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Radar Point Cloud-Based Continuous Human
Activity Classification Using Rény1 Entropy
Segmentation Methods

Nicolas C. Kruse", Member, IEEE, Alec Daalman", Francesco Fioranelli"”, Senior Member, IEEE,
and Alexander Yarovoy, Fellow, IEEE

Abstract—Classification of human activities performed sequen-
tially and with unconstrained durations using radar sensors
has been studied in this work. A novel processing pipeline
comprising a sequence segmentation stage, a segment processing
stage, and a classification stage has been proposed to address
this challenge. Specifically, the segmentation stage has been
implemented by monitoring Rényi entropy for fluctuations in
the radar data, with the entropy, derived from micro-Doppler
spectrograms, functioning as a descriptive quantity of the activity
being performed. The method has been experimentally verified on
a challenging, publicly available dataset collected with a network
of five simultaneously operating pulsed ultrawideband radars.
Classification performance has been compared to reference works
in the literature on the same dataset, and a test accuracy and
macro FI-score of 89.3% and 82.0% have been, respectively,
demonstrated.

Index Terms—Human activity classification, radar network,
Rényi entropy.

I. INTRODUCTION

UTOMATED human monitoring is a beneficial capabil-

ity for healthcare professionals. Systems that offer these
capabilities can monitor, e.g., vital signs [1], [2], [3], detect
harmful events such as falls [4], [5], and can ensure a timely
response of relevant personnel to assist vulnerable people or
alert family and carers. Wearable sensors, such as inertial
measurement units (IMUs), have been utilized for these tasks
[6], [7] but are not always feasible, as subjects may forget
or object to wear these devices. Camera-based observation is
highly dependent on lighting conditions, with darkness and
glaring reflections potentially impeding proper operation. In
addition, video-based monitoring comes with elevated privacy
concerns. In this context, radar sensing presents a remote
monitoring solution that can overcome the limitations of the
aforementioned sensor modalities and offers a promising,
versatile platform for human monitoring tasks.
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Radar-based classification of activities of daily living (ADL)
is, therefore, an active area of research, with a considerable
amount of efforts being directed to the open challenge of
continuous classification. Continuous classification here refers
to the classification of extended sequences of human activities,
with each activity of unknown duration, and with activities
smoothly transitioning into each other. Three main approaches
can be identified in the current literature on continuous activ-
ity classification: sliding window methods, recurrent neural
networks (RNN) or similar models to process the entire data
sequence, and segmentation-based methods. Sliding window
approaches include, for instance, the work in [8], where a set
of features is computed from a time-windowed amount of data,
and used as input to classifiers such as, among others, support
vector machines (SVMs). In [9], a coarse sliding window
(i.e., 30 with 10-s overlap) is employed in conjunction with
a convolutional neural network (CNN). Approaches where
activity sequences are processed in their entirety include
such classifiers as (Bidirectional) RNNs [(Bi)RNNs] [10],
[11], hybrid models consisting of CNNs and (Bidirectional)
long short-term memory [(Bi)LSTM] networks [12], [13],
gated recurrent unit networks [14], and transformer-based
models [15].

The approaches to continuous classification that focuses
on segmentation of activity sequences generally do so by
discriminating periods of motion from those without motion.
In [16], the beginning and the end of an activity are identified
based on fluctuations in Wi-Fi channel state information
(CSI) variance. A similar approach is taken in [17], where
the number of detections from the radar data is used as
an indicator of an activity starting and stopping. The short-
term average/long-term average (STA/LTA) change detection
algorithm is employed in [18] and [19] to segment the
original sequence into motion-detected intervals based on the
spectrogram envelope. Motion-detected intervals can also be
determined through machine learning methods, as demon-
strated in [20]. The activity sequence is divided into fixed-size
segments, and a CNN-LSTM network is utilized to determine
the presence of an activity. A dynamic segment duration
algorithm is proposed in [6], where an initial 1 s data segment
is processed to yield information on the bandwidth. If the
1 s segment appears very dynamic, the segment length is
extended.
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The reviewed existing approaches in the literature for con-
tinuous classification of ADL have notable disadvantages.
Sliding window methods with a nonzero overlap require input
data to be processed multiple times, degrading the computa-
tional efficiency of these solutions. Furthermore, window sizes
are primarily fixed, which may not necessarily be optimal
for the classification of different activity types in realistic
sequences. RNNs, transformers, and other neural networks that
process complete sequences are generally less computationally
lightweight than their counterparts that are designed to classify
comparatively shorter data sequences with single activities
and, in general, require a large amount of data for effective
training. Among the segmentation methods, the prevalent
means of identifying individual activities are the presence of
a pause in motion between subsequent activities, revealed by
the lack of returned power or detections in the data under test.
This pause can be absent for activities that smoothly transition
into the succeeding ones, often without a clear stop of the body
movement from one to another.

