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Abstract
To create a more sustainable future for aviation, new, lighter-weight structures and materials will need
to be engineered. It will also be critical that damage tolerance and safety are not compromised in
the process. Lattice materials represents one avenue of exploration; however, two key challenges
arise: limited experimental work has been conducted to date regarding tensile mechanical response
and lattice materials are generally considered to be less tough than traditional aerospace materials.
Advancements in additive manufacturing in recent years creates the opportunity to rapidly produce
high-quality complex geometries, allowing for both challenges to be more easily investigated. To ad-
dress the issue of toughness and damage tolerance, nature is a source of inspiration, as all of nature’s
toughest materials derive this characteristic from creating structural hierarchy using intrinsically weak
building blocks.

Two sets of lattice structures were fabricated using stereolithographic (SLA) 3D printing and tested
under quasi-static tensile loading. Two sets of lattices were fabricated: lattices with uniform strut thick-
ness, or relative density, and mixed-relative density lattices which create structural hierarchy. Using a
novel method to track lattice deformation during loading, lattice stiffness-displacement response has
been correlated with beam elongation and rotation behavior and the deformation of individual cells.
The stiffness-displacement response of uniform lattices can be classified by relative density as either
an elastomeric, elastoplastic, or hybrid response. In hierarchical lattices, cell deformations occurring
in different relative density regions are directly correlated to features of the stiffness-displacement re-
sponse.

Aspects of the mechanical response of hierarchical lattices, particularly fracture toughness and fracture
pattern, are heavily influenced by the exact configuration of structural hierarchy, spurring a discussion
of what characteristics are most important in the pursuit of increased lattice damage tolerance. While
none of the lattices represent an optimal solution, each displayed characteristics which, if combined to
form a hybrid structure, could substantially improve lattice damage tolerance.
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1
Introduction

The future of aviation is lightweight; less rawmaterial needed for manufacturing, lower CO2e emissions
over the service life of an aircraft. This future will necessitate pushing the boundaries of what structures
and materials are used, but this must be done without compromising safety. Most of the aircraft flying
above us today have been largely designed to be built from aluminum and titanium. While these ma-
terials are very strong, they are monomaterials, and there is generally a limit to the amount of material
that can be removed before they no longer retain their damage tolerance to the standards that have
been developed in recent decades.

Enter natural structures. Virtually all materials in nature are multi-material structures built from two
basic building blocks: brittle minerals and elastic proteins. Individually, neither are very strong or tough,
but through millions of years of evolution, nature has cleverly arranged these materials using several
layers of structural hierarchy to create some of the world’s toughest materials, like cortical bone and
mother-of-pearl. Cracks that nucleate in a natural material must navigate a maze of obstructions or
follow a path-of-least-resistance which is not parallel to the loading force, both of which aim to reduce
crack driving force and slow damage growth. It would not be remotely practical, however, to construct
an entire aircraft from mother-of-pearl, but the principles can still be applied to engineering design in
the search for new damage-tolerant structures.

Figure 1.1: Example of a hexagonal honeycomb
structure

Figure 1.2: Ashby diagram of strength-toughness
ranges for various material families [2]

One possible avenue for implementing structural hierarchy in engineering design is through the use
of cellular materials. Cellular materials, also called honeycombs or lattice structures, typically are ide-
alized natural structures, defined by their regular, periodic structure comprised of unit cells, shown in
Figure 1.1. They are, however, generally regarded as weaker than their metallic and ceramic coun-
terparts, as shown in Figure 1.2. It is not outside the realm of possibility that cellular structures, when
tuned to a specific application, could be a way to further lighten structures without compromising on
strength, stiffness, or toughness. Recent advancements in additive manufacturing have made it possi-
ble to rapidly create high-quality, homogeneous lattices, making it possible to investigate and validate
numerical models in hopes of gaining more understanding of the experimental behavior of lattice struc-
tures. It also creates the opportunity to explore whether structural hierarchy can be incorporated into

1



2 1. Introduction

these structures and study the impact on damage tolerance. The hierarchical structures of nature pro-
vide an excellent starting point. Nature has already done the research into tough, lightweight structures,
so why spend time reinventing the wheel?

This thesis explores how adding structural hierarchy affects various aspects of the mechanical re-
sponse of hexagonal-celled lattice structures, including fracture toughness, stiffness behavior, and
fracture and cell deformation patterns. Specimens are additively manufactured using stereolithogra-
phy and experimentally tested under quasi-static tensile conditions. Drawing inspiration from nature,
several configurations of structural hierarchy are adapted from various biological materials. Each con-
figuration is chosen with the intent of highlighting different strategies used in nature to create damage
tolerance. A set of non-hierarchical lattices, the uniform lattices, is also investigated to provide a basis
for comparison and gain a fundamental understanding of experimental lattice tensile behavior.

At a high level, this thesis is divided into three parts. Part I begins with additional background in-
formation on damage tolerance and cellular materials, which aim to provide context for this work, and
concludes with the research project definition. Part II further expands on the research definition, detail-
ing the experimental methodology and discussing some limitations and uncertainties in the methods,
followed by presentation of the experimental results. Finally, Part III synthesizes results and observa-
tions, for both the uniform and hierarchical lattices separately, and engages in a discussion on their
implications, what can be concluded from them, and highlights a few opportunities for further work.
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2
Damage Tolerance and Toughness

No structure is built to last forever, but some are more resilient than others. The more a structure is able
to cope with damage without experiencing significant loss of strength or catastrophic failure, the more
tough and damage-tolerant it is considered to be. There is, however, no one-size-fits-all approach, and
damage tolerance can take many different forms depending on the boundary conditions of the design
problem. In the engineering domain, damage tolerance is seen as an inherent characteristic of the
materials used, and understanding how damage progresses has become critical to maintaining safety.
Nature, on the other hand, has taken inherently weak building blocks and used structural hierarchy to
create materials which are purpose-built to survive in the surrounding environment. Both approaches,
though vastly different, ultimately achieve their damage-tolerant goals.

2.1. In aerospace design
In just over 100 years, aviation has seen three major developments in structural design philosophy. At
first, aircraft were designed on the safe-life principle; structures were not expected to fail within their
intended service life. Prolific accidents such as those involving the De Havilland Comet, however, led
to the development of fail-safe design. In fail-safe design, multiple elements create redundancy and
ensure there is not a single point of failure. In the 1970s, damage tolerance emerged as a companion
to safe-life and fail-safe. Damage tolerant design requires that structures be able to withstand expected
loads in the presence of damage until an inspection and repair can be completed [14, 15].

In aerospace design, damage tolerance begins with tough, durable materials. Materials must be
able to resist crack initiation for as long as possible, but failure is inevitable. At this point, it is critical
that materials have a high fracture toughness and are able to resist rapid, unstable crack propagation.
But toughness does not emerge from a single point of origin, rather it is the sum of the interaction of
multiple properties and characteristics. Our understanding of toughness in commonly-used aerospace
materials has been refined through decades of research, maintenance, and accident investigation.
The aircraft of the future will require new materials which could have vastly different properties and
characteristics, but they will still need to demonstrate toughness and damage tolerance. It is, therefore,
critical to understand the underlying mechanisms that impart toughness.

Fracture toughness emerges as the result of several mechanisms working together to resist further
crack growth. These mechanisms, aptly called toughening mechanisms, can be observed in various
forms. Figure 2.1 give schematic representations of a few commonly-observed mechanisms, which
are described below.

(a) Crack deflection (b) Constrained
microcracking

(c) Crack branching (d) Ligament bridging
(behind the crack tip)

(e) Ligament bridging
(ahead of the crack

tip)

Figure 2.1: Schematic representations of common toughening mechanisms
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Crack deflection
Cracks ideally want to follow the path of least resistance, but sometimes this is not possible. Inclusions,
for instance, can create an impassable obstacle, forcing cracks to divert away from the load plane and
requiring higher loads to continue propagation. Crack deflection can also occur due to voids in the
microstructure which provide multiple potential ”paths of least resistance” [16, 17].

Constrained microcracking
Microcracking occurs when several small cracks form in the area surrounding the crack tip, often by
sacrificial elements, as a way to dissipate fracture energy in the structure and increase material plas-
ticity. It can also help promote crack deflection by providing several ”paths of least resistance” [16, 17].

Crack branching
In brittle materials, a crack may split off in two different directions simultaneously. This can be the
result of fast fracture, but can also occur in slow-moving cracks, particularly in materials with complex
stress fields. In either case, the goal is to dissipate fracture energy as quickly as possible using multiple
channels [18].

Ligament bridging
The exact nature of ligament bridging is often a matter of perspective. It can be seen as a mechanism
acting behind a crack tip, where some material remains intact which prevent the fracture planes from
further separation, reducing stresses at the crack tip. It can also be viewed as similar to constrained
microcracking, where material ahead of the crack fractures to relieve stresses at the crack tip, but the
fractures are much larger and extend further into the material than microcracking. For the purposes of
this document, the term ligament bridging will be used to describe both conditions [16, 17].

2.2. In natural structures
While damage-tolerant design is a relatively new philosophy in aviation, nature has been using it for
millions of years to create tough, damage-tolerant structures. Virtually all natural structures are engi-
neered from two base components: brittle minerals, which are weak in tension, and elastic proteins,
which collapse immediately under compression loads. Therefore, damage tolerance in nature is not
derived from the base materials, but how they are assembled at various levels of structural hierarchy.

The mechanisms that drive damage tolerance and toughness in these materials can be a source of
inspiration on improving these characteristics in artificial structures andmaterials. This section explores
some of these materials and the underlying structures which give rise to their tough properties.

Abalone nacre
Nacre, or mother-of-pearl, is one of nature’s toughest materials, owing to a dense brick-and-mortar
patchwork of brittle aragonite CaCOኽ tablets and compliant biopolymers, shown in Figure 2.2. Under
tension loading, the biopolymer interface initially prevents the aragonite tablets from easily sliding past
each other. As loading continues and no existing crack is present, small voids begin to form in the
tablet layers, dissipating stresses across the entire structure. If there is an existing crack, these voids
still form and the crack does progress, but its path becomes tortuous because cracks are guided along
the weak biopolymer interfaces, reducing crack driving force and blunting the crack tip [16, 19–21].

Figure 2.3: Cross-section of a bamboo stem
Inset: Microscopic image of section of bamboo stem with a

theoretical crack path overlaid. Adapted from [3, 4]

Bamboo
Bamboo is one of the most efficient natural ma-
terials in terms of mechanical performance per
unit weight, having 2-4 times the structural effi-
ciency of a solid beam of the same bending stiff-
ness [17]. This characteristic stems from func-
tional grading in the load-bearing fibers of the
stalk, shown in Figure 2.3. The fibers are dis-
tributed such that fiber density increases towards
the outer edge of the stalk, resulting in a modu-
lus gradient from the inner to outer edges of the
stalk. This grading also impacts fracture behav-
ior. Cracks that form in the low-density region
are deflected, reducing crack driving force. As a
crack reaches the high-density region, the force
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(a) SEM image showing the brick-and-mortar microstructure of
nacre [22]

(b) Schematic representations of the aragonite tablets (brown)
and biopolymer (black) that form the microstructure of nacre [23]

Figure 2.2: Nacre microstructure, in nature and idealized

required to continue propagation increases, slow-
ing growth or arresting it entirely [17].

Glass sponge
Where bamboo uses stiff inclusions to divert crack growth, the opposite can be found in glass sponges,
such as Monorhapis chuni and Euplectella aspergillum. Their structure is primarily composed of con-
centric layers of brittle bioglass separated by soft silicatein layers, shown in Figure 2.4 [6, 21], which
work together to resist catastrophic failure.

(a) (b)

Figure 2.4: Fracture in an actual (left [5]) and idealized (right,
adapted from [6]) M. Chuni glass sponge microstructure

Cracks that form in the brittle bioglass phase
are likely to occur suddenly, but are slowed or
stopped by the compliant silicatein layer due to
a reduction in crack driving force, also shown in
Figure 2.4 [6]. As Kolednik et al. point out, this
is a fundamentally different toughening mecha-
nism than that of bamboo or nacre, since it does
not force a crack to turn and continue (crack de-
viation), nor does it rely on some material re-
maining behind the crack tip to carry additional
loads (ligament bridging) [6]. It can seem a bit
counterintuitive; toughness is increased by intro-
ducing a weaker material into the structure; this
structure allows deformation to occur and let the
structure adapt to loading, but also ensures that
cracks cannot gain enough energy to catastroph-
ically propagate.



3
Cellular Materials

Cellular materials 1 have been put to use for thousands of years, but more recently, they have become
a source of inspiration for novel structures. Honeycombs first appeared in the aerospace industry in
the 1910s. Soon after, research into their mechanical response in various loading modes exploded
[24]. The focus, however, was mainly on their out-of-plane properties under compression loads.

The in-plane mechanical behavior of hexagonal honeycomb structures was first extensively stud-
ied analytically by Gibson and Ashby [25]. Their work forms our fundamental understanding of these
structures and is the basis for further research in the field. Subsequent research, however has been
limited to the study of uniform honeycombs using numerical methods that assume linear-elastic behav-
ior, but developments in advanced manufacturing techniques have recently made experimental testing
possible, opening up the field to expand beyond uniform structures.

Lattice behavior can be investigated on two levels, which for this thesis will be defined here as either
lattice-level or cell-level. The term lattice-level encompasses the information that could be obtained if
no images could be recorded during experimental testing; only data collected by the load cell would
be available. Without visual information, only the bulk lattice response can be assessed in terms of
a homogeneous solid with equivalent mechanical properties. The cell-level response, by contrast, is
comprised of all the information that could be obtained by knowing what the structure looks like, without
knowing information about the applied loads or force-displacement behavior.

3.1. Fundamentals
Lattices are idealized representations of natural structures and can be divided into two groups: honey-
combs, two-dimensional structures, and foams, three-dimensional structures, and could be thought of
as a composite material made of a base material and the surrounding air. The foundation of a lattice
structure is the unit cell. Unit cell properties determine not only individual cell deformation behavior
(i.e. cell-level), but also influence the mechanical response of the full lattice (i.e. lattice-level). Three
parameters have been identified which play an outsized role in lattice mechanical response, namely
base material properties, cell topology, and relative density [7].

3.1.1. Base material properties
The general stress-strain response of a lattice’s basematerial determines lattice stress-strain response.
In other words, a lattice made from a brittle material will have a brittle response [7]. This is schematically
illustrated in Figure 3.1 for elastomeric, plastic, and brittle lattices under tension loading.

At the cell-level, base material properties also seem to influence how individual cells deform and
adapt to increasing loads. Gibson and Ashby identified two main types of cell deformation for honey-
combs in tension: cell wall bending and plastic collapse. A third deformation shape was described for
brittle fracture, but not explicitly named [7].

Cell wall bending
Initial cell deformation behavior in linear-elastic lattices is described as ”cell wall bending”, shown in
Figure 3.2, and is the result of linear-elastic deformation [26–28] as bending moments are introduced
into the strut. Inclined struts also carry axial and shear loads, but these are considered negligible for low
relative densities [7]. Bending continues up to failure, when the bending moment in the strut exceeds
the fracture strength of the material.
1There are a number of terms which can be used interchangeably to describe cellular structures, including cellular structure/ma-
terial/solid, lattice structure/material, metamaterial, and (hexagonal) honeycomb. In the context of this work, any of these terms
refer to a two-dimensional hexagonal lattice comprised of a periodic pattern of nodes and the ligaments that connect them, as
shown in Figure 1.1

7



8 3. Cellular Materials

Figure 3.1: Stress-strain responses of a lattice under tension loading per base material type [7].

Figure 3.2: Types of cell wall deformations described by Gibson and Ashby [7].
From L to R: Cell wall bending, plastic collapse, brittle fracture

Plastic collapse
If a lattice is made of an elastic-plastic material, initial deformation occurs by cell wall bending; however,
when the bending moment reaches the fully plastic moment, struts begin to hinge at the node instead
of fracturing [7]. Struts rotate about the node up to the failure point and no longer bend.

Brittle bending
For a brittle lattice under tensile loading, little deformation is expected in the cell walls prior to fracture.
Though not explicitly addressed by Gibson and Ashby, it was predicted that some amount of deforma-
tion occurs in the cell walls immediately ahead of a crack, illustrated on the righthand side of Figure
3.2. This deformation is most pronounced in the cell wall just ahead of the crack, which deflects in one
direction only, as opposed to the s-shape present in cell wall bending [7].

3.1.2. Cell topology

Figure 3.3: Schematic representation of a bending-dominated
lattice (left) and a stretch-dominated lattice (right). Adapted

from [8]

The geometric properties of the unit cell, i.e. size,
shape, and relative density, collectively define
cell topology.

Cell shape dictates how nodes and struts
interact under loading. Cell shapes can be
broadly classified as either stretch-dominated or
bending-dominated, shown schematically in Fig-
ure 3.3. In a stretch-dominated lattice, such as
the triangular lattice, failure is defined by the ax-
ial strength of the struts. In a bending-dominated
lattice, such as the hexagonal lattice, failure oc-
curs when stresses due to bending moments ex-
ceed the material strength. This has implica-
tions for fracture toughness and crack propaga-
tion; bending-dominated structures have a lower
fracture toughness and allow faster propagation
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compared to stretch-dominated structures [8].
Cell size, as the name suggests, is the size of a unit cell and dictates the number of cells in a

lattice with a given set of dimensions. There is, however, no standard method to calculate cell size.
Huang and Gibson and Huang and Chiang defined cell size by strut length, 𝑙, exclusively [29, 30]. This
definition is confusing, however, as 𝑙 is linked with cell shape; a hexagonal unit cell of size 0.5mm does
not have the same area as, and cannot be compared to, for instance, a square unit cell of size 0.5mm.

