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Abstract
MRI machines are devices that are used to non-invasively obtain images of the internal
anatomy and physiological processes of the human body. It is safe to use as the patient is not
exposed to any harmful radiation, and there are no known side effects. But such machines
that are commercially available are very expensive. Due to this reason, it eludes access to a
large portion of the population, particularly in developing countries. This thesis investigates
an inexpensive MRI machine that is based on a rotating inhomogeneous magnetic field map.
Unlike conventional scanners, because of the rotating field, the signal model of this device
has to account for it. The objective of this work is to examine the aforementioned model, and
also to implement Krylov subspace-based reconstruction algorithms available in the IRTools
package.
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1
Introduction

Understanding and solving complicated problems in medicine requires the joint effort of pro-
fessionals from diverse backgrounds such as doctors, biologists, chemists, physicists, math-
ematicians, engineers and experts from other disciplines. A considerable portion of such
problems pertains to diagnostic purposes. Their main objective is to correctly identify the
patient’s disease on time so that appropriate actions can be taken swiftly. Imaging consti-
tutes a core element of it that helps doctors to visualize the issues to make proper decisions.
Although this work is about Magnetic Resonance Imaging (MRI) technique, popular imaging
techniques in use are described briefly in the beginning. It is then followed by a small elab-
oration on the Magnetic Resonance Imaging (MRI) technique to state its importance. This
chapter concludes by outlining the purpose of this thesis and then explaining the structure
of this report.

1.1. Medical Imaging
Medical imaging is the way of acquiring anatomical or functional information about the body’s
interior parts. Anatomical information describes the structures of the body parts (e.g. posi-
tion of the bones, the rupture in a certain organ ), whereas the functional information gives
us an idea about the functions and relationships of the body parts (e.g. blood flow speed,
regional chemical composition). Imaging that is done by sectioning the body, by using some
penetrating wave, without actually cutting it open, is called tomography.

Figure 1.1: The figure shows the basic principles of tomography. and are different tomographic slices of the objects which
have to be imaged. Picture is adapted from https://en.wikipedia.org/wiki/Tomography

1
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Some popular tomographic modalities with small descriptions are discussed below-

• Computed tomography: Computed Tomography (CT) is a modality that uses x-rays to
image a body from different angles. These are then combined to form a cross-sectional
view of it.

• Single-photon emission computed tomography: Single-photon emission computed
tomography (SPECT) is a tomography used in nuclear medicine. In nuclear medicine,
the patients receive radioactive compounds, called radiotracers, either by injection, in-
halation or by ingestion. These substances emit gamma rays from the interior of the
body, which are then detected by gamma cameras of the SPECT scanner. This is used
to form image slices of the human body.

• Positron emission tomography: Positron emission tomography (PET) is also used in
nuclear medicine for imaging. The main difference of it from SPECT lies in the under-
lying physics of how the gamma rays are formed, which is based on the kind of radio-
tracers administered to the patients. PET exploits this specific process of gamma-ray
formation and uses it to make images.

• Magnetic Resonance Imaging: Magnetic resonance imaging (MRI) is based on the Nu-
clear magnetic resonance (NMR) phenomenon. It is a complex physical process that will
be described more in the following sections and subsequent chapters. Briefly, MRI is
a tomographic technique that uses magnetic fields to image the subject by measuring
the nuclear magnetic resonance (NMR) signals emitted by the body.

1.2. Magnetic Resonance Imaging
MRI is a tomographic imaging method that can produce anatomical as well as functional
images of the patient. There are several advantages of the MRI technique, which are listed
below. These descriptions are based on [14].

• No ionizing radiations involved: Unlike CT, SPECT, and PET, MRI is not associated
with any potentially harmful radiations. It works in the radio-frequency range, and
there are no known side effects. Thus, it is safe to use.

• More freedom in choosing tomographic slice orientations: In CT, PET or SPECT,
the orientation of the image slices depends on the direction of the scanner’s detector
with respect to the patient. Whereas in MRI, the orientation of the tomographic slices
depends solely on the way that the external magnetic fields are applied. Thus, com-
plex orientations of the slices can be obtained, and no mechanical adjustments of the
detectors are required.

• Information rich NMR signals: NMR signals are dependent on many factors like nu-
clear spin density, spin-lattice relaxation time, spin-spin relaxation time, chemical-shift
differences, and so on. It is possible to study the effect of just one specific factor by sup-
pressing the influences of other factors. In this way, the same signal can be used to
study many different properties. Thus, NMR signals are rich in information.

To delve deeper into MRI, it is beneficial to have a basic idea of the MRI machine itself,
which is discussed next.

1.3. MRI System
For now, we are going to look at the MRI system from a high-level view. Note that the image
acquisition process with MRI is a complex technique. There are different ways of obtaining
different MRI images, that give different information. Many details are left out in the following
description.
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Figure 1.2: Basic MRI technique without the gradient system. The circles represent the nuclei present in the body.

Figure 1.2 and figure 1.3 are general illustrations of the basic principle of MRI imaging.
In figure 1.2, a uniform initial condition is first created for the nuclei in the body of the
patient. These nuclei are responsible for emitting the NMR signals. After creating this initial
environment, controlled ’disturbances’, in the form of pulses, are applied so that the spins
are perturbed from the initial condition1. When these disturbances are removed, the nuclei
lose energy in the form of NMR signals and return to the initial condition.

Figure 1.3: Basic MRI technique with the gradient system. The circles represent the nuclei present in the body.

1In MRI literature, the term ’disturbance’ is not used. The reason it is used here is to mean that the initial condition is disturbed.
The technical terms will be discussed in the later chapters.
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Now, in (figure 1.2), all nuclei throughout the body experienced the same disturbances.
When these are removed, the nuclei at different locations lose their energy in the same way.
Due to this, they emit the same NMR signal and where they are coming from, for example, the
chest, abdomen or thigh, cannot be identified. We are interested in finding out the position
of nuclei that are emitting the NMR signals. This forms the basis of MRI imaging and the
process of finding out the locations is called spatial localization.

Figure 1.3 describes a way how spatial localization can be achieved. Here, controlled dis-
turbances are selectively applied to those nuclei which belong to a chosen slice ( highlighted
in orange) of the body. When these are removed, it is possible to make the nuclei at different
locations, within that slice, to lose energy at different rates. As a result, different nuclei emit
different signals. This means that we are essentially encoding spatial information in the nu-
clei at different locations. This principle is used to image a body based on the NMR signals
that are received.

The whole MRI system can be decomposed into three main sub-components- main mag-
net, gradient system, and radio frequency (RF) system. These are described more below. As
the last section (section 1.2), this part is also based on [14].

1. The main magnet: The function of the main magnet is to generate a strong static
magnetic field which is also called the background field. In principle, this field evenly
polarizes the nuclear spins2 and creates a uniform initial condition. This field should
be as homogeneous as possible so that the spins are uniformly polarized. Also, it is
observed that the signal-to-noise ratio (SNR) of an NMR signal increases as the strength
of the main magnet increases. So a stronger main magnet is beneficial in this respect.

2. The gradient system: Gradient systems consist of coils which are constructed to pro-
duce spatially non-uniform magnetic fields. This component is essential for slice selec-
tion and spatial encoding.

3. The RF system: The RF system is the component that is responsible for applying the
controlled ’disturbances’ in the form of pulses. It consists of a transmitter coil that is
used to generate magnetic pulses to excite the spins of the object. It also consists of a
receiver coil that receives the NMR signal when the pulses are removed.

After obtaining the NMR signal, it is required to perform signal processing techniques on
it before an image, that has some practical significance, is obtained. A brief overview of the
signal processing aspects is given next.

1.4. Signal Processing in MRI
Signal processing in MRI aims to solve two problems. They are described below-

• Forward Problem:In the forward problem, we assume that we know the input and the
model of the system, and based on it, we try to predict the output. In our case, the input
is the applied magnetic fields, and the system model will be derived in a later chapter.
Using this input and model, we try to obtain the measured signal (figure 1.4).

Figure 1.4: Forward Problem.

2Only nuclei with odd atomic weights and/or odd atomic numbers are involved in generating NMR signals. These nuclei are
called spins[14].



1.5. Purpose of the Thesis 5

• Inverse Problem: In the inverse problem, we assume that we know the measured signal
and the model of the system (figure 1.5). We then try to predict the image that is giving
this measured signal using appropriate reconstruction algorithms. In this work, we will
investigate reconstruction algorithms based on Krylov subspace.

Figure 1.5: Inverse Problem.

Until this point, a basic overview of the MRI technique is given without going too much
into the details. This small background in MRI is believed to be sufficient for getting some
idea about the purpose of the thesis, which is briefly discussed next.

1.5. Purpose of the Thesis
This thesis focuses on the signal processing aspects (the forward and the inverse problem)
of an unconventional MRI device, operating in a low magnetic field setting. This device uses
an inhomogeneous background field which is also used for spatial encoding. This is unlike
conventional MRI machines, which have been discussed so far in this chapter, that use a
separate gradient system for spatial encoding with a homogeneous background field. The
device used in this thesis is cheaper, less bulky and less complex. This purpose will be
further elaborated in chapter 4.

1.6. Organization of the Report
This report is divided into three parts-

1. Part 1: Signal Modeling
This part is concerned with deriving the signal model of the unconventional MRI device.
It also throws light on the purpose of the thesis.

2. Part 2: Signal Reconstruction
This part describes the algorithms that are employed to compute the MRI image using
the signal model derived in Part 1.

3. Part 3: Results and Analysis
In this part, several investigations are done on the performance of the algorithms intro-
duced in Part 2 to reconstruct the images using the signal model derived in Part 1. It
ends by concluding the results of this work, and suggesting for possible future work.





Part 1: Signal Modeling
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2
MRI Fundamentals

In this chapter, we will look at the MRI in a more detailed fashion. The motive of this part
is to explain the basic mathematical equations that are involved in it. This will make it easy
later to relate the MRI scanners in use with the unconventional MRI machine- like how it is
different, and what advantages it can provide.

This chapter starts by touching upon some concepts of physics that lead to the mag-
netic resonance phenomenon, and progressively works towards the development of the Bloch
Equation. Bloch Equations are the set of equations that are used to describe the motion of
nuclear magnetizations. This equation stays true whatever construction of the machine is
used. The Reciprocity theorem is applied to express this magnetization as a voltage signal
that can be measured. Towards the end, a basic form of MRI signal, called ”Free Induction
Decay” (FID), is explained that this work is using.

This chapter outlines the description given in the book ”Principles of Magnetic Resonance
Imaging” by Zhi-Pei Liang and Paul C. Lauterbur [14], and more insight can be gained by
referring to it.

2.1. Nuclear Precession
The objective of a clinical MRI machine is to image patients. It is common knowledge that
humans, or any other matter, can be successively broken down into more fundamental par-
ticles like molecules, then to atoms, and then to the nucleus (figure 2.1a). MRI is a nuclear
phenomenon that originates from nuclei spinning about their axis, called spins.

Although nuclear spin is a quantum mechanical property, in classical mechanics, it can
be thought of as the nucleus physically rotating with angular momentum, J⃗. The nucleus
consists of positive charges, and as the nucleus rotates about its axis, it gives rise to a
magnetic field. This field is represented by a vector quantity called magnetic moment, �⃗�
(figure 2.1b).

9
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(a) (b)

Figure 2.1: a) The Human body is composed of nuclei b) A nucleus, with positive charges on it, rotating counterclockwise with
angular momentum J⃗. As a consequence, it creates a magnetic moment �⃗�

A fundamental equation of particle physics relates the magnetic moment of the spin to
the angular momentum as-

�⃗� = 𝛾J⃗ (2.1)

where 𝛾 is a constant called the gyromagnetic ratio. The value of the gyromagnetic ratio is
intrinsic to the nucleus being considered. Some values are shown in table 2.1. It can be seen
that 𝐻 has the largest gyromagnetic ratio and consequently it has largest magnetization, �⃗�,
for a given angular momentum, J⃗ (evident from equation 2.1). As the magnitude of the MRI
signal is proportional to the magnitude of magnetization, which we will see, we will get a
higher signal in the case of 𝐻. We can also observe from table 2.1 that sensitivity of it is
large. Moreover, because 𝐻 are present in abundance in the body, in the form of water or
other organic compounds, they are a good candidate for being imaged by MRI.

Table 2.1: Properties of some NMR-Active Nuclei [14]

Nucleus
Gyromagnetic
ratio (MHz/T),

𝛾−=

Relative
Sensitivitya

𝐻 42.58 1.000
𝐶 10.71 0.016
𝐹 40.05 0.870
𝑃 11.26 0.093

aRelative Sensitivity is calculated at a constant field for an equal
number of nuclei

Suppose, i⃗, j⃗ and k⃗ are the unit vectors along the 𝑥, 𝑦 and 𝑧 axis respectively in the
laboratory frame. If a strong magnetic field, 𝐵 , is applied to a 𝐻 spin along the z-direction
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such that-

𝐁𝟎 = 𝐵 k⃗, (2.2)

it turns out, through quantum mechanics, the 𝐻 spin can assume two possible orien-
tations. Either it orients itself making an angle 𝜃 = +54∘44 with the direction of 𝐵 (called
parallel spin) or an angle 𝜃 = −54∘44 (called anti-parallel spin) with it.

(a) (b)

Figure 2.2: After external magnetic field, , is applied the spin orients itself either making an angle a) ∘ with the
direction of , or b) ∘ with the direction of

Instead of rotating about its axis, as shown in figure 2.1, the magnetic moments actually
move in a precessing motion, as shown in figure 2.2. The angular speed, 𝜔 , with which it
precesses, can be found out by a classical treatment of the spin. In classical mechanics, we
know that the torque, �⃗�, is given by the cross product �⃗� ×𝐵 k⃗. Also, the same torque is equal
to the rate of change of angular momentum, J⃗ . Thus we have-

�⃗� = �⃗� × 𝐵 k⃗

⟹ 𝑑J⃗
𝑑𝑡 = �⃗� × 𝐵 k⃗

⟹ 𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × 𝐵 k⃗ (Using Equation 2.1)

(2.3)

We can arrange �⃗� = 𝜇 �⃗� + 𝜇 �⃗� + 𝜇 �⃗� into a traverse component, �⃗� = 𝜇 �⃗� + 𝜇 �⃗�, and a
longitudinal component, �⃗� = 𝜇 �⃗�, such that-

�⃗� = �⃗� + �⃗� (2.4)
Solving equation 2.3, we obtain the following solution-

𝜇 (𝑡) = 𝜇 (0)𝑒
𝜇 (𝑡) = 𝜇 (0) (2.5)

It is evident that the transverse component, 𝜇 (𝑡), due to the 𝑒 term, is rotating in
the transverse plane. The angular frequency with which it is rotating is given by-

𝜔 = 𝛾𝐵 (2.6)
This angular frequency, 𝜔 , is known as Larmor frequency. It can be expressed as a

vector quantity (Equation 2.7). We note that due to the negative sign, the spin precesses in
a clockwise direction.

𝝎𝟎 = −𝛾B⃗0 = −𝜔 k⃗ (2.7)
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2.2. Bulk Magnetization
So far, the discussion of precession was limited to the individual spins. We are more inter-
ested in the collective behavior of such spins in bulk. Thus, this leads us to formalize bulk
magnetization, M⃗, which can be expressed as a collection of individual magnetic moments of
individual spins, �⃗� .

M⃗ = ∑𝝁𝐧 (2.8)

where 𝑁 is the total number of spins.
We have already seen that a 𝐻 spin can take one of the two possible orientations. Ac-

cording to the theory of quantum mechanics, it is observed that there is an excess of parallel
spins compared to anti-parallel spins by a very small fraction. Turns out, this small fraction
of excess parallel nuclei is enough to bring about a collective noticeable magnetization in the
direction of the external magnetic field, 𝐵 , (figure 2.3a).

(a) (b)

(c)

Figure 2.3: a) There is an excess of parallel spin compared to anti-parallel spins. The resultant bulk magnetization, M⃗, points
along the direction of the external magnetic field, b) The magnetic moments of the parallel spins that are contributing to the
net magnetization can be decomposed into two components. ⃗ is the parallel component and ⃗ is the transverse component
with respect to . c) Collectively, the transverse components cancel out.

The magnetic moments of the parallel spins, that are contributing to the net magnetiza-
tion, can be decomposed into two components- one parallel to 𝐵 and the other transverse to
it (figure 2.3b). The transverse component of the parallel spins perpendicular to the external
magnetic field is spread over randomly (figure 2.3c). Subsequently, they cancel each other
out. However, all the parallel components point along the direction of the field. As a result,
this bulk magnetization points exactly along the external magnetic field.

Its magnitude in equilibrium, |M⃗ |, is found out to be-
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|M⃗ | = 𝛾 ℏ 𝐵 𝑁
4𝐾𝑇 (2.9)

Where ℏ is Planck constant, h, over 2𝜋, i.e. ℏ = . 𝐾 is the Boltzmann constant, and 𝑇
is the temperature of the spin system.

For the choice of our coordinates, if �⃗� ≜ 𝑀 �⃗� + 𝑀 �⃗� + 𝑀 �⃗� denotes the magnetization at
𝑡 = 0, then

𝑀 = 0, 𝑀 = 0 ,and 𝑀 = |M⃗ | (2.10)

2.3. RF Excitation
In the previous section, we have seen that the perpendicular (transverse) component of the
spins cancels each other out, and we have no net bulk magnetization towards the transverse
direction. Now, it is possible to create a transverse component of bulk magnetization if we
were able to bring about a phase coherence among the spins. When these spins reach a
phase coherence, they are said to be in resonance.

In quantum mechanics, such a spin system can be brought to resonance if electromag-
netic radiation of frequency, 𝜔 , is used to supply it with energy-

Δ𝐸 = ℏ𝜔 = ℏ𝜔 (2.11)
That means for a resonance to occur, the frequency of the electromagnetic radiation, 𝜔 ,

needs to be equal to the Larmor frequency, 𝜔 .

𝜔 = 𝜔 (Resonance condition) (2.12)
In a magnetic system, this energy comes from an external magnetic field, 𝐵 , which is

applied perpendicular to 𝐵 . We have the following notation for it-

B⃗1(𝑡) = 𝐵 (𝑡)𝑐𝑜𝑠(𝜔 𝑡 + 𝜑)i⃗− 𝐵 (𝑡)𝑠𝑖𝑛(𝜔 𝑡 + 𝜑)j⃗ (2.13)
where 𝐵 (𝑡) is the envelope function of the pulse, 𝜔 is the excitation frequency and 𝜑 is

the initial phase angle. In complex notation it can be expressed as-

𝐵 (𝑡) = 𝐵 (𝑡)𝑐𝑜𝑠(𝜔 𝑡 + 𝜑) − 𝑖𝐵 (𝑡)𝑠𝑖𝑛(𝜔 𝑡 + 𝜑) = 𝐵 (𝑡)𝑒 ( ) (2.14)
We shall consider 𝜑 = 0 henceforth to make the mathematics easier.

2.4. Rotating Frame of Reference

Figure 2.4: Rotating Frame. The system shown in blue represents the rotating frame rotating about z-axis with angular frequency
.
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The analysis becomes easier if we consider a rotating frame of reference, rotating with an
angular frequency of 𝜔 , instead of the laboratory frame. To differentiate it from the laboratory
frame, the orthogonal axis are denoted as �̂�, �̂� and �̂�, and their corresponding unit vectors
are denoted as ⃗̂𝐢, ⃗̂𝐣 and ⃗̂𝐤. The unit vectors can be transformed between the two reference
frames as follows-

⎡
⎢
⎢
⎢
⎣

⃗̂𝐢
⃗̂𝐣
⃗̂𝐤

⎤
⎥
⎥
⎥
⎦

= [
𝑐𝑜𝑠(𝜔𝑡) −𝑠𝑖𝑛(𝜔𝑡) 0
𝑠𝑖𝑛(𝜔𝑡) 𝑐𝑜𝑠(𝜔𝑡) 0
0 0 1

] [
�⃗�
�⃗�
�⃗�
] (2.15)

so that-

⃗̂𝐢 ≜ 𝑐𝑜𝑠(𝜔𝑡)�⃗� − 𝑠𝑖𝑛(𝜔𝑡)�⃗�
⃗̂𝐣 ≜ 𝑐𝑜𝑠(𝜔𝑡)�⃗� + 𝑠𝑖𝑛(𝜔𝑡)�⃗�
⃗̂𝐤 ≜ �⃗�

(2.16)

Also, the time derivative of the unit vectors satisfy the relations shown below. We have
taken �⃗� = −𝜔�⃗� here.

