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ABSTRACT
We describe our work on providing support for design 
decision making in generative design systems producing 
large quantities of data, motivated by the continuing 
challenge of making sense of large design and simulation 
result datasets. Our approach provides methods and tools 
for multivariate interactive data visualization of the 
generated designs and simulation results, enabling
designers to focus not only on high-performing results but 
also examine suboptimal designs’ attributes and outcomes,
thus discovering relationships giving greater insight to 
design performance and facilitating guidance of further 
design generation. We illustrate this by an example 
exploring building massing and envelope design 
(fenestration arrangement and external shading) with 
simulations of daylighting and heat gain. We conclude that 
the visualization techniques investigated can help designers 
better comprehend inter-relationships between variable 
parameters, constraints and outcomes, with consequent 
benefits of: finding good design outcomes; verifying that 
simulation results are reliable and; understanding 
characteristics of the fitness landscape.
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1 INTRODUCTION
While increasingly powerful computational resources are 
permitting designers to explore increasing quantities of 
design variations, challenges remain in making sense of the 
correspondingly large volume of data involved [3, 16, 17,
18, 19]. Generative design systems in particular pose such 
challenges. In this paper we present our research on using 
multivariate interactive visualization of data to support 
design space exploration, optimization and design decision 
making via generative design systems. The method
employed in this research combines parametric form 
generation with performance analysis using simulation 

software guided by a multi-objective genetic algorithm to 
fill a database with representative solutions from the design 
space. This design space can subsequently be explored 
using SQL search and filter commands. The results can be 
compared through graphic images as well as data 
depictions: scatter plots or parallel coordinate graphs.

Optimization and design space exploration via generative 
algorithms and other evolutionary techniques is becoming a 
widely adopted approach in design, engineering and other 
fields. Their use offers the opportunity to identify sets of 
well performing design alternatives, which can be used as 
design solutions and also to suggest further improvements 
for new design solutions. However, the complexities of 
problem-definition and of results-interpretation pose 
persistent challenges to effective use of evolutionary 
computing for design applications. One reason is the large 
volume of data involved, which needs to be digested by 
users. Another reason is that such systems can be ‘black 
boxes’ which tend to obscure their inner workings and thus 
the important relationships among the variables involved 
and between these variables and the outcomes. In addition, 
due to the progressive generational characteristic of most 
evolutionary methods, it is ineffective to change the search 
algorithm (the fitness function) without essentially starting 
over. This limits the “exploratory” quality of the method. 
The method we used instead employs the ParaGen model: a
Non-Destructive Dynamic Population Genetic Algorithm 
(NDDP GA) which maintains a database of all solutions 
and creates breeding populations dynamically, on demand,
differing from e.g. [22]. In this way the search direction can 
be changed at any instant without restarting the process.
This in turn allows a truer exploration of the design space.

In the next sections we first briefly recount relevant 
precedents to our work, followed by a description of our 
experimental apparatus and a specific design task case. We 
then present some results of the experiments and conclude 
with a summary and pointers for future work.

2 PRECEDENT WORK
Data visualization provides a body of knowledge and set of 
techniques which can alleviate both the large-volume and 
obscured-workings problems mentioned above. Ranging 
from Scientific Visualization through Interactive 
Information Visualization and Visual Analytics, much work
has been done and results achieved assuming that humans’
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visual pattern recognition can provide powerful insights to 
help unravel complex situations [1, 2, 3, 7]. In the work we 
present here, we have been motivated to apply some of 
these visualization techniques – especially those with 
potential for extension via interactivity – to the problems of 
making sense of the data from evolutionary computing.

2.1 Optimization processes as exploration tools
In traditional optimization, a single best solution (or a front 
of best solutions) is found for a given set of objectives 
applied to a specific problem. Optimization techniques have 
been mostly used in order to solve a specific (mono-
disciplinary or interdisciplinary; single-objective or multi-
objective) design problem by searching for an optimum 
solution. In this light, the role of optimization in design is to 
find within the design space the configuration that best 
matches desired performance goals [11]. This is 
unquestionably one of the major potentials of optimization 
techniques. However, this does not support a fully 
informative exploration of design solutions. In fact, there is 
a key difference between the process of design exploration 
and the search for an optimum solution. [4] presents this 
difference by distinguishing the design process in three 
possible types: routine process, innovative process, and 
creative process. From routine to creative, the attempt to 
describe a solution search loses potentials of precise and 
predetermined definition. A routine process is close to the 
concept of search, a creative one to a process of 
exploration. A key need in design exploration is the 
learning process of the designer [2, 3, 5, 13, 18].