Relative density describes the ”stockiness” of struts in a lattice and quantifies the geometric rela-
tionship between a lattice and solid, homogeneous material. Relative density can be defined as the
ratio of the density of the cellular structure and the density of the base material, as well as by geometric
parameters:

�̄� ∝ 𝜌
∗

𝜌 = 𝑡
𝑙 (3.1)

3.2. Lattice-level mechanical response
Lattice-level mechanical response is defined by the complex interactions of individual cells deforming
under an applied load. When modelled using analytical and numerical methods, such as the continuum
model or boundary layer analysis, lattice properties, such as relative elastic modulus and relative frac-
ture toughness, and behaviors, such as crack propagation patterns and crack tip displacement, can be
predicted.

3.2.1. Two modelling approaches
The first model used to assess the mechanical response of lattice structures was the continuum model,
developed by Gibson and Ashby [7]. An extension of this model was later proposed by Schmidt and
Fleck to address some of the deficiencies of the continuum model [9].

The continuum model, as the name suggests, compares lattices to an equivalent continuum; the
average forces and moments acting on a single unit cell are calculated using LEFM principles and
then extrapolated to estimate the behavior of the full lattice [7]. This results in expressions for lattice
properties, such as relative elastic modulus and fracture toughness. A criticism of using the continuum
model for FE lattice analysis was raised by Quintana-Alonso and Fleck, who noted that the model is
typically used to predict strength, not fracture toughness, which potentially limits its usefulness [31].
Another disadvantage is that lattices can only be evaluated up to the onset of fracture, since the unit
cell is no longer representative of the entire lattice and stress redistributions cannot be calculated.

Boundary layer analysis is a hybrid approach which builds on the continuum model, where the
plastic zone of an equivalent elastic continuum is assumed and superimposed onto a lattice model
composed of beam elements. This allows a full lattice to be modelled at a relatively low computational
cost and lattice behavior to continue to be modelled after the onset of fracture, providing insight into
lattice damage progression. This expansion also furthered understanding of the stress fields which
develop at an existing crack in a lattice.

Three key assumptions were made in the development of the continuum model. And because
boundary layer analysis uses a continuum approach in part, these assumptions also apply to boundary
layer analysis.

1. Analyses are valid for �̄� < 0.20
Gibson and Ashby identified �̄� < 0.20 as the theoretical limit for which axial and shear forces in
the struts can be neglected. Therefore, the metamaterial models are generally considered valid
for these relative densities [7]. This was corroborated by Huang and Gibson, finding that axial
stresses likely cannot be neglected above �̄� = 0.20 [29].

2. Crack length is large relative to cell size (𝑎/𝑙 > 7)
In conducting experimental studies, Huang and Gibson concluded that it is unrealistic to assume
that cracks will always be large relative to cell size, given that small cracks of 3-4 cells commonly
occur in brittle lattices [29]. The presence of small cracks likely increase in experimental lattices
to due discrepancies between the ideal and ”as-manufactured” lattice [32].

3. All cell walls have a constant modulus of rupture
Several researchers noted that since brittle fracture is a stochastic process, themodulus of rupture



10 3. Cellular Materials

is not constant and is influenced by flaw size and frequency [30, 33], and manufacturing quality
affects lattice consistency and similarity to numerically-modelled lattices [32, 34].

3.2.2. Lattice properties
Generalized expressions were derived analytically by Gibson and Ashby to describe the relative mod-
ulus and fracture toughness of lattice materials [7], called scaling laws, given in Equations 3.2 and 3.3.
These expressions are used in both metamaterial models, and any differences between the two meta-
material models are evident in the values of coefficients 𝐵, 𝑏, 𝐷, and 𝑑; Table 3.1 provides some values
obtained by various researchers for context. Both, however, demonstrate the importance of relative
density in lattice tensile response.

�̄�
𝐸፬
= 𝐵�̄�፛ (3.2)

�̄�ፈፂ
𝜎፭፬√𝑙

= 𝐷�̄�፝ (3.3)

Table 3.1: Sample values for scaling law coefficients obtained in literature

Author(s)
Metamaterial

model used
𝐵 𝑏 𝐷 𝑑

Gibson and Ashby [7] Continuum 2.3 3 0.53 2

Huang and Chiang [30] Continuum FE - - 0.43 2

Fleck and Qiu [35]
Boundary

layer analysis
- - 1.20 2

Tankasala et al. [11]
Boundary

layer analysis
1.5 3 0.76 2

Using the continuum model, however, to determine �̄�ፈፂ has been called into question [31]. In solid
materials, 𝐾ፈፂ should not have any geometric dependencies. In lattice materials, however, geometric
and test condition dependencies have been observed by Huang and Chiang, who found that 𝐾ፈፂ values
obtained in three-point bending tests were higher than those obtained in uniaxial tensile tests for lattices
of the same dimensions [30]. Despite this uncertainty, subsequent research continues to use the scaling
laws and as a means of comparing results in terms of the obtained coefficient values.

3.2.3. Crack propagation
Fracture in lattice structures occurs when the bending moment in a cell wall exceeds the lattice’s mod-
ulus of rupture. The continuum model predicts that this occurs in the cell wall immediately ahead of the
crack tip in brittle lattices, shown in Figure 3.2, while Schmidt and Fleck found that, for elastic-plastic
lattices, the highest bending moment occurring in the strut one cell above or below the crack tip, il-
lustrated in Figure 3.4 [7, 9]. Both models are unanimous in their assessment that once fracture has
occurred in one strut, the rest of the lattice fails quickly. Cracks tend to propagate either above or below
the crack tip with equal likelihood. The fracture of one strut causes stresses to be rapidly redistributed,
overloading the surrounding structure which is already nearing its fracture strength. Once fracture has
begun, cracks tend to ”jump” across cell boundaries strut-by-strut, resulting in ligament bridges behind
the crack tip which help relieve stresses ahead [9].

For solid materials, 𝐾ፈፂ describes the onset of unstable fracture, but Schmidt and Fleck’s findings
on the strut-by-strut fracture pattern are more in line with an observation made by Mayer on natural
ceramic composites. Mayer notes that natural ceramic composite materials have the unique ability to
continue carrying load even after the peak load is reached, dissipating load in small steps rather than as
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Figure 3.4: Fracture path for elastic-plastic lattices as
predicted by Schmidt and Fleck [9]

a. conventional ceramics

b. natural ceramic 

composites

Lo
a

d

Deflection

Figure 3.5: Example load-deflection curves for a
conventional ceramic material and a natural ceramic

composite material [10]

a single, instantaneous fracture, shown in Figure 3.5, behavior which is distinctly different from the tra-
ditional definition of fracture toughness [10]. In the pursuit of tougher cellular materials, �̄�ፈፂ is typically
held up as the end-all, be-all variable to maximize, meaning that stretch-dominated lattices, which have
an inherently higher �̄�ፈፂ, receive more attention in literature compared to ”weaker” bending-dominated
hexagonal lattices of the same relative density, despite these concerns.

Recalling the assumptions made in the continuum model is that the modulus of rupture, and, there-
fore, the probability of fracture, is constant throughout a lattice. Investigations conducted by Cherkaev
and Ryvkin refute this assumption, finding that struts accumulate damage at varying rates as loads are
applied to a lattice, even if they do not fail [36]. They concluded that cumulative damage should not
be ignored when considering how lattice structures fracture, and that it is erroneous to assume that all
beams maintain their full strength at the time of fracture.

Experimental research into fracture patterns in lattice structures has been limited. Wu and Yang
conducted experiments with SLA-printed lattices composed of 10-15 cells, looking specifically at the
sequence of strut failure [34]. The limited number of cells, however, casts doubt on whether results
would accurately describe failure in larger lattices and whether the cells’ relative proximity to the clamps
affected how loads were introduced into the structure and whether this impacted damage progression.
Seiler et al. conducted similar experiments with lattices made from laser-cut PMMA, also looking at
the sequence of strut failure and comparing this to a numerical simulation. To the author’s knowledge,
however, research has not be conducted on the effects of relative density on the fracture patterns of
hexagonal-celled lattice structures.

3.2.4. Crack tip plastic zone

Figure 3.6: Perimeter of the plastic zone for a hexagonal
honeycomb of varying plasticity [11]

In solid materials, the crack tip plastic zone describes
the region of plastic deformation immediately ahead
of the crack tip. Utilizing boundary layer analysis,
Schmidt and Fleck first predicted the shape and size of
the plastic zone for elastic-plastic lattices. When con-
sidering plastic strains above 0.5𝜀፲, the plastic zone
takes on a double-lobed butterfly shape [9]. Expand-
ing on this work, Tankasala et al. found the same
double-butterfly profile, shown in Figure 3.6, and also
determined the effect of material plasticity on the size
of the crack tip plastic zone [11].

This finding has currently only been explored in
FE analyses. Literature limits the discussion in terms
of plasticity, so a possible deterrent to experimental
work could be a lack of suitable methods for assess-
ing whether plastic deformation is occurring in a lattice



12 3. Cellular Materials

structure which may not reach a yield point uniformly. And while cell wall plasticity is the criteria used
in literature, any plastic deformation that occurs in the lattice will be linked with individual cell defor-
mations; the crack tip plastic zone is simply a manifestation of those deformations. Therefore, it is
not unreasonable to think that this double-lobed butterfly shape is not exclusive to lattices experienc-
ing plastic deformation, but lattice deformation behaviors have not been experimentally investigated to
date.

3.3. Beyond uniform relative density lattices
The field of cellular mechanics is relatively new, even more so for cellular structures in tension. Con-
sequently, research has primarily focused on uniform relative density lattices, but recently there has
been a growing interest in expanding beyond the uniform lattice. One promising concept is to introduce
structural hierarchy into lattice structures, which has taken a few different forms.

One approach is to look the compliant and brittle material phases present in natural hierarchical
structures. Libonati et al. and Dimas et al. conducted experimental research with 3D-printed composite
lattices inspired by the structure of cortical bone and nacre, respectively. Both studies found that the
predominant material phase and unit cell shape and orientation influence lattice mechanical response,
including toughening mechanisms and final fracture path [37, 38]. A drawback of this approach is the
use of two distinct materials to create the lattice, leaving concerns about the integrity of the interface
between phases. Manufacturing these structures from a single material would eliminate this issue.

One method for creating hierarchy without using multiple materials is to locally vary relative density
to create ”superstructures” within a lattice. Considering that relative density is the common thread in
nearly all aspects of lattice mechanical response, it is not a stretch to think that lattice mechanical re-
sponse can be tuned in this way. Lipperman et al. also explored this concept, developing an algorithm
which optimized for lattice fracture toughness by redistributing mass within four unit cells which resulted
in an 18% increase in �̄�ፈፂ. There are a few limitations with this approach, however [39]. Lattice frac-
ture toughness was the only optimized variable; other parameters, such as fracture pattern or stress
(re)distribution, were not considered, This casts doubt on the ”optimal” nature of the solution. Without
experimental validation, the reliance on �̄�ፈፂ as the ideal variable to optimize is also called into question.

The idea of creating varying relative density in a lattice structure to improve damage tolerance is
a particularly fascinating one and leads to a flurry of questions. What is the effect of �̄� variations on,
for instance, fracture path or �̄�ፈፂ? Is �̄�ፈፂ even the best parameter to consider here? Do different
regions of �̄� deform independently or work together to create some kind of hybrid response? Does
the exact implementation of �̄� variations matter? These questions are worth exploring to gain a better
understanding of how lattice structures could be tuned for damage tolerance in the future.
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Research Definition

4.1. Research question, objectives, and scope
Following a review of current literature, gaps in knowledge, questions, and missed opportunities still re-
main. A significant gap is the serious deficit of experimental work in the field of cellular structures. Much
of this is due to the lack of high-quality, inexpensive manufacturing techniques up until very recently;
however, this is changing with advancements in additive manufacturing. Continued experimental work
would shed light on the accuracy of metamaterial models which form our understanding of cellular
structures. Questions emerge concerning the influence of relative density on several aspects of lattice
tensile response, such as fracture patterns and deformation during loading, as well as on how lattice
behavior would change in lattices with a non-uniform relative density. Regarding the latter, the tough
natural structures discussed in Chapter 2 provide a starting point for exploring the effects of additional
structural hierarchy. With this in mind, the following question is proposed to guide the research:

How does mechanical response relate to toughening mechanisms that result from structural hierarchy
in cellular materials?

The research objective is twofold: first, to investigate whether variations in relative density affect
the mechanical response of 3D-printed honeycomb lattice structures, and in doing so, establish the
feasibility of using relative density to create structural hierarchy. Second, to explore how mechanical
response is affected when adding structural hierarchy to a lattice by only varying relative density. An
experimental methodology will be used to assess lattice behavior at the lattice level and cell level.

The field of cellular structures is relatively uncharted, even more so for experimental study. There-
fore, the research scope is narrowed to the experimental investigation of the tensile mechanical re-
sponse of 2D hexagonal lattice structures made from a 3D-printed photopolymer, taking relative den-
sity to be the only varied parameter. Two sets of lattices will be used to assess the impact of relative
density. Lattices in the first set will have a uniform relative density that varies between lattices, and a
second set will use relative density to create different structural hierarchies. Four unique topologies
were selected for the hierarchical lattices using two relative densities, shown schematically in Figure
4.1 and described in further detail in Chapter 5. The topologies have been chosen to explore just a few
of the millions of possible implementations of structural hierarchy. As such, this thesis intends neither
to be an exhaustive study, nor present an optimized solution. The intent, rather, is to spark further
research into the intersection of lattice materials and structural hierarchy.

Figure 4.1: Schematic representations of the four selected hierarchical topologies

13
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4.2. Hypotheses
Following from the proposed research question, two sets of hypotheses have been formed. The first
set focuses on the relationship between relative density and mechanical response of uniform lattice
structures, and the second set examines how mechanical response varies when structural hierarchy is
introduced into a lattice.

Hypotheses on the influence of relative density and mechanical response of uniform lattices

1.1 Up to �̄� = 0.2, numerical models predicting lattice stiffness and lattice fracture toughness accu-
rately describe mechanical response

1.2 Up to �̄� = 0.2, lattices exhibit the characteristic double-lobed butterfly crack tip deformation field
shape described by Schmidt and Fleck

1.3 Beyond lattice stiffness and lattice fracture toughness, mechanical response is not affected by
relative density; a lattice made from a brittle base material will exhibit brittle tensile behavior at all
relative densities

1.4 Relative density does not affect fracture path or observed toughening mechanisms; predominant
toughening mechanisms are crack deflection and ligament bridging

Hypotheses on the influence of structural hierarchy on lattice mechanical response

2.1 The predominant material phase (stiff or compliant) drives overall differences between hierarchi-
cal and uniform lattices; differences between lattices of the same predominant material phase
are attributed to cell-level responses

2.2 Compliant/stiff configurations

2.2a The presence of stiff inclusions result in a higher lattice stiffness compared to an equivalent
uniform lattice

2.2b The crack tip deformation field shifts to wrap around stiff inclusions, but still retain the double-
lobed butterfly shape

2.2c The primary toughening mechanism is crack deflection caused by the inclusions
2.2d A cluster of inclusions forces cracks to take a tortuous path, while functionally-graded inclu-

sions do not initially impede crack growth, but force a tortuous path as fracture progresses

2.3 Stiff/compliant configurations

2.3a Removing material in the form of weak channels will promote crack growth and result in a
consistent fracture pattern; fracture is arrested by a stiff phase at the end of the channels

2.3b A consequence of removing material is slightly lower lattice stiffness and lattice fracture
toughness

2.3c Deformation concentrations are primarily observed in the weakened regions
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5
Methodology

To answer the research question and challenge the hypotheses presented in Chapter 4, a research
methodology was devised to explore lattice mechanical response in terms of lattice stiffness, lattice
fracture toughness, fracture patterns, and cell deformation behavior.

From a base specimen design, two sets of lattices were manufactured: a set of lattices with a single
relative density which is varied across the set and a set of lattices with one of four hierarchical topologies
which were implemented by locally-varying relative density. Lattices were tested in uniaxial tension.
Force-displacement data was recorded and used to obtain information on lattice stiffness behavior dur-
ing loading and calculate lattice elastic modulus and fracture toughness. Two cameras, one low-speed
and one high-speed, capture cell deformations and fracture behavior, respectively. Images from the
former were used to visualize and quantify cell deformation behavior using a DIC-like method. Images
from the latter were used to understand lattice behavior at the instantaneous moment of fracture.

5.1. Base specimen design
The final specimen design aims to minimize the number of variables during testing, leaving relative
density as the primary experimental variable. The general configuration of all lattices is shown on the left
side of Figure 5.1. All lattices were built from hexagonal unit cells for two reasons: 1) key assumptions
made in literature are based on the hexagonal unit cell, and 2) due to their bending-dominated nature,
hexagonal unit cells, in theory, are more sensitive to relative density than other topologies, making them
ideal for investigating the effects of relative density and structural hierarchy.

