a scalar value. This makes it
easy to be used in practice, where it is more realistic to use a scalar value as the objec-
tive, for example by measuring the signal-to-noise ratio or output power of the system
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rather than the phase response. The traditional approach with the nonlinear optimiza-
tion method also uses a scalar-valued objective, but it becomes very slow and struggles
with local minima when the output power is used as the objective [17, Sec. 4.4.2].

Unlike the traditional approach (4.2), the data-based approach (4.3) does not require
a physical model (including a model for the heater crosstalk) and is therefore not sensi-
tive to model errors. It is also an online algorithm, which means that it can be used while
the system is running, and it will continually search for better configurations. This can
also easily be adapted to allow the procedure to work for systems that change over time,
which is crucial when applied to antenna systems on moving vehicles such as aircrafts.
On moving vehicles, the beam angle changes over time, and therefore the objective func-
tion also changes over time.

4.3.2. OPTICAL SIDEBAND FILTER TUNING
Earlier in this paper, several subsystems of the photonic beamformer were described.
See Figure 4.3. The OSBF and SCT subsystems drastically reduce the required bandwidth
of the system [3, 13]. The goal of the OSBF is to filter out one of the sidebands resulting
from the modulation scheme used for the E/O conversion, as shown in the frequency re-
sponses of Figure 4.3. The result is an optical single sideband full carrier modulation that
can be used by the OBFN. With one sideband filtered out, beamforming would need to
be performed over the sideband, the optical carrier frequency, and the frequencies in be-
tween, giving a total of 14.5 GHz instead of the whole region of 29 GHz. To further reduce
the bandwidth, the SCT subsystem is used to ensure that the correct phase is achieved at
the carrier frequency. If both the OSBF and SCT subsystems are tuned correctly, a linear
phase response only needs to be provided in one sideband with a bandwidth of 0.5 GHz.

Figure 4.5 shows the power response of the full beamformer system after tuning the
OSBF subsystem by hand. This was done by measuring the power response with a vector
network analyzer (VNA) and tuning the OSBF heaters until the desired response was
achieved. The shown frequencies are relative to the carrier frequency. The response
features a stopband, that filters out one of the sidebands as shown in Figure 4.3, and
a passband that keeps the other sideband. The difference between the stopband and
passband is 30dB. In this work it is assumed that the RF signals are downconverted as
in earlier work [4, 7], such that the sidebands are located closer to the carrier frequency
than the 14.25 GHz mentioned earlier, though the results in this paper still hold for a
bandwidth of 0.5 GHz.

4.3.3. AUTOMATIC OPTICAL BEAMFORMING NETWORK TUNING
The optical beamforming network (OBFN) subsystem is used to provide different delays
to the signals of each antenna element in such a way that a strong signal is transmitted
in one specific direction by positive interference. The correct delays can be calculated
from the desired beam angle and the distance between two antenna elements, as shown
in the introduction. This leads to a maximum delay of 168 ps for the 1×4 photonic beam-
former, which is the one investigated in this work. Larger delay values were considered
in this work to show that the maximum delays can indeed be achieved, to allow different
antenna configurations or scan angles, and for better visibility of the measurements.

The desired group delay response for each OBFN path is a flat response with a value
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Figure 4.5: Measured power response of the full beamformer system after tuning the optical side-
band filter by hand. Frequencies are shown relative to the carrier frequency.

between 0 ps and the maximum group delay value, depending on the desired beam an-
gle. The group delay response can be made flat by using a serial configuration of ORRs
for each OBFN path [12]. This flat response has to be provided over the whole frequency
range of interest. However, by implementing the SCT scheme explained later in this sec-
tion, the only part of the frequency domain for which a flat group delay response needs
to be provided is the sideband that is not filtered by the OSBF, as shown in Fig. 4.3. This
greatly reduces the required number of ORRs and therefore the complexity of the sys-
tem, because there is a trade-off between the required number of ORRs, the maximum
group delay, and the bandwidth [3].

The procedure for tuning the OBFN is similar to the one for tuning the OSBF: the
group delay response is measured with a VNA, and the heaters of each ring resonator
are tuned until the desired group delay response is achieved. Here, we made use of the
automatic tuning method described in this paper. The top of Figure 4.6 shows the re-
sulting phase response of both the manual and the automatic tuning procedures of one
path of the photonic beamformer system for two different delay settings (250 ps and 408
ps). The 1-to-4 splitter shown in Figure 4.3 has been set to provide this path with 100% of
the signal power. In the automatic procedure, the frequency range where a linear phase
response should be achieved was set to 4.5-8.1 GHz, which corresponds to a much larger
bandwidth than the desired bandwidth of 0.5 GHz. The manual tuning approach used a
frequency range of the same bandwidth but no specific frequency range was given. All
results were time averaged to reduce noise.
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Figure 4.6: Measured phase response (top) and power response (bottom) of one path of the full
beamformer system from Figure 4.3 after tuning the optical beamforming network automatically
(using the DONE algorithm) and by hand for two different delay settings. The right side zooms
in on the highlighted region. Desired phase responses are shown with dashed lines. The maxi-
mum difference between the measured and desired phase response for the four plots is shown in
Table 4.1. Frequencies are shown relative to the carrier frequency, and the phase responses are
shown relative to the phase response of the system with no delay.

The difference between the desired and the measured phase response must remain
within 11.25◦. The maximum errors are shown in Table 4.1. As can be seen, all phase er-
rors remain well within the requirements. This shows that the automatic tuning proce-
dure can be used instead of the manual tuning procedure for the photonic beamformer
system.

The bottom of Figure 4.6 shows the corresponding power response. For the manual
tuning method this is similar to the one shown in Figure 4.5, with some influence of the
ring resonators. For the automatic tuning method, the magnitude response was tuned
automatically too, using the same procedure for the OSBF as for tuning the OBFN, with
the magnitude instead of the phase response. However, some improvement is possible
here, as the loss in the passband could still be reduced. It seems that the MSE crite-
rion does not work too well with the logarithmic scale. The MSE criterion is especially
sensitive to data points in the stop band in this case. This was already somewhat cir-
cumvented by scaling the data points in the stopband by a factor 0.3, but other objective
functions should be considered in the future.

Table 4.1: Maximum phase error in degrees for tuning the OBFN subsystem automatically (A) and
by hand (M) for different delay values. All errors are well below the maximum allowed error of
11.25◦.

Delay 408 ps 250 ps 408 ps 250 ps
Method (M) (M) (A) (A)
Max error 6.2◦ 4.9◦ 5.5◦ 6.4◦
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Figure 4.7: Measured phase response of the full beamformer system before (left) and after (right)
manually tuning the SCT subsystem. The word ‘auto’ in the legend refers to the automatic tuning
of the OSBF and OBFN subsystems. Using the SCT principle, the height of the phase responses is
adapted in such a way that the corresponding linear responses meet at the carrier frequency, up
to multiples of 360 degrees, as indicated by the red circles. These results have also been published
in [18].

4.3.4. SEPARATE CARRIER TUNING

The results of the previous subsection show that both the manual and automatic tuning
procedures result in a phase response with the correct slope, satisfying the requirements.
However, besides the slope of the phase response, the height of the phase response also
needs to be set correctly [13, 18]. Where the slope of the phase response is controlled
by the OBFN subsystem, the height of the phase response is controlled by the separate
carrier tuning (SCT) subsystem. This is also shown in Figure 4.3.

Like the other subsystems, the SCT subsystem makes use of optical ring resonators.
Two ring resonators are tuned in such a way that they affect the phase response in the
region between the carrier frequency and the sideband. This region contains no infor-
mation, so it is not necessary to follow the desired linear phase response here. Tuning
these two ring resonators gives an extra phase shift while leaving the shape and the slope
of the phase response unaffected. This ensures that the phase response follows the de-
sired linear phase response at the carrier frequency too. It should be noted that phase
differences of multiples of 360◦ do not affect the system [13]. This makes it theoretically
possible to use only one ring resonator for this adjustment, though in practice it is easier
to use two of them. The ring resonators in the SCT subsystem were adjusted by hand
after tuning their heater actuators in such a way that the ring resonators only operate in
the region near the carrier frequency.

Figure 4.7 shows the effect of not using the SCT subsystem on the left. Although the
phase response has the desired slope, there is a phase mismatch at the carrier frequency
(at 0 GHz). Tuning the ring resonators of the SCT subsystem solves this problem. The
effect of tuning the SCT subsystem is shown in the same figure on the right. This time,
the phase responses have been shifted up or down in such a way that the corresponding
linear phase responses are a multiple of 360 degrees off at the carrier frequency. The
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accuracy can still be improved, however: due to their proximity on the photonic chip,
the heaters of the SCT subsystem slightly influence the heaters of the OBFN subsystem,
which leads to small changes to the slope of the phase response. This causes the desired
phase response at the carrier to be about 30 degrees off, so exact multiples of 360 degrees
are not yet achieved. These errors are unacceptable for practical applications. However,
using the same automatic tuning procedure for this subsystem together with the other
two subsystems could circumvent this problem. This remains for future work.

4.4. CONCLUSION
We have proposed a novel photonic beamformer for a transmit phased array antenna.
The beamformer is based on optical ring resonators and is fully integrated on a chip.
We have investigated manual and automatic procedures for tuning the photonic beam-
former. Automatic procedures are essential in real-life applications where thousands of
actuators are considered and where a limited number of variables can be measured, such
as the signal-to-noise ratio. Both the manual and automatic procedures provided beam-
forming functionalities with a phase error of less than 11.25◦ over the whole frequency
band that contains signal information. This is the first time that part of this transmit
antenna tile has been tuned automatically.

The system is designed with aircraft-satellite communication in mind as the main
application, providing satellite Internet connections on board the aircraft using the Ku-
band. The separate carrier tuning principle greatly reduces the operating bandwidth
for the photonic beamformer, from 29 GHz to 0.5 GHz. The ring resonator-based sub-
systems of the beamformer make squint-free beamforming possible. A fully automated
transmit antenna tile remains for future work.

