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Abstract. A common problem in phylogenetics is to try to infer a
species phylogeny from gene trees. We consider different variants of this
problem. The first variant, called Unrestricted Minimal Episodes
Inference, aims at inferring a species tree based on a model of spe-
ciation and duplication where duplications are clustered in duplication
episodes. The goal is to minimize the number of such episodes. The
second variant, Parental Hybridization, aims at inferring a species
network based on a model of speciation and reticulation. The goal is to
minimize the number of reticulation events. It is a variant of the well-
studied Hybridization Number problem with a more generous view on
which gene trees are consistent with a given species network. We show
that these seemingly different problems are in fact closely related and
can, surprisingly, both be solved in polynomial time, using a structure
we call “beaded trees”. However, we also show that methods based on
these problems have to be used with care because the optimal species
phylogenies always have some restricted form. We discuss several possi-
bilities to overcome this problem.

Keywords: Phylogenetic inference problems
Polynomial-time algorithms

1 Introduction

Phylogenetic trees are commonly used to represent the evolutionary history of
a set of taxa. The leaves represent extant taxa; internal nodes represent spe-
ciation events that caused lineages to diverge. If we assume the only processes
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are speciation and modification and that no incomplete lineage sorting occurs,
then any gene will give a gene tree that is consistent with the species phy-
logeny. In such cases, there exist efficient algorithms to reconstruct a species
tree from gene trees. There are, however, evolutionary processes beyond vertical
inheritance of genetic material and speciation events that make it more challeng-
ing to reconstruct the real evolutionary history. Examples of such processes are
hybridization, horizontal gene transfer, and duplication. Each of these processes
can result in discordance between gene trees.

This leads to a number of problems in which the task is to minimize the
number of such complicating events. In reconciliation problems, we are given the
gene trees together with the species phylogeny, and the task is to find optimal
embeddings of the gene trees into the species phylogeny. Such methods are for
example used to estimate dates of duplications, to discover relations between
duplicate genes [7], and to reconstruct the infection history of parasites [19]. In
inference problems, only the gene trees are given and we aim to find a species
phylogeny that minimizes the discordance with the gene trees. Such problems
are relevant when the species phylogeny is not yet known with certainty.

Duplication Minimization Problems. Gene duplications happen as a conse-
quence of errors in the DNA replication process. This leads to a species having
multiple copies of the same gene. There exist many types of gene duplication,
which depend on the positions of errors within the replication process [20]. The
scale of gene duplications is determined by the number of genes that get dupli-
cated. An extreme example of a large-scale duplication is Whole Genome Dupli-
cation (WGD), in which every gene in the genome is duplicated. This process,
also known as polyploidization, occurs as a result of an error in separation of
chromosomes during gamete production. It is most common in plants but has
also occurred in animals [22], and there are two WGD events even in the evolu-
tionary history leading to humans [8]. Large-scale duplications provide species
with diversification potential, giving them the ability to quickly adapt to a chang-
ing environment [10].

In their seminal paper [11], Goodman et al. pioneered the parsimony app-
roach to reconciling gene trees with species trees. This has motivated researchers
to explore reconciliation through different models, whilst optimizing some mea-
sure of the number of duplication events.

These models can be categorized according to how duplication events are
clustered to form duplication episodes and which restrictions are put on the
possible locations of duplications [21]. We focus on the minimal episodes (ME)
model where duplications can be clustered if they occur on the same branch of
the species phylogeny and have no ancestor-descendant relationship in a gene
tree (see Fig. 1). We believe this model to be most relevant since it can cluster
duplications that can be part of a single (large-scale) duplication event. We con-
sider the unrestricted variant of this model, which does not put any restrictions
on the locations of gene duplications (called the FHS-model in [21]).

Reconciliation problems have been studied intensively, especially models
without clustering. Several reconciliation problems with clustering have been
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Fig. 1. Left: A gene tree embedded into a branch of a species tree with duplications
clustered as in the Minimal Episodes model. Duplication clusters are shown as rectan-
gles. Right: A representation of the DNA of the species at different points in the species
tree (at corresponding heights). In the first duplication, the gene A (dark rectangle) is
duplicated, forming A1 and A2. In the second duplication, the block B (light rectangle)
comprising A1 and A2 is duplicated. This results in four homologous copies of gene A
using only two duplication episodes. The gene tree is also drawn through the depictions
of the DNA.

proven to be computationally intractable [9,17], whereas for others there are
polynomial-time [3,6] or even linear-time [16,18,21] algorithms. For unrestricted
ME reconciliation, there only exists an exponential-time algorithm [21], while the
computational complexity of this problem is still unknown.