𝑑⃗̂𝐢
𝑑𝑡 = �⃗� ×

⃗̂𝐢 𝑑⃗̂𝐣
𝑑𝑡 = �⃗� × ⃗̂𝐣 𝑑⃗̂𝐤

𝑑𝑡 = �⃗� ×
⃗̂𝐤 (2.17)

Magnetization in laboratory frame and rotational frame, respectively, can be expressed as
follows-

�⃗� ≜ 𝑀 �⃗� + 𝑀 �⃗� + 𝑀 �⃗� �⃗� ≜ 𝑀 ̂
⃗̂𝐢 + 𝑀 ̂

⃗̂𝐣 + 𝑀 ̂
⃗̂𝐤 (2.18)

And the transformation between them is given by-

[
𝑀 ̂
𝑀 ̂
𝑀 ̂
] = [

𝑐𝑜𝑠(𝜔𝑡) −𝑠𝑖𝑛(𝜔𝑡) 0
𝑠𝑖𝑛(𝜔𝑡) 𝑐𝑜𝑠(𝜔𝑡) 0
0 0 1

] [
𝑀
𝑀
𝑀
] (2.19)

By differentiating 2.19 with respect to time using chain rule, and then collecting the terms
using 2.17, it can be shown that-

𝑑�⃗�
𝑑𝑡 =

𝜕�⃗�
𝜕𝑡 + �⃗� × �⃗� (2.20)

This is an important result which we will use later.
Similarly, the 𝐵 field in the stationary and rotational frame, respectively, can also be

expressed as-

𝐁𝟏 ≜ 𝐵 , �⃗� + 𝐵 , �⃗� 𝐁𝟏 ≜ 𝐵 , ̂
⃗̂𝐢 + 𝐵 , ̂

⃗̂𝐣 (2.21)

such that -

[𝐵 , ̂
𝐵 , ̂

] = [𝑐𝑜𝑠(𝜔𝑡) −𝑠𝑖𝑛(𝜔𝑡)
𝑠𝑖𝑛(𝜔𝑡) 𝑐𝑜𝑠(𝜔𝑡) ] [

𝐵 ,
𝐵 ,

] (2.22)

2.5. The Bloch Equation
The Bloch equation (equation 2.23) is used to quantitatively describe the time-dependent
behavior of M⃗. In addition to the term responsible for precession (first term on the right-hand
side), it also includes the terms describing the relaxation process (second and third term) of
the spins after they have been disturbed by the RF excitations from the thermal equilibrium
magnetization, �⃗� . The constant 𝑇 characterizes the time taken by the spin system for
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longitudinal relaxation while 𝑇 characterizes the time taken for transversal relaxation. This
relaxation process will be discussed in section 2.7.

𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × B⃗−

�⃗�
𝑇 −

�⃗�∥ − �⃗�
𝑇

(2.23)

Where �⃗� is the perpendicular or the transverse component of the magnetization and �⃗�∥ is
the parallel or the longitudinal component of the magnetization.

For our choice of coordinates here, equation 2.23 becomes-

𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × B⃗−

𝑀 �⃗� + 𝑀 �⃗�
𝑇 − (𝑀 −𝑀 )�⃗�

𝑇
(2.24)

This equation plays a central part in analyzing the conventional MRI machines as well as
the unconventional MRI machine used here.

In the next section, we will see the analysis of the Bloch equation when an RF pulse is
applied, which results in an additional 𝐵 field. The duration of the RF pulse is short as
compared to 𝑇 and 𝑇 , which makes the first term large. This is why, during a RF excitation,
the second and the third term can be dropped. We are then left with the following equation-

𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × B⃗

(2.25)

We will see that the analysis of the motion of the magnetization becomes simpler if we
consider a rotating frame, which has been discussed in section 2.4. In equation 2.25, for
rotating frame, the �⃗� and �⃗� on the right hand side are replaced by �⃗� and �⃗� respectively.
For �⃗� on the left hand side, we have to use equation 2.20. Then we obtain-

𝜕�⃗�
𝜕𝑡 = 𝛾�⃗� × B⃗ − �⃗� × �⃗�

= 𝛾�⃗� × (B⃗ + �⃗�𝛾 )

= 𝛾�⃗� × B⃗

(2.26)

where

B⃗ = B⃗ + �⃗�𝛾 (2.27)

is the effective magnetic field that the magnetization experiences in the rotating frame.
Since the rotating frame is rotating about the z-axis it has no influence on the vector com-

ponents along this direction. Therefore B⃗ = B⃗ = 𝐵 k⃗. In this case, the Larmor frequency
is �⃗� = −𝛾𝐵 k⃗. If we use this in equation 2.27, we get-

B⃗ = B⃗ + �⃗�𝛾 = 𝐵 k⃗− 𝐵 k⃗ = 0 (2.28)

It follows from equation 2.26 that �⃗� = 0 and the magnetization appears to be stationary
in the rotating frame.

The general Bloch equation in the rotating frame is given by-

𝜕�⃗�
𝜕𝑡 = 𝛾�⃗� × B⃗ −

𝑀 ̂
⃗̂𝐢 + 𝑀 ̂

⃗̂𝐣
𝑇 − (𝑀 ̂ −𝑀 )⃗̂𝐤

𝑇
(2.29)
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2.6. On-Resonance Excitation
If on top of 𝐵 field, a RF pulse is applied in the rotating frame such that-

𝐁𝟏 = 𝐵 (𝑡)⃗̂𝐢 (2.30)

then

B⃗ = 𝐵 ⃗̂𝐤 + 𝐵 (𝑡)⃗̂𝐢 +
�⃗�
𝛾

= (𝐵 −
𝝎
𝛾 )⃗̂𝐤 + 𝐵 (𝑡)⃗̂𝐢

(2.31)

For the resonance condition to occur, we require 𝜔 = 𝜔 = 𝛾𝐵 . This makes equation
2.31 reduce to -

B⃗ = 𝐵 (𝑡)⃗̂𝐢 (2.32)

Then the Bloch equation in the rotational frame (equation 2.26) becomes-

𝜕�⃗�
𝜕𝑡 = 𝛾�⃗� × B⃗

= 𝛾�⃗� × 𝐵 (𝑡)⃗̂𝐢
(2.33)

If this 𝐵 is on for 𝜏 duration, by solving this equation, we get the following solution-

𝑀 ̂(𝑡) = 0

𝑀 ̂ (𝑡) = 𝑀 ∫ 𝑠𝑖𝑛(𝛾𝐵 (�̂�)𝑑�̂� 0 ≤ 𝑡 ≤ 𝜏

𝑀 ̂(𝑡) = 𝑀 ∫ 𝑐𝑜𝑠(𝛾𝐵 (�̂�)𝑑�̂�

(2.34)

We will assume, henceforth, that the envelope function 𝐵 is a rectangular function, Π(𝑡).
In that case, we have-

𝐵 = 𝐵 Π(
𝑡 −
𝜏 ) ,where Π(𝑡) ≜ {1 |𝑡| <

0 otherwise
(2.35)

Where 𝐵 is some constant that defines the magnitude of the pulse.
Using 2.35, the solution in equation 2.34 reduces to-

𝑀 ̂(𝑡) = 0
𝑀 ̂ (𝑡) = 𝑀 𝑠𝑖𝑛(𝜔 𝑡) 0 ≤ 𝑡 ≤ 𝜏
𝑀 ̂(𝑡) = 𝑀 𝑐𝑜𝑠(𝜔 𝑡)

(2.36)

Where 𝜔 = 𝛾𝐵 .
In vector form-

�⃗� = −𝛾�⃗� (2.37)

Now we can see that the clockwise precession of �⃗� is about the �̂� axis with angular velocity
𝜔 . This is shown in figure 2.5 a. This precession is called forced precession.

We can also observe that if we turn on 𝐵 field for 𝜏 duration, such that 𝜔 𝜏 = 𝛼, the
magnetization vector is tipped by an 𝛼 angle towards the ⃗̂𝐲 axis. This pulse is called 𝛼-pulse.
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(a) (b)

Figure 2.5: The motion of the magnetization �⃗� in a) rotating frame or b) laboratory frame. While �⃗� appears to spiral down in
laboratory frame, in rotating frame, it only appears to precess about the ̂ axis with angular velocity .

2.7. Free Precession and Relaxation
So far we have analyzed the Bloch equation under RF excitations. Once this excitation is
removed, provided sufficient time is given, the spin system will return to its thermal equilib-
rium magnetization, 𝑀 . This process takes place by the precession of �⃗� about 𝐵 field which
is known as free precession. Here a recovery of the longitudinal magnetization, 𝑀 , and a
destruction of transverse magnetization, 𝑀 , takes place1. These are called longitudinal and
trasverse relaxation respectively.

We consider the general Bloch equation in the rotating frame (Equation 2.29). If we remove
the 𝐵 field, the first term becomes zero (shown in section 2.5) and we are left with the
following-

𝜕�⃗�
𝜕𝑡 = 𝛾�⃗� × B⃗ −

𝑀 ̂
⃗̂𝐢 + 𝑀 ̂

⃗̂𝐣
𝑇 − (𝑀 ̂ −𝑀 )�⃗�

𝑇

= −
𝑀 ̂
⃗̂𝐢 + 𝑀 ̂

⃗̂𝐣
𝑇 − (𝑀 ̂ −𝑀 )�⃗�

𝑇

(2.38)

If we solve the equation 2.38, we get the following solution-

𝑀 ̂ ̂ (𝑡) = 𝑀 ̂ ̂ (0 )𝑒

𝑀 ̂(𝑡) = 𝑀 (1 − 𝑒 ) + 𝑀 ̂(0 )𝑒
(2.39)

where 𝑀 is the longitudinal magnetization at thermal equilibrium. The free precession
process is preceded by a RF excitation. The instance immediately after the RF pulse have
been removed, after it had been applied, is taken as 𝑡 = 0 . 𝑀 ̂ ̂ (0 ) and 𝑀 ̂(0 ) are the
transverse and longitudinal magnetization at the time instant 𝑡 = 0 .

In laboratory frame, this solutions can be expressed as-

𝑀 (𝑡) = 𝑀 (0 )𝑒 𝑒

𝑀 (𝑡) = 𝑀 (1 − 𝑒 ) + 𝑀 (0 )𝑒
(2.40)

where
𝑀 (0 ) = 𝑀 ̂ ̂ (0 )𝑒 (2.41)

1We can arrange �⃗� �⃗� �⃗� �⃗� into a traverse component, �⃗� �⃗� �⃗�, and a longitudinal component, �⃗� �⃗�,
such that- �⃗� �⃗� �⃗� .
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Note that the delay term in equation 2.41 is added to account for the resetting of the time
to 0 at the end of the pulse at 𝑡 = 𝜏 .

(a) (b)

Figure 2.6: Relaxation Curves a) Transversal Relaxation b) Longitudinal Relaxation

Unlike in the RF excitation period, where the magnetization is excited keeping the mag-
nitude same, in the relaxation period, the magnitude of the magnetization is not preserved
(illustrated in figure 2.7).

Figure 2.7: The path of the tip of the magnetization vector during free prcession in the stationary frame.

2.8. Detection of Signal
So far we have discussed the behaviour of magnetization, �⃗�, under the influence of external
magnetic fields, �⃗� and 𝐁𝟎. In this part, we will see how this magnetization can be expressed
as a voltage signal in the receiving antenna. Not all, but a major part of the discussion to be
followed is based on [13].

2.8.1. Detection Modeling
We aim to detect the magnetization of the spin, in the patient’s body, using a receiver. For
this, the receiver and the effect of a spin is modeled as shielded loop antennas2 (figure 2.8).
Loop 1 is considered as the receiver, and loop 2 are the spins in the body. Using this model,
we will continue the analysis in the next section.
2The configuration of a shielded loop antenna is explained in [13]. It is a loop that creates a magnetic field when current is
applied. When it is used as a receiver, it can be used to sense a magnetic field.
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Figure 2.8: The receiver and the effect of a spin is modeled as a conducting shielded loop antenna

2.8.2. Induced Voltage

Figure 2.9: Magnetic moment, , is produced perpendicular to the plane of the shielded loop when current, , is passed though
it.

Let us consider two shielded loop antenna as shown in figure 2.9. When we pass a current
𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) through Loop 1 we will obtain a magnetic moment, 𝑚 = 𝐼 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙),
whose direction is perpendicular to the plane of the loop. 𝐴 is the area enclosed by the loop.
The current 𝐼 in Loop 1, will cause a magnetic field, �⃗� , in Loop 2. The straight forward
way to calculate �⃗� = �⃗� is to make use of Maxwell’s fourth equation given by-
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𝛁 × �⃗� = 𝜕�⃗�
𝜕𝑡⎵

Displacement

Current

Density

+ 𝐉⎵
Conduction

Current

Density

+ 𝜕�⃗�
𝜕𝑡⎵

Polarization

Current

Density

+ 𝛁 × �⃗�⎵⎵⎵⎵⎵
Magnetization

Current

Density

(2.42)

where,

�⃗� = 𝜖 �⃗� + �⃗� and �⃗� = 𝜇 (�⃗� + �⃗�)
The symbols in aforementioned equations mean the following-

�⃗� � Electric Flux Density �⃗� � Magnetic Flux Density

�⃗� � Electric Field Strength �⃗� � Magnetic Field Strength

�⃗� � Polarization �⃗� � Magnetization
𝜖 � Permittivity of Free Space 𝜇 � permeability of Free Space

𝐉 � Conduction Current Density

As we can see above, it is very difficult to calculate �⃗� as it depends on many factors,
and knowing only the currents is not enough. But, let us assume that we know this vector,
which is �⃗� at Loop 2.

Maxwell’s first equation says-

𝛁 × �⃗� = 𝜕�⃗�
𝜕𝑡

⟹ ∮�⃗� ⋅ 𝐝𝐥 = ∬ 𝜕�⃗�
𝜕𝑡 ⋅ 𝐝𝐀 (Using Stokes Theorem)

(2.43)

The loops considered are taken to be much smaller than the wavelength of the magnetiza-
tion in the body to be imaged. In other words, a low frequency operation setting is considered.
As a result, the voltage in the loop, at any given time can be considered spatially invariant.
Using Faraday’s Law, and plugging in �⃗� = �⃗� , we can obtain the voltage induced in Loop 2
as-

∮�⃗� ⋅ 𝐝𝐥 = ∬ 𝜕 ⃗𝐁𝟐𝟏
𝜕𝑡 ⋅ 𝐝𝐀

⟹ 𝑉 = −�⃗� ⋅ 𝜕
⃗𝐁𝟐𝟏
𝜕𝑡

(2.44)

Where 𝑉 is the voltage induced in Loop 2, and the direction of �⃗� is perpendicular to the
plane of the loop.
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2.8.3. Reciprocity Theorem

Figure 2.10: Application of the Reciprocity Theorem

According to the Reciprocity Theorem, the response in an observation point of a system to a
source does not change when the locations of the source and the observer are interchanged.

In our case (figure 2.10, left), the response is the voltage, 𝑉 , at the observation point at
Loop 2 due to the source current, 𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 +𝜙), at Loop 1. Now, if we were to supply the
same current in Loop 2, 𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), by Reciprocity Theorem, we would get the same
response in Loop 1, that is 𝑉 = 𝑉 as we had got in Loop 2 in the earlier case.

We consider the following-

1. Suppose, now we apply a different current, 𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) in loop 2, instead of
𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), such that �⃗�𝐼 = �⃗�. 𝑀 is the magnetic moment at Loop 2 i.e. 𝑀 = 𝑚 .

2. We know for 𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙) we get 𝑉 = 𝑉 .
3. For 𝐼 = 𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜙), using equation 2.44, we get-

𝑉 = 𝐼
𝐼 𝑉 = −�⃗�𝐼𝐼 ⋅ 𝑑

⃗𝐁𝟐𝟏
𝑑𝑡 = −�⃗�𝐼 ⋅ 𝑑𝑑𝑡 (

⃗𝐁𝟐𝟏
𝐼 ) = −�⃗� ⋅ 𝑑𝑑𝑡𝐁

where 𝐁 can be regarded as that magnetic field which would be produced at loop 2 if a
unit current in loop 1 is supplied. Thus so far we have-

𝑉 = −�⃗� ⋅ 𝑑𝑑𝑡𝐁 (2.45)

It is to be noted that this derivation assumes a low frequency operation setting. Although
it gives some insight, at high frequency settings, this derivation is not adequate (effects of
displacement currents cannot be ignored). A more rigorous derivation is given in the paper
[13]. For our purpose, for the whole sample, the voltage induced in the receiving coil is given
by-

𝑉 (𝑡) = − 𝑑𝑑𝑡 ∫�⃗�∈𝔻
𝐁 ( �⃗� ) ⋅ �⃗�( �⃗� , 𝑡)𝑑𝑟 for t ≥ 0 (2.46)

Where �⃗� = 𝑥�⃗� + 𝑦�⃗� + 𝑧�⃗� is a position vector which is in the spatial domain, 𝔻 , of the
sample to be imaged.
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To clean up the notation, henceforward, 𝑉 (𝑡) will be referred as 𝑉(𝑡), and 𝐁 will be
referred as �⃗� (where r implies that it is the receive field). �⃗�(𝐫, 𝑡) is the magnetization in the
object. The negative sign will be ignored since it only has an effect of multiplying by −1, and
it does not change the signal. Thus we have-

𝑉(𝑡) = 𝑑
𝑑𝑡 ∫�⃗�∈𝔻

�⃗� ( �⃗� ) ⋅ �⃗�( �⃗� , 𝑡)𝑑𝑟 for t ≥ 0 (2.47)

2.9. Signal Expression
In this section, we are going to see the form a MRI signal takes. We proceed to work on
equation 2.47 we saw in the previous section 2.8.

𝑉(𝑡) = 𝑑
𝑑𝑡 ∫�⃗�∈𝔻

�⃗� ( �⃗� ) ⋅ �⃗�( �⃗� , 𝑡)𝑑𝑟

= 𝑑
𝑑𝑡 ∫�⃗�∈𝔻

[𝐵 , ( �⃗� )⃗̂𝐢 + 𝐵 , ( �⃗� )⃗̂𝐣 + 𝐵 , ( �⃗� )⃗̂𝐤] ⋅ [𝑀 ( �⃗� , 𝑡)⃗̂𝐢 + 𝑀 ( �⃗� , 𝑡)⃗̂𝐣 + 𝑀 ( �⃗� , 𝑡)⃗̂𝐤]𝑑𝑟

= ∫
�⃗�∈𝔻

[�̂� , ( �⃗� )⃗̂𝐢 + �̂� , ( �⃗� )⃗̂𝐣 + �̂� , ( �⃗� )⃗̂𝐤] ⋅ [
𝑑
𝑑𝑡𝑀 ( �⃗� , 𝑡)⃗̂𝐢 + 𝑑

𝑑𝑡𝑀 ( �⃗� , 𝑡)⃗̂𝐣 + 𝑑
𝑑𝑡𝑀 ( �⃗� , 𝑡)⃗̂𝐤]𝑑𝑟

(2.48)
The last term, 𝑀 (𝐫, 𝑡), is slowly varying with respect to time and therefore can be ignored.

We are left with-

𝑉(𝑡) = ∫
�⃗�∈𝔻

[𝐵 , ( �⃗� )
𝑑
𝑑𝑡𝑀 ( �⃗� , 𝑡) + 𝐵 , ( �⃗� )

𝑑
𝑑𝑡𝑀 ( �⃗� , 𝑡)]𝑑𝑟 (2.49)

From section 2.7, equation 2.40, we use the expression for �⃗�( �⃗� , 𝑡) to be substituted in
equation 2.49. Subsequently low pass filtering it, which is described in [14], we are left with
the following signal model-

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝐵∗, ( �⃗� )𝑀 ( �⃗� , 0 )𝑒 𝑒 ( �⃗� )𝑑𝑟 (2.50)

where-

𝐵∗, ( �⃗� ) = 𝐵 , ( �⃗� ) − 𝑖𝐵 , ( �⃗� )
𝑀 ( �⃗� , 0 ) = 𝑀 ( �⃗� , 0 ) + 𝑖𝑀 ( �⃗� , 0 )

Δ𝜔( �⃗� ) = 𝜔 ( �⃗� )−𝜔 ⟹ Δ𝐵( �⃗� ) = 𝐵 ( �⃗� ) − 𝐵
Here 𝜔 is the modulation frequency that comes from the filtering process of the signal.

Thus, we have our signal model as-

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝐵∗, ( �⃗� )𝑀 ( �⃗� , 0 )𝑒 𝑒 ( �⃗� )𝑑𝑟 (2.51)

2.10. Free Induction Decay
Free induction decay (FID) signals are MRI signals that are obtained from the free precessing
of the spins. To have more insight, we continue from where we had left in the previous
section.

