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Abstract In regions undergoing glacial isostatic adjustment present-day horizontal surface motion is
observed to point mostly, but not always, away from the former ice load. To interpret these observations,
we investigate the direction of horizontal velocities using glacial isostatic adjustment models. The direction is
controlled by the opposing actions of inward mantle flow and outward lithosphere motion. In contrast with
the prevailing idea that glacial isostatic adjustment-induced horizontal velocities point outward, we show
that velocities can be either outward or inward. Immediately after deglaciation velocities point inward but
change direction to outward after a time that is controlled by mantle viscosity. Present-day horizontal
velocities point outward for a uniformmantle viscosity below 1020 Pa s and inward for above 1022 Pa s, with a
combination of outward and inward in between. Our results help to interpret GPS-observed horizontal
velocities in areas with varying mantle viscosity.

Plain Language Summary The rebound of the Earth following the disappearance of large ice
sheets leads to vertical and horizontal movements of the Earth’s surface that can be observed with GPS. To
explain GPS observations of postglacial rebound with models, it is important to understand how deformation
rates depend on the internal structure of the Earth. Here we investigate how the direction of horizontal
velocities depends on the viscosity of the mantle using numerical models. The horizontal velocities result
from the opposite movements of different layers inside of the Earth. After melting velocities initially point
toward the previously glaciated area, but their direction changes after a time that depends on mantle
viscosity. Present-day horizontal velocities at the surface point toward the former ice load for a relatively high
mantle viscosity, and point away from the former ice load for relatively low viscosities. Our results show
that the direction of horizontal velocities derived from GPS observations can provide important information
about the Earth’s interior.

1. Introduction

Glacial isostatic adjustment (GIA) is the viscoelastic response of the solid Earth to the growth and retreat of ice
sheets and accompanying changes in sea level. Comparing observations of GIA to simulations of forward
models can provide information on the deglaciation history and the Earth’s rheology. Vertical velocities
derived from GPS observations show that formerly ice-covered regions are currently uplifting while
surrounding areas (the forebulge) subside. Horizontal velocities often point away from the former ice load
(outward) in the previously deglaciated area and just beyond (Kierulf et al., 2014; Milne et al., 2001; Sella
et al., 2007). However, an early study by James and Morgan (1990) predicted horizontal velocities pointing
toward the former ice sheet (inward) in Hudson Bay, and observed velocities further away from Hudson
Bay also point inward (Kreemer et al., 2018; Sella et al., 2007). Furthermore, velocities at sites along the
Transantarctic Mountains point toward the presumed former ice load in the Ross Sea Embayment (RSE;
Wilson et al., 2015). This could point at the importance of a transition in upper mantle viscosity, which, based
on estimates of seismic velocities (e.g., An et al., 2015), is believed to underlie the Transantarctic Mountains. A
3-D viscosity distribution has been shown to affect the pattern of GIA-induced horizontal motion (e.g.,
Kaufmann et al., 2005; Wu, 2006). However, the dependence of the direction of horizontal velocities on homo-
geneous mantle viscosity has not been thoroughly analyzed, which makes it difficult to understand how
lateral variations in viscosity such as beneath Fennoscandia, the RSE and the Antarctic Peninsula, affect
the direction of horizontal motion. For future studies that aim to infer lateral variations in viscosity from
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GPS-observed horizontal velocities, it is important to understand the fundamental dependence of the
direction of horizontal velocities on homogeneous mantle viscosity.

Using a simple deglaciation history, James and Morgan (1990) found present-day inward horizontal velocities
for Hudson Bay, which they explained by the mantle flowing back inward after deglaciation, dragging the
lithosphere toward the former ice load. However, outward velocities are predicted with standard GIA models
(Milne et al., 2004; Peltier, 1998). Spada et al. (1992) found a combination of outward and inward velocities
and attributed differences with respect to the results of James and Morgan (1990) to a different treatment
of density discontinuities. James and Lambert (1993) predicted outward velocities for Hudson Bay and the
Gulf of Bothnia using the ICE-3G deglaciation model (Tushingham & Peltier, 1991), which were explained
by the decreasing flexure of the lithosphere. The difference with the convergent pattern found by James
and Morgan (1990) was ascribed to the assumption of incompressibility of the latter. Mitrovica et al. (1994)
also predicted outward horizontal velocities beneath the former ice and attributed the difference with the
results of James and Morgan (1990) to the assumption of a constant ice disk radius and incompressibility
by James and Morgan (1990). Outward velocities were predicted for entire North America by Peltier (1998)
and for Fennoscandia by Milne et al. (2004). Sella et al. (2007) found a regionally inward motion in the far field
for one of their GIA simulations with increased upper mantle viscosity. However, the prevailing idea, also sup-
ported by GPS observations in Fennoscandia (Milne et al., 2001), appears to be that GIA-induced horizontal
velocities point outward beneath and directly outside the former ice load.

