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Abstract—Federated Learning is an emerging distributed
collaborative learning paradigm adopted by many of today’s
applications, e.g., keyboard prediction and object recognition.
Its core principle is to learn from large amount of users data
while preserving data privacy by design as collaborative users
only need to share the machine learning models and keep
data locally. The main challenge for such systems is to provide
incentives to users to contribute high-quality models trained
from their local data. In this paper, we aim to answer how well
incentives recognize (in)accurate local models from honest and
malicious users, and perceive their impacts on the model accuracy
of federated learning systems. We first present a thorough
survey on two contrasting perspectives: incentive mechanisms
to measure the contribution of local models by honest users,
and malicious users to deliberately degrade the overall model.
We conduct simulation experiments to empirically demonstrate
if existing contribution measurement schemes can disclose low-
quality models from malicious users. Our results show there exists
a clear tradeoff among measurement schemes in terms of the
computational efficiency and effectiveness to distill the impact of
malicious participants. We conclude this paper by discussing the
research directions to design resilient contribution incentives.
Keywords: Federated Learning, Contribution Measurement,

Adversarial Behavior, Incentive Mechanisms.

I. INTRODUCTION

The increasing capabilities of ubiquitous sensors and smart

devices, whether in terms of computation, storage, or connec-

tivity resources, are driving services from the cloud side to

the edge of the networks [1]. Popular machine learning (ML)

services are no exception to this trend. Another critical reason

behind this trend is the privacy concern [2] of user data that is

often sensed and collected on edge devices. Users increasingly

ask for on-device learning so as to minimize sharing the data

with the cloud.

Federated Learning (FL) [3] is the emerging paradigm that

empower ML-tasks on edge devices in a privacy-preserving

manner. FL systems enable collaborative training of a ma-

chine learning model across distributed users by local model

sharing, instead of direct data exchange with the untrusted

service providers. Figure 1 illustrates a simplified federated

Fig. 1: An illustration of federated system: federator and

multiple users/participants.

system, where there are multiple users and one federator, the

light-weight central server to measure the contribution and

provide the rewards1. Users rely on their local data to train

a common model and periodically exchange their updates of

model parameters with the federator, e.g., the weights of neural

networks, until the common model converges.

As local data never leaves the users’ devices in federated

learning systems, personalized applications that also benefit

from other collaborative users thrive, e.g. text prediction [4],

voice recognition [5], and self-driving cars [6]. However,

in collaborative systems, it is more a norm than rarity that

there exist malicious users who either purposely deteriorate

the model quality or take advantage of the system without

producing real contributions (free-riders).

In this paper, we study the impact of incentive mechanisms

on the model quality of federated learning systems considering

two type of participants: i) honest participants with varying

update quality and ii) malicious participants who deliberately

1This is one of the most common configurations of federated systems [3]
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send low-quality updates. We show how incentives mech-

anisms characterize contributions made by these two types

of participants and to survey the-state-of-the-art incentive

mechanisms that lead to maximal model accuracy.

The specific contributions of this paper are summarized as

follows:

• We provide an exploratory analysis of contribution mea-

surement and incentive mechanisms in the presence of

honest participants (Section III).

• We characterize malicious behaviors that has been shown

to deteriorate model accuracy (Section IV).

• We experimentally evaluate existing contribution metrics

in the presence of malicious participants (Section V).

• We provide future research directions to better assess

users’ contribution and hence handle honest and mali-

cious participants (Section VI) .

II. BACKGROUND AND PRELIMINARY NOTIONS

Federated Learning is a machine learning setting where

multiple participants collaborate in solving a machine learning

problem, under the coordination of a central server or service

provider called federator. Each participant’s raw data is stored

locally and is not exchanged or transferred; instead, model

updates, e.g., weights of intended for immediate aggregation

are used to achieve the learning objective [7].

The federator plays the role of an orchestrator. It starts the

training process by assigning learning tasks to the participants,

initializes the global model, and aggregates the updates sub-

mitted by participants in each training round. These updates

can be either neural network weights or gradients in existing

studies.

Participants (or Users), on the other hand, locally own data

relevant to these specific training tasks. It is important that

participants have sufficient computation capability, data, and

network resources to be involved in the training process. They

use their local training data to update the global model sent

by the Federator to build their own local models.

Federated learning is an iterative learning procedure com-

posed of five steps that are summarized in Figure 2. These

steps are the following: 1. Initialization: The federator defines

a specific machine learning task and initialize the global

model. 2. Participant Selection: To maximize the model

quality and for the sake of fault tolerance, the Federator

chooses participants with a good network connection and

battery level to take part in the training process at a given

round, where one round refers to one iteration of local training

and global aggregation along with reward allocation. 3. Local
Training: Selected participants receive the initial model from

the federator and train local models using their own data.