To address the above issues, in this work, a continuous ADL
classification method is proposed, which consists of three main
components: a segmentation algorithm, a segment processing
algorithm, and a classification network. Segmentation of the
input activity sequences is based on a quantity derived from
the micro-Doppler spectrograms, namely, the Rényi entropy
[21]. This scalar quantity is constructed to be representative
of the distribution of velocities at a given time [22], and
monitoring this quantity for fluctuations gives an indication
of the transition between activities. Classification of the indi-
vidual segments extracted in this way is then achieved by
first processing the data into a point cloud (PC) representation
and then utilizing a point transformer (PT) network inspired
by [23]. The proposed method, as well as two alternative
segmentation methods, is validated on a publicly available
experimental dataset, which consists of a variety of sequences
of nine human activities. It is demonstrated that favorable
performance metrics can be achieved on a challenging test
set, with a test accuracy and macro FI-score of 89.3% and
82.0%, respectively. These metrics are an improvement on
previous approaches validated on the same dataset, as detailed
in Section IV. This research is an extension of our feasibility
study in [24], where only segmentation in isolation has been
investigated. The current work expands on this by completing
an end-to-end classification approach and studying the suit-
ability of the proposed segmentation method.

The contributions in this work can be summarized as
follows.

1) A novel approach for classification of continuous
sequences of ADL, based on segmentation with Rényi
entropy, a quantity describing more complex fluctua-
tions in the spectrogram data than simpler power-based
indicators.

2) Experimental validation and performance evaluation of
the proposed method with respect to reference methods
from the literature, showing that the proposed method
outperforms the reference approaches with a leave-one-
person-out (L1PO) test accuracy and macro F/-score of,
respectively, 89.3% and 82.0%.
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Fig. 1. Proposed three-stage classification pipeline. An input sequence of
human activities in range-time format is segmented into single activities by
a segmentation algorithm, the individual segments are processed to generate
a PC format, and classification is, finally, achieved by means of a PT neural
network.

3. Point Transformer Classification

Activity Class Vector ’

3) Comparison of the proposed segmentation method with
two alternative segmentation approaches. This study
reveals that a segmentation approach based on machine
learning can be situationally more effective, achieving
an L1PO macro FI-score of 86.0%.

The remainder of this work is organized as follows. The
proposed method and the two reference segmentation methods
are described in Section II. The experimental case study,
designed to evaluate the performance of the proposed method
with respect to reference works in the literature, is outlined
in Section III. Results for the case study are presented and
discussed in Sections IV and V, with conclusions following
in Section VI

II. PROPOSED METHOD

Ethics approval for this research was granted by the TU
Delft HREC (ID 1387). The proposed classification method,
shown in Fig. 1, consists of three main elements: a sequence
segmentation algorithm, a processing algorithm for the indi-
vidual segments, and a PT neural network as a classifier. In this
section, these components will be described, as well as relevant
preprocessing steps. In addition, two alternative segmentation
methods are outlined in Section II-C.

A. Signal Model and Notation

Real-valued backscattering signal vectors are considered for
a set A/ of distributed pulsed radar systems. The cardinality
of the set NV is denoted by N. The quadrature components
of the N vectors are obtained through the application of a
Hilbert transform, and the resulting complex-valued vectors
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are reshaped into N complex-valued fast- and slow-time matri-
ces. The fast- and slow-time dimensions correspond to range
and time, respectively, and these range-time representations
are denoted by R,,.

Velocity—time (spectrogram) representations are computed
from the complex R,,. To this end, a fast Fourier transform is
first applied in the range dimension, yielding an intermediate
matrix. Subsequently, a short-time Fourier transform (STFT)
is applied to the frequency bin corresponding to the center
frequency of the system. This operation yields the spectrogram
V,:, which is the input to the subsequent step of segmentation.

B. Segmentation

Segmentation of an activity sequence is based on an earlier
feasibility study in [24]. The aim of segmentation is to divide
a continuous sequence of various activities into segments that
contain only a single activity, simplifying the subsequent task
of classification. To this end, a time-dependent quantity is
extracted from the spectrogram representation that is indicative
of the kinematics of the activity being performed. The quantity
that is selected for this purpose is the Rényi entropy H, [21],
which is defined as

H, (P) =

1 (03
—log (Zm) (1)

for 0 < @ < oo and a # 1. In the above formula, P is a discrete
probability distribution with p; being a vector of probabilities
of the outcomes making up the distribution. The parameter
a weighs the contribution of individual elements in P on the
overall entropy. For this research, the probability distribution is
instead replaced by a velocity distribution. Specifically, at time
t;, a single time bin V,;, of an input spectrogram is normalized
by dividing the time bin vector by the sum of its constituent
elements and subsequently utilized for the entropy calculation

as
1 Vo \*
() e

Changes in the distribution of velocities of the human target
result in corresponding changes in entropy extracted from
the spectrogram. Sudden entropy changes are associated with
changes in activity, and fluctuations are monitored to indicate
these activity transition events. To this end, an inequality is
established, which serves as an entropy difference threshold

iH(l/ (1) — H, (t - Tlag)| 2 Bon 3

where Ty, iS a parameter governing the time scale of fluc-
tuations that will trigger an activity transition event. oy
represents the standard deviation in entropy over a longer
interval, for example, the full duration of the activity sequence.
The parameter S is a constant that determines the required
fluctuation magnitude to indicate an activity transition.