Horizontal velocities have been shown to be sensitive to lithospheric thickness (e.g., James & Morgan, 1990)
and lithospheric rheology (Peltier & Drummond, 2008), mantle structure (O’Keefe & Wu, 2002), lateral viscos-
ity variations (e.g., Kaufmann et al., 2005; King et al., 2016; Wu, 2006), and plate boundaries (Klemann et al.,
2008). However, the influence of the magnitude of mantle viscosity on the direction of horizontal velocities
through time has not been systematically analyzed. Thus, it is unclear how the direction of observed horizon-
tal motion, which is not purely outward in North America and Antarctica, can constrain GIA models. The aim
of this study is to investigate how the direction of GIA-induced horizontal velocities depends on mantle visc-
osity. We employ a simple loading scenario and an earth model with homogeneous viscosity, allowing us to
isolate and explain the effect of mantle viscosity on horizontal velocities before investigating the effect of
stratification. We investigate predictions of horizontal velocities for different mantle viscosity and lithospheric
thickness values and find that the direction of horizontal motion strongly depends on mantle viscosity. In the
supporting information, the effect of mantle stratification and varying ice loads is explored.

2. Methodology

We use a normal mode method (Vermeersen & Sabadini, 1997) to display motion at the Earth’s surface
through time, and an axisymmetric finite element (FE) model to show internal motion. The FE model was
benchmarked against a pseudo-spectral method for radial displacement and geoid anomalies (Wu & van
der Wal, 2003). We show in Figure S1 in the supporting information that present-day horizontal velocities
between both methods differ only marginally.

2.1. GIA Models

For the FE model, we compute deformation with the commercial software Abaqus (v6.14) following the
coupled FE-Laplace approach of Wu (2004). The mesh of the axisymmetric model fills a half-circle with a
radius of 6371 km. The model contains 4,320 four-node axisymmetric elements with a width of 0.5° and a
depth that varies for each layer (see Table S1 in the supporting information). The spherical harmonic expan-
sion of the gravitational potential is truncated at degree 90. Self-gravitation is computed iteratively in four
iterations to ensure convergence to a level below 1%.

The normal mode method produces viscoelastic Love numbers, representing the Earth’s response to unit
loads (Wu & Peltier, 1982). Here we use a multilayer normal mode method (Vermeersen & Sabadini, 1997).
The colatitude resolution and maximum spherical harmonic degree are the same as in the FE model. The
Love number computation was benchmarked in Spada et al. (2011), and the combination with surface loads
in Martinec et al. (2018).

Ocean loading is not considered as we intend to show only the effect of ice loading. Time steps are defined
every 1,000 years during deglaciation and every 2,000 years after. We determine velocities by numerical
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differentiation over 100 years around each time step. Degree 1 terms are not included, which results in neg-
ligible differences, and the models are incompressible, as compressibility cannot be consistently included in
the coupled FE-Laplace approach. Given previous findings of the importance of compressibility for horizontal
motion (Mitrovica et al., 1994; Spada et al., 1992; Tanaka et al., 2011), we explore the effects of compressibility
(Figure S2 in the supporting information) using a compressible normal modemodel (Broerse et al., 2015). The
magnitude of the velocities differs and the displacement pattern is more concentrated around the ice margin
for a compressible Earth, but the direction agrees with the incompressible results. Predictions of a compres-
sible model can be approximated by adjusting the elastic rigidity of an incompressible model (Tanaka et al.,
2011), but since we do not aim to fit observations, we do not pursue this here.

Table S1 in the supporting information provides the elastic structure and density discontinuities of our Earth
models, consisting of 12 layers, of which eight have distinctive elastic parameters. The elastic parameters
have been obtained by volume-averaging values from the Preliminary Reference Earth Model (Dziewonski
& Anderson, 1981). The viscosity of the lithosphere is quasi-infinite, allowing elastic deformation only. The
mantle layers deform viscoelastically, with a uniform viscosity that is varied for each test. We vary lithospheric
thickness between 50, 90, and 130 km (see Figure S3 in the supporting information).