4. Secure Aggregation: The federator averages the model

updates uploaded from partcipants without access to their local

data. 5. Reward Allocation: The federator distributes rewards

to participants based on their own contribution. All steps but

Initialization are iterated until the global model achieves a

desired performance.

Fig. 2: Protocol of Federated Learning

In real-world applications, participants can either be hon-

est, whose submitted updates are genuinely trained locally

with varying data quality, or malicious. Malicious participants

misbehave to gain more profits from the offered service or

even aim at deteriorating the whole FL ecosystem. In order

to characterize the behavior of both types of participants, we

would, however, focus on different peculiarity in response to

their presences. First, for honest users, fair reward distribution

mechanism surely encourage users’ participation, especially

those with high data quality and willing to contribute more

computational power. Designing feasible contribution mea-

surement strategies in federated learning is indispensable but

challenging since directly assessing the quality of a user’s

local data is not possible for the other participants and the

federator. Accordingly, there are a number of contribution

measurement strategies and corresponding reward systems (see

Section III). In contrast, for malicious users, it is essential

to identify the malicious nodes and the type of misbehavior.

Based on different classes of attacks, defences need to be

designed accordingly. In this paper, we present a thorough

classification of both attacks and defences.

III. ASSESSING CONTRIBUTION FOR HONEST

PARTICIPANTS

For honest Users in federated learning, Federators are sup-

posed to recruit sufficient participants to complete the large-

scale tasks with high quality. Participants are more willing to

provide high-quality data and resources if they receive rewards.

The value of the reward should relate to a participant’s

level of contribution, i.e., participants who contribute more,
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by some measures, should receive a bigger reward. Yet, a

major challenge for contribution measurement of FL systems

is data isolation caused by the fact that users keep their

raw data secret. Local updates reveal information about their

performance indirectly, since parameters of neural networks

are deep mapped features and do not carry direct information.

As a result, FL systems can measure contribution based on

updates, without requiring access to the raw data.

A. Contribution Evaluation Taxonomy

In this section, we summarize three major taxonomy con-

tribution measurement strategies applied in existing federated

learning systems. They are of evidently differences in detecting

accuracy and transmission complexity but could be suitable for

various of application scenarios.

1) Test /Self-Reported Based Contribution Evaluation:
The most straight-forward way to measure contribution is to

have participants self-report their score, as they have access

to their local data and can hence conduct the measurements.

Theoretically, self-reported contribution is not a measurement

strategy, so we would not discuss it specifically in this paper.

There are multiple ways to define the quality of data in the

context of self-reporting. The first one is just the size of the

data [8], without knowing their distribution. So in this paper,

the model owner (federator) negotiates with the mobile devices

(users) about the size of their training data. In return, each

mobile device receives the revenue. Alternatively, revenues

can depend on the accuracy of the solution to the local sub-

problems [9]

Prior to formally define the measure of users’ contributions,

we first introduce the notations and assumptions. We assume

there is a linearly decreasing valuation function v(θk) (which

is negatively related to reward portion) for user k depending

on the relative accuracy θk attained for the local sub-problem.

The protocol, however, requires a trusted third party to ensure

uniform pricing as basis and leaves it open how such a trusted

party would be realized in practice.

2) Marginal Loss Based Contribution Evaluation: The

marginal loss strategies determine the benefit that a partic-

ipant deserves according to the marginal loss that it brings

withdrawing from the alliance. It is widely adopted in Profit

Distribution Games [10], which refers to designing reasonable

profit distribution strategies among multiple contributors, such

as reward allocation for users in federated learning. We note

that computing marginal loss requires a central party, which

could be either the federator or a different trusted third party

with access to the global model. Based on the idea of marginal

loss, Richardson et al. [11] show how a payment structure can

be designed to measure contributions of different data owners

for linear regression models in a crowd-sourcing scenario as

well as assigning incentives. It determines the influence that

data points have on the loss function of the model to calculate

the decrease without a specific user owning these data points.

However, the paper merely focuses on linear regression and

hence is not of general interest. Furthermore, [12] designs

a deletion method to measure contribution of horizontal FL,

which means users hold data with same feature space and dif-

ferent ID. In contrast, Shapley Value [13] has been introduced

for vertical FL, referring to users holding data with different

feature space and same ID. While the Shapley Value can be

seen as a marginal loss-based contribution measurement, its

main idea relates to game-based incentives, so that we defer

to the respective section for a detailed explanation.