The utilization of the Rényi entropy over alternatives such
as signal power or spectrogram envelope, such as in [19], is
motivated by the invariance of the entropy under a set of
key transformations of the distribution of velocities. Specif-
ically, the value of the Rényi entropy will remain unchanged

H, (t;) = H, (Vv,t;) =
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under both a scaling of the input velocity distribution and a
translation. A scaling of the velocity distribution occurs when
an otherwise identical motion is performed faster or slower,
or when the motion is performed in different orientations,
resulting in an altered projection of the target velocity profile
onto the radar line-of-sight. In both these cases, it is desirable
to have an unchanged entropy, as the nature of the motion
remains the same. A translation of the velocity distribution
corresponds to an offset in the bulk velocity of the target,
implying that the same motion is performed while moving.
When a human target is walking in various directions, the
entropy, thus, remains constant.

Whenever the threshold value Soy is exceeded, the precise
time is recorded, yielding a vector of transition event time
stamps. With the acquisition of the vector of transition time
stamps, the input sequence can be segmented into a set of
range-time matrices of varying durations. It is assumed that
there is a minimum duration to human activities of interest,
and a minimum segment duration is, thus, implemented as a
parameter. Segments that are shorter than this parameter 7y,
are split evenly across the adjoining two segments.

C. Alternative Segmentation Methods

Two alternative reference segmentation methods will be
employed to gauge the effectiveness of the proposed segmen-
tation approach. They are described in this section.

1) STA/LTA: STA/LTA is a triggering algorithm based on
the ratio between two moving averages of different window
sizes. The STAs/LTAs of a generic signal s(f) are given by

t

STA(s() = Y S;ﬂ) @)
r=t-T, 9%
()
LTA(s ()= ) %)
t'=t-T,

where Ty and 7 indicate the short and long window durations,
respectively. The initiation and termination of a segment are
given by the following two sets of conditions, respectively:

STA (H, (1))
TNCAD & STA (H, () > o ©)
STA (H, (1))
m <oy, & LTA(H, (1)) < 03. )

The entropy H,(t) is here taken as the specific signal of
interest, and [0y, 07, 03] are method parameters. o and 073
are thresholds that govern the required entropy increase and
decrease for detecting the onset of a segment. The required
ratio between the short- and long-term averages to indicate
the start of a segment is given by the remaining parameter 0.
Together with the short and long window durations 7'; and 77,
a total of five parameters are, thus, required to configure the
STA/LTA algorithm.

For the purpose of this case study, the optimal parameters
for the STA/LTA algorithm are determined using the built-in
genetic algorithm (GA) optimizer in MATLAB. The objective
function is a sum of two terms, both in the range [0, 1]. The
first term expresses the suitability of a segment between two
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Fig. 2. Diagram of the proposed segment processing pipeline for the generation of PC samples suitable as inputs for PT networks.

detected transitions in terms of the most occurring activity
label. The closer to 1, the better the segment captures a single
activity. The second term penalizes the difference between the
number of detected transitions and the number of transitions
in the ground-truth (GT) target vector.

2) BiLSTM for Segmentation: A machine learning-based
approach for segmentation is also investigated. Specifically,
a BiLSTM network is trained to detect transition events
from an entropy signal input H,(t). Instead of using only
a single value of the entropy as a feature for each time ¢,
a feature vector of entropies for differing values of alpha
is used as input to the BiLSTM. For this work, the feature
vector [Hy.1(?), Hoo(?), ..., Hoo(?)] is used, as it is empirically
determined to balance computational complexity and salient
information content.

The target sequence used to train this model is a binary
vector of the same length as the entropy input. At every
transition between two activities, the value of the target
sequence is “1.” It is “0” everywhere else. The target vector is
relatively sparse, as the number of transitions in a sequence is
generally orders of magnitude smaller than the duration of the
sequence in time steps. This significant sparsity hinders the
ability of the model to correctly train and predict transition
events. To alleviate this problem, it is here proposed that the
target vector is convolved with a rectangular function with
a width of approximately 0.33 s. A physical interpretation
of this convolution is the noninstantaneous nature of activity
transitions and an inevitable degree of subjectivity in defining
exactly when they happen. The value of 0.33 s is empirically
found to provide good performance without making transition
events unrealistically long. The sparsity of the target vector is
a known problem in transition detection and is tackled in a
similar manner in [25].

D. Segment Processing and Classification

Every range-time matrix containing a segment of activi-
ties is processed individually, yielding a PC representation.
The PC representations are computationally more efficient

to manipulate than using complete data matrices and allow
for classification by the powerful PT family of neural net-
works [23]. This section describes the PC processing and
classification.

1) Every segment is first evenly divided into Ny, subseg-
ments, as shown in step (1) of Fig. 2. Each subsegment
is, thus, a complex range time matrix R,,, and an FFT
along the time axis yields a set of Ny, range Doppler
maps.

A threshold function is applied, yielding a binary map
of where the signal power exceeds a fraction y of the
maximum signal power.