There are some precedents addressing this point, promoting
optimization processes as exploration tools rather than as 
search for a specific optimum, e.g. [8, 18]. Some of the 
precedents propose solutions by focusing on the design 
objectives to be evolved during the process; the design 
variables to be set more freely; the consideration of the 
importance of the sub-optimal solutions. Among those
focusing on the design objectives, [9] proposes a GA 
system which allows the co-evolution of the fitness function 
and design solution by representing the fitness as part of the 
genotype. Focusing on the exploration of different design 
variables, some precedents allow the user to intervene in the 
process by modifying, adding and/or deleting variables, re-
defining the range of modification for variables, and 
modifying their constraints. It is for example the case of the 
work by [11], in which simulated annealing is used to assist 
in the preliminary design phase for acoustic measures, in 
which the user can optimize over materials and geometry 
either separately or simultaneously. Still, in these examples, 
once the optimization is initiated, no relevant attention 
seems to be given to sub-optima. As [12] points out, sub-
optimal solutions are usually discarded and in most of the 
precedents they do not contribute to decision making after 
optimization runs. They stress instead that ‘the discarded 
“inferior” solutions and their fitness contain useful 
information about underlying sensitivities of the system and 

can play an important role in creative decision making’, a 
view supported also by [14]. Based on this consideration, 
[12] proposes a visual method to analyze sub-optimal 
solutions. These are retained during optimization and 
represented in a fitness array visualization system called 
phi-array. Another precedent worth mentioning concerning 
a certain attention given to sub-optimal solutions is BGRID 
[10], a decision support system for the conceptual design of 
commercial office type buildings, employing GAs. It 
searches for viable design options in light of both structural 
and architectural criteria. Specifically, it is meant to support 
defining the layout of columns in floor plans including also 
lighting requirements and ventilation criteria. BGRID 
provides the user with a selection of optimal solutions to 
enhance the understanding of the underlying processes.

In contrast with the above methods, we wish to investigate 
more generalized visualization methods which both allow 
thorough examination of all data points – not only high-
fitness ones – and also support this examination with 
interactivity. Statistical exploration tools such as X-/G-/R-
Gobi [15] have such capabilities,; however, we decided to 
work here with a more design-oriented platform, ParaGen
[20, 21], described further in Section 3.

2.2 Interactive visualization of multi-variate data
The techniques existing for visualizing multi-variate data 
are many and various [3, 6, 7], some of which are also 
indicated in the section above. We have chosen to focus on 
‘parallel coordinates’ and ‘scatterplots’ for our present 
investigation, emphasizing the potential contributions of 
interactivity to these graphing techniques.

To review briefly: parallel coordinates (or ‘parallel axes’) 
are a more than century old method which consists of 
plotting all independent and dependent dimensions of data 
onto a series of parallel lines representing each dimension, 
and connecting the corresponding points with lines. Thus, 
each ‘solution’ is represented by a line comprising a visual 
‘signature’ of its inputs and outputs. A variant of this –
sometimes referred to as ‘radar’ or ‘spiderweb’ plots –
places the axes radially, forming a polar plot, with an 
advantage of compactness, but a disadvantage of legibility, 
especially for values near the pole. In our investigations 
interactivity was introduced to parallel coordinate graphing 
by enabling: a) rearrangement of the coordinate axes’ 
sequence; b) highlighting or coloring of lines; and c) 
restriction of displayed data ranges via graphical selection 
and text-field based filtering.

Scatterplots are of course very commonly used for two- and 
sometimes higher-dimensional data, for example by 
plotting data points onto three ‘physical’ axes (e.g. X, Y 
and Z) or by plotting multiple series of points (connected by 
lines or indicated by bars, etc.) differentiated by hatching, 
shading and/or symbols. Interaction for scatterplots was 
achieved by a) giving control of the data dimensions to be 
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plotted on two axes, b) enabling highlighting of data ranges 
and c) restriction of data ranges via text fields.