To accurately capture lattice behavior and minimize clamping effects, it is crucial to design lattices
with as many cells as possible given the constraints of the Form2 printer, namely print consistency,
maximum build size, and print time. Therefore, dimensions were chosen such that two specimens
could be printed on one build platform. The final lattice design consists of specimens with 39 rows
and 20 columns of cells and a cell size of 32. Specimen thickness of 8mm was a constraint of the
hydraulic grips used for testing. An initial flaw, consisting of several consecutivemissing struts spanning
approximately 20% of the specimen’s width, simulates an existing crack.

To improve lattice placement consistency during testing, an interlocking slider and clamping block
were designed, shown on the right side of Figure 5.1. The clamping blocks were placed in the test
machine at the beginning of testing and remain there for the duration. The slider, added to the ends
of the lattice, has a tapered design which allows for easy insertion. A small lip at the opening of the
clamping block allows the slider to snap into place, preventing lateral movement during testing.

5.2. Material and manufacturing
Table 5.1: Material properties for Standard

Black resin given by Formlabs [1]

𝜎fs 65 MPa
𝐸 2.8 GPa

𝐸bend 2.2 GPa
𝜀break 6%

Specimens were manufactured using two Formlabs Form2 SLA
printers (Friendly Fly and Sturdy Zebra) from Standard Black
photopolymer resin (FLGPBK04). Clamping blocks were manu-
factured using Formlabs Tough resin (FLTOTL05). After printing,
specimens were cleaned with isopropyl alcohol in a Form Wash
cleaning station and cured in a Form Cure UV curing chamber
for 120minutes at 60°C. Post-cure, specimens were immediately
stored in a dark environment until testing, as photopolymer parts
continue to cure in ambient lighting.

2An alternate definition for cell size was used here to avoid the confusing definition presented in Chapter 3. Cell size is taken as
the square root of unit cell area. Here, the area of one cell is 9mmᎴ, giving a cell size of 3.
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Figure 5.1: Front and side views of the base lattice design (left) and isometric and side views of slider and clamping block
parts (right)

Black resin was chosen for its brittle properties, a summary of which can be found in Table 5.1.
For this research, the material properties provided by Formlabs were taken as accurate and finished
parts are considered isotropic. Specimens with no observable flaws (e.g. collapsed or missing struts,
misaligned layers, debris trapped in cells, etc.) were considered to be ”good”. This is discussed in
further detail in Chapter 6.

5.3. Test matrix
The experimental setup of this research was divided into two phases: uniform relative density lattices
and lattices with structural hierarchy. All specimens were given a unique part number for identification
with the format ”Set ID_Print Number”. As an example, the third printed �̄� = 0.16 specimen would have
the part number ”16_03”. For ease of reading, each set of lattices has an associated icon which will
be used as a visual identifier throughout this document. These icons are given per set in Tables 5.2
and 5.3. Because it was not possible to quantify the statistical likelihood of defects in a lattice, it was
decided to print as many specimens as possible within a reasonable amount of time, considering that
some would ultimately be deemed not suitable for testing.
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5.3.1. Uniform relative density lattices
The first phase was intended to provide insight into the relationship between relative density and me-
chanical response and serve as a baseline for comparing the responses of lattices with structural hier-
archy. Most models described in literature assume results are valid for �̄� < 0.20. Therefore, three sets
meet this criteria. Three additional sets have a higher relative density in order to more fully assess the
impact of relative density on a wide range of lattices. Table 5.2 gives the test matrix for the uniform
relative density lattices.

Table 5.2: Test matrix for uniform relative density specimens

�̄� Icon Set ID # printed 𝑡 (mm) Ideal mass (g)

0.08 � 08 8 0.132 17.9

0.12 �� 12 8 0.200 20.5

0.16 �� 16 8 0.270 23.1

0.20 � � 20 20 0.340 25.7

0.30 � � 30 20 0.526 32.1

0.40 � � 40 20 0.721 38.6

5.3.2. Hierarchical lattices
Four topologies were selected for the second set of lattices, shown in Figure 4.1. All configurations
contain a combination of �̄� = 0.10 and 0.30 cells. Table 5.3 gives the test matrix for the hierarchical
lattices, including equivalent relative density.

Two topologies, Bamboo and Nacre, are predominantly compliant structures with stiff inclusions.
For consistency, the stiff inclusions of both topologies are idealized as diamond-shaped sets of four
cells. The gradient layout of the inclusions in the Bamboo structure is inspired by the functional grading
seen in a bamboo stalk. The densely-packed inclusions of the Nacre lattice is based on the stacked
aragonite tablets in a nacre microstructure, with the compliant struts in between acting as the compliant
biopolymer.

Contrasting this layout are the Glass Sponge and Etching topologies, which mimic primarily stiff
structures with select compliant regions. The Glass Sponge architecture is inspired by the layered
structure of M. Chuni and the idealization created by Kolednik et al. [6]. The Etching topology is
slightly different from the others, as it is not adapted based on a single natural structure. Instead, the
topology was designed around the concept that many tough natural materials use pre-defined weak
interfaces to guide cracks to structures that impede further growth. The compliant channels extending
above and below the crack tip lead to a compliant ”sink” which is intended to blunt the crack tip and
slow growth.

Table 5.3: Test matrix for hierarchical specimens

Configuration Icon Set ID # printed Equivalent �̄� Ideal mass (g)

Bamboo B 8 0.134 20.8
Nacre N 8 0.122 20.0

Glass Sponge G 8 0.269 28.4
Etching E 8 0.291 29.6
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_

Figure 5.2: Schematic representations of the tapered lattice (top) and density gradients (bottom) approaches for minimizing
clamping effects.

5.3.3. Specimen design variations
Boundary conditions Due to the compliance of the lattice relative to the solid slider, strategies
needed to be adopted to minimize clamping effects, shown in Figure 5.2. A tapered, dogbone-like
approach was taken for the uniform specimens, trimming one column of cells from each side of the
lattice. This, however, resulted in some unintended effects which will be further described in Chapter
7; the tapering was replaced by a four-row relative density gradient in the hierarchical lattices which
intended introduce load more gradually into the lattice.

Layer thickness In order to achieve good part quality, differing layer thicknesses were used to print
the lattices. For uniform lattices of �̄� ≥ 0.20, a resolution of 100 microns was sufficient, while the low
strut thickness in �̄� < 0.20 lattices necessitated a resolution of 50 microns. Due to the �̄� = 0.10 regions,
all hierarchical lattices were printed at a resolution of 50 microns. Practically, this should only impact
print time; Formlabs’ pre-processing software, PreForm, did not indicate that material volume changes
with changing layer thickness.

Initial crack Contrary to the base specimen design, the Glass Sponge topology contains a center-
crack flaw. This was chosen to better-mimic the M. Chuni structural hierarchy and prevent excessive
strain energy from building up in the stiff phase of the lattice.
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5.4. Measurement techniques

Figure 5.3: Photo of tensile test setup with a lattice loaded in
the test machine. The Photron camera is in the center of the

photo, with the Optimotive Velociraptor just to the right.

Quasi-static tension tests were performed us-
ing a Zwick 1455 10kN tension/compression
bench fitted with hydraulic grips. Tests were
displacement-controlled at a rate of 5mm/min
and a preload of 20N was applied to account
for specimens settling. Force vs. displace-
mentmeasurements were captured by the on-
board extensiometer at 100Hz.

To help capture cell deformation behavior,
raised dots, hemispheres of radius 0.25mm,
were printed onto the lattice face at each node
and at the midpoint of each strut. After cur-
ing, the dots were painted with white tem-
pera paint to provide contrast, shown in Fig-
ure 5.4a. The mass of the dots can be con-
sidered negligible. If density is assumed to
be 1.20cm/g3 [40] and a specimen contains
around 4,500 dots, the maximum additional
mass due to the dots is 0.178 grams. This
is further reduced if the dot radius is larger
than the strut thickness, as dots were cut to
follow the cell’s inner perimeter, shown in Fig-
ure 5.4b.

During testing, two cameras were used
to capture lattice deformation. Over the full
duration of a test, an Optomotive Velocirap-
tor camera records images at 2fps. Analog
output from the Zwick extensiometer was si-
multaneously recorded to correlate each im-
age with a force. A Photron Fastcam Mini
camera recording at 6,400fps was used to
record brittle fracture which could not be suf-
ficiently captured by the Optomotive Veloci-
raptor. The purpose is purely qualitative;
high-speed images do not have any force-
displacement data associated with them.

(a) (b)

Figure 5.4: Left: Raised dots on the surface of a lattice after white tempera paint has been applied.
Right: Zoomed-in isometric view of ᎞̄ ዆ ኺ.ኻኼ lattice showing the cut raised dots.
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5.5. Data processing
5.5.1. Lattice-level
The lattice-level data processing was comprised of three main parts: stress-strain response, lattice
stiffness behavior, and bulk lattice properties.

Stress-strain response
From the force-displacement curves, stress-strain response was obtained by idealizing the lattice as a
solid block of material with equivalent properties. Stress was obtained by dividing force by the cross-
sectional area of the lattice, and strain was obtained by dividing displacement by the original length of
the specimen.

Stiffness-displacement response
Lattice stiffness-displacement response was obtained by taking the first derivative of the stress-strain
curve, resulting in a relationship between displacement and the lattice’s tangent modulus throughout
loading, providing insight on how the lattice is able to resist deformation at various points. As the initial
result of this derivation is quite noisy, a local linear regression was applied to smooth the data.

Lattice elastic modulus and fracture toughness
Two lattice properties were of interest in this research, namely lattice elastic modulus and fracture
toughness 3. Lattice elastic modulus, �̄� was determined by taking the slope of the stress-strain curve in
the linear-elastic regime. Identification of the LE regimewas supplemented by the stiffness-displacement
response. Lattice fracture toughness, �̄�ፈፂ was calculated assuming the lattice to be a continuum with
equivalent properties and calculating the stress intensity factor at the fracture stress, using the geo-
metric parameters given in Figure 5.5 in Equations 5.1 and 5.2 for edge-cracked and center-cracked
specimens, respectively.

2b

2a

b

a

Figure 5.5: Geometric parameters for a center-cracked (left) and edge-cracked (right) plate

𝐾ፈፂ = 𝜎፟፬√𝜋𝑎[1.122 − 0.231(
𝑎
𝑏) + 10.55(

𝑎
𝑏)

ኼ
− 21.71(𝑎𝑏)

ኽ
+ 30.382(𝑎𝑏)

ኾ
] (5.1)

𝐾ፈፂ = 𝜎፟፬√𝜋𝑎[
1 − ፚ

ኼ፛ + 0.326(
ፚ
፛ )
ኼ

√1 − ፚ
፛

] (5.2)

To compare experimental results with literature, the resulting values for �̄� and �̄�ፈፂ were input to the
appropriate scaling law from Equations 3.2 or 3.3, respectively, and solved for coefficients 𝐵, 𝑏, 𝐷, and
𝑑, using a power1 curve fit in Matlab.

3To avoid confusion with properties commonly seen as material properties, the term ”lattice” is added as a qualifier to the terms
”elastic modulus” and ”fracture toughness”.
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5.5.2. Cell-level
Cell-level behavior reintroduces the lattice as the honeycomb structure comprised of nodes and struts
which adapt to increased loading both individually and cooperatively. Cell-level behavior analysis,
therefore, stems from images taken during testing to understand how the lattice adapts to changing
loads.

To quantify cell deformation behavior, the movement of each dot relative to its surroundings must
be established. To that end, a DIC-like method was developed. An accompanying Matlab applet was
concurrently developed for ease of use. The applet GUI can be seen in Figure 5.6 and will be used as
a guide 4.

�

�

�

�

Figure 5.6: User interface for the Matlab applet developed as a tool to streamline deformation calculations.

1. Specimen selection
From the selected working directory, a list of specimens which can be processed is generated in
the left-hand column. Selected part numbers are automatically copied into the right-hand column.

2. Establishing dot trajectory
Images are processed using an open-source particle tracking code developed by Crocker and
Weeks which establishes the trajectory of each dot over the set of images (frames) [42]. The
output is a matrix of all tracked dots and their xy-position per frame where each row corresponds
to a single tracked dot and each column represents a frame.

4All Matlab code used and developed for this method can be found on Github [41]

https://github.com/katharina-ertman/latticeDeformations
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3. Deformation calculation
This step consists of several sub-steps,
described below:

(a) Creating associations between
dots
From the outputted xy-coordinates,
associations must be created be-
tween dots which link them to
neighboring dots to form a beam.
This is done with the help of a 2D
Delaunay triangulation. This pro-
cess is shown in Figure 5.7 for a
section of a lattice.
i. Delaunay triangulation
A Delaunay triangulation is ap-
plied to the xy-coordinates of
dots in the first frame, result-
ing in a system of triangles con-
necting each point such that
each triangle contains no inte-
rior points.

ii. Node identification
A node is identified exclusively
as the confluence of three tri-
angles. The three triangles
which share this node as a ver-
tex are noted.

iii. Midbeam identification
The remaining vertices of the
three triangles are identified
as midbeam dots connected to
that node. Extraneous trian-
gles associated with the mid-
beam dot are discarded.

iv. Reduction to only nodes and
midbeams
Steps ii and iii are simultane-
ously applied to the entire lat-
tice, resulting in a wireframe of
only nodes and midbeams.

v. Beam identification
Full beams are associated
by matching up half-beams
which share a midbeam dot.
Beam coordinates are stored
as a matrix consisting of Node,
Midbeam, and Neighbor xy-
coordinates. Duplicate beams
are discarded.

i)

1 2
3

ii)

1

2

3

iii)

iv)

Node

Midbeam

Neighbor

v)

Figure 5.7: Visualization of the method developed to
associate dot position to form beams in order to calculate

deformations in a lattice.
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(b) Beam association through all frames
Since only the first frame is used to create the beam associations, each dot in the newly-
created matrix is correlated with the dot positions in the output matrix from Step 2. The result
is a 3-dimensional matrix with associated Node, Midbeam, and Neighbor xy-coordinates for
each frame.

(c) Calculating deformation
Two types of deformation are considered: elongation and rotation. Elongation is defined as
the uniaxial deformation of the beam, given by:

Δ𝐿 = 𝐿 − 𝐿ኺ
𝐿ኺ

(5.3)

Only positive elongations are considered. Negative elongations would be the result of vari-
ous forms of beam bending that cannot be fully captured by uniaxial compression behavior.
Beam rotation is calculated as the change in angle of inclination of each strut compared to
the first frame, shown in Figure 5.8. This is done by taking the four-quadrant inverse tangent
(atan2 function in Matlab), which automatically accounts for the direction of rotation.

4. Visualizing results
Lattice deformation results are visualized by plotting each beam as a line which an associated
color. To minimize visual clutter, all beams are gray except those which are contributing to 90% of
the total deformation; the cutoff value was chosen to balance visual clarity and usefulness. Beam
colors are assigned based on the jet colormap.

(x,y)

(x’,y’)

θ’
θ

θ = atan2(y,x)

θ’ = atan2(y,x)

Δθ = θ-θ’

Figure 5.8: Sample sketch of rotation deformation calculation using the atan2 function.
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Sources of Uncertainty

As with any research, every effort is made to ensure that results are free from unintended variation. The
nature of research, especially experimental research, does not always lend itself to this, and variation
is inevitable. In the spirit of providing a more complete picture, the following chapter addresses some
potential sources of uncertainty in the results.

6.1. Material and manufacturing
The choice of material was primarily a practical one. As far as rapid prototyping processes go, SLA pro-
duces consistently high-quality, isotropic parts and was readily available in the DASML. Black Standard
resin was chosen for ease of capturing image data during testing. With these choices came inherent
uncertainties, namely in polymer behavior and the manufacturing process.

Polymer behavior In literature, the base material of a lattice is assumed to be linear-elastic, have an
elastic-brittle response with no strain-rate or hydrostatic sensitivities. Manufacturing the experimental
lattices from a polymer material, therefore, introduces some uncertainties which must be considered in
the context of this work.

Figure 6.1: Modified Von Mises yield
envelope for polymer materials. Note
the stress bias line which delineates
the onset of crazing in polymers

under tension [12].

Polymers are notoriously weak in tension. This is partially due
to their sensitivity to hydrostatic pressure, evidenced by the Von
Mises yield surface for polymers, shown in Figure 6.1. Entan-
glements and polymer chain length also factor into this disparity.
In compression, chain length is not an issue, as polymer chains
densify with increasing load, thereby increasing stiffness and yield
strength. In tension, however, the variation in chain length can
lead to void formation, meaning that any structural weakness will
become apparent much more quickly [43]; however, it is virtually
impossible to know where these defects may be located, so this
must be considered as a possible reason for premature failure.

Polymers are also strain-rate sensitive and exhibit viscoelas-
tic behavior. All specimens were tested at a rate of 5mm/min to
maintain consistency across the test matrix, but the lattice is also
strain-rate sensitive; a 5mm/min test machine strain rate does not
directly translate to a 5mm/min strain rate at all locations in the
lattice itself. Consequently, further testing would be needed to de-
termine lattice strain-rate sensitivity.