In equation 2.50, 𝐵∗, reflects on the sensitivity of the receiving coil. For the sake of
analysis, for now, this term is considered spatially uniform everywhere inside the machine.
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Then we can ignore this term as the only effect it would have is to scale the image, since it is
now just a constant3. Thus we have-

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝑀 ( �⃗� , 0 )𝑒 𝑒 𝑑𝑟 (2.52)

Where Δ𝜔 is written as 𝜔 for notational convenience. In this report, Δ𝜔 and 𝜔 are inter-
changeably used, and the meaning should be apparent from the context itself.

So far, inherently, an ideal spin system, where all the spins precess with the same angular
frequency, has been considered. But in reality, the spin systems are always heterogeneous,
meaning that the spins belonging to a system precess with different angular frequencies. To
characterize the frequency distribution in a system, the spin spectral density function, 𝜌(𝜔),
is used which is defined as-

𝜌(𝜔) = 𝑑𝑀(𝜔)
𝑑𝜔 (2.53)

Where 𝑑𝑀(𝜔) are the isochromatic bulkmagnetization, meaning that the spins responsible
for this magnetization are precessing with the same frequency 𝜔. For the whole sample,
equation 2.52 can be written as-

𝑆(𝑡) = ∫ 𝜌(𝜔)𝑒 ( ) 𝑒 𝑑𝜔 (2.54)

As an example let us consider a case when the sample is placed in an inhomogeneous
magnetic field with a Lorentzian distribution[14]. This will illustrate the effect an inhomo-
geneous magnetic field has on MRI signals. In this case, the spectral spin density is given
by-

𝜌(𝜔) = 𝑀 (𝛾Δ𝐵)
(𝛾Δ𝐵) + (𝜔 − 𝜔 ) (2.55)

For an 𝛼-pulse, the FID signal takes the form

𝑆(𝑡) = 𝑠𝑖𝑛(𝛼)∫ 𝜌(𝜔)𝑒 ( ) 𝑒 𝑑𝜔 (2.56)

In an inhomogeneousmagnetic field with a Lorentzian distribution, this FID signal becomes-

𝑆(𝑡) = 𝑠𝑖𝑛(𝛼)∫ 𝑀 (𝛾Δ𝐵)
(𝛾Δ𝐵) + (𝜔 − 𝜔 ) 𝑒

( ) 𝑒 𝑑𝜔

= 𝜋𝑀 𝛾Δ𝐵𝑠𝑖𝑛(𝛼)𝑒 𝑒 𝑒

= 𝜋𝑀 𝛾Δ𝐵𝑠𝑖𝑛(𝛼)𝑒 ∗ 𝑒

(2.57)

where,

1
𝑇∗ =

1
𝑇 + 𝛾Δ𝐵 (2.58)

Thus, we see that the signal decays faster than that characterized by 𝑇 . This signal
is characterized by 𝑇∗ which takes into account the inhomogeneous magnetic field with a
Lorentzian distribution. Although equation 2.58 is valid for Lorentzian spectral density func-
tions, it is widely used in MRI literature. For other types of distribution, the FID may not
be an exponential function. But the general thing to note here is that when the field is
inhomogeneous, the signals decay faster than what is characterized by only 𝑇 .
3If the receive field is not constant, we will have to account for this term, which is spatially varying, in the signal model. In [5],
they use more than one receiving antennae, with different spatially varying receive field maps, to differentiate between the
non-bijective mappings of the inhomogeneous background field and the locations. This will be more clear in the next chapter,
and further information can be obtained from [5].
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Figure 2.11: The FID signal characterized by ∗ decays faster due to an inhomogeneous magnetic field



3
Rotating MRI machine

Traditional clinical MRI scanners use high-cost superconducting wires to create strong homo-
geneous magnetic fields of the order 1.5 to 3 tesla. It needs cryogenic liquid cooling systems
as it generates an enormous amount of heat. This needs high power supplies and expen-
sive electronic circuits. Furthermore, highly trained technicians are required to repair such
machines if something breaks down. For developing countries, which are in need of afford-
able diagnostic devices, but have limited financial resources, this is a problem. A portable
low-cost MRI would provide major benefits in such a situation.

The specific medical application of the project, of which this work is a part, aims to improve
the diagnosis of Hydrocephalus of infants in Uganda. Hydrocephalus is a condition where a
collection of cerebrospinal fluid (CSF) occurs within the brain. The Low-field MRI group is de-
veloping two solutions of inexpensive portable low-field MRI scanner to address this problem.
These two solutions are different in the way the spatial information is encoded. The first one
(shown in figure 3.1a), uses switching gradients, like in traditional MRI, to encode the spatial
information when the field inhomogeneities are not too strong. The advantage of this one is
that we can use more traditional reconstruction techniques like Fourier transform, which are
fast. The implementation details of such systems are fairly well understood, and literature
regarding it is widely available. The second solution (shown in figure 3.1b) encodes spatial
information by using an inhomogeneous background field. The advantage of this solution
is that less electronic hardware is required. However, this is not a mature technology, and
much of it remains to be explored. The process of spatial encoding will be discussed more in
this chapter.

(a) (b)

Figure 3.1: a) Prototype of the solution that encodes information using linear gradients. Picture is taken from [17]. b) Prototype
of the solution that encodes information using inhomogeneous background field.

25
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The partner institutions involved with this project are - Leiden University Medical Cen-
ter, Pennsylvania State University, Mbarara University of Science and Technology, CURE
Children’s Hospital of Uganda, and TU Delft.

The objective of this chapter is to completely explain the purpose of this thesis. It begins
with an explanation of using the MRI signal model to image objects with homogeneous and
gradient magnetic fields. After that, the motivation for using an inhomogeneous magnetic
field is given, followed by a basic description of its implementation. Towards the end, it states
what work has already been done by others, in this direction, and what this work has to offer.

3.1. Imaging with Signal Model
We have seen in Chapter 2, equation 2.52, the signal model for FID. This is again shown
below. For the sake of the simplicity of understanding, the 𝐵∗, ( �⃗� ) term is considered a
constant, and is ignored here.

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝑀 ( �⃗� , 0 )𝑒 𝑒 𝑑𝑟

We consider the signal contribution due to an infinitesimal interval 𝑑𝑟 at position vector
�⃗�.

𝑑𝑆(𝑡) = 𝑀 ( �⃗� , 0 )𝑒 𝑒 𝑑𝑟 (3.1)

The term 𝑀 ( �⃗� , 0 ) depends upon the magnetization at equilibrium, M⃗ , which in turn
depends upon the spin density, 𝜌( �⃗� ). We can see this in equation 2.9, where spin density is
dependent on the number of spins, 𝑁 , at �⃗�. Thus, after regarding the other parameters as
constants, and omitting the transverse relaxation effect, we have-

𝑑𝑆(𝑡) ∝ 𝜌( �⃗� )𝑒 𝑑𝑟 (3.2)

Further, ignoring the scaling constants, and considering the signal due to the whole object,
we have-

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝜌( �⃗� )𝑒 𝑑𝑟 (3.3)

The discrete version of this equation is-

𝑆(𝑘 ) =∑𝜌(𝑟 )𝑒 ( ) Δ𝑟 (3.4)

where, 𝑘 is the mth discrete time sample, 𝑟 is the position at nth index and Δ𝑟 is the area
of the pixel.

Figure 3.2: Discretization of the image domain. Indices of the positions increase from top to bottom per column. Once the indices
reach the bottom-most element of its column, it continues from the topmost element of the adjacent right column. Area of each
pixel is .

Ignoring the area of the pixel because it is a constant, and writing 3.4 in a matrix form,
we get-
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⎡
⎢
⎢
⎢
⎣

𝑆(𝑘 )
𝑆(𝑘 )
.

𝑆(𝑘 )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

. . .
𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜌(𝑟 )
𝜌(𝑟 )
.

𝜌(𝑟 )

⎤
⎥
⎥
⎥
⎦

⟹ S = E 𝝆

(3.5)

where M is the total number of time samples, and N is the total position indices. S is the
signal matrix, E is the encoding matrix, and 𝝆 is the spin density.

We have seen in the previous chapter (Equation 2.50) that

Δ𝜔(𝐫) = 𝜔 (𝐫) − 𝜔

𝜔 is the frequency when we apply a homogeneous field B⃗ . For a general magnetic field,
B⃗, we would have-

Δ𝜔(𝐫) = 𝜔(𝐫) − 𝜔 (3.6)

In practice, 𝜔 , is chosen to be 𝜔 . A point to be noted is that this 𝜔 is chosen by
the user and the external field has no effect on it unlike the first term on the right hand side
of equation 3.6. We then have-

Δ𝜔(𝐫) = 𝜔(𝐫) − 𝜔
⟹ Δ𝐵(𝐫) = 𝐵(𝐫) − 𝐵 (3.7)

If we use a homogeneous external field, 𝐵(𝐫) = 𝐵 , we will get Δ𝐵(𝐫) = 0. This means
that the rank of the encoding matrix E will become 1, which means that it has only one
independent column vector. We will never be able to reconstruct 𝝆 using this E unless S lies
along that independent vector which is highly unlikely.

To do spatial localization, or in other words, to identify 𝝆( �⃗� ) for each location there are
two ways to do it - i) Slice Selection and ii) Spatial encoding. Both of these ways require the
use of a gradient coil system in the MRI machines that are in use today. The description
of these techniques is not provided in this report and can be referred from Chapter 5 and
Chapter 6 of [14]. Further, there are different ways to encode spatial information in the MRI
signal in the signal encoding process. Essentially, there are two- i) frequency encoding, and
ii) phase encoding. How to do these encoding processes, and what the measured signal is
telling us, depends a lot on the pulse sequences that are applied during the whole process
of acquisition. Pulse sequences refer to the order in which the Rf coils and the gradient coils
are turned on and off. And based on the acquisition process, the reconstruction process also
varies. As mentioned before, more insight can be got from [14].

Assuming that the reader has some idea of what is mentioned above, the subsequent
sections attempt to answer briefly why Fourier transform can be used when gradient magnetic
fields are used, and why the same cannot be employed when the field is inhomogeneous.

3.2. Linear Gradient Field Imaging
In the previous section, we saw that it is usually not possible to reconstruct the image (the
spin density 𝝆) if we only use a homogeneous external field (Figure 3.3).



28 3. Rotating MRI machine

(a) (b)

Figure 3.3: a) Homogeneous external field b) A Shepp Logan phantom that we are trying to image by placing is in the external
magnetic field

Suppose, now, on top of the homogeneous magnetic field we add a gradient field, which
increases in magnitude linearly as we traverse through the x-axis (Figure 3.4 a). Then the
total magnetic field becomes 𝐵(𝐫) = 𝐵 +𝐺 𝑥(𝐫), where 𝐺 (𝐫) is a constant. As a result, equation
3.7 becomes -

Δ𝐵(𝐫) = 𝐵 + 𝐺 𝑥(𝐫) − 𝐵
⟹ Δ𝐵(𝐫) = 𝐺 𝑥(𝐫) (3.8)

Then we will have-

⎡
⎢
⎢
⎢
⎣

𝑆(𝑘 )
𝑆(𝑘 )
.

𝑆(𝑘 )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

. . .
𝑒 ( ) 𝑒 ( ) ... 𝑒 ( )

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜌(𝑟 )
𝜌(𝑟 )
.

𝜌(𝑟 )

⎤
⎥
⎥
⎥
⎦

⟹ S = E 𝝆

(3.9)

(a) (b)
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(c)

Figure 3.4: a) Gradient field along x direction b) Gradient field along y direction c) Gradient field along both x and y direction

We should note that E is essentially a 1D Fourier transformmatrix. That means we have
encoded the spatial information along the x-axis. But we still cannot differentiate between
the y positions. In our measurement, using this matrix gives us the projection of the object
on the x-axis. One might be tempted to think that in order to distinguish between the y
positions, another gradient field, 𝐺 𝑦(𝐫), should be added along y direction (3.4b), such that
the resulting total magnetic field looks something like figure 3.4c. Subsequently,Δ𝐵(𝐫) will
become-

Δ𝐵(𝐫) = 𝐵 + 𝐺 𝑥(𝐫) + 𝐺 𝑦(𝐫) − 𝐵
⟹ Δ𝐵(𝐫) = 𝐺 𝑥(𝐫) + 𝐺 𝑦(𝐫) (3.10)

But this would only encode the projection of the image along the line characterized by
𝐺 𝑥(𝐫) + 𝐺 𝑦(𝐫) and will still be a sort of one dimensional imaging of a 2D image slice. Ac-
cordingly,

⎡
⎢
⎢
⎢
⎣

𝑆(𝑘 )
𝑆(𝑘 )
.

𝑆(𝑘 )

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑒 ( ( ) ( )) 𝑒 ( ( ) ( )) ... 𝑒 ( ( ) ( ))

𝑒 ( ( ) ( )) 𝑒 ( ( ) ( )) ... 𝑒 ( ( ) ( ))

. . .
𝑒 ( ( ) ( )) 𝑒 ( ( ) ( )) ... 𝑒 ( ( ) ( ))

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜌(𝑟 )
𝜌(𝑟 )
.

𝜌(𝑟 )

⎤
⎥
⎥
⎥
⎦

⟹ S = E 𝝆
(3.11)

This encoding matrix, E , has the same form as a 2D Fourier transform matrix. That
means if we take the inverse fourier transform of S, we get back the projection of 𝝆 on the
line, L, characterized by 𝐺 𝑥(𝐫) + 𝐺 𝑦(𝐫).

S
ℱ−−→ 𝑝𝑟𝑜𝑗 𝝆 (3.12)

A true 2D imaging of an object is based on more than one step of the spatial encoding pro-
cess, mentioned above. Depending upon the type of spatial encoding desired ( frequency or
phase encoding[14]), the 𝐺 𝑥(𝐫) and 𝐺 𝑥(𝐫) are varied appropriately to obtain the correspond-
ing encoding matrices. These matrices are then stacked to get the total system matrix, which
is then used for reconstructing a 2D image. To get an insight into how multi-dimensional
(2D and 3D) imaging are done, the reader is referred to chapter 5 of [14].
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3.3. Inhomogeneous field Imaging

Figure 3.5: Components of MRI system. Source of picture: http://mriquestions.com/active-shielded-gradients.html

Conventional MRI scanners image an object using gradient fields in three dimensions. The
structure of the signal model for 3D imaging, which they use, looks like this-

𝑆(𝑡) = ∫
�⃗�∈𝔻

𝜌( �⃗� )𝑒 ( �⃗� ) 𝑑𝑟

⟹ 𝑆(𝑡) = ∫
�⃗�∈𝔻

𝜌( �⃗� )𝑒 (( ( �⃗� ) ( �⃗� ) ( �⃗� ) ( �⃗� )) 𝑑𝑟 (Using equation 3.7)

(3.13)
The 𝐵 (𝐫) term is supplied by the primary magnet coils, and the gradient terms 𝐺 𝑥(𝐫),

𝐺 𝑦(𝐫) and 𝐺 𝑧(𝐫) are supplied by the gradient coils (Figure 3.5). It is to be noted that the
field provided by the primary magnet has to be as homogeneous as possible. The strength of
it also needs to be very high as the SNR of MRI improves with the strength of the magnet [12].
As for the gradient coils, it has to provide a gradient that is as linear as possible. Complex
gradient amplifiers are required to provide well-synchronized gradient pulses. Moreover,
gradient coils also adds more weight to the primary magnet, which makes the whole system
bulky.

The whole point of the machine used in this work is to address the above challenges.
It relaxes the homogeneous magnetic field criteria by using an inhomogeneous magnetic
field to do the spatial encoding instead of switching gradients. This system is less bulky
and simpler as it does not require gradient coils. To make it portable, superconducting
magnets are no longer used. Instead, a cylindrical Halbach Magnet array is used which is
a certain arrangement of permanent magnets that increases the magnetic flux on one side
while reducing or canceling it on the opposite side [1][15][21]. Although Halbach array tries
to maximize field strength, it is not comparable to that of superconducting magnets. A lower
field strength implies lower SNR. Therefore, robust reconstruction algorithms have to be
employed.
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Figure 3.6: Inhomogeneous Magnetic Field

We consider the inhomogeneous magnetic field, 𝐵 , in figure 3.6. Suppose, as an exam-
ple, we want to use this field to image the object shown in Figure 3.3b.

Using this inhomogeneousmagnetic field, we will get more number of independent columns
of the encoding matrix than the homogeneous case (discussed in section 3.1). But this num-
ber will be less than the case where gradient fields are used (section 3.2). This is apparent
from figure 3.6, where we can see that many pixels have the same magnetic field. Mathemat-
ically, this means that there are more non-bijective mapping between the locations and the
magnetic field than the gradient field case. We cannot use Fourier transform now because
the encoding matrix does not have the same form as the Fourier transform matrix as before.
Thus, we should rely on other reconstruction techniques which are described in chapter 6.

To try to increase the number of independent columns, so that the solution is searched
over a larger sub-space, the object is imaged by using several rotated version of the inho-
mogeneous magnetic field, 𝐵 (shown in figure 3.7a). This also means that it helps in dis-
ambiguating the non-bijective mappings. Suppose 3.7b depicts the columns of the encoding
matrix, E(𝜃 ), when 𝐵 map makes an angle 𝜃 with some reference axis. We assume that
the same colors of the columns mean that they are dependent. Next, we view the object by
rotating 𝐵 such that it makes 𝜃 with the same reference. We stack the encoding matrix,
E(𝜃 ), of this angle, 𝜃 , under E(𝜃 ), in the hope of increasing the number of independent
columns of the stacked encoding matrix, E. Figure 3.7c depicts this. The columns of E will
be independent or dependent depending upon the map of the inhomogeneous field map. For
example, if the map would have been concentric circles, rotating the field will not give us
new information as the same image will be obtained for each angle. In other words, the same
columns would be stacked for each angle.
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(a)

(b) (c)

Figure 3.7: a) Imaging with rotating inhomogeneous magnetic field b) Depiction of encoding matrix at c) Depiction
stacked encoding matrix.

3.4. Previous Work
We have seen that the traditional MRI machines use high strength linear spatial encoding
magnetic fields (SEMs) produced by gradient coils. In this work, the machine that is used
uses rotating spatial encoding magnetic fields (rSEM) to encode the position information.
The first published work to use the latter scanner, which is meant for clinical application, is
given in [5]. They have constructed an MRI scanner based on rSEM and provided conceptual
images that they claim could be further improved.

The signal model they used, as given in [5], using their notation, is described next. At a
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given rotation, 𝑟, of the scanner, at time sample, 𝑛, the signal acquired by the coil, 𝑞, is given
as-

𝑠 , (𝑛) =∑
x
𝐶 , (x)𝑒 ( ,x, )𝑚(x)

⟹ 𝑠 , (𝑛) =∑
x
𝑒𝑛𝑐 , (x, 𝑛)𝑚(x)

(Grouping the exponential term
and coil sensitivity together)

(3.14)

Where, 𝑚(x) is the magnetization at location x, 𝐶 , is the coil sensitivity for coil 𝑞 at
rotation 𝑟, 𝑘(𝑟,x, 𝑛) is the evolved phase from the non-linear gradient at rotation 𝑟.

In matrix notation, if S , is the measured signal matrix, E , is the encoding matrix and
m is the magnetization vector, then-

S , = E , m (3.15)

E , is calculated by measuring the field map prior to imaging. The final encoding matrix
E is obtained by concatenating E , for each coil and each rotation.

The image is obtained by inverting the encoding matrix E using iterative methods. Two
methods are mentioned in the paper [5], which are, 1) Conjugate Gradient [19] 2) Algebraic
Reconstruction Technique or Kaczmarz’s method [22].

3.5. This Work
This work is also using an MRI machine that encodes the position information using rSEM.
But unlike before, it uses a more complete signal model derived by solving the Bloch equation
for the rotating machine. We will see, in the next chapter, that there exists an angular depen-
dence of magnetization term with the stationary image. This is due to the choice of the frame
of reference, and the signal model used here accounts for this. This study will investigate
the parameters influencing this model with the objective of obtaining a satisfactory result. It
will also examine Krylov subspace-based reconstruction algorithms that are available in the
IRTools Package.





4
Signal Model for rSEM

The signal model of the MRI machine that uses rSEM will be derived in this chapter.

4.1. Experimental Setup

(a) (b)

Figure 4.1: a) Prototype of the rotating MRI machine. b) Phantom holder of the Rotating MRI.

