
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Architectural Innovations for
Efficient Denoising and
Classification
A Manual vs. Neural
Architecture Search Comparison

MSc Computer Science - AI track
Thomas Markhorst

Architectural Innovations for
Efficient Denoising and

Classification
A Manual vs. Neural

Architecture Search Comparison

by

Thomas Markhorst

Supervisors: Dr. O.S. Kayhan

Dr. J.C. Van Gemert

Graduation committee: Dr. J.C. Van Gemert (Associate Professor, TU Delft)

Dr. E. Demirović (Assistant Professor, TU Delft)

Dr. O.S. Kayhan (Bosch Security System, TU Delft)

Project Duration: December, 2022 - August, 2023

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Preface

This thesis describes my final work to obtain the title Master of Science at The Delft University of

Technology. My thesis was conducted within the Computer Vision Lab at TU Delft in collaboration

with Bosch Security Systems B.V.

I would like to thank my supervisor Osman Kayhan, for ensuring this project was a wonderful learning

experience and for always bringing a smile to my face. I value that combination more than I can express.

I also enjoyed working with Rick Huizer and Dajt Mullaj, who transformed this individual thesis into a

team experience. Of course, my thesis would not be possible without my professor Jan van Gemert and

the Advanced Development team at Bosch Security Systems B.V. I would like to thank them for the

opportunity and guidance. Finally, I would like to express my gratitude to my friends and even more so

to my father, mother, and brother, without whom I would not be where I am right now.

Thomas Markhorst
Delft, August 2023

i

Contents

Preface i

1 Overview 1

2 Scientific paper 2

3 Background 14
3.1 Convolutional & MBConv operator . 14

3.1.1 Convolution . 14

3.1.2 Depth-wise convolution . 15

3.1.3 Point-wise convolution . 16

3.1.4 MBConv . 16

3.2 Image Denoising . 18

3.2.1 Noise . 18

3.2.2 Metrics . 19

3.2.3 Loss function . 20

3.2.4 U-Net . 20

3.3 Image Classification . 23

3.4 Neural Architecture Search . 24

3.4.1 NAS Approaches . 24

3.4.2 Differentiable NAS . 24

3.4.3 TF-NAS . 26

References 29

ii

1
Overview

Understanding the content of an image can become complicated when noise is present. Noise often

occurs in dark environments but can also arise inside a camera system. In this thesis, we aim to improve

the human perception of noisy images. Part of this improvement can be achieved by using Convolutional

Neural Networks (CNNs) as denoisers [10, 33], which try to remove the noise from noisy images.

However, denoisers are not able to fully recover a noise-free image. Thus, for images with a high level

of noise, denoising might not improve human perception enough. We propose to use a combination

of image denoising and classification to improve human image understanding. Image classification is

used, as it is a form of machine perception which can assist a human in interpreting the denoised image.

We take a security camera during the night as an example. The security guard is trying to determine if

there is a human or animal in the images. Due to the lack of light, the image is noisy, which hinders

image understanding. Removing noise from the image assists the security guard, but classifying the

content as animal or human improves understanding even further.

We target edge devices, such as the security camera, which have limited computational power. So the

CNN, which performs denoising and classification, should require little resources. We, therefore, design

a model to be efficient, defined as (i) having low inference time, further referred to as latency, while (ii)

retaining denoising performance and classification accuracy. To achieve this, we propose and study two

methods to efficiently join denoising and classification in one model.

Using the joint model for different applications requires altering it for different requirements and devices.

However, manually adjusting the model for each device and desired latency can take significant effort

and requires expert knowledge. These issues have been recently addressed using Neural Architecture

Search (NAS) [18, 27, 28, 31], where the design of models is automated to some extent. An additional

benefit is the ability of NAS to design a model for specific latency requirements while taking the

computational power of the target device into account. We combine NAS with the joint architectures,

proposing a seamless and efficient approach to designing joint denoising and classification models for

diverse use cases.

This thesis consists of two parts. In Chapter 2, we present our work in the form of a scientific paper,

targeting deep learning and computer vision experts. Additionally, Chapter 3 provides background

information for the specialized topics in our study. We advise non-experts to first get acquainted with

unfamiliar topics by reading Chapter 3. Section 3.1, explains the convolutional operator and its efficient

replacement MBConv. In Section 3.2, we discuss noise, noise metrics, training loss, and our denoising

baseline UNet. Image classification is discussed in 3.3. Finally, Section 3.4, explains different NAS

approaches and then dives into differentiable NAS and the basis of our NAS method TF-NAS [16].

1

2
Scientific paper

The scientific article starts on the next page due to its fixed full-page CVPR format.

2

Architectural Innovations for Efficient Denoising and Classification:
A Manual vs. Neural Architecture Search Comparison

Thomas Markhorst1,2 Osman Semih Kayhan1,2 Jan C.van Gemert2
1 Bosch Security Systems 2 Delft University of Technology

Abstract

In this paper, we combine image denoising and classi-
fication, aiming to enhance human perception of noisy im-
ages captured by edge devices, like security cameras. Since
edge devices have little computational power, we also op-
timize for efficiency by proposing a novel architecture that
integrates the two tasks. Additionally, we alter a Neural Ar-
chitecture Search (NAS) method, which searches for classi-
fiers [16], to search for the integrated model while optimiz-
ing for a target latency, classification accuracy, and denois-
ing performance. Our NAS architectures outperform our
manually designed alternatives in both denoising and clas-
sification, offering a significant improvement to human per-
ception. Moreover, our approach empowers users to con-
struct architectures tailored to domains like medical imag-
ing, surveillance systems, and industrial inspections.

1. Introduction
The intersection of edge devices, such as security cam-

eras, and deep learning has sparked an interest in optimiz-
ing neural networks for inference time, further referred to
as latency. Common tasks to optimize for such efficiency
are object classification and detection, which mainly aid in
machine perception. However, when aiming to improve
human perception, the quality of the processed image is
equally significant. This importance intensifies particularly
for images containing noise, which can arise from various
sources such as low-light conditions, sensor noise, or any
stage within the image processing pipeline. We focus on
using an efficient model to enhance the human perception
of noisy images.

Domains relying on human image perception but chal-
lenged by noisy images, like medical imaging [21], surveil-
lance systems [29], and industrial inspections [8], can ben-
efit from recently proposed denoising Convolutional Neural
Networks (CNNs) [12, 41]. As CNNs denoise better than
traditional methods [5, 11]. Fast CNN denoisers [10, 42]
are required to accommodate the real-time requirement of
the affected domains. However, denoisers are not able to

(a) (b) (c)

Predicted:
Human

(d)

Figure 1. We take a noisy image (a), which can be interpreted as
an animal (b) or human (c). DC-NAS S is used to denoise and
classify (a), aiming to improve human perception (d). Note, in a
real application (b) and (c) would not be available, which increases
the difficulty of interpreting the noisy image. Artist: Astkhik Rakimova

remove all noise, which is not always enough for human
image perception.

We further improve human understanding of the image
by combining denoising with machine perception, like im-
age classification. For instance, while improving the quality
of a noisy image would assist a security guard, the ability to
classify the scene content could help interpret the denoised
image. This classification could distinguish between a hu-
man and a large animal. Therefore, we investigate models
which can leverage the benefits of both denoising and clas-
sification to enhance human understanding in real-time.

A model combining both denoising and classification is
studied in [17], focusing on denoising performance. In ad-
dition, we optimize for efficiency, which is required for
edge devices, and classification. Our efficiency definition
is based on two elements: (i) latency reduction while (ii) re-
taining denoising performance and classification accuracy.
These elements could be optimized using independent clas-
sification and denoising models. However, we propose an
architecture combining the tasks more efficiently.

First, we employ established model design approaches
to enhance independent denoising and classification mod-
els, such as model scaling [20, 31] and the introduction of
efficient operators [27]. Although the models are optimized,
they still operate separately, resulting in unnecessary over-

head. Hence we propose and compare two methods that join
both tasks, yielding a novel and efficient architecture.

Adjusting this architecture for each device and desired
latency can be laborious and requires expert knowledge.
These issues have recently garnered interest, leading to
the emergence of new automated architecture search tech-
niques, which have achieved competitive results in image
classification [32, 35]. Moreover, recent Neural Architec-
ture Search (NAS) approaches incorporate latency in their
loss function, enabling the design of architectures tailored
to specific latency requirements. Combining NAS with the
proposed architecture provides a seamless and efficient ap-
proach to designing denoising and classification models for
diverse use cases.

We find that our proposed efficiency-focused architec-
ture consistently outperforms our more straightforward al-
ternative. This is observed for both the manually and NAS
designed models. In addition, our NAS models significantly
outperform the manually designed ones in denoising and
classification performance.

We have the following contributions. (i) We introduce
a novel architecture to combine denoising and classifica-
tion efficiently. The novelty lies in sharing an encoder be-
tween the denoiser and the classifier. (ii) We propose mod-
ifications to an existing NAS method for classification [16]
to stabilize its search, which improves the performance of
the found architectures. (iii) We extend an existing NAS
method to search for a model which combines denoising
and classification, optimized with respect to a target latency,
classification accuracy, and denoising performance.

Since no prior work proposes a joint efficient model for
denoising and classification, we study the tasks both sepa-
rately and joint in Section 3. The findings are used as expert
knowledge to construct the NAS method in Section 4.

2. Related work
Denoising. Image denoising aims to reconstruct a clean

image x from its observed noisy variant y. This relation can
be formulated as y = x+n, where we assume n to be addi-
tive white Gaussian noise (AWGN). Neural network-based
denoisers offer faster inference and good performance com-
pared to traditional denoising methods like BM3D [5] and
WNNM [11]. The interest in deep learning for denois-
ing started with DnCNN [41], a simple Convolutional Neu-
ral Network (CNN). Encoder-decoder architectures became
popular due to their efficient hierarchical feature extrac-
tion. Specifically, UNet [26] whose skip-connections be-
tween the en- and decoder enhance the denoising process
as shown in follow-up methods [12, 19, 24]. The interest
in the UNet structure continued with transformer architec-
tures [9,34]. In this paper, our denoisers are based on UNet,
ensuring our findings can translate to most related work.

Efficient classification. Optimization for efficiency is

generally achieved by either compressing pre-trained net-
works [23] or designing small networks directly [27, 32].
We focus on efficient design, for which handcrafted mod-
els and neural architecture search (NAS) have played es-
sential roles. Studies proposing handcrafted models often
introduce efficient operators [14, 27, 43] or scaling meth-
ods [31]. These efficient operators are used in NAS meth-
ods [32, 35] aiming for the automated design of efficient
neural networks. Such an operator is the inverted resid-
ual with a linear bottleneck (MBConv) introduced in Mo-
bileNetV2 [27]. In our models, we study scaling methods
and MBConv’s efficiency characteristic.

Neural Architecture Search. The use of reinforcement
learning (RL) for neural architecture search introduced ef-
ficient architectures with competitive classification perfor-
mance [13,25,30,32]. However, their discrete search space
is computationally expensive. Differentiable NAS (DNAS)
methods [1, 18, 35] significantly reduce this cost by re-
laxing the search space to be continuous using learnable
vectors α for selecting candidate operations, which allows
for gradient-based optimization. The popularity of DNAS
started with DARTS [18], which searches a cell structure.
Due to the complex design and repetitiveness throughout
the network of the cell structure, follow-up works [16, 35]
search operators for every layer instead of constructing re-
peating cells.