3) Similarity Based Contribution Evaluation: Marginal

loss-based strategies require the federator or a third party to

implement contribution evaluation. However, there are also

studies [14] that focus on pairwise measurement, i.e., partici-

pants evaluate each other. In this manner, the system reduces

both the trust in and the load on the central party. Having a

distributed contribution measurement further enhances robust-

ness to the central failure. Kang et. al [14] accomplishes the

pairwise contribution qualification by introducing reputation.

users apply a multi-weight subjective logic model [15] to

obtain reputation of each other. A participant gains higher

reputation by providing more positive actions that are recorded

in a blockchain for transparency. Besides the pairwise direct

reputation by users, there are also indirect reputation designed

in this model using the records of multiple federators. Lyu et.

al propose FPPDL [16] and demonstrate similarity-based qual-

ification by differential privacy generative adversarial networks

(DPGAN) [17]. In FPPDL, data provider generates artificial

samples with DPGAN, and data verifier uses its local model

to implement cross-user labeling. Then, the verifier computes

the contribution measure by the label similarity between the

data provider and verifier.

B. Incentive Mechanisms as Reaction

Here, we introduce incentive mechanism that rewards and

reacts to honest participants with different quality based on

contribution measurement. Firstly, we rigorously define FL

incentives to give a clear understanding. Then, the various

goals of incentive design are provided. Moreover, we also

survey game theory that is widely adopted incentive design.

1) Definition of Incentive Mechanism in FL: Incorpo-

rating the ideas from a multitude of studies on incentive

mechanism of federated learning, we propose the first formal

definition of incentives for FL.

Incentive Mechanism of Federated Learning: An incentive

mechanism in FL system consists of a set of rewards R
and three functions v, c, and r. The function v : R → R

assigns each reward a value. For a set of participants P ,

the function c : P → R assigns each participant a score

that measures their contribution to the system. We discussed

different contribution measurement strategies in the previous

subsection. Last, the function r : R → R assigns a reward

based on the score that c provides. The reward function r offers

rewards of monotonously increasing value, i.e., if x > y, then

(r(x)) ≥ (r(y)).
From this definition, we see that the incentive design of

federated learning include two main procedure: 1. Contribu-
tion Measurement, which is discussed above; and 2. Rewards
(punishments) Allocation. The FL systems deliver rewards
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Fig. 3: Recent studies on incentive mechanism of federated

learning.

based on the contribution using profit distribution methods

including game theory and blockchain. Rewards could be

monetary reward, generally, or other schemes such as biased

information.

2) Goals of Designing Incentive Schemes: Based on the

definition above, we examine that the incentive mechanism

designs for federated learning attempt to encourage desirable

behavior in users. More specifically, goals of an incentive

scheme generally include two main factors:

Attract Users of High Local Quality. The aggregated

results of federated learning highly depend on the quality of

participated users, including local data size and computation

resources. An incentive scheme should attract users of high

quality to join, such that the global model achieves good

performance. On the other hand, data owners of low quality

are supposed to be discouraged from joining due to the low

revenue the incentive mechanism offers.

Attract Users with Good Networking Resources. Network

transmission condition of users and the federator, or between

users are also supposed to be taken into consideration while

designing incentive mechanism, since both effectiveness and

efficiency are imperative for the system performance. Addi-

tionally, some systems apply incentive mechanism to enhance

some specific characteristics according to the objectives of

these distributed systems. For instance, [18] solves the issues

of costs and temporary mismatch between contributions and

rewards to model users’ regret user. Other examples ( [19]

, [9]) focus on improving the communication efficiency of

federated learning systems through involving transmission

time as a highly weighted factor in the utility function of

incentive mechanism.

3) Incentive Design: When participating in FL, users aim

to maximize their rewards through incentives in comparison to

the data and resources they provide to the system. Given their

specific local situation, each participant hence has a utility

function they aim to maximize. In order to determine the best

way of action, participants consider possible action plans for

themselves and the other participants. From a network resource

perspective, the overall goal is to maximize collective utility.

As a consequence, game theory is a useful methodology to

design and analyze FL incentives. In the following, we discuss

the different assumptions about participants and their relations

in the context of the resulting games and incentives.

Stackelberg Equilibrium in Non-cooperative Game.
Stackelberg games are of use if one of the players is in a

leader position while the others are followers. Thus, they are

quite suitable for FL as the federator can be seen as the

leading party. In a Stackelberg game, the followers usually first

observe the behavior of the leading party before deciding their

own actions. Concretely, the leader decides an output, and then

the followers can observe this to determine their own output

factors such as resource inputs. A limitation of the game is the

assumption that the leader should be able to fully apprehend

the behavior of the followers and thus needs to be aware of

their local utility functions. Thus, the output determined by

the leader is a profit maximization constrained by the utility

function of the followers. In this strategy, the non-cooperative

framework assumes all participants act separately. .