2.2. Deglaciation History

To study the fundamental dependence of horizontal motion on mantle viscosity, we use an axisymmetric ice
cap on the North Pole that is parameterized by

hice ϕ; tð Þ ¼ H tð Þ� cos ϕð Þ � cos αð Þ
1� cos αð Þ (1)

whereϕ is the colatitude, α the colatitude of the ice margin (8°), and H is the ice height at the center of the ice
cap (2,200 m). In addition, the load spectrum is tapered above spherical harmonic degree 32 with a cosine
filter to reduce the effect of truncation in the spectral domain. The ice cap grows linearly during 90,000 years
and reaches its peak height 20,000 years before present (Last Glacial Maximum). It melts linearly during the
next 12,000 years until all the ice has disappeared 8,000 years before present. The schematic setup qualita-
tively represents the ice history of the RSE. The ice load at each time step is applied as a distributed load
on the corresponding surface elements. Surface deformation differs for a more realistic deglaciation scenario
in which the radius of the ice cap decreases during ice unloading (Mitrovica et al., 1994). However, an ice cap
with a radius that decreases 0.5° every 1,000 years of deglaciation results in horizontal velocities that are very
similar to the results obtained with a constant radius (see Figure S4a in the supporting information).
Increasing ice cap height and radius leads to larger horizontal velocities and a shift in the location of the peak
velocity (see Figure S4b in the supporting information).

3. Results and Discussion
3.1. Direction as a Function of Viscosity

We use the axisymmetric FE model to calculate deformation rates for a lithospheric thickness of 90 km and
uniform mantle viscosity (η) that is varied from 1019 to 1023 Pa s with steps of one order of magnitude.
Figure 1 shows the present-day horizontal velocities for these and two intermediate steps. The horizontal
velocity _v is defined positive for outward velocities and negative for inward velocities.

Figure 1 clearly shows that the direction of horizontal velocities is controlled by mantle viscosity. For
η = 1020 Pa s, horizontal velocities point outward over a large distance from the ice center, whereas for
η = 1022 Pa s, horizontal velocities point inward. For η = 1021 Pa s, there is a sharp alternation of outward
and inward direction. We will show in section 3.3 that this is the result of the sloped lithosphere that is flexing
back to its horizontal equilibrium position. Thus, the direction of present-day horizontal velocities can reverse
depending on mantle viscosity. Further varying mantle viscosity with steps of tenths of an order of magni-
tude, we find that outward motion in the near field is bounded by η ≤ 2 × 1020 Pa s and inward motion by
η ≥ 4 × 1021 Pa s (dashed curves in Figure 1), with a combination in between. In the following section we will
investigate how mantle viscosity can result in a reversed direction by studying how horizontal motion varies
with depth.
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3.2. Opposite Motions in Mantle and Lithosphere

To follow horizontal motion through time, Figure 2 shows velocities at FE
nodes at the surface and at deeper layer boundaries during ice melt and
at present day in a cross-sectional view of the Earth. Additionally, the
shear stress σrθ on elements at the bottom of the lithosphere is shown,
which at the bottom of an element is defined negative in the tangential
direction. Velocities and stress are plotted for η = 1020 Pa s, for which
velocities point outward at present day, and η = 1022 Pa s, for which velo-
cities point inward (see Figure 1).

For both mantle viscosities, the model predicts a strong inward and
upward motion of the mantle during deglaciation (Figures 2a and 2b).
This can be understood by mantle material flowing back to the ice center
after it was pushed downward and outward during ice loading (James &
Morgan, 1990; O’Keefe & Wu, 2002). For η = 1022 Pa s, velocities are smaller
due to the slower relaxation of a more viscous mantle. The elastic litho-
sphere is flexing upward during deglaciation and relaxation (James &
Lambert, 1993). While flexing upward, the part of the lithosphere that
was sloped downward becomes horizontal, which is only possible if the
lithosphere moves outward. Thus, the mantle and the lithosphere move
in opposite directions during deglaciation and relaxation, as was found
by O’Keefe and Wu (2002). However, Figures 2a and 2b show that both

Figure 2. Velocities of nodes on layer boundaries in the lithosphere (blue arrows) and upper mantle (orange arrows) in a
cross-sectional view of the Earth, during deglaciation (4,000 years after the Last Glacial Maximum) for (a) η = 1020 Pa s
and (b) η = 1022 Pa s, at present day (8,000 years after melting ended) for (c) η = 1020 Pa s and (d) η = 1022 Pa s, and shear
stress at the bottom of the lithosphere during deglaciation and at present day for (e) η = 1020 Pa s and (f) η = 1022 Pa s. Note
the different scales for the lithospheric and upper mantle velocities in each panel.