It has also been attempted to use reconciliation as a basis for inferring species
phylogenies. For the unrestricted ME model, Burleigh et al. [5] used a brute-force
approach on all possible species phylogenies. They observed that the unrestricted
ME model fails to rank the true species tree among the top third of all topolo-
gies. It was suggested that a possible reason for this anomaly is that duplication
episodes near the root are overly powerful under this model. A similar obser-
vation was made in a more recent reconciliation study [21]. However, neither
article gives a mathematical explanation for this phenomenon. It should also be
noted that, since the number of possible species phylogenies grows extremely
quickly with the number of species, brute-force approaches are only feasible for
very small data sets.

Inference problems are generally assumed to be computationally intractable.
However, NP-hardness has been proven only for some restricted inference prob-
lem without clustering [17]. For an inference problem with restricted clustering
(called gene duplication (GD) clustering in [21]), NP-hardness was suggested
in [9] but not proven. Because of the suspected intractability of these prob-
lems, some heuristic inference approaches have been attempted using efficient
algorithms for reconciliation (see, e.g., [12]).
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Reticulation Minimization Problems. Another possible cause of discor-
dance between gene trees is reticulate evolution, such as hybridization or hori-
zontal gene transfer. In such cases, the evolutionary history is represented by a
phylogenetic network rather than a tree.

Reticulate evolution can occur in nature when genetic material from one
species is transmitted to some other species. In asexual species, such transfers
are called horizontal gene transfers (HGT). In bacteria, for example, this hap-
pens in nature by transformation (take-up from the environment) or conjugation
(transmission from another bacterium). In sexual species, a cause for such trans-
missions can be hybridization, where individuals from different but related taxa
mate. There is also evidence that horizontal gene transfers occur between mul-
ticellular sexual species. HGT can even happen between more distant species.

Gene trees that appear to be inconsistent may in fact simply take different
paths through the network. This leads to a family of inference problems in which
the aim is to find a phylogenetic network that is consistent with the gene trees
and has the minimum number of reticulation events (nodes in the network with
two ancestral branches). A phylogenetic network is often taken to be consistent
with a gene tree if that tree is displayed by the network, which, roughly speaking,
means that the gene tree can be drawn inside the network in such a way that each
network branch contains at most one lineage of the gene tree. A more generous
definition is to count a network as consistent with a gene tree if the tree is weakly
displayed by the network [13,23]. Roughly speaking, this means that different
lineages of the gene tree may “travel down” the same branch of the network, as
long as any branching node in the tree coincides with a branching node in the
network. In this case, the tree is also called a parental tree of the network. This
models situations where a species has individuals carrying multiple homologous
copies of a gene.

The Hybridization Number problem, in which we seek a network with
the minimum number of reticulations displaying all input trees, has been well-
studied. It has been shown that Hybridization Number is NP-hard already
when the input consists of only two gene trees [4]. Furthermore, there are theo-
retical FPT algorithms for any fixed number of gene trees [15], but there are no
practical algorithms that can handle instances with more than two input trees
unless the number of taxa is extremely small.

In contrast, the Parental Hybridization problem, in which we seek a net-
work with the minimum number of reticulations that weakly displays each input
tree, was introduced only recently [23] and its computational complexity was
open prior to this article. Our motivation for studying this problem is threefold:

(i) Since Hybridization Number is NP-hard, it is interesting whether relax-
ing the notion of a tree displayed by a network leads to an easier problem.

(ii) Since reticulation can lead to multiple homologous copies of a gene in a
species, requiring that each gene tree is displayed by the network may lead
us to overestimate the number of reticulations.
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(iii) The problem of finding an optimal network that weakly displays a set of
phylogenies arises as a crucial subproblem in a recent heuristic approach
for constructing phylogenetic networks in the presence of hybridization and
incomplete lineage sorting [23].

Structural Assumptions. We restrict to binary trees and networks. Unlike
many papers in this area, we allow a network to contain parallel arcs, that is,
pairs of arcs that join the same pair of nodes. Parallel arcs are normally omitted
because, for most problems, it can either be shown that there exists an optimal
solution without parallel arcs or it can be assumed that a realistic solution
contains no parallel arcs. For example, any set of gene trees has an optimal
hybridization network without parallel arcs. For the problems studied in this
paper, however, an optimal solution may require parallel arcs. Considering this
problem with the added restriction that parallel arcs are forbidden may be an
interesting mathematical challenge; however, we do not believe it is biologically
meaningful.