As the data of the participants in FL is not available to the

federator, the federator does not know the utility functions with

regard to data. Thus, Stackelberg games are only relevant when

incentivizing the contribution of network resources. So, they

can be applied to mitigate the delays in completion of each

training batch by analytically obtaining equilibrium solution

of a Stackelberg game [20].

Another Stackelberg game-based approach [9] handles the

communication efficiency of users implementing an uncoordi-

nated computation strategy during model aggregation. Specif-

ically, it models a two-stage Stackelberg game by establishing

a communication-efficient cost model for users and a reward

rate for the federator.

Resources are particularly important in the context of edge

and IoT due to the restricted capacity of the devices. Here,

Stackelberg games have been suggested for user utility func-

tions depending on the number of local iterations, i.e., local

computation power [19]. In contrast, the federator aims at

maximizing its utility in terms of the global model, trying to,

e.g., minimize the number of communication rounds needed

to reach a desirable global accuracy. However, there is not any

concrete utility function in this work.

Other studies focus on very specific scenarios for FL. In

the absence of direct communication between all participants,

incentives for adapting a relay network can be modeled

as Stackelberg games [8]. However, in a cooperative relay

network design, a larger training data set can result in a

lower probability to be relayed due to its higher bandwidth

use. As a result, the learning service pricing and cooperative

relaying should be considered jointly. Moreover, [18] makes

the assumption that the rewards can only be paid once the

federation has made a gain from their model. It thus studies

the payoff-sharing scheme on costs and temporary mismatch

between contributions and rewards of FL, focusing on waiting
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time fairness. Their proposed scheme FLI maximizes the

overall effectiveness of the data alliance, and at the same time

minimizes the imbalance of regret between users of delays

caused by the training and commercialization time.

Contract Theory Application. Contract theory is an eco-

nomical theory that regards all transactions and institutions

as a kind of contract. It then designs the optimal contract to

reduce the moral hazard, adverse selection, and extortion of the

parties under the condition of asymmetric information, so as to

ultimately improve social welfare. Contract theory can either

deal with complete contracts [21], meaning that the predefined

contract specifies the legal consequences of every possible

state, or incomplete contracts, which includes consideration

of the incentive effects of parties’ inability to make complete

contingent contracts [22].

In federated learning systems, complete contract theory [23]

has been applied due to its clear decision tree of responsibil-

ities and obligations. The federator determines the contract

items and users choose appropriate contract types based on

their own resources to maximize profits on each side. Thus,

contract theory is a type of Unbalanced Stackelberg game,

with the federator as the leader and dominant the optimiza-

tion objective of the federated learning system. However,

the federator provides multiple optional contract classes for

contract theory-based incentives, which is not possible using

Stackelberg games to enhance rewarding efficiency.

Incentive schemes based on contract theory are more robust

than Stackelberg game, in terms of computational complexity.

They allow to simulate data market transactions more real-

istically and avoid some unnecessary fine-grained operations

to enhance efficiency of the federated learning systems. Con-

cretely, contract theory allows the user to select the function

that maximizes its own utility based on the evaluation of

the quantity, quality, computing resources, and communication

capacity of the local data. To maximize its global profit, the

federator takes the computation and communication efficiency

and model accuracy of the uploaded gradient by users into

account. However, verifying the authenticity and quality of

the uploaded updates provided by the users remains difficult.

For incentive studies based on contract theory in federated

learning, Kang et al [14] address the challenges of incentive

mechanisms for participating in training and worker selection

schemes for reliable federated learning. It introduces reputa-

tion as the metric to measure the reliability and trustworthiness

of the mobile devices and combine contract theory to motivate

high-reputation mobile devices with high-quality data.

Shapley Value in Cooperative Game. The above games

are from the perspective of the federator and are based on

leadership competition or non-cooperative games. An alterna-

tive approach is given by cooperative games: the profit of at

least one party increases without reducing the profits of other

parties. Thus, the total utility increases with the participating of

multiple members. The key methodology here is the Shapley

Value [13], which evaluates the contribution of a participant as

loss experienced by the participant leaving. In this manner, the

Shapley value is independent of the order in which participants

join. It assigns a unique distribution among the parties of

a total surplus generated by the coalition of all members.

Furthermore, the Shapley Value allows using a combination

of desirable properties to define a participant’s contribution

rather than focusing on one property.

Formally, we denote the data federation F =< Users, v >
has been contributed by several users as Users =
{U1, U2, ..., Ui}, where v is the contribution value function

of this system. In federated learning scenarios, it could be

the aggregated model accuracy. The Shapley Value define the

contribution of Ui to join Users in F as a margin loss despite

the joining sequence as:

δUi(users) = v {users∪Ui} − v {users} (1)

Since the Shapley Value makes a fair distribution regardless

of the joining order, there are |Users|! joining sequences

with corresponding probabilities. The probabilities of each

sequence (or coalition) S containing Useri could easily be

obtained by |S|!(|F | − |S| − 1)!/|F |! Thus, the contribution

of Ci by Shapley Value is:

SV (F,Ci) =
∑

S⊆F\{Ci}

|S|!(|F | − |S| − 1)!

|F |! δCi(F ) (2)

There are a number of studies that use Shapley Value

for their incentive design. In vertical FL, it has been used

to calculate the grouped feature importance since features

are grouped to join data federation by multiple users [12].