4.5. APPENDIX: MEASUREMENT SETUP
Figure 4.8 shows the measurement set-up for the frequency response measurements
shown in this paper. A Rohde& Schwarz ZVA40 VNA generated a 50 MHz RF signal to
modulate a laser with a Mach-Zehnder modulator. The modulated optical signal was
coupled into the beamformer control box. The control box was connected via USB to
a laptop with heater control software. This laptop also contained the automatic tuning
software and software for reading the VNA measurements. The integrated photodetec-
tors inside the control box were connected with RF cables to the second VNA port. Al-
though integrated modulators were also available, these have not been used in order to
prevent crosstalk with the integrated detectors.

The VNA measurements were sent to the laptop with the automatic tuning and heater
control software via an ethernet cable. The phase-shift method [4, Sec. IV-A] was used
for the group delay and power response measurements, using a function generator for
the laser. With this method, the phase response shown on the VNA is actually equiva-
lent to the group delay response of the system, so the objective (4.3) minimized by the
DONE algorithm is actually equal to the mean square error between the desired and
measured group delay response. In Figures 4.6 and 4.7, after the minimization proce-
dure, the phase response was measured directly using a frequency sweep on the VNA
(without the external trigger from the function generator). Here, the laser current was
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Figure 4.8: Measurement set-up for the frequency response measurements used in this paper.

Table 4.2: Values of the hyper-parameters used by the automatic tuning algorithm.

Hyper-parameter Value (OSBF tun-
ing)

Value (OBFN
tuning)

Total num. of
measurements

2000 1000

Num. of basis functions 3000 3000
Regularization parameter 0.1 0.1
Standard deviation of fre-
quencies

1.0 1.0

Exploration parameter 0.01 0.05
Sliding window size 60 60

chosen in such a way that the optical carrier would be at 0 GHz in Figure 4.5 after tuning
the OSBF.

4.6. APPENDIX: ALGORITHM SETTINGS

The automatic tuning algorithm used in this paper contains several hyper-parameters
that are explained and investigated in [15]. Their values as used in this paper are shown
in Table 4.2 for the OSBF and OBFN tuning results. The last value indicates the size of
the sliding window: only the last 60 measurements are used in updating the model used
by the algorithm, using the same adaptation of the algorithm as in [19].
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5
ONLINE FUNCTION MINIMIZATION

WITH CONVEX RANDOM RELU
EXPANSIONS

We propose CDONE, a convex version of the DONE algorithm. DONE is a derivative-free
online optimization algorithm that uses surrogate modeling with noisy measurements to
find a minimum of objective functions that are expensive to evaluate. Inspired by their
success in deep learning, CDONE makes use of rectified linear units, together with a non-
negativity constraint to enforce convexity of the surrogate model. This leads to a sparse
and cheap to evaluate surrogate model of the unknown optimization objective that is still
accurate and that can be minimized with convex optimization algorithms. The CDONE
algorithm is demonstrated on a toy example, on the problem of hyper-parameter opti-
mization for a deep learning example on handwritten digit classification, and on the
problem of photonic beamformer tuning.

Parts of this chapter have been published in [1].
c©2017 IEEE. In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE

does not endorse any of Delft University of Technology’s products or services. Internal or personal use of this
material is permitted.
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5.1. INTRODUCTION

M ANY practical optimization problems do not satisfy the assumptions that are present
in traditional continuous optimization algorithms. Examples of these assump-

tions are that the derivative of the function to be optimized is known, or that there is
at least a mathematical expression for the function, or that the function can be evalu-
ated quickly and accurately. But the outcome of a simulation or algorithm, for example,
can depend on many parameters and can suffer from noise. In many cases it is undesir-
able to try a new set of parameters and check for improvement multiple times, which is
what happens in grid search or random search techniques.

Several paths have been taken in alleviating this problem. Most derivative-free opti-
mization algorithms [2] are able to operate without the assumptions mentioned above.
The ones that seem most fit to deal with noisy and expensive measurements are in the
class of Bayesian optimization algorithms [3–5]. These algorithms use the available data
and a prior to fit a probabilistic surrogate model and then use this model to decide where
the next measurement should be taken. Hyper-parameter optimization is just one of the
many examples where Bayesian optimization algorithms have shown their potential.

Another algorithm that is based on surrogate models is the DONE algorithm [6]. The
surrogate model used in this algorithm is a random feature expansion (RFE) [7], which
is updated every time a new measurement comes in. At each iteration of the algorithm a
measurement of the objective is taken, then the surrogate model is updated, and then a
new measurement location is proposed based on the minimum of the surrogate model.
Using RFEs as a surrogate model makes it possible to get a fixed computational com-
plexity per iteration by using recursive least squares updates. In comparison, Bayesian
optimization algorithms become slower over time. The DONE algorithm was shown to
outperform a popular Bayesian optimization algorithm on several tasks, such as the tun-
ing of an optical beam-forming network [6].

This paper proposes an adaptation of the DONE algorithm called CDONE that has
several advantages:

• There are less hyper-parameters to tune.

• The surrogate model is convex.

• The surrogate model is evaluated faster.

• The surrogate model is inherently sparse.

The DONE algorithm already had few hyper-parameters to tune, but having even less is
a big advantage. The convexity allows convex optimization algorithms to be used to find
the global minimum of the model, as opposed to finding a local minimum. The last two
advantages make it possible to find the global minimum efficiently.

The convex model used in this paper is a combination of RFEs and rectified linear
units (ReLUs) [8], which will be explained in the next section. Section 5.3 describes the
CDONE algorithm. A comparison with the DONE algorithm is given in Section 5.4. Sec-
tion 5.5 describes the results of both algorithms on an artificial example, on a hyper-
parameter tuning problem for deep learning, and on the problem of photonic beam-
former tuning. Finally, Section 5.6 contains conclusions and recommendations for fu-
ture work.
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5.2. RANDOM RELU EXPANSIONS
RFEs [7] have gained popularity recently due to their ability to approximate kernels with
low dimensionality. They are defined as a weighted sum of basis functions with ran-
dom parameters, and can be trained with conventional regularized linear least squares
techniques. Since the number of basis functions and the values of the random param-
eters stay fixed, these models are particularly fit for problems with many data samples.
Theoretical approximation guarantees for RFEs are available for the L2 norm [9] and for
the L∞ norm [7]. Practically relevant results for the L2 norm with models trained with
regularized least squares are also available [6]. In short, any continuous function on a
compact domain can be approximated arbitrarily well if the number of basis functions
are large enough. The approximation error scales with the inverse square root of the
number of basis functions. In practice, however, the approximation accuracy is sensi-
tive to hyper-parameters such as the probability distribution of the random parameters.
Recommendations for these hyper-parameters in the case of random cosine features are
given in [6].

At the same time, ReLUs [8] have become a popular activation function in deep neu-
ral networks because of the inherent sparsity and the ability to circumvent the vanishing
gradient problem. Even shallow ReLU networks can act as universal approximators [8].
In this work we use random features based on ReLUs, to make use of the advantages of
both principles.

Define the ReLU φ :R→R as

φ(z) =
{

z, z > 0,
0, z ≤ 0.

(5.1)

Then, a Random ReLU expansion (RRE) is a model of the form

RRE(x) = cD − cD−1 +
D−2∑
k=1

ckφ(wT
k x+bk ), (5.2)

with wk ∈ Rd and bk ∈ R being realizations of i.i.d. random variables from continuous
probability distributions. We assume ck ≥ 0 ∀k, so the first two terms are required for a
bias that also allows the model to approximate negative values. With this assumption,
the model is a convex function of x.

In the area of neural networks, the parameters ck ,wk and bk are trained with stochas-
tic gradient descent or similar algorithms. In the RRE model, however, wk and bk are
chosen randomly, and finding the optimal parameters ck is a convex optimization prob-
lem.

5.3. THE CDONE ALGORITHM
We present an adaptation to the DONE algorithm [6], with ReLU basis functions and
a convexity constraint ck ≥ 0 ∀k, to find the minimum of an unknown function f using
noisy measurements yn . To initialize the CDONE algorithm, an initial guess x1 is needed,
together with its corresponding measurement y1. The random parameters wk and bk are
drawn independently from their probability distributions and remain fixed for the whole
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duration of the algorithm. In this paper we have used the uniform distribution on [−1,1]
for both wk and bk . The algorithm then repeats the following three steps:

5.3.1. FITTING THE SURROGATE MODEL
To fit the RRE to the data (xn , yn) for iterations n = 1, . . . ,n, while imposing a convexity
constraint, the following regularized nonnegative linear least squares problem needs to
be solved:

min
c

n∑
n=1

(
yn −RRE(xn ;c)

)2 +λ||c||22, (5.3)

s.t. ck ≥ 0, k = 1, . . . ,D. (5.4)

Here, λ is a regularization parameter, which can be chosen quite small in practice
(e.g. λ = 10−8) because the convexity constraint already helps in preventing overfitting.
Being less sensitive to this parameter is a big advantage over the DONE algorithm. The
above optimization problem is a nonnegative least squares problem. This problem is
convex and can be solved with, for example, an active set method [10].

5.3.2. FINDING THE MINIMUM OF THE SURROGATE MODEL
After fitting the RRE model with optimal coefficients c∗, we find the minimum of this
model:

x∗ = argmin
x∈X

RRE(x;c∗). (5.5)

Here, X is a convex compact set, e.g. X = [−1,1]d . In the original DONE algorithm,
only a local minimum of the surrogate model is found. The initial guess provided to the
solver is the current measurement xn , plus a small perturbation to aid in exploration.
However, because the RRE in the CDONE algorithm is convex, we can find the global
minimum in this case with a convex optimization algorithm. There is also no need to
add an extra exploration step by perturbing the initial guess.