Material unknowns As Formlabs resins are proprietary, there is limited information about their com-
position and properties. The Standard Black resin MSDS states that it is a mixture of methacrylated
oligomers and monomers, photoinitiators, and dye [44]. Therefore, for the purposes of analysis, it is
assumed that final properties are similar to PMMA.

Manufacturing process There are several opportunities for uncertainty to arise in the manufacturing
process. To determine the effects of various parameters, an informal study was conducted during the
manufacture of a set of uniform lattices, where the printer used, date and time of print start and end, date
and time of post-processing start and end, relative humidity and ambient temperature, and print quality
were recorded and later compared to mechanical performance. The full results accompanied by a short
discussion can be found in Appendix A. It was concluded that visual print quality was the determining
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Figure 6.2: Examples of poor-quality lattices. Note the
filled cells in the top row, the lack of definition in the
raised dots, and separation between the slider and

pull-tab
Figure 6.3: Partially-broken struts in a ᎞̄ ዆ ኺ.ኺዂ lattice

due to support material removal

factor in mechanical response. Parts with resin-filled cells or those that lacked sharp internal vertices,
exemplified in Figure 6.2, did not perform consistently relative to parts of the same relative density.
Going forward, it was assumed that visually-okay parts were also structurally acceptable.

Upon completion of post-processing, support material was removed from parts. Particularly at low
relative densities, this sometimes resulted in partially-broken struts, shown in Figure 6.3 with red circles
highlighting some damaged areas. In theory, this should not impact mechanical behavior significantly;
small variations z-direction strut thickness slightly alter the cross-sectional area at that location, but in
the context of the full lattice, it is assumed that these should not substantially affect structural integrity.

6.2. Specimen design
Switching from the dogbone-like end configuration in the uniform lattices to the density gradient config-
uration in the hierarchical lattices was done to minimize interference from the sharp change in stiffness
near the clamp, based on knowledge gained during testing. This decision comes with uncertainty.
Since the uniform lattices were not repeated with this density gradient, it is reasonable to assume
this change has a not-insignificant effect on mechanical response, and caution should be taken when
interpreting and comparing results, particularly lattice-level results.

6.3. Testing
Further uncertainty is related to the experimental setup itself. The decision to design and use fixed
clamping blocks was driven by testing ease and repeatability. The same guide tools were used any
time blocks were placed or replaced, making it reasonable to assume that all specimens experienced
loading in the same way. Because blocks did occasionally break outside of testing, several sets of
clamping blocks were produce and were assumed to have the same properties and dimensions.



7
Results

This chapter presents the results of the experimental and analysis methods described in Chapter 5 and
is divided into two main sections: uniform relative density lattices and hierarchical lattices. Each section
is further divided into lattice-level and cell-level results. Where applicable, relevant observations made
during testing are also included. Interpretation of the following results and observations, as well as a
more-detailed discussion on their implications, will be done in Chapters 8 and 9 for the uniform and
hierarchical sets, respectively.

Every tested specimen has a large set of test data and images and processed data associated
with it, making it impractical to provide all results in this chapter. Therefore, for ease of reading and
convenience, results can be explored in several ways, outlined in Table 7.15.

Table 7.1: Summary of available data and results, including location.

Location Test images Force-displacement
and derived data �̄�, �̄�ፈፂ Fracture path Deformation fields

Chapter 7 - Representative
specimens

Average
per set

Representative
specimens

Representative specimens
(still image only)

Appendix C - Select additional
specimens - Select additional

specimens
Select additional specimens

(still image only)

Online All specimens All specimens - All specimens All specimens
(still images and videos)

7.1. Uniform relative density lattices
7.1.1. Lattice-level
A summary of lattice level results can be found in Table 7.2 with number of specimens tested, mass
characteristics, and average force-displacement behavior for each relative density set.

Table 7.2: Summary of mass characteristics and force vs. displacement response for all specimens.
Column 2 reflects the number of specimens used for analysis, and the discrepancy between the number of specimens in
Tables 5.2 and 7.2 is a result of either poor print quality, accidental fracture prior to testing, or unsalvageable dot painting.

Configuration # tested Avg. actual mass (g) Avg. 𝐹፦ፚ፱ (N) Avg. Δ𝐿 (mm)

� 5 20.2 (12.8%) 177.83 14.63
�� 5 20.6 (+0.5%) 153.78 11.49
�� 5 22.3 (-3.5%) 203.64 12.79
� � 6 24.8 (-3.5%) 399.30 13.49
� � 8 30.0 (-5.0%) 695.04 8.48
� � 9 36.0 (-6.7%) 1378.60 5.87

5Online data can be found on OSF
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Force vs. displacement
Figure 7.1 shows the unaltered force vs. displacement curves for a representative specimen per relative
density. As the force-displacement behavior varied slightly within a set, the representative specimen
was chosen to be one whose force-displacement curve fell more-or-less in the middle of the set in
terms of maximum force and displacement. The corresponding stress-strain curves derived from the
force-displacement curves are given in Figure 7.2. Representative stiffness curves for each relative
density are given in Figure 7.3. During testing, a brief cracking noise was often heard in several lattices
of all relative densities around the point where the slope of the force-displacement curve noticeably
changes.
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Figure 7.1: Raw force-displacement curves for
representative specimens of each uniform relative
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Lattice elastic modulus and fracture toughness
Figures 7.4 and 7.5 show the average lattice elastic modulus and lattice fracture toughness per relative
density, respectively. As described in Section 5.5.1, lattice fracture toughness is calculated based on
an initial crack length; however, fracture did not consistently initiate at the existing crack tip. Therefore,
when fracture initiated elsewhere in the lattice, the value for 𝑎 was set based on the number of fractured
cells which constituted the ”new” crack tip, illustrated in Figure 7.6. If fracture initiated at a point where
no cell walls had broken, 𝑎 is taken to be the width of one cell [7].
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0

0.02

0.04

0.06

0.08

0.1

0.12

D = 0.230

d = 2.112σ
ts
l0.5

K
IC

_

= Dρd
_

�  !  " !# $# %#

R2 = 0.8244

L
a

tt
ic

e
 f

ra
c

tu
re

 t
o

u
g

h
n

e
s

s
 (

M
P

a
•m

0
.5
)
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1

23

Figure 7.6: Example of lattice with an altered value for crack length, a, to calculate ፊ̄ᑀᐺ. The lattice failed at the upper-right
hand corner where three cells had already fractured. Therefore, the value for a is changed to reflect this ”crack length”.
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7.1.2. Cell-level
This section presents the cell-level results, consisting of the fracture images and deformation fields.

Fracture

Figure 7.7: Samples of debris of various sizes which broke
from lattices during testing.

Using images from the Optomotive Veloci-
raptor camera, a timeline of damage progres-
sion was established. High-speed images,
if available, were used to determined which
strut failure initiated final fracture. Figure 7.8
shows the extent of damage in the represen-
tative lattices; the final fracture path(s) is in-
dicated by a red line, the catalyzing fracture,
if known, is shown in yellow, and any inter-
mediate fractures which did not induce final
fracture, are shown in blue.

Fracture in all specimens often resulted
in debris of varying size, ranging from one
to two struts to large chunks which blew out
from the lattice, shown in Figure 7.7. In low-
density lattices, fracture was aurally charac-
terized by several cracking noises in succes-
sion, followed by final fracture which did not
necessarily propagate through the entire lattice. At high relative densities, by contrast, fracture oc-
curred loudly, violently, and with little warning; the latter two are illustrated by high-speed images which
can be viewed here.
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(f) ᎞̄ ዆ ኺ.ኾኺ

Figure 7.8: Fracture paths for selected specimens of each uniform relative density set
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Deformation fields
The elongation and rotation deformation fields for representative lattices are given in Figures 7.9 and
7.10, respectively. A summary of the average maximum elongation and rotation values per relative
density is given in Figure 7.11. There are sporadic gaps in the deformation fields. There are two
conditions that could cause this:

1. A dot was not visible or distinguishable to the particle tracking code. Consequently, when the
Delaunay triangulation is applied the surrounding unit cell is not processed and leaves a gap in
the deformation field.

2. There is an erroneous dot close to a node, resulting in a node that is the confluence of four
triangles, not three. The dot is, therefore, not identified as a node. Widening the search scope to
include the confluence of four triangles would have required additional, highly specific constraints
to accurately identify the node in these cases and was deemed not necessary given that this
condition does not occur frequently.

While the deformation fields are useful for understanding where deformations concentrate in the
lattice, it is difficult to discern and appreciably understand how deformation is distributed throughout
the lattice. Therefore, a half-normal distribution is fitted to the histogram of all (elongation and rotation)
deformation in the final frame in order to more-easily visualize this distribution. An example is illustrated
in Figure 7.12, and Figure 7.13 shows the average distribution function per deformation type per relative
density.
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Figure 7.9: Elongation deformation fields for ᎞̄ ዆ ኺ.ኺዂ, ኺ.ኼኺ, and ኺ.ኾኺ lattices
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Figure 7.11: Average maximum beam elongations (left) and rotations (right) in the final frame prior to failure in uniform relative
density lattices. Error bar represents the standard error of the mean.
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Figure 7.12: Example of half-normal distribution fitted to the histogram of all beam rotations in the final frame of a ᎞̄ ዆ ኺ.ኺዂ
lattice.
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Figure 7.13: Average half-normal distribution fit for beam elongations (left) and rotations (right) in uniform relative density
lattices.



7.2. Hierarchical lattices 33

7.2. Hierarchical lattices
7.2.1. Lattice-level
A summary of lattice level results can be found in Table 7.3 with number of specimens tested, average
mass characteristics, and average force-displacement behavior per hierarchical configuration. Both
3D printers underwent maintenance prior to this set. Combined with an improved understanding of dot
painting, a larger fraction of printed lattices were deemed suitable for tested. One challenge emerged
for the Etching lattices, however; the angle of the compliant channel left these lattices susceptible to
shearing while placing them in the clamping blocks. Extra care was taken to ensure fracture would not
occur during this step, but nonetheless a few lattices were lost prior to testing.

Table 7.3: Summary of mass characteristics and force vs. displacement response for all specimens

Configuration # tested Ideal mass (g) Avg. actual mass (g) Avg. 𝐹፦ፚ፱ (N) Avg. Δ𝐿 (mm)

5 20.8 23.5 (13.0%) 198.05 6.80
5 20.0 21.3 (+6.5%) 148.32 5.68
6 28.4 28.4 (-) 605.67 4.80
6 29.6 29.2 (-1.0%) 445.83 3.66

Force vs. displacement
Figure 7.15 shows the unaltered force-
displacement curves for a representative lat-
tice of each hierarchical configuration, and the
stress-strain curves derived from the force-
displacement behavior are shown in Figure
7.16. The corresponding representative stiff-
ness curves for each hierarchical set are given
in Figure 7.14.
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Figure 7.14: Stiffness curves for a representative lattice of
each hierarchical configuration. Stiffness is plotted w.r.t.

relative displacement such that all curves are plotted from 0
to 100% of total displacement.
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Figure 7.15: Raw force-displacement curves for
representative specimens of each hierarchical lattice

configuration.
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Lattice elastic modulus and fracture toughness
Figure 7.17 shows the lattice elastic modulus and lattice fracture toughness values obtained for the
hierarchical lattices. Similar to the uniform relative density lattices, the value of 𝑎 for lattice fracture
toughness was adjusted depending on where fracture initiated.
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Figure 7.17: Average lattice elastic modulus (left) and lattice fracture toughness (right) for all relative density sets. Error bar
indicates standard error of the mean.
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7.2.2. Cell-level
Fracture
Figure 7.18 shows the fracture patterns for representative lattices of each configuration. Like the uni-
form lattices, the final fracture path is indicated by a red line, the catalyzing fracture, if known, is shown
in yellow, and any intermediate fractures which did not induce full failure are shown in blue.

Fracture occurred quite quickly in all hierarchical lattices, though there were differences in the ex-
plosiveness of varying configurations. These differences are best illustrated by the high-speed images
for a Nacre and Glass Sponge lattice, which can be viewed here. The exception to this are two Bam-
boo lattices (B_04 and B_06) which experienced partial fracture and continued to withstand loading for
several more millimeters.

(a) (b)

(c) (d)

Figure 7.18: Fracture paths of representative specimens of each hierarchical configuration. The transparent blue areas
indicate the location of the stiff inclusions or compliant regions.

https://osf.io/75wkq/
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Deformation fields
The elongation and rotation deformation fields for a representative hierarchical lattice are given in Fig-
ures 7.19 and 7.20, respectively. A summary of the average maximum elongations and rotations per
configuration are presented in Figure 7.21. Like the uniform relative density lattices, a half-normal
distribution function can be fitted to the histogram containing all deformation values in the final image
before fracture, shown in Figure 7.21.

0 200 400 600 800 1000

-200

0

200

400

600

800

1000

1200

1400

1600

B_01 Elongation

1.17%

1.50%

(a)

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

1800

N_01 Elongation

0.67%

0.91%

(b)

0 200 400 600 800 1000

-200

0

200

400

600

800

1000

1200

1400

1600

G_04 Elongation

1.07%

1.50%

(c)

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

E_03 Elongation

1.03%

0.70%

(d)

Figure 7.19: Elongation deformation fields for hierarchical lattices. Clockwise from top-left: Bamboo, Nacre, Etching, Glass
Sponge
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Figure 7.20: Rotation deformation fields for hierarchical lattices. Clockwise from top-left: Bamboo, Nacre, Etching, Glass
Sponge
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Figure 7.21: Average maximum beam elongations (left) and rotations (right) in the final frame prior to failure in hierarchical
lattices. Error bar represents the standard error of the mean.
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Figure 7.22: Calculated half-normal distribution fit for beam elongations (left) and rotations (right) in hierarchical lattices.
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8
Discussion: Uniform Relative Density

8.1. Introduction
One of the most, if not the most, important parameters in cellular material mechanical response is
relative density. There is a growing body of knowledge in this field, though much of it remains at the
lattice level and is the product of numerical methods. But ultimately, lattice behavior is determined by
how individual nodes and ligaments deform in response to loading. The question naturally arises of
whether a relationship can be identified which ties cell-level deformations to global lattice mechanical
response, and, if so, how does relative density influence this relationship? Chapter 8 will explore these
questions for the set of uniform relative density lattices, after which Chapter 9 will continue with a
discussion on the hierarchical lattice results.

In investigating this potential link, the deformation behavior of individual cells will be examined.
Though two cells rarely deform in the same way, three general deformation shapes can be seen in the
experimental lattices, described below and visualized in Figure 8.1 to guide the reader and provide a
point of reference.

• Nodal hinging This shape is characterized by nodes which appear to act as pin joints. Struts
remain straight and rotate in towards the center of the unit cell.

• S-bending The nodes of s-bending cells act more like a fixed supports and allow little rotation.
Coupled moments created by the nodes cause struts to bend in the characteristic ”S” shape with
an inflection point in the center of the strut

• U-bending Similar to s-bending, nodes behave like fixed supports and allow little rotation. Op-
posite moments created by the nodes cause struts to bend in a u-shape with no inflection point

~� � º ~� � º

Undeformed Nodal hinging S-bending U-bending

Figure 8.1: Cell deformation shapes identified in experimental lattices
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8.2. Interpretation of results and observations
The remainder of this chapter focuses on the uniform relative density lattice results. Recalling Chapter
4, the research intent of this set of lattices is to establish a relationship between lattice mechanical
response and relative density which can be compared to literature and the mechanical response of the
hierarchical lattices which will discussed in Chapter 9. Guiding this intention is the first set of hypotheses
presented in Chapter 4, recalled below for ease of reading.

The first two hypotheses focus on how the lattice-level responses compare to existing mechanical
models in literature. The latter two hypotheses look more at the impact of relative density on how the
lattice adapts to loading at the cell-level. Following from the results presented in Chapter 7, several
observations can be made which will be discussed here in context of literature and these hypotheses.

1.1 Up to �̄� = 0.2, numerical models predicting lattice stiffness and lattice fracture toughness accu-
rately describe mechanical response

1.2 Up to �̄� = 0.2, lattices exhibit a double-lobed butterfly crack tip deformation shape

1.3 Beyond lattice stiffness and lattice fracture toughness, mechanical response is not affected by
relative density; a lattice made from a brittle base material will exhibit brittle tensile behavior at all
relative densities

1.4 Relative density does not affect fracture path or observed toughening mechanisms; predominant
toughening mechanisms are crack deflection and ligament bridging

Using parameters based on bulk properties to describe lattice behavior may not be adequate
The scaling law coefficients obtained from Equations 3.2 and 3.3 and presented in Figures 7.4 and 7.5
can be compared to literature. Figure 8.2 shows the experimental values plotted against the expected
values from literature over the same range of relative densities.
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Figure 8.2: Calculated experimental ፄ̄ (left) and ፊ̄ᑀᐺ (right) values compared to numerical predictions from literature

For this comparison, the value of the exponential coefficient is of greater importance than the con-
stant coefficient. The initial constant coefficient value must be divided by 𝐸፬ or 𝜎፭፬ for lattice elastic
modulus and fracture toughness, respectively, making its value dependent on the chosen material
properties which, as discussed in Chapter 5, are assumed to be correct. Therefore, any discrepancy
in 𝐵 and 𝐷 between the experimental results and literature is likely related to material properties. That
said, when the full range of �̄� is considered, there is generally good agreement with literature for both
lattice elastic modulus and lattice fracture toughness for the exponential coefficients, as 𝑏 only varies by
6.8% and 𝑑 by 5.6%, suggesting that despite differences in base material properties, these coefficients
are primarily linked with cell topology.