Although Shapley Value also works for horizontal FL, the

reason why the authors apply Influence function is that we

need to note is that Shapley Value based distribution solution

often takes exponential time to compute with a huge com-

plexity of O(n!), where n denotes the user size. Nevertheless,

this method also sheds light on the researches in model

contribution using Shapley Value in the context of federated

learning.

The key challenge of computing the Shapley Value lies on

the need for extra training to compute the marginal contri-

bution of a user. A contribution index that reconstructs the

approximate models on different combinations of the datasets

through the intermediate results during the training process

replaces the exact Shapley value [24]. In this manner, efficient

contribution measurement becomes possible.

Last, Shapley Value has been used in combination with a

blockchain network due to its fairness and high computation

overhead. The party who can decide on a new block is selected

based on their Shapley Value [12].

IV. MALICIOUS USER UPDATES: HOW TO DETECT AND

LIMIT THE DAMAGE

In FL frameworks, machine learning tasks are massively

distributed among participants. Ideally, this large-scale distri-

bution helps ML-service providers reach more diversified data

sources and thus build stronger models. Nonetheless, in the

basic design principals of Federated Learning, user selection
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is mainly based on users’ data availability, their computational

power, and network resources, without any solid guarantees

on user reliability or trustworthiness [25]. As a consequence,

Federated Learning can be subject to various client-side attacks

with different objectives.

It has been shown in prior art [] that participants might deviate

from the intended FL protocol and try to bring damage to the

ecosystem. This malicious activity varies from simple selfish

user behavior to intentionally sending faulty contributions to

tamper with the federated model.

In the following, we characterize types of malicious user

contributions that might intentionally deteriorate model quality

and survey existing detection and prevention mechanisms that

protect against them.

A. Malicious Behaviour Characterization Criteria

Multiple state-of-the-art works have been proposed to

demonstrate the damage caused by malicious participants in

Federated Learning. It is worth mentioning that the attacks

discussed in this section are carried out during training time

either by insider malicious participants or by outsider adver-

saries that take over honest participants’ devices. Threats are

characterized according to the following criteria.

Adversarial Goal. Participants can maliciously contribute

to FL frameworks for a myriad of goals ranging from pro-

voking arbitrary damage to the system to targeted causative

violations. Offenders might try to prevent model conver-

gence, deteriorate model accuracy, incorporate backdoors in

the model, miss-classify a certain type of inputs, or even

have access to the model without actually participating in the

training process.

Number of Offenders. Adversarial behavior can be carried

by individual participants separately or multiple participants

simultaneously. The latter can either be controlled by the same

malicious party in order to bring more damage to the system

(Sybil Attacks) or can collude to achieve a common adversarial

goal.

Participants’ Background Knowledge. The background

knowledge of the attacker is a deterministic factor of the

attack severeness. For instance, they may know other honest

participants’ training data or their training parameters. They

can be aware of the mechanism applied by the federator to

detect malicious activity or of the global data distribution, and

so on.

Attack Duration. Some FL malicious behavior may require

to be carried out continuously through multiple rounds to take

effect. In this case, the attack is said to be stealthy. On the

other hand, some adversarial goals are more straightforward

to achieve and thus the attack can be carried out in a single

round.

B. Characterizing Malicious Behaviour in FL

In the following, we characterize three possible malicious

participant contributions (summarized in Table I), that might

negatively impact model quality in the FL ecosystem. We de-

scribe these attack categories according to the criteria defined

above and survey the existing state-of-the-art works that study

them.

Targeted Poisoning. In this type of malicious behaviour, an

attacker tries to inject a backdoor task of his interest in the

global model along with the main task that was initially trained

without deteriorating the model’s accuracy.This adversarial

goal can be achieved in two possible ways. The first one is

generating poisonous data locally, carrying out local training

on the malicious participant side using this faulty data, and

then sending the resulting poisonous updates to the federator

for aggregation. Generating poisonous data can be done by

simply flipping labels or by injecting naturally occurring or

artificial patterns in the feature space that is associated with

the backdoor. This malicious behavior is referred to as data

poisoning attacks in the state-of-the-art [27], [29], [30],

[34]. The second way is model poisoning where the attackers

carefully craft poisonous updates that efficiently inject the

backdoor task in the model [6], [26], [28], [31]. Both of these

attacks can be done by a single participant individually or

by multiple sibyls collaboratively [6], [29], [30], [32], [34],

[35]. To achieve model poisoning, malicious participants might

send faulty contributions over multiple training rounds till the

damage is done while the most severe attacks can successfully

inject the backdoor in a single round [6].