The original DONE algorithm uses second-order optimization methods like the L-
BFGS method [10]. Because of the structure of the RRE however, we propose a steep-
est descent method with a backtracking line search and gradient projection [10] for the
CDONE algorithm. It can be seen that the RRE is a piecewise linear function, so first-
order approximations are exact in a certain set, and the line search should help in taking
the largest possible step within this set.

5.3.3. CHOOSE A NEW MEASUREMENT POINT
The found global optimum of the RRE is used to determine a new measurement point.
Although the RRE model is convex, the original objective f might be non-convex, so
a small random perturbation ζ is added to x∗ for exploration purposes. Only a local
approximation of f around its (local) minimum is needed, and the RRE becomes more
accurate around this point as new measurements are added. A new measurement is
taken at xn+1 = x∗+ζ (after projecting onto X ), which leads to a new value yn+1, and the
algorithm repeats at step 1.
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5.4. COMPARISON WITH THE DONE ALGORITHM
Several factors influence the computational costs of the CDONE algorithm, compared
to the DONE algorithm. First of all, the basis functions used in the DONE algorithm
are cosines, whereas the CDONE algorithm uses ReLU basis functions. Although this
has no influence on the order of complexity, some computation time can be saved by
implementing the ReLU basis function with a simple IF-statement as in (5.1). This is
faster than calculating a cosine. Another time saver is the sparsity of the RRE model,
which occurs in two ways: sparsity of the basis functions, and sparsity of the nonnegative
weights ck . The first case occurs if wT

k x+bk ≤ 0, in which case a scalar multiplication and
addition do not have to be computed. This inherent sparsity is one of the reasons ReLUs
are used in deep learning. The second case occurs if ck = 0 after fitting the model. In this
case, φ(wT

k x+bk ) does not have to be computed, saving a vector-vector multiplication
of the same size as the input x, a vector addition, and an IF-statement. The next section
illustrates how often this happens in practice.

The convexity of the model used in the CDONE algorithm allows convex optimiza-
tion algorithms to find the global minimum of the model. In the DONE algorithm, find-
ing the global minimum is an intractable problem due to the non-convexity of the model.
Furthermore, unlike the DONE algorithm, the CDONE algorithm does not include an ex-
ploration step by perturbing the initial guess of this convex optimization algorithm. For
each iteration, this saves on computation time equal to the time required to draw a ran-
dom vector of the same dimension as the input x.

The only part of the CDONE algorithm that could increase its computation time
when compared to the DONE algorithm, is the fitting of the surrogate model. Step 1
of the CDONE algorithm, fitting the surrogate model, is the most computationally ex-
pensive step of the algorithm. In the original DONE algorithm, a recursive least squares
update was used to reduce the computation time of this step. In the CDONE algorithm,
this should be changed to a recursive nonnegative least squares update. Several algo-
rithms exist for this purpose [11–14], all with varying numerical stability, accuracy, and
computational complexity. The approach in [14], based on time-, order-, and active-set-
recursion, seems the most fit for this problem. With this implementation, the nonnega-
tive least squares problem (5.3)-(5.4) can be solved recursively in O(D2), just like in the
DONE algorithm, provided that the active set recursion can be carried out in O(1) steps.
In this paper, we did not use a recursive algorithm to solve (5.3)-(5.4), but applied the
active set method directly for ease of use. We do plan to investigate a recursive imple-
mentation in the future.

In Section 5.5 we note that the active constraints between two subsequent iterations
of the CDONE algorithm differ only by 2 on average in a simple test case. This implies
that the average order of complexity of the fitting step of the CDONE algorithm could
indeed be reduced to O(D2) in practice.

5.5. NUMERICAL EXAMPLES
In this section we test the CDONE algorithm on two numerical examples: finding the
minimum of a convex function perturbed by noise, and finding the optimal hyper-parameters
of a deep learning classification problem.
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DONE DONE RELU CDONE CDONE ELU
Mean 0.0132 0.0150 0.0155 0.0244

Std 0.0074 0.0073 0.0091 0.0148
Time 55.735 64.266 27.991 34.427

Table 5.1: Final distance to the true minimum of the convex function, averaged over 100 runs, and
average computation time in seconds.

5.5.1. MINIMIZING A NOISY CONVEX FUNCTION
As a test case, consider the function

f (x) =
√

xT x−5, (5.6)

with x ∈R2. We have access to this function via noisy measurements y(x) = f (x)+0.01η,
where η has a standard normal distribution.

The minimum of f is found with four variations of the DONE algorithm: the stan-
dard DONE algorithm, the DONE algorithm with ReLU basis functions instead of cosines
(DONE RELU), the CDONE algorithm as presented in this paper, and the CDONE algo-
rithm with exponential linear units [15] (ELUs) as basis functions (CDONE ELU). The
comparison with the smoother ELUs is made to determine the effect of the smoothness
of the basis functions. All algorithms used D = 500 basis functions and N = 500 mea-
surements, with a regularization parameter of λ= 10−2 for DONE and DONE RELU, and
λ= 10−8 for CDONE and CDONE ELU. The convexity constraints of the latter two algo-
rithms reduce the risk of overfitting to noise, so they need less regularization as a con-
sequence. The variance of the exploration parameter was set to 10−4 for all algorithms.
The DONE and DONE RELU algorithms used the standard normal distribution for their
respective wk parameters, which is the default approach that works well in practice [6].
The experiment was repeated 100 times starting from random initial guesses in [−1,1]2.

Table 5.1 shows the distance of the found minimum x∗ to the true minimum, with the
mean and standard deviation from 100 runs, as well as the average computation time in
seconds. Please note that the computation time can be improved for all four algorithms,
as we used (adaptations of) a slower version of the DONE algorithm available online [16].
Furthermore, the CDONE and CDONE ELU implementations do not yet use a recursive
algorithm for fitting the surrogate model, as mentioned in Section 5.4. Figure 5.1 shows
how the average distance progresses over time. It can be seen that the CDONE algorithm
achieves a similar accuracy as the other variations, with CDONE ELU performing slightly
worse. However, a larger difference between the variations can be seen in Figure 5.2.
This figure shows the mean number of nonzero coefficients ck , k = 1, . . . ,D . The CDONE
algorithm uses only about 16 out of all 500 available basis functions. Furthermore, the set
of basis functions that are used remains fairly constant as can be seen in Figure 5.3. On
average, the difference between the active set of coefficients {k : ck = 0} for a particular
iteration and the next is less than 1, although this difference can go up to around 15 in
one of the earlier iterations. We conclude that the CDONE algorithm has a high accuracy
compared to the number of used basis functions, and that there is potential for efficient
implementations of the minimization step of this algorithm by exploiting the sparsity.
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Figure 5.1: Distance to the true minimum of the convex function, averaged over 100 runs.

5.5.2. HYPER-PARAMETER OPTIMIZATION FOR DEEP LEARNING

In our second experiment we consider the problem of hyper-parameter optimization.
The task we consider is a handwritten digits recognition example [17], where a deep
neural network is trained to classify handwritten digits. We modify this example so that
the following eight hyper-parameters are considered unknown, even though values are
given in the example: height, width and stride of the filter of the convolutional layer,
height, width and stride for the max pooling layer, the maximal number of epochs, and
the initial learning rate. The example ends by showing the accuracy on the given test set
after training.

The function we wish to minimize takes an 8-dimensional input and converts it from
the set [−1,1]8 to realistic values for the hyper-parameters. Hyper-parameters that should
have integer values are rounded. Then we run the example with these values for the
hyper-parameters, and we take −1 times the accuracy on the test data as the output to
be minimized.

Figure 5.4 shows the accuracy for the same four algorithm variations as in the pre-
vious example, for 10 runs, starting from 10 different initial guesses. The initial guesses
were shared by the different algorithms. Note that some initial guesses were so bad that
the accuracy was precisely 0, and the algorithms had trouble getting out of this part of
the hyper-parameter space. The last plot shows the best result found by each algorithm,
as well as the result provided in the original example [17]. All algorithms gave better re-
sults than the results given in the example. We used the same settings as in the previous
example, but the number of basis functions and measurements were changed to D = 800
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Figure 5.2: Average number of nonzero coefficients per iteration.
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Figure 5.3: Nonzero coefficients pattern for one of the runs of CDONE. Yellow indicates ck > 0 for
a particular basis function k at that iteration, while blue indicates ck = 0.
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Figure 5.4: Accuracy of the current iteration of various algorithms, on the test set for the deep
learning example. Ten individual runs are shown. The last plot shows the accuracy of the best
iteration of all the runs, where the last column shows the accuracy given in the original example.

and N = 100, respectively. We also make a comparison with a random search over the
hyper-parameter space. The random search can provide good hyper-parameter settings
in just a few iterations, and so does the DONE algorithm. However, an advantage of the
CDONE algorithm is that it stays near the currently best found solution and keeps im-
proving. This allows the user to perform the original task while the hyper-parameters
are being optimized. This is important in online applications, such as aberration cor-
rection for fluorescence microscopy [18], where the quality of the solution should not
deteriorate during the optimization procedure. The most stable behavior, with a clear
convergence plot, is found in the CDONE algorithm, although this algorithm had trou-
ble with the worst initial guesses.

The number of nonzero coefficients in CDONE fluctuated between 20 and 60 in this
example. We again conclude that the performance of the CDONE algorithm is very high
compared to the number of basis functions that are actually used. We also conclude that
the CDONE algorithm can be used for non-convex optimization problems despite the
convexity constraint, and that the convexity constraint gives rise to stable behavior of
the algorithm.
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Figure 5.5: (left) Group delay response of one optical ring resonator, and a desired group delay
response. (right) Group delay response of a cascade of three optical ring resonators, and a desired
group delay response. The individual group delay response of each ring resonator is denoted by
the dotted lines.