Figure 4.1a shows the prototype of the rotating MRI machine along with the considered labo-
ratory frame of reference. We can also see the RF amplifier behind, which is used to generate
the RF pulses. On the right, figure 4.1b shows the holder of the phantom which goes inside
the machine. Instead of rotating the field map of the machine, which would imply that we are
rotating the Halbach cylinder, we are rotating the holder inside to investigate the machine. If
we imagine the holder to be stationary, this would have the same effect as rotating the field
map around it. This machine is for developing a proof of concept. In practice, the patient
will be stationary, and the Halbach cylinder will rotate around the patients’ head.

35
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4.2. Coordinate System Considerations

Figure 4.2: Schematic of the rotating MRI machine

Suppose, figure 4.2 represents the rotating MRI machine. �⃗�, �⃗� and �⃗� are the unit vectors
corresponding to 𝑥, 𝑦 and 𝑧 direction in the non-rotated frame, and �⃗� , �⃗� and �⃗� are the unit
vectors corresponding to 𝑥 , 𝑦 and 𝑧 direction in the rotated frame. The rotated frame is
making an angle 𝜃 with the non-rotated frame. B⃗0( r⃗ ) is the external magnetic field along
�⃗� direction at position vector r⃗ ∈ 𝔻 when no rotation is applied. B⃗ ( r⃗ ) is the rotated
version of it when the machine is rotated.

There is a difference between the rotated frame considered here, and the rotating frame
considered in chapter 2. In the latter, the frame is rotating with an angular frequency, 𝜔,
while here, the frame is rotated by an angle 𝜃, and held stationary there for imaging at that
angle.

The frame is rotated about the y axis. Its unit vectors are related to that of the non-rotated
frame’s as-

�⃗� = 𝑐𝑜𝑠(𝜃)�⃗� − 𝑠𝑖𝑛(𝜃)�⃗�
�⃗� = �⃗�
�⃗� = 𝑐𝑜𝑠(𝜃)�⃗� + 𝑠𝑖𝑛(𝜃)�⃗�

(4.1)

If 𝐵 is the magnitude of the external field, then the rotated magnetic field is given by-

B⃗ (𝑥 , 𝑦 , 𝑧 ) = 𝐵 [𝑥 𝑐𝑜𝑠(𝜃) − 𝑧 𝑠𝑖𝑛(𝜃), 𝑦, 𝑥 𝑐𝑜𝑠(𝜃) + 𝑧 𝑠𝑖𝑛(𝜃)]�⃗� (4.2)

4.3. Reciprocity Theorem
From Chapter 2, equation 2.47, the voltage signal expression after using reciprocity theorem
is-

𝑉(𝑡) = 𝑑
𝑑𝑡 ∫�⃗�∈𝔻

�⃗� ( �⃗� ) ⋅ �⃗�( �⃗� , 𝑡)𝑑𝑟 for t ≥ 0

Where �⃗� ( �⃗� ) is the receive field and �⃗�( �⃗� , 𝑡) is the magnetization at position �⃗�. We can
obtain �⃗� ( �⃗� ) by measuring the field map. Now, if we can calculate �⃗�( �⃗� , 𝑡) we can compute
the signal 𝑉(𝑡). The strategy is to solve for it using the Bloch equation and plug it into the
signal expression as shown above to get the signal.

4.4. Solving the Bloch Equation
From Chapter 2, equation 2.23, the Bloch Equation is given by-

𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × B⃗−

�⃗�
𝑇 −

�⃗�∥ − �⃗�
𝑇

To see the functional dependence of the above equation clearly, we rewrite it as follows-
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𝑑�⃗�( �⃗� , 𝑡)
𝑑𝑡 = 𝛾�⃗�( �⃗� , 𝑡) × B⃗( �⃗� ) − �⃗� ( �⃗� , 𝑡)

𝑇 −
�⃗�∥( �⃗� , 𝑡) − �⃗� ( �⃗� )

𝑇 (Non-rotated frame)

𝑑�⃗� ( �⃗� , 𝑡; 𝜃)
𝑑𝑡 = 𝛾�⃗� ( �⃗� , 𝑡; 𝜃) × B⃗ ( �⃗� ; 𝜃) − �⃗� , ( �⃗� , 𝑡; 𝜃)

𝑇 −
�⃗�∥, ( �⃗� , 𝑡; 𝜃) − �⃗� , ( �⃗� ; 𝜃)

𝑇 (Rotated frame)

(4.3)
Let us take the magnetization in the non-rotated frame as �⃗� and the rotated frame as �⃗� .

�⃗� can be expressed in terms of the unit vectors �⃗� , �⃗� and �⃗� as-

�⃗� ( �⃗� , 𝑡; 𝜃) = 𝑀 , ( �⃗� , 𝑡; 𝜃)�⃗� + 𝑀 , ( �⃗� , 𝑡; 𝜃)�⃗� + 𝑀 , ( �⃗� , 𝑡; 𝜃)�⃗� (4.4)

where, 𝑀 , ( �⃗� , 𝑡; 𝜃), 𝑀 , ( �⃗� , 𝑡; 𝜃) and 𝑀 , ( �⃗� , 𝑡; 𝜃) are the components of �⃗� ( �⃗� , 𝑡; 𝜃)
along 𝑥 , 𝑦 and 𝑧 direction respectively.

Henceforth, for notational convenience, the functional dependencies are dropped. If we
arrange the components 𝑀 , , 𝑀 , and 𝑀 , in a 3 × 1 vector, m⃗ , we get-

m⃗ = [
𝑀 ,
𝑀 ,
𝑀 ,

] (4.5)

We have the perpendicular component, �⃗�∥, = 𝑀 , �⃗� , and the transverse component as,
�⃗� , = 𝑀 , �⃗� + 𝑀 , �⃗� . If we plug these expression into equation 4.3 (rotated frame), we get

𝑑�⃗�
𝑑𝑡 = 𝛾�⃗� × B⃗ − �⃗� ,

𝑇 −
�⃗�∥, − �⃗� ,

𝑇

⟹

⎡
⎢
⎢
⎢
⎢
⎣

,

,

,

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 𝛾𝐵 0

−𝛾𝐵 0 0

0 0 0

⎤
⎥
⎥
⎥
⎦

[
𝑀 ,
𝑀 ,
𝑀 ,

] −

⎡
⎢
⎢
⎢
⎢
⎣

0 0

0 0

0 0

⎤
⎥
⎥
⎥
⎥
⎦

[
𝑀 ,
𝑀 ,
𝑀 ,

] +

⎡
⎢
⎢
⎢
⎢
⎣

0

0
⎤
⎥
⎥
⎥
⎥
⎦

⟹ 𝑑m⃗
𝑑𝑡 + Bm⃗ =

𝑀
𝑇 e⃗3

(4.6)

where,

e⃗3 = [
0
0
1
] , B =

⎡
⎢
⎢
⎢
⎢
⎣

−𝜔 0

𝜔 0

0 0

⎤
⎥
⎥
⎥
⎥
⎦

and 𝜔 = 𝛾𝐵

If the initial condition of m⃗ at time 𝑡 = 0 (where ’+’ indicates the moment immediately af-
ter the application of the RF pulse) is m⃗ = [𝑀 , , 𝑀 , , 𝑀 , ] , then the solution of equation
4.6 is given by-

m⃗ ( �⃗� , 𝑡; 𝜃) = 𝑀 [1 − 𝑒 ]e3 + 𝑒 B m⃗ for t>0 (4.7)

4.5. Plugging into the signal expression
We also arrange the components of the receive field, b⃗ , , in the rotating frame along 𝑥 , 𝑦
and 𝑧 .

b⃗ , = [
𝐵 , ,
𝐵 , ,
𝐵 , ,

] (4.8)



38 4. Signal Model for rSEM

The voltage signal expression can be written as-

𝑉(𝑡; 𝜃) = 𝑑
𝑑𝑡 ∫�⃗� ∈𝔻

⃗̂𝐁 , ( �⃗� ; 𝜃) ⋅ �⃗� ( �⃗� , 𝐭; 𝜃)𝑑𝑟

= 𝑑
𝑑𝑡 ∫�⃗� ∈𝔻

b⃗ , m⃗ 𝑑𝑟

= ∫
�⃗� ∈𝔻

b⃗ ,
𝑑m⃗
𝑑𝑡 𝑑𝑟

(4.9)

The last equality holds because b⃗ , does not depend on 𝑡 due to quasi-static approxima-
tion. Using equation 4.7,

b⃗ ,
𝑑m⃗
𝑑𝑡 =

𝑀
𝑇 𝑒 𝐵 , , − b⃗ , B𝑒 B m⃗ (4.10)

To further carry out the analysis, we take the eigenvalue decomposition of the Bloch ma-
trix, B, as follows-

BU = U𝚲 (4.11)

where,

𝚲 =
⎡
⎢
⎢
⎢
⎣

𝜆 0 0

0 𝜆 0

0 0 𝜆

⎤
⎥
⎥
⎥
⎦

𝜆 = 1
𝑇 + 𝑖𝜔 𝜆 = 1

𝑇 − 𝑖𝜔 = 𝜆∗ and 𝜆 = 1
𝑇

Also, orthonormalized eigenvector matrix, U-

U = [u⃗ u⃗ u⃗ ] u⃗ = 1
√2

[
1
−𝑖
0
] u⃗ = 1

√2
[
1
𝑖
0
] = u⃗∗ u⃗ = [

0
0
1
] = e⃗3 (4.12)

and it satisfies - U U = UU = I. So that-

B = U𝚲U (4.13)

Using equation 4.13, equation 4.10 becomes-

b⃗ ,
𝑑m⃗
𝑑𝑡 =

𝑀
𝑇 𝑒 𝐵 , , − b⃗ , B𝑒 B m⃗

=
𝑀
𝑇 𝑒 𝐵 , , − b⃗ , U𝚲U 𝑒 U𝚲U m⃗

=
𝑀
𝑇 𝑒 𝐵 , , − b⃗ , u⃗ ( 1𝑇 + 𝑖𝜔 )𝑒 ( )u⃗ m⃗

− b⃗ , u⃗ ( 1𝑇 − 𝑖𝜔 )𝑒 ( )u⃗ m⃗ − b⃗ , u⃗
1
𝑇 𝑒 u⃗ m⃗

= 1
𝑇 𝑒 (𝑀 −𝑀 , )𝐵 , , − b⃗ , u⃗ ( 1𝑇 + 𝑖𝜔 )𝑒 𝑒 u⃗ m⃗

− b⃗ , u⃗ ( 1𝑇 − 𝑖𝜔 )𝑒 𝑒 u⃗ m⃗

(4.14)

We can ignore the first term of the right hand side of equation 4.14 because 𝑇 ( �⃗� ) <
𝑇 ( �⃗� ). Also, typically, 𝜔 ( �⃗� ;𝜃) ≫ ( �⃗� ) for �⃗� ∈ 𝔻 and 𝜃 ∈ [0, 2𝜋). Then, to a very good
approximation, we have-
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b⃗ ,
𝑑m⃗
𝑑𝑡 ≈ 𝑖b⃗ , u⃗ 𝜔 𝑒 𝑒 u⃗ m⃗ − 𝑖b⃗ , u⃗ 𝜔 𝑒 𝑒 u⃗ m⃗ (4.15)

In order to make data processing convenient, the voltage signal, 𝑉(𝑡; 𝜃), is first modulated
and then low-pass filtered. If the modulation frequency is 𝜔 , then the modulated signal,
𝑔(𝑡; 𝜃), is-

𝑔(𝑡; 𝜃) = 2𝑒 𝑉(𝑡; 𝜃)

= ∫
�⃗� ∈𝔻

2𝑒 b⃗ ,
𝑑m⃗
𝑑𝑡 𝑑𝑟

≈ ∫
�⃗� ∈𝔻

[2𝑖b⃗ , u⃗ 𝜔 𝑒 𝑒 ( ) u⃗ m⃗ − 2𝑖b⃗ , u⃗ 𝜔 𝑒 𝑒 ( ) u⃗ m⃗ ]𝑑𝑟

(4.16)
We now low pass filter the modulated signal, 𝑔(𝑡; 𝜃), to filter out the frequency 𝜔 +𝜔 .

If we take Δ𝜔 = 𝜔 − 𝜔 , then we have-

𝑑(𝑡; 𝜃) = −2𝑖 ∫
�⃗� ∈𝔻

b⃗ , u⃗ 𝜔 𝑒 𝑒 u⃗ m⃗ 𝑑𝑟 (4.17)

Using equation 4.12, we have-

b⃗ , u⃗ = 1
√2
𝐵 , and u⃗ m⃗ = 1

√2
𝑀

Where we have used the following complex notation for notational convinience

𝐵 , = 𝐵 , , − 𝑖𝐵 , , and 𝑀 = 𝑀 , + 𝑖𝑀 ,

Substituting the above expressions, equation 4.17 becomes-

𝑑(𝑡; 𝜃) = −𝑖 ∫
�⃗� ∈𝔻

𝑀 ( �⃗� ; 𝜃)𝐵 , ( �⃗� ; 𝜃)𝜔 ( �⃗� ; 𝜃)𝑒 𝑒 ( �⃗� ; ) 𝑑𝑟 (4.18)

4.6. Changing to non-rotated frame
In the non-rotated frame, the receive field and magnetization at 𝑡 = 0 respectively are given
by-

�⃗� = 𝐵 , �⃗� + 𝐵 , �⃗� + 𝐵 , �⃗� and �⃗� = 𝑀 �⃗� + 𝑀 �⃗� + 𝑀 �⃗�
Using 4.1,

𝐵 , , = �⃗� ⋅ �⃗�
= (𝐵 , �⃗� + 𝐵 , �⃗� + 𝐵 , �⃗�) ⋅ �⃗�
= 𝑐𝑜𝑠(𝜃)𝐵 , − 𝑠𝑖𝑛(𝜃)𝐵 ,

In the same way,

𝐵 , , = 𝐵 , and 𝐵 , , = 𝑠𝑖𝑛(𝜃)𝐵 , + 𝑐𝑜𝑠(𝜃)𝐵 ,

If we do the same thing with the initial magnetization,

𝑀 , = 𝑐𝑜𝑠(𝜃)𝑀 − 𝑠𝑖𝑛(𝜃)𝑀 , 𝑀 , = 𝑀 and 𝑀 , = 𝑠𝑖𝑛(𝜃)𝑀 + 𝑐𝑜𝑠(𝜃)𝑀

Thus,

𝐵 , = 𝐵 , , − 𝑖𝐵 , , = 𝑐𝑜𝑠(𝜃)𝐵 , ( r⃗ ) − 𝑠𝑖𝑛(𝜃)𝐵 , ( r⃗ ) − 𝑖𝐵 , ( r⃗ ) �= ℬ ( �⃗� ; 𝜃) (4.19)
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and,

𝑀 = 𝑀 , + 𝑖𝑀 , = 𝑐𝑜𝑠(𝜃)𝑀 − 𝑠𝑖𝑛(𝜃)𝑀 + 𝑖𝑀 (4.20)

However, we would like the right hand side of equation 4.20 to be expressed in the form
of M⃗ . In chapter 2, equation 2.9, we have seen that the magnitude of the equilibrium
magnetization, M⃗ , is-

|M⃗ | = 𝛾 ℏ 𝐵 ( r⃗ )𝑁
4𝐾𝑇

The above is the magnitude of M⃗ when the whole volume is considered. For a unit
volume, we will use the local spin density, 𝜌( r⃗ ). Then the magnitude becomes as follows-

|M⃗ | = 𝑀 = 𝜌( r⃗ )𝛾 ℏ 𝐵 ( r⃗ )4𝐾𝑇
If the external magnetic field B⃗0( r⃗ ) is applied along some unit vector s⃗( r⃗ ) such that-

B⃗0( r⃗ ) = 𝐵 ( r⃗ )s⃗( r⃗ )

Then M⃗ is given by-

M⃗ = 𝜌( r⃗ )𝛾 ℏ 𝐵 ( r⃗ )4𝐾𝑇 s⃗( r⃗ ) (4.21)

We would like to image the spin density, 𝜌( r⃗ ). To do this, an RF excitation is applied to
flip the magnetization out of its equilibrium, as discussed in chapter 2 and then removed.
The instant the excitation is removed is considered as time, 𝑡 = 0 . Magnetization at this
instant is taken as-

�⃗�( r⃗ , 0 ) = �⃗� ( r⃗ ) for 𝜌( r⃗ ) ∈ 𝔻 (4.22)

This initial magnetization is proportional to the magnitude of the equilibrium magnetiza-
tion. If we take the vector function ℳ⃗ℳℳ, independent of 𝑀 , as the constant of proportionality,
we have-

�⃗� ( r⃗ ) = ℳ⃗ℳℳ( r⃗ )𝑀 ( r⃗ ) for 𝜌( r⃗ ) ∈ 𝔻 (4.23)

Using the above expression, 4.24 becomes-

𝑀 = 𝑀 (𝑐𝑜𝑠(𝜃)ℳ ( r⃗ ) − 𝑠𝑖𝑛(𝜃)ℳ ( r⃗ ) + 𝑖ℳ ( r⃗ )) �= ℳ ( r⃗ ; 𝜃) (4.24)

4.7. Expression for Signal Model
Using equation and 4.24, equation 4.18 becomes -

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝒦( �⃗� ; 𝜃)𝑒 ( �⃗� ; ) 𝑑𝑟 (4.25)

where,

𝒦( �⃗� ; 𝜃) = −𝑖 𝛾ℏ4𝐾𝑇 ℳ ( r⃗ ; 𝜃)ℬ ( �⃗� ; 𝜃)𝜔 and 𝑝( �⃗� ; 𝜃) = 1
𝑇 + 𝑖Δ𝜔 (4.26)

This is the signal model this work will be using. Similar to the approach in chapter 3,
after taking the discrete version of the above equation, we arrive at the following equation-

𝑑(𝑘 , 𝜃 ) =∑𝜌(𝑟 )𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) Δ𝑟 (4.27)
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Writing this equation as a matrix by stacking different 𝜃 , we have-

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑(𝑘 , 𝜃 )
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜌(𝑟 )
𝜌(𝑟 )
.
.

𝜌(𝑟 )

⎤
⎥
⎥
⎥
⎥
⎦

⟹ d = E 𝝆
(4.28)

where E ∈ ℂ × , d ∈ ℂ × and 𝝆 ∈ ℂ × . Δ𝑟 is ignored because it is a scalar.
This chapter is wrapped up in the next section, which discusses the k-space considera-

tions of the signal model thus derived.

4.8. K-space consideration
The profile of the measured z-component of the magnetic field density, in the 𝑦 = 0 plane of
the Halbach setup, is illustrated in figure 4.3

x-axis

z
-a

x
is

Figure 4.3: Measured z-component of B0 Profile of the Halbach setup. The colour scale is in Tesla.

The profile roughly looks like a quadratic field profile and can be given the form-

𝐵 (𝑥, 𝑧) = 𝐵 + 𝑔 𝑥 + 𝑔 𝑧 (4.29)

where, 𝐵 is the field value at the centre of the cylinder, and 𝑔 and 𝑔 are constants.
But this work will assume the profile to be to linear (equation 4.30) to make the analysis
easier, and to establish a link between the spatial and frequency space (k-space) for this MRI
machine. More rigorous analysis of a quadratic 𝐵 profile [6][18] can be done in a future
work. So we have-

𝐵 (𝑥, 0, 𝑧) = 𝐵 + 𝐺 𝑥 + 𝐺 𝑧 , where 𝐺 and 𝐺 are some constants. (4.30)

For our rotating setup, if we rotate this field, we get-

𝐵 (𝑥, 0, 𝑧) = 𝐵 + 𝐺 [𝑥 𝑐𝑜𝑠(𝜃) − 𝑧 𝑠𝑖𝑛(𝜃)] + 𝐺 [𝑥 𝑠𝑖𝑛(𝜃) + 𝑧 𝑐𝑜𝑠(𝜃)] (4.31)

Taking, 𝜔 = 𝛾𝐵 , equation 4.34 becomes-
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Δ𝜔 𝑡 = 𝛾[𝐺 𝑐𝑜𝑠(𝜃) + 𝐺 𝑠𝑖𝑛(𝜃)]𝑡 𝑥 + 𝛾[−𝐺 𝑠𝑖𝑛(𝜃) + 𝐺 𝑐𝑜𝑠(𝜃)]𝑡 𝑧
= 𝑘 𝑥 + 𝑘 𝑧

(4.32)

where we have subsituted 𝑘 = 𝛾[𝐺 𝑐𝑜𝑠(𝜃) + 𝐺 𝑠𝑖𝑛(𝜃)]𝑡 and 𝑘 = 𝛾[−𝐺 𝑠𝑖𝑛(𝜃) + 𝐺 𝑐𝑜𝑠(𝜃)]𝑡 1.
Now,

𝑒 = 𝑒 (4.33)

which is the exponent part of a 2D Fourier transform. We can also observe that-

𝑘 (𝑡; 𝜃) + 𝑘 (𝑡; 𝜃) = (𝛾𝑡) (𝐺 + 𝐺 ) (4.34)

is an equation of a circle centered at the origin, and it has a radius of 𝛾𝑡√𝐺 + 𝐺 . There
are two points we have to note-

1. If t is fixed and 𝜃 is varied from 0 to 2𝜋, the vector 𝐤 (𝑡; 𝜃) = 𝑘 (𝑡; 𝜃)�⃗� + 𝑘 (𝑡; 𝜃)�⃗� traces
out a circle with radius 𝛾𝑡√𝐺 + 𝐺 .