Untargeted Poisoning. Unlike targeted poisoning, in this

category of malicious behaviour, the attacker’s goal is to cause

a high miss-classification rate indiscriminately for testing

samples. As a consequence, the learned model is unusable

and hence the attack is essentially a denial-of-service attack.

Generally, the malicious participant does not need to carry out

data poisoning but can simply craft model updates that provoke

severe accuracy drop. Concrete instantiations of this type of

attack in the federated learning setting include [31], [32].

The impact on model accuracy can be even more aggressive

when the attacker is aware of the detection mechanism used

on the federator’s side [31] since it can adapt the pace of

sending malicious contributions to remain undetected (up to

78% accuracy drop [31]).

Free-rider. In this category of malicious behaviour, self-

interested participants want to take advantage of the federated

learning service without actually participating in it due to

the lack of data, lack of computing resources, or even for

privacy concerns. To do that, free-riding participants craft fake

updates via simple random generation or based on previous

versions of the model to pretend that they participate in

the learning process. Even though this kind of behavior has

been widely explored in the case of peer-to-peer systems,

there is only one state-of-the-art work that explores how it

applies to federated learning [33]. Although the presence of

free-riders in FL-based frameworks might seem harmless, the

behaviour of this category of participants is opposite to the

main purpose of federated learning which consists of doing

large scale distribution of ML-based tasks to have access to

more diversified and rich data sources. Free-riders can either

have no novel contributions to the system or in worse scenarios

send arbitrary updates that might negatively impact the trained
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Attack Category Attack Adversarial Goal
Number of
Offenders

Participants’ Background
Knowledge

Offense
Duration

Targeted Poisoning
Attacks

[26]
Provoke targeted misclassification

and negate the combined effect of benign agents
Single

attacker
White-box access to the model,

Access to training data
Stealthy

[27]
Assign an attacker-chosen label

to input data with a specific trigger
Sybil
attack

White-box access to the model,
Access to training data,

Access to a portion of a subset
of the feature space

Stealthy

[28]

Introduce a persistent change in a
joint meta-learning model such that,

when a user adapts it for a new classification
task, targeted misclassification occurs

Single
attacker

White-box access to the model,
Access to training data

One-shot

[29]
Provoke high testing errors for

particular subset of classes
Sybil
attack

White-box access
to the model,

Access to training data
Stealthy

[6]
Inject a backdoor task in the

model
Single

attacker

White-box access
to the model,

Access to training Data,
Knowledge regarding the
detection mechanism used

by the federator

One-shot

[30]
Provoke high testing errors for

particular subset of classes
Sybil

attack

White-box access
to the model,

`Access to training Data
Stealthy

Untargeted Poisoning
Attacks

[31]
Cause a high miss-classification

rate
Sybil
attack

White-box access
to the model,

Access to training Data,
Stealthy

[32]
Degrade the overall model

performance
Sybil
attack

White-box accessto the model Stealthy

Free-Rider
Attacks

[33]
Have access to the model without

participating in the training
Single

attacker

White-box access to the model,
Knowledge of how normal

updates look like
Stealthy

TABLE I: Characterization of malicious behavior in Federated Learning

model’s accuracy.

C. Defense Mechanisms Against Malicious Contributions

There are two possible ways to protect against malicious

contributions in Federated Learning. On one hand, the federa-

tor can implement detection mechanisms and punish attackers

once he suspects an anomaly. He can either react by reducing

their learning rate gradually or directly evict them from the

system. On the other hand, the basic Federated Learning

protocol can be enhanced by prevention mechanisms that

stop malicious behavior from occurring in the first place.

We present below some state-of-the-art mechanisms that were

proposed to detect and prevent malicious contributions in FL

frameworks.

Gradient Auditing. The purpose of this kind of protection

mechanism is to detect and punish malicious behaviour such

as model poisoning or free-riding. In this case, the federator

is assumed to be trusted and he monitors statistical changes in

model updates. The latter tries to point out suspicious updates,

and exclude them from the aggregation process or reduce their

weights. Examples of such approaches are FoolsGold [36] and

Gradient Norm Bounding [37].

Trusted Execution Environments. This a hardware-based

protection mechanism that is mostly adapted to cross-silo 2

federated learning ecosystems where the local training code

2Cross-silo Federated Learning is an FL setting that involves a small
number of relatively reliable clients, for example multiple organizations
collaborating to train a model.

on the participants-side is implemented in a Trusted Execution

Environment (TEE) such as Intel-SGX (e.g., [38]). This way,

the code run by participants is certified by the federator

to make sure that the updates they send are not malicious.