Figure 1. Present-day horizontal velocities ( _v) as a function of colatitude ϕ
for varying mantle viscosity as a result of the growth and melt of an axi-
symmetric ice cap with a radius of 8° (dashed vertical line) centered at the
North Pole.
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themantle and the lithosphere move inward during deglaciation. From that, it follows that the inwardmantle
flow dominates over the outward motion of the lithosphere, causing horizontal surface velocities to point
inward. During deglaciation, for both mantle viscosities, the shear stress at the bottom of the lithosphere
(Figures 2e and 2f) is negative outside of the forebulge as a result of outward mantle flow during ice loading,
and positive near the forebulge due to the flexure of the lithosphere.

At present day, the direction of horizontal motion differs substantially for the two different mantle viscosities
(Figures 2c and 2d). For η = 1022 Pa s, horizontal velocities in the mantle and the lithosphere point inward like
during deglaciation. For η = 1020 Pa s, the horizontal surface velocities point outward while the mantle con-
tinues to flow inward, driving upward surface motion and even downward motion of deeper layers. For
η = 1022 Pa s, present-day shear stress at the bottom of the lithosphere is reduced due to inward mantle flow
but is still significantly negative outside of the forebulge and positive near the forebulge, indicating that the
lithosphere is still flexed. For η = 1020 Pa s, the shear stress is significantly reduced at all colatitudes and is
slightly positive, indicating that the mantle has flown inward and the lithosphere has moved toward its hor-
izontal equilibrium position (Figures 2e and 2f). The resulting outward surface motion now dominates the
inward mantle flow, which is why the direction of horizontal velocities changes after deglaciation.
Nevertheless, the inward mantle flow continues at present day. The rate of change of the horizontal gravity
component derived from GRACE data, which points toward the former ice load, confirms this (van der Wal
et al., 2011). For η = 1022 Pa s, this stage of relaxation has not yet been reached, which is why velocities still
point inward at present day. The next section investigates how the direction changes with time
during relaxation.

3.3. Time-Dependent Change of Direction

We now focus on the time-dependent behavior of horizontal velocities during relaxation for mantle viscos-
ities of 1020 and 1022 Pa s. To isolate relaxation, we use the normal mode method to predict velocities after
a Heaviside loading with the same dimensions as the ice load described in section 2.2. We place the ice load
on the surface for 10 Myr (billion years for η = 1022 Pa s) to reach equilibrium, and then remove it instanta-
neously, after which the Earth relaxes freely. Figure 3 shows vertical displacement (u), horizontal displace-
ment (v), and _v at various time steps.

The initial vertical displacement in Figures 3a and 3b shows a depression underneath the ice cap and a fore-
bulge outside the icemargin. The lithosphere is sloped between the center of the former ice cap and the fore-
bulge with the maximum slope at 7° colatitude. Figures 3c and 3d show that for both mantle viscosities, the
horizontal displacement at t = 0 is positive because the mantle flowed outward during ice loading. A local
minimum in outward horizontal displacement at t = 0 can be found at 7°, where the lithosphere has its max-
imum slope. Following the removal of the load, for both viscosities, the initial outward displacement is
reduced by inward mantle flow. However, for η = 1020 Pa s, the inward movement of the surface reverses
markedly after around 0.8 kyr, when the forebulge subsides and the slope of the lithosphere reduces, pushing
the surface outward. This can be seen more clearly in Figure 4, which shows the displacement through time
for at 7° and 9° colatitude. The time of reversal is determined by the characteristic time scale of relaxation of
the mantle, which is a function of mantle viscosity. Hence, the displacement at 16 kyr for a η = 1022 Pa s
equals the displacement at 160 years for η = 1020 Pa s. For η = 1022 Pa s, the lithosphere is still sloped and
surface movement remains inward.

At 9° colatitude (Figure 4b), the uplift rate is initially positive, indicating that the forebulge increases in height
before it starts to subside around t = 0.4 kyr for η = 1020 Pa s. The subsidence is not yet seen at that time for
η = 1022 Pa s. When the forebulge has almost completely subsided, the direction of the horizontal displace-
ment reverses. Thus, the collapse of the forebulge seems to enable the sloped lithosphere to return to a hor-
izontal position, causing horizontal velocities to point outward. The trend in displacement reverses earlier at
7° colatitude, as here the slope of the lithosphere is the largest. The displacement for η = 1022 Pa s follows the
same path but slower. Therefore, the reversal in direction is not seen even 16 kyr after deglaciation.

Figure 3e indeed shows that for η = 1020 Pa s, horizontal surface velocities are negative until the moment of
forebulge collapse, and are positive afterward. For η = 1022 Pa s, horizontal velocities remain negative for the
period under consideration because of the slower relaxation (Figure 3f). A mantle viscosity of 1021 Pa s pre-
sents an intermediate case in which the forebulge is subsiding at present day but has not yet completely
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collapsed. Thus, the lithosphere is in the process of returning from a sloped
to a horizontal position, which causes inward horizontal velocities for
η = 1021 Pa s to start pointing outward at 7° colatitude (Figure 4). This
explains the horizontal velocities for η = 1021 Pa s in Figure 1, which are
positive around 7° colatitude and negative elsewhere.