2. If 𝜃 is fixed and t is varied from 𝑡 = 0 to 𝑡 = 𝑇 , �⃗� traces out a line starting from the
origin and ending at �⃗� (𝑇 ; 𝜃).

These cases are illustrated in figure 4.4-

�

t is fixed

is fixed

Figure 4.4: K space trajectories for 1) fixed t and varying 2) fixed and t varying.

1 (k prime) is used to indicate k-space frequencies to differentiate it from which is a discrete time instant
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5
Problem Description

The signal model of the MRI machine that uses rSEM was obtained in the previous chapter
(chapter 4). This model is used to formulate a mathematical problem that is intended to be
solved by reconstruction algorithms.

This chapter begins by expressing the process of image reconstruction as a mathematical
problem. After that, regularization is described, where additional information is provided by
including an extra term to the original formulation. This is done so that a better solution is
obtained. This chapter explains the techniques adopted by this work to choose this term.

5.1. Problem Formulation
We recall equation 4.28. Here, we have changed the notation and replaced d as b, E as A,
and 𝝆 as x. Thus we have the following system of linear equations-

b = Ax (5.1)

But unlike in equation 4.28, for simplicity, we consider A ∈ ℂ × , b ∈ ℂ × and x ∈ ℂ × .
To reconstruct x, we just solve the above system. But in our case, A is a tall matrix and
we have an overdertermined system. Usually, a unique solution for overdertermined system
does not exist and we instead find the best approximate x in a 2-norm sense by solving the
following optimization problem-

minimize
x

||Ax− b|| (5.2)

5.2. Regularization
The problem formulation of equation 5.2 satisfies the existence and uniqueness requirements
of Hadamard’s conditions[11]. But this formulation is not immune to noise. If matrix A is
ill-conditioned, a small perturbation in A or bmay lead to a large perturbation of the solution.
To stabilize or regularize it, we reformulate the problem as-

minimize
x

||Ax− b|| + 𝜆||Lx|| (5.3)

where 𝜆 is a scalar called regularization parameter, and L is the called the regularization
matrix. 𝜆 and L will be described more in the subsequent sections. The p-norm on the
regularization term indicates that it is a p-norm regularized problem.

If the problem is a 2-norm regularized problem it is widely known as the Tikhonov problem.

minimize
x

||Ax− b|| + 𝜆||Lx|| (5.4)

One advantage of this Tikhonov formulation is that it can be easily written in a more
compact least squares form as follows-

45
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minimize
x

‖( A
√𝜆L)x− (

b
0)‖ (5.5)

This form is easier to be solved by the reconstruction algorithms.

5.3. Choosing the Regularization Parameter
To get an insight on how to choose the regularization parameter, 𝜆, we consider the Tikhonov
problem in equation 5.4. (The description given in this section is based on the text given in
[11])

argmin
x

||Ax− b|| + 𝜆||Lx|| = x

Let us say, after solving this problem, we get our solution to be x . There are two norms
that are of interest to us-

1. Solution Norm: It tells us about the size of the solution and is given by ||x||

2. Residual Norm: It tells us about the size of the error between the measured value, b,
and the computed value, Ax , and is given by ||Ax − b||

Figure 5.1: L-curve of x . Figure is adapted from [11].

Suppose, figure 5.1 illustrates the graph between ||x|| and ||Ax −b|| as a function of 𝜆.
This graph is called L-curve. If we choose a low value of 𝜆, the residual norm, ||Ax − b|| ,
is seen to decrease but the solution norm, ||x|| , blows up, which means that the solution is
unstable. This is not desired. On the other hand, if we choose a very high value of 𝜆 then
||Ax −b|| increases and ||x|| approaches 0. A solution having ||x|| = 0 is meaningless and
is again not desired. What is desired is both ||x|| and ||Ax −b|| are simultaneously as small
as possible. And this happens at the elbow of the curve shown above, which is considered as
having a good mix of ||x|| and ||Ax − b|| . So, 𝜆 in that respect, tells us how much weight
is given to the regularization term.

An important part of this work is to investigate algorithms that choose the 𝜆 parameter in
an automated fashion. There are different algorithms to do this, but so far, a general-purpose
efficient parameter-choice algorithm is yet to be found[11].
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This work uses a MATLAB toolbox called ”IR Tools” which contains a package of iterative
regularization methods. More will be discussed about it in the next chapter. Two approaches
to choose 𝜆 parameter, which is implemented in this toolbox are-

1. Discrepancy principle

2. Generalized cross validation

5.3.1. Discrepancy Principle
An iterative solver finds a solution, x( ), in an iterative manner and updates it at every itera-
tion, 𝑘, with an objective to find the best one. As the solution updates, the residual, Ax( )−b,
also updates. The idea behind discrepancy principle is to ask the user for an error estimate,
𝜖, and the moment the residual norm becomes smaller than this estimate, the iteration of
the solving algorithm is stopped. Thus discrepancy principle can be described as-

Choose 𝜆 such that ||Ax( ) − b|| ≥ 𝜂𝜖 (5.6)

where, x( ) is the 𝑘 iterand corresponding to the chosen 𝜆. 𝜂 is called the safety factor.
It is there to ensure that the solution norm does not blow up. The default value of 𝜂 in IR
tools is 1.01. The implementation of discrepancy principle will be discussed more in the next
chapter.

5.3.2. Generalized cross validation
Generalized cross validation (GCV) is a statistical approach to compute the appropriate 𝜆
parameter automatically. To get an idea about it we consider the following-

Figure 5.2: Generalized cross validation

Suppose, we obtain the system of equation ”b( ) = A( )x” by throwing out the 𝑖 row from
the system of equations ”b = Ax” (figure 5.2). The Tikhonov problem solution for the former
system is given by-

x( ) = ((A( )) A( ) + 𝜆I ) (A( )) b( ) (5.7)

Now, according to GCV, A(𝑖, :)x should be equal to b( ). Here, A(𝑖, :) and b( ) are the 𝑖
row of A and b, respectively, that was thrown away. For each row of A, this boils down to
solving the following optimization problem-

minimize
1
𝑚 ∑(A(𝑖, :)x − b( )) (5.8)
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The above optimization problem is equivalent to solving 𝑚 Tikhonov problems. This be-
comes computationally intensive if the size of matrix A is very large. There is an alternative
formulation of this problem which is comparatively more tractable[11].

minimize 𝐺𝐶𝑉(𝜆) = minimize
𝑛||(I− AA )b||
(𝑡𝑟𝑎𝑐𝑒(I− AA ))

� (5.9)

where A = (A A + 𝜆I) A , and A is the Moore Penrose inverse of A . Here, SVD of
A is used to compute the solution. But, this problem is still time consuming to solve as
computing the SVD of very large matrices can take prohibitively long time. Some time can be
saved if we decompose A into a much smaller bi-diagonal matrix, B , , and use it in place of
A to compute the solution. More about this decomposition process is discussed in the next
chapter. Further, in addition to GCV, the IR Tools also implements Weighted-GCV (WGCV).
Here, apart from completely leaving out the 𝑖 row of A and b, the idea is carry forward to
partially leaving out the 𝑖 row which is indicated by a weight parameter 𝜔. The value of
this 𝜔 varies from 0 to 1. 1 means that the 𝑖 row is completely left out and the algorithm is
equivalent to GCV. 0 means that the 𝑖 row is not removed. The weights can also be chosen
in an adaptive manner[4]. In WGCV, the following optimization problem is solved[4].

minimize 𝑊𝐺𝐶𝑉(𝜆) = minimize
𝑛||(I− AA )b||

(𝑡𝑟𝑎𝑐𝑒(I− 𝜔AA ))
(5.10)

5.4. Choosing the Regularization Matrix
The regularization matrix, L, tells how the regularization term depends on x. It adds more
information to the problem so that a better solution is obtained. In image reconstruction, it
is desired that the values of adjacent pixels do not change much, except at the edges and
interfaces. So in our case, one of the ways to minimize the jumps of the pixel values is by
choosing L to be the Laplacian matrix. More description of the choice of this L will be provided
in the next chapter.
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At this point, it is believed to be beneficial to have a clear picture of what we are doing. Figure
6.1 attempts to describe this.

Figure 6.1: Measurement and reconstruction

We start with the original object that we want to image (shown on the top part of the figure
6.1). In a realistic setting, this is the functional or anatomical information in a patient that we
want to image non-invasively. We use the rotating MRI machine, which is our actual system,

49
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to image it and obtain the measured signals. Next, now that we have the measured signal, we
would want to use it to reconstruct back the image of the object (shown on the bottom part
of the figure 6.1). For the computation of this, we swap an equivalent mathematical model
with the actual system and use appropriate reconstruction algorithms.

This chapter first aspires to give some mathematical background before delving into the
algorithms used. More notably it attempts to give some degree of idea pertaining to Krylov
subspace methods. After this brief background, this chapter describes the algorithms used
in this work.

6.1. Iterative algorithms
Let us revisit the the Tikhonov’s regularization problem (equation 5.5) from the previous
chapter-

minimize
x

‖( A
√𝜆L)x− (

b
0)‖

For convenience, let us consider ( A
√𝜆L) as Ã and (b0) as b̃ in this section. Thus we have-

minimize
x

||Ãx− b̃|| (6.1)

In the above problem formulation, our objective function is 𝑓(x) = ||Ãx − b̃|| . If Ã is
positive definite, one can find its minimum solution, x , by setting the gradient of the
objection function, 𝑓 (x), to 0. Then we get-

𝑓 (x ) = 0
⟹ 2Ã Ãx − 2Ã b = 0
⟹ x = (Ã Ã) Ã b

(6.2)

If the size of Ã is very large, then the computation of x becomes prohibitively expen-
sive. In this situation, iterative algorithms are useful. These kind of algorithms generate a
sequence of approximate solutions where the 𝑘 estimate is derived from the (𝑘 − 1) es-
timate. The objective of these algorithms is to produce progressively better approximations
of the solution that converges to the true solution with a desired precision as the iterations
goes by. Mathematically[24], sequence of iterands are denoted as-

{x( )} ,where x( ) → x for 𝑘 → ∞ (6.3)

The general equation defining how new updates are obtained is given by-

x( ) = x( ) + 𝛼( )d( ) (6.4)

Where d( ) is the search vector in the 𝑘 iteration. 𝛼( ) is a scalar called step size. It tells
how big a step should be taken in the direction of d( ). A way to obtain 𝛼( ) is by doing a line
search[20].

6.2. Geometric Interpretation of Krylov Subspace Methods
The problem which we wish to solve is-

minimize
x

||Ax− b|| = minimize
x

𝑓(x) (6.5)

To visualize 𝑓(x), we consider the 2D case where x = [𝑥𝑥 ]. If A is symmetric and posi-

tive definite, then figure 6.2a illustrates 𝑓(x). Figure 6.2b shows the contour plot of figure
6.2a. This will be used to explain the workings of the algorithms to be followed to reach the
minimum solution point.
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(a) (b)

Figure 6.2: a) Illustration of (x) for 2D case b) Coutour lines of (x)

In this section, the goal is to present some geometrical intuition behind the workings
of Krylov subspace methods rather than going too much into the mathematical details. If
one wishes to go through the mathematical equations, appropriate materials will be cited
throughout this section. Here, we will start with a simple idea, and progressively build upon
it to arrive at the intuition behind Krylov subspace methods.

6.2.1. Steepest Descent
Steepest descent is an iterative algorithm which tries to arrive at the solution x by tak-
ing steps that are proportional to the direction of the negative gradient of 𝑓(x) at each
iterations[20]. In other words, d( ) = 𝑓 (x( ))-

x( ) = x( ) − 𝛼( )𝑓 (x( )) (6.6)

(a) (b)

Figure 6.3: Steepest descent when contour lines are a) circular b) ellipsoids

Steepest descent is initialized with some initial guess x( ), and search vector d( ). When
the contour lines are concentric circles, the negative gradient of 𝑓(x( )) at any point points
directly towards the solution. Therefore the solution is obtained within the next iteration itself
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(figure 6.3a). However, if the contour lines are ellipsoids, and the initial guess vector does
not lie along one of the eigenvectors of A, then the number of iterations needed to converge
increases[20] (figure 6.3b).

6.2.2. Conjugate Direction
The Conjugate direction method attempts to find the the directions d( ) such that the direc-
tions are A-conjugate. This is equivalent to saying-

d( )Ad( ) = 0, 𝑗 ≠ 𝑘 (6.7)

Geometrically speaking, it turns out that this algorithm finds d( )s in such a way that
the d( )s on ellipsoid contour lines (figure 6.4a ) become orthogonal to each other when this
ellipsoid contour lines are stretched or transformed to circular contour lines (figure 6.4b).

(a) (b)

Figure 6.4: Conjugate direction a) contours are ellipsoids b) the same contours in a ”transformed” space

When the search vectors are the natural coordinates vector set in ℝ , this method be-
comes equivalent to Gaussian elimination[23]. When the search vector, d( ), is found out
by the conjugation of the residual vector, r( ) = b − Ax( ), then the method is known as
conjugate gradient. There are different methods to find these A-orthogonal search vectors.
To name some, they are Householder transformation, Givens Transformation, Fast Givens
Transformation, and Gram-Schmidt algorithm.

6.2.3. Krylov Subspace Connection
A desired property of such algorithms is that they start off searching along the most important
directions so that the convergence to the real solution happens faster. Figure 6.5 roughly
illustrates this idea. Suppose we are allowed to search the solution along only two orthogonal
directions- the horizontal and the vertical. It is clear that in this case after one iteration, x( )

(figure 6.5a) is closer to the solution, x , in the euclidean sense than x( ) (figure 6.5a and b).
This means that the horizontal direction, in this sense, is more important than the vertical
direction. In case of matrix A, the eigenvector corresponding to A’s largest eigenvalue, 𝜆 (A),
is the most important direction.
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(a) (b)

Figure 6.5: a) Search vertically then horizontally b) Search horizontally then vertically

We consider the orthogonal decomposition of matrix A-

D = Q AQ (6.8)

whereQ = [q |q |...|q ] is an orthogonal matrix, and q s can be regarded as search vectors.
𝑘 it the iteration number of the orthogonalization process. It can be shown that the problem of
generating A-orthogonal q s such that 𝜆 (D ) and 𝜆 (D ) 1 are progressively better estimates
of 𝜆 (A) and 𝜆 (A), respectively, leads to the problem of finding the orthornormal basis for
the Krylov subspaces[10]-

𝒦(A,q , 𝑘) = 𝑠𝑝𝑎𝑛{q ,q , ..,q } = 𝑠𝑝𝑎𝑛{q ,Aq , ..,A q } (6.9)

6.3. Lanczos Tridiagonalization
If A is square symmetric, it can be decomposed into a tridiagonal form[10], T, as-

Q AQ = T (6.10)

where Q = [q |q |...|q ] is an orthogonal matrix where,

𝑠𝑝𝑎𝑛{q ,q , ..,q } = 𝑠𝑝𝑎𝑛{q ,Aq , ..,A q } = 𝒦(A,q , 𝑛) (6.11)

Methods like Householder transformation or Givens transformation can be used for the
computation of this tridiagonal matrix, T. But these methods are not suited if A is large and
sparse as they destroy sparsity during calculations or are computationally expensive[10].
Lanczos method is useful in this situation which tries to compute the elements of T = Q AQ
directly. We have-

T =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼 𝛽 0 .. 0
𝛽 𝛼 𝛽 .. .
0 𝛽 .. .. .
. . .. . 𝛽
0 . . 𝛽 𝛼

⎤
⎥
⎥
⎥
⎥
⎦

(6.12)

Comparing the columns of AQ = QT, we get the recursive expression to compute the
columns of Q-

Aq = 𝛽 q + 𝛼 q + 𝛽 q (6.13)

We start the recursion by taking 𝛽 = 1 and q = 0. At 𝑘 iteration, we have-

AQ = Q T + r e (where r = 𝛽 q and e = I (�, 𝑘) ) (6.14)

In practice, T tends to converge to A’s eigenvalues at a much smaller k compared to the
dimension of A. In other words, T is a kind of an approximation to A whose dimensions are
much smaller. Kaniel-Paige Convergence Theory guarantees the convergence of the extremal
eigenvalues of T to that of A (There is no such strong theory for the interior eigenvalues
though) [10]. If we can use T instead of A, it would greatly reduce our computations.
1 (.) is the notation for the largest eigenvalue and (.) is the notation for the smallest eigenvalue
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So far we have seen the case when A was square and symmetric. But in our application
our A is tall and non-symmetric. Following two methods describe the approaches taken in
this case which will be discussed in the subsequent sections-

1. Arnoldi’s method

2. Golub-Kahan Bidiagonalization

6.4. Arnoldi’s method
In this method, although A can be non-symmetric it has to be square. Now, because A is
non-symmetric, the decomposition Q AQ = H is a Hessenberg matrix and not a tridiagonal
matrix.

H =

⎡
⎢
⎢
⎢
⎢
⎣

ℎ ℎ ℎ .. ℎ ,
ℎ ℎ ℎ .. ℎ ,
0 ℎ .. .. .
. .. .. ℎ , ℎ ,
0 . 0 ℎ , ℎ ,

⎤
⎥
⎥
⎥
⎥
⎦

(6.15)

If we compute the columns of Q, in Lanczos style, by comparing AQ = QH, we no longer
get short recursive formulas for computing q . As the iteration proceeds, the expression
becomes longer and longer. It is due to this reason that such method is stopped early on and
restarted with a new and better initial guess q . Moreover, this method does not converge in
the style of Kaniel-Paige Convergence Theory, and initial guess plays a big role in converging
[10].

6.5. Golub-Kahan Bidiagonalization
In this method, A can be non-symmetric as well as rectangular. Instead of a QR type of
decomposition, this method relies on a SVD style of decomposition. Here we have U AV = B,
where B is a lower bidiagonal matrix, and U and V are orthogonal matrices.

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛼 0 0 .. 0
𝛽 𝛼 0 .. .
0 𝛽 .. .. .
. 0 .. 𝛼 0
0 . . 𝛽 𝛼
0 . . 0 𝛽𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(6.16)

To get the the columns of U and V in Lanczos style, comparing the columns of AV = UB
and U A = BV we get-

ATu = 𝛽 v + 𝛼 v ,and Av = 𝛼 u + 𝛽 v (6.17)

The recursion is started with 𝛽 = 1 and v = 0. This algorithm converges in the style
similar to Kaniel-Paige Convergence Theory[10]. The downside of this algorithm is that two
matrix multiplication (with A and A) is needed in every iteration which is a computational
overhead.

At this point, the author believes that sufficient background has been provided to get some
idea about the algorithms that are being used in this work. Next, a short description of the
IRTools package is provided, followed by brief descriptions of the algorithms chosen from it,
to reconstruct the image.

6.6. IR Tools
IR Tools is a MATLAB software package that contains a range of iterative solvers suited for
large-scale linear inverse problems[9]. Additionally, it contains several test problem examples
to demonstrate the use of the algorithms. These examples are useful in testing the algorithms.
It also serves as a reference to be of help during the debugging of one’s own implementation
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of the algorithms. It includes iterative regularization methods and automatic regularization
parameter selection methods. To get more information about this toolbox [9] can be referred.

Out of the many algorithms in the toolbox, two algorithms were chosen. They are 1)
IRhybrid_lsqr, and 2)IRhtv. They were chosen on the following basis-

1. They can handle rectangular matrices.

2. Iterative regularization parameter selecting algorithms were implemented in these algo-
rithms.

3. The regularization matrix in IRhybrid_lsqr is chosen to be Laplacian, and the regular-
ization term in IRhtv is the total variance operator (will be discussed later). Both are
useful in image reconstruction purposes.

Next we discuss the algorithms themselves.

6.7. IRhybrid_lsqr
IRhybrid_lsqr [3] solves the Tikhonov’s regularization problem (equation 5.5)-

minimize
x

‖( A
√𝜆L)x− (

b
0)‖

For convenience, let us consider ( A
√𝜆L) as Ã and (b0) as b̃ in this section.