Pitfalls of DNAS are the collapse of search into some
fixed operations and a performance drop when converting
from the continuous search network to the discretized infer-
ence network [4, 38, 39]. TF-NAS [16] addresses these is-
sues with an adaptation in the search algorithm, which lets
the search model mimic the discrete behavior of the infer-
ence model. In addition, TF-NAS searches an architecture
with a target latency by adding a latency loss to the search
optimization. Because of these properties, we use TF-NAS
as a baseline for our NAS study.

Existing NAS methods for denoising are either not repro-
ducible [22], have a cell-based search space [40], or do not
have an encoder-decoder [3] architecture. Instead, we use a
layer-based search space and encoder-decoder structure.

Joint classification and denoising. In [36], the posi-
tive influence of denoising methods on classification perfor-
mance is discussed. Moreover, [17] proposed a joint model
where a VGG classifier [28] is attached to a denoiser sim-
ilar to UNet. They report qualitative improvement of the
denoised images when adding the classification loss to the
denoiser’s optimization. Although the model denoises well,
the proposed model is not optimized for classification and
efficiency, nor is another joining method studied.

3. Gaining expert knowledge on DC-Net
For the separate classification and denoising tasks, we

construct a baseline model. Additionally, methods to in-

crease their respective efficiency are studied, resulting in a
reduced version of the baseline models. The different sizes
of the classifier and denoiser are used to study joining meth-
ods and their efficiency.

Dataset & settings. We generate a controlled synthetic
data set to study the behavior of the classifier and denoiser
when applying model scaling, replacing the convolutional
operations, and combining both models. The dataset con-
sists of 30k images, each with a random monotone back-
ground in a gray tint [0.1 - 0.3] with two randomly placed
non-overlapping MNIST [7] digits. We use two digits to
increase the complexity of the denoising task. For experi-
ments including classification, the two digits are extracted
from the image using ground truth locations. These ex-
tracted digits are separately used as input for the classifier.
In the experiments where noise is required, for either de-
noising or noisy classification, synthetic Gaussian noise is
added. This noise is zero mean, and the intensity of the
noise is controlled using the standard deviation (σ) of the
distribution. Figure 4a shows a sample, and Figure 4b its
noisy variant. To test the model behavior on an extensive
noise range, every model is trained and tested on eleven σ
values evenly spaced on the interval [0, 1].

The models are trained using Adam optimizer with 1E-3
learning rate (LR), plateau LR scheduler, and 100 epochs.

Since the experiments with the controlled data set are not
targeted at a specific device, the metric defining efficiency
should not depend on a device. Such a metric is compu-
tational power, most commonly defined as Floating Point
Operations (FLOPs), which we use as the primary metric.
Despite being device dependent, we assess latency as a sec-
ondary metric. The latency is measured with a batch size of
32, 100 warm-up inference passes and averaged over 1000
inference passes. Denoising performance is quantified us-
ing the Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM) metrics [33]. For both metrics,
higher is better.

3.1. Efficient Classification

Experimental setup. Our baseline classifier (Conv-
L) consists of two convolutional, one global max pooling,
and a linear layer. Each convolutional layer also has a
group normalization [37], max pooling, and ReLU activa-
tion function.

To construct the reduced version, we use two methods
similar to previous works [27, 31]. In the first method, we
replace the second convolutional layer with an MBConv
layer. Three expansion rates are used {1, 2.5, 4}: (i) rate
1 is the lowest possible value, (ii) rate 4 matches the num-
ber of FLOPs of the baseline, and (iii) rate 2.5 is in the
middle of those two. The second reduction method is to
lower the number of filters in the baseline, also called the
model width. Using these techniques, models with three

Model Size Exp. rate FLOPs (K) ↓ Lat. (ms) ↓ Acc (%) ↑
Conv-L L - 447 0.336 63.2
MB1-S S 1 177 0.300 56.2
MB2.5-M M 2.5 350 0.384 64.1
MB4-L L 4 424 0.468 64.9

Table 1. Classification models using convolutions (Conv) and MB-
Convs (MB), designed for three different FLOP targets: {S, M,
L}, to compare scaling methods. MB models scale down more ef-
ficiently than normal Conv models.

different FLOP sizes are constructed, {S, M, L}. We use
the following naming scheme, Conv-x and MBe-x, where
x represents the FLOP size and e is the expansion rate of
the MBConv.

The models are trained using Cross Entropy loss. We
report the accuracy averaged over all 11 noise levels.

Exp. 1: Conv vs MBConv comparison. According
to [27], the MBConv layer should be more efficient than a
normal convolutional layer. Therefore, when comparing the
two operators in our network, we expect the version with
an MBConv layer to need fewer FLOPs for the same accu-
racy. In Table 1, the MB models with expansion rates 2.5
(MB2.5-M) and 4 (MB4-L) classify better than the Conv-L
model with fewer FLOPs. However, with an expansion rate
of 1 (MB1-S), the accuracy drops 7% compared to Conv-L.
Therefore, [27]’s theory also holds for the noisy classifier,
but only for the higher expansion rates.

Conclusion. The MBConv layer can replace the con-
volutional layers. Additional experiments in Appendix A
study the scaling method. We find that compared to the
Conv models, the MB models also scale down more effi-
ciently by first reducing the expansion rate, possibly fol-
lowed by a width reduction. Scaling effectively reduces the
number of FLOPs.

MB2.5-M has the second-best accuracy with low FLOPs
and a latency close to the baseline, Conv-L. Therefore,
MB2.5-M is used as the reduced classifier. We also use
MB2.5-M as the new baseline classifier as it outperforms
the old baseline, Conv-L, in FLOPs and accuracy.

It is important to note that the reduction in FLOPs in-
stantiated by using MBConvs, does not translate to a latency
reduction in these experiments. This issue is discussed pre-
viously in [32]. Since the target of these experiments is
FLOPs and the latency increase is manageable, we place
minimal emphasis on the latency.

3.2. Efficient Denoising

Experimental setup. For denoising, the baseline and
reduced version are constructed by performing a hyperpa-
rameter study on UNet similar to [20]. Figure 2 shows the
UNet architecture along with its hyperparameters to tune.
We explore the parameters one at a time, starting with the

U-Net denoiser (i) Sequential

d=
3

Encoder
Decoder
Classifier
Linear

Conv

Skip
Pool

UpConv

(ii) Integrated

c=1

b

im
ag

e: m⋅b

(i) Sequential

d=
3 Encoder

Decoder
Classifier
Linear
Conv

Skip
Pool

UpConv

U-Net denoiser

b

m⋅b

c=2

(ii) Integrated

Encoder
Decoder
Classifier
Linear
Conv

Max pool
Skip

UpConv
or

Figure 2. Schematic of the UNet, with hyperparameters base fea-
ture map width (b), depth (d), channel multiplier (m) and convolu-
tions per layer (c). For the joint model either attaching the classi-
fier (i) Sequential or (ii) Integrated.

21.0

22.0

23.0

24.0

PS
NR

b:4

b:8 b:16 b:32 b:64

(a) Scaling b

d = 4

d:2
d:2 d:2

d:3 d:3

d:3
d:4 d:4

d:4
d:5

d:5
d:5

(b) Scaling d

b = 8
b = 16
b = 32

108 109

FLOPs

22.5

23.0

23.5

PS
NR

b:8

b:8

b:16

b:16

b:32

b:32

b:64

b:64

(c) Scaling c

c = 2
c = 1

108 109

FLOPs

b:8

b:16 b:32 b:64

m:1

m:1.5
m:2

(d) Scaling m

c = 2
b = 8

Figure 3. UNet hyperparameter (Figure 2) scaling experiments.
Shows how altering a specific hyper-parameter influences denois-
ing performance and FLOPs. We only show PSNR results of
σ=0.8, as the other results show the same trend. We find that b
and m scale down efficiently, d and c do not.

number of base features maps b, then the UNet depth d, the
feature map multiplier m, and the number of convolutional
blocks per layer c. In the original UNet: {b = 64, d = 5,
m = 2, c = 2}. Altering these hyperparameters can greatly
reduce the model size. Similar to the classification experi-
ments, we also study the ability of the MBConv operator to
increase efficiency in the denoiser. The models are trained
using Charbonnier loss [2].

Exp. 1: The base feature map width b. In this ex-
periment, we aim to find the relevant range of b. Since
b is multiplied at every level, the number of feature maps
throughout all layers depends on it, which makes it a pow-
erful hyper-parameter. We use d = 4 and the other hyper-
parameters as in the original UNet, then we test b ∈ {4, 8,
16, 32, 64}. The trend in Figure 3.a shows that the per-
formance and FLOPs increase with b. We observe that the
trend is significantly disrupted by b = 4. Conversely, the
performance difference between b = 32 and b = 64 is small,

Model FLOPs (M) ↓ Lat. (ms) ↓ Metric Noise level (σ)
0.2 0.4 0.8 1

UNet Baseline 1301.8 7.10 PSNR ↑ 33.9 29.5 23.8 22.3
SSIM ↑ 0.99 0.98 0.95 0.92

UNet Reduced 51.2 2.38 PSNR ↑ 33.2 28.7 23.3 22.0
SSIM ↑ 0.99 0.98 0.94 0.92

Table 2. Compares Baseline and Reduced UNet denoisers. The
reduced model has significantly lower FLOPs and latency yet sim-
ilar denoising performance.

but the network size quadrupled. Therefore in further ex-
periments, we focus on b ∈ {8, 16, 32}.

Exp. 2: The UNet depth d. Given the robustness of
b, we are interested in how reducing d compares in terms of
efficiency. Figure 3.b displays the performance of the archi-
tectures with the selected b ∈ {8, 16, 32} testing d ∈ {2, 3,
4, 5}. We observe that reducing d causes a drop in denois-
ing performance, whereas b retains performance better, also
in Figure 3.a. Therefore b scales down more efficiently. The
models with d = 3 or 4 denoise most efficient. Especially
for the smaller models, d = 4 performs well.

Exp. 3: The number of conv blocks per layer c. Does
reducing c further increase efficiency? To test this, we take
the best-performing settings, d = 4 and b ∈ {8, 16, 32, 64},
and compare c = 1 and c = 2. Figure 3.c shows that the
model with c = 2 outperforms c = 1. Therefore reducing c
does not benefit the model’s efficiency.

Exp. 4: The feature map multiplier m. We test if our
smallest model could be further reduced in size by lowering
m. We take d = 4 and b = 8, and compare m ∈ {1, 1.5, 2}.
Figure 3.d shows that the reduction to m = 1.5 retains per-
formance. For m = 1, the performance drops. Reducing m
to 1.5 could therefore be used to scale down the model when
further reducing b significantly decreases performance.

Conclusion. To construct the reduced and baseline de-
noiser, we use the smallest and largest value from the found
hyperparameter ranges. Resulting in baseline: {b = 32, d =
4, m = 2, c = 2} and reduced: {b = 8, d = 4, m = 1.5, c =
2}. Table 2 compares the two models for a selection of the
noise levels. Although the reduced model has significantly
fewer FLOPs and lower latency, the denoising performance
is relatively similar to the baseline denoiser.

The UNet hyper-parameter experiments are replicated
using MBConvs, which lead to similar findings. Moreover,
the Conv UNet slightly outperforms the MB model. There-
fore, the Conv model is used.

3.3. Joint model: DC-Net

Experimental setup. We construct a baseline and re-
duced joint model, Denoising-Classifying Network (DC-
Net). The baseline uses MB2.5-M as classifier and the base-
line UNet as denoiser. Reduced DC-Net also uses MB2.5-
M as classifier but the reduced UNet as denoiser.