Explicit reasons to allow parallel arcs in networks are abundant. We give
three: First, if one restricts a large network to a subset of the taxa, the nat-
ural restriction could have parallel arcs. Second, phylogenetic Markov models
for character evolution behave differently if parallel arcs are suppressed. Third,
polyploidization events often result from a sort of interspecific or intraspecific
hybridization [2]; an intraspecific hybridization is most naturally represented by
parallel arcs in the network.

Throughout this paper, we allow input trees to be multi-labeled, that is, each
species may appear as a label of multiple leaves in a tree. This is natural for
the problems we study, as gene duplication and reticulation can both lead to
multiple homologous genes appearing in the genome of a single species.

Our Contributions. We show that both Unrestricted Minimal Episodes
Inference and Parental Hybridization reduce to the problem Beaded
Tree, which we introduce in this paper. Using this reduction, we show that
both problems can be solved in polynomial time by adapting Aho et al.’s clas-
sic algorithm for testing gene tree consistency [1]. Thereby, we provide the first
polynomial-time algorithm for an inference problem with a duplication cluster
model. Furthermore, we provide the first polynomial-time algorithm for con-
structing a phylogenetic network from gene trees.

We also show that optimal solutions to Beaded Tree have a restricted
structure and this has corresponding implications for the optimal solutions to
Unrestricted Minimal Episodes Inference and Parental Hybridiza-
tion that our algorithms produce. Moreover, we show that, in fact, all optimal
solutions to Unrestricted Minimal Episodes Inference have a restricted
structure. Therefore, this model should be used with care. We end with a dis-
cussion of different ways to overcome these issues.

See [14] for the full version of this paper.
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2 Preliminaries

We begin by defining multi-labeled trees, which form the input for all problems
considered in this paper.

Definition 1. Let X be a set of species. A multi-labeled tree (MUL-tree) on
X is a directed acyclic graph with one node of in-degree 0 and out-degree 1 (the
root) and with all other nodes having either in-degree 1 and out-degree 2 ( tree
nodes) or in-degree 1 and out-degree 0 ( leaf nodes or leaves). Each leaf is labeled
with an element of X. If each element of X labels at most one leaf, we call the
MUL-tree a tree.

Next, we define a duplication tree, which represents the evolutionary history
of a set of species, including points at which duplication events occurred.

Definition 2. Let X be a set of species. A duplication tree on X is a directed
acyclic graph D with one node of in-degree 0 and out-degree 1 (the root), |X|
nodes of in-degree 1 and out-degree 0 ( leaf nodes or leaves), and all other nodes
having either in-degree 1 and out-degree 2 ( tree nodes) or in-degree 1 and out-
degree 1 (duplication nodes). The leaves are bijectively labeled with the elements
of X. The duplication number of D is the number of duplication nodes it con-
tains.

Informally, a MUL-tree T is consistent with a duplication tree D if T can be
drawn inside D so that branches of T duplicate only at duplication nodes of D,
in the sense that both out-edges of a node of T may follow the same out-edge of
the duplication node (see Fig. 2). We formalize this as follows:

Fig. 2. (a) A MUL-tree T on X = {a, b}. (b) A duplication tree D that is consistent
with T . (c) An illustration showing how T can be drawn inside D, and a zoomed-in
portion to illustrate what happens at the duplication nodes. This shows how two or
more incoming branches may duplicate simultaneously at a duplication node (according
to the Minimal Episodes model).

Definition 3. Given a MUL-tree T on X and a duplication tree D on X, a
duplication mapping from T to D is a function M : V (T ) → V (D) such that
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– For each leaf l ∈ L(T ), M(l) is a leaf of D labeled with the same species as l,
– For each edge uv ∈ E(T ), M(u) is a strict ancestor of M(v), and
– For each internal node u of T with children v, v′, either M(u) is the least

common ancestor of M(v) and M(v′), or M(u) is a duplication node.

This is illustrated in Fig. 3. We say that D is consistent with T if there is a
duplication mapping from T to D.

Fig. 3. A MUL-tree T , a duplication mapping from T to a duplication tree D, and
weak embeddings of T into a beaded tree B and into a phylogenetic network N .

Let S be the species tree derived from D by suppressing duplication nodes.
Then a duplication mapping from T to D represents a reconciliation of T with
S under the Minimal Episodes model. Each duplication node in D represents
a cluster of duplications, which is called a duplication episode. Internal nodes
in T are treated as duplications if they are mapped to duplication nodes of
D, and as speciations otherwise. Duplications are clustered together if they are
mapped to the same duplication node of D. The properties of a duplication
tree and duplication mapping ensure that duplications that are clustered occur
on the same branch of the species phylogeny and have no ancestor-descendant
relationship in a gene tree, as required by the Minimal Episodes model. We are
now ready to define the following problem:

Unrestricted Minimal Episodes Inference
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A duplication tree D on X with minimum duplication number such
that D is consistent with each tree in T .