5.5.3. PHOTONIC BEAMFORMER TUNING

In this third experiment we consider the problem of tuning a photonic beamformer.
Beamformers are used to electronically steer the beam angle of an array of antenna el-
ements [19]. This is done by providing a time delay to each antenna element. By mak-
ing use of the latest developments in integrated microwave photonics [20], a low loss,
low weight, broadband photonic beamformer has been developed [21, 22]. This type of
beamformer makes use of optical ring resonators to provide the desired time delays over
a certain bandwidth. See Figure 5.5 for the group delay response of one and multiple
optical ring resonators. For a cascade of multiple ring resonators, the delays are simply
added up.

We consider a simulation of a cascade of five ring resonators that together need to
provide a target delay τ∗ in a specific frequency range. The used values correspond to
one of the problems encountered in Chapter 4 of this thesis: tuning a cascade of five ring
resonators over a bandwidth of 0.5 GHz to a delay of τ∗ = 1.214 ns. This problem was not
addressed in that chapter.

The group delay response of the ring resonators is given by

τi (ω,κi ,φi ) = Ti
r 2

i − ri
p

1−κi cos(ωTi +φi )

r 2
i +1−κi −2ri

p
1−κi cos(ωTi +φi )

+Ti
ri
p

1−κi cos(ωTi +φi )− r 2
i (1−κi )

r 2
i (1−κi )+1−2ri

p
1−κi cos(ωTi +φi )

, (5.7)

with κi ,φi the control variables of ring resonator i , ri = 0.99, and Ti = 3.9866 ·10−11 for
i = 1, . . . ,5. We used the DONE and the CDONE algorithms for the following minimiza-



5.5. NUMERICAL EXAMPLES

5

91

0 1 2 3 4 5

Frequency (GHz)

0

0.5

1

1.5

G
ro

up
 d

el
ay

 (
ns

)
Objective: 10 -1

Total delay
Desired delay

0 1 2 3 4 5

Frequency (GHz)

0

0.5

1

1.5

G
ro

up
 d

el
ay

 (
ns

)

Objective: 10 -2

Total delay
Desired delay

0 1 2 3 4 5

Frequency (GHz)

0

0.5

1

1.5

G
ro

up
 d

el
ay

 (
ns

)

Objective: 10 -3

Total delay
Desired delay

0 1 2 3 4 5

Frequency (GHz)

0

0.5

1

1.5
G

ro
up

 d
el

ay
 (

ns
)

Objective: 10 -4

Total delay
Desired delay

Figure 5.6: Group delay response of a cascade of five optical ring resonators at different iter-
ations of the CDONE algorithm. The objective from the minimization problem (5.8) is shown
above each figure, and the group delay responses of each individual optical ring resonator are
also shown. The goal is to achieve a flat group delay response of the desired delay value in the
bandwidth indicated by the vertical lines.

tion problem:

min
κ1,...,κ5,φ1,...,φ5

1

N

N∑
n=1

(
τ∗−∑5

i=1

[
τi (ωn ,κi ,φi )+ε]
τ∗

)2

,

s.t. 0.1 ≤ κi ≤ 0.999, i = 1, . . .5, (5.8)

−0.75 ≤φi ≤−0.5, i = 1, . . .5.

Here, ε indicates the realization of a Gaussian zero-mean white noise variable with a
standard deviation of 0.005 ns. The group delay response of the cascade of ring res-
onators for different values of the objective function in (5.8) can be seen in Figure 5.6.

Figure 5.7 shows ten separate runs and their geometric average of the CDONE and
the DONE algorithm. The variables κi ,φi were scaled to the region [0,1] before being
passed to the algorithms. Unlike in the previous experiment, the behavior of both algo-



5

92 5. ONLINE FUNCTION MINIMIZATION WITH CONVEX RANDOM RELU EXPANSIONS

50 100 150 200

Iteration

10-4

10-3

10-2

10-1

100

O
bj

ec
tiv

e

CDONE

50 100 150 200

Iteration

10-4

10-3

10-2

10-1

100

O
bj

ec
tiv

e

DONE

Figure 5.7: Ten runs of the CDONE and the DONE algorithm on the minimization problem (5.8).
The thick black line shows the geometric mean of the ten runs.

rithms is similar. The following settings were used for the CDONE algorithm: number of
basis functions D = 1000, number of measurements N = 200, regularization parameter
λ = 10−7, and the variance of the exploration parameter was set to 4 ·10−4. The DONE
algorithm used the same settings except forλ= 10−1, and the wk parameters were drawn
from a normal distribution with standard deviation σ= 1.5.

As mentioned in Section 5.3.1, the CDONE algorithm is less sensitive to the regular-
ization parameter λ than the DONE algorithm because it uses a convex surrogate model.
We claim that this is also the case for σ, the parameter that scales the wk parameters,
which is equivalent to a scaling of the input. We verified this claim on the photonic
beamformer application, by looking at the value of the objective function at the final
iteration, averaged over ten runs, for 100 different combinations of λ and σ. These com-
binations were chosen randomly in such a way that the base 10 logarithms of λ and σ

had a [−8,1] and a [−3,1] uniform distribution respectively.
Figure 5.8 shows the 100 results of the average objective value at the final iteration for

different combinations of σ and λ for the CDONE and the DONE algorithm by means of
a contour plot. Values between the 100 combinations were interpolated. Though both
algorithms can achieve similar average objective values by choosing σ and λ correctly,
the CDONE algorithm has a much larger viable region. The DONE algorithm needs to
be tuned more precisely to get similar results, and because of the complicated shape of
the plot it also seems to be much more difficult to search for the right values of λ and σ.
This shows that CDONE is easier to use in practice.

5.6. CONCLUSION
The DONE algorithm, a derivative-free optimization algorithm for finding the minimum
of an objective using noisy measurements, has been adapted by introducing rectified lin-
ear units and a nonnegativity constraint. The constraint makes sure that the surrogate
model of the objective is convex, allowing its global minimum to be found with con-
vex optimization algorithms. The adapted CDONE algorithm has less hyper-parameters
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Figure 5.8: Contour plot of the effect of the λ and σ parameters on the outcome of the CDONE
and DONE algorithms. The color indicates the objective value of the minimization problem 5.8 at
iteration 200, averaged over 10 runs. The black dots show which random combinations of λ and σ
were evaluated, and the rest of the contour plot was calculated using a cubic interpolation.

to tune, since the convexity helps in reducing the need for exploration of the surrogate
model, and it is experimentally verified that it is less sensitive to the remaining hyper-
parameters. Having less hyper-parameters to tune is crucial for certain tasks, especially
when the algorithm is used for finding the optimal hyper-parameters of another algo-
rithm or simulation. Furthermore, the surrogate model benefits from sparsity and can
be evaluated efficiently.

The CDONE algorithm has been tested on an artificial example, on the problem of
hyper-parameter optimization for a deep neural network classifier for handwritten dig-
its, and on the problem of photonic beamformer tuning. Using a lower effective number
of basis functions because of the sparsity, the CDONE algorithm still exhibited high final
accuracy. In the future we will further exploit this sparsity in efficient implementations
of all steps of the algorithm.
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6
CONCLUSION

This final chapter gives conclusions and recommendations for the automatic tuning of
photonic beamformers and for the DONE algorithm and its variants. It also describes the
improvements over existing methods, and provides a short discussion of recently emerged
relevant methods. This chapter ends with recommendations for future work.
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6.1. IMPROVEMENTS OVER EXISTING METHODS
This thesis presented a novel data-driven approach to the problem of automatically tun-
ing a photonic beamformer using the Data-based Online Nonlinear Extremum-seeker
(DONE) algorithm. The DONE algorithm makes use of measurements from the beam-
former system to approximate the relation between the system actuators and the objec-
tive to be minimized, namely the difference between the measured time delays and the
desired time delays. The approximation is done with random Fourier expansions, using
recursive linear least squares to update the approximation every time a new measure-
ment comes in. The algorithm is especially designed to be able to deal with noise, slow
or costly measurements, and objectives for which the derivative cannot be computed or
approximated.

In Chapter 2 it was shown that earlier approaches based on physical beamformer
models using nonlinear optimization techniques can be very sensitive to model errors.
In the presence of model errors, performing nonlinear optimization on a model derived
from data has been shown to give better results. It was also shown that no artificial local
minima are introduced when using random feature expansions to approximate the data,
as long as enough features are used.

In Chapter 3, the proposed data-driven approach was compared with other exist-
ing data-driven approaches like Bayesian optimization algorithms on a simulation of
a photonic beamformer. Compared to Bayesian optimization algorithms, the DONE
algorithm has the advantage of a fixed computational complexity per iteration, while
Bayesian optimization algorithms become slower over time. For the beamformer sim-
ulation, this led to a speed-up factor of over 1000. We also provided theoretical results
on the approximation capabilities of the random Fourier expansion: even when trained
with linear least squares, it can approximate square integrable functions arbitrarily well
if the number of basis functions is large enough. The hyper-parameters of the DONE
algorithm were also investigated, and we provided both theoretical results and practi-
cal rules of thumb for them. Finally, the DONE algorithm has been applied to other
applications, namely a benchmark optimization problem, optical coherence tomogra-
phy, and a robot arm. This last application was mainly to test the large-scale capabili-
ties of DONE: it was successfully applied to a problem with 150 degrees of freedom. We
can conclude that DONE is a fast and powerful online optimization algorithm for those
problems where function evaluations are costly and noisy and where no derivatives of
the objective function are available.