DC-Net Type FLOPs (M) ↓ Lat. (ms) ↓ PSNR ↑ SSIM ↑ Acc. (%) ↑

Baseline Int. 1301.8 7.14 32.8 0.97 88.1
Seq. 1302.1 7.55 27.1 0.95 89.6

Reduced Int. 51.2 2.41 29.9 0.97 86.2
Seq. 51.5 2.83 25.2 0.92 87.6

Table 3. Compares the reduced and baseline joint models, both the
Integrated and Sequential method trained on the synthetic noise
dataset. Integrated performs significantly better in denoising and
slightly worse in classification. Integrated also scales down better.

(a) GT (b) σ=0.8 (c) Int. S (d) Seq. S (e) Int. L (f) Seq. L

Figure 4. Ground-truth sample (a), which is the target for the de-
noiser when given noisy image (b). With S for reduced and L for
baseline. (c-f) are the cropped denoised outputs for input (b). The
red square is a zoomed-in region. For higher noise levels, the de-
noising performance of Sequential is inferior to Integrated.

For joining the denoiser and classifier, we propose two
models: (i) a Sequential model where the classifier is at-
tached after the denoiser (Figure 2.i), and (ii) an Integrated
model where the classifier is attached to the UNet encoder
(Figure 2.ii). For Integrated, classification and denoising
share the encoder, after which two branches are used, the
decoder for denoising and another branch for classification.

The benefits of the Integrated model could come in three-
fold. First, using a shared encoder removes the need for a
second large classifier, like in the Sequential method. Sec-
ond, the decoder and classifier branches could run in par-
allel compared to running sequentially, which can result in
lower latency. Thirdly, the decoder is only optimized for de-
noising as the optimization of the classifier does not influ-
ence it anymore. This should result in better image quality.

The models are trained using a weighted combination
of the Cross-Entropy and Charbonnier loss [0.1 - 0.9], re-
spectively weighted by 0.1 and 0.9. We report the metrics
averaged over all 11 noise levels.

Exp. 1 Integrated vs. Sequential. Which joining
method performs better for the baseline, and does the same
hold when reducing its size? We compare the Sequential
and Integrated models. In Table 3, we see that for both the
baseline and reduced DC-Net models, the Integrated ver-
sion performs significantly better at denoising, while the Se-
quential version performs better at classification. For higher
noise levels, the Sequential models are not able to recon-
struct the digit in detail, as visible in Figure 4.

Conclusion The integrated model has a slightly lower
classification accuracy compared to the Sequential model.
However, when aiming for improved human perception, it is
still required for the human to see the content of the image.
Therefore the Integrated model is more suitable.

4. Neural Architecture Search
We follow similar experimentation strategies as in the

previous section. TF-NAS is used to construct a classifier,
which we use as a basis for our denoiser and joint model.

Dataset & settings. NAS experiments are conducted on
Imagenet [6], randomly cropped to 224x224 pixels. To re-
duce search and training time, 100 classes (Imagenet 100)
from the original 1000 classes were chosen, as in [16]. In
the experiments requiring noise, Gaussian noise is sampled
uniformly with a continuous range of σ in [0, 1].

The models are searched using SGD with momentum,
2E-2 LR with 90 epochs. After that, the found architecture
is trained from scratch with 2E-1 LR for 250 epochs. All
other settings are similar to [16]. The loss function form de-
pends on the task of the experiment, smooth Cross-Entropy
for classification (LCE), combined Charbonnier-SSIM for
denoising (LChar,LSSIM), and a weighted combination for
the joint model (LBoth).

LBoth = 0.1 · LCE + 0.9 · (0.8 · LChar + 0.2 · LSSIM) (1)

Since our NAS method uses a latency look-up table con-
structed for our device, these experiments target a specific
device, GeForce RTX 3090 GPU. Therefore latency is suit-
able for defining efficiency in the NAS experiments.

4.1. Classification: C-NAS

Experimental Setup. Since TF-NAS [16] learns β’s to
control the number of convolutional operators per stage, β’s
can reduce the model size. However, in the models pro-
posed by [16], only 2 out of 24 stages are reduced by β.
So the β’s have little effect on the found architectures, yet
they make the search space more complex. Therefore we
propose a version of TF-NAS where the β’s are removed so
that all convolutional blocks are used.

The candidate operations in the search space of TF-NAS
are MBConvs with 8 different configurations, see App. B.
The configurations differ in kernel size, expansion rate, and
in- or excluding a squeeze- and excitation layer (SE) [15].

The classification experiments are performed using data
without noise, as the aim is to examine the NAS method,
which is designed for clean images. We investigate key
components of TF-NAS and try to improve its stability and
classification performance.

Exp 1. Learned vs. Removed β. We conduct an exper-
iment to study the effect of removing β on the search qual-
ity. The SE-layer is excluded from the candidate blocks,
halving the search space to ensure the number of candidate
operations does not cause search instability. We set a low
target latency of 6 ms, as learning β should have a positive
effect on small networks. For both the learned and removed
settings, we run two searches, search 1 and 2.

0 25 50 75
Epochs

0.0

0.2

0.4

0.6

0.8

 v
al

ue

Removed
MB-k3-e3
MB-k3-e6
MB-k5-e3
MB-k5-e6

0 25 50 75
Epochs

Learned

Figure 5. Stage-5:block-4’s α values for Re-
moved and Learned β. Search is more stable for
Removed β.

6.0 8.0 12.0
Target Latency (ms)

85.0

85.5

86.0

86.5

87.0

87.5

88.0

88.5

Ac
cu

ra
cy

 (%
)

Operations
4
6
8

Figure 6. Acc for different search spaces,
showed for different target latencies. Us-
ing fewer operations is most robust.

7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6
Latency (ms)

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

Ac
cu

ra
cy

 (%
)

TF-NAS C

ResNet-18

MobileNetV2
C-NAS M (ours)

Figure 7. Comparing classifiers with sim-
ilar latency. Our model classifies best,
competing with MBNetV2

Figure 5 shows that when β is learned, the α’s oscillate
and therefore do not decide on an architecture. Whereas
with Removed β, the search is stable. This stability reflects
in the performance, as the average accuracy of the Removed
β models is 86.3%, compared to 84.2% for Learned β. The
separate results for each model are shown in Appendix C.

Exp 2. Number of operators in search space. Does re-
ducing the number of operators during search positively in-
fluence the performance of the found models? We test this
by comparing the performance of architectures searched
with three different search space sizes, {4, 6, or 8} oper-
ations, defined in App. B. For each of these search spaces,
three different latency targets are used: {6, 8, and 12} ms.

In Figure 6, we see that for lower target latencies, 6 and 8
ms, using fewer operations in the search space does not alter
performance significantly. When targeting 12 ms latency,
reducing the number of operations in the search space does
show a significant improvement. Additionally, we find that
when using the larger search spaces, the operators from the
small search space are still preferred for lower latencies.

Exp 3. Compare with original TF-NAS. How do ar-
chitectures found using our proposed changes to TF-NAS
perform compared to models with similar latency? We com-
pare our model, C-NAS M, with TF-NAS C, MobileNetV2,
and ResNet-18. MobileNetV2 and our model have similar
latency, architecture, and operator types. ResNet only dif-
fers in that it uses the Conv operator.

Figure 7 shows that the model found using our method
(Figure 8.i) has lower latency yet higher accuracy than TF-
NAS C as proposed in [16]. The model was searched with
target latency 8.0. Therefore, it reached its target. Although
ResNet-18 and MobileNetV2 run faster than our model, our
classification accuracy is superior, especially when com-
pared to ResNet-18, which only uses Convs.

Conclusion. By Removing β and reducing the num-
ber of operators used in the search, the search stability in-
creases, and we find architectures that have better accuracy.

Model UNet params: Lat. (ms) ↓ PSNR ↑ SSIM ↑d b m

Reduced UNet 4 8 1.5 9.2 25.0 0.69
D-NAS S - - - 9.45 26.0 0.72

UNet 5 64 2 116.5 26.6 0.74
D-NAS S upscaled - - - 109.8 26.5 0.73

Table 4. Comparison of D-NAS and UNet variants for denoising.
The rows are split into two latency ranges. D-NAS outperforms
Reduced UNet. The larger variants perform similarly.

An architecture found using our changes classifies better
than a TF-NAS architecture with similar latency.

The comparison between our model and ResNet-18
shows that our search space is able to compete with widely
accepted Conv-based classifiers. Moreover, our model per-
forms on par with MobileNetV2, a manually designed clas-
sifier using MBConvs.

4.2. Denoising: D-NAS

Experimental setup. To construct a denoiser, D-NAS
(Figure 8.ii), we use the first six stages of a found C-NAS
classifier, which has four levels of resolution. Afterwards,
we attach a UNet style decoder by using both a transposed
convolution and two normal convolutions for each decoder
level. Like UNet, we also add skip connections between the
encoder and decoder layers. The decoder is not searched.

Exp 1. D-NAS vs UNet denoiser. Does our denoiser
D-NAS perform similarly to the UNet denoisers? Reduced
UNet (Section 3.2) is used, {d = 4, b = 8, c = 2, m = 1.5},
with a latency of 9.2 ms. We compare with D-NAS S, which
is found by searching with a target latency of 9.2 ms. In ad-
dition, we test the standard UNet architecture. To compare
with standard UNet, we increase the number of channels in
D-NAS S to match the latency of both architectures.

Table 4 shows that D-NAS S outperforms Reduced UNet
by 1.0 dB PSNR and 3% SSIM. The two large models per-
form similarly.

Model Search Lat. (ms) ↓ PSNR ↑ SSIM ↑ Acc. (%) ↑Images Loss

1 DC-NASseq L Clean LCls 18.3 25.0 0.69 76.0
DC-NAS L Clean LCls 17.9 25.5 0.70 76.0

2
DC-NASclean M Clean LCls 13.9 25.4 0.70 75.7
DC-NASnoisy M Noisy LCls 13.7 25.4 0.70 76.0
DC-NASLBoth

noisy M Noisy LBoth 13.8 25.4 0.70 75.5

3 C-NASnoisy M Noisy LCls 7.9 - - 75.5

4
DC-NASmb Clean LCls 27.7 25.8 0.71 75.5
DC-NASmb

1-op Clean LCls 16.4 25.3 0.70 75.4
DC-NASmb

3-lay Clean LCls 22.1 25.4 0.70 75.1

5
DC-Netreduced - - 10.0 24.5 0.68 61.9
DC-Nettail

reduced - - 10.5 24.6 0.69 68.6
DC-NAS S Noisy LCls 10.3 25.4 0.70 74.3

Table 5. DC-NAS experiments. 1: Sequential vs Integrated model.
Similar latency and denoising performance, yet Integrated de-
noises better. 2: Different search strategies for DC-NAS. Search-
ing on noisy images with only LCls performs best. 3: C-NASnoisy

M vs DC-NASnoisy M. The Integrated model classifies better. 4:
Using MBConvs in the DC-NASnoisy M decoder, and two down-
scaled versions. Original DC-NASnoisy is more efficient. 5: DC-
NAS vs DC-Net. The NAS model outperforms the manually de-
signed ones.

Conclusion. D-NAS outperforms our denoising base-
line, UNet, for small models. Therefore D-NAS is a suitable
denoising architecture, especially when kept small.