For the purpose of reduction of noise and clutter contri-
butions, a range gate of 2 m is additionally employed,
centered on the center of mass of each binary map,
with the assumption that the largest detected region
corresponds to the target of interest.

The three largest connected regions are then selected.
Connected region in this case refers to a set of matrix
elements that have nonzero neighbors. This step is
performed since human anatomy and kinematics dictate
a smoothly varying range-Doppler profile. Selecting the
large connected regions, thus, suppresses speckle-type
noise.

The Ngyp binary maps are subsequently used to select the
points of interest from the original Ny, range-Doppler
maps. These points form a PC with a dimension range,
Doppler, time, and signal power for each point.

For consistency between segments, a fixed number
of points is required. Thus, the PC is upsampled or
downsampled to Npys points based on this requirement.
Upsampling is achieved by duplication of existing points
in the cloud, and downsampling is achieved by uniform
subsampling of the cloud in range-Doppler space.

2)

3)

4)

5)

0)

For classification of each segment, a PT neural network is
utilized [23]. PT networks fall under the transformer family of
deep learning architectures and are suited to tasks including
object classification and scene segmentation. PCs serve as
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inputs to these networks, and a modified attention mechanism
[26] is the means of feature extraction. Details on the network
can be found in the original paper [23]. For this work, based
on previous research in [27] and inspired by the research in
[28], the architecture proposed by [23] is selected. This choice
is motivated by the demonstrated classification performance,
respectively, to two alternative architectures that have been
considered [29], [30]. Three parameters govern the imple-
mentation of the architecture into a specific neural network:
the number of transformer blocks, the number of neighbors
considered for each point, and the size of each PT layer. Based
on the previous research in [27], they are set to 4, 16, and 128,
respectively.

The PC corresponding to each individual segment is
assigned an activity label based on the primary activity per-
formed during the segment, which is determined through a
majority ruling across the total number of time steps in the
segment. An activity prediction is the output of the PT model,
which is compared to the GT for that particular segment
in order to determine the classification performance of the
method.

III. CASE STUDIES

To gauge the suitability of the proposed method for contin-
uous human activity classification, as well as study the effects
of alternative segmentation approaches, two case studies are
performed. The studies are conducted using the publicly
available dataset [31] that contains sequences of activities from
14 participants. Specifically, these case studies include the
following.

1) A sample holdout validation of the classification per-
formance of the proposed segmentation method and
two alternative segmentation methods described in
Section II-C.

2) An L1PO validation of the proposed method and the
two alternative methods to compare to reference classi-
fication approaches in the literature. L1PO validation is
further detailed in Section III-B and entails training on
data from all but one participant and testing on the data
of the omitted participant.

Comparing the LIPO and sample holdout results additionally
grants insight into potential overfitting issues associated with
any of the evaluated methods.

A summary of the parameters employed in the proposed
method, based on Rényi entropy, is given in Table I. The
selected values for these parameters are based on the segmen-
tation feasibility study in [24] and the subsequent segment
processing study in [27].

A. Dataset Description

1) Experimental Setup: The radar sensors used to cap-
ture the dataset are an ensemble of five Humatics PulsON
P410 pulsed ultrawideband (UWB) single-input—single-output
(SISO) sensors [32], operating as a network of distributed
monostatic nodes. Each radar features a center frequency of
43 GHz and a bandwidth of 2.2 GHz, yielding a range
resolution of approximately 6.8 cm. The PRF is set to

1049

TABLE I

SUMMARY OF PARAMETERS USED IN THE PROPOSED METHOD.
PARAMETERS RELATING TO SEGMENTATION ARE FOUND AT THE ToOP
AND ARE BASED ON THE FEASIBILITY STUDY IN [24], AND THOSE
RELATING TO THE SUBSEQUENT PROCESSING OF THE
SEGMENTS ARE BASED ON [27] AND ARE
FOUND AT THE BOTTOM

Parameter Value Notes

Segmentation

« 0.77 Influences dependence of entropy on velocity
values with strong intensity

Tiag 3.1s Time scale of monitored entropy fluctuations

0.3 Required fluctuation magnitude to indicate a

transition event

Processing

Ngub 6 Number of subsegments extracted from seg-
ment

0l 0.8 Threshold value for detection (binarization) of
range Doppler maps, as a fraction of maximum
signal power

Npts 1024 Number of points in the processed point cloud

TABLE I

TABLE SUMMARIZING THE KEY RADAR PARAMETERS OF EACH
PULSON P410 PULSED UWB SENSOR

Radar Parameter Value Unit

Center Frequency 4.3 GHz

Bandwidth 2.2 GHz

PRF 122 Hz

Channels SISO -
TABLE III

NINE ACTIVITY CLASSES UTILIZED IN THE CONSTRUCTION
OF THE ACTIVITY SEQUENCES

Activity

Walking Standing Up (Sitting)  Falling (Walking)
Stationary Bending (Sitting) Falling (Stationary)
Sitting Down Bending (Standing) Standing Up (Ground)

122 Hz, resulting in a maximum unambiguous velocity of
4+ 2.13 m/s. Each radar sensor is equipped with an antenna
with a pattern that is symmetric in azimuth. Combined with
the single-channel (SISO) nature of the sensors, this means
that angle-of-arrival estimation cannot be performed. The key
radar parameters are summarized in Table II.