Next, we introduce the concept of phylogenetic networks, which are central
to the problem Parental Hybridization:

Definition 4. Let X be a set of species. A (rooted binary) phylogenetic net-
work N on X is a directed acyclic multigraph with one node of in-degree 0 and
out-degree 1 (the root), |X| nodes of in-degree 1 and out-degree 0 ( leaves), and
all other nodes having either in-degree 1 and out-degree 2 or in-degree 2 and
out-degree 1 ( reticulation nodes). The leaves are bijectively labeled with the ele-
ments of X. The reticulation number of N is the number of reticulation nodes
it contains.
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Definition 5. Given a set X of species, let N be a phylogenetic network, and
T a MUL-tree on X. A weak embedding of T into N is a function h that maps
every node of T to a node of N , and every edge in T to a directed path in N
such that

– for each leaf l ∈ L(T ), h(l) is a leaf of N labeled with the same species;
– for each edge xy ∈ E(T ), the path h(xy) is a path from h(x) to h(y) in N ;
– for each internal node x in T with children y, y′, the paths h(xy) and h(xy′)

start with different out-edges of h(x).

This is illustrated in Fig. 3. We say that N weakly displays T if there is a weak
embedding of T into N .

We note that N weakly displays T if and only if T is a parental tree inside N as
defined in [23], hence the name Parental Hybridization. The notion of a tree
weakly displayed by a network was first introduced in [13], where it was shown
that T is weakly displayed by N if and only if there exists a locally separated
reconciliation from T to N , which is equivalent to our definition of a weak
embedding. We now formally define the Parental Hybridization problem:

Parental Hybridization
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A phylogenetic network N on X with minimum reticulation number
such that N weakly displays all trees in T .

Next, we define a certain type of phylogenetic network that, together with
the corresponding computational problem defined below, turns out to be the
key to both Unrestricted Minimal Episodes Inference and Parental
Hybridization.

Definition 6. A bead in a phylogenetic network N is a pair of nodes (u, v) such
that there are two parallel edges from u to v. A beaded tree is a phylogenetic
network B in which every reticulation node is in a bead (see Fig. 3).

Beaded Tree
Input: A set T = {T1, . . . , Tt} of MUL-trees with label sets X1, . . . , Xt ⊆ X.
Output: A beaded tree B on X with minimum reticulation number that weakly
displays all trees in T .

3 Reduction to Beaded Trees

The two problems Unrestricted Minimal Episodes Inference and
Parental Hybridization are in fact both reducible to Beaded Tree. This
allows us to focus on the Beaded Tree problem in the rest of the paper.

Lemma 7. Let X be a set of species and T = {T1, . . . , Tt} a set of MUL-trees
on subsets of X. For any integer k, there exists a solution to Unrestricted
Minimal Episodes Inference on T with k duplications if and only if there
exists a solution to Beaded Tree on T with k beads.
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Lemma 8. For any instance T of Parental Hybridization, there exists an
optimal solution B that is a beaded tree.

We can also show that any instance of Beaded Tree has an optimal solution
with a certain interesting structure.

Theorem 9. Given an instance T of Beaded Tree, there exists an optimal
solution B such that all reticulations are on a single path.

Moreover, any optimal solution to an instance of Beaded Tree must satisfy
certain structural properties.

Theorem 10. Given any optimal solution B to an instance T of Beaded
Tree, there exists a path from the root to a leaf of B, such that for any node u
not on this path, there is at most one reticulation strictly descended from u.

4 Beaded Tree Algorithm

Let Supertree denote an algorithm that takes as input a set of MUL-trees T ,
and returns either a tree T weakly displaying T , or the value None if no such
tree exists. A simple modification of the algorithm of [1] can be used for this.

Given a phylogenetic network N on X and a subset S ⊆ X, let N \S denote
the network derived from N by deleting every leaf in S, and then exhaustively
deleting unlabelled nodes of out-degree 0 and suppressing nodes of in-degree 1
out-degree 1. Let N |S denote the network N \ (X \ S).

Given a set T of MUL-trees, let F1(T ) denote the set of trees derived by,
roughly speaking, splitting each tree of T into two by deleting the root.

Definition 11. Let {T1, . . . , Tt} be a set of MUL-trees and X the union of their
label sets. The split partition {S1, . . . , Ss} of {T1, . . . , Tt} is the partition of X
into minimal sets such that, if x and y appear within the same MUL-tree in
F1(T ) and x ∈ Sj, then y ∈ Sj.