4.3. Joint Model: DC-NAS

Experimental setup. To construct the joint model, we
use the Integrated and Sequential setup. The Integrated
model, DC-NAS, is constructed similarly to D-NAS. As
seen in Figure 8.iii, we connect the decoder after the first
six stages of C-NAS but still use the remaining stages as
classification branch. Whereas the Sequential model, DC-
NASseq, is constructed by attaching C-NAS to the output of
D-NAS, see Figure 8.iv. Therefore, the searched classifier
is used twice in DC-NASseq, which increases its latency. To
counter this, a smaller C-NAS model is used in both the
encoder and classifier.

Exp 1. Compare Integrated vs. Sequential. We com-
pare DC-NAS and DC-NASseq models with similar latency.
To get the same latency, C-NAS in DC-NASseq L has low
latency, only 6.7 ms. Whereas in DC-NAS L, C-NAS has a
latency of 12 ms.

In Table 5:1, we see that both models have similar la-
tency and the same classification accuracy, however, DC-
NAS L improves denoising performance with 0.5 db PSNR
and 1% SSIM.

Exp 2. Encoder search. C-NAS contains the search-
able operations within DC-NAS. We test several search ap-
proaches: (i) using clean images, and (ii) using noisy im-
ages. For both approaches, we search the classifier us-
ing only classification loss. Resulting in models (i) DC-

NASclean M and (ii) DC-NASnoisy M. In addition, for ap-
proach (ii), we construct DC-NASLBoth

noisy M by searching us-
ing the combined denoising and classification loss. There-
fore optimizing C-NAS for both tasks within DC-NASLBoth

noisy .
Regardless of the search method, the found models are
trained using noisy images and the combined loss.

Table 5:2, shows that using noisy images during search
improves classification accuracy, as DC-NASclean M im-
proves 0.3% acc compared to DC-NASnoisy M. Surprisingly,
the denoising performance is the same. Using both the de-
noising and classification objective during the search, as in
DC-NASLCls

noisy, reduces the classification accuracy.
Exp 3. C-NAS vs DC-NAS. We are interested in the dif-

ference in noisy classification performance of C-NAS and
DC-NAS. We remove the decoder from DC-NASnoisy to ob-
tain C-NASnoisy and train it for classification.

We see that DC-NASnoisy, improves classification accu-
racy by 0.5% compared to C-NASnoisy, in Table 5:2-3.

Exp 4. Decoder tuning. All models found in Experi-
ment 2, have similar denoising performance. These models
have the same latency but differ only in the operators that
are used in the encoder. We test if the denoising perfor-
mance is influenced by adjusting the operators in the de-
coder while retaining the latency. DC-NASclean M is used
as a basis. We construct three alternatives. (i) DC-NASmb,
for which the convolutional operators in the decoder are re-
placed with MBConvs (MB-k3-e3), which significantly in-
creases the latency of the model. To account for this, we
also test with (ii) DC-NASmb

1-op, where 1 instead of 2 MB-
Convs are used per layer and (iii) DC-NASmb

3-lay where we
reduce the number of decoder layers by one. Method (ii)
and (iii) relate to scaling c and d in Section 3.2, where scal-
ing the number of channels (b), was found more effective.
Scaling b is not considered here as this would require alter-
ing the encoder too.

In Table 5:4, we see that DC-NASmb compared to DC-
NASclean M improves the denoising performance. However,
at the cost of 13.8 ms latency increase, only caused by the
MB decoder. When reducing the complexity of the MB
decoder with DC-NASmb

1-op and DC-NASmb
3-lay, the denoising

performance reduces to the original level again, but the la-
tency is still higher than for DC-NASclean M.

Exp 5. DC-Net vs DC-NAS How does our model, con-
structed by search, compare to the model we manually con-
structed? DC-NAS S is searched on noisy data with a tar-
get latency set to the actual latency of DC-Net Reduced,
from Section 3.3. Since the classification branch of DC-Net
is designed for the simpler synthetic dataset, we also test
with DC-Nettail, which uses the same classification branch
as DC-NAS S.

Table 5:5, shows that DC-NAS S outperforms both DC-
Net models by at least 0.8 dB PSNR, 1% SSIM, and 5.7%
accuracy. We display the denoising results of DC-NAS S

Decoder 4

(iii) Integrated

3x3 Conv

MBConv

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

1x1 Conv

Pool + Linear

Decoder 4

Decoder 3

Decoder 2

Decoder 1

(ii) D-NAS

3x3 Conv

MBConv

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

1x1 Conv

Pool + Linear

C-NAS

(iv) Sequential

Decoder 4

Decoder 1-4:

Up Conv

Concatenate Conv x2

(i) C-NAS

Encoder - Searchable
Encoder - Manually picked
Decoder - Manually picked

Figure 8. C-NAS and D-NAS architecture. Attach
(iii) for DC-NAS and (iv) for DC-NASseq. Search-
able stages consist of a maximum of four MBConvs.

(a) Ground Truth (b) σ=0.1 (c) DC-Nettail (d) DC-NAS S

(e) Ground Truth (f) σ=0.2 (g) DC-Nettail (h) DC-NAS S

Figure 9. Denoising performance of DC-Nettail and DC-NAS S. Left to right:
clean image, noisy variant, and the denoiser output. Comparing (c) and (d),
we see better performance on a smooth plane and slightly sharper edges for
(c). With (g) and (h), we see observe a better color reconstruction for (h).

and DC-Nettail in Figure 9. We observe better denoising on
smooth planes, sharper edges and better color reconstruc-
tion for DC-NAS S.

Conclusion. We have seen that the Integrated combining
method outperforms its Sequential counterpart in denoising.
To construct the integrated model, we find that searching for
a classifier on noisy data, without taking the denoising ob-
jective into account results in the best classification perfor-
mance. Surprisingly, the search method does not influence
the denoising performance. Furthermore, replacing the con-
volutional blocks in the decoder with MBConvs and then
scaling them down does not benefit denoising efficiency ei-
ther. However, the NAS denoising experiments demonstrate
that our denoising setup is competitive and gains perfor-
mance when scaled significantly. Since up-scaling is not
of interest for our models and tuning the decoder operators
does not improve performance, our method is focused on
searching for only the encoder of the integrated model. The
models found by this approach, outperform our manually
designed models with similar latency.

5. Limitations & Conclusion

One limitation of our NAS method is its inability to alter
the decoder. It is designed this way as manually altering the
decoder does not improve efficiency. However, when tar-
geting a significantly different latency, a change in denois-

ing architecture could be optimal. Applying model scaling
to the found models is of interest, similar to the Efficient-
Nets [31, 32].

Another limitation is the fixation of β in our NAS
method. Although this improved the stability of search and
network performance, learning β while retaining a stable
search would be preferred. As this would introduce more
possibilities in the search space for optimizing efficiency.

In addition, the Integrated models already outperform
the Sequential alternatives, but latency could be optimized
further for Integrated models by running the denoising and
classification branches in parallel.

To conclude, we show that using efficient operators and
scaling methods proposed in previous work are relevant for
denoising and noisy classification. In addition, we present
the integrated model to join the two tasks efficiently. We
analyze how the performance of the Integrated model com-
pares to the Sequential model. This shows that the Inte-
grated design is more suitable across various latencies. To
simplify the design process of the joint model when target-
ing a latency, we present a NAS method. We alter an exist-
ing NAS method to improve the stability and performance
of the search. This method searches a classifier. Using the
searched classifier as a basis, we build the Integrated model.
We demonstrate that the Integrated model built using our
NAS method outperforms the manually constructed model.

References
[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Di-

rect neural architecture search on target task and hardware.
CoRR, abs/1812.00332, 2018. 2

[2] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Bar-
laud. Two deterministic half-quadratic regularization algo-
rithms for computed imaging. In Proceedings of 1st Inter-
national Conference on Image Processing, volume 2, pages
168–172 vol.2, 1994. 4

[3] Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen,
Peisong Wang, and Jian Cheng. DPNAS: neural architec-
ture search for deep learning with differential privacy. CoRR,
abs/2110.08557, 2021. 2

[4] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair DARTS: eliminating unfair advantages in differentiable
architecture search. CoRR, abs/1911.12126, 2019. 2

[5] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on Image
Processing, 16(8):2080–2095, 2007. 1, 2

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[7] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 3

[8] Bappaditya Dey, Sandip Halder, Kasem Khalil, Gian
Lorusso, Joren Severi, Philippe Leray, and Magdy A. Bay-
oumi. SEM image denoising with unsupervised machine
learning for better defect inspection and metrology. In Ofer
Adan and John C. Robinson, editors, Metrology, Inspec-
tion, and Process Control for Semiconductor Manufacturing
XXXV, volume 11611, page 1161115. International Society
for Optics and Photonics, SPIE, 2021. 1

[9] Chi-Mao Fan, Tsung-Jung Liu, and Kuan-Hsien Liu. SUNet:
Swin transformer UNet for image denoising. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS).
IEEE, may 2022. 2

[10] Shuhang Gu, Yawei Li, Luc Van Gool, and Radu Timofte.
Self-guided network for fast image denoising. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2019. 1

[11] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with application
to image denoising. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2862–2869, 2014. 1,
2

[12] Javier Gurrola-Ramos, Oscar Dalmau, and Teresa E.
Alarcón. A residual dense u-net neural network for image
denoising. IEEE Access, 9:31742–31754, 2021. 1, 2

[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3. CoRR, abs/1905.02244,
2019. 2

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 2

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. CoRR, abs/1709.01507, 2017. 5

[16] Yibo Hu, Xiang Wu, and Ran He. TF-NAS: rethinking three
search freedoms of latency-constrained differentiable neural
architecture search. CoRR, abs/2008.05314, 2020. 1, 2, 5, 6,
11

[17] Ding Liu, Bihan Wen, Jianbo Jiao, Xianming Liu,
Zhangyang Wang, and Thomas S. Huang. Connecting im-
age denoising and high-level vision tasks via deep learning.
CoRR, abs/1809.01826, 2018. 1, 2

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
differentiable architecture search. CoRR, abs/1806.09055,
2018. 2

[19] Pengju Liu, Hongzhi Zhang, Kai Zhang, Liang Lin, and
Wangmeng Zuo. Multi-level wavelet-cnn for image restora-
tion. CoRR, abs/1805.07071, 2018. 2

[20] Damian J. Matuszewski and Ida-Maria Sintorn. Reducing the
u-net size for practical scenarios: Virus recognition in elec-
tron microscopy images. Computer Methods and Programs
in Biomedicine, 178:31–39, 2019. 1, 3

[21] Sameera V. Mohd Sagheer and Sudhish N. George. A review
on medical image denoising algorithms. Biomedical Signal
Processing and Control, 61:102036, 2020. 1

[22] Marcin Możejko, Tomasz Latkowski, Łukasz Treszczotko,
Michał Szafraniuk, and Krzysztof Trojanowski. Superkernel
neural architecture search for image denoising, 2020. 2

[23] James O’Neill. An overview of neural network compression.
CoRR, abs/2006.03669, 2020. 2

[24] Bumjun Park, Songhyun Yu, and Jechang Jeong. Densely
connected hierarchical network for image denoising. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 2104–2113,
2019. 2

[25] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. CoRR, abs/1802.03268, 2018. 2

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. 2

[27] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Inverted residuals and
linear bottlenecks: Mobile networks for classification, detec-
tion and segmentation. CoRR, abs/1801.04381, 2018. 1, 2,
3