To assess the validity of the assumption that results are valid when �̄� < 0.20, the scaling law
coefficients are recalculated for the sets 0.08 < �̄� < 0.20 and 0.20 < �̄� < 0.40 and presented in Table
8.1. For both parameters, interestingly, the coefficients obtained in the high-density lattice set align
more closely with literature than the low-density set. This difference could arise from a lack of printing
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Table 8.1: Scaling law coefficients for lattice elastic modulus and fracture toughness broken down by low- and high-density

�̄� �̄�ፈፂ
𝐵 𝑏 𝐷 𝑑

Full 0.373 2.796 0.23 2.11
0.08 ≤ �̄� ≤ 0.2 1.53 3.491 1.31 2.56
0.12 ≤ �̄� ≥ 0.2 - - 0.838 2.91
0.20 ≤ �̄� ≤ 0.40 0.323 2.618 0.57 1.99

precision at low relative densities, which possibly misrepresented the true relative density in sub-0.20
lattices. Given that the actual mass and �̄�ፈፂ for �̄� = 0.08 and 0.12 is quite similar. If �̄� = 0.08 was
causing problems, one would then expect the coefficients to align more closely with literature when it
is omitted from the curve fitting; however, this is not the case.

This leaves the evidence supporting Hypothesis 1.1 is, therefore, somewhat confusing. Over a wide
range of relative densities which includes �̄� > 0.20, the scaling laws seem to accurately describe lattice
behavior, but the relation breaks down when only �̄� ≤ 0.20 lattices are considered. Another possibility
lies with the scaling law itself, that it is developed based on a solid continuum. This would cause the
relation to more accurately describe lattices which behave more like a continuous medium, in this case
the high-density lattices This raises further questions about, a) how representative these lattices are
with respect to an ideal lattice, and b) whether �̄�ፈፂ is a suitable parameter for describing lattice behavior.

Relative density affects how cell deformations concentrate and manifest within a lattice
Evidence presented in Figures 7.9, 7.10 and time-lapse videos of the deformation fields demonstrate
the effects of relative density has on how deformations develop during loading. An interesting observa-
tion is that the rotation field of low-density lattices early in loading look similar to that of a high-density
lattice at failure, illustrated in a side-by-side comparison in Figure 8.3. This trend is observed at all
relative densities; all lattices exhibit similar deformation behavior initially, but as loading continues,
the compliant, low-density lattice deformations continue developing, wile high-density lattices simply
fracture.

�� 

Figure 8.3: Rotation deformation fields for ᎞̄ ዆ ኺ.ኺዂ near the beginning of loading (left) and ኺ.ኾኺ just prior to final fracture
(right).

Another observation that can be made in the deformation fields relates to Hypothesis 1.2. In Figure
7.10a, a vague double-lobed butterfly contour can be seen, similar to the contour of the plastic zone
seen in Chapter 3. Figure 8.4 shows one of the rotation deformation fields with this profile highlighted
with the plastic zone prediction by Tankasala et al. for comparison. The similarity not only corroborates
Hypothesis 1.2, but provides evidence that the deformation field at the crack tip could be seen as
analogous to a plastic zone, even though plasticity has not been measured.
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Figure 8.4: Comparison of shape of crack tip plastic zone predicted by Tankasala et al. (left, adapted from [11]) and the
rotation deformation field for Specimen 08_02 (right)

Brittle base material does not necessarily mean brittle response
Both lattice-level results and cell-level observations seem to provide evidence that, despite having the
same base material, relative density significantly impacts mechanical response. As the base material is
considered to be a brittle polymer, Hypothesis 1.3 predicts that the stress-strain response and fracture
behavior will be brittle. Disregarding the differences in mechanical response after �̄� = 0.20, the low-
density lattice force-displacement and stiffness-displacement behavior seen in Figures 7.1 and 7.3
seem to contradict this hypothesis, as these appear to be more elastomeric than brittle. The force-
displacement and stiffness-displacement behavior of the �̄� = 0.40 lattices, by contrast, suggests a
more brittle response. Even more interesting is the stiffness response of the �̄� = 0.20 and 0.30 lattices,
which appear to have elements of both stiffness responses. The stark contrast in fracture pattern,
seen in Figure 7.8 and the explosive nature of high-density lattices, also attests to the effect of relative
density on lattice behavior. Based on these observations, Hypothesis 1.3 cannot be validated.

Relative density affects fracture path and toughening mechanisms present
To confirm Hypothesis 1.4, the fracture behavior of the uniform lattices should remain relatively con-
sistent. And while the exact fracture paths are unique to each lattice, there are noticeable differences
between relative densities which serve to invalidate Hypothesis 1.4:
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Figure 8.5: Percentage of tested lattices which broke at the existing crack tip per uniform relative density set

• Variation
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At low relative densities, there is significant variation in where cracks form and the paths tend to be
quite erratic. The number of lattices which broke at the existing crack tip increases with relative
density and path variability decreases, shown in Figure 8.5. Additionally, several low-density
lattices fractured at the interface between the lattice and slider bar, indicating that the intended
stress concentration at the existing crack tip was not sufficient to force fracture to initiate there.
This correlates somewhat with particularly the rotation deformation fields of Figure 7.10, which
show large rotations radiating from the corners. Neither the deformation concentration locations,
nor the location of the most-rotated strut, however, were necessarily predictive of failure location.

• Intermediate fracture
Small load drops occur frequently at every relative density, corroborated by Figures 7.1 and 7.8,
but their nature seems to change with relative density. Intermediate fractures appear more dis-
persed in the lattice at low relative densities, while they are almost exclusively located near the
crack tip at high relative densities.

• ”Exit-lane-ing”
A phenomenon seen almost exclusively in �̄� < 0.20 lattices is a form of crack branching, which
will be termed here as ”exit lane-ing”. ”Exit lane-ing” is similar to crack branching; the crack
splits into two paths to help dissipate energy, but instead of the symmetrical split typically asso-
ciated with crack branching, one branch continues to propagate without changing direction and
the other branch is an offshoot which turns sharply towards the applied load, the ”exit lane”. This
phenomenon is illustrated in the fracture path of Specimen 16_01 in Figure 7.8.

• Crack deflection
Large crack deflections occur almost exclusively in �̄� < 0.30 lattices. Some crack deflection
occurs at high relative densities, but the deviations are small and typically rejoin after a few cells.
This is evidenced by closer inspection of the high-speed images for a �̄� = 0.40 lattice, where a
cluster of cells remains in focus while the surrounding lattice is out-of-focus and two cracks form
around the cluster.

8.3. Three distinct responses
In synthesizing the results and observations, a deficiency in the hypotheses emerges. Lattice- and cell-
level behaviors are addressed individually, and there clearly is a relationship between relative density
and mechanical response at each level. At the lattice-level, this can be most clearly seen in how the
stiffness curves take form throughout loading. At the cell-level, differences arise in how deformations
concentrate and how fracture propagates in the lattice. The hypotheses, however, do not go far enough
to sufficiently explain the connection between the two levels. The missing link is an understanding
how cell-level behaviors manifest themselves at the lattice-level. To explore the connection between
lattice- and cell-level behaviors, cell deformation behavior, including individual cell deformations and
the deformation fields, will be examined at various points of interest during loading and correlated with
the stiffness-displacement curves.

Based on the stiffness curves in Figure 7.3, three unique profiles can be identified: elastoplastic
(�̄� = 0.40), elastomeric (�̄� = 0.08, 0.12, 0.16), and hybrid (�̄� = 0.20, 0.30). In the following subsections,
each profile will be analyzed, correlating stiffness with cell deformations and deformation field behavior
at various points of interest. Each response is accompanied by a figure showing:

1. The stiffness-relative displacement curve for a representative lattice exhibiting that stiffness re-
sponse with points of interest marked by a dot and a number;

2. An image of a selected set of cells corresponding to each point of interest, and;

3. A schematic representation of the lattice showing the location of the highlighted cells

A written summary of the deformation field and cell deformation behaviors corresponds with the
point(s) of interest. Videos of the deformation field progression for each type can be downloaded here.

https://osf.io/75wkq/
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Figure 8.6: Stiffness curve for ᎞̄ ዆ ኺ.ኾኺ lattice with highlighted points of interest and corresponding cell deformation behavior

8.3.1. Elastoplastic
The elastoplastic response is seen exclusively in �̄� = 0.40 lattices, and is characterized by settling
period followed by a brief LE plateau, after which strain softening occurs up to failure.

1 Linear-elastic regime
Up to this point, both the elongation and rotation deformation fields are almost exclusively noise
as the deformations are still very small. At the end of the settling period, large elongation and
rotation concentrations begin to form at the crack tip. At the end of the LE regime, the largest
elongations shift from occurring in vertical struts to the inclined struts. Cell deformation is minimal;
however, struts remain unbent and nodal hinging is likely occurring here.

2 Initial lattice strain softening
This period is marked by several changes in the lattice. Initially, the rotation deformation con-
centration appears to be two amorphous lobes above and below the crack tip and is often very
asymmetrical. As strain softening continues, this asymmetry balances out and continues to do
so until failure. Throughout, the elongation deformation concentration increases in size.

Around the midpoint of this regime, several beams begin to exhibit slight s-bending. Close to
the crack tip, some beams exhibit u-bending, seemingly due to high stresses caused by rotation
in the struts at the crack tip to the left and the stiffness of the rest of the lattice to the right.

3-4 Change in lattice strain softening rate
Most of the changes observed in this regime are seen in the test images. S-bending can be seen,
even if vaguely, in most of the lattice, suggesting that the change in stiffness rate is the result of
all nodes reaching their maximum rotation and, therefore, stiffness. Intermediate fracture, if it
occurs, occurs during this period, though it does not appear to induce strain softening behavior.
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Figure 8.7: Stiffness curve for ᎞̄ ዆ ኺ.ኻኼ lattice with highlighted points of interest and corresponding cell deformation behavior

8.3.2. Elastomeric
The elastomeric response is characteristic of lattices with 0.08 ≤ �̄� ≤ 0.16. Its profile is quite different
from the elastoplastic response, exhibiting a long LE regime which gives way to lattice strain stiffening
up to fracture.

1 Linear-elastic regime
Several phenomena are visible during the long LE regime in low-density lattices. Deformation
is characterized by nodal hinging in virtually every cell. Vertical bands opposite the crack tip
form initially in the elongation deformation field, but gradually shift towards the crack tip as the
LE behavior continues. At the onset, the rotation deformation field looks very similar to that of
elastoplastic-type lattices, two large, amorphous lobes extending above or below the crack tip;
this rotation concentration typically grows slightly during this period.

2-3 Lattice strain hardening
The rotation concentration at the crack tip begins to shrink and form the characteristic double-
lobed butterfly shape. The highest-rotated strut is now consistently immediately ahead of the
crack tip. Most of the largest elongations are concentrated near the crack tip, if not at it, though
the highest-elongated beam often fluctuates. S-bending begins to appear, but is very sporadic
and confined to specific areas, particularly in the corners or center of the lattice.

4 Linear lattice strain hardening
The last microcrack marks the start of the final stiffness regime, which is characterized by a sharp
increase in lattice strain hardening which continues up to failure. At this point, the shape and size
of elongation and rotation concentrations do not change much; however, if the largest rotation
moves away from the crack tip, it will do so during this period. The predominant cell deformation
begins to shift from nodal hinging to s-bending, though still not all struts show s-bending just
before final failure.
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Figure 8.8: Stiffness curve for ᎞̄ ዆ ኺ.ኼኺ lattice with highlighted points of interest and corresponding cell deformation behavior

8.3.3. Hybrid
Lattices with �̄� = 0.20 and 0.30 exhibit an interesting stiffness response that could be seen as a hybrid
of the elastoplastic and elastomeric responses. These lattices experience the initial strain softening
behavior commonly seen in elastoplastic-type lattices before reaching a minimum and subsequently
experience a slight elastomeric-like strain stiffening up to failure.

1 Initial plateau
The elongation deformation field is very noisy throughout this period, though more vertical struts
appear to be contributing to 90% of the total elongation. Very little, if any, cell deformation is
visible.

2 Loss of stiffness
The 30°struts appear to begin hinging at the nodes. This correlates with a rotation concentration
beginning to take shape during stiffness loss, which increases in size over this regime. The
elongation deformation field continues to be very noisy, though there is a noticeable shift in the
largest values from the vertical struts to 30°struts.

3 Bottom of bathtub curve
The largest elongations shift to concentrate at the crack tip, though there is still significant noise.
Several cells begin to show s-bending and the rotation concentration at the crack tip stops grow-
ing.

4 Stiffness increase to failure
Struts have reached their maximum rotation angle and begin to elongate up to failure. The rotation
concentration at the crack tip shrinks, the extent depending on the length of this regime. Nearly
all large elongations have concentrated at the crack tip.
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8.4. Discussion on stiffness curve classification
Lattice mechanical response is the result of complex cell-level interactions, making it difficult to neatly
categorize all behavior in relation to relative density. Using lattice stiffness as a base for categorization is
one of many possible methods, but it is by no means all-encompassing. Consequently, some ambiguity
remains in this categorization as lattices may not always fit into these defined boxes. This section
explores some of these ambiguities and contradictions to provide a more robust picture of the intricate
cell-lattice relationship.

Deformation in �̄� = 0.08
At first glance, s-bending appears to occur in several beams in �̄� = 0.08 lattices, but comparing the
first and final images shows that many of these beams were, in fact, warped prior to testing and did
not straighten out during loading. If the nodes were able to impart any strength or stiffness on its
connected struts, it would be expected that some of the warped struts would have straightened at
least partly. This suggests these nodes were much more compliant than those in the other low-density
lattices and allowed virtually free rotation up to failure. Fracture often occurred at the corners where
several adjoining struts had almost become completely aligned, shown in Figure 8.9, implying that
beams here were stretched, not bent, to failure. By contrast, �̄� = 0.12 and 0.16 lattices displayed more
consistent s-bending behavior towards failure, suggesting that the failure mechanism of �̄� = 0.08 here
may be different from other low-density lattices.

Figure 8.9: Example of inclined struts aligning at the lower-left
corner of Specimen 08_02

Beam elongation/rotation distribution
If the stiffness classification would be ap-
plied to Figures 7.11, it would be expected
that the deformation distributions would fall
into three groupings, but this is not the case.
Instead, the elongation distribution shows a
clear groupings between elastomeric- and
hybrid/elastoplastic-type lattices. In the ro-
tation fields, however, �̄� = 0.20 joins the
elastomeric-type lattices, lending plausibility
to the hypothesis that �̄� = 0.20 represents a
transition point, as elongations and rotations
are both relatively evenly-spaced rather than
having a predominant deformation mecha-
nism.

Role of intermediate fracture
Lattice fracture paths, including intermediate
fracture, are influenced by relative density, but
these patterns do not always align with the stiffness profile division.

Microcracking is common in elastomeric-type lattices and occurs exclusively in the lattice strain
stiffening regime. The location of these intermediate fractures appears to be random and are typically
not near the existing crack tip. Just prior to an intermediate fracture, the deformation fields typically
yield little insight into which beams will fail. As struts fail prematurely, lattice stiffness typically increases,
behavior which is consistent with the expected effects of microcracking.

As relative density increases, microcracking is no longer directly associated with lattice stiffening,
though there are still differences between relative densities. For example, there is a noticeable de-
crease in number of intermediate fractures between �̄� = 0.20 and 0.30 lattices. Despite both having
the hybrid-type stiffness profile, the fracture behavior of �̄� = 0.30 lattices seems to align more with
elastoplastic-type lattices, while �̄� = 0.20 lattices exhibit random fracturing similar to elastomeric-type
lattices, microcracking in �̄� = 0.30 and �̄� = 0.40 lattices is typically confined to the region immediately
surrounding the crack tip.

These differences point to a possible explanation on the purpose of intermediate fracture at different
relative densities. In lattices with �̄� ≤ 0.20, microcracking seems to be associated with fault-tolerance,
as weaker beams are sacrificed early in loading when the strain energy is low and premature failure
is not catastrophic. Intermediate fracture in �̄� = 0.30 and 0.40 lattices and appear to be more related
to the ligament bridging where the crack ”jumps” across cell wall boundaries and do not contribute to
changes in lattice strain behavior.
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Final fracture path
Within the elastomeric-type and elastoplastic-type lattice, the final fracture paths are internally consis-
tent; the former is characterized by random fracture patterns with large deflections, while lattices in
the latter fracture more consistently straight across the structure. The hybrid group is split, however,
with �̄� = 0.20 lattices aligning more with the elastomeric-type lattices with large crack deflections and
�̄� = 0.30 lattices fracturing more similarly to the elastoplastic group. Combined with observations on
the toughening mechanisms described above, this provides more evidence that the hybrid response
category does, in fact, represent some kind of transition point in lattice mechanical response.

8.5. Summary
This chapter has put forth a discussion on the experimental results of the set of uniform relative density
lattices. This discussion initially centered around four hypotheses that were formulated in relation to
how relative density impacts lattice-level and cell-level behaviors. How cell-level deformations manifest
themselves at the lattice-level, however, is not sufficiently addressed by the hypotheses.