In Chapter 4, the DONE algorithm was applied to a real photonic beamformer sys-
tem. A full transmit phased array antenna with both radio-frequency and photonic beam-
formers was presented, as well as the chip design of the fully integrated photonic beam-
former. Requirements for the system were also given. The goal of the system is to provide
satellite Internet connections on an aircraft by sending signals through the Ku-band in
the 14-14.5 GHz range. It was shown how an optical delay line based on optical ring
resonators was automatically configured over a 0.5 GHz bandwidth using the DONE al-
gorithm, providing a delay of approximately 0.4 ns. The solution found by the DONE
algorithm satisfied the requirements: the corresponding phase response had a ripple of
less than 11.25◦ over the 0.5 GHz bandwidth. This is the first time that any automatic
tuning algorithm has been applied to this type of transmit antenna. Two other subsys-
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tems of the beamformer system, namely an optical sideband filter and a separate carrier
tuning subsystem, were also tuned, the former with the DONE algorithm and by hand,
the latter only by hand. Without these two subsystems, the required bandwidth would
be increased up to 29 GHz, which would severely increase the system complexity and
the difficulty of tuning the system.

In Chapter 5, the DONE algorithm itself has been improved by restricting the sur-
rogate model to be convex, giving rise to the CDONE algorithm. This is done by using
rectified linear units (ReLUs) instead of cosines as basis functions and imposing a non-
negativity constraint on the weights. ReLUs have seen a lot of success in the context of
deep learning lately. It was shown that the CDONE algorithm could benefit from the
inherent sparsity and cheap evaluation of the ReLUs, allowing for a more efficient im-
plementation than the one used in the DONE algorithm. Furthermore, the convexity of
the surrogate model gives a number of advantages, such as getting rid of certain hyper-
parameters, less sensitivity to other hyper-parameters, more stable convergence behav-
ior, and guarantees for finding the global optimum of the surrogate model. The CDONE
algorithm was applied to a toy function, to the problem of hyper-parameter tuning for
deep learning, and to a photonic beamformer simulation. Sparsity of the model was
investigated, as well as the sensitivity to two hyper-parameters of DONE and CDONE:
the regularization parameter and an input scaling parameter. It can be concluded that
CDONE is easier to use than DONE, as it requires less knowledge to set up correctly.

In the Appendix A, another improvement to the DONE algorithm has been made. In
order to be able to deal with time-varying objective functions, a sliding window principle
has been applied, where only the latest few measurements are used for fitting the surro-
gate model. Furthermore, the algorithm has been extended with a variable offset. With
this offset, the pseudo-convex shape that occurs in many objective functions can be ex-
ploited. The adapted algorithm is applied to a confocal fluorescent microscopy applica-
tion with 18 degrees of freedom and compared to a hill climbing algorithm. Though both
algorithms achieve similar accuracy in the end, the hill climbing algorithm takes mea-
surements far away from the current best solution, while the adapted DONE algorithm
remains stable, allowing the system to be used while the algorithm is running.

6.2. CRITERIA
Chapter 1 gave some criteria for the automatic tuning method used in tuning a photonic
beamformer. Here, we check if the criteria are satisfied.

THE METHOD SHOULD TAKE HEATER CROSSTALK INTO ACCOUNT.
Since the proposed method automatically approximates the relation between the system
actuators (the heaters) and the objective, heater crosstalk is automatically taken into
account. The surrogate that was used in the approximation, namely a random Fourier
expansion, is general enough to allow for all system actuators together to influence the
objective in a nonlinear fashion. In Chapter 3, the DONE algorithm was successfully
applied to a simulation of a photonic beamformer that included heater crosstalk, while
in Chapter 4 the same algorithm was successfully applied to a real photonic beamformer
where heater crosstalk was also present.
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THE METHOD SHOULD NOT BE SENSITIVE TO MODEL PARAMETERS.
Since the proposed method does not make use of the physical photonic beamformer
model, it is not sensitive to these kinds of parameters. However, like with most algo-
rithms, the outcome of the DONE algorithm depends on its own hyper-parameters, such
as the number of basis functions or the probability distributions of the random param-
eters. In Chapter 3 we investigated these hyper-parameters and gave some theoretical
results as well as rules of thumb, while in Chapter 5 we developed a variant of the DONE
algorithm that has less hyper-parameters to tune.

IF FEEDBACK FROM MEASUREMENTS WILL BE USED, THE METHOD SHOULD BE ABLE TO

OPERATE WITH SCALAR-VALUED MEASUREMENTS AND NOT BE SENSITIVE TO MEASURE-
MENT NOISE.
The proposed method indeed uses system measurements to continuously improve its
surrogate function. As far as noise is concerned, the DONE algorithm is especially de-
signed to be able to deal with measurement noise by using regularized linear least squares
for training the surrogate model. It already assumes scalar-valued measurements and
should therefore have no problem with other scalar-valued objectives like the signal-to-
noise ratio or the output power of a beamformer system.

THE NUMBER OF MEASUREMENTS USED SHOULD BE AS LOW AS POSSIBLE TO PREVENT THE

METHOD FROM BEING TOO SLOW.
The DONE algorithm assumes that there is some cost, such as time, associated with each
measurement. Therefore, it aims at keeping the number of measurements as low as pos-
sible. This is done by using a surrogate function which efficiently approximates multi-
dimensional objective functions with a low number of measurements, and by only tak-
ing measurements near the minimum of the surrogate function rather than focusing too
much on exploring the entire search space.

THE METHOD SHOULD OPERATE IN REAL TIME.
The DONE algorithm is an online algorithm, meaning every time a new measurement
comes in, it updates the surrogate function and calculates a new set of heater voltages
to try next. Depending on the implementation and the application, this should not take
more than a few milliseconds (from Table 3.2 in Chapter 3 it can be concluded that the
DONE algorithm takes about 1−30 ms per iteration, depending on the application). This
is sufficiently fast for the current application, since the time it takes to apply the heater
voltages and the time it takes to perform a measurement are both in the millisecond
range.

It should be noted that applying the DONE algorithm to the real photonic beam-
former system described in Chapter 4 currently takes about 3 to 5 seconds per iteration,
not milliseconds, mainly because of the communication between the beamformer, the
computer running the DONE algorithm, and the vector network analyzer as can be seen
in Figure 4.8 in the same chapter. These three systems also used different types of soft-
ware. The software and the measurement set-up could be made more efficient in the
future.
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CRITERIA THAT DEPEND ON THE EXACT APPLICATION AND BEAMFORMING SYSTEM THAT

IS USED.
Finally, Chapter 4 gave some more specific criteria for the beamformer system described
there, see Section 4.2.1. These requirements were satisfied: the 1× 4 beamformer was
automatically tuned, using the DONE algorithm, in such a way that the corresponding
phase response had a maximum error of less than 11.25◦ over a bandwidth of 0.5 GHz.
This was satisfied for two different delay settings, namely a delay of 408 ps and a delay of
250 ps.

6.3. COMPARISON WITH RECENTLY DEVELOPED METHODS
Chapter 1 also mentioned two recently developed methods that are relevant to this the-
sis. These two methods were not considered in this thesis as they had not yet been pub-
lished at the time the research in this thesis was conducted. To get more insight in the
similarities and differences between these methods and the methods described in this
thesis, this section gives a short discussion.

6.3.1. AUTOMATIC TUNING OF A MACH-ZEHNDER INTERFEROMETER-BASED

PHOTONIC BEAMFORMER
In [1], a photonic beamformer based on Mach-Zehnder interferometers was tuned auto-
matically using a derivative-free optimization algorithm. However, the type of photonic
beamformer that was investigated in this thesis is based on optical ring resonators. The
beamformer considered in this thesis can provide a large delay (in the order of hun-
dreds of ps) over a large bandwidth by using a cascade of optical ring resonators as delay
elements. By adding more ring resonators to the system, the maximum delay and band-
width can be increased, and the ripple can be decreased, at the cost of increasing the
system complexity. The beamformer in [1] also deals with large bandwidths, but the
considered delays are much smaller (in the order of tens of ps) and there is no way to
decrease the ripple as only one Mach-Zehnder interferometer is used for each antenna
element. Furthermore, it is not possible to use the automatic tuning method in [1] on
the system in this thesis because of the complexity of the system. On the other hand, ap-
plying the DONE algorithm to the system in [1] would probably work, but it is expected
that it would only lead to improvements in the presence of model errors, as discussed in
Chapter 2.

6.3.2. COMMON BAYESIAN OPTIMIZATION LIBRARY (COMBO)
In [2], a Bayesian optimization method that makes use of random features was devel-
oped. The method was applied to the problem of determining the atomic structure of a
crystalline interface. As the method is similar to the DONE algorithm described in this
thesis, we show some similarities and differences here. COMBO and DONE share the
following similarities:

• Both methods approximate the Gaussian kernel using random Fourier features.

• Both methods use a covariance matrix based on a regularized least squares crite-
rion.
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• Both methods are online, in the sense that the regularized least squares problem
is not calculated every iteration, but the covariance matrix and the weights are
updated efficiently instead.

• Both methods avoid computing the predictive variance.

The following differences between the two methods were found:

• In finding the minimum of the surrogate model, COMBO assumes a finite number
of potential candidate points in the search space and finds the best candidate us-
ing Thompson sampling, while DONE solves a continuous optimization problem
on what would be considered the mean of the surrogate model from a Bayesian
point of view. Both methods avoid the slower approach of using an acquisition
function that depends on the predictive variance, which is common in Bayesian
optimization algorithms.

• The efficient update of the covariance matrix in COMBO is based on Cholesky de-
compositions, while the efficient update of the same matrix in DONE is based on
an inverse QR decomposition. Essentially, DONE keeps track of the inverse covari-
ance matrix, while COMBO keeps track of the covariance matrix and avoids using
the inverse by solving triangular systems of equations. Both approaches have the
same order of complexity but might differ in numerical stability.

• DONE uses an exploration heuristic to avoid local minima, while COMBO per-
forms global optimization on a finite set of candidate points. Note that the num-
ber of candidate points scales exponentially with the input dimension in the case
of discrete variables.