Thus, trusted execution environments prevent any attempt at

deviation from the intended FL protocol.

Gradient Sparsification. This protection mechanism limits

the effect of causative attacks in federated learning by pruning

gradients that have small magnitude, this is also referred to as

gradient compression. It has been shown in [39] that gradients

can be compressed up to a factor of 300, while maintaining the

same model accuracy. This approach was initially proposed to

reduce communication bandwidth in distributed learning but

was proved in [27] to be an effective way to protect against

targeted poisoning with a reasonable accuracy-loss/protection-

level tradeoff.

Differential Privacy Initially, differentially-private FL was

proposed to reduce information leakage about local users’ data

[40]. However, since adding noise to user updates bounds their

influence over the joint model, some state-of-the-art works

[6], [27] considered using differential privacy as a protection

mechanism to limit the damage caused by poisoning attacks.

This approach works by first clipping amplified and potentially

malicious updates, then adding Gaussian or Laplacian noise to

them. This simply reduces the impact of causative attacks but

does not entirely eliminate them. Also, adding user-level noise

potentially reduces the accuracy of the trained models.
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V. EMPIRICAL ANALYSIS

Here, we aim to quantify how the existing contribution

measurement strategies could recognize attackers and their sta-

bility under attackers. Specifically, we consider a scenario of

federated training image classifier with benign and malicious

users. We implement three popular strategies against the attack

of flipping labels.

A. Experiment Setup

The Federated Learning system under evaluation consists

of one federator and 4 users. The model to be trained is a

VGG-type [41] convolutional neural network (CNN). Each

user possesses 6000 unique data samples randomly selected

from the CIFAR10 dataset [42]. Original CIFAR-10 dataset

consists of 60000 32x32 colour images in 10 classes, with

6000 images per class.

Some of the users are malicious and perform a data poison-

ing attack. When the attackers train their local models, they

inject data noise by flipping the label with a probability p. The

label is flipped with one of the other 9 labels randomly.

The flipping probability p is varied between 10%, 30%, 50%

and 100%. The number of attackers is varied between 0 and

3.

In the following, we evaluate the user data contribution to

the global model with three mechanisms:

• Influence: The classic notion of Influence means to

measure the effects on global accuracy of individual data

points [43]. Denote the global aggregated model as θ̂
and the global model θ̂/i without the user Ui as θ̂/i.
The contribution for a data set T is then quantified as

the difference in accuracy between the two models, i.e.,

inf(Ui, T, θ) = Acc(T, θ̂)−Acc(T, θ̂/i).
• Reputation: Similar to Influence, Reputation quantifies

the influence of each user. However, the score assigned

is binary with 1 indicating that the involvement of user

C = Ui improves global accuracy. Reputation considers

several time slots (similar to global rounds). In our ex-

periment, there are ts = 5 time slots and we average the

contribution measurement of user U as Rep(Ui, T, θ) =
1
ts

∑
ts H(Acc(T, θ̂) − Acc(T, θ̂/i)), where H(x) is the

heaviside unit step function.

• Shapley: In the settings of Shapley Value, we follow the

definition and calculation of Equation 2. Four users join

this training process and the federator determines their

contributions by sequential deletion of marginal loss. The

Shapley Value could see the impact on joining order of

different users in federated learning.

The reason why we present the evaluation details of Shapley

in Section 3 while the others above is that Influence and

Reputation are relatively straight forward and we just need

to specify some parameters. However, Shapley evaluation is

also a solution to Cooperative Game whose algorithm is well

defined in existing studies. Note that all three mechanisms

are marginal loss-based, as the other types of approaches like

self-reporting are obviously unable to deal with attacks.

The experiments are conducted with library Keras-2.3 based

on Tensorflow-2.2, and executed on Dell Alienware Aurona

(20 CPUs with 32G RAM) equipped with one RTX 2018 Ti

GPU.
B. Experimental Evaluation

Fig. 4: Influence mechanism under combinations of users and

attackers. A higher value indicates a higher contribution.

Fig. 5: Reputation mechanism under combinations of users

and attackers. Higher the value, better the reputation.

Fig. 6: Average Shapley Value under combinations of users

and attackers. Higher the value, better the contribution.