IRhybrid_lsqr uses Golub-Kahan bidiagonalization to decompose Ã into a lower bidiagonal
matrix B i.e. U ÃV = B (section 6.5) such that in the 𝑘 iteration we have-

Ã U = V B + 𝛼 v e (where e = I (�, 𝑘) )
ÃV = U B

(6.18)

It then approximates the following least squares problem

minimize
x

||Ãx− b|| (6.19)

by the following projected least squares problem-

minimize
x∈ℛ(V )

||Ãx− b|| = minimize
f

||U b− B f|| (6.20)

where, x( ) = V f.

6.7.1. Discrepancy Principle in IRhybrid_lsqr
This description is taken from [7] where the authors have explained the case for Arnoldi’s
method. Nevertheless, this method can be used for Golub-Kahan bidiagonalization also.
Therefore, the reader should remember that although this explanation is given for Arnoldi’s
method, it can be extended for Golub-Kahan bidiagonalization also by subsituting the ap-
proriate expression.

To recap, discrepancy principle can be described as-

Choose 𝜆 such that ||Ax( ) − b|| ≥ 𝜂𝜖 (6.21)

As soon as ||Ax( )−b|| becomes smaller than 𝜂𝜖, the iteration is stopped. At every iteration,
we define the discrepancy function as-

𝜙( )(𝜆) = ||Ax( ) − b|| (6.22)

We can expand the expression of the discrepancy function by using Q AQ = H (in case of
Golub-Kahan bidiagonalization it will beU AV = B). Wemake use of the Taylor approximation-
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𝜙( )(𝜆) ≈ �̂�( ) + 𝜆�̂�( ) (6.23)

where �̂�( ) = 𝜙( )(0) and �̂�( ) ≈ ( )( ( )) ̂ ( )
( ) . It can be shown that by rearranging the

above equation, we can obtain an iterative algorithm for 𝜆. This rule is also called the Secant
rule.

𝜆( ) =| 𝜂𝜖 − �̂�( )
𝜙( )(𝜆( )) − �̂�( ) | 𝜆

( ) (6.24)

where modulus is added to make the regularization parameter positive. GCV can also be
used in place of discrepancy principle which is described in section 5.3.2.

6.7.2. IRhybrid_lsqr Algorithm
The IRhybrid_lsqr algorithm can be summarized as

Algorithm 1 IRhybrid_lsqr
1: Input: A, b, L, 𝜖, and 𝜂
2: Initialize: 𝜆( ) = 1 and x( ) = 0
3: for k = 1,2,...,𝑁 do
4: Decompose A using Golub-Kahan bidiagonalization
5: Solve the regularized projected least square problem
6: Use discrepancy or GCV to select 𝜆 at each step

6.8. IRhtv
The information given here is taken from [8]. More insight can be obtained by refering to the
same.

Moving forward, we consider the Tikhonov problem (equation 5.4) again-

minimize
x

||Ax− b|| + 𝜆||Lx||

There are algorithms that recompute L at each iteration such that ||Lx|| ≃ 𝐺(x), so that
the problem becomes-

minimize
x

||Ax− b|| + 𝜆||Lx|| ≃ minimize
x

||Ax− b|| + 𝜆𝐺(x) (6.25)

IRhtv is one such algorithmwhere 𝐺(x) = 𝑇𝑉(x), where 𝑇𝑉(x) is the total variance operator.
TV operator is defined as-

𝑇𝑉(x) =∑√[D x] + [D x]

= ||√[D x] + [D x] ||

= ||√𝑑||

(6.26)

whereD andD denotes the finite difference approximations of the horizontal and vertical
first derivative operators respectively. [.] denotes the 𝑖 element of the vector. Thus, IRhtv
can be thought of solving a sort of 1-norm regularized problem. To do this we do the following
substitutions-

L =WD
= 𝑇𝑉(x) (6.27)

, where
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D = [DD ], W = [W̃ 0
0 W̃] , and W̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

√[D x] [D x]
0 .. 0

0
√[D x] [D x]

.. 0

0 0 ..
√[D x] [D x]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In the algorithm of IRhtv there are two loops involved- the outer loop and inner loop. The
inner loop aims to solve the projected regularized least square problem using the L matrix
obtained from the outer loop. At each iteration of the inner loop, it employs the discrepancy
principle or GCV to arrive at the approriate 𝜆. The outer loop recomputes the L matrix to
obtain 𝑇𝑉(x( )). It also sets new quantities for the next restart of the inner loop. In IR Tools
there is also an option to find x( ) such that it is always positive, something which is desirable
for image reconstruction applications.

Algorithm 2 IRhtv
1: Input: A, b, 𝜖, and 𝜂
2: Initialize: 𝜆( ) = 1, L = I, and x( ) = 0
3: for k = 1,2,...,𝑁 do
4: for k = 1,2,...,𝑁 do
5: Input: L, 𝜆( ), x( )
6: Decompose A using Arnoldi’s method or Golub-Kahan bidiagonalization
7: Solve the regularized projected least square problem
8: Use discrepancy or GCV to select 𝜆 at each step
9: Project x( ) into the positive space by taking x( )(x( ) < 0) = 0 (Optional)
10: Initialize: 𝜆( ) = 𝜆 and x( ) = x( )

11: Define L =WD as in equation 6.27

6.9. Regularization matrix handling
6.9.1. IRhybrid_lsqr
In IRTools package, in order to bring the Tikhonov problem to a standard form, it is possible
to apply preconditioning to the A matrix.

minimize
x

||Ax− b|| + 𝜆||Lx|| (Non-standard form) (6.28)

minimize
x

||Ax− b|| + 𝜆||x|| (Standard form) (6.29)

To do this, a new varible 𝝃 is introduced such that x = L 𝝃. Equation 6.30 shows the
non-standard problem that has been modified. Notice that it is now in a standard form.

minimize
𝝃

||AL 𝝃 − b|| + 𝜆||𝝃|| (6.30)

This is done so that the expression for parameter selection methods become simpler to
compute. Without this substitution, the L matrix appears in the formulae of the aforemen-
tioned methods, and this requires multiple multiplications involving L. This makes the whole
reconstruction process slow.

IRhybrid_lsqr uses this kind of preconditioning whenever a regularization matrix is used,
and tries to solve the non-standard problem shown in equation 6.30.

6.9.2. IRhtv
IRhtv, on the other hand, uses another approach to solve the general Tikhonov problem of
the form-
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minimize
x

||Ax− b|| + 𝜆||L(x− x )|| (6.31)

where, x is the initial guess vector. When A is square (𝑛 = 𝑚), Arnoldi’s algorithm (section
6.4) can be used. Here A is decomposed as AQ = Q H , where 𝑄 = [q |q |...|q ] ∈
ℂ ×( ) is an orthogonal matrix. IRhtv searches for the solution in the Krylov subspace
given by-

𝒦(A, r , 𝑘) = 𝑠𝑝𝑎𝑛{r ,Ar , ..,A r } (6.32)

where, r = b − Ax , and 𝑘 is much smaller than the dimension of A. The approximate
solution, x( ), of the this problem belongs to x = x +𝒦(A, r , 𝑘). Using Arnoldi’s method, we
substitute x = x +Q y, where y ∈ ℂ × . Thus, problem 6.31 can be reduced as follows-

minimize
x∈ℂ

||Ax− b|| + 𝜆||L(x− x )||

= minimize
x x Q y∈ℂ × ||Ax + AQ y− b|| + 𝜆||L(x +Q y− x )|| (substituting x = x +Q y)

=minimize
y∈ℂ

||AQ y+ Ax − b|| + 𝜆||LQ y||

=minimize
y∈ℂ

||Q H y− r || + 𝜆||LQ y|| (from Arnoldi’s method, and r = b− Ax )

=minimize
y∈ℂ

||Q H y− q ||r || || + 𝜆||LQ y|| (where q is defined as q = r
||r || )

=minimize
y∈ℂ

||Q H y−Q e ||r || || + 𝜆||LQ y||
(since q is the first column
of Q and e = [1 0 ..0] )

=minimize
y∈ℂ

||H y− e ||r || || + 𝜆||LQ y||

(since Q is orthogonal, and orthogonal
transformations are invariant

under 2-norm)

(6.33)
Now, the L matrix in equation 6.33 can be reduced further as LQ = V R is another

orthogonal decomposition. V ∈ ℂ × is an orthogonal matrix, and R ∈ ℂ × is a upper
triangular matrix. Therefore, equation 6.33 becomes-

minimize
y∈ℂ

||H y− e ||r || || + 𝜆||R y|| (6.34)

When the initial guess vector, x = 0 then r = b and the equation 6.34 becomes-

minimize
y∈ℂ

||H y− e ||b || || + 𝜆||R y|| (6.35)

This concept can also be extended to cases where A is rectangular[8]. The problem in
equation 6.35 is of much smaller dimension at the earlier part of the iterations compared to
equation 6.31. IRhtv, being a Krylov subspace method, looks for the most important direction
in the beginning. This leads to a faster convergence to the solution.
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7
Simulations

The background information needed to follow the work done in this thesis was provided in
Part 1 and Part 2. For this part, we recall the matrix version of the signal model that was
derived in chapter 4 as shown below-

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑(𝑘 , 𝜃 )
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )

.
𝑑(𝑘 , 𝜃 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

. . ...
𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) 𝒦(𝑟 ; 𝜃 )𝑒 ( ; ) ... 𝒦(𝑟 ; 𝜃 )𝑒 ( ; )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜌(𝑟 )
𝜌(𝑟 )
.
.

𝜌(𝑟 )

⎤
⎥
⎥
⎥
⎥
⎦

The image reconstructed by using this model will depend on many factors. To get the
best out of this model, we should focus our attention on those factors which we have control
over. We can manipulate parameters like the chosen time samples, the rotated angle of
the MRI machine, the regularization parameter of the reconstruction algorithms, and so on.
This chapter examines the link between these parameters and the reconstructed image. The
following investigations are done in the following order-

1. Time Domain Data Size and Dwell Time Investigation.

2. Parameter Selection Strategy Investigation.

3. Signal Model for Rotating MRI Investigation.

4. Angle Combination Investigation.

For each of the investigations, a brief description on how they were studied is provided
before the results of the simulations. The B0 field used in all the simulations of this chapter
is shown below (figure 7.1).
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Figure 7.1: Interpolated z component of B0 map used in the simulations.

7.1. Time Domain Data Size and Dwell Time Investigation
In this investigation, we are going to ignore the 𝒦(𝑟 ; 𝜃 ) term in the signal model to make
the analysis easier. We will investigate its influence in section 7.3. Also, we can ignore
in 𝑝( �⃗� ; 𝜃) because its contribution is small when inhomogenities in the main magnetic field
cannot be ignored. Then we have-
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(7.1)

In this part, we examine the choice of 𝑘 , 𝑘 and 𝑘 such that the reconstruction of the
original image improves. The number of time samples taken, 𝑀, is called Time Domain Data
Size (TD). The time step between two adjacent time samples is called Dwell Time1 (DW). The
choices of both TD and DW affects the reconstructed image.

In section 4.8, we have discussed the k-space consideration of the rotating MRI machine.
We will now take a small diversion and see how k-space relates to the field-of-view and pixel
width ( for conventional MRI). Field-of-view (FOV) is the region over which the image is ob-
served, and it is composed of fundamental elements called pixels. The k-space and the spa-
tial domain are inversely related to each other[16][14]. That is, k-space sampling interval,
Δ𝑘 = and pixel width, Δ𝑤 = . The definitions are illustrated in figure 7.2. So, we can

expect the following to be true-

1. If the pixel width, Δ𝑤, decreases, which implies the increase of image resolution, the
𝑘 will increase. That means higher frequencies have to be sampled. Since Δ𝜔 𝑡 =
𝑘 𝑥 + 𝑘 𝑧 (section 4.8), therefore, this implies that longer acquisition time, 𝑡, is needed.
So the maximum duration, 𝑡 = 𝑡 , will dictate the highest frequencies that have to be
sampled in the k-space.

2. The k-space sampling interval, Δ𝑘 (therefore DW because Δ𝑡 ∝ Δ𝑘 ), and FOV are in-
versely related. If the k-space is under-sampled, and Δ𝑘 increases beyond , it will
result in an aliasing effect[14]. This is a result of Nyquist’s criteria.

1In signal processing literature, sampling time means the same thing as Dwell Time. But in MRI literature, the sampling time is
reserved to mean something else. It refers to the time window within which the signal is collected.
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Figure 7.2: Relationship between k-space and spatial domain

The illustration of figure 7.2 is shown here for cartesian sampling, where the k-space data
is acquired rectilinearly. Whereas, as can be referred from section 4.8, the data acquisition
in the rotating MRI machine happens radially. In radial sampling, the aliasing artifacts
have a different form than those in Cartesian scanning. These effects in radial sampling
are seen as curvilinear bands that are diffusely distributed across the image. Simulation
in figure 7.3 shows this (all parameters that were used for this simulation, except TD, DW,
algorithm and SNR, are the same as that in table 7.1. Here, no noise is added, and only
results for IRhybrid_lsqr is shown). Figure 7.3a is the ground truth image that we are trying
to reconstruct using a maximum time duration of 𝑘 = (𝐷𝑊)(𝑇𝐷) = 5.12𝑚𝑠. Figure 7.3b-f
shows the reconstructed image, obtained by successively decreasing the DW from 1.28𝑚𝑠 to
40𝜇𝑠. The curvilinear aliasing artifact is quite noticeable in 7.3b and 7.3c, which means that
the k-space is undersampled in this case. As we decrease the DW, this aliasing artifact is
reduced.

(a) (b) . , (c) ,

(d) , (e) , (f) ,

Figure 7.3: Figure illustrating the aliasing artifact due to undersampling of k-space. a) Ground truth b)-f) Reconstructed image.
Maximum duration is taken as ( )( ) . .
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It is to be kept in mind that for the rotating MRI machine, the non-linearities in the
𝐵0 profile cannot be easily ignored. Equation 7.2b shows the signal model when a more
appropriate and general 𝐵0 profile is considered, with both linear and non-linear terms.

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝒦( �⃗� ; 𝜃)𝑒 ( ( )) 𝑑𝑟 a) Signal model with
linear B0 profile

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝒦( �⃗� ; 𝜃)𝑒 ( ( )) 𝑑𝑟 b) Signal model with
non-linear B0 profile

(7.2)

Where 𝐺 , 𝐺 , 𝑔 and 𝑔 are constants, and it is assumed that there are no gradients
along the y-direction. Due to this, this signal is not in the form of a Fourier transform
expression. That means that the mapping between the k-space and spatial domain, for this
case, is not the same as that in conventional MRI machines. The field map was assumed to
be linear in this work to make the analysis simpler. Parameters ( like Nyquist frequency) for
the aforementioned k-space mapping can be investigated in future work by approximating
the field by a more appropriate quadratic 𝐵0 field map. Also, in our case, aliasing is more
likely to happen in the middle of the field map because the gradient magnitude of the field
map is less there.

Next, the results of two simulations are provided where 1) we vary the TD by keeping the
DW fixed, 2) we vary the DW by keeping the TD fixed. For both of these simulations, the
parameters that are selected are summarized in table 7.1.

Table 7.1: TD and DW investigation parameters

Parameters Choices Used for Simulation

(TD,DW) Can be referred from the simulations of this section

Reconstruction
Algorithm

1) IRhybrid_lsqr, 2) IRhtv

Maximum Iteration 1) IRhybrid_lsqr: 200, 2) IRhtv: Max inner iteration × Max
outer iteration = 30 × 30= 900

Parameter Selection
Strategy

Discrepancy principle with exact noise estimate. This ex-
act noise estimate is computed as 𝜖 = ||b Ax ||

||b|| . The
notational conventions follow from chapter 5. x (figure
7.4) corresponds to the ground truth image. It is assumed
that the measured signal b is noisy and we have to recon-
struct back x from b = Ax.

Signal Model The term 𝒦 in equation 4.25 is ignored here and its influ-
ence on the signal will be studied separately in section 7.3.
𝑇 effect is ignored.

SNR 10dB white gaussian complex noise is added to the signal

Image Matrix Size 65 × 65

Angle range and
angle step size

0∘ − 360∘ with 10∘ step size

No of instances For each graph, 20 different instances were averaged. This
is because reconstructed image is dependent on the noise
added for a particular instant, which is statistical in na-
ture.
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Figure 7.4: Ground truth for the simulations used henceforth in the chapter.

7.1.1. Varying TD with Fixed DW
Four graphs of relative error norm versus the number of iterations are plotted by varying TD
as 128, 256, 384 and 512 sample points while keeping DW fixed at 10 𝜇𝑠. Relative error
norm is defined as-

||x( ) − x ||
||x || , where, k is the iteration number (7.3)

The results are shown below-
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Figure 7.5: Relative error norm for fixed DW computed using a) IRhybrid_lsqr b) IRhtv

For both the algorithms (figure 7.5), IRhybrid_lsqr and IRhtv, the error norm is seen to
decrease as the TD increases. This is because, when the number of sample points increases,
higher frequencies in the k-space are considered. This leads to a better resolution of the
reconstructed image. In the figure, 7.5, the reconstructed images using IRhybrid_lsqr look
more smooth than the images obtained using IRhtv. This is because the former is based on
a 2-norm regularization problem, which tends to smoothen out of the pixels. IRhtv, on the
other hand, is based on a 1-norm regularization problem, and it poses less penalty in the
jumps of the pixel values. The images that are reconstructed by using it looks more grainy
at small TD values. But when the TD is increased, more information is added to the system
matrix, and the images look sharper than that of IRhybrid_lsqr. Table 7.2 summarizes the
value of the relative norms of the respective graphs, at the iteration, when the discrepancy
principle is satisfied.

Table 7.2: Relative error norm for fixed DW

TD DW

IRhybrid_lsqr IRhtv
Relative
Error
Norm

Relative
Error
Norm

128 10𝜇𝑠 0.4595 0.6419
256 10𝜇𝑠 0.3639 0.5209
384 10𝜇𝑠 0.3279 0.4199
512 10𝜇𝑠 0.2947 0.3461
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(a) , (b) , (c) ,

(d) , (e) , (f) ,

(g) , (h) ,

Figure 7.6: Reconstructed image for fixed DW using a)-d) IRhybrid_lsqr e)-h) IRhtv

7.1.2. Varying DW with Fixed TD
Four graphs of relative error norm versus the number of iterations were plotted by varying
the DW as 1 𝜇𝑠, 3 𝜇𝑠, 7 𝜇𝑠 and 10 𝜇𝑠, while keeping the TD fixed at 512 sample points.
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Figure 7.7: Relative Error Norm for Fixed TD computed using a) IRhybrid_lsqr b) IRhtv

In figure 7.7, the value of the error norm decreases with the increase in DW, at the iteration
when the discrepancy principle is satisfied. By increasing the dwell time, while keeping
the TD fixed, higher frequencies in the k-space are included. Which should increase the
resolution. But because of the fixed number of sample points, it also makes the frequencies,
sampled at the lower end of k-space, sparser. Depending on the image to be reconstructed,
if most of its dominant frequencies lie around the lower end, this will actually lead to a
degradation of the reconstruction. In our case, the rate of decrease in error norm became
lesser and lesser with the increase in DW. Table 7.3 summarizes the value of the relative
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norms of the respective graphs, at the iteration when the discrepancy principle is satisfied.

Table 7.3: Relative Error Norm for Fixed TD

TD DW

IRhybrid_lsqr IRhtv
Relative
Error
Norm

Relative
Error
Norm

512 1𝜇𝑠 0.4030 0.5177
512 3𝜇𝑠 0.3312 0.3959
512 7𝜇𝑠 0.3010 0.3555
512 10𝜇𝑠 0.2947 0.3461

(a) , (b) , (c) ,

(d) , (e) , (f) ,

(g) , (h) ,

Figure 7.8: Reconstructed image for fixed TD using a)-d) IRhybrid_lsqr e)-h) IRhtv

It was speculated before that including more time-domain samples under noisy conditions
will not be useful. The reasoning for this was that the signals due to the field inhomogeneities
die down quickly ( figure 7.9). Thus, the latter part of the signal will be dominated by noise.
But it was observed in the simulations that adding time-samples improved the quality of
the image. However, a large TD means a large encoding matrix size. This increases the
reconstruction computation time and creates memory issues on the computer. Both large
TD and DW means longer acquisition time of the patient. It is preferable to minimize the
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acquisition time to avoid motion artifacts[14]. For the rest of the simulations, a TD of 516
samples, and a DW of 10𝜇𝑠 is used. From the visual inspection of this section, it was felt that
these values performed satisfactorily, and smaller values resulted in a poorer quality of the
image. The values of TD and DW beyond these are not investigated.