The five sensors are arranged in a semicircle, as shown in
Fig. 3. They are spaced at regular 45° intervals with a 6.38-m
diameter of the semicircle. The activity area is a circle with a
diameter of 4.38 m, concentric to the semicircle of the sensor
network. The sensors are placed approximately 1 m above the
floor.

2) Activity Sequences: For each of the 14 participants,
30 sequences of 2 min each are captured. The activities
in the sequences are performed in random locations, facing
random directions, and at random intervals. Nine different
activities are used to construct the sequences and are listed
in Table III. Four sample activities are displayed in Fig. 4,
paired with their corresponding range-Doppler representations.
It should be noted that the Stationary class represents mul-
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Fig. 3. Photograph (top) and diagram (bottom) of the experimental measure-
ment area. Five sensors are arranged in a semicircle, spaced at regular 45 <
intervals with a 6.38-m diameter of the semicircle.

tiple static poses, such as standing still, sitting still, and
lying still after a fall. Comprehensive descriptions of all
30 sequences are provided in the accompanying public dataset
documentation [31].

B. Classification Approach

The approach for classification in the case studies conducted
in this work is given as follows: the activity sequences are
first segmented using the method under investigation. The
found segments are processed in accordance with the approach
described in Section II-D and subsequently used as input to
the PT network for classification. A weighted cross-entropy
loss function is used in the training of the PT, with the class
weights inversely proportional to the sample frequency of the
respective class. As an example, segments containing Walking
are the most numerous in the dataset and consequently are
assigned the lowest weight in the loss function. Comparing the
output of the PT to the GT for the segment yields performance
measures, in this research expressed in terms of test accuracy
and macro FI-score. Test accuracy is selected due to its
prevalence in classification tasks in the literature, and macro
Fl-score is reported as it can give a good insight into the
performance on underrepresented classes.

The validation approaches taken for the case studies fall
under two categories in terms of training/testing split.

1) An L1PO approach, where sequences from 13 of the
participants are used to train the PT, and sequences
from the remaining single participant are used to test the
model. This process is repeated for each participant, and
average performance figures are reported. This valida-
tion strategy yields the most comprehensive result, as the

IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025

TABLE IV

TEST ACCURACY AND MACRO F1-SCORE RESULTS FOR THE PROPOSED
CLASSIFICATION METHOD AND TWO REFERENCE SEGMENTATION
METHODS, DETAILED IN SECTION II-C. RESULTS ARE PRESENTED
FOR A 80%/20% SAMPLE HOLDOUT SCHEME

Method Test Accuracy Macro F1-Score
Proposed 0.909+0.003 0.853+0.005
STA/LTA 0.903+0.006 0.829+0.006
BiLSTM 0.924+0.010 0.914+0.011

capability of the model to respond to unseen participants
is evaluated.

2) A sample holdout method, where 80% of the segments
are used to train the PT model and 20% are used for
testing.

Comparing the results of the two evaluation methods gives

insight into any overfitting issues that may present themselves
for any of the methods under test.

IV. RESULTS

This section reports the results of the case studies with
related analysis and discussion.

A. Study on Segmentation Methods

Table IV contains the classification results of a comparison
between the proposed method and two reference methods. As
References, the STA/LTA and BiLSTM segmentation methods
from Sections II-C1 and II-C2 are specifically shown. Each
model is trained three times using a randomized 80%/20%
sample holdout validation to analyze statistical fluctuations.
The highest performance is achieved using the BiLSTM
segmentation method, as this approach is able to learn more
complex patterns in entropy rather than just strong fluctuations.
The proposed segmentation method outperforms STA/LTA
segmentation in terms of macro FI-score. Inspection of the
segments created with the STA/LTA algorithm reveals that
transitions are generally correctly found when transitioning
from stationary to motion and vice versa, but that complex
transitions between different types of motion are not detected
as effectively.

B. LIPO Result

Fig. 5 shows the results of the L1PO validation of the
proposed method, indicated with solid markers and lines.
Additionally included is the performance for “perfect” seg-
mentation where GT labels have been employed to yield
segments that contain a single activity only, which is assumed
to be “optimal” segmentation. These performance figures are
shown with empty markers and dashed lines. It should be
noted that this “optimal” result relies on information that is
unavailable in a real scenario and is provided to indicate the
effect of segmentation on the final classification effectiveness.

On average, the performance metrics for the segmentation
based on GT information are higher than for segmenta-
tion following the proposed method based on the Rényi
entropy. Average test accuracy for the former and latter are
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Fig. 4. Sample photographs of activities in the dataset, accompanied by corresponding range-Doppler representations. From left to right: stationary, standing

up (from the ground), walking, and bending (from sitting).