3 EXPERIMENTAL APPARATUS
Our research involved application of supplemental data 
visualization techniques to a previously existing interactive 
evolutionary generative design system, as described below.

3.1 ParaGen
ParaGen is a framework which utilizes a variety of 
commercial and custom written software to aid the designer 
in the exploration of good solutions [20, 21]. The system 
uses heuristic methods to direct the search toward areas of 
the solution space which the designers defines as most 
desirable. The designer can describe “desirable” either 
through multiple performance objectives or by qualitative, 
visual selections. Applications of ParaGen to date have 
been focused on architectural design problems, and as such 
combine both qualitative and quantitative performance 
aspects of a problem solution. In order to deal with both 
qualitative and quantitative information, ParaGen harvests 
both a wide range of performance data (the quantitative) as 
well as an array of visual images and data depictions (the 
qualitative). Both types of information together can aid 
designers particularly in the early phases of design.

Figure 1. Examples of different design solution images. Any images 
saved during analysis can be alternately displayed.

ParaGen makes use of parametric-associative modeling 
software to generate the geometry of the solutions, and then 
passes the digital model on to one or more simulation and 
analysis packages to determine the performance values. In 
the present work DIVA was used to evaluate daylighting 
and heat gain potential. Most modern simulation software 
also has the capability to display performance results in 
graphic form. For example Rhino/Grasshopper has many 
options for visual rendering that can include light level 
maps, interior and exterior perspectives, or other displays 
from various plugins. Most structural finite element 
software can image the deformed geometry under load or 
color coded stress information. Such images can convey 
valuable information to the designer in a qualitative way. 
Of course this same simulation software also produces 
quantitative performance values. ParaGen harvests both 
types of information and uploads it to a server where all 

quantitative data is stored in a database and linked with the 
various images that are also saved. In addition the different 
simulation models themselves as well as small animations 
or 3D VRML models can be saved and linked to the 
solution for more detailed inspection by the designer.

ParaGen makes all of this information accessible for 
exploration through a web interface. The main page shows 
an array of design/solution images that can be switched out 
for other views (any set of the saved images) by selecting 
the image type from a simple pull down menu. Figure 1
shows ten randomly selected design variations. The 
solutions shown can be filtered and sorted using another 
series of pull down menus on the web page. Using any of 
the design input parameters or performance values the 
designer can interactively select a desired set of solutions 
from the database. This selection can take the form of a 
simple max/min sort or a complex, multi-variable SQL 
query. The results are immediately displayed on the web 
page for inspection and further modification. 

The search method used by ParaGen is a Non-Destructive 
Dynamic Population Genetic Algorithm (NDDP GA). It is 
non-destructive in that all solutions are maintained in a 
database and can be recalled or searched at any time by the 
designer. Being able to see both what makes a good 
solution as well as a poor solution aids the designer in 
learning about the problem. This is a valuable capability for 
early design exploration. Dynamic populations also aid 
exploration by allowing instantaneous or interactive 
production of breeding populations for the GA. Very 
importantly, in this way fitness functions can be 
interactively altered by the designer in order to explore 
different regions of the design space. This again offers the 
designer a true exploration of the solution space. In 
addition, other means to explore the performance data are 
also available in the form of interactive graphing tools.

3.2 Interactive Graphing Methods
Two basic graphing methods were added to ParaGen for 
our present work: x-y scatter plots (with glyph control for a 
third level of information) and parallel coordinate plots, as 
described already in more detail above. The data plotted in 
both cases is controlled using the same sorts and filters 
which control the design/solution images. By plotting 
conflicting performance values, Pareto front optimality can 
be investigated. Figure 2 shows a plot of designs/solutions 
with average illuminance > 1500 lux and average 
irradiation < 2.8 W/m2. Average illuminance (nominally to 
be maximized) is plotted against average irradiation (to be 
minimized). The red dots indicate the solutions with 
floorplate area above 200 m2. The Pareto frontier is marked 
and two “red” solutions near the frontier are indicated. By 
clicking on any of the dots an image of the solution comes 
up. In this way the qualitative begins to be combined with 
the quantitative, and the graphing tools’ interactivity helps 
users of the system explore the data [3, 7] and test their 
ideas about underlying relationships within the data.
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Figure 2. Scatterplot of illuminance vs. average irradiation, with 
Pareto frontier, highlighting of floorplates over 200 m2 and 

