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Lagrangian and energy forms for retrieving the impulse response of the Earth due
to random electromagnetic forcing
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We distinguish between trivial and nontrivial differences in retrieving the real or imaginary parts of the Green’s
function. Trivial differences come from different Green’s function definitions. The energy and Lagrangian forms
constitute nontrivial differences. Magnetic noise sources suffice to extract the quasistatic electromagnetic-field
Earth impulse response in the Lagrangian form. This is of interest for Earth subsurface imaging. A numerical
example demonstrates that all source vector components are necessary to extract a single-field vector component.

DOI: 10.1103/PhysRevE.84.027601 PACS number(s): 41.90.+e, 91.25.Qi, 05.40.Ca, 82.56.Lz

I. INTRODUCTION

The extraction of Green’s functions by correlations of
recorded field fluctuations generated by noise sources, or other
types of uncorrelated sources, has been studied widely in
acoustics, seismology, and electromagnetics. Using an energy
form of a time-correlation-type reciprocity relation, general
field formulations based on first-order [1] and second-order [2]
differential equations exist. In these formulations, different
definitions of Green’s functions are used. This difference
causes the relations based on first-order equations to retrieve
the real part of the Green’s functions, whereas the imaginary
part of the Green’s functions are retrieved in relations based on
the second-order equations. This is not a necessary difference,
but the difference has occurred due to different Green’s
function definitions.

Recently Shamsalsadati and Weiss [3] published a new
magnetic field correlation version of Green’s function retrieval.
The basic relation used in [3] is the electromagnetic example
of the general relation given in [4], which is based on the
Lagrangian form of a correlation-type reciprocity theorem.
Shamsalsadati and Weiss did not recognize their novelty in [3],
but it is this choice that defines the required correlation strength
of the noise sources for Green’s function retrieval. It has been
shown previously that the energy form leads to electric field
and magnetic field Green’s functions that can be retrieved by
noise sources whose correlation strength is proportional to the
real parts of the electric and magnetic conductivity [5,6]. The
energy form can be understood from the fluctuation-dissipation
theorem when thermal noise is the driving mechanism [7],
while the Lagrangian form cannot. Below we investigate how
the Lagrangian form leads to the formulation derived in [3]
and to a similar relation for the retrieval of the electric field
impulse response.

In their final Green’s function retrieval formulation, Sham-
salsadati and Weiss state that a single source vector component
is sufficient to retrieve the Green’s function. Their formulation
is not explicit on how that should work. They include noise
sources without specifying the necessary constraints on the
noise sources. They do not show how the Green’s function
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emerges as the expectation value of the correlation of noise
magnetic field recordings taken at two locations. We derive a
formulation showing explicitly how receiver and source vector
components play a role in Green’s function retrieval and what
the constraints on the noise sources are.

In their derivation, Shamsalsadati and Weiss simplify the
Green’s function retrieval relation. They neglect the integral
containing the inner product of the curl of magnetic fields
based on the argument that they work in the quasistatic limit
where ωε � σ. They are interested in the quasistatic limit,
because the controlled source electromagnetic method uses
frequencies in the order of 1 Hz to explore crustal-scale
targets such as hydrocarbon reservoirs, as well as tectonic and
sedimentary basin architecture. We use a homogeneous space
example to show the validity of their argument, which also
demonstrates the incorrectness of using aligned noise source
dipoles to extract the Green’s function.

II. INTEGRAL REPRESENTATIONS FOR THE
MAGNETIC FIELD

We use vector notation similar to the one used in [3] and
give two different reciprocity relations based on second-order
equations satisfied by the magnetic fields. We use h to denote
the magnetic field vector. The two subscripts A and B denote
the two possibly different states; η = σ e + iωε,ζ = σm +
iωμ denote the generalized electric and magnetic conductivity,
respectively, in which σ e, σm are the electric and magnetic
conductivity, while ε,μ denote the electric permittivity and
magnetic permeability and ω is radial frequency; f = − jm +
∇×(η−1 j e) is the source vector with j e, jm the sources of
electric and magnetic current type, respectively. We can then
write the local form of field interactions using a second-order
Maxwell equation for the magnetic fields as

h∗
B · ∇× η∗

|η|2 ∇×hA + ζ hA · h∗
B = h∗

B · f A, (1)

hA · ∇× η

|η|2 ∇×h∗
B + ζ ∗hA · h∗

B = hA · f ∗
B. (2)

Both equations can be integrated over an arbitrary domain
D, and in the part containing the curl operators, integration
by parts can be used together with Gauss’s integral theorem.
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Then we can add or subtract the results, leading to two different
reciprocity relations of the time correlation type,

∮
∂D

(
η∗

|η|2 (∇×hA) × h∗
B ± η

|η|2 (∇×h∗
B) × hA

)
· nd2r

−
∫
D

η ± η∗

|η|2 (∇×hA) · (∇×h∗
B)d3r

+
∫
D

(ζ ± ζ ∗)hA · h∗
Bd3r =

∫
D

(h∗
B · f A ± hA · f ∗

B)d3r.