TABLE V

TEST ACCURACY AND MACRO F1 -SCORE RESULTS FOR THE PROPOSED
CLASSIFICATION METHOD AND FIVE ALTERNATIVE METHODS. GT
SEGMENTS REFERS TO THE UTILIZATION OF THE PT NETWORK
BUT WITH “PERFECT” SEGMENTATION USING THE GT DATA TO
LOCATE TRANSITIONS. THE TOP FOUR ROWS CORRESPOND
TO DIFFERENT METHODS DISCUSSED IN THIS WORK,

AND THE LOWER TWO ROWS CORRESPOND TO
REFERENCE WORKS FROM THE LITERATURE.

ALL RESULTS ARE BASED ON THE SAME
DATASET [31] AND THE SAME L1PO
VALIDATION SCHEME. THE RESULTS
IN THIS TABLE ARE FOR THE FULL
NINE-CLASS CLASSIFICATION
PROBLEM. *: [27]; §: [12]
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Method Test Accuracy  Macro F1-Score
Proposed 0.893 0.820

Proposed (GT Segments) 0.909 0.889

BiLSTM Segmentation 0.878 0.860

STA/LTA Segmentation 0.879 0.790

PT (Fixed Segments)* 0.869 0.787
CNN-BiGRU§ 0.851 -

1 23 4 5 6 7 8 9 1011 12 13 14
Participant

Fig. 5. Results for the proposed classification method, evaluated using an
LIPO testing scheme. Test accuracy and macro FI-score results are shown
for each of the 14 participants. Averages across all participants are indicated
with horizontal lines. GT acc and GT F1 refer to classification performance
achievable when GT information is available about the moments where
transitions occur, i.e., segments containing only a single activity. The averages
for this “optimal” GT segmentation are indicated with dashed lines.

90.9% and 89.3%, respectively. Notable outliers, however,
are participants #3 and #4. An important conclusion that
can be drawn is that segmentation into human-interpretable,

“perfect,” boundaries is not necessarily the best strategy for
classification. Single activity GT segments may align well
with human understanding but do not necessarily facilitate
automatic model-based classification. Breaking down complex
or long segments into kinematically more homogeneous parts
can enhance classification performance, as seen in the cases
of participants #3 and #4.

C. Comparison to Reference Methods in the Literature

Table V presents the LIPO test accuracy and macro
F1-score for the proposed method, the BILSTM segmentation

Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2025 at 11:42:07 UTC from IEEE Xplore. Restrictions apply.



1052

TABLE VI

GENERALIZATION GAPS FOR THE THREE METHODS EVALUATED IN THIS
WORK. THE GENERALIZATION GAP CONSTITUTES THE DIFFERENCE
IN PERFORMANCE BETWEEN SAMPLE HOLDOUT AND L1PO
VALIDATION AND IS INDICATIVE OF OVERFITTING ISSUES

Method Test Accuracy Macro F1-Score
Proposed 1.6% 3.1%
BiLSTM Segmentation 4.6% 5.7%
STA/LTA Segmentation 2.4% 4.3%

method, the STA/LTA segmentation method, and, finally, two
reference methods from the literature using the same dataset
[12], [27]. Additionally included is the result for classification
of segments created using the GT labeling information (GT
segments). Comparing the proposed method with the PT
operating on fixed, 2-s windows [27] reveal an increase in test
accuracy, as well as a +3.3 % increase in macro FI-score.
This improvement highlights the benefit of using adaptive
segments, mitigating the transition errors that occur when
using fixed-duration segments. The CNN-BiGRU approach in
[12] processes the activity sequences into a series of range-
Doppler maps, where feature extraction is performed by a
CNN on a per-map basis. The extracted features form a time
series, which is then used as input to a bidirectional gated
recurrent unit (BiGRU), which performs classification. To keep
the size of this hybrid model computationally feasible, the
range-Doppler maps are scaled down, possibly explaining the
difference in performance with the proposed method.

Of note is the test accuracy of the BiLSTM segmentation
method, which is lower than that of the proposed method
and the STA/LTA-based method. This contrasts with the
results achieved under the sample holdout validation scheme in
Table IV, where the BiLSTM-based method outperforms the
proposed method both in terms of test accuracy and macro
Fl-score. The gap in performance between the two validation
schemes is shown in Table VI. This result highlights the
problem of overfitting in machine learning approaches, where
a neural network trained on a set of data can have issues with
generalization capabilities outside of the training set. In this
case, the test data of the unseen participant proves challenging
to the BILSTM segmentation algorithm. It should be noted that
the implementation of the PT network is identical for all the
investigated methods, and the generalization problem is, thus,
associated with the BILSTM network.

For the sake of completeness, the total amount of detected
critical events is also reported, here defined as the fall activities
in the dataset. For the BiLSTM-based method, 79.6% of a
total of 988 fall events are correctly identified. The proposed
method performs better, identifying 86.9% of the fall events.
It is assumed that the likely cause for this improvement is the
tendency of the proposed method to yield shorter segments,
which diminishes the likelihood of completely absorbing a fall
event into an adjacent activity.