An investigation into the relationship between cell deformation behavior and stiffness response
curves constitutes a first step in establishing an experimental link. Three general profiles for the stiffness
curves have been identified and correlate with relative density. Irrespective of stiffness curve profile,
all lattices deform first by nodal hinging followed by s-bending. This is contrary to Gibson and Ashby’s
prediction that s-bending occurs first, followed by nodal hinging in polymer-based lattices [7]. Changes
in stiffness response can also be identified in the elongation and rotation deformation fields.

Furthermore, although using the stiffness curves as a basis for correlating lattice- and cell-level
behavior is useful, it is not an airtight classification, and a number of contradictions and ambiguities
remain. Two observations, in particular, are worth highlighting:

• Similarities in stiffness behavior, but differences in fracture pattern and distribution of deforma-
tions in �̄� = 0.20 and 0.30 lattices suggest that these lattices should not be grouped together. It
does suggest, however, that these lattices likely represent a transition point in lattice mechanical
response and that this point may be different for cell- and lattice-level behaviors.

• Lattices in the elastomeric grouping had remarkably similar lattice-level behavior, but �̄� = 0.08
lattices differed from the rest of the grouping in cell deformation behavior, in particular.

A more-robust approach is needed to further strengthen the link between cell deformations and
lattice behavior. This includes a quantitative study of beam deformation behavior by using five dots
per beam instead of three. In doing so, the onset of nodal hinging and s-bending can be quantified
in relation to the stiffness response, and the internal moments and shear forces, and subsequently
stresses, can be calculated, providing the stress state at any given location in the lattice.
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Discussion: Hierarchical Lattices

The second set of lattices, the hierarchical lattices, builds on the previous set by taking a uniform lattice
and adding structural hierarchy in the form of local variations in relative density. The research intention
was to evaluate lattice mechanical response in terms of the lattice- and cell-level behavior and relate
differences between the two sets to the implementation of structural hierarchy.

This chapter is divided into two main sections. First, results and observations from Chapter 7 are
gathered and discussed using the second set of hypotheses set forth in Chapter 4 as a guide, as well
as results from the uniform relative density set. The second section applies the stiffness curve-cell
deformation analysis proposed in Section 8.3 to highlight how different structural hierarchy elements
interact with each other to influence lattice mechanical response.

9.1. Interpretation of results and observations
The addition of structural hierarchy by means of relative density affects several aspects of lattice me-
chanical response. Results and observations at both the lattice- and cell-level, presented in Chapter
7, provide corroborating evidence and will be discussed here. The second set of hypotheses will be
used to guide this section and are recalled below. Following the structure of the hypotheses, some
general remarks will first be made on the set of all hierarchical lattices, followed by a closer look at the
behaviors seen in each hierarchical configuration (i.e. compliant/stiff or stiff/compliant).

2.1 The predominant material phase (stiff or compliant) drives overall differences between hierarchi-
cal and uniform lattices; differences between lattices of the same predominant material phase
are attributed to cell-level responses

2.2 Compliant/stiff configurations

2.2a The presence of stiff inclusions result in a higher lattice stiffness compared to an equivalent
uniform lattice

2.2b The crack tip deformation field shifts to wrap around stiff inclusions, but still retain the double-
lobed butterfly shape

2.2c The primary toughening mechanism is crack deflection caused by the inclusions
2.2d A cluster of inclusions forces cracks to take a tortuous path, while functionally-graded inclu-

sions do not initially impede crack growth, but force a tortuous path as fracture progresses

2.3 Stiff/compliant configurations

2.3a Removing material in the form of weak channels will promote crack growth and result in a
consistent fracture pattern; fracture is arrested by a stiff phase at the end of the channels

2.3b A consequence of removing material is slightly lower lattice stiffness and lattice fracture
toughness

2.3c Deformation concentrations are primarily observed in the weakened regions

50
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9.1.1. All configurations
Lattice-level response is grouped by hierarchical configuration
Figure 7.15 provides the most clear evidence that the overall mechanical response of hierarchical
lattices is driven by the dominant phase (compliant or stiff), corroborating Hypothesis 2.1. Variation in
the compliant/stiff lattices in the force-displacement curves is likely the result of specific topology and
will be addressed in the next section. That said, the general trend holds that these lattices behave fairly
similarly. The stiff/compliant lattices show remarkably similar behavior, a trend that is visible in the full
set of hierarchical lattices. This categorization by dominant phase is also evident in Figure 7.17. Like
the force-displacement behavior, �̄� and �̄�ፈፂ generally group by hierarchical configuration, but show
differences between specific topologies.

The stiffness curves in Figure 7.14 generally support Hypothesis 2.1, but the influence of specific
topology becomes more evident. In Figure 9.1, one can see the uniqueness of each hierarchical lattice
stiffness response. Comparing these to the elastomeric and hybrid profiles the hierarchical response,
for the most part, do not show any obvious similarity, highlighting the influence of hierarchy.
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Figure 9.1: Hierarchical stiffness curves with those of ᎞̄ ዆ ኺ.ኻኼ and ኺ.ኽኺ for comparison

9.1.2. Compliant/stiff
Stiff inclusions in a compliant lattice likely contribute to an increase in lattice elastic modulus
Average �̄� values obtained for the Bamboo and Nacre lattices can be compared to that of the average
�̄� for the �̄� = 0.12 uniform lattices, shown in Figure 9.2a. Both lattices show a statistically significant
increase in �̄� over the �̄� = 0.12 lattice, particularly when considering the equivalent �̄� for these lattices
(0.134 and 0.122, respectively).

That said, because the lattice design changed slightly between the uniform and hierarchical sets,
it is not possible to say with complete certainty that the increase is a result of the stiff inclusions. The
magnitude of the increases, however, strongly suggest that the inclusions are a factor, tentatively cor-
roborating Hypothesis 2.2a.

Inclusion location can eliminate a crack tip deformation concentration entirely
The elongation and deformation fields of Bamboo and Nacre lattices seen in Figures 7.19 and 7.20
clearly show the effects of structural hierarchy on lattice deformation. In both lattices, the largest
deformations are diverted away from the stiff inclusions, producing very different deformation fields
compared to those of the uniform lattices in Figures 7.9 and 7.10.

The Bamboo rotation deformation field, in particular, is a striking example. The sparsely-spaced
inclusions on the left side appear to force the largest deformations to congregate in the compliant cells
between them. As a result, the crack tip rotation concentration seen in uniform lattices is completely
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Figure 9.2: Experimental hierarchical lattice elastic modulus values compared to experimental uniform values.
Blue: hierarchical ፄ̄; red: standard error of mean; black: experimental ፄ̄ for similar uniform relative density lattice

eliminated, invalidating Hypothesis 2.2b. Hierarchy also appears to consistently force the largest elon-
gations to concentrate in the lower-right corner between the lowest inclusion and the start of the density
gradient section, compared to the seemingly random patterns of elongation deformation in uniform lat-
tices in Figure 7.9.

The Nacre rotation deformation field, however, does provide corroborating evidence for Hypothesis
2.2b, with the largest deformations pushed to the perimeter of the central diamond structure in a way
that does not occur in low-density uniform lattices. In the elongation deformation fields, the inclusions
also seem to prevent large deformations from forming within the central diamond structure, though their
manifestation is less consistent than in the rotation deformation fields.

Inclusion location influences toughening mechanisms and fracture path
Similar to the deformation fields, the influence of structural hierarchy is evident in the observed tough-
ening mechanisms and fracture paths of these lattices.

In all Bamboo and Nacre lattices, fracture occurred exclusively in the compliant phase. Cracks
consistently deflected around the inclusions in all specimens, providing corroborating evidence for Hy-
pothesis 2.2c. The Bamboo fracture path in Figure 7.18 best exemplifies this, as the crack path was
successfully deflected several times around the inclusions, possibly contributing to the ”exit lane-ing”
effect. No other identifiable toughening mechanism was observed in the Bamboo lattices.

In addition to crack deflection, other toughening mechanisms were observed in the Nacre lattices.
All Nacre lattices experienced microcracking in a similar fashion to �̄� = 0.08 lattices. This makes sense,
considering that the compliant regions were, like the �̄� = 0.08 lattices, often quite warped. The beams
which fracture prematurely appear to be random. While this finding does not completely invalidate
Hypothesis 2.2c, it does highlight the complexity of lattice fracture behavior in relation to structural
hierarchy.

The fracture paths presented in Figure 7.18 add to this picture of complexity, particularly in the
context of Hypothesis 2.2d. In Bamboo, the interaction between the inclusions and density gradient,
which effectively prevented a stress concentration from forming at the existing crack tip, was not con-
sidered when designing the topology, thus making it impossible to evaluate Hypothesis 2.2d with the
current data set. The fracture paths, however, show that fracture initiated in the same general location,
highlighting the consistency that structural hierarchy could bring to lattice structures.

In Nacre, it was expected that fracture would initiate from the existing crack tip and taking a tortuous
path through the central diamond structure via the �̄� = 0.10 beams which would remain compliant.
Instead, the collective stiffness of this diamond effectively created one large inclusion which a crack
would have to navigate around. Again, though this was not the intended effect, the fracture paths
demonstrate that closely packing inclusions does not generally provide a path-of-least-resistance for a
propagating crack, but that cracks can be deflected around a single large inclusion.
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(a) (b)

Figure 9.3: Composite images of all fracture paths of Glass Sponge (left) and Etching (right) lattices

9.1.3. Stiff/compliant
Compliant channel promote a consistent fracture pattern, but do not help arrest fracture
All Glass Sponge and Etching lattices, save for G_02 6, fractured entirely along the compliant channels,
an observation most evidenced by overlaying the fracture paths of each lattice set, shown in Figure 9.3,
thus confirming the first part of Hypothesis 2.3a.

Fracture was not arrested, however, invalidating the second part of Hypothesis 2.3a. In the Glass
Sponge lattices, fracture propagates through the stiff phase towards the free edges of the lattice, often
causing large sections of the lattice to break off. This is not an inherently bad outcome, however, as
the crack path is diverted briefly by the compliant phase before continuing to propagate in the adjacent
brittle phase, similar to the fracture behavior of glass sponges in nature. Therefore, this approach may
still work in lattice structures, but testing with larger lattices with additional compliant lines would be
needed to confirm this.

The compliant sinks in Etching lattices also did not arrest fracture. Instead, Figure 7.19 shows that
large elongation concentrations formed at the edges of the sinks which could be considered analogous
to stress concentrations. Consequently, these areas were likely more prone to overstressing and less
able to withstand the sudden redistribution of strain energy at fracture.

Inclusion of compliant channels can influence lattice elastic modulus and fracture toughness
To assess the validity of Hypothesis 2.3b, �̄� and �̄�ፈፂ are compared to those of uniform �̄� = 0.30, shown
in Figures 9.4a and 9.4b, respectively. In general, the data suggests that introducing hierarchy has
a negligible impact on �̄�, but a significant effect on �̄�ፈፂ, partially supported Hypothesis 2.3b. Glass
Sponge has a statistically similar �̄� to the �̄� = 0.30 lattice. Etching, by contrast, experiences a slight
(4.3%) drop in �̄�. �̄�ፈፂ is significantly lower than the uniform �̄�ፈፂ, though the Glass Sponge lattices may
have performed slightly better than the Etching lattices.

While the lattice-level evidence suggests that the compliant channels negatively affect fracture
toughness, this must be balanced with fracture pattern predictability, a characteristic that is benefi-
cial for damage tolerance. Thus, this finding provides an excellent example of the limitations of using
�̄�ፈፂ as the sole means of determining lattice toughness and damage tolerance.

Inclusion of compliant channels influences deformation concentrations
The influence of the compliant channels is visible in the deformation fields in Figures 7.19 and 7.20. The
observations do not necessarily always corroborate Hypothesis 2.2c, however, as there are substantial
differences between the Glass Sponge and Etching lattices.
6For G_02, fracture initiated in the top-right corner of the lattice. This can be cautiously considered a statistical anomaly in the
printing process; no visible defects can be observed where fracture initiated, nor is there any evidence to suggest early fracture
in the deformation fields.
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Figure 9.4: Experimental hierarchical lattice elastic modulus values compared experimental uniform values.
Blue: hierarchical ፊ̄ᑀᐺ; red: standard error of mean; black: experimental ፊ̄ᑀᐺ for similar uniform relative density lattice

The rotation deformation fields of Etching lattices show the largest rotations are consistently occur-
ring exclusively within the compliant channels, confirming Hypothesis 2.3c. The elongation deformation
concentrations, as discussed above, do not form in the sinks, but appear just to the right of them. This
tangentially supports the hypothesis, as the deformation field is influenced by the sinks. Regardless, the
presence of structural hierarchy invariably alters the deformation fields compared to a uniform lattice.

The Glass Sponge deformation fields also demonstrate the impact of structural hierarchy, but do
not support Hypothesis 2.3c. A double-lobed butterfly shape can be observed in the rotation defor-
mation field in Figure 7.20 which extends into, but not beyond, the weak channel. This contrasts the
asymmetric, unwieldy blob seen in the uniform �̄� = 0.30 lattices in Figures 7.9 and 7.10. The largest
elongations are generally confined to the area between the crack tip and the weak channels; a small
elongation concentration near the lower-left corner lends plausibility to the idea that fracture continued
past the weak channel due to overstressed beams after crack initiation. Even with the weak channels
present, the highest elongations/rotations still occur at the crack tip; the weak channel deforms very
little and is likely supported by the stiff surrounding structure.

9.2. Relating stiffness response to structural hierarchy
Implementing structural hierarchy using relative density has a striking effect on several aspects of lattice
tensile response. The effects can be seen per hierarchical configuration (e.g. the high-level grouping
of lattice elastic modulus for compliant/stiff vs. stiff/compliant lattices) and in the specific topology (e.g.
the remarkable contrast between the deformation fields of the Bamboo and Nacre lattices).

In order to better understand the effects of specific topology in hierarchical lattices, a link should be
established between the cell- and lattice-level responses. The unique stiffness curve profiles of each
hierarchical lattice, shown in Figure 9.1, provide an interesting basis for exploring this link. Using the
same techniques applied in Section 8.3, the stiffness behavior of the hierarchical lattices can be related
to individual cell deformations. This section will examine each hierarchical lattice, correlating stiffness
with cell deformations and deformation field behavior at various points of interest. The format of each
subsection follows that of Section 8.3, consisting of a written summary of the deformation field and
cell deformation behaviors with corresponding figures. Videos of the deformation field progression are
provided in the form of a link in each subsection.



9.2. Relating stiffness response to structural hierarchy 55

1 2 3

0.28

0.3

0.32

0.34

0.36

0.38

90 100706050403020100 80
% Relative displacement

St
iff

ne
ss

 (N
/m

m
)

1
2

3

4

4

Figure 9.5: Stiffness curve for a Bamboo lattice with highlighted points of interest and corresponding cell deformation behavior

9.2.1. Bamboo
The stiffness behavior of Bamboo has similarities to the hybrid stiffness profile, but there are distinguish-
ing elements. The first area of interest is a compliant cell sandwiched between two stiff inclusions, as
virtually all large rotations are seen here, rotations which are higher than those seen in any uniform lat-
tice. A second area of interest is also examined, located where fracture often initiated, at the lower-right
of the lattice where the stiff inclusions end and the density gradient begins.

1 Stepped stiffening
The predominant cell deformation mechanism is nodal hinging in the compliant phase. The two
distinct stiffening sections are associated with s-bending beginning in the cells in between the
first and second inclusion columns. The stiff cells translate during this regime, but do not show
signs of deformation.

2-3 Plateau and softening
As softening begins, the compliant cells between inclusions are almost entirely in s-bending as
the stiff phase begins to take up more loading and hinging. The stiff phase also provides strength
to support the continued deformation in the compliant cell walls.
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4 Second stiffening
In the final stiffening period, the elongation deformation field shows nearly all large elongations
concentrated in the lower-right corner. At the same time, no discernible cell deformation can be
seen in this region; likely the cells have deformed to their limits and begin to stretch to failure. This
is corroborated by the catalyzing fracture seen in the high-speed images. The cells sandwiched
between stiff inclusions continue to rotate up to failure.

�

30.03º 31.01º
Figure 9.6: Cells used to calculate average strut rotation for a ᎞̄ ዆ ኺ.ኺዂ (left) and Bamboo (right) lattice with average strut

rotation indicated underneath each image.

In addition to looking at the general cell deformation shape, the rotation angle of the struts bounded
by the stiff inclusions can be compared to strut rotations in uniform lattices. This can be done by drawing
a line between two nodes using Adobe Illustrator in the lattices of interest. Figure 9.6 shows the results
of this process, which suggests that the Bamboo struts are able to rotate further than their uniform
counterparts without failing. If true, this raises further questions about why these struts in particular
are able to withstand further rotation. One hypothesis is that the inclusions impart some amount of
stiffness, even remotely, which supports the compliant cells as they continue to rotate. Further testing
would be needed, however, to quantify these effects and understand why this phenomenon occurs.
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Figure 9.7: Stiffness curve for a Nacre lattice with highlighted points of interest and corresponding cell deformation behavior

9.2.2. Nacre
The stiffness curve of Nacre is particularly interesting, shown in Figure 9.7, as it is effectively a mirror
image of the hybrid response. Video taken during testing, which can be viewed here, shows excessive
deformation beginning almost immediately in the compliant region surrounding the diamond super-
structure. Therefore, of interest here is a set of cells at this interface.