(3)

When we use the plus sign for the ± options in Eq. (3), we
obtain the reciprocity relation of the time correlation type
on which the work of Wapenaar [1,8] is based and which
is similar to the electromagnetic formulations derived in [6].
The only difference is that here we obtain it starting with a
second-order equation, whereas in [1,6] the point of departure
is a coupled set of first-order equations. This difference is of
course irrelevant. Snieder works with a minus sign in [9,10]
yet uses the energy form [plus sign in Eq. (3)]. This is because
he defines his second-order starting equation differently. The
electromagnetic equivalent of Snieder’s scalar formulation
(see, e.g., [11]), is obtained by introducing an auxiliary form.
We replace η by iωε̂ and ζ by iωμ̂ in Eq. (3) and define the
new source as f̂ = iω f to obtain

∮
∂D

(
ε̂∗

|ε̂|2 (∇×hA) × h∗
B ∓ ε̂

|ε̂|2 (∇×h∗
B) × hA

)
· nd2r

+
∫
D

ε̂ ∓ ε̂∗

|ε̂|2 (∇×hA) · (∇×h∗
B)d3r

−ω2
∫
D

(μ̂∓μ̂∗)hA · h∗
Bd3r =

∫
D

(h∗
B · f̂ A ∓ hA · f̂ ∗

B)d3r.

(4)

Now we see that choosing the minus sign for all ± options
in Eq. (4) is the energy form. Notice that the definitions of
the fields did not change, only those of the sources, which
means that also the Green’s functions are defined differently
in the auxiliary form of Eq. (4) than in the traditional form
of Eq. (3). This demonstrates that the choice of the Green’s
function determines whether addition or subtraction of the
interaction equations is necessary to obtain an energy form as
the basis for Green’s function extraction.

When we use the minus sign for all ± options in Eq. (3), we
arrive at the result of Shamsalsadati and Weiss given in Eq. (15)
of [3]. This is under the condition that the resulting boundary
integral vanishes, which is their Eq. (16). Choosing the minus
sign for all options ± in Eq. (3) leads to the Langrangian
form of reciprocity of the time correlation type, which was
new in their publication, and it was independently generalized
in [4]. The distinction between the energy form and the
Lagrangian form of time-correlation-type reciprocity relations
is a fundamental difference as a basis for Green’s function
retrieval. The energy form was used by Rytov and co-workers
in the development of the theory of thermal electromagnetic
radiation from absorbing media [7], which is a direct result
of the application of the fluctuation-dissipation theorem. The
Langrangian form is new and leads to noise sources different
than the Rytov theory, which is shown in the next section.

III. REPRESENTATION THEOREMS AND
GREEN’S FUNCTIONS

Here we investigate only the Lagrangian form of Eq. (3),
and hence we select the minus sign. By taking a dissipative
medium of infinite extent, the boundary integral in the left-
hand side of Eq. (3) vanishes, and if we restrict our analysis to
frequencies of which σ e � ωε, the second integral in the left-
hand side of Eq. (3) can be neglected. We take the sources to be
Dirac sources as f A(r) = sAδ(r − rA), where sA denotes the
real-valued unit vector representing the source direction in rA,

and a similar choice is made for f B . Then the fields become
Green’s function type magnetic field vectors, h̄A(r), which
can be written in terms of the Green’s tensor function, Gjp

as h̄A(r) = Gjp(r,rA)sp(rA), which is written in subscript
notation for clarity, and the summation convention applies to
repeated lowercase Latin subscripts. A similar expression can
be written down for h̄∗

B(r). We substitute these choices in
Eq. (3) and find

sA · h̄∗
B(rA) − sB · h̄A(rB) =

∫
D

(ζ − ζ ∗)h̄∗
B · h̄Ad3r. (5)