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015. 2

[29] Prabhishek Singh and Achyut Shankar. A novel optical im-
age denoising technique using convolutional neural network
and anisotropic diffusion for real-time surveillance applica-
tions. Journal of Real-Time Image Processing, 18(5):1711–
1728, Oct 2021. 1

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
and Quoc V. Le. Mnasnet: Platform-aware neural architec-
ture search for mobile. CoRR, abs/1807.11626, 2018. 2

[31] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. CoRR,
abs/1905.11946, 2019. 1, 2, 3, 8

[32] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller mod-
els and faster training. CoRR, abs/2104.00298, 2021. 2, 3, 8,
11

[33] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004. 3

[34] Zhendong Wang, Xiaodong Cun, Jianmin Bao, and
Jianzhuang Liu. Uformer: A general u-shaped transformer
for image restoration. CoRR, abs/2106.03106, 2021. 2

[35] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search.
CoRR, abs/1812.03443, 2018. 2, 11

[36] Jiqing Wu, Radu Timofte, Zhiwu Huang, and Luc Van Gool.
On the relation between color image denoising and classifi-
cation. arXiv preprint arXiv:1704.01372, 2017. 2

[37] Yuxin Wu and Kaiming He. Group normalization. CoRR,
abs/1803.08494, 2018. 3

[38] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
SNAS: stochastic neural architecture search. CoRR,
abs/1812.09926, 2018. 2

[39] Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and
Wanli Ouyang. β-darts: Beta-decay regularization for differ-
entiable architecture search, 2022. 2

[40] Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen.
IR-NAS: neural architecture search for image restoration.
CoRR, abs/1909.08228, 2019. 2

[41] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning
of deep CNN for image denoising. CoRR, abs/1608.03981,
2016. 1, 2

[42] Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet:
Toward a fast and flexible solution for CNN-based im-
age denoising. IEEE Transactions on Image Processing,
27(9):4608–4622, sep 2018. 1

[43] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. CoRR, abs/1707.01083, 2017. 2

A. Efficient Classification: Additional results
In Section 3.1, we compare the performance of MBConv

operations with normal convolutions. We present the results
for scaling the MBConv and Conv models.

Exp. 2: MBConv width & expansion rate scaling.
Since MBConv layers can be used to improve efficiency, we
question how to further reduce the MB model’s FLOP size.
We compare two options: (i) reducing the expansion rate
and (ii) scaling the width of the network. We take MB4-L
as starting model, as this is our best and largest model.

From the MB models with size S in Table 6, MB1-S per-
forms the worst. It only has a reduced expansion rate from 4
to 1. MB4-S, which is obtained by scaling the width of MB-
L, increases classification performance by only 0.4%. How-
ever, when slightly reducing MB4-L’s width and expansion
rate, we derive MB2.5-S, which reaches 58.4% accuracy,
significantly outperforming both other S-sized MB models.
So the combination of the two methods is most effective.

Exp. 3: Conv width scaling. In this experiment, we
compare the width scaling of the Conv-L model. Table
6 shows that all S-sized MB models outperform Conv-S,
MB2.5-S even by 3.0%. MB2.5-M also outperforms Conv-
M, by 2.7%. Therefore, scaling is more efficient for the MB
models than the Conv models when optimizing for FLOPs.

Exp. Model Size Exp. rate FLOPs (K) ↓ Lat. (ms) ↓ Acc (%) ↑

1-3

Conv-L L - 447 0.336 63.2
MB1-S S 1 177 0.300 56.2
MB2.5-M M 2.5 350 0.384 64.1
MB4-L L 4 424 0.468 64.9

2-3 MB2.5-S S 2.5 178 0.390 58.4
MB4-S S 4 188 0.403 56.6

3 Conv-S S - 163 0.281 55.4
Conv-M M - 345 0.317 61.4

Table 6. Classification baseline and reduced models, designed for
three different FLOP targets: {S, M, L}, to compare scaling meth-
ods: expansion rate and model width. Each section of rows is used
by the experiments from Sec. 3.1 defined in the Exp. column. MB
models scale down more efficiently than normal Conv models.

B. Search space
In Section 4.1, different variations of the TF-NAS search

space are used [16]. Table 7 displays the candidate oper-
ations and for which search space size they are used. The
search space with 4 operators is constructed using the MB-
Convs without SE-layer, as this is most common in recent
NAS methods [32, 35]. For the 6-operator search space, we
add the possibility of using an SE layer on the operators
where the kernel size is three and the expansion rate is three
or six. We use the two smallest operators as they can be
used for smaller target latencies too. The search space with
8 operators simply uses all combinations.

Name Kernel Expansion rate SE-layer 4 6 8

MB-k3-e3 3 3 - ✓ ✓ ✓
MB-k3-e6 3 6 - ✓ ✓ ✓
MB-k5-e3 5 3 - ✓ ✓ ✓
MB-k5-e6 5 6 - ✓ ✓ ✓
MB-k3-e3-se 3 3 ✓ - ✓ ✓
MB-k3-e6-se 3 6 ✓ - ✓ ✓
MB-k5-e3-se 5 3 ✓ - - ✓
MB-k5-e6-se 5 6 ✓ - - ✓

Table 7. Overview of the candidate blocks for the different search
space sizes {4, 6, 8}. MBConv operators are used with different
kernel sizes k, expansion rate e and in- or excluding the squeeze-
and excitation-layer.

C. Learned vs. Removed β: Additional results
In Experiment 1 of Section 4.1, we test the influence of

removing β from the search approach. The models with Re-
moved β significantly outperform the models with Learned
β in accuracy. Besides, the found models are more similar
for Removed than Fixed, Removed β differs only 0.04ms
and 0.2% accuracy, while Learned β differs 0.57ms and
1.4% accuracy. This indicates that the search for Removed
is more stable.

Type Search id LAT (ms) ↓ Acc (%) ↑

Removed β
1 5.85 86.2
2 5.81 86.4

Learned β
1 5.04 84.9
2 4.47 83.5

Table 8. Compares four searched models with target latency 6 ms.
Trained on clean images. Two models are searched without β and
the other two using learned β. Removed outperforms learned β.

3
Background

3.1. Convolutional & MBConv operator
To understand the MBConv operator, knowledge of the convolutional operator and the depth-wise

separable convolution is required. This section will take you through this required knowledge and then

explain the MBConv operator.

3.1.1. Convolution
In the field of deep learning, convolutions are mainly used in convolutional layers. Specifically,

convolutional layers are used to find patterns in data presented in a grid. Images are a typical example

of such a grid, as images are a series of pixels ordered in a grid. The value of the pixel denotes the

brightness of that pixel. These grids, the in- and output of the convolutional operators, are also called

feature maps.

The convolutional layer uses a matrix called the filter to extract the features from the input images. The

filter matrix has dimensions n x n and is used in the dot product with a part of the image with the same

dimensions, see Figure 3.1. The spatial dimension of the filter, 3 x 3 in our case, is smaller than the

image. To perform the convolutional operation on the entire image, the filter slides over the full image.

For every location of the filter on the input, the dot product is added to the result. So the second dot

product, created by the green window, is added to the green pixel in the result.

iH x iW = 6 x 6

fH x fW = 3 x 3

Figure 3.1: Visualization of a convolutional operation with channel dimension = 1.

In the previous example, our image had only one channel, like a grayscale image. For an RGB image,

the input would have 3 channels, the filter should match this number of channels. In Figure 3.2, the

process is visualized with filter dimension 3 x 3 x 3. To calculate one output pixel, we still take the dot

product between the filter and the red highlighted part of the input. Taking the dot product with more

channels is similar to taking the dot product between the matching channels (e.g. red input - red filter)

and adding the result. In Figure 3.2, the ’4’ in the output is, therefore, a weighted combination of all

values in the red cube. Consequently, a normal convolution fuses spatial and channel information.

14

3.1. Convolutional & MBConv operator 15

iH x iW = 6 x 6 x 3

fH x fW = 3 x 3 x 3

Figure 3.2: Visualization of a convolutional operation with channel dimension = 3.

If the convolutional layer uses multiple filters, the output of the layer will have the same amount of

channels. In Figure 3.3, we see that for each filter, the described process is used to create a 4 x 4 matrix.

These 2 matrices are stacked and form the output of the layer, with dimension 4 x 4 x 2. Therefore, the

number of filters corresponds to the number of channels in the output. At the same time, the number of

channels in the filters corresponds to the number of input channels.

iH x iW = 6 x 6 x 3
fH x fW = 3 x 3 x 3 4 x 4 x 1

oH x oW = 4 x 4 x 2

Figure 3.3: Visualization of a convolutional operation with 2 filters and channel dimension = 3.

3.1.2. Depth-wise convolution
In the normal convolution operator, each value in the result fuses input values from different channels

and spatial locations. Take Figure 3.2 as an example, the ’2’ in the result is a combination of all the

values in the red box. On the contrary, the depth-wise convolution keeps the channels separate. It does

this by taking the dot product of the matching channels (e.g. input green - filter green) and putting

it in the corresponding output channel but not adding it together as before. See Figure 3.4. Because

the channels are kept separate in the depth-wise convolution, the operation needs significantly less

computational power than the normal convolution. The depth-wise convolution only performs spatial

information fusion.

3.1. Convolutional & MBConv operator 16

iH x iW = 6 x 6 x 3
fH x fW = 3 x 3 x 3

oH x oW = 4 x 4 x 3

Figure 3.4: Depth-wise convolution visualization, the convolution only combines the values in the same channel.

3.1.3. Point-wise convolution
The point-wise convolution does the opposite of the depth-wise convolution. Instead of keeping the

input dimensions separate, it keeps the spatial pixels separate and fuses the channels. This is done

by performing a normal convolution with a filter dimension of 1 x 1 x ci, where ci is the number of

input channels. Because the filters of the point-wise convolution are small, it is a computationally cheap

method to increase or decrease the number of channels of the input. The point-wise convolution only

performs channel information fusion.

5 6 2 4 0

2 4 5 4 5

6 7 9 4 5

9 3 4 2 5

7 8 6 9 3

4
1

3

4 9 2 5 8 2

5 6 2 4 0 3

2 4 5 4 5 9

6 7 9 4 5 0

9 3 4 2 5 6

7 8 6 9 3 2

=4 9 2 5 8 2

5 6 2 4 0 3

2 4 5 4 5 9

6 7 9 4 5 0

9 3 4 2 5 6

7 8 6 9 3 2

4 9 2 5 8 4

5 6 2 4 0 2

2 4 5 4 5 9

6 7 9 4 5 0

9 3 4 2 5 6

7 8 6 9 3 2

4 9 2 5 8 3

5 6 2 4 0 3

2 4 5 4 5 9

6 7 9 4 5 0

9 3 4 2 5 6

7 8 6 9 3 2

Input

iH x iW = 6 x 6 x 4

2

Filter 1

fH x fW = 1 x 1 x 4

*

Output

6 x 6 x 1

oH x oW = 6 x 6 x 2

2
1

3 =3

Filter 2

Figure 3.5: Point-wise convolution visualization, the convolution only combines the values with the same spatial location.

3.1.4. MBConv
The MBConv operator is an efficient replacement for a standard convolution and is proposed in

MobileNetV2 [23]. Efficient operators aim to reduce the required computations while retaining

performance compared to the operator they replace. An MBConv operator is a combination of two

point-wise convolutions and one depth-wise convolution. We define the number of input channels

ci, output channels co, and expansion rate e. As shown in Figure 3.6, the first point-wise convolution

expands the input channels ci to ci · e. This expansion enlarges the feature space of the feature map and

combines the features across channels. These two factors increase the expressiveness of the following

depth-wise convolution, as discussed in [13]. The second point-wise convolution is used to reduce and

combine the channels again. This reduction forces the information from the larger feature map into a

smaller representation, which is more efficient than keeping the larger version. A skip-connection is

added between the in- and output feature map, similar to [12].