1-2 Initial stiffening
Compliant cells begin deforming around the super-structure via nodal hinging. Like the �̄� = 0.08
lattices, there is significant warping in the lattice at the start of testing which does not improve
over loading as it appears that the nodes are simply allowing the struts to rotate. As individual
nodes reach their maximum hinging capability and transition towards s-bending, the collective
stiffness increases.

3 Plateau
Compliant cells are no longer able to deform independently and rely on the strength imparted by
the super-structure to prevent fracture. Cells that are not directly supported by the super-structure
begin to stretch. At this point, the stiff phase begins to take up more load and dictate stiffness
behavior.

4 Softening to fracture
S-bending begins in some compliant beams which are bounded by the stiff inclusions. The stiff-
ness response is similar to that of �̄� = 0.30, suggesting that the stiff phase is dictating stiffness
response at this point. Failure occurs, similar to Bamboo, by stretching at a compliant node.

Where the Bamboo lattices showed the possible indirect effects of nodal stiffness, the direct ef-
fects are particularly visible in the Nacre lattices. Compliant beams which are fully contained within
the diamond super-structure hardly deform, as they seem to be directly supported by the stiffness of
the connecting node. This provides context for why fracture did not propagate through the diamond

https://osf.io/75wkq/
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structure; the compliant beams were merely moving with the stiff structure and could not indepen-
dently deform. Adding to this, beams which were connected to a stiff inclusion at only one end show
a cantilever-like behavior, acting more like a clamped boundary condition rather than pinned spring.
When this evidence is considered in conjunction with the fracture patterns and deformation fields, this
makes sense; the largest deformations do not appear immediately outside the diamond structure, but
are usually offset by one cell. Similarly, fracture also tends to develop one cell length away from the dia-
mond. Together, these phenomena suggest that nodal stiffness is more important to beam deformation
shape than the beam stiffness itself.
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Figure 9.8: Stiffness curve for an Etching lattice with highlighted points of interest and corresponding cell deformation behavior

9.2.3. Etching
Despite having almost seemingly identical force-displacement behavior, the stiffness curve profile of
the Etching lattices tells a different story, having a much longer LE regime than any other lattice (uniform
or hierarchical) and relatively little strain softening. Two areas of interest are taken here: the first is just
ahead of the crack tip where the compliant channels are located, and the second is just to the right of
the sink regions, chosen for the elongation concentrations that form there during loading.
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�

30.03º 34.38º
Figure 9.9: Cells used to calculate average strut rotation for a ᎞̄ ዆ ኺ.ኺዂ (left) and Etching (right) lattice with average strut

rotation indicated underneath each image.

1 Linear-elastic regime
These lattices exhibit behavior that most resembles a linear-elastic regime, a response which
is very similar to the elastomeric-type profile, though the overall stiffness is larger compared to
the low-density uniform lattices. This suggests that the initial stiffness value is driven by the stiff
phase. Cell deformation, however, is dictated by nodal hinging in the compliant struts.

2-3 Brief stiffening
Compliant beams begin to show s-bending, but reach their maximum quickly.

4 Softening
Onset of lattice softening coincides with the formation of large elongation concentrations just to
the right of the sink regions. Compliant beams continue to rotate and stretch as loading increases
up to fracture, while stiff beams begin to display nodal hinging, and, at fracture, slight s-bending.

Etching lattices provide further evidence that nodal stiffness is a critical component in lattice be-
havior. Bounded by the �̄� = 0.30 lattice, compliant beams are able to withstand significantly higher
rotations compared to even uniform �̄� = 0.08 lattices, evidenced by Figures 9.8 and 9.9. It is possible
that, like in Bamboo, they had not reached the limits of deformation, as fracture often did not initiate in
the compliant channels, but instead in the sink regions.
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Figure 9.10: Stiffness curve for a Glass Sponge lattice with highlighted points of interest and corresponding cell deformation
behavior

9.2.4. Glass Sponge
Unlike the other hierarchical configurations, the profile of Glass Sponge lattice stiffness curves are not
substantially different from the hybrid profile, leading to the question of why this is.

Disregarding individual cell deformation behavior for a moment, consider the specimen’s geometry:
the compliant channels are aligned with the loading direction, meaning that the cross-section is more or
less consistent throughout the height of the lattice. The compliant channels, supported by the stiff ma-
terial surrounding them, are not able to easily deform independently or contribute to lattice mechanical
response in a meaningful way. Thus, the stiffness response will be largely dictated by the stiff �̄� = 0.30
phase 7.

That said, in order to make a convincing argument on this prediction, the cell-level deformation
behavior of the Glass Sponge lattice should still be examined. For this, an area including the left crack
tip and its corresponding compliant channel is chosen, shown in Figure 9.10.

1 Initial stiffening
This period is characterized by predominantly vertical elongation which is possible through nodal
hinging in the stiff phase cells; the compliant cells do not noticeably deform

2-4 Plateau and softening
Stiff phase transitions from nodal hinging to s-bending. similar to the behavior seen at an equiv-
alent stage in the uniform �̄� = 0.30 lattice. The largest deformations are seen at the crack tip. In
the compliant channels, nodal hinging continues to occur with no new s-bending.

The cell deformation behavior does, indeed, show that the compliant channels are not contributing
substantially to the overall lattice mechanical response and mainly deform with the surrounding stiff
7It is possible that omitting the ᎞̄ ዆ ኺ.ኻኺ phase entirely might produce similar stiffness curve results and fracture behavior.
Without a perfect comparison to the tapered, edge-cracked uniform lattices, however, this cannot be confirmed with the current
experimental data.
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structure. The outcome is not necessarily bad. Instead, these lattices demonstrate that it is possible
reduce the mass of a lattice in a way that controls fracture, but does not significantly alter lattice-level
response. An interesting observation can be also made on nodal stiffness. Heavily warped struts
in other lattices, specifically uniform �̄� = 0.08 and Nacre, did not straighten unwarp during testing.
Several warped compliant cells in Glass Sponge lattices, by contrast, did appear to straighten out,
providing more evidence of the impact of structural hierarchy on nodal stiffness and its importance in
cell deformation behavior.

9.3. Summary
This chapter presented a discussion on the experimental results of the set of hierarchical lattices, fo-
cusing initially on the set of the hypotheses which addressed the effects of either adding stiff inclusions
to a compliant lattice (compliant/stiff) or creating compliant regions in a stiff lattice (stiff/compliant) on
mechanical response. While these hypotheses helped establish that there is a distinction in the re-
sponses at this level, differences between each specific topology within these groupings could not be
sufficiently explained.

Therefore, as was done for the uniform lattices, the stiffness-displacement response of each hier-
archical lattice topology was correlated with cell deformation behaviors. The stiffness response can be
described very generally for all hierarchical lattices, with the exception of Glass Sponge:

1. Initial response is dictated by deformations in the compliant phase. This is evidenced by nodal
hinging, and later s-bending, in these beams only, and supported by the similarity to the elastomeric-
type behavior seen in low-density uniform lattices.

2. A plateau forms as the compliant struts can no longer deform independently and the stiff phase
begins to take up more load. In a uniform, low-density lattice, fracture would have likely occurred
by now, but the stiff phase provides additional strength that supports the compliant beams.

3. Lattice strain softening occurs as the stiff beams begin to deform via nodal hinging, and later s-
bending. At this point, the stiff phase is dictating stiffness response, supported by similar behavior
seen in the final phases of the hybrid- and elastoplastic-type stiffness curves.

While lattices follow the same general pattern, the specific topologies create differences in, for
instance, when the stiff phase begins to dictate the stiffness response, resulting in unique responses
for each lattice and highlighting the importance of how hierarchy is created in a lattice structure.
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Conclusions and Future Work

10.1. Conclusions
The future of aviation will undoubtedly necessitate the development of new tough, lighter-weight struc-
tures. Lattice materials show promise in contributing to this future, but research into tensile behavior is
still in its early stages, and this is especially so for lattices under tensile loading. Any future aerospace
structure will need to be damage-tolerant to ensure continued safety, as shown in Section 2.1.

But long before then, it is critical to understand how these structures behave and how they respond
to changing parameters, such as relative density. As discussed in Chapter 3, relative density is un-
doubtedly one of the most important parameters defining lattice mechanical response, so it logically
follows that mechanical response should be affect by local variations in relative density. The question
remains, how this behavior manifests itself. These gaps in understanding lead to the guiding question
of this research:

How does mechanical response relate to cell toughening mechanisms that result from structural
hierarchy in cellular materials?

The initial research objective was primarily to observe how adding structural hierarchy by means
of relative density impacts mechanical response and fracture behavior in a 2D honeycomb structure.
The result, however, was a deeper understanding of not only the effects of relative density on fracture
behavior, but how cell deformation behavior varies over loading and how this manifests itself in the
stress-strain and stiffness-displacement responses. This information was then used to understand
how hierarchical lattice stiffness response can be directly linked to the interactions between cells of
varying relative density.

The main findings of this thesis can be summarized in three categories for both uniform and hierar-
chical lattices:

Lattice mechanical response and fracture behavior

• Uniform
A double-lobed butterfly shape is visible in the rotation deformation field at the crack tip. Fracture
in these lattices is highly random; microcracking and crack deflection are the primary toughening
mechanisms. As relative density increases beyond this point, force-displacement and stiffness-
displacement response becomes increasingly more brittle. Fracture is characterized by sudden,
violent ruptures which travel straight across the lattice. At all relative densities, lattices showed
a unique ability to survive premature strut failure; a temporary loss of strength is not necessar-
ily catastrophic. This phenomenon is most evident in low-density lattices, where microcracking
appears to be a mechanism to delay complete fracture, reflecting observations of the damage
evolution of natural materials, suggesting that describing lattice toughness solely using �̄�ፈፂ may
not be adequate or appropriate.

• Hierarchical
The impact of hierarchy on lattice stiffness is varied; stiff inclusions in a compliant lattice yielded
a statistically significant increase in �̄� over low-density uniform lattices, while removing material
from a stiff lattice did not significantly impact �̄� compared to �̄� = 0.30 lattices. Overall, fracture
behavior in all lattices was more consistent than in uniform lattices; compliant channels in stiff
lattices were the most effective at consistent crack deflection, while stiff inclusions in a compliant
lattice successfully diverted propagating cracks, but had less consistent fracture patterns.

62



10.2. Future work 63

Cell deformation and stiffness response

• Uniform
Three general stiffness curve profiles have been identified: elastomeric, elastoplastic, and hy-
brid. Contrary to literature, below �̄� = 0.20, lattice mechanical response can be characterized
as ”elastomer-like”, despite the lattice being manufactured from a brittle material. Changes in
the stiffness response during loading are associated with different cell deformation shapes. All
lattices begin by deforming via nodal hinging; in elastomeric-type lattices, this is associated with a
long linear-elastic regime, and in elastoplastic- and hybrid-type lattices, this is associated with lat-
tice strain softening. The onset of s-bending is marked by lattice strain hardening in elastomeric-
and hybrid-type lattices and by a change in the slope of the stiffness curve in elastoplastic-type
lattices. The cell deformation progression contradicts Gibson and Ashby’s prediction for lattices
made from a polymer material.

• Hierarchical
The initial stiffness response is governed by the deformations in compliant phase, with cells show-
ing nodal hinging followed by s-bending. As compliant cells reach the limits of s-bending, the stiff
phase takes up more load and governs stiffness response up to failure, deforming primarily by
nodal hinging up to failure.

Cell deformation and nodal stiffness

• Uniform
In high relative densities (�̄� > 0.20), strong nodes and stiff beams allow little rotation and relatively
higher elongation. Low relative density (�̄� < 0.20) nodes impart comparatively little strength,
allowing for high rotations with relatively lower elongation.

• Hierarchical
Stiff-phase struts appear to directly and indirectly support compliant-phase struts, resulting in,
among others, higher compliant beam rotations, complete redirection of deformation concentra-
tions, delaying onset of failure, or forcing failure by stretching.

10.2. Future work
The study of the in-plane tensile properties of lattice structures is a relatively new field which, primarily
due to manufacturing challenges, has been mostly relegated to numerical investigations. But with
continued advancements in novel manufacturing techniques come increased opportunities to further
understand the mechanical responses of lattice structures and study the impacts of varying different
parameters.

10.2.1. Improvements to the methodology
Material effects
The scope of this research is limited to lattices manufactured from a specific, proprietary photopolymer
resin, a choice which comes with several unknowns that were discussed in Chapter 6. Two conse-
quences arise from this which could form the basis for future research: the inability to separate the
influence of material and geometry in the lattice response and that results cannot be extrapolated and
applied to other materials. Additionally, it is impossible to differentiate the response due to the lattice
geometry from the response inherent to the material because no constitutive model currently exists for
Formlabs resins. A constitutive model would be useful to determine whether the effects of strain-rate
sensitivity and viscoelasticity significantly impact tensile lattice response.

Higher-resolution deformation field calculations
The main outcomes of this work regarding the deformation fields are restricted to quantifying strut
elongation and rotation behavior and qualitatively identifying a relationship between cell deformation
and global lattice response. In reality, cell deformation behavior is more complex and cannot be fully
described simply by elongation and rotation.

Thus, a more rigorous study of cell deformation behavior employing five dots per beam, instead of
three, could bring clarity on several aspects of this research. At a high level, the full stress state of
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Figure 10.1: Sketch of proposed dot-painting setup

entire lattice could be calculated from the deformations at any point during loading, providing a better
comparison to, for instance, finite-element models. In terms of this research, the correlation between
cell deformation shape and stiffness response could be quantitatively confirmed for uniform lattices,
which would feed into a better understanding of the hybrid stiffness responses of hierarchical lattices.

This method would be relatively easy to implement, as it only requires the addition of two raised
dots per beam on the lattice surface. If the same materials are used, however, this would inevitably
require a more reliable method to paint the raised dots. A possible solution, sketched in Figure 10.1,
is to design a complementary plate with raised dots at the same locations as those on the lattice. The
entire plate can be spray-painted, and so long as the paint layer thickness is less than the height of the
dots, paint should not seep onto the lattice struts. Protruding honeycomb cells in each corner would
ensure alignment as the lattice is placed on top of the plate.

For data processing, the Matlab applet created for calculating deformations already has a function
for building beam associations using five dots instead of three. In the future, the deformation calcula-
tions will also be expanded to be able to handle five-dot beams. These changes are aimed at providing
seamless data processing for both dot configurations and will be made available for future research.

10.2.2. Towards a better structural hierarchy
Hybrid hierarchical structures
Each of the hierarchical lattice configurations demonstrated unique strengths and weaknesses. None
could be considered optimal in terms of damage tolerance, however. In lattice structures, a damage-
tolerant design would likely see small, predictable fractures combined with crack-arresting or -diverting
features. Section 9.2 presented evidence that hierarchy does not homogenize the stiffness response,
rather that the effects of each phase are distinctly visible. Therefore, a possible avenue to explore
is blending various hierarchical topologies within one lattice to force certain responses. Of course,
this significantly widens the scope of possible topologies, but it can be narrowed by focusing on a
few elements: sacrificial beams which help dissipate strain energy and stiff sections which support
compliant cells without creating areas for stress to concentrate.

In order to remain effective, sacrificial elements should fracture predictably. The stiff/compliant
lattices showed that a large disparity in relative density produces consistent fracture patterns, but came
at the expense of sudden, violent fracturing. A small difference in relative density, on the other hand,
may be susceptible to defects, causing fracture to initiate somewhere other than at a sacrificial element.
Therefore, it is likely that an ”optimal” difference exists which results in a predictable fracture path
without building up large amounts of strain energy in the rest of the lattice.

Adding stiffness to a compliant lattice is a delicate process, evidenced by the Bamboo and Nacre
lattices. The sparse inclusions in the Bamboo lattices diverted cracks and completely altered the de-
formation behavior, but unintentionally caused cells trapped in the corners to stretch to failure. The
Nacre lattices, on the other hand, had fewer inclusions than Bamboo, but their dense packing resulted
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in a stiffness concentration which created large deformations in the compliant phase. That said, both
lattices demonstrate how stiff inclusions could be tailored to support compliant beams and deflect crack
growth. Further research would be required to fully understand the relationship between the nodal stiff-
ness that arises from differences in relative density and strut deformation behavior. Other inclusion
shapes could also be explored, such as a single line ”floating” in the lattice. The Glass Sponge lattice
response suggests that the compliant regions parallel to the load direction do not substantially alter
lattice properties, such as lattice elastic modulus. Therefore, it is possible that the inverse is also true;
a higher-density line in a low-density lattice is not stiff enough to create large stress concentrations, but
is still able to help deflect, or possibly arrest, crack growth.

Structural hierarchy with nodal topology
A further expansion of the structural hierarchy concept is to combine relative density with variations in
nodal topology. Van Helvoort found that the sharp internal corners of regular hexagonal unit cells create
stress concentrations at the nodes which reduce strut deflection rigidity, and that applying bioinspired
fillets to the nodes can increase the strut deflection rigidity of a lattice [45]. This knowledge could be
implemented in a relative density-hierarchical structure as a way to further tailor fracture behavior.