• DONE provides rules of thumb in choosing the hyper-parameters, while COMBO
implements an online optimization algorithm to choose the hyper-parameters au-
tomatically after initialization and every few iterations.

• COMBO never evaluates the same candidate point twice, increasing efficiency but
making it unsuited for objective functions that suffer from noise. DONE does not
use this restriction.

• The largest (in terms of input dimension) problem DONE has been applied to is a
problem with 150 degrees of freedom (see Chapter 3), where each variable has a
continuous range of possible values, while the largest problem COMBO has been
applied to was a problem with 65536 candidate points [3], which corresponds to
16 degrees of freedom in case the variables are binary.

Overall, COMBO seems more fit for discrete optimization problems with a finite num-
ber of possible solutions (and a low input dimension), while DONE seems more fit for
continuous optimization problems.

6.4. RECOMMENDATIONS FOR FUTURE WORK
In science, each new discovery also leads to new questions. In this section we discuss
some of the possible directions for further research on the topic of automatic tuning of
photonic beamformers and the DONE algorithm.
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6.4.1. FULLY AUTOMATIC PHOTONIC BEAMFORMER SYSTEM

A part of the photonic beamformer system presented in Chapter 4 was tuned automati-
cally with the DONE algorithm. In order to fully automate the whole system, some more
work has to be done. First of all, the scale of the system has to be considered. The beam-
former in Chapter 4 contains 1536 paths in total, of which only one was tuned automati-
cally, while in Chapter 3 eight beamformer paths were tuned at the same time. In Chap-
ter 3 the DONE algorithm was also applied to a problem with 150 degrees of freedom, but
the full beamformer system from Chapter 4 contains thousands of actuators. One possi-
ble solution is to solve the problem in a distributed manner. If the performance of each
individual beamformer in Figure 4.2 in Chapter 4 can be measured separately, for exam-
ple by measuring the input and output signal of each individual beamformer, then the
DONE algorithm could be applied to each beamformer separately as well. This greatly
reduces the scale of the problem to that of tuning a 1×24 beamformer, which consists
of a 1-to-24 splitter and five optical ring resonators for each of the 24 paths. The total
number of actuators for this beamformer is at most 263, while the other beamformers
contain 30 actuators or less. This is still more than the 150 degrees of freedom mentioned
earlier, but should be possible with more computational power and with a more efficient
variation of the DONE algorithm.

Another part of the system that should be considered is the optical sideband filter.
This subsystem was also tuned automatically in Chapter 4, but it was noted that the
results could be improved by choosing a different objective function. The mean square
error criterion that was used does not work too well with the logarithmic scale of the
measurements. In the future, different objective functions should be investigated.

Finally, the separate carrier tuning subsystem was not tuned automatically yet. The
reason for this is that the measurement set-up needed to be changed slightly in order to
get the required measurements (using a frequency sweep instead of a time sweep). If all
measurements would be done with this set-up, including the optical beamforming net-
work and optical sideband filter measurements, then it might be possible to automate
the whole system. In order to avoid the problems that are common in multi-objective
optimization, the three subsystems should not be tuned simultaneously but rather one
at a time, starting with the optical sideband filter, followed by the optical beamforming
network, and then the separate carrier tuning subsystem.

This fully automated approach still requires measurements using a vector network
analyzer. This is not desired in real life applications. One possible solutions is to use the
solution from this approach as an initial guess for a second similar automated approach
that does not use a vector network analyzer. This second approach would only use mea-
surements based on the output power or signal-to-noise ratio of the beamformer sys-
tem. In order for this second approach to be applied to moving vehicles like aircrafts, the
Sliding-Window DONE algorithm described in Appendix A could be used to deal with
the time-varying beam angle. A big advantage of this approach is that the beam angle
itself is not required: the algorithm is capable of adapting to changes in the objective
function by means of the sliding window principle.
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6.4.2. CDONE
The CDONE algorithm described in Chapter 5 has many advantages over the DONE al-
gorithm, such as sparsity, a quick to evaluate surrogate model, convexity, and less hyper-
parameters. To make full use of these advantages, an efficient implementation is re-
quired. The current implementation of CDONE does not use a recursive least squares
implementation, but several possibilities for performing recursive least squares with a
nonnegativity constraint were given. The most promising one is the approach found
in [4]. An efficient implementation of that approach in the CDONE algorithm that also
makes use of the sparsity, and that possibly also makes use of the adaptations made in
Appendix A, should lead to a very efficient, robust, adaptive and easy to use algorithm.
Since Bayesian optimization is an on-going topic of research, this new algorithm should
then be compared to newer types of Bayesian optimization algorithms as well, such as
the COMBO algorithm which was mentioned in this chapter.

Finally, another possible line of research to consider is the use of dedicated hard-
ware for the DONE algorithm or one of its variants. A first attempt has been made
using a graphical processing unit in [5], making the algorithm approximately twice as
fast. Further improvements could be made with better graphical processing units, field-
programmable gate arrays, or even optical computers. Particularly interesting would be
the question whether hardware based on integrated photonics, such as the examples de-
scribed in [6], can be used to implement CDONE. If it can, the next question is whether
this type of hardware can somehow be combined with the integrated microwave pho-
tonics technology described in this thesis, such that both the signal processing and the
automatic tuning software are all realized on one chip.

REFERENCES
[1] V. C. Duarte, M. V. Drummond, and R. N. Nogueira, Coherent photonic true-time-

delay beamforming system for a phased array antenna receiver, in 2016 18th Interna-
tional Conference on Transparent Optical Networks (ICTON) (2016) pp. 1–5.

[2] T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi, and K. Tsuda, Combo: An efficient
bayesian optimization library for materials science, Materials Discovery 4, 18 (2016).

[3] S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda, and J. Shiomi, Designing nanostructures for
phonon transport via bayesian optimization, Physical Review X 7, 021024 (2017).

[4] K. Engel and S. Engel, Recursive least squares with linear inequality constraints, Op-
timization and Engineering 16, 1 (2015).

[5] J. Munnix, Parallel Approach to Derivative-Free Optimization: Implementing the
DONE Algorithm on a GPU, Master’s thesis, Delft University of Technology (2016).

[6] G. Van der Sande, D. Brunner, and M. C. Soriano, Advances in photonic reservoir
computing, Nanophotonics 6, 561 (2017).

http://dx.doi.org/10.1109/ICTON.2016.7550663
http://dx.doi.org/10.1109/ICTON.2016.7550663
http://dx.doi.org/ https://doi.org/10.1016/j.md.2016.04.001


A
THE SLIDING-WINDOW DONE

ALGORITHM

The DONE algorithm minimizes an unknown objective that can be evaluated only with
expensive and/or noisy measurements. In many practical applications, the objective also
varies over time. To deal with these types of objectives we extend the DONE algorithm
with a sliding window. Compared to the use of a forgetting factor, the sliding window has
the advantage that the regularization remains constant. We also extend the algorithm
with a variable offset, which exploits the fact that many objectives have a (pseudo)convex
shape in practice. The Sliding-Window DONE algorithm (SW-DONE) is demonstrated on
a confocal fluorescent microscopy application and compared to a hill climbing algorithm.
Unlike the hill climbing algorithm, SW-DONE takes measurements close to the found op-
timum, ensuring a high quality image at all times.

This chapter is based on unpublished work that was done in collaboration with H.R.G.W. Verstraete, P. Pozzi,
S. Wahls, and M. Verhaegen.

105



A

106 A. THE SLIDING-WINDOW DONE ALGORITHM

A.1. INTRODUCTION

I N many applications, an objective that can be measured but is not known in closed-
form has to be minimized. For example, in adaptive optics the aberrations of an opti-

cal system are being compensated to improve the performance of the system [1]. Mea-
surement noise and a large measurement time can prevent the objective to be mini-
mized with standard derivative-based optimization techniques.

Recently, the DONE algorithm has been proposed to find the minimum of these types
of objectives [2, 3]. The algorithm consists of a combination of recursive least squares
(RLS), random Fourier expansions (RFEs) [4], and nonlinear optimization. The algo-
rithm was shown to outperform other derivative-free optimization (DFO) methods like
NEWUOA [5] and coordinate search.

Besides noise and expensive function evaluations, another challenge arises in many
practical applications. The objective function that is to be minimized might change over
time due to physical or parametric changes in a system or simulation. For example,
aging components in a setup might behave differently over time, and focusing on differ-
ent areas of a sample in microscopy can cause different wavefront aberrations. In this
case, not all available measurements should be used for training the model, but only
the most recent ones. In the RLS part of the DONE algorithm, a forgetting factor could
be introduced, but this can lead to the problem of estimator wind-up where the change
in parameters becomes extremely large with each new measurement [6, 7]. A common
way to prevent this problem is the use of directional forgetting [8], where old data is for-
gotten ‘in the direction of the new data’. With this approach, however, it would not be
clear which measurements are used and which are forgotten in the RLS estimation, mak-
ing it possible that obsolete or incorrect measurements are used in the model. Another
way to prevent estimator wind-up would be to make use of Tikhonov regularization and
increase the regularization parameter at each iteration, to compensate for the forget-
ting factor. Unfortunately, to our knowledge there is no way to make the regularization
parameter adaptive without resorting to inefficient (cubic complexity) or unstable algo-
rithms or algorithms similar to directional forgetting [9].

In this paper we propose a simpler technique to deal with objective functions that
change over time, based on a sliding window principle as demonstrated in Fig. A.1. At
the cost of more memory storage, the problem of estimator wind-up is avoided. We also
provide an extension that lets the DONE algorithm exploit the pseudo-convexity of the
objective. Both extensions are demonstrated on a real time aberration correction tech-
nique in fluorescence microscopy [10] and compared to a hill climbing algorithm [11].