The reversal of the direction of horizontal velocities also occurs for Earth
models with a lithospheric thickness of 50 and 130 km (see Figure S3 in
the supporting information). However, the influence of inward mantle
flow on horizontal surface velocities is stronger for a thinner lithosphere
(Mitrovica et al., 1994). As a result, the exact mantle viscosities that
bound the reversal of present-day outward to inward motion decrease
for a lithosphere thickness of 50 km (η ≤ 1020 and η ≥ 1021 Pa s) and
increase for a lithosphere thickness of 130 km (η ≤ 5 × 1020

and η ≥ 2 × 1022 Pa s).

A consistent finding in GIA studies is that mantle viscosity increases from
upper to lower mantle (e.g., Lau et al., 2016; Peltier, 2004). Therefore, we
also test the effect of increased lower mantle viscosity. As mantle flow is
confined to the upper mantle, which has lower viscosity, we find that for
an increase in lower mantle viscosity by a factor of 10, the magnitude of
present-day horizontal velocities at the surface increases, in agreement
with Mitrovica et al. (1994). The reversal in direction is less sensitive to stra-
tification: the upper mantle viscosities that bound outward and inward

Figure 3. Vertical and horizontal displacement u and v as a function of colatitudeϕ for (a and c) η = 1020 Pa s and (b and d)
1022 Pa s and horizontal velocities _v for (e) η = 1020 Pa s and (f) 1022 Pa s. The dashed vertical lines indicate 7° and 9°
colatitude for which displacement is shown in Figure 4.

Figure 4. Horizontal and vertical displacement of the surface at (a) 7° and
(b) 9° colatitude for both viscosities. For visibility, the curve for η = 1022 Pa s
has been displaced horizontally by 25 m in (a) and 8 m in (b). Labels denote
the time in kyr after removing the ice cap.
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motion deviate only by a factor 1.5 or less from the solution of the homogeneous case (see Figure S5 in the
supporting information).

4. Conclusions

In contrast with the prevailing idea of GIA-induced horizontal velocities pointing outward in previously gla-
ciated regions, we show that present-day horizontal velocities either point outward or inward, as a function
of mantle viscosity. By studying modeled velocities in the lithosphere and the upper mantle, we show that
the dependence of direction on viscosity is a result of the opposing motions of inward mantle flow and
the lithosphere that moves outward while returning from a flexed to a horizontal position. After deglaciation,
velocities at the surface first point inward but change direction after a time determined by mantle viscosity.
For all variations of lithospheric thickness that were included, this results in present-day horizontal velocities
that in the near field all point outward for η < 1020 Pa s, inward for η > 1022 Pa s, and in a combination of
inward and outward velocities in between. The exact mantle viscosities for which present-day direction
reverses depend on lithospheric thickness, and are only slightly affected by stratification of viscosity.

The results of this study show that the direction of the velocities places a strong constraint on upper mantle
viscosity when time since deglaciation is approximately known. Whenever consistent outward motion is
observed, viscosities beneath the former Last Glacial Maximum ice load must be below 1021 Pa s. This is
the case in Fennoscandia (Milne et al., 2001). Velocities in North America show outward motion but there
is also evidence for inward motion further away from the area of former deglaciation (Kreemer et al., 2018;
Sella et al., 2007). This agrees with the situation of η = 1021 Pa s in Figures 1 and S5. Our study also forms a
basis to understand predictions of 3-D GIA models. Horizontal motion predicted by such models is described
as directed from a high-viscosity region toward a low-viscosity region (Kaufmann et al., 2005). Our study sug-
gests that it may be the unfinished relaxation in a high-viscosity region that leads to velocities that point
toward the former ice load in 3-D models.

Velocities that point toward the presumed location of former ice load are observed in a region west of the RSE
where a lateral transition is expected from low mantle viscosity underneath the RSE to high mantle viscosity
underneath East Antarctica (Wilson et al., 2015). Our study suggests that high mantle viscosity could indeed
explain the observed inward motion. An alternative reason could be more recent ice unloading (Figure 3).
Thus, velocities that point toward the former ice load can provide an important and rare constraint on mantle
viscosity and potentially on lateral changes in mantle viscosity. This motivates future investigation of GPS
velocities to constrain expected lateral viscosity transitions in regions such as Antarctica, Patagonia,
and Alaska.
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