We emphasize that an MBConv only uses depth- and point-wise convolutions, which separates the

fusion of spatial and channel information. This should be inferior to a normal convolution that fuses

both spatial and channel information. However, the MBConv is designed under the hypothesis that

spatial and channel fusion can be decoupled [5, 14]. This allows the replacement of the convolution

with the computationally less expensive depth- and point-wise convolutions.

3.1. Convolutional & MBConv operator 17

Adding a non-linear function after a convolutional layer is standard practice to introduce non-linearity

in neural networks. In MBConv, the ReLU function [20] is used to this end. However, MBConv does

not use a ReLU function in the last point-wise convolution as [23] shows and discusses how adding a

non-linear function after the channel reduction destroys information.

ci

Input OutputExpanded feature maps

Point-wise
Conv,

ReLU

Depth-wise
Conv,

ReLU

Skip connection

Point-wise
Conv

ci ⋅ e

Figure 3.6: MBConv visualization, the convolution combines point- and depth-wise convolutions. With input channels ci and

expansion rate e.

3.2. Image Denoising 18

3.2. Image Denoising
3.2.1. Noise
Noise in an image refers to the presence of elements that are non-existent in the actual scene, which can

be observed as variations in pixel brightness, often random. Since these variations are not natural, they

result in the loss of correct image information. Noisy images are, therefore, harder to interpret for both

humans and machines.

Sources of noise in digital images are abundant, and examples are signal transmission errors, photon

shot noise in low-light environments, and sensor imperfections. Noise models are used to imitate these

real noise sources. Combining a clean image with the noise generated by a noise model results in an

image resembling an actual noisy image. This ability to create a noisy version of a clean image is helpful

for learning-based denoising approaches since those approaches require a large amount of noisy and

clean image pairs. These image pairs are used to train and test the denoising methods, where the noisy

image is the input, and the clean image is used as the training target. Since there are different sources of

image noise, there are also different methods of modeling them. We discuss the three most commonly

studied noise models.

Starting with signal-dependent noise [17], for which some knowledge of the workings of a camera is

required. Cameras measure light intensity per pixel using the photons traveling from the world to the

camera sensor. Each photon that hits a pixel in the camera sensor is converted into a charge, which

is measurable. Therefore, the intensity of a pixel is proportional to the average number of photons

hitting that pixel in a certain amount of time. This average has an uncertainty stemming from random

fluctuations in the arrival time of the photons. The Poisson distribution theoretically describes this type

of noise. It is called signal-dependent because the intensity of the pixel is related to the amount of noise

that is sampled. This noise model is mainly used to mimic noise in low-light environments.

The other noise model we explain is the one modeling signal-independent noise [17], specifically read
noise. This noise models the errors that occur while measuring the accumulated charge created by the

photons. So, this noise is independent of the signal and is simply a measurement error. Read noise

is modeled using a Gaussian distribution with zero mean. The standard deviation of the distribution

controls the level of noise.

The signal-independent noise model, which uses a Gaussian distribution, is commonly used to study

denoising methods [32, 33]. Although it does not fully capture the complexity of real-world noise sources,

it does serve as a reasonable approximation for a wide range of situations. In well-lit environments,

the Poisson distribution even becomes a Gaussian [3]. It is therefore used as noise model in this study,

visualized in Figure 3.7.

(a) std = 0.0, PSNR:

100.0, SSIM: 1.0E0
(b) std = 0.1, PSNR:

20.5, SSIM: 5.9E−1
(c) std = 0.2, PSNR:

15.1, SSIM: 3.2E−1
(d) std = 0.3, PSNR:

12.2, SSIM: 2.0E−1
(e) std = 0.4, PSNR:

10.4, SSIM: 1.4E−1
(f) std = 0.5, PSNR:

9.2, SSIM: 1.0E−1

(g) std = 0.6, PSNR:

8.4, SSIM: 7.9E−2
(h) std = 0.7, PSNR:

7.8, SSIM: 6.3E−2
(i) std = 0.8, PSNR:

7.4, SSIM: 5.5E−2
(j) std = 0.9, PSNR:

7.0, SSIM: 4.8E−2
(k) std = 1.0, PSNR:

6.8, SSIM: 4.2E−2

Figure 3.7: Different noise levels from the Gaussian distribution in the range of standard deviation (std) [0-1]. For each sample,

the PSNR and SSIM score (see Section 3.2.2), comparing the sample to the ground truth, are added to the caption. Flower image

from Imagenet [6].

3.2. Image Denoising 19

3.2.2. Metrics
The quantitative measures to evaluate the performance of the denoiser are SSIM and PSNR [30].

The Peak Signal-to-Noise Ratio (PSNR) compares the noisy image to the clean ground truth image,

it is derived from the Mean Squared Error (MSE). The benefit of PSNR over MSE is its increased

interpretability caused by the logarithm and maximum range value normalization. A higher PSNR

value indicates a better-denoised image. Equation 3.1 defines the PSNR metric, with p the number of

pixels in ground-truth image X and denoised image X̂ . A pixel intensity can be indexed using i with

Xi. MAX is the maximum range of pixel intensities which is 1 in our case.

PSNR = 10 · log10(
MAX

2

MSE

),

MSE =
1

p

p∑
i=1

(X̂i −Xi)
2

(3.1)

The Structural Similarity Index (SSIM) measures the similarity between two images [30]. Different from

PSNR, which compares images pixel by pixel, SSIM quantifies how similar the visible structures are in

the image. This is achieved by calculating the SSIM score using multiple windows of the image. For

each window pair, denoised and ground-truth, the SSIM metric is computed. The values of all windows

are combined into one SSIM score for the image. SSIM scores can range between -1 and 1, a higher score

corresponds to a better-denoised image. The mathematical definition of SSIM is complex, we therefore

refer to [30]. Figure 3.7 also shows the PSNR and SSIM score for each noise level.

PSNR and SSIM quantify different visual qualities. [30] shows how a ground-truth image can be

distorted in five different ways, visible in Figure 3.8, with each of these 5 distortions resulting in the

same PSNR score but a different SSIM score. When compared visually, there is a significant difference

in quality between the distorted images. This might indicate that the PSNR score is not able to quantify

the image quality in line with human perception. However, PSNR simply scores differently than SSIM.

Figure 3.8: (a) Original image, (b-f) Different distortions of the original image. All images have the same PSNR score, yet they are

visually different. The SSIM scores are, a: 1.0, b: 0.92, c: 0.99, d: 0.69, e: 0.71. These scores are in line with human perception.

Figure from [30].

In [24], an example is given where an original image is altered in two ways, Figure 3.9. First, by adding

a patch with a similar structure but visually significantly different. Second, by adding a barely visible

noise. The visually significant different image scored better with SSIM than the noisy variant. Therefore,

SSIM does not capture completely capture denoising performance either. However, when both SSIM

and PSNR are taken into account, they quantify denoising performance well.

3.2. Image Denoising 20

Figure 3.9: (a) Original images, (b) Patches of the images are replaced, (c) The original image with uniformly sampled noise added.

The SSIM scores with (a) as ground truth are better for (b) than (c). Even though (c) is visually better than (b). Figure from [24].

3.2.3. Loss function
Both L1 and L2 loss are popular loss functions for image denoising [17]. These losses compare the

ground truth and denoised image pixel by pixel, their definition is given in Equation 3.2. Again p the

number of pixels in ground-truth image X and denoised image X̂ . The pixel intensity can be indexed

per pixel i with Xi.

L1 =
1

p

p∑
i=1

|X̂i −Xi|,

L2 =
1

p

p∑
i=1

(X̂i −Xi)
2

(3.2)

Similar to the PSNR metric, these losses only compare the ground truth and denoised image pixel by

pixel. To address this, [34] proposes a weighted combination of L1 and SSIM, which is reported to have

the best denoising performance. Instead of using L1 in our combined loss, we use a combination of

Charbonnier [4] and SSIM loss. The Charbonnier loss behaves similarly to L1 loss for larger errors and

is smoothed for small errors by using a small constant ϵ, defined in Equation 3.3. This smoothness for

smaller values eases differential optimization [8]. The Charbonnier function is used as a loss function in

recent denoising studies [1, 9, 29].

L
Charbonnier

=
√

(L1)2 + ϵ2 (3.3)

3.2.4. U-Net
U-Net [22] was originally proposed for medical image segmentation. The model has since become

popular for denoising too [2, 7, 11], due to its hierarchical feature maps and skip connections between

the encoder and decoder. This section will explain these benefits and the U-Net architecture.

Besides normal convolutions, the U-Net architecture uses max pool and transposed convolution operators.

The max pool operator reduces the resolution of the feature map by a factor of two. It does so by dividing

3.2. Image Denoising 21

the feature maps into grids with cells of 2 x 2 pixels, as in Figure 3.10. For each of the cells, the maximum

pixel value is taken and used in the output feature map. A transposed convolution1 is similar to a normal

convolution but increases the resolution of the feature map.

-1 0

-1 0

-2 0

-1 0

4 9 2 5

5 6 2 4

2 4 5 4

6 7 9 4

4 9 2 5

5 6 2 4

2 4 5 4

6 7 9 4

4 9 2 5

5 6 2 4

2 4 5 4

6 7 9 4

Input

iH x iW = 4 x 4 x 3

9 5

7 9

Output

Max
Pooling

oH x oW = 2 x 2 x 3

Figure 3.10: Max pooling operation example.

The U-Net encoder has five layers, and its decoder has four, see Figure 3.11. Both the en- and decoder

layers follow a structure. All encoder layers have two convolutions operators, where the first convolution

doubles the number of channels in the feature map, and the second keeps the number of channels

constant. After each of the first four encoder layers, a max pooling layer is added to reduce the resolution.

All decoder layers use a transposed convolution to increase the resolution of the feature map. The

channels of this feature map are stacked with the channels of the skip connection originating from the

corresponding encoder level. This combined feature map is reduced in the number of channels by the

first normal convolution of the decoder level and then followed by another normal convolution. After

the last decoder level, a point-wise convolution is used to reduce the feature map to one channel for

gray-scale images and three channels for RGB images. Since we want to output the denoised image

with the same resolution as the input image, all the convolution operators in our U-Nets use padding,

which differs with [22].

The hierarchical feature maps form a benefit of U-Net. These are constructed by halving the resolution

after every encoder level. This significant reduction in resolution allows the network to capture the

context of the full image [22]. The decoder uses a combination of this captured context from the encoder

and the finer details preserved in the skip-connections to construct the full-size denoised image [7].

1https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11

3.2. Image Denoising 22

11
22

56
2

64641

22
4

x
22

4

channels:

re
so

lu
ti

on
:

Input
image

128128

256256

28
2

512 512

14
2

1024

5121024

256

128

64

512

256

128 64 1

Encoder feature map
Decoder feature map
Convolution, ReLU
Max pool
Transposed Convolution
Skip connection
Depth-Wise Convolution

Output:
denoised

image

Figure 3.11: U-Net architecture, similar to [22].