A.1.1. THE DONE ALGORITHM
The DONE algorithm[2, 3] tries to find the minimum of a function f by approximating it
with an RFE and then applying standard optimization techniques to this RFE model. An
RFE is a function g of the form

g (x) =
D∑

k=1
ck cos(ωT

k x+bk ),

with D the number of Fourier expansions and bk and ωk realizations of random vari-
ables with continuous probability distributions. Practical ways to choose the proba-
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Figure A.1: At each iteration in the sliding window RLS algorithm the oldest measurement is re-
moved before adding a new measurement.

Algorithm 5 DONE Algorithm

1: Get measurement yn at point xn .
2: Update RFE coefficients with RLS.
3: Find minimum of RFE.
4: New measurement point is minimum of RFE plus small perturbation. Repeat from

Step 1.

bility distributions are discussed in [3]. Using measurement yn at point xn , the coef-
ficients ck can be calculated using an RLS algorithm on the transformed inputs an =
[cos(ωT

1 xn + b1) · · ·cos(ωT
D xn + bD )]. We use an inverse QR [12, Sec. 21] version of the

RLS algorithm as follows: find a rotation matrix Θn that lower triangularizes the upper
triangular matrix in Eq. (A.1) below and generates a post-array with positive diagonal
entries: [

1 an P1/2
n−1

0 P1/2
n−1

]
Θn =

[
γ−1/2

n 0
gnγ

−1/2
n P1/2

n

]
. (A.1)

with initialization P0 = λ−1ID×D , a diagonal matrix. Here, λ ∈ R is a regularization pa-
rameter. The updated weights of the RFE model can then be found with

cn = cn−1 +gn(yn −an cn−1), (A.2)

with initialization c0 = 0. Here, cn ∈ RD contains the coefficients ck of the RFE model
at step n of the algorithm. The rotation matrix Θn can be found by performing a QR
decomposition of the transpose of the matrix on the left hand side of (A.1), or by the
procedure explained in [12, Sec. 21].

The next measurement point xn+1 is determined by finding the minimum of the RFE
model using standard nonlinear optimization methods, such as the L-BFGS method [13],
and adding a small perturbation to it for exploration purposes. This is summarized in
Algorithm 5.

A.2. SLIDING WINDOW DONE
When the DONE algorithm is extended with a sliding window, only a fixed maximum
number L of past measurements are taken into account by the RFE model. If a newer
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measurement becomes available, the oldest function evaluation in the sliding window is
removed from the RFE model as demonstrated in Fig. A.1. Hence, the model will adapt
to the latest L evaluations of the changing function f .

For the first L steps, the procedure is identical to the previous section. From step
n = L + 1 onward, we remove the oldest measurement from the RFE model before the
model is updated. This is done with an inverse QR downdate using hyperbolic Givens
rotations [14, Sec. 14.9]. This can be done by finding a (1⊕−I ) unitary matrix1 Θ̌n that
triangularizes the pre-array shown below and generates a post-array with positive diag-
onal entries. Then the post array is given by[

1 an−LP1/2
n−1

0 P1/2
n−1

]
Θ̌n =

[
γ̌−1/2

n−1 0
ǧn−1γ̌

−1/2
n−1 P̌1/2

n−1

]
. (A.3)

The downdated weights of the RFE model are then given by

čn−1 = cn−1 − ǧn−1(yn−L −an−Lcn−1). (A.4)

The matrix Θ̌n does not need to be explicitly calculated, the triangularization can be
completed by a series of hyperbolic Given’s rotations [14, Sec. 14.A].

The downdated weights čn−1 and the downdated P̌1/2
n−1 can now be used in the update

procedure (A.1)-(A.2) by replacing cn−1 and P1/2
n−1 respectively.

A.3. VARIABLE OFFSET
In many practical applications, the objective function to be minimized has a (pseudo)-
convex shape. In this section we will adapt the DONE algorithm so that it exploits this
shape with a solution that is in harmony with the online nature of the algorithm.

Regularization is a key aspect of the model fitting procedure in the DONE algorithm.
It can help prevent overfitting and deal with noise sensitivity and ill-conditioning [15].
However, it also has the effect of pulling the weights of the basis functions towards zero.
Therefore, the output of the RFE model is also pulled towards zero, especially in regions
where less measurements have been taken.

To illustrate, consider the approximation of the function f (x) = x2 + 3. Figure A.2a
shows the RFE model fit on measurements of this function. Even after a measurement
outside the set of previous measurements is introduced and is used to update the model,
we see that the model is already turning towards zero near this point because of the
regularization. A local maximum and minimum are introduced that do not appear in the
original function. This is detrimental to step 3 of Algorithm 5, where the optimization
algorithm that finds a minimum of the RFE model can get stuck in the artificial local
minimum.

We propose to add a negative offset to all the measurements. If we ensure that the
function lies below zero on its domain, as illustrated in Figure A.2b, we see that no ar-
tificial local maxima and minima are introduced. Although the RFE approximation is
still a bad approximation outside the region where the measurements were taken, the

1A (1⊕−I ) unitary matrixΘ satisfiesΘ

[
1

I

]
ΘT =

[
1

I

]
.
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shape of the RFE model is still similar to the shape of the true function. It is expected
that derivative-based optimization methods on the RFE model will give similar results
as using the same methods on the true function in this case. Therefore, we add an offset
v <− fmax to all the measurements, where fmax is the maximum of f over the domain of
interest.

A.3.1. IMPLEMENTATION OF A VARIABLE OFFSET
A potential problem with the approach of the previous section is that the maximum
value of the unknown function f is not known beforehand. And if we just take the max-
imum value out of all previous measurements, this value will change as soon as a mea-
surement with a higher value is encountered. Our solution is to use a variable offset that
can change every iteration.

In Section A.2, only the weights cn depend on the measurements yn , so only (A.2)
and (A.4) would be affected by an offset v . To change these equations, we keep track of a
‘history’ variable hn that satisfies

hn = hn−1 +gn(1−an hn−1), (A.5)

with h0 = 0. Only a vector of the same length as cn is required for this history variable.
Note that the above is just a standard RLS update rule for measurements with value 1, so
this can be seen as approximating a constant function alongside the original function f .

Since the offset v is added to all previous measurements, the weights cn need to be
adapted for all iterations by adding an unknown vector∆n . For the update rule (A.2) this
gives:

cn +∆n = cn−1 +∆n−1 +gn(yn + v −an cn−1 −an∆n−1)

= cn−1 +gn(yn −an cn−1)

+∆n−1 +gn(v −an∆n−1). (A.6)

Using (A.2) in the above gives the rule

∆n =∆n−1 +gn(v −an∆n−1), (A.7)

or equivalently

∆n = vhn . (A.8)

In other words, to approximate a function f̃ = f + v while making use of the least
square weights cn used in the approximation of f , it suffices to add vhn to these weights,
provided hn has been updated each iteration as in (A.5). This vector has length D , so this
is the additional memory required to make use of a variable offset. The computational
complexity of (A.5) is O(D), so the order of complexity of the whole algorithm does not
increase.

For the downdate, from step n = L+1 onward, we follow a similar procedure. Let

ȟn−1 = hn−1 − ǧn−1(1−an−Lhn−1). (A.9)
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Now, the weights č need to be adapted for all iterations by adding an unknown vector
∆̌n . For the downdate rule (A.4) this gives:

čn−1 + ∆̌n−1 = cn−1 +∆n−1

− ǧn−1(yn−L + v −an−Lcn−1 −an−L∆n−1)

= cn−1 − ǧn−1(yn−L −an−Lcn−1)

+∆n−1 − ǧn−1(v −an−L∆n−1). (A.10)

Using (A.4) in the above gives the rule

∆̌n−1 =∆n−1 − ǧn(v −an−L∆n−1), (A.11)

or equivalently

∆̌n−1 = vȟn−1. (A.12)

The downdated history variable ȟn−1 now replaces hn−1 in (A.5). Note that the up-
date and downdate rules of the history variable are independent of the actual offset v ,
allowing to change the offset at any desired step of the algorithm.

To ensure that the function that is approximated stays below zero, the offset is changed
as soon as a positive measurement is encountered. To prevent changing the offset too
often, the offset is chosen to be −2 times the value of the positive measurement. Other
values are also possible. We have chosen to change the offset between the downdate and
update step. When changing the offset more than once, the difference between subse-
quent offsets vn − vn−1 is used, with v0 = 0. All of this, together with the sliding window
principle, is illustrated in Algorithm 6. The procedures updateRFE and downdateRFE
correspond to equations (A.1)-(A.2) and (A.3)-(A.4) respectively. Using this in step 2 of
Algorithm 5 leads to the SW-DONE algorithm.

A.4. ADAPTIVE OPTICS APPLICATION
The SW-DONE algorithm is demonstrated on a fluorescent microscopy application. Con-
focal fluorescent microscopy is an optical sectioning technique which aims to produce
clear images of focal planes within a thick sample. The image quality largely depends
on the aberrations present in the sample, and the ability to correct these. A real-time
sensorless aberration correction technique that makes use of the SW-DONE algorithm
was presented in [10]. This technique makes use of the sliding window principle and the
variable offset as described in this paper, but in this paper we describe these principles
in more detail and verify their effects experimentally.

The objective that is to be minimized was chosen to be the second moment of the
intensity distribution of fluorescence light emitted under point like illumination. Here,
the optimal value of the objective is depending on the sample used, but is empirically
limited to circa 2µm2. This objective was measured at 100 Hz. The 69 actuators mirror
was used to simulate combinations of the first 18 Zernike polynomials [16] (a commonly
used base in aberrations space), excluding tip, tilt and defocus, therefore constraining
the problem to 18-dimensional measurements xn . To investigate the effects of a chang-
ing objective function, three fixed artificial aberrations in the Zernike coefficients were
introduced after respectively 5, 10 and 15 seconds.
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Figure A.2: Demonstration of a RFE model fit for (a) the original function f (x) = x2 +3 (without
offset) and (b) the function f̃ (x) = f (x)−6 (with offset).