The beaded tree algorithm is described in Algorithm 1 and an example is
given in Fig. 4.

Theorem 12. Algorithm 1 finds an optimal solution to the Beaded Tree
problem with input T in time O((|X|3 + |X|2k)n), with n the total number of
vertices of the trees in T and k the reticulation number of an optimal solution.
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Data: T = {T1, . . . , Tt}
Result: Beaded tree B that weakly displays T with minimum number of

reticulations
if |X| = 1 and maxi∈[t] |L(Ti)| = 1 then

return a tree with 1 leaf on X;
end
else

Calculate the split partition S1, . . . , Ss of T ;
for i ∈ [s] do

Let T = Supertree(T |Si
);

if T is not None then
Let B′ = Beaded-Tree(T \ Si);
Construct B by joining B′ and T with a new root;
return B

end
end
Let B′ = Beaded-Tree(F1(T ));
Construct B by adding a bead whose child is the root of B′;
return B

end
Algorithm 1. Algorithm Beaded-Tree(T ).

Fig. 4. (a) An instance T = {T1, T2} of Beaded Tree. (b) The beaded tree B con-
structed by running algorithm Beaded-Tree on T . Initially, the split partition is
{a, b, c}, {e, f, g}. As Supertree returns a tree on {e, f, g}, the top tree node of B has
that tree as one of its children. To construct the other side of B, we run Beaded-Tree
on T |{a,b,c}, and Supertree does not return a tree on this set. Therefore this side of
B begins with a bead.

5 Concluding Remarks

Although we have shown that the Unrestricted Minimal Episodes Infer-
ence and Parental Hybridization problems are polynomial-time solvable,
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we have also shown that the phylogenies produced by solving these problems
have severely restricted structures.

The optimal phylogenetic network that our algorithm produces for the
Parental Hybridization problem is always a phylogenetic tree with “beads”,
where a bead consists of a speciation directly followed by a reticulation. Such
solutions are not necessarily the most realistic or likely ones since they contain a
lot of “extra lineages”, i.e. multiple lineages of an input tree travelling through
the same branch of the phylogenetic network. Minimizing the total number of
extra lineages, the XL-score, irrespective of the reticulation number, is also not
ideal, since there always exists a solution with zero extra lineages and possibly a
very high reticulation number. Therefore, the most relevant open problem that
needs to be solved is to find a phylogenetic network that minimizes a weighted
sum of the XL-score and the reticulation number of the network. Another alter-
native problem formulation that seems reasonable is to minimize the total num-
ber of parental trees that the constructed phylogenetic network has in addition
to the input trees.

Another option would be to completely exclude beads in the solutions. How-
ever, although this is an interesting theoretical open problem, we do not see
a reason why the resulting optimal solutions would by any more realistic, or
why it would be reasonable to assume that a speciation cannot be followed by a
reticulation.

Regarding Unrestricted Minimal Episodes Inference, the situation is
in some sense even worse. We have shown that all optimal solutions have a very
specific structure: there is one main path from the root to a taxon containing
potentially many duplication episodes, while each path branching off this main
path contains at most one duplication episode. Although such scenarios are not
to be excluded (for example see the eukaryotic species phylogeny from [12]), it is
unrealistic to expect all phylogenies to look like this. Therefore, we have proposed
an alternative problem in [14], which miminizes the “duplication depth”: the
maximum number of duplication episodes that lie on any directed path. This
problem can also be solved in polynomial time and we expect it to produce more
realistic solutions. Note moreover that, although the problem definition does
not exclude unnecessary duplication episodes as long as they do not increase
the duplication depth, our algorithm will not create such redundant duplication
episodes. Nevertheless, to properly assess the two algorithms, it is necessary to
implement both algorithms and extensively test them on simulated and real
biological datasets.

Interestingly, the problem Unrestricted Minimal Episodes Reconcil-
iation, where the species tree is given, is not known to be polynomial-time
solvable. There is only an exponential-time algorithm [21]. Could it be possible
to adapt our algorithm for Unrestricted Minimal Episodes Inference to
solve also the reconciliation variant?

Finally, it would be interesting to study more general models, which simul-
taneously take different processes into account, such as duplication episodes,
hybridization, gene loss and transfers. Although such problems have been stud-
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ied in a reconciliation setting where the species tree is (assumed to be) known,
there has been less work on variants where the species tree or network needs to
be inferred. Although such problems seem daunting, we have shown here that
not knowing the species tree can actually make computational problems easier.
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