Simulated Signal
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Figure 7.9: Simulated measured signal for ∘ and time samples. Rest of the parameters used are the same as
in table 7.1

7.2. Parameter Selection Strategy Investigation
In section 5.3, we had seen two different approaches to select the regularization parameter-
the Discrepancy principle and Generalized cross-validation. In this section, we are going to
investigate how these methods perform.

7.2.1. Discrepancy Principle
We will investigate the discrepancy principle which was discussed in section 5.3.1. This
section aims to find out how the reconstruction algorithms using the discrepancy principle
perform in a scenario when we do not have a precise knowledge of the noise estimate, 𝜖. The
algorithm using the discrepancy principle requires the user to supply the noise estimates. To
investigate the influence of this estimate, it is varied, and the performance of the algorithms
is studied using the parameters given in table 7.4.

Table 7.4: Discrepancy principle investigation parameters
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Parameters Choices Used for Simulation

(TD,DW) (512, 10 𝜇𝑠)

Reconstruction
Algorithm

1) IRhybrid_lsqr, 2) IRhtv

Maximum Iteration 1) IRhybrid_lsqr: 200, 2) IRhtv: Max inner iteration × Max
outer iteration = 30 × 30= 900

Parameter Selection
Strategy

Discrepancy principle with varying noise estimates

Signal Model The term 𝒦 in equation 4.25 is ignored here and its influ-
ence on the signal will be studied separately in section 7.3.
𝑇 effect is ignored.

SNR 10dB white gaussian complex noise is added to the signal

Image Matrix Size 65 × 65

Angle range and
angle step size

0∘ − 360∘ with 10∘ step size

No of instances 20
**For more information about the parameters see table 7.1

7.2.1. Visual Inspection
Just by eyeballing the reconstructed images in figure 7.23 and figure 7.11, it is clear that
IRhtv is more robust than IRhybrid_lsqr for the used TD and DW i.e. 512 sample points
and 10 𝜇𝑠 respectively. However, for a lower TD and DW, images reconstructed by IRhtv can
be more grainy than IRhybrid_lsqr (figure 7.6e and figure 7.8e). Moving on, it can be seen
that IRhybrid_lsqr fails to generate meaningful images at around and outside 𝜖 = 0.1𝜖
and 𝜖 = 1.5𝜖 . Whereas, IRhtv is still able to produce some result at more extremal noise
estimates i.e at around 𝜖 = 0.01𝜖 and 𝜖 = 10𝜖 .

From these visual inspections, surprisingly, the images corresponding to 𝜖 = 0.901𝜖 ,
for both the algorithms, look better than the images corresponding to 𝜖 = 𝜖 . This is
explained as follows. We recollect the discrepancy principle from section 5.3.1 which states-

Choose 𝜆 such that ||Ax( ) − b|| ≥ 𝜂𝜖
where 𝜂 is called the safety factor and is there to ensure that the solution norm does not

blow up. The default value for it, set by the IRTools package, is 𝜂 = 1.01. So what we supply
as 𝜖 to the algorithm gets multiplied by 𝜂. In other words, the noise estimate accounted
for by the package is slightly greater than what we supply.
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(a) . (b) . (c) .

(d) . (e) (f) .

(g) .

Figure 7.10: Reconstructed image using IRhybrid_lsqr for different supplied noise estimate

(a) . (b) . (c) .

(d) (e) . (f)
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(g)

Figure 7.11: Reconstructed image using IRhtv for different supplied noise estimate

7.2.1. Computation Time

Table 7.5: Total Computation Time using Discrepancy Principle

Noise
Estimate

IRhybrid_lsqr IRhtv
Converging
Iteration
Number

Total
Computation
Time (sec)

Computation
Time Per

Iteration (sec)

Converging
Iteration
Number

Total
Computation
Time (sec)

Computation
Time Per

Iteration (sec)

0.01𝜖 — — — 60 13.9937 0.2332
0.1𝜖 200 465.0186 2.3251 — — —
0.5𝜖 200 463.7617 2.3188 — — —
0.6667𝜖 200 463.0410 2.3152 60 12.2770 0.2046
0.9091𝜖 91 210.3984 2.3121 900 182.6314 0.2029
𝜖 48 111.4957 2.3228 6 1.7751 0.2959
1.1𝜖 24 56.2226 2.3426 6 1.7521 0.2920
1.5𝜖 200 464.7755 2.3239 — — —
2𝜖 — — — 31 6.4800 0.2090
10𝜖 — — — 900 346.0417 0.3845

**For IRhybrid_lsqr, the extremal noise estimates of this table are not investigated. The reason for this is that at
around those noise estimates, the reconstructions were not meaningful (Figure 7.23). For IRhtv, certain

intermediate cells are left out as the extremal noise estimates corresponding to them were still giving some result
(figure 7.11).

Overall, in table 7.5, it is observed that IRhtv takes a much shorter time to converge than
IRhybrid_lsqr. This has to do with the differences between the ways how these algorithms
handle the regularization matrix, L. This was discussed in section 6.9. IRhtv reduces the
L matrix and considers R , whose dimension is much less than L. This way, this algorithm
becomes faster than IRhybrid_lsqr which does not reduce L.

7.2.1. Relative Residual Norm Versus Number of Iterations
Relative residual error is defined as-

||b− Ax( )||
||b|| , where, k is the iteration number (7.4)

This term is closely related to the discrepancy principle, as we can see from the expression
it involves. So the discrepancy principle implies that the algorithm is stopped when a de-
sired residual error is achieved. From figure 7.12, it can be seen that the graph of the relative
residual gets higher and higher as we deviate away from the correct noise estimate. This can
be explained as follows. The Secant rule (equation 6.24) suggests the regularization param-
eter for the next iteration as an attempt to match the noise estimate to the residual error. If
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the noise estimate is not correct, it cannot match the residual error, and therefore, it keeps
on suggesting wrong regularization parameters. These wrong regularization parameters, in
turn, lead to a higher residual error.

We also notice that the residual error for IRhtv and IRhybrind_lsqr cannot be directly com-
pared. For example, for IRhtv, in case of 𝜖 = 10𝜖 , even though the residual error is worse
than the worst result of IRhybrid_lsqr shown here, its solution is visually still meaningful
(figure 7.23 and figure 7.11).
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Figure 7.12: Relative Residual Norm for investigation of discrepancy principle computed using a) IRhybrid_lsqr b) IRhtv
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Table 7.6: Relative Residual Norm for investigation of Dicrepancy Principle

Noise
Estimate

IRhybrid_lsqr IRhtv

Relative
Residual
Norm

Relative
Residual
Norm

0.01𝜖 — 0.4784
0.1𝜖 0.5001 —
0.5𝜖 0.3786 —
0.6667𝜖 0.3277 0.3231
0.9091𝜖 0.2764 0.2814
𝜖 0.3040 0.2988
1.1𝜖 0.3325 0.3329
1.5𝜖 0.4564 —
2𝜖 — 0.6085
10𝜖 — 0.9984

7.2.1. Relative Error Norm Versus Number of Iterations
The error norm plot (figure 7.13) shown for the graphs follows from the residual norm plot.
As seen here, lower residual norm implied lower error norm in our case. This, in turn, shines
a light on the quality of the signal model ( or system matrix) used here. If the signal model
describes the physical process well, such that it leads to a solution in the vicinity of the real
solution, the reduction of residual norm leads to the reduction of error norm.
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Figure 7.13: Relative Error Norm for investigation of discrepancy principle computed using a) IRhybrid_lsqr b) IRhtv

Table 7.7: Relative Error Norm for investigation of Dicrepancy Principle

Noise
Estimate

IRhybrid_lsqr IRhtv

Relative
Error
Norm

Relative
Error
Norm

0.01𝜖 — 0.6812
0.1𝜖 0.6870 —
0.5𝜖 0.4804 —
0.6667𝜖 0.3264 0.4094
0.9091𝜖 0.2901 0.2836
𝜖 0.2939 0.3447
1.1𝜖 0.3435 0.4231
1.5𝜖 0.6482 —
2𝜖 — 0.7485
10𝜖 — 0.9990

7.2.1. Regularization Parameter Versus Number of Iterations
The IRtools package outputs the evolution of the regularization parameter with iterations
only for IRhybrid_lsqr and not IRhtv. As a result, the plot for only IRhybrid_lsqr is shown
here (figure 7.14). We can refer from the plot 7.14 that when the noise estimates are not
correct, the discrepancy principle keeps on suggesting the regularization parameter as an
attempt to match the noise estimate and residual error. For the noise estimates that are
nearer to correct estimate, after certain iterations, no or little regularization is required.
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Figure 7.14: Regularization parameter vs No of Iterations for IRhybrid_lsqr

7.2.2. General Cross Validation
The general cross-validation parameter selection strategy from section 5.3.2 is investigated
here using the parameter given in table 7.8. It was mentioned that in order to speed up the
computations, the bi-diagonal matrix B of much smaller dimension is used rather than A.
One downside of this is that if A is ill-conditioned, or there are rounding errors in computing
B , GCV performs poorly. [4] discusses that GCV often tend to overestimate the regulariza-
tion parameters. Reorthogonalization can be done to reduce the error but it increases the
computation time. As an attempt to improve the estimation process, the authors of [4] pro-
posed the weighted-GCV or WGCV. It is clear from the WGCV function (equation 5.10) that
GCV is WGCV with 𝑤 = 1. Smaller 𝑤 tends to find smaller regularization parameters, while
larger 𝑤 finds larger regularization parameters. Simulation parameters for this examination
is provided in table 7.8.

Table 7.8: GCV investigation parameters
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Parameters Choices Used for Simulation

(TD,DW) (512, 10 𝜇𝑠)

Reconstruction
Algorithm

1) IRhybrid_lsqr, 2) IRhtv

Maximum Iteration 1) IRhybrid_lsqr: 200, 2) IRhtv: Max inner iteration × Max
outer iteration = 30 × 30= 900

Parameter Selection
Strategy

General Cross Validation (Weighted)

Signal Model The term 𝒦 in equation 4.25 is ignored here and its influ-
ence on the signal will be studied separately in section 7.3.
𝑇 effect is ignored.

SNR 10dB white gaussian complex noise is added to the signal

Image Matrix Size 65 × 65

Angle range and
angle step size

0∘ − 360∘ with 10∘ step size

No of instances 20
**For more information about the parameters see table 7.1.

7.2.2. Visual Inspection
[4] proposes an adaptive way to compute 𝑤, where 0 ≤ 𝑤 ≤ 1. Visual inspection of figure 7.15
reveals that, in our case, only 𝑤 = 0 is giving results. The rest of them are oversmoothened (
indicating high 𝜆 parameter selection).

For IRhtv, in figure 7.16, 𝑤 = 1 seems to give some result while 𝑤 = 𝑎𝑑𝑎𝑝𝑡 appears
to give very good reconstruction. This difference can be mainly attributed to the 1-norm
regularization of IRhtv. As a side note, in the IRTools package, any other weight value for
IRhtv is not supported when using WGCV.

(a) WGCV with w = ’adapt’ (b) WGCV with w = 0 (c) WGCV with w = 0.5

(d) WGCV with w = 1

Figure 7.15: Reconstructed image using WGCV with different weights, w, using IRhybrid_lsqr.
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(a) GCV or WGCV with w = 1 (b) WGCV with w = ’adapt’

Figure 7.16: Reconstructed image using WGCV with different weights, w, using IRhtv.

7.2.2. Computation Time
Comparing table 7.5 and table 7.9, it can be seen that the computation time using GCV is in
general larger than using discrepancy principle when the supplied noise estimates are around
the correct noise estimate. This is because when the encoding matrix becomes large, the
computation of SVD in GCV becomes expensive. Thus, for larger matrices, the discrepancy
principle is desirable. GCV is useful when we do not have knowledge of an appropriate noise
estimate to supply to algorithms using the discrepancy principle.

In a scenario where the noise level does not change, the author proposes to useWGCV/GCV
to obtain the reconstructed image. This reconstructed image can then be used to get a rough
estimate of noise level, which can then be used with the discrepancy principle to get a shorter
computation time. This approach can be summarized below-

1. Step 1: Use WGCV/GCV to obtain a reconstructed image, x .

2. Step 2: Use x to get a rough estimate of noise, 𝜖 , by using 𝜖 = ||Ax −b||

3. Step 3: Use this rough noise estimate, 𝜖 , in discrepancy principle, in the case when
no knowledge about the estimate is available. Then the noise estimate can be fine tuned
from there to improve the result.

Table 7.9: Total Computation Time using Discrepancy Principle

WGCV
Weights

(w)

IRhybrid_lsqr IRhtv
Converging
Iteration
Number

Total
Computation
Time (sec)

Computation
Time Per

Iteration (sec)

Converging
Iteration
Number

Total
Computation
Time (sec)

Computation
Time Per

Iteration (sec)

’adapt’ 17 101.6606 5.9800 60 16.3498 0.2725
1 151 806.2257 5.3392 795 255.1532 0.3209
0.5 62 323.6767 5.2206 — — —
0 38 221.7118 5.8345 — — —

**For IRhtv, the cells that are left blank corresponds to WGCV weights that are not supported by IRTools package.

7.2.2. Relative Error Norm Versus Number of Iterations
As expected, in figure 7.17, graph corresponding to the oversmoothened images have high
errors.
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Figure 7.17: Relative Error Norm for investigation of discrepancy principle computed using a) IRhybrid_lsqr b) IRhtv
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Table 7.10: Relative Error Norm for the investigation of Dicrepancy Principle

WGCV
Weights

(w)

IRhybrid_lsqr IRhtv

Relative
Error
Norm

Relative
Error
Norm

’adapt’ 0.5766 0.5962
1 0.3319 0.2839
0.5 0.6420 —
0 0.6716 —

7.2.2. GCV Values Versus Number of Iterations
IRhtv in IRTools does not support outputting the GCV values. So only the plot corresponding
to IRhybrid_lsqr is shown in figure 7.18. The stopping criteria of GCV is when GCV values
change very little[4]. There is one second stopping criteria for GCV to counter the scenario
when it is not possible to completely stabilize the GCV values. Here, the algorithm is stopped
at that iteration when GCV is the least[4].

From the expression of GCV function (or WGCV) minimization problem, it can be implied
that lower GCV values mean better regularization parameter estimation. The graph of GCV
values for WGCV with 𝑤 = 0 is seen to decrease with iterations. It is not the case for the
other graphs.

0 20 40 60 80 100 120 140 160

No. of Iterations

0

0.5

1

1.5

2

2.5

3

G
C

V
 V

a
lu

e
s

10-9 IRhybrid_lsqr

WGCV with w =  'adapt'

WGCV with w = 0

WGCV with w =  0.5

GCV, or WGCV with w =  1

Figure 7.18: GCV values vs No of Iterations for IRhybrid_lsqr

7.2.2. Regularization Parameter Versus Number of Iterations
Like in the previous investigation, IRhtv in IRTools does not support outputting the regular-
ization parameters. So only the plot corresponding to IRhybrid_lsqr is shown in figure 7.19.
It is seen that for WGCV with 𝑤 = 0, the regularization parameter quickly decays towards 0.
This implies no or little regularization is needed.
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Figure 7.19: Regularization parameter vs No of Iterations for IRhybrid_lsqr

7.3. Signal Model for Rotating MRI Investigation
So far, we had been ignoring the 𝒦 term in our signal model in the previous investigations.
This section uses the complete signal model as given in equation 4.25 (written again in equa-
tion 7.5 below) and aspires to study the influence of 𝒦. How this study is done is described
next. In the signal model below

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝒦( �⃗� ; 𝜃)𝑒 ( �⃗� ; ) 𝑑𝑟 (7.5)

𝒦 is given by

𝒦( �⃗� ; 𝜃) = −𝑖 𝛾ℏ4𝐾𝑇 ℳ ( r⃗ ; 𝜃)ℬ ( �⃗� ; 𝜃)𝜔

where,

ℬ ( �⃗� ; 𝜃) = 𝐵 , = [𝐵 , , ] − 𝑖[𝐵 , , ]
= [𝑐𝑜𝑠(𝜃)𝐵 , ( r⃗) − 𝑠𝑖𝑛(𝜃)𝐵 , ( r⃗ )] − 𝑖[𝐵 , ( r⃗ )]

(7.6)

and,

ℳ ( r⃗ ; 𝜃) = 𝑀 = [𝑀 , ] + 𝑖[𝑀 , ]
= [𝑀 ( r⃗ )𝑐𝑜𝑠(𝜃) − 𝑀 ( r⃗ )𝑠𝑖𝑛(𝜃)] + 𝑖[𝑀 ( r⃗ )]
= [𝑀 ℳ ( r⃗ )𝑐𝑜𝑠(𝜃) − 𝑀 ℳ ( r⃗ )𝑠𝑖𝑛(𝜃)] + 𝑖[𝑀 ℳ ( r⃗ )]

(7.7)

To make a connection between these equations, and that of chapter 2, we recall section
2.6. The magnetization components, for on-resonance excitations, after an RF pulse of du-
ration 𝑡 = 𝜏 , can be described as-

𝑀 ̂(𝜏 ) = 0
𝑀 ̂ (𝜏 ) = 𝑀 𝑠𝑖𝑛(𝜔 𝜏 )
𝑀 ̂(𝜏 ) = 𝑀 𝑐𝑜𝑠(𝜔 𝜏 )

(7.8)
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Note that the equation 7.8 is the solution of the Bloch’s equation when the equilibrium
magnetization points directly towards ⃗̂𝐤 direction and the magnetizations are flipped about ⃗̂𝐢
axis. Comparing equation 7.8 to equation 7.7, we find-

𝑀 ( r⃗ ) = 𝑀 ℳ ( r⃗ ) = 𝑀 ̂(𝜏 ) = 0
⟹ ℳ ( r⃗ ) = 0 (7.9)

and similarly,

ℳ ( r⃗ ) = 𝑠𝑖𝑛(𝜔 𝜏 ; r⃗ ) and ℳ ( r⃗ ) = 𝑐𝑜𝑠(𝜔 𝜏 ; r⃗ ) (7.10)

If we assume that an RF pulse, having a band of frequencies, is applied such that the
magnetization throughout the object is flipped with a flip angle 𝛼 = 𝜔 𝜏 , the expression of
ℳ becomes-

ℳ ( r⃗ ; 𝜃) = −𝑀 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝜃) + 𝑖𝑀 𝑠𝑖𝑛(𝛼) (7.11)

For ℬ , we assume that it is unform everywhere and is pointing directly along �⃗� = ⃗̂𝐣 = �⃗�
axis. Then we have-

ℬ ( �⃗� ; 𝜃) = 𝑐𝑜𝑠(𝜃)𝐵 , ( r⃗) − 𝑠𝑖𝑛(𝜃)𝐵 , ( r⃗ ) − 𝑖𝐵 , ( r⃗ )
= 0 − 0 − 𝑖 𝑠 (s is some scalar)

= −𝑖 (We can ignore the scalar, s, as
it will just scales the reconstructed image)

(7.12)

Our signal model thus becomes-

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝒦( �⃗� ; 𝜃)𝑒 ( �⃗� ; ) 𝑑𝑟

= ∫
𝐫∈𝔻

𝜌( �⃗� )(−𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝜃) + 𝑖 𝑠𝑖𝑛(𝛼))(−𝑖)𝑒 ( �⃗� ; ) 𝑑𝑟 (Ignoring the scalar constants
after plugging in equation 2.9)

(7.13)
We can observe that for a 90∘ degree pulse this model becomes-

𝑑(𝑡; 𝜃) = ∫
𝐫∈𝔻

𝜌( �⃗� )𝑒 ( �⃗� ; ) 𝑑𝑟 (7.14)

Which is the same model that we used in previous investigations when 𝒦 was ignored.
For any other flip angle, the signal model of equation 7.13 will be different than the afore-
mentioned model.

In the introduction of chapter 6, it was discussed that we use the rotating MRI machine to
encode the object to be imaged into measured signals. Once we have this signal, we swap an
equivalent mathematical model with the actual system and use it to reconstruct the image. In
practice, during the encoding process, the exact flip angles of the magnetization throughout
the object are not known. We try to reconstruct the image assuming that the RF pulse applied
to the object has resulted in an intended flip angle (nominal flip angle). To simulate these
unknown magnetization flip angles that arise due to the off-resonance effects of the field
inhomogeneities, we further rotate the flipped magnetizations about x, y, and z-axis by some
angle offset (figure 7.20c). These offsets are chosen from a Rayleigh distribution and are based
purely on the assumption that most of the flip angles will be centered around the nominal
flip angle. The spread of flip angles, that are less than the nominal flip angle, is assumed to
be more than those that are more than the nominal one (figure 7.20a). Investigation of more
appropriate offset distribution can be done in future work. Moving on, we will refer to this
as ’angle noise’ to differentiate it from the white gaussian complex noise that is added to the
signal to simulate noise from unknown factors. We then tried to reconstruct back the image
using a model without angle noise but with a known nominal flip angle.
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Figure 7.20: a) Assumed Rayleigh distribution of the angle offset. b)-c) shows the flipped magnetizations where b) no angle
noise is added c) angle noise is added. Magnetizations are flipped by ∘ when ∘, in this figure.