Figure 4 - 6 display the measured user’s data contribution

with respectively Influence, Reputation, and Shapley. In our

experiments, we vary the number of attackers, and we vary

the flipping probability p. Here, the values of Reputation

have been normalized into [0, 1]. Thus, generally, all three

strategies succeed in recognizing attackers since we could see

from Figure 4 - 6 that the mean values of averaging honest

users are larger than those of attackers. It demonstrates the
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effectiveness of contribution measurement approaches based

on marginal loss and similarity. Additionally, overall results

also show that for malicious users, higher flipping rates may

result in lower measured contribution, which is more stable in

Figure 6 while there are fluctuations in Figure 4 and 5. And

if we consider a given flipping rate, e.g., 3 attackers with a

flipping rate of 50%, the Influence in Figure 4 of honest users

and the Influence of malicious users are almost the same with

3 attackers with a flipping rate of 10%. This exhibits the fact

that such techniques (similar in Figure 5) to quantify user

contribution is not pertinent in the case of malicious users.

Comparing the three figures, Shapley measurement in Fig-

ure 6 shares the highest capability while Influence in Figure

4 finds difficulty in recognizing attackers. This is reasonable

since Reputation in Figure 5 qualifies and sums up influence

values in multiple rounds, which also indicates the potency

after multiple global iterations of both strategies. We could

also observe that especially in Figure 6 and Figure 5, the

average value on honest and malicious users share opposite

trends on the value with increasing flipping ratio. The diversity

indicates the implicit relativity between the contribution of

the honest and the malicious users since they are all based

on marginal loss. As for Shapley, the significant difference to

Influence illustrates the importance of the impact of joining

sequences in federated learning. In addition, similarly, the

variety on different flipping level shows more discrepancies

and conforms most to our theoretical prospective on Shapely

than Influence and Reputation.

VI. RESEARCH DIRECTIONS

We have seen that incentives in federated learning require

consideration of malicious behavior as they are not necessarily

able to detect such behavior. In this section, we outline

research directions to investigate this research gap which we

believe are promising.
A. Novel Attack-Aware Incentives

As indicated by the results in Section V, designing new in-

centive mechanisms should consider attacks. One possible so-

lution may be introducing blockchain-based contribution mea-

surements with transmitted parameter records on chain [44].

Indeed, such a incentive mechanism can possibly be used

to detect attackers as those users achieve low scores in the

contribution measurement. After attack detection, malicious

users can be evicted from the system to prevent future harm.
B. Alternative Contribution Measurements and Alternative
Attacks

Our experimental evaluation in this paper considered merely

label flipping attacks and three contribution measurement

approaches. Future studies should extend these results to

other attacks and contribution measurement mechanisms. In

Section IV-B, we already identified untargeted poisoning and

Free-riding attacks as potential threats that require further

consideration in the context of incentives. An example for a

future study related to Free-riding is to evaluate whether cross-

user labeling recognizes attackers whose adversarial goal is to

have access to the model without participating in the training.

In particular, as all users just transmit and verify generated

data based on their own data, an attacker can generate new

data based on other submissions to appear as if they contribute.

We can also evaluate these contribution measurement strate-

gies in the presence of other non-causative active attacks that

aim at inferring sensitive information about participants’ data

such as class-representatives [45], data distribution [46], etc.

Although these attacks do not specifically target model quality,

they may indirectly have an influence on it.

C. New Attacks Targeting Incentives

In this paper, we primarily focused on the impact of

attacks on model accuracy. Yet, Free-riding does not primarily

target model accuracy but rather deals with parties that gain

something without contributing appropriately. As stated in

Section IV, Free-riding attacks are not yet fully explored in

the context of Federated Learning. The work presented in [33]

considers an adversarial model where lazy participants aim at

using the federated model without actually being engaged in

the training process. We believe that it could be interesting

to explore other adversarial strategies for this attack category

in the presence of incentive mechanisms. In the context of

incentives, adversaries want to maximize the profit they gain

out of the deployed incentive mechanism and simultaneously

minimize the computational effort they have to invest into

gaining from the mechanism. Concretely, a self-interested

participant carefully crafts model updates that seemingly have

high quality without doing actual local training. This is a

contrasting view of attack-aware incentive design in terms of

adversarial goals that are equally undesirable as participants

are less likely to be incentivized to contribute honestly if

incentives can be gamed.

VII. CONCLUSION

Motivated by the increasing threat of malicious users on

federated learning systems, we presented exploratory analy-

sis on how contribution measurement strategy of incentive

mechanisms can characterize attackers. We surveyed existing

attacks on model accuracy and highlighted that they can have a

detrimental impact on incentive measures. Through federatedly

training a deep image classifier, we evaluated how simple label

flipping attacks can degrade the performance of the state-of-

the-art incentive measures. Based on empirical evaluation and

observations, we discuss future research directions. Specifi-

cally, it is imperative to design new incentive mechanisms that

are resilient to novel attacks circumventing the detection of

incorrect data. We also highlight how free-rider attacks with

the goal of gaining unjustified rewards is a largely unexplored

but critical threat.
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