isometric view of two selected solutions

4 CASE STUDY AND EXPERIMENT
To test our hypotheses regarding usefulness of interactive 
data visualization in design space exploration and 
optimization, we constructed an example design problem 
illustrating a multi- (or many-) objective search for design 
solutions selecting among parameters of building massing, 
fenestration and shading, and evaluating these against 
criteria relating to (interior) daylighting, thermal gain and 
construction quantity/cost. To support early-stage design
and conceptualization, emphasis was on relatively rapid 
modelling and analyses rather than more detailed ones.

4.1 Design Problem
The building model to be analyzed comprised a number of 
fixed and also variable parameters. These parameters 
correspond to design features, assumptions and constraints 
which would normally be considered within the process of 

design. For example, the total floor area of the building is 
constrained to a fixed value of 1000 m2 (an approximation 
neglecting the small variation in size of vertical circulation 
and other shaftways for varying building heights). The 
number of stories in which the 1000 m2 are distributed is an
independent variable of the model. The floor plan shape is 
set to be a rectangle; one dimension of the floor is also an
independent variable. The other dimension is based on the 
first dimension and on the distribution of the 1000 m2 on 
the (independently variable) number of stories. Four
independent variables regarding the number of windows 
regulate on each façade both the number of glazed modules 
and the number of shading elements. Specifically, each 
glazed module is connected with one horizontal and one 
vertical shading element. Total glazed surface does not 
increase proportionally to the number of glazed modules; 
instead, the proportion between the glazed surface and the
opaque surface is constrained to a fixed value for each 
façade, but this could also be made variable. The 
dimensions of the shading elements are varied based on 
additional independent parameters, resulting – even when 
discretized – in a total number of possible designs on the 
order of 1x1016, making a brute force search infeasible.
(The complete list of parameters is omitted here due to lack 
of space but is available from the authors upon request.)

Performance criteria for evaluating the fitness of generated 
designs were defined in three main categories with sub-
dimensions: daylighting, solar gain, and quantity/cost of 
construction. Daylight and solar gain were simulated for the 
location of Guangzhou (China). Daylight was measured 
based on illuminance values on the 21st September, 
h.14.00, with overcast sky; on a grid located on the entire 
top floor. It was evaluated for intensity and homogeneity (to 
be maximized). For evaluating the intensity, the average 
illuminance was calculated. For evaluating homogeneity, 
the ratio of maximum to minimum illuminance levels was 
calculated. Solar gain was assessed based on irradiation in a 
typical week, measured on the same grid as the illuminance. 
The solar irradiation was to be minimized. Costs were 
considered in reference to surfaces of the standard floor and 
its envelope (without differentiation of unit or area costs for 
different construction element types). Maximizing the floor 
areas, while minimizing the envelope area (including also 
shading elements) was one aim, and other performance 
criteria were also introduced, such as minimizing heat gain 
while maximizing homogeneity of daylightlighing. While 
recognizing that these represent a quite simplified 
assessment of a rather limited set of design variations, our 
aim was not to carry out a real architectural design 
investigation, but rather experiment with data visualization 
techniques applied to a plausible design investigation.