The results of this investigation is discussed next.

7.3.1. Influence of Angle noise and Flip Angles
In this section, we assume that applying RF pulses to the magnetizations has resulted in a flip
angle distribution with a mean of around the intended flip angle. For example, suppose, if we
have transmitted a 60∘ pulse to the object, it has actually resulted in a flip angle distribution
with a mean of around 60∘. The objective of this section is two folds-

1. Angle Noise Distribution Spread: It investigates the reconstructed signal when the
angle noise spread is increased by choosing a higher shape parameter, 𝜎. The angle
noise distributions that is tested here is visualized in figure 7.21.
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Figure 7.21: Histogram of added angle noise comparison

2. Flip Angles: It investigates the reconstructed signal for different flip angles.

The simulation parameters are provided in table 7.11.

Table 7.11: Signal model investigation parameters

Parameters Choices Used for Simulation

(TD,DW) (512, 10 𝜇𝑠)

Reconstruction
Algorithm

1)IRhybrid_lsqr, 2)IRhtv

Maximum Iteration 1) IRhybrid_lsqr: 200, 2) IRhtv: Max inner iteration × Max
outer iteration = 30 × 30= 900

Parameter Selection
Strategy

Discrepancy principle with exact noise estimate.

Signal Model The complete model, as in equation 4.25, is investigated.
More information will be apparent from this section. 𝑇
effect is ignored.

SNR 10dB white gaussian complex noise is added to the signal.

Angle Noise 1) No angle noise, 2)Magnetizations that were flipped by 𝛼
angle were rotated by some angle offset about x-axis, y-axis
and z-axis. These offsets were chosen from a Rayleigh’s

distribution with probability distribution function- 𝑒 ,
where 𝑥 is a random variable and 𝜎 is called the shape pa-
rameter.

Image Matrix Size 65 × 65

Angle range and
angle step size

0∘ − 360∘ with 10∘ step size

No of instances 20
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**For more information about the parameters see table 7.1.

7.3.1. Relative Error Norm Versus Number of Iterations
The visual inspection was skipped here because they all look quite similar, and it was difficult
to conclude anything just by eyeballing. From the relative error norm plot in figure 7.22, we
consider the first four graphs in the legend. Here, we observe that with the increase in the
angle noise spread the error increases. This spread depends upon the off-resonance effects
due to the field inhomogeneities of the field map, and the selected RF pulse frequencies. We
need the inhomogeneities to encode the spatial information, and thus, the angle noise spread
will always be there.

Next, if we consider the 2 , 5 and 6 graph in the legend of the plot in figure 7.22, we
see that they all perform similarly. Thus if the spread is not too much, then the addition of
angle noise does not cause serious degradation as long as the nominal flip angle is around
the mean of the distribution of the actual flip angles.
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Figure 7.22: Relative Error Norm for investigation of signal model using a) IRhybrid_lsqr b) IRhtv

Table 7.12: Relative Error Norm for investigation of signal model

Signal
Model

Parameter

IRhybrid_lsqr IRhtv

Relative
Error
Norm

Relative
Error
Norm

𝛼 = 90∘, 𝜎 = 0 or no noise 0.2953 0.3465
𝛼 = 90∘, 𝜎 = 10 0.2970 0.3560
𝛼 = 90∘, 𝜎 = 15 0.2972 0.3702
𝛼 = 90∘, 𝜎 = 20 0.3108 0.3947
𝛼 = 60∘, 𝜎 = 10 0.2963 0.3588
𝛼 = 45∘, 𝜎 = 10 0.2971 0.3618

7.3.2. Influence of Wrong Flip Angles
Unlike the last investigation, now we assume that applying RF pulses to the magnetizations
has not resulted in a desired flip angle. However, we do not know this, and we proceed to
reconstruct the signal using the flip angle we think it is. For example, we try to reconstruct a
signal using 90∘ in our signal model, which was actually encoded due to magnetizations with
flip angle distribution of mean around 60∘. For this simulation, we used 90∘ as the flip angle
to reconstruct signals encoded with a model using 𝛼 flip angle (Plus some angle noise
of with shape parameter 𝜎 = 10). All the other parameters are the same as that in table 7.11.

7.3.2. Visual Inspection
By looking at the visuals, for both the solving algorithms, it is seen that as the flip angle,
which we used in the reconstructing model, deviates away from the actual flip angle that was
used during encoding, the image is degraded. In our case, using 90∘ to reconstruct a 45∘ flip
angle could not bear result for IRhybrid_lsqr (figure 7.23e). For IRhtv because the algorithm
is inherently robust to noise, is able to reconstruct something although degraded.
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Figure 7.23: Investigation of wrong flip angle assumption using IRhybrid_lsqr a)-e) and IRhtv f)-j)

7.3.2. Relative Error Norm Versus Number of Iterations
The trend of error norm plot in figure 7.23 is in line with the visual inspection. Further,
we remind ourselves that the signal model considered in this investigation assumes that the
magnetizations are flipped about the ⃗̂𝐢 axis. If the magnetizations are flipped about the ⃗̂𝐤 axis,
for example, the expression of equation 7.8 will be different, and we would obtain a different
signal model. So unlike conventional MRI, the orientation along which the magnetizations
are flipped plays a role. But luckily, although we cannot know the resulting flip angle of the
magnetizations after the RF pulse has been applied, we can determine the axis about which
the magnetizations are flipped (because this depends on the coil design). To encapsulate
this investigation, we conclude that we have to consider both the nominal flip angle and
the axis about which the magnetizations are flipped, into our signal model to get a superior
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reconstruction.
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Figure 7.24: Relative Error Norm for investigation of Investigation of wrong flip angle assumption using a) IRhybrid_lsqr b) IRhtv
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Table 7.13: Relative Error Norm for investigation wrong Flip Angle

Signal
Model

Parameter

IRhybrid_lsqr IRhtv

Relative
Error
Norm

Relative
Error
Norm

𝛼 = 90 0.2970 0.3560
𝛼 = 80 0.3048 0.3768
𝛼 = 70 0.3397 0.4219
𝛼 = 60 0.4672 0.5575
𝛼 = 45 0.7364 0.7809

7.4. Angle Combination Investigation
The inhomogeneities in the B0 field makes the field unsymmetrical. Therefore, rotating an
unsymmetrical field will lead to different field maps being generated, which has its corre-
sponding encoding matrix (figure 7.25). This unsymmetries help in reducing the non-bijective
mappings between the field and locations, and help in reconstructing the image. Figure 7.26
illustrates the effects of using a symmetrical field. As can be seen, due to non-bijective map-
pings, we would end up reconstructing an image which is also symmetrical, although the
original image is unsymmetrical.

Figure 7.25: Corresponding encoding matrix of different orientations of B0 map

(a) (b)
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(c) (d)

Figure 7.26: Influence of field inhomogeneities in reconstruction in 10dB SNR. a) B0 profile after quadratic fitting the measured
B0 field map. This field is perfectly symmetrical about the horizontal and vertical axis. b) Reconstructed image using field map
in a). c) Measured B0 profile that has inhomogeneities in it (although it looks the same as a) there are inhomogeneities in this
map and it is difficult to see it). d) Reconstructed image using field map in c.)

Now, a question arises that which and how many of these 𝜃 , 2 < 𝑟 < 𝑅, angles should
we choose such that we get the best possible reconstruction. For our case, we will consider
72 angles: 0∘, 5∘, 10∘,..., 355∘ from where we want to choose 36 of these. How to do these?
Although this problem was unable to be solved here, the approaches taken are documented
as a reference for future work in this direction if any.

It seems like a natural assumption would be to choose 𝑛 matrices, 𝐴 , 𝐴 ,..,𝐴 , such that
they convey different information about the image. That, in some sense, means that the
encoding matrices are independent of each other (figure 7.27a).

(a) (b)

Figure 7.27: a) Assumption is that the encoding matrices are independent to each other in some sense such they encode different
information. b) Angles between two normalized vectors.

If we talk about two vector a⃗ and b⃗ (figure 7.27), they will be dependent if the angle, 𝜙,
between them is 0∘. If each column of a matrix is considered as a vector, the mutual angles
between them is given by a normalized gram matrix (figure 7.28a) where each entry tells the
angle between any two columns. Now, if we concatenate the encoding matrices horizontally
and obtain the gram matrix, each sub-block, as shown in figure 7.28b, gives us the angles
between the columns of one encoding matrix to another one.
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(a)

(b)

Figure 7.28: a) Gram matrix b) Computing gram matrix by concatenating the encoding matrices horizontally.

In practice, this gram matrix has a very large dimension. To reduce it, an average of all
the entries of each sub-block was taken as shown in figure 7.29a. This was assumed to
give a rough angle between the columns of any two matrices. Then we are left with a 𝑛 × 𝑛
matrix, 𝝁, whose entries tell about the ’average angle’ between any two matrices. Suppose,
we have 4 angles and we want to select 3 angles from it such that the combination is the
’most independent’. This is denoted as a graph in figure 7.29b where each node denotes an
encoding matrix corresponding to a rotated angle of the field map, and the edges denote the
’average angle’ between the nodes. According to the logic, those three nodes will be selected
whose Σ 𝜇 is minimum, i.e. the angles between them are more. We have considered 𝑖 and
𝑗 to be the angle indices.

(a)
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(b)

Figure 7.29: a) Gram matrix b) Computing gram matrix by concatenating the encoding matrices horizontally.

In our case, if we have 72 angles, and we want to select 36 out of it, we would have to
try out 𝐶 combinations to find the solution exhaustively. This is not feasible. Thus, the
approach taken here was to randomly select 36 angles out of 72 angles in each iteration,
and then compute Σ 𝜇 for it. We run this step for millions of iterations, and in each step,
we keep track of the minimum Σ𝜇, and the angle combination corresponding to it. This
combination, though not guaranteed to be optimal, should give us a good reconstruction.
This was done and it was unsuccessful to bear a superior result compared to other angle
combinations used in this examination (figure 7.30). The combinations of angles that were
chosen here were such that they covered at least the smallest angle between any two axes of
symmetries (90∘ in our case) of the B0 field map2 sufficiently. The ’Random Selection 1,2,3
and 4’ graphs in the legend of figure 7.30 denote the combinations where 36 angles were
randomly selected between 0∘ to 360∘. Except the angle range and angle step size, all the
parameters used for the simulations in this section are the same as that in table 7.4. Only
the discrepancy principle as the parameter selection strategy, with exact noise estimate, is
used here.
2In our case, the B0 map was roughly elliptical and thus could be considered as a symmetric figure.
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Figure 7.30: Relative Error Norm for investigation of angle choices computed using a) IRhybrid_lsqr b) IRhtv

The sequence of 0∘−360∘ with 10∘ step size was performing better than the others. Further,
the Σ𝜇 of this angle combination was found to be larger than that of the angle combination
found by the algorithm suggested here. This suggested that this algorithm is not the right
one to search for the best angle combination.

Under closer inspection, we can see that because we are vertically stacking the encoding
matrices, good reconstruction did not only matter on how independent information each
encoding matrix gave. Condition number of the resulting matrix also played a role, which
tells how robust the matrix is against noise, and how fast the algorithm converges to some
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solution (although we cannot say that this is the correct solution). For example, we consider
the following-

We have three matrices- 𝐴 , 𝐴 and 𝐴 as given below-

𝐴 = [1 5 8
7 3 4] , 𝐴 = [1 1 1

1 1 1]and 𝐴 = [3 3 3
3 3 3]

We notice that all the columns of 𝐴 and 𝐴 are dependent. Now we aspire to vertically
stack the best 2 matrices out of these 3 such that the condition number, 𝜌(𝐴), is the least to
give us a faster convergence to the solution. The condition numbers computed are as follows
when the following combinations are used-

𝐴 = [𝐴𝐴 ] =
⎡
⎢
⎢
⎢
⎣

1 5 8
7 3 4
1 1 1
1 1 1

⎤
⎥
⎥
⎥
⎦

; 𝜌(𝐴) = 33.0163

𝐴 = [𝐴𝐴 ] =
⎡
⎢
⎢
⎢
⎣

1 1 1
1 1 1
3 3 3
3 3 3

⎤
⎥
⎥
⎥
⎦

; 𝜌(𝐴) = 5.5894 × 10

𝐴 = [𝐴𝐴 ] =
⎡
⎢
⎢
⎢
⎣

1 5 8
7 3 4
3 3 3
3 3 3

⎤
⎥
⎥
⎥
⎦

; 𝜌(𝐴) = 14.8138

So one would go for the third combination in this case. But the algorithm suggested here
would fail in this case because there would be no difference in angle between 𝐴 and 𝐴 ,
and 𝐴 and 𝐴 . Plus, the condition number of vertically stacked encoding matrix does not
depend on how independent the columns of each encoding matrices are. Thus, if one wishes
to find the optimal angles, it is sensible to take into account how these encoding matrices
behave as a whole when they are stacked together rather than only looking at their individual
properties.

To summarize this section, for a fixed number of angles, it was seen that the chosen
combination of angle sequences (as shown in figure 7.30) did not provide any stark differences
in performance as long as they covered at least the smallest angle between any two axes of
symmetries of the B0 field map sufficiently. This can also be seen in figure 7.31. From
the legends, the 1 , 4𝑡ℎ and 8𝑡ℎ graph considers a total of 36 angles, and they all perform
similarly. The 2𝑛𝑑 and 5𝑡ℎ graph considers 72 angles, and they also perform similarly. And
so does the 3𝑟𝑑 and 7𝑡ℎ graph which consider 18 angles. The 6𝑡ℎ graph considers the lowest
number of angles and perform the worst out of all. More number of angles improves the
image quality. But however they make the system matrix large as we have to stack more
encoding matrices.
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Figure 7.31: Relative Error Norm for investigation of the number of angle choicen computed using a) IRhybrid_lsqr b) IRhtv



8
Conclusions and Future Work

8.1. Conclusion
In part 1 of this report, we have seen the motivation of constructing a portable low-field
MRI machine. Such devices would provide major benefits as it will cut down the cost of
expensive conventional MRI scanners. This would make it more accessible to a larger part of
the population. This thesis studied the signal processing aspects of a rotating MRI machine
that works in a low inhomogeneous magnetic field setting. Background theory was provided,
and the signal model for the aforementioned machine was derived.

Part 2 focused on listing the employed algorithms that are available in the IRTools pack-
age. But before introducing them, an adequate mathematical background on Krylov Sub-
space methods was given. Two automated regularization parameter searching strategies-
Discrepancy principle and GCV, were discussed. IRhybrid_lsqr and IRhtv were described,
which are solvers based on 2-norm and 1-norm regularization, respectively.

In Part 3, we inspected various parameters of the signal model and the reconstruction
algorithms that influenced the image quality. It was seen that the resolution of the image
increased by including more time samples. For a fixed acquisition time, it was found to be
beneficial to have a small DW to avoid aliasing effects. But the downside of having a small DW
while keeping the acquisition time fixed is that it increases the TD, which in turn made the
systemmatrix larger. An increase in the systemmatrix dimension increases the computation
time and creates memory issues on the computer. Next, the automatic parameter selection
strategies, namely the discrepancy principle and GCV were examined. We have to supply
a noise estimate to the solvers employing the discrepancy principle. If the supplied noise
estimate is around the correct estimate, the quality of the predicted regularization parameter
is enhanced. In contrast, the algorithms employing GCV requires no noise level input. How-
ever, if the dimension of the system matrix is large, their performance is slow as they have
to compute the matrix’s SVD. Now regarding the solving algorithms, IRhtv was found to be
more robust than IRhybrid_lsqr in computing solutions under noisy conditions. Moreover, it
was seen that the former algorithm was considerably fast in converging than the latter one.
Moving on, the angle dependencies between the signal model and the rotating field was stud-
ied. Here, the main conclusion was that we should account for both the flipped angle and the
axis about which the magnetizations are flipped in our signal model. Better determination of
these parameters leads to a superior result. The last investigation of the thesis was regarding
the choice of the rotation angles of the MRI machine. It was seen that for a fixed number of
angles, such that they sufficiently covered at least the smallest angle between any two axes
of symmetries of the B0 field map, the reconstruction algorithms performed similarly.
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8.2. Future Work
8.2.1. K-space and Spatial Domain Link
As mentioned in section 4.8 and section 7.1, the non-linearities in the B0 profile was ignored
to make the analysis easier. When we have a linear B0 profile, each point in the k-space is
mapped to all the points in the FOV of the spatial domain, where all the points in the latter
are given equal weights. The other way round is also true, that is, each point in the FOV of the
spatial domain is mapped to all the points in the k-space, where all the points in the k-space
are given equal weights. Now, when the B0 profile is not linear, the aforementioned weights
are not constant throughout the points. It will, in fact, vary locally in the domain. [18] talks
about local k-space, in contrast to the standard k-space, where each of the pixel positions in
the spatial domain has its own local distribution of encoded k-space frequencies. The local k-
space frequencies characterize the spatial information that is available about the measured
object, at each location. It is believed that investigating this relationship between the k-
space and spatial domain, in the case of non-linear gradients, may reveal more information
about the sampling of the MRI signal, and as well as about the design considerations of the
inhomogeneous B0 map. This will help us get more reliable approaches to choose TD and
DW.

8.2.2. Receive Field Profile Investigation
The investigations which are done here assume that the receive field profiles are homogenous
throughout the bore of the MRI machine. In the future, the measured receive field map can
be used in the investigation to study the signal model. Moreover, we can also inspect the case
when we use more than one receiver, as was done in [5]. If the field maps of the receivers
are different, it provides additional spatial encoding that can be used to disambiguate the
non-bijective field mappings.

8.2.3. Optimal Angle Combination Selection
In section 7.4, it was felt that it is sensible to take into account how the encoding matrices
behaved as a whole when they were stacked together, rather than only looking at them in-
dividually. Although the author believes that investigating this will not be as helpful as the
other future work mentioned here, a brief incomplete idea in this direction is presented here.

Figure 8.1: Elements of the gram matrix of the stacked encoding matrices can be expressed as sum of smaller inner product
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In figure 8.1, we can see that the elements of the gram matrix can be expressed as the
inner product (the middle figure) of the columns of the stacked encoding matrices, A. These
inner products can further be broken down into additions of individual inner products (the
rightmost diagram). The involvement of these inner products in the computation of the gram
matrix elements depends upon the corresponding encoding matrices. For example, if we do
not use the A , the middle row of inner products will not be involved in the computation of
the gram matrix elements (figure 8.2).

Figure 8.2: Gram matrix of the stacked matrices when A is not used.

This influence can be investigated further to see if the elements of the gram matrix can
be manipulated in an intended manner. Provided that we know this influence, if we can
optimize the condition number of the gram matrix, it will lead us indirectly to the desired
angle combination (a related material in this direction is given in [2]).

8.2.4. Experimental Work
Perhaps the most important future work that has to be done is to carry out the experimental
analysis of the algorithms mentioned here. The drawback of the simulations done here is that
we assumed a lot of parameters, for example, the knowledge of flip angle distribution used,
the axis about which the magnetization was flipped, and so on. Moreover, the investigations
were done provided that we knew the rotated orientation of the B0 map exactly with respect
to the measured signal. To elaborate it, we assumed that we knew that the measured signal
was b when the B0 was rotated by 𝜃 (with some reference axis), and not when the field
was rotated by 𝜃 . In principle, this should not matter as this would only rotate the obtained
image by a certain angle. But with all the interpolations of the B0 map involved, this cannot
be guaranteed as it depended on the system matrix properties. This was actually tried out
in simulations. The signal was encoded using an angle sequence of 0∘ − 360∘ with 10∘ step
size, using the B0 field shown in figure 7.1. While decoding, the starting reference of the
former angle sequence was changed from 0∘ to 10∘ such that we had the angle sequence
10∘,20∘,...350∘,0∘. The solving algorithms gave a very degraded image in this case. This implied
that we should keep track of the orientation of the field map with respect to the measured
signal. To sum up, there are a lot of practical issues left to be explored which can only be
discovered through actual implementations of the algorithms in the rotating MRI machine.
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