Algorithm 6 Sliding window with variable offset in DONE

1: procedure SLIDINGWINDOW(an , yn , an−L , yn−L , P1/2
n−1, vn−1, hn−1, cn−1)

2: if n ≥ L+1 then
3: [P̌1/2

n−1, ǧn−1, čn−1] ←
downdateRFE(an−L ,P1/2

n−1,cn−1, yn−L + vn−1)

4: ȟn−1 ← hn−1 − ǧn−1(1−an−Lhn−1)
5: else
6: ȟn−1 ← hn−1, P̌1/2

n−1 ← P1/2
n−1, čn−1 ← cn−1

7: if yn + vn−1 > 0 then
8: vn ←−2yn

9: čn−1 ← čn−1 + (vn − vn−1)ȟn−1

10: else
11: vn ← vn−1

12: [Pn ,gn ,γn ,cn] ←
updateRFE(an , P̌n−1, čn−1, yn + vn)

13: hn ← ȟn−1 +gn(1−an ȟn−1)
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Figure A.3: (a) Comparison between DONE (adapted with a variable offset), SW-DONE and hill
climbing. (b) Scan through one of the degrees of freedom (coma). (c) Objective over time for SW-
DONE with window sizes varying between 9 and 2000. (d) Mean objective for different time ranges
and window sizes.
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Figure A.3a shows the results of various algorithms on this application. As a base-
line, a hill climbing algorithm was tested using a similar implementation as in [11], with
7 measurements per input dimension. This method was compared with the DONE al-
gorithm [3] adapted with the variable offset as described in this paper, and with the SW-
DONE algorithm with a window size of L = 43. The DONE algorithm without the variable
offset gave an objective function value of around 16µm2 for the whole duration of the ex-
periment, hence this result has been omitted from the figure.

It can be seen that the SW-DONE algorithm and the hill climbing algorithm give sim-
ilar final results. However, for the hill climbing algorithm it is required to take measure-
ments far away from the current optimum, resulting in large fluctuations of the objec-
tive. This makes the SW-DONE algorithm more fit for real-time applications as it ensures
a constant sharp image. Furthermore, unlike the DONE algorithm, the SW-DONE algo-
rithm is able to handle sudden changes in the objective function.

Figure A.3b shows a scan of the objective value through one of the 18 degrees of free-
dom, namely coma aberration, measured in the root mean square deviation of phase
(denoted as λRMS). The pseudoconvex shape shows the benefit of using the variable for-
getting factor of Section A.3.

Figure A.3c investigates the effect of the window size L for the SW-DONE algorithm.
Five different values of L were used, namely 9, 21, 43, 86 and 2000. With 2000 total
measurements, this last case corresponds to having no sliding window. For the first 5
seconds, a fixed objective function is being minimized, and all window sizes give satis-
fying results. However, when the objective function changes due to the artificial aberra-
tions, the algorithm fails to adapt when using the largest window sizes, because it makes
use of past measurements that have become obsolete. With the smallest window sizes,
quick adaptation is provided, however the accuracy deteriorates for L = 9 because too
few measurements are used. A window size of 21 or 43 gives the best performance (sim-
ilar performance for both values) and shows that the sliding window principle allows
the minimization of functions that change over time. The average values for the first 5
seconds and for the whole duration are shown in Figure A.3d.

A.5. CONCLUSION

We have applied the sliding window principle to the DONE algorithm. Together with the
introduction of a variable offset in the linear regression step of the algorithm, this lead
to the SW-DONE algorithm. The SW-DONE algorithm can be used to find the local min-
imum of a function that is not only expensive to evaluate and perturbed by noise, but
that also changes over time. This is shown experimentally by applying the algorithm to
a confocal fluorescent microscopy application. The objective function in this applica-
tion suffers from noise and changes over time, as simulated with artificial aberrations.
By introducing a sliding window, and a variable offset to exploit pseudoconvexity, the
minimum of this objective function was found.
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SUMMARY

Beamforming is a signal processing technique used in highly directional antennas. An
array of antenna elements transmits the same signal, but with a different time delay for
each element. By providing the right time delays for each antenna element, the whole
array transmits a high-powered signal in one desired direction. This technique can be
used for example to provide satellite television and Internet connections on board of
aircrafts.

Recently, developments in the field of integrated microwave photonics have paved
the way for broadband, low-loss, and low-weight beamformer systems. These photonic
beamformers convert the signals to be transmitted to the optical domain, provide the
correct time delays with tunable optical delay lines, and then convert the signal back
to the radio frequency domain. The main challenge here lies in tuning the actuators of
the tunable optical delay lines in such a way that they provide the desired time delays.
Challenges like actuator crosstalk, parameter sensitivity, noise and model errors cause
complications when traditional tuning algorithms are used, such as nonlinear optimiza-
tion routines. All results obtained with these photonic beamformers in the literature so
far have been achieved by tuning the whole system by hand, or by applying nonlinear
optimization techniques to a simplified simulation of the system rather than the actual
system.

In order to find a practical way of tuning a photonic beamformer in real time, this
thesis takes a data-driven approach. Instead of relying on perfectly accurate physical
models, a surrogate function is used that approximates the relation between the system
actuators and a cost function, namely the difference between the measured and desired
time delay of each antenna element. By performing nonlinear optimization techniques
on this surrogate cost function and by continuously updating the approximation as new
measurements are obtained, the time delays of each antenna element should converge
towards the desired values.

The Data-based Online Nonlinear Extremum-seeker (DONE) algorithm is used to
update and optimize the surrogate function in real time. This algorithm is especially
designed to optimize cost functions that are costly to evaluate (for example in terms of
time), that contain noise, and for which derivatives cannot be easily computed or ap-
proximated. The DONE algorithm is applied to a simulation of a photonic beamformer
and to the real system, as well as to several other applications. It is shown that the algo-
rithm outperforms comparable methods on several fronts, especially computation time.
Furthermore, the theory behind the algorithm is investigated, but practical results are
also given, for example rules of thumb for choosing the hyper-parameters. Finally, vari-
ations to the DONE algorithm have been developed that are easier to use, can be imple-
mented more efficiently, and can deal with time-varying objective functions.
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Bundelvorming is een signaalverwerkingstechniek die gebruikt wordt bij versterkte richt-
antennes. Een reeks antenne-elementen verzendt hetzelfde signaal met verschillende
vertragingen voor elk element. Door elk antenne-element van de juiste vertragingen
te voorzien wordt door de antennereeks een versterkt signaal in één specifieke richting
verzonden. Deze techniek kan bijvoorbeeld gebruikt worden om vliegtuigen van satel-
liettelevisie en -internet te voorzien.

De laatste tijd hebben ontwikkelingen op het gebied van geïntegreerde microgolf-
fotonica de weg gebaand voor breedband, verliesarme en lichtgewicht bundelvormer-
systemen. Deze fotonische bundelvormers zetten de te verzenden signalen om naar
het optische domein, leveren de juiste vertragingen met instelbare optische vertragings-
lijnen, en zetten het signaal dan weer terug om naar het radiofrequentiedomein. De
grootste uitdaging zit hem in het instellen van de actuatoren van de instelbare optische
vertragingslijnen op zo een manier dat ze de gewenste vertragingen leveren. Uitdagin-
gen zoals overspraak tussen de actuatoren, parametergevoeligheid, ruis en modelfouten
zorgen voor complicaties wanneer traditionele instellingsalgoritmes zoals niet-lineaire-
optimalisatieroutines worden gebruikt. Alle resultaten die met deze fotonische bundel-
vormers zijn behaald in de literatuur tot nu toe, zijn behaald door het hele systeem met
de hand in te stellen, of door niet-lineaire-optimalisatietechnieken toe te passen op een
vereenvoudigde simulatie van het systeem in plaats van het echte systeem.

Om een praktische manier te vinden om een fotonische bundelvormer in real time
in te stellen wordt er in deze dissertatie een datagestuurde aanpak gebruikt. In plaats
van te vertrouwen op perfect nauwkeurige fysische modellen wordt er een surrogaat-
functie gebruikt die de relatie tussen systeemactuatoren en een kostenfunctie, namelijk
het verschil tussen de gemeten en gewenste vertraging van elk antenne-element, bena-
dert. Door niet-lineaire-optimalisatietechnieken toe te passen op deze surrogaatfunctie
en door de benadering herhaaldelijk bij te werken naarmate nieuwe metingen worden
verkregen, zouden de vertragingen van elk antenne-element moeten convergeren naar
de gewenste waarden.

Het datagestuurde online niet-lineaire extremumzoekeralgoritme (Data-based On-
line Nonlinear Extremum-seeker, DONE) wordt gebruikt om de surrogaatfunctie in real-
time bij te werken en te optimaliseren. Dit algoritme is speciaal ontworpen om kosten-
functies te optimaliseren die prijzig zijn om te evalueren (bijvoorbeeld wat tijd betreft),
die ruis bevatten, en waarvoor de afgeleides niet makkelijk uitgerekend of benaderd kun-
nen worden. Het DONE-algoritme wordt toegepast op een simulatie van een fotonische
bundelvormer en op het echte systeem, alsmede op verscheidene andere toepassingen.
Er wordt aangetoond dat het algoritme op verschillende vlakken beter presteert dan ver-
gelijkbare algoritmes, vooral wat de rekentijd betreft. Daarnaast wordt de achterliggende
theorie van het algoritme onderzocht, maar worden er ook praktische resultaten gele-
verd, zoals vuistregels voor het kiezen van de hyperparameters. Tenslotte zijn er varian-
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ten op het DONE-algoritme ontwikkeld die makkelijker te gebruiken zijn, die efficiënter
geïmplementeerd kunnen worden, en die met tijdsvariërende doelfuncties om kunnen
gaan.
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