4.2 Design Process and Data Visualization
The data for the design problem described above were 
generated with Rhino/Grasshopper, DIVA, and ParaGen. 
ParaGen uses an NDDP GA (see section 3.1) to explore and 
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expand the data in different sections of the solution space in 
response to fitness criteria set by the designer. Changing the 
fitness function in a traditional GA is not generally an 
effective technique since once a population converges on 
one fitness function, diversity is lost which limits, or at least 
delays, the development of solutions in the direction of the 
new fitness. Because in ParaGen all solutions are retained, 
new populations can be dynamically created on the fly in 
response to changing fitness criteria [20]. In the problem 
described above, the GA was initialized with the generation 
of a little over 250 random solutions. This was followed by 
a series of explorations using different single and multiple 
fitness functions. After about 6000 solutions had been 
explored, it was decided to focus on a fitness function 
which described the desired illuminance and the 
distribution ratio levels. This was continued for the 
remainder of the run which generated some 8000 solutions. 
ParaGen can also adjust the breeding algorithm in a couple 
of ways to produce either more diversity or stronger focus 
on the fitness function. The basic breeding technique used 
is half uniform crossover, HUX, which uses a Gaussian 
distribution to find a new variable value between two being 
crossed [20, 21]. The sigma value of this distribution can be 
adjusted to allow either a looser distribution around two 
parent values or to focus the child solution more tightly 
between the parent values. The level of disruption caused 
by the HUX breeding can also be reduced by adjusting the 
ratio of crossed to non-crossed genes (variables) from the 
regular ratio of 1 out of 2 (50/50) to 1 out of 5. Both of 
these techniques were used in the later generations which 
focused on illuminance and the distribution ratio.

5 RESULTS
By assisting the designer in analyzing the population of 
design variations, the system helps to reveal relations 
between parameters and performance. This includes 
relations that are fairly obvious based on common sense or 
basic domain knowledge and also relations that are more 
difficult to predict. Various examples are provided below.

One basic relation is the association between the lowest 
average illuminance with the maximum depth of the floor 
and the minimum height of the story and windows. The 
system confirms this. Sorting the solutions based on 
ascending illuminance, the database shows that the first 52 
solutions have one story only, with floor area of 1000 m2;
while the first multi-story solution appears in position 53 (2 
stories, each of which having a floor area of 500 m2). Most 
of the 52 solutions have a square floor plan. This is 
exemplified in Fig. 3, a screen capture of some of the sorted 
solutions and the parallel axis graph plotted for the 
solutions with illuminance lower or equal to 450 lux. Out of 
20 solutions having the illuminance lower or equal to 450
lux, all have one story and 17 have the length of the 
building equal to 30 m, which is the length that gives a
nearly square floor; while all the others have the length of 
the building near to 20 m. Looking at the parallel point 

graph, this is clearly shown. The parallel point graph makes 
visually evident also that all of the solutions have the lowest 
building height and number of stories (because the 1000 m2 

are in one floor only); shading elements set to high 
horizontal and vertical lengths; an orientation of -90° or -
80°. Plotting then only the 5 solutions with illuminance 
lower or equal to 300 lux it also becomes evident that these 
are the ones having all shading elements set to their 
maximum horizontal and vertical lengths (all equal to 1 m) 
in all directions; and also with lower amounts of glazed 
surface facing south. (S orientation = 0°, to lower right.)

Figure 3. 15 solutions with lowest average illuminance. Top: 
screenshot of database, showing 15 solutions with lowest average 

illuminance, in isometric view. Bottom: parallel point graph 
plotted for 20 solutions having average illuminance lower than or 
equal to 450 lux. Height variable = 1 for all 20 solutions (circled).

Another basic relation confirmed by the system is the 
association between the highest average illuminance with 
the minimum depth of the floor and the maximum height of 
the story and windows, as shown in Figure 4. Plotting the 
solutions with illuminance higher than 2700 lux, the 
parallel point graph clearly shows that most of the solutions 
have the length of the building equal to 30 m; the others are 
very near to 30 m, which – when all solutions have a high 
number of stories (9) – leads to very narrow floors. Each 
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one of all stories has a resulting floor area of 111 m2; has 
high height (4 m); and an averagely high number of shading 
elements in all directions. Figure 4 shows all of this. Further 
evidence regarding this relation can be gained by looking at 
the scatterplots, by plotting the generated data in pairs. For 
the 27 solutions with illuminance higher than 2700 lux, Fig.
5 shows the examples of illuminance vs number of 
windows facing south; and illuminance vs orientation.

Figure 4. Solutions with highest average illuminance. 
Top: The 8 solutions with highest average illuminance.

Bottom: parallel point graph plotted for the 27 solutions having 
average illuminance higher than 2700 lux

Figure 5. Scatterplots of the 27 solutions with illuminance higher 
than 2700 lux. Left: illuminance vs number of windows facing 

south. Right: illuminance vs orientation

Typically, in order to combine very high illuminance with 
maximum floor area, the only option (absent skylights, 
clerestories, etc.) is to have a very long and narrow 

floorplan of 1000 m2 in one story only. This predictable 
relation is made evident both when sorting and filtering the 
views of the solutions and when using the parallel point 
graph, as shown in Fig. 6.