Take sacrificial elements, for instance; applying fillets to the stiff phase would increase the structural
rigidity of the phase without substantial gain in mass. This could push the ”optimal” difference between
phase relative densities closer together that still ensures a consistent fracture pattern, creating an even
lighter-weight structure. Another possibility is to use the weakness of unfilleted nodes as a way to force
fracture to occur at a particular location, while crack-arresting features further across the lattice have
filleted nodes to absorb more fracture energy.

Introducing nodal topology as a variable would, undoubtedly, add significant complexity. Before
attempting to design lattices varying both relative density and nodal topology, a more thorough investi-
gation would need to be conducted into the effects of relative density interfaces on nodal stiffness. This
could then be combined with variations in nodal topology to gain a better understanding of whether one
parameter has a greater impact on nodal stiffness.



Bibliography
[1] Formlabs, “Materials Data Sheet: Photopolymer Resin for Form 1+ and Form 2,” 2019.

[2] M. Ashby, “No Title,” 2002.

[3] S. Amada and S. Untao, “Fracture properties of bamboo,” Composites Part B:Engineering, vol. 32,
pp. 451–459, 1 2001.

[4] “Photo Gallery | Peak Bamboo,” 2018.

[5] A. Woesz, J. C. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D. E. Morse, and P. Fratzl, “Mi-
cromechanical properties of biological silica in skeletons of deep-sea sponges,” Journal of Mate-
rials Research, vol. 21, pp. 2068–2078, 8 2006.

[6] O. Kolednik, J. Predan, F. D. Fischer, and P. Fratzl, “Bioinspired design criteria for damage-
resistant materials with periodically varying microstructure,” Advanced Functional Materials,
vol. 21, pp. 3634–3641, 10 2011.

[7] L. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties. 1987.

[8] V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: Bending versus stretching dom-
inated architectures,” Acta Materialia, vol. 49, no. 6, pp. 1035–1040, 2001.

[9] I. Schmidt and N. A. Fleck, “Ductile fracture of two-dimensional cellular structures,” International
Journal of Fracture, vol. 111, pp. 327–342, 2001.

[10] G. Mayer, “Mechanical energy dissipation in natural ceramic composites,” Journal of the Mechan-
ical Behavior of Biomedical Materials, vol. 76, no. June, pp. 21–29, 2017.

[11] H. C. Tankasala, V. S. Deshpande, and N. A. Fleck, “2013 Koiter Medal Paper: Crack-Tip Fields
and Toughness of Two-Dimensional Elastoplastic Lattices,” Journal of Applied Mechanics, vol. 82,
p. 091004, 9 2015.

[12] C. B. Bucknall, “Quantitative approaches to particle cavitation, shear yielding, and crazing in
rubber-toughened polymers,” Journal of Polymer Science Part B: Polymer Physics, vol. 45,
pp. 1399–1409, 6 2007.

[13] MechaniCalc, “Beam Stress & Deflection,” 2020.

[14] Federal Aviation Administration, “Advisory Circular 23-13A, Fatigue, Fail-Safe, and Damage Tol-
erance Evaluation of Metallic Structure for Normal, Utility, Acrobatic, and Commuter Category
Airplanes,” 2005.

[15] U. D. o. Transportation, “Damage Tolerance Assessment Handbook vol. I,” U.S. Department of
Transportation, p. 168, 1993.

[16] U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, “Bioinspired structural materials,”
Nature Materials, vol. 14, no. 1, pp. 23–36, 2015.

[17] R. O. Ritchie, “The conflicts between strength and toughness,” Nature Materials, vol. 10, no. 11,
pp. 817–822, 2011.

[18] M. D. Hayes, D. B. Edwards, and A. R. Shah, Fractography Basics. 2015.

[19] R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, “Deformation mechanisms in nacre,”
Journal of Materials Research, vol. 16, no. 9, pp. 2485–2493, 2001.

[20] F. Barthelat, H. Tang, P. D. Zavattieri, C. M. Li, and H. D. Espinosa, “On the mechanics of mother-
of-pearl: A key feature in thematerial hierarchical structure,” Journal of theMechanics and Physics
of Solids, vol. 55, pp. 306–337, 2 2007.

[21] M. Meyers, J. McKittrick, and P. Chen, “Structural Biological Materials: Critical Mechanics-
Materials Connections,” Science, vol. 335, pp. 199–204, 1 2012.

66



Bibliography 67

[22] F. Heinemann, “Electron microscopy image of a fractured surface of nacre,” 2017.

[23] Kebes, “Schematic of the microscopic structure of nacre layers,” 2005.

[24] S. V. Rupani, S. S. Jani, and G. D. Acharya, “Design, Modelling and Manufacturing aspects of
Honeycomb Sandwich Structures: A Review,” International Journal of Scientific Development and
Research, vol. 2, no. 4, pp. 526–532, 2017.

[25] L. J. Gibson, “by Lorna Jane Gibson A dissertation submitted to the University of Cambridge for
the Degree of Dbctor of Philosophy Churchill College Augus t 1981,” 1981.

[26] PATEL MR and FINNIE I, “MECHANICAL BEHAVIOR OF RIGID PLASTIC FOAMS,” No. pt 1,
pp. 597–615, 1970.

[27] F. K. Abd El-Sayed, R. Jones, and I. W. Burgess, “A theoretical approach to the deformation of
honeycomb based composite materials,” Composites, vol. 10, pp. 209–214, 10 1979.

[28] W. E. Warren and A. M. Kraynik, “Foammechanics: the linear elastic response of two-dimensional
spatiallly periodic cellular materials,” Mechanics of Materials, vol. 6, pp. 27–37, 3 1987.

[29] J. Huang and L. Gibson, “Fracture toughness of brittle honeycombs,” Acta Metallurgica et Materi-
alia, vol. 39, pp. 1617–1626, 7 1991.

[30] J. S. Huang and M. S. Chiang, “Effects of microstructure, specimen and loading geometries on
KIC of brittle honeycombs,” Engineering Fracture Mechanics, vol. 54, no. 6, pp. 813–821, 1996.

[31] I. Quintana-Alonso and N. A. Fleck, “Fracture of Brittle Lattice Materials: A Review,” tech. rep.

[32] H. Gu, M. Pavier, and A. Shterenlikht, “Experimental study of modulus, strength and toughness of
2D triangular lattices,” International Journal of Solids and Structures, vol. 152-153, pp. 207–216,
11 2018.

[33] M. Ryvkin, M. B. Fuchs, F. Lipperman, and L. Kucherov, “Fracture analysis of materials with peri-
odic microstructure by the representative cell method,” tech. rep., 2004.

[34] Y. Wu and L. Yang, “Modeling of crack propagation in 2D brittle finite lattice structures assisted
by additive manufacturing,” Solid Freeform Fabrication Symposium, no. August, pp. 2112–2126,
2017.

[35] N. Fleck, O. Olurin, C. Chen, and M. Ashby, “The effect of hole size upon the strength of metallic
and polymeric foams,” Journal of the Mechanics and Physics of Solids, vol. 49, pp. 2015–2030, 9
2001.

[36] A. Cherkaev and M. Ryvkin, “Damage propagation in 2d beam lattices: 2. Design of an isotropic
fault-tolerant lattice,” Arch Appl Mech, vol. 89, pp. 503–519, 2019.

[37] F. Libonati, G. X. Gu, Z. Qin, L. Vergani, and M. J. Buehler, “Bone-Inspired Materials by Design:
Toughness Amplification Observed Using 3D Printing and Testing,” Advanced Engineering Mate-
rials, vol. 18, pp. 1354–1363, 8 2016.

[38] L. S. Dimas, G. H. Bratzel, I. Eylon, and M. J. Buehler, “Tough Composites Inspired by Mineralized
Natural Materials: Computation, 3D printing, and Testing,” Advanced Functional Materials, vol. 23,
pp. 4629–4638, 9 2013.

[39] F. Lipperman, Ryvkin, Michael, and M. B. Fuchs, “Design of Crack-Resistant Two-Dimensional
Periodic Cellular Materials,” journal of mechanics of materials and structures, vol. 4, no. 3, pp. 441–
457, 2009.

[40] Formlabs, “Density engineering resin - Feature Requestions & Ideas - Formlabs Community Fo-
rum,” 2019.

[41] K. Ertman, “katharina-ertman/latticeDeformations: Matlab applet for one-click dot-tracking, defor-
mation calculations, and deformation plotting for lattice structures.,” 2020.



68 Bibliography

[42] J. C. Crocker, E. R. Weeks, D. Blair, and E. Dufresne, “Particle tracking using IDL.”

[43] M. G. Laka and A. A. Dzenis, “Effect of hydrostatic pressure on the tensile strength of polymer
materials,” Polymer Mechanics, vol. 3, no. 6, pp. 685–687, 1967.

[44] Formlabs, “Black Photoreactive Resin for Formlabs 3D printers Safety Data Sheet,” 2016.

[45] D. T. J. V. Helvoort and A. C. D. Rans, “The effect of nodal topology on cellular solid mechanics A
preliminary diagnostic experimental investigation,” no. December 2018, 2018.



A
Print quality informal study

During manufacture of a set of �̄� = 0.20-0.40 lattices, an informal study was conducted to assess the
impact of various printing parameters on print quality and eventual testing performance. The parame-
ters documented were time, room temperature, and relative humidity at print start, print end, and start
of post-printing activities, part mass and deviation from ideal mass, number of days between printing
and testing, and whether lattices had cells filled with resin after washing and curing.

Results
Two pages of results can be found at the end of this appendix. The first contains the log used to
note down the parameters listed above, including any additional notes, observations, or deviations
from procedure. The second gathers the average mass for each relative density set and the average
deviation from the ideal mass, as well as the average time to test per set. Figure A.1 on the subsequent
page shows all force-displacement curves for �̄� = 0.20, 0.30, and 0.40 specimens which were produced
during this informal study. The subsequent page contain two spreadsheets.

Discussion
Whether a lattice was deemed ”good” or ”bad” was determined based on the quality of the final lattice,
i.e. whether cells were filled with resin after washing and curing, cleanliness of the part surface, and
the sharpness of small features.

The suitability of this categorization was then assessed using the force-displacement curves shown
in Figure A.1. At �̄� = 0.20, the force-displacement behavior seems to group by ”good” and ”bad” parts;
maximum force is generally higher for ”bad” parts and show less consistency than the ”good” parts. A
possible explanation is that the lack of precision created slightly curved internal vertices which lower the
stress concentration at the node and delay fracture. As relative density increases, the ”bad” �̄� = 0.30
and 0.40 lattices become noticeably more tacky to the touch, possibly not having cured properly during
the UV curing cycle. This likely meant that these lattices were more compliant than expected, which is
corroborated by the relatively higher number of load drops in the force-displacement curves compared
to ”good” lattices.

Other parameters related to printing, such as relative humidity and temperature, time between print
finish and the start of post-printing activities, do not seem to affect whether a lattice will be considered
”good” or ”bad”. In the case of the latter, Specimens 30_01, 02, 03, and 04 all hung from the build
platform over a weekend, but 01 and 02 were deemed ”good” while 03 and 04 were deemed ”bad”.
Similarly, the average time between printing and testing was the same for both sets, so it is unlikely
that this had a significant impact.

From this informal study, a general conclusion can be drawn that the quality of a finished part is the
most likely indicator of whether a lattice is considered ”good” and ”representative” for testing. Variation
can still occur due to the nature of these lattices and the manufacturing process, but a visual inspection
is more likely-than-not to be sufficient for assessing part quality.
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Figure A.1: Raw force-displacement curves for specimens that were considered for this informal study. From top to bottom:
᎞̄ ዆ ኺ.ኼኺ, ኺ.ኽኺ, and ኺ.ኾኺ



B
Spline curve fitting

A limitation of the methodology was the use of three dots per beam to track lattice deformation behavior,
allowing only elongation and rotation deformations to be confidently measured. Some cell deforma-
tions, namely s-bending, necessitate five dots per beam to fully capture the deformation behavior.
Regardless of the deformation shape, using five dots per beam would allow internal shear forces and
bending moments to be calculated in each strut, ultimately providing the stress state in the lattice at
any given point.

This appendix provides information on a proposed methodology for quantifying internal shear forces
and bending moments using testing images of lattices with three dots per beam. Preliminary results
are also presented for lattices with a uniform relative density. Finally, a short discussion is presented
highlighting the limitations of this method.

Methodology
In the course of analyzing the data, a rudimentary workaround was devised which could provide some
preliminary insights. For a small number of cells, a spline curve can be drawn on each strut with five
points of interest using a program such as Adobe Illustrator, shown in Figure B.1. The coordinates
of these spline curves were then imported to MATLAB and a polynomial fit using the fit function was
applied. The resulting equation is the displacement function, which can then be used to estimate the
internal shear force and bending moment functions:

𝑀(𝑥) = −𝐸𝐼𝑑
ኼ𝑤(𝑥)
𝑑𝑥ኼ (B.1)

𝑉(𝑥) = − 𝑑
𝑑𝑥(𝐸𝐼

𝑑ኼ𝑤(𝑥)
𝑑𝑥ኼ ) (B.2)

Figure B.1: Sample spline curve drawn to follow the curvature of a strut. The coordinates of five points on the red line were
then imported to Matlab for curve fitting.
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Limitations
A flaw in this analysis could not be resolved before the submission of this thesis is that the deflection
and internal shear/moment functions are calculated based on a spline curve measured in pixels. Be-
cause placement of the Optomotive Velociraptor was not held constant over testing, this means that the
number of pixels per millimeter of lattice likely varies slightly between specimens and, as a result, the
numerical values obtained per lattice cannot be directly compared. With a bit more time this problem
could be solved manually, and if this method were to attempted in the future, care should be taken to
ensure that a constant px/mm conversion value could be used. That said, there is still value in doing
this analysis, particularly regarding the profile of the internal shear/moment distribution over the beams.

Results and discussion
This method was applied to two cells in a representative lattices of each uniform relative density set,
shown in Figure B.4. The cells were chosen such that it is reasonable to expect that the cells are
least affected by the crack tip and free edges, and, therefore, these results should not be taken as
representative for the entire lattice or even the relative density set and are presented purely as an
initial study. Figure B.3 shows the generated moment diagrams for the selected struts in �̄� = 0.12,
�̄� = 0.20, and �̄� = 0.40 lattices.

Figure B.2: Visualization of the cells selected for spline
curve fitting in a representative lattice of each uniform

relative density.

M(x)

V(x)

��

� �

� �

x

Figure B.3: Shear force and bending moment diagrams
for a selected strut in a ᎞̄ ዆ ኺ.ኻኼ (red), ᎞̄ ዆ ኺ.ኼኺ (yellow),

and ᎞̄ ዆ ኺ.ኾኺ (blue) lattice.

While the magnitudes of the shear and moment diagrams cannot be taken as accurate, the general
shape can still be evaluated. Most notable is the asymmetry in the diagrams which is consistent across
the three relative densities illustrated. Of course, the shape of the deflection curve is going to be highly
dependent on the accuracy of the spline drawing, but the fact that there is consistency across three
different lattices suggests that this is likely not exclusively due to human factors. The struts were all
at the same relative position and orientation in the lattice, suggesting that maybe there is an inherent
imbalance in the way that loads are introduced into individual beams. It may also be related to the
fact that one end of the beam is aligned with the crack tip, and therefore, experiences a different load
distribution compared to surrounding beams. While this is merely speculation based on a very small
sample size, this does highlight the need for further research that could quantify this behavior for an
entire lattice, not just a handful of cells.
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The method was also applied to selected cells in an Bamboo and Etching lattice, shown in Figure
B.4, and the shapes of the shear/moment diagrams can be assessed, shown in Figure B.5. These
lattices were chosen because of the higher rotations seen in the compliant beams compared to the
uniform lattices.

Figure B.4: Location of the selected struts in the
Bamboo and Etching lattices.

M(x)

V(x)

M(x)

V(x)

Figure B.5: Internal shear and bending moment
diagrams for a selected strut in the Bamboo and Etching

lattices.

Figure B.6: Internal shear and bending moment
diagrams for fixed-fixed beam with a distributed

load [13]

Interestingly, the Bamboo lattice beam diagrams
show a symmetry not seen in the uniform lattices, which
could be a result of the strut’s location or potentially an
indication of more evenly-distributed loading in hierar-
chical structures compared to uniform lattices. The pro-
files also bear striking resemblance to those of a beam
with fixed-fixed end conditions under a distributed load,
shown in Figure B.6. A possible explanation is that the
strut has reached its maximum nodal rotation angle, but
because it is supported by the stiff inclusions above and
below and continues to be pulled downwards and turn
inwards. This would result in the fixed-fixed like condi-
tion and any additional loads applied to the strut would
behave like a distributed load.

The Etching beam, therefore, should also exhibit this
behavior, but instead has a similar profile to the uniform
lattices. The reason is not particularly clear, though and
again shows that a big limitation in this method is that it
is very dependent on the accuracy of the spline fitting.



C
Supplemental data

This appendix contains a selection of additional results for convenience. The following page provides
the full set of force-displacement and stiffness-displacement curves for both uniform relative density
and hierarchical lattices. Subsequent pages contain the force-displacement curve, final elongation
and rotation deformation fields, and the fracture paths for select additional specimens of each (uniform
and hierarchical) set.
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