3.3. Image Classification 23

3.3. Image Classification
Convolutional Neural Networks (CNNs) are popular models for image classification. In a CNN,

convolutional layers are used to detect local features, such as edges and textures in the image. Max

pooling layers downsample the feature map to reduce the resolution, which improves the understanding

of the full image context. Fully connected layers then combine the feature maps for classification by

predicting a probability for each class. A simple classification model could use two convolutional

operators, each with a max pooling layer, followed by one fully connected layer. However, popular

complex classifiers [12, 25, 27], use dozens of convolutional layers and multiple fully connected layers.

For an image classification model, trained on a dataset with three different classes, the output is a vector

with three values. Each value in the vector corresponds to a class and is the predicted probability that

the input image is of that class. To construct this probability vector, a softmax is taken over the output

of the last fully connected layer. The softmax function normalizes the values between zero and one and

ensures that the values add up to one. Equation 3.4 defines the softmax, where ȳi is the output of the

fully connected layer for class i and ŷi is the corresponding class probability.

ŷi =
exp(ȳi)∑
j

exp(ȳj)
(3.4)

Taking [cat, dog, sheep] as an example, with ŷ = [0.7, 0.1, 0.2], then cat has the highest probability. The

ground truth of a cat image would be [1, 0, 0]. During training, the Cross-Entropy (CE) loss is used

to quantify the difference between these predicted probabilities ŷ and the ground truth. The CE loss

encourages models to assign high probabilities to the correct class. Larger errors in predictions are

penalized stronger, which makes the optimization process effective. To compute the CE loss, only the

prediction ŷk corresponding to the correct class k is used. The loss is then the negative logarithm of ŷk.

Since ŷk is supposed to be one, the logarithm is large when ŷk is close to zero and small when ŷk is close

to one. Equation 3.5 defines the CE loss, where ti is 1 if the input image is of class i and 0 otherwise,

and ŷi is the predicted value for class i.

LCE = −
∑
i

ti · log ŷi (3.5)

3.4. Neural Architecture Search 24

3.4. Neural Architecture Search
3.4.1. NAS Approaches
Neural Architecture Search (NAS) is used to streamline the process of designing neural networks. The

general idea is to search for an architecture in a manually defined search space. When trained, this

architecture should score well on the defined metrics. One of the key elements of NAS is the search

space definition, as searching in a poor search space cannot lead to finding a proper architecture.

To study the three most common NAS approaches, we propose a simple search space. Figure 3.12

displays the skeleton of the architecture to be searched, for each of the four blocks an operator needs

to be selected. In a human-designed architecture, each block would have a manually picked operator

assigned. Whereas with NAS, only the set of operators to choose from is human-designed. The options

are {Convolution, MBConv, Skip-connection}. The Skip-Connection is a common operator candidate as

using a skip-connection is analogous to removing the block from the network, thus altering the network

architecture. This simple search space already amounts to 34 = 81 architectures.

OutputInput

Candidate operations:

Block 1 Block 2 Block 3 Block 4

Conv MBConv Skip

Figure 3.12: Examplary search space for Neural Architecture search, consisting of 4 sequential blocks which need an operator to

be assigned. The operators can be selected from the candidate operators: Conv, MBConv and Skip-connection.

The first NAS approach uses a reinforcement learning (RL) model, which we will call an agent to avoid

confusion. This agent builds an architecture by choosing an operator for each block in the skeleton,

Figure 3.12. The generated architecture is trained, and its performance is used as a reward for the agent.

Based on the reward, the agent learns what decisions benefit the performance of the architecture. With

this knowledge, the agent can design an architecture without searching the entire discrete search space

[27, 28].

The second NAS approach is based on evolutionary algorithms (EA) [21] such as genetic algorithms [19].

In these approaches, a subset of the architectures in the search space is constructed. This subset called

the population, is trained and evaluated. For the next iterations, the population is created by combining

the architecture decisions of the best-performing architectures and then training and evaluating the

models. When iterating over this process, the non-optimal design choices will be removed, like natural

selection. Moreover, the search converges to the best-performing architectures in the discrete search

space.

Both of these NAS approaches create one or more architectures, which need to be trained and evaluated,

to then iterate extensively over this process. Since training one architecture is already time-consuming,

the full search can take over 100 GPU days. Differentiable NAS approaches [16, 18, 31] address this

issue by changing the search space to be continuous, enabling differential optimization. For which only

one large model needs to be optimized to construct an architecture. This results in a search taking 1-2

GPU days. As differentiable NAS is used in this study, we elaborate further on the approach.

3.4.2. Differentiable NAS
The key idea behind differentiable NAS is representing the architectural choices as continuous rather

than discrete. To understand this, we first propose a different perspective on the discrete choices made

in our example for which we use a search network. In the search network, instead of using one candidate

operator in each block, we use all candidate operations in parallel and perform a weighted addition of

the results, see Figure 3.13. The weights, α, change the influence each candidate operator has on the

outcome of the block. In the discrete search space, the vector αb
for block b sums to 1, and the values αb

i

can either be 0 or 1. When choosing the Conv operator in block 1, αb = [1, 0, 0] which results in the Conv
being the only operator of which the output is used, visualized in Figure 3.14a.

3.4. Neural Architecture Search 25

α
α

α

α α α α

Figure 3.13: The search network where each block executes all candidate operations in parallel and adds their results using a

weighted sum. For each block b, this sum is weighted using αb
, and each operator i in block b has its own weight αb

i .

1

0

0

αb = [1, 0, 0]

Block b

Conv

MBConv

Skip

(a) Discrete representation of the parallel

block. α’s are such that only the output of

Conv is used.

0.1

0.7

0.2

αb = [0.7, 0.2, 0.1]

Block b

Conv

MBConv

Skip

(b) Continuous representation of the

parallel block. α’s are such that the output

of all operations is combined.

Figure 3.14

We relax this representation to be continuous by allowing αb
i to range between 0 and 1, see Figure 3.14b.

The vector αb
should still sum to 1, which is achieved by taking the softmax of the vector, see Equation

3.7. In Equation 3.6, we define the weighted sum, which is also used for the continuous block. For block

b, we have the input xb
, output xb+1

, candidate operations op
b
i with i ∈ {Conv, MB, Skip} and Ab

i the

softmax of αb
i .

xb+1 =
∑
i

Ab
i · op

b
i (x

b) (3.6)

Ab
i =

exp(αb
i)∑

j

exp(αb
j)

(3.7)

When using the definition in 3.6 for all blocks in our search space, finding the optimal values for α is

analogous to finding the best candidate operation for each block. The search process for these α values

becomes differentiable as Equation 3.6 is differentiable with respect to α, and α is a continuous value. To

find the optimal values of α, the candidate operators need to perform well, which requires their weights

ω to be trained. Therefore, the search process becomes a bi-level optimization in which ω is optimized.

Using the optimized weights ω∗
, α is optimized. This process is repeated until convergence. Equation

3.8 shows the bi-level optimization.

min
α

L(ω∗, α)

s.t. ω∗ = argmin
ω

L(ω, α)
(3.8)

3.4. Neural Architecture Search 26

Obtaining the optimal weights ω∗
for each update of α is time-consuming. When O(n) updates are

required to optimize α and ω separately, then O(n2) updates are required to perform the bi-level

optimization. Instead, most differentiable NAS methods [16, 18, 31] approach ω∗
using only one update

step. Therefore, each α update requires only one ω update, resulting in O(2n) ⇒ O(n) steps for the

bi-level optimization.

When the bi-level optimization converges, one of the candidate operations for each block needs to

be selected. For block b, the candidate operation op
b
i with the highest corresponding αb

i is selected.

Selecting the operator using the max αb
i value is appropriate, as during search α is optimized using a

softmax, which is a differentiable alternative to standard max operation. The architecture constructed

using the selected operators, called the train network, is the network that is proposed by the differentiable

NAS method. This train network is subsequently trained with a clean initialization.

3.4.3. TF-NAS
The differentiable NAS (DNAS) method used in this study is TF-NAS [16]. TF-NAS suits our study

as it addresses issues in earlier DNAS methods, the classification architecture it proposes is similar to

a U-Net encoder, and it optimizes the architecture for a target latency. These three properties will be

discussed in the following sections.

Improvements over DNAS
TF-NAS addresses two main issues of earlier DNAS methods [18].

The first issue is called operation collapse. This happens when the ω of a specific operation is optimized

faster than competing operations. Such quick-to-optimize operations often have few weights to learn.

Since these operations have better-optimized weights, they perform better early in training leading to an

increase in their α value. This might cause the search procedure to select and stick with an operator

that performs well in the early stages of training but would be outperformed by another operator when

trained longer. TF-NAS addresses this issue by altering the optimization procedure of ω. One of the

changes is replacing the softmax in Equation 3.7 with a different softmax. Since these changes are used

but not further discussed in this study, we refer to [16] for further details.

The second issue with previous work [18, 31] relates to the use of skip connections in the proposed

architecture. Skip connections are used as a choice to reduce the number of blocks used in the proposed

architecture. If a skip connection has the highest α, the block will be removed from the proposed

architecture. Similar to our example search space, many NAS methods use a skip connection to compete

directly with the other candidate operations. This introduces instability in the search, where the derived

architectures remove too many blocks [16]. Therefore, TF-NAS proposes to extract the skip connection

from the parallel block. To replace them, skip connections are introduced, starting after every block and

connecting to the same point after the last convolution, where a weighted addition is performed. The

addition is weighted by a new parameter β, similar to α. This new configuration, shown in Figure 3.15,

lets the skip-connections compete amongst each other instead of against the other candidate operations.

In Equation 3.9, the definition is given, the softmax is used again to normalize β.

β4 Output
α4

Conv

α4
MB

Conv

MBConv

Block 4

α3
Conv

α3
MB

Conv

MBConv

Block 3

α2
Conv

α2
MB

Conv

MBConv

Block 2

Input
α1

Conv

α1
MB

Conv

MBConv

Block 1

β3

β2

β1

Figure 3.15: Extracting the skip connection from α and using β to weight the new skip connections in the new configuration.

xout =
∑
b

Bb · xb,

Bb =
exp(βb)∑
d

exp(βd)

(3.9)

3.4. Neural Architecture Search 27

Search space
The search space is based on the EfficientNet architecture [26]. Therefore, a classifier is searched, shown

in Figure 3.16. The first and last two stages are manually set, while the stages in between are searchable.

Each searchable stage contains between 1 and 4 blocks. A block can get any of the candidate operations

assigned. The candidate operations are MBConvs with 8 different configurations. Each operation has a

kernel size k = 3 or k = 5 for the depth-wise convolution, an expansion rate e = 3 or e = 6, and the

possibility to add a squeeze- and excitation-layer (SE-layer) [15]. All combinations of these three choices

construct the 8 different configurations listed in Table 3.1. The SE-layer is a method that introduces

additional weights to a convolutional operator. We do not further explain it, as it will not be used in this

study.

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

OutputInput

C
o

nv

M
B

C
o

nv

St
ag

e
3

St
ag

e
4

St
ag

e
5

St
ag

e
6

St
ag

e
7

St
ag

e
8

C
o

nv

Po
o

l +
 F

C

Figure 3.16: The full search space of TF-NAS, the green stages are manually chosen, while the orange stages can be searched. The

width of each orange stage indicates the number of searchable blocks it contains. The orange block shows how a stage with 4

blocks looks internally.

Name Kernel Expansion rate SE-layer

MB-k3-e3 3 3 -

MB-k3-e6 3 6 -

MB-k5-e3 5 3 -

MB-k5-e6 5 6 -

MB-k3-e3-se 3 3 ✓
MB-k3-e6-se 3 6 ✓
MB-k5-e3-se 5 3 ✓
MB-k5-e6-se 5 6 ✓

Table 3.1: Overview of the candidate MBConv operators with different kernel sizes k, expansion rate e and in- or excluding the

squeeze- and excitation-layer.