Some of the reference works with methods benchmarked
on the same dataset utilize an aggregated set of five activity
classes. In this reduced set, displayed in Table VII, activities
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TABLE VII

MERGING SCHEME FOR THE CONSOLIDATION OF THE FULL NINE
ACTIVITY CLASSES INTO A SET OF FIVE ACTIVITY CLASSES.
CLASSES ARE GROUPED BASED ON SIMILARITY

Constituent Classes Merged Class

Walking Walking
Stationary Stationary
Sitting Down, Standing up (from sitting), Bending In Situ
(from sitting), Bending (from standing)

Falling (from walking), Falling (from stationary) Falling
Standing up (from ground) Standing up

TABLE VIII

TEST ACCURACY AND MACRO F1-SCORE RESULTS FOR THE PROPOSED
CLASSIFICATION METHOD AND SEVERAL ALTERNATIVE METHODS.
GT SEGMENTS REFERS TO THE UTILIZATION OF THE
PT NETWORK BUT WITH “PERFECT” SEGMENTATION USING
THE GT DATA TO LOCATE TRANSITIONS. THE TOP FOUR
Rows CORRESPOND TO METHODS DISCUSSED IN THIS
WORK, AND THE LOWER S1X ROWS
CORRESPOND TO REFERENCE WORKS FROM
THE LITERATURE. ALL RESULTS ARE BASED
ON THE SAME DATASET [31] AND THE
SAME LI1PO VALIDATION SCHEME.

THE RESULTS IN THIS TABLE
ARE FOR A FIVE-CLASS
CLASSIFICATION PROBLEM.

*1 [27]; Y: SIGNAL
FusioN [11]; AND z:

FEATURE FUSION [11]

Method Test Accuracy Macro F1-Score
Proposed 0.928 0.880
Proposed (GT Segments) 0.947 0.943
BiLSTM Segmentation 0.913 0.900
STA/LTA Segmentation 0.925 0.870
PT (Fixed Segments)* - 0.862
GRU¥ 0.909 0.778
LSTM+ 0.910 0.769
bi-GRU+t 0.933 0.844
BiLSTM+ 0.931 0.836
BiLSTMi 0.924 0.840

such as falling from walking and falling while standing still
are, for example, joined into a singular falling class.

Table VIII shows the results for this five-class problem.
The top four rows again correspond to methods discussed
and proposed in this work; the lower rows show performance
metrics reported in reference methods from the literature [11],
[27]. The methods in [11] involve the computation of a
spectrogram representation of the activity sequences, which is
subsequently used as input to various RNN architectures. The
performance of the proposed method, as well as the segmen-
tation approaches utilizing a BiILSTM or STA/LTA, surpasses
that of the reference method [11]. Notably, the combination of
a BiLSTM with the PT model demonstrates superior results
compared to the BiLSTM operating solely on spectrogram
data. This improvement can be attributed to the more efficient
utilization of the BiILSTM network in the combined approach.
Specifically, the BILSTM in the hybrid model processes only
the Rényi entropy, rather than the entire spectrogram, and
is tasked with predicting transitions rather than classifying
specific activity types. Consequently, the combined model
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TABLE IX

RMSE IN SECONDS OF THE ONSET AND OFFSET TIMES OF DETECTED
FALL EVENT SEGMENTS. FOUR FALL TYPES ARE CONSIDERED

RMSE offset [s] Walking Standing

Slow 0.92+0.98 0.42+0.42

Fast 0.78+0.78 0.62+0.41
TABLE X

PMOL oOF DETECTED FALL EVENT SEGMENTS. THE PMOL REPRESENTS
THE FRACTION OF A SEGMENT DURATION THAT IS LABELED AS A
FALL IN THE GT. FOUR FALL TYPES ARE CONSIDERED

PMOL [%] Walking Standing
Slow 71.4%=%15.9% 88.7%+10.9%
Fast 84.7%+20.7% 78.0%=%19.0%

remains more compact at 19 MB compared to the stand-alone
BiLSTM of approximately 25 MB.

The L1PO experiments demonstrate promising results for
the proposed method, with the BiLSTM-based segmentation
delivering the highest performance in terms of macro F1-score.
However, the proposed method based on Rényi entropy offers
several key advantages in certain scenarios.

1) If minimizing model size is a significant priority, the
proposed method is advantageous, as it relies solely on
the PT model with minimal segmentation processing.

2) The segmentation approach used in the proposed method
offers superior interpretability compared to the more
complex BiLSTM-based segmentation.

3) The PT model takes inputs such as range, velocity, and
time, which are consistent across experimental scenes
and radar systems. In contrast, BILSTM segmentation
may need retraining across different scenarios, as the
Rényi entropy patterns could vary. This argument is
further strengthened by the disparity in performance of
the BiLSTM-based method between the sample holdout
experiment and the L1PO experiment, representing poor
generalization capabilities.

D. Study on Transition Speed

To gauge the effectiveness of the proposed method for
detecting transitions at different speeds, most notably for
falls, a secondary dataset with 36 fall events is recorded.
Experimental setup and method parameters are identical to
those used with the main experimental dataset. Fall types are
divided by initial conditions (from walking motion and from
standing position) and speed (slow and fast). Each fall type is
repeated four times by three participants.