When we take sA = sB , Eq. (5) is the same equation as Eq. (20)
in [3]. There Shamsalsadati and Weiss make a remark about
evaluating the integral in the right-hand side of Eq. (5), while
making use of reciprocity, and then turn to an equivalence
statement. Assuming that the source vectors are equal, sA =
sB , with application of these two steps to the integrand in
the right-hand side of Eq. (5), we can write the integrand
as

G∗
jp(r,rB)spGjq(r,rA)sq = spG∗

pj (rB,r)sqGqj (rA,r)

= spG∗
pj (rB,r)sj sqGqm(rA,r)sm,

(6)

where the fist step is a correct application of source-receiver
reciprocity, but the second step can only be made when sj sm =
δjm, which is in general contradiction with the assumption
made beforehand that sA = sB . We conclude from this analysis
that Eq. (23) in [3] is incorrect. The reason is that after
reciprocity has been applied, the vectors s represent receiver
orientations and are completely independent from the required
source orientations. Relation (5) is given in components
by

Im{Gkr (rA,rB)} = −Im{ζ }
∫
D

G∗
kp(rB,r)Grp(rA,r)d3r. (7)

Notice that the sum over the subscript p remains, for which
reason the result in [3] is incorrect because they assign the
value 3 to all subscripts to select the vertical component.
Equation (7) is an important correction over Eq. (25) in [3]
and is used for a validating example. Equation (25) in [3] is
given for noise sources, but the noise characteristics of these
sources is not discussed or used there. Let us now choose
space-time-dependent naturally occurring random sources
N(r,t), represented in the frequency domain as n(r,ω), and
we can write the magnetic field vector generated by these noise
sources and measured at rA and rB , in subscript notation and in
the frequency domain as hj (rA) = ∫

r∈D Gjp(rA,r)np(r)d3r,
and a similar relation for hq(rB). If the noise sources are
uncorrelated and satisfy 〈np(r)n∗

r (r ′)〉 = δprδ(r − r ′)|f (ω)|2,
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where 〈·〉 denotes the expectation value and the power
spectrum |f (ω)|2 of the noise sources accounts for possible
variable frequency dependence, the product 〈hj (rA)h∗

q(rB)〉
is equal to

∫
Gjp(rA,r)G∗

qp(rB,r)d3r|f (ω)|2. In that case,
〈hj (rA)h∗

q(rB)〉 is equal to the integral in the right-hand side
of Eq. (7), apart from the power spectrum of the noise, and
hence we find the general expression for the Green’s function
as

Im{Gqj (rA,rB)}|f (ω)|2 = −Im{ζ }〈hj (rA)h∗
q(rB)〉. (8)

From this analysis, we conclude that the analysis in [3] is
incorrect. Their Eq. (24) does not remove the j summation
of their Eq. (22), for which reason the argumentation to move
from Eq. (21) to Eq. (25) through Eqs. (22)–(24) in [3] is
incorrect. Only noise sources that are uncorrelated in space,
time, and vector orientation lead to Eq. (8). Using this analysis
would give the correct interpretation for Eq. (25) in [3], which
is then the same as Eq. (8) here. This is the second important
correction of Eq. (25) in [3]. If we now take the receivers in
rA and rB in the same direction sj and use that in Eq. (8) we
obtain

s· [h̄∗
A(rB)− h̄B(rA)]|f (ω)|2 = iωμ〈[s · h(rA)][s · h∗(rB)]〉,

(9)

which is written in the notation of [3] for direct comparison.
This equation is correct only when used in combination
with noise source specified above. Notice that the noise
source correlation strength is proportional to the magnetic
permeability, which is a propagation property of the medium.
This is different than the Rytov theory for thermal electromag-
netic radiation, where the noise source correlation strength is
proportional the dissipation properties of the medium.

Equation (7) is a low-frequency approximation to the
Green’s function retrieval formulation, for which we should
start with Eq. (3) with a minus sign. The result is

Im{Gkr (rA,rB)} = −
∫
D

Im{ζ }G∗
kp(rB,r)Grp(rA,r)d3r

+
∫
D

Im{η}
|η|2 [εjnq∂nG

∗
kq(rB,r)]

× [εjmp∂mGrp(rA,r)] d3r, (10)

from which it is observed that the second integral on the
right-hand side contains equivalent electric dipole source
contributions, because the curl operators act on the source
position r . Equation (10) is the generally valid Lagrangian
form of magnetic field Green’s function retrieval.