Latency optimization
TF-NAS searches an architecture with a configurable target latency. The network latency is controlled

by α and β. α controls which operators are used in the network. One operator is slower than the other.

β controls the number of blocks in a stage, reducing the operations also reduces the latency. The last

parameter influencing the latency, is the scaling factor which slightly alters the expansion rate of the

MBConvs. This MBConv scaling is further discussed in [16] and not required knowledge for this study.

The latency is taken into account by adding a latency loss to the bi-level optimization defined in Equation

3.8. For each block, the latency is predicted by performing a weighted addition of the previously

measured operator latencies. The weight is α. Equation 3.10 defines the latency prediction LAT
b

for

block b, with operators op
b
i , LAT(op

b
i) which returns the latency of a candidate operation op and Ab

i

defined in Equation 3.7. LAT() is a look-up table which can be constructed for a specific device, by

measuring the latencies of all operators.

LAT
b =

∑
i

Ab
i · LAT(op

b
i) (3.10)

3.4. Neural Architecture Search 28

The latency predicted per block is added for all blocks in a stage, again weighted but this time using

β. Combining the predicted latencies of all stages results in a total predicted latency LAT, which is

dependent on the architecture parameters α and β. TF-NAS aims to find an architecture for which

LAT equals the target latency lattarget. Therefore the latency loss should equal 0 when LAT < lattarget.

Combined with the normalization of LAT, this results in the following function to calculate the latency

loss. See Equation 3.11.

L
lat

= max(
LAT(α, β)

lattarget

− 1, 0) (3.11)

The latency loss is added to the bi-level optimization with a weight λ, which is set to 0.5 in this study.

Equation 3.12 defines this updated optimization.

min
α,β

L(ω∗, α, β) + λ · L
lat

s.t. ω∗ = argmin
ω

L(ω, α)
(3.12)

References

[1] Yildiray Anagun, Sahin Isik, and Erol Seke. “SRLibrary: Comparing different loss functions for

super-resolution over various convolutional architectures”. In: Journal of Visual Communication
and Image Representation 61 (2019), pp. 178–187. issn: 1047-3203. doi: https://doi.org/10.
1016/j.jvcir.2019.03.027. url: https://www.sciencedirect.com/science/article/pii/
S1047320319301336.

[2] Long Bao et al. “Real Image Denoising Based on Multi-Scale Residual Dense Block and Cascaded

U-Net With Block-Connection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. June 2020.

[3] C. Bouman and K. Sauer. “A generalized Gaussian image model for edge-preserving MAP

estimation”. In: IEEE Transactions on Image Processing 2.3 (1993), pp. 296–310. doi: 10.1109/83.
236536.

[4] P. Charbonnier et al. “Two deterministic half-quadratic regularization algorithms for computed

imaging”. In: Proceedings of 1st International Conference on Image Processing. Vol. 2. 1994, 168–172

vol.2. doi: 10.1109/ICIP.1994.413553.

[5] François Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions”. In: CoRR
abs/1610.02357 (2016). arXiv: 1610.02357. url: http://arxiv.org/abs/1610.02357.

[6] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference on
computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[7] Chi-Mao Fan, Tsung-Jung Liu, and Kuan-Hsien Liu. “SUNet: Swin Transformer UNet for Image

Denoising”. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, May

2022. doi: 10.1109/iscas48785.2022.9937486. url: https://doi.org/10.1109%2Fiscas48785.
2022.9937486.

[8] Cheng-Yang Fu, Mykhailo Shvets, and Alexander C. Berg. “RetinaMask: Learning to predict

masks improves state-of-the-art single-shot detection for free”. In: CoRR abs/1901.03353 (2019).

arXiv: 1901.03353. url: http://arxiv.org/abs/1901.03353.

[9] Binit Gajera et al. “CT-Scan Denoising Using a Charbonnier Loss Generative Adversarial Network”.

In: IEEE Access 9 (2021), pp. 84093–84109. doi: 10.1109/ACCESS.2021.3087424.

[10] Javier Gurrola-Ramos, Oscar Dalmau, and Teresa E. Alarcón. “A Residual Dense U-Net Neural

Network for Image Denoising”. In: IEEE Access 9 (2021), pp. 31742–31754. doi: 10.1109/ACCESS.
2021.3061062.

[11] Javier Gurrola-Ramos, Oscar Dalmau, and Teresa E. Alarcón. “A Residual Dense U-Net Neural

Network for Image Denoising”. In: IEEE Access 9 (2021), pp. 31742–31754. doi: 10.1109/ACCESS.
2021.3061062.

[12] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385

(2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385.

[13] Andrew Howard et al. “Searching for MobileNetV3”. In: CoRR abs/1905.02244 (2019). arXiv:

1905.02244. url: http://arxiv.org/abs/1905.02244.

[14] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv: 1704.04861. url: http://arxiv.
org/abs/1704.04861.

[15] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In: CoRR abs/1709.01507

(2017). arXiv: 1709.01507. url: http://arxiv.org/abs/1709.01507.

[16] Yibo Hu, Xiang Wu, and Ran He. “TF-NAS: Rethinking Three Search Freedoms of Latency-

Constrained Differentiable Neural Architecture Search”. In: CoRR abs/2008.05314 (2020). arXiv:

2008.05314. url: https://arxiv.org/abs/2008.05314.

29

https://doi.org/https://doi.org/10.1016/j.jvcir.2019.03.027
https://doi.org/https://doi.org/10.1016/j.jvcir.2019.03.027
https://www.sciencedirect.com/science/article/pii/S1047320319301336
https://www.sciencedirect.com/science/article/pii/S1047320319301336
https://doi.org/10.1109/83.236536
https://doi.org/10.1109/83.236536
https://doi.org/10.1109/ICIP.1994.413553
https://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1610.02357
https://doi.org/10.1109/iscas48785.2022.9937486
https://doi.org/10.1109%2Fiscas48785.2022.9937486
https://doi.org/10.1109%2Fiscas48785.2022.9937486
https://arxiv.org/abs/1901.03353
http://arxiv.org/abs/1901.03353
https://doi.org/10.1109/ACCESS.2021.3087424
https://doi.org/10.1109/ACCESS.2021.3061062
https://doi.org/10.1109/ACCESS.2021.3061062
https://doi.org/10.1109/ACCESS.2021.3061062
https://doi.org/10.1109/ACCESS.2021.3061062
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1709.01507
https://arxiv.org/abs/2008.05314
https://arxiv.org/abs/2008.05314

References 30

[17] Saeed Izadi, Darren Sutton, and Ghassan Hamarneh. “Image denoising in the deep learning era”. In:

Artificial Intelligence Review 56.7 (July 2023), pp. 5929–5974. issn: 1573-7462. doi: 10.1007/s10462-
022-10305-2. url: https://doi.org/10.1007/s10462-022-10305-2.

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Architecture Search”.

In: CoRR abs/1806.09055 (2018). arXiv: 1806.09055. url: http://arxiv.org/abs/1806.09055.

[19] Hanxiao Liu et al. “Hierarchical Representations for Efficient Architecture Search”. In: CoRR
abs/1711.00436 (2017). arXiv: 1711.00436. url: http://arxiv.org/abs/1711.00436.

[20] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann

Machines”. In: Proceedings of the 27th International Conference on International Conference on Machine
Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077.

[21] Esteban Real et al. “Regularized Evolution for Image Classifier Architecture Search”. In: CoRR
abs/1802.01548 (2018). arXiv: 1802.01548. url: http://arxiv.org/abs/1802.01548.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks for

Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015). arXiv: 1505.04597. url:

http://arxiv.org/abs/1505.04597.

[23] Mark Sandler et al. “Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification,

Detection and Segmentation”. In: CoRR abs/1801.04381 (2018). arXiv: 1801.04381. url: http:
//arxiv.org/abs/1801.04381.

[24] Mahmood Sharif, Lujo Bauer, and Michael K. Reiter. “On the Suitability of Lp-Norms for Creating

and Preventing Adversarial Examples”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2018), pp. 1686–16868. url: https://api.semanticscholar.
org/CorpusID:3576692.

[25] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. 2015. arXiv: 1409.1556 [cs.CV].

[26] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking Model Scaling for Convolutional Neural

Networks”. In: CoRR abs/1905.11946 (2019). arXiv: 1905.11946. url: http://arxiv.org/abs/
1905.11946.

[27] Mingxing Tan and Quoc V. Le. “EfficientNetV2: Smaller Models and Faster Training”. In: CoRR
abs/2104.00298 (2021). arXiv: 2104.00298. url: https://arxiv.org/abs/2104.00298.

[28] Mingxing Tan et al. “MnasNet: Platform-Aware Neural Architecture Search for Mobile”. In: CoRR
abs/1807.11626 (2018). arXiv: 1807.11626. url: http://arxiv.org/abs/1807.11626.

[29] Zhendong Wang et al. “Uformer: A General U-Shaped Transformer for Image Restoration”. In:

CoRR abs/2106.03106 (2021). arXiv: 2106.03106. url: https://arxiv.org/abs/2106.03106.

[30] Zhou Wang et al. “Image quality assessment: from error visibility to structural similarity”. In:

IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.2003.819861.

[31] Bichen Wu et al. “FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural

Architecture Search”. In: CoRR abs/1812.03443 (2018). arXiv: 1812.03443. url: http://arxiv.
org/abs/1812.03443.

[32] Kai Zhang, Wangmeng Zuo, and Lei Zhang. “FFDNet: Toward a Fast and Flexible Solution

for CNN based Image Denoising”. In: CoRR abs/1710.04026 (2017). arXiv: 1710.04026. url:

http://arxiv.org/abs/1710.04026.

[33] Kai Zhang et al. “Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image

Denoising”. In: CoRR abs/1608.03981 (2016). arXiv: 1608.03981. url: http://arxiv.org/abs/
1608.03981.

[34] Hang Zhao et al. “Loss Functions for Image Restoration With Neural Networks”. In: IEEE
Transactions on Computational Imaging 3.1 (2017), pp. 47–57. doi: 10.1109/TCI.2016.2644865.

https://doi.org/10.1007/s10462-022-10305-2
https://doi.org/10.1007/s10462-022-10305-2
https://doi.org/10.1007/s10462-022-10305-2
https://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1711.00436
http://arxiv.org/abs/1711.00436
https://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://api.semanticscholar.org/CorpusID:3576692
https://api.semanticscholar.org/CorpusID:3576692
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
https://arxiv.org/abs/2106.03106
https://arxiv.org/abs/2106.03106
https://doi.org/10.1109/TIP.2003.819861
https://arxiv.org/abs/1812.03443
http://arxiv.org/abs/1812.03443
http://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1710.04026
http://arxiv.org/abs/1710.04026
https://arxiv.org/abs/1608.03981
http://arxiv.org/abs/1608.03981
http://arxiv.org/abs/1608.03981
https://doi.org/10.1109/TCI.2016.2644865

	Preface
	Overview
	Scientific paper
	Background
	Convolutional & MBConv operator
	Convolution
	Depth-wise convolution
	Point-wise convolution
	MBConv

	Image Denoising
	Noise
	Metrics
	Loss function
	U-Net

	Image Classification
	Neural Architecture Search
	NAS Approaches
	Differentiable NAS
	TF-NAS

	References