For this study, only the segmentation component of the
proposed method is evaluated. Two performance metrics are
employed: the RMSE of the onset and offset times of each fall
event and the quality of the detected fall segment in terms of
the fraction that corresponds to the Fall label according to the
recorded GT. The latter will be referred to as the percentage
of the most occurring label (PMOL). When no segment exists
with PMOL > 50 %, the fall is considered misdetected.
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Fig. 6. Confusion matrix for the full L1PO experiment. Percentages are row-
normalized.

Tables IX and X contain the performance metrics per fall
type. Two fall events are misdetected: a fast fall from walking
motion and a slow fall from a stationary position. From the
tables, two statistically significant conclusions are drawn.

1) The slow fall from a walking motion features a higher
error in activity onset and offset time compared to the
slow fall from a stationary position.

2) The slow fall from a walking motion yields poorer
segment quality in terms of PMOL compared to the slow
fall from a stationary position and the fast fall from a
walking motion.

Both conclusions indicate that the slow walking fall is most
challenging to segment due to the slower fluctuation in entropy
and the absence of a period of stationarity before and after the
fall.

V. DISCUSSION

In this section, common classifier errors will be discussed,
as well as the sensitivity of the method to different environ-
ments, together with computational considerations pertaining
to the proposed method.

In Fig. 6, the confusion matrix for the full L1PO experiment
is displayed. The three most prevalent error types are confu-
sions between the two fall types in the experimental dataset
and confusions between the walking and falling from walking
activity classes. The latter error likely stems from the partially
subjective boundary between these two activity classes. The
confusion between fall types can, in part, be explained by
the lack of temporal context available to the classifier, as
no information from previous segments is available to the
PT network. Less frequent errors are between activities with
distinct kinematic profiles in the vertical direction, such as
sitting down on a chair versus bending down from the chair.
These vertical motion components cannot be captured with the
sensor network geometry that is used for the recording of the
dataset.

The effect of different room layouts on the performance of
the proposed method can be anticipated in part by the effect
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of static clutter on the segmentation algorithm and the PT
network. The effect of static clutter on the entropy is expected
to be an approximately constant offset, with fluctuations due
to human motions preserved. The parameter @ in (1) governs
the influence of single, high probability events on the entropy.
This parameter can, thus, potentially be used to compensate
for more or less cluttered environments. The PT network in
the proposed method is operating on physical variables such
as target range, velocity, and time. It is, therefore, expected
that the effect of a different environment will be limited, and
no complete retraining of the model will be required.

With regards to computational requirements, the processing
of 120 s of data into a spectrogram representation combined
with computing the entropy takes 1.4 s on a 3.40-GHz CPU.
On the same CPU, computation of PC samples takes [separate-
uncertainty = true]25.9(9.5)ms per sample. For this work, PT
models are trained on an Nvidia RTX 3090 board. Training
time per epoch is approximately 18 s per epoch, with an
inference time of approximately 0.63 ms per PC sample. A
typical model size is 17 MB.

VI. CONCLUSION

This study proposes a novel method for the classification
of continuous sequences of human activities. The proposed
method consists of three main elements: segmentation of the
sequences, processing of the segments, and classification of
the segments. As a key step of the proposed processing, seg-
mentation is achieved through the monitoring of fluctuations
in Rényi entropy, a scalar quantity computed from micro-
Doppler spectrograms. The proposed method offers a solution
to the problem of continuous activity classification that is more
reliable in terms of classification performance compared to
reference methods from the literature. In addition, it is also
computationally efficient due to the effectiveness of the Rényi
entropy as an indicator of activity changes.

The proposed method is experimentally validated on a
publicly available dataset. An L1PO test accuracy of 89.3%
and a macro F-score of 82.0% are achieved on the dataset,
which consists of a variety of sequences of nine human activ-
ities. Alternative segmentation methods are also investigated.
These include the STA/LTA change detection algorithm and
a BiLSTM network taking Rényi entropy as input. Between
the proposed method and the BiLSTM segmentation method,
the highest classification performance metrics are attained by
the BiLSTM. The proposed method is, however, preferable
in terms of computational efficiency and interpretability and
outperforms reference methods from the literature on the same
dataset.

An idealized form of segmentation is also studied, where GT
labels are used to create segments that contain only a single
activity. Classification performance in this case is generally
higher than on segments produced by the various segmentation
algorithms. In some cases, however, the opposite is true. It is,
therefore, concluded that segmenting to the GT of an activity
sequence is not necessarily optimal, if at all possible in a real-
istic scenario, and segmentation into classifier-interpretable,
homogeneous segments might be preferable.

IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025

To further enhance the capabilities of the proposed method,
the addition of information pertaining to temporal context
may enhance the classification performance for classes such
as falling from walking, where a preceding activity is a key
indicator of the nature of the activity. A multitarget adaptation
of the method could also be realized by including a detection
stage prior to the segmentation step. Moreover, the inclusion
of a multilabel classification method could be considered, such
as that presented in [33], to further mitigate the problem
of multiple activities in a segment. In addition, alternative
segmentation methods can be investigated that strike a balance
between interpretability, computational efficiency, and classi-
fication performance.
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