By the electromagnetic equivalence principle, we obtain
the dual form for the electric field Green’s function. Using the
equivalence principle, we replace h by −e, where e denotes the
electric field, and we interchange η and −ζ and interchange
j e and jm. We can then follow all the steps that have led to
Eq. (10). This is equivalent to replacing the Green’s function
representing the magnetic field generated by magnetic-current-
type sources Gkr (rA,rB) by the Green’s function representing
the electric field generated by electric-current-type sources

with a minus sign −Gkr (rA,rB) and interchanging η and −ζ

to arrive at

Im{Gkr (rA,rB)} = −
∫
D

Im{η}G∗
kp(rB,r)Grp(rA,r)d3r

+
∫
D

Im{ζ }
|ζ |2 [εjnq∂nG∗

kq(rB,r)]

× [εjmp∂mGrp(rA,r)] d3r. (11)

Observe that in the first and second integrals in the right-hand
side of Eq. (11) the sources are electric and magnetic dipole
sources, respectively. In the low frequency limit Im{η} ≈ 0,

we can now neglect the first integral in the right-hand side
of Eq. (11). This means that the Green’s function of the
electric field generated by electric dipoles is extracted from
correlating electric fields generated by noise sources of the
magnetic current type only.

IV. VALIDATION EXAMPLE

To illustrate the argument for the necessity of all source
components for Green’s function extraction, let us take the
simplest example possible. Complexity of the configuration is
not an issue, so the homogeneous full space example will
suffice, and ζ = −ζ ∗. The left-hand side of Eq. (7) for a
homogeneous space is given by

Im{Gkr (rA,rB)} = 1
2 (ηGAB − η∗G∗

AB)I
− (2ζ )−1∇A∇A(GAB + G∗

AB), (12)

where I denotes the unit 3 × 3 matrix, ∇A is the gradient
acting on rA, and GAB denotes the homogeneous space scalar
Green’s function

GAB = exp(−√
ηζ |rA − rB |)

4π |rA − rB | . (13)
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FIG. 1. Imaginary part of the vertical magnetic field generated by
a vertical magnetic dipole as a function of vertical distance between
the locations rA and rB .
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The integral in the right-hand side of Eq. (7) is not very difficult
to evaluate for a homogeneous space and given by

−Im{ζ }
∫
D

G∗
kp(rB,r)Grp(rA,r)d3r

= ηη∗

η + η∗ (GAB − G∗
AB)I − ζ−1∇A∇A

η∗GAB + ηG∗
AB

η + η∗ .

(14)

In the quasistatic limit where η ≈ η∗, the right-hand sides of
Eqs. (12) and (14) are equal. It is clear that this result can be
obtained only when the summation over the subscript p is taken
for all values p = 1,2,3. The configuration used in [3] has the
two locations rA and rB in a homogeneous layer characterized
by σ = 1 S/m and magnetic permeability of free space. We
use the same values and ε = 17ε0, with ε0 being the free space
electric permittivity. The vertical component of the magnetic
field generated by a vertical magnetic dipole is extracted from a
summation of correlations of recorded vertical magnetic fields
generated by vertical components of magnetic noise sources.
The frequency of operation is taken as 100 Hz. In Fig. 1, the
right-hand side of Eq. (12), with k = 3 and r = 3, is shown as
the exact solution in circles, and right-hand side of Eq. (14)
with crosses, together with the results of the right-hand side
of Eq. (25) in [3], shown with plus signs. The imaginary part
of each field is shown, with the positive values using black
markers and the negative field values using gray markers. It
can be seen the errors are large and increasing with vertical
source-receiver separation when only vertically aligned noise
sources are used.

V. CONCLUDING REMARKS

Contrary to what is described in [3], the choice of the field
type used in Green’s function retrieval does not determine
what the (noise) source characteristics should be. When the
energy form is used, both electric and magnetic fields can be
retrieved from correlations of field fluctuations generated by
natural noise sources, such as thermal noise, that are propor-
tional to the dissipative properties of the medium. When the
Lagrangian form is used, both electric and magnetic fields in
the quasistatic limit can be retrieved from correlations of field
fluctuations generated by a volume distribution of uncorrelated
sources of the magnetic current type, and whose correlation
strengths are proportional to the magnetic permeability of
the medium. Whether the retrieved Green’s functions are a
sum or difference of the Green’s function and its complex
conjugate counterpart depends on the definition of the Green’s
function. If for a particular definition the sum is obtained
in the energy form, the Lagrangian form will retrieve the
difference.

Contrary to what is used in [3], unidirectional (noise)
sources are generally not sufficient for retrieving the Green’s
function, but all source components are necessary. When these
are noise sources, these should be uncorrelated in their vector
orientation as well as spatially and temporally.
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