Figure 6. The image shows the solutions with average illuminance 
higher than 1150 lux and floor area of 1000 m2. Top: screenshot of 
database, illustrating 8 of the 38 solutions matching this criteria, in 

isometric view. Bottom: parallel axis graph of the 38 solutions

Using the scatterplots, the fact that also shading on the 
north façade has some relevance in obstructing daylight 
emerges; the major relevance of high stories also is evident 
(having all points except one aligned on the maximum 
height of 4). This is illustrated in Fig. 7.

Similarly, looking at the highest average irradiation, the 
parallel point graph (plotted for the 17 solutions with 
average irradiation higher than 13.5 W/m2 and illustrated in 
Fig. 8) shows that 13 solutions have the length of the 
building equal to 30 m, three solutions near to 30 m (29 m 
and 28 m) and one solution 25 m; all the solutions have the 
height of the building equal to 9 stories and the height of 
each story is 4 m for all except one (3.8 m); have an 
averagely high number of windows in all directions; and an 
averagely low shading; mostly an orientation of -90° to -
80°. The resulting floor area per story is 111 m2 for each.
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Figure 7. Scatterplots of 8 solutions with illuminance > 1150 lux,
floor area of 1000m2. Left: illuminance vs horizontal length of 

north-facing shading elements. Right: illuminance vs story height

Figure 8. Solutions with highest average irradiation, with parallel 
point graph plotted for the 19 solutions having average irradiation 

higher than 5.1 W/m2. (Note: solutions similar to Figure 4).

Figure 9. Solutions with lowest average irradiation. 
Top: The 8 solutions with lowest average irradiation.

Bottom: parallel point graph plotted for the 18 solutions having 
average irradiation lower than 0.65 lux

Figure 10. The image shows examples of solutions having 
maximum irradiation higher than 8 W/m2. Top: screenshot of the 

database, illustrating 6 examples, in isometric view. Bottom: 
parallel point graph plotted for the 6 solutions.

Looking at the minimum average irradiation, the parallel 
point graph (plotted for the 18 solutions with average 
irradiation lower than 0.65 W/m2 and illustrated in Fig. 9)
shows that all the solutions have floor area of 1000 m2 and 
one story of low height (3 m); four have the length of the
building equal to 20 m, three equal to 22 m, while the other 
11 solutions have the length of the building equal to 30 m, 
which leads to a square plan; low number of windows 
facing south; mostly an orientation of -90° to -80°.

6 SUMMARY AND FUTURE WORK
We have presented a description of our work on  applying 
various multi-variate/-dimensional data visualization 
techniques to a complex parametric-associative building 
model for design space exploration and multi-objective 
optimization. (Note that due to limitations of space, 
illustrations herein are reproduced at small sizes; for full 
images see: http://hdl.handle.net/2027.42/117408.) Our 
findings indicate that such visualization techniques do offer 
useful feedback in the use of such a model, aiding 
comprehension and modification of the design space [5, 9,
13] by introducing additional interactive data visualization 
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components to the otherwise mainly automated operations 
of evolutionary algorithms. We see too that multivariate 
interactive visualization aids in model verification, which is 
also important – even if not as glamorous as the discovery 
of unanticipated valid relationships in the data.

Further investigation of this approach should include 
development of improved and additional visualization and 
interaction capabilities, as well as experiments to compare 
the relative efficacy of the different visualizations and their 
combinations. These would be applicable both to 
conventional building types and to non-standard ones 
requiring more innovative designs for more ‘wicked’ 
situations. For example, one experiment could test the 
ability of the system’s users – e.g. students, practitioners – to 
predict the outputs (i.e. performance) of some solutions 
given only their inputs and a larger set of solutions evaluated 
also for performance. Another experiment would test the 
system’s support for reasoning from available patterns of 
inputs and outputs to interpolate or extrapolate other 
designs. In any case, we expect the graphing to aid pattern 
recognition, and such abilities would in turn increase the 
value of the system as a learning device for pedagogic 
purposes as well as more generally for reflective practice.
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