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ABSTRACT

Mass spectrometry-based proteomics has become a constitutional part of the multi-omics toolbox in yeast research,
advancing fundamental knowledge of molecular processes and guiding decisions in strain and product developmental
pipelines. Nevertheless, post-translational protein modifications (PTMs) continue to challenge the field of proteomics. PTMs
are not directly encoded in the genome; therefore, they require a sensitive analysis of the proteome itself. In yeast, the
relevance of post-translational regulators has already been established, such as for phosphorylation, which can directly
affect the reaction rates of metabolic enzymes. Whereas, the selective analysis of single modifications has become a
broadly employed technique, the sensitive analysis of a comprehensive set of modifications still remains a challenge. At the
same time, a large number of fragmentation spectra in a typical shot-gun proteomics experiment remain unidentified. It
has been estimated that a good proportion of those unidentified spectra originates from unexpected modifications or
natural peptide variants. In this review, recent advancements in microbial proteomics for unrestricted protein modification
discovery are reviewed, and recent research integrating this additional layer of information to elucidate protein interaction
and regulation in yeast is briefly discussed.

Keywords: Mass spectrometry; post-translational modifications; unrestricted modification search; protein regulation; yeast
proteomics

INTRODUCTION

Mass spectrometry (MS) is currently the most powerful tech-
nology for the identification, characterisation and quantifica-
tion of complex mixtures of proteins (Aebersold and Mann
2003; Cox and Mann 2011; Oliveira and Sauer 2012). The per-
formance of mass spectrometers has steadily improved over
recent decades, providing a near-complete yeast proteome cov-
erage using short chromatographic separation times and mini-
mum amounts of sample (Hebert et al. 2014; Richards et al. 2015).

The actual proteome is approximately 2 to 3 orders of magni-
tudes more complex than can be predicted from its genome
(Walsh, Garneau-Tsodikova and Gatto 2005), in which diver-
sification processes such as post-translational modifications
(PTMs) contribute substantially. PTMs are enzyme-mediated
covalent modifications (or cleavage products) introduced follow-
ing biosynthesis of the amino acid backbone, thereby expand-
ing the range of possible protein isoforms (proteoforms) and
functions without the need for changing the genetic code itself
(Smith and Kelleher 2013). For example, the central carbon

Received: 1 September 2019; Accepted: 19 December 2019

C© FEMS 2019. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

1

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/article-abstract/20/1/foz088/5682490 by D
elft U

niversity of Technology user on 28 January 2020

http://www.oxfordjournals.org
mailto:m.pabst@tudelft.nl
http://orcid.org/0000-0002-4097-7831
http://orcid.org/0000-0001-9897-0723
mailto:journals.permissions@oup.com


2 FEMS Yeast Research, 2020, Vol. 20, No. 1

Figure 1. Overview of metabolic regulation mechanisms in a yeast cell. The
metabolic flux in a cell depends on the capacities of the metabolic enzymes,
which depend on enzyme abundances, allosteric regulation but also on the
occurrence of covalent modifications on the protein itself, termed post-

translational modifications (PTMs).

metabolism has been fine-tuned to exactly meet the require-
ments for building blocks and Gibbs free energy in conjunction
with cell growth. Thus, when cells experience environmental
changes, their metabolism immediately aims to adjust (Nielsen
2003; Daran-Lapujade et al. 2004, 2007). Apart from the relatively
slow adjustment of enzyme abundances, cells utilise fast and
dynamic routes such as allosteric regulation but also through
the above-mentioned (reversible) protein side chain modifica-
tions of the enzyme itself (Daran-Lapujade et al. 2007; Gerosa
and Sauer 2011) (Fig. 1). The number of different modification
types reported across various species are in the range of hun-
dreds (Creasy and Cottrell 2004; Oughtred et al. 2019), but most
have been only observed at low frequency and low stoichiome-
try, and a potential biological relevance remains elusive (Swaney
and Villén 2016).

PTMs observed for the yeast model Saccharomyces cerevisiae
have recently been compiled in the database YAAM (Ledesma
et al. 2018). Here, statistics on 12 experimentally confirmed
modification types (ubiquitination, phosphorylation, acetyla-
tion, lipidation, oxidation, succinylation, glycosylation, methy-
lation, sumoylation, nitration, disulfide bond formation and N-
terminal acetylation) are described that are experimentally con-
firmed by MS, point mutation or functional evidence (Table 1).
According to this database, more than 70% of the complete
yeast proteome has been observed post-translationally modi-
fied (albeit under different growth and experimental conditions),
demonstrating the importance of these regulators for cellular
processes (Ledesma et al. 2018). Nevertheless, low frequent or
difficult to analyse modifications, such as lipoylation (Rowland,
Snowden and Cristea 2018; Baldi et al. 2019) are rarely addressed,
of which some may still have been left unnoticed to date.

Protein phosphorylation appears to be the most commonly
observed PTM in yeast (Table 1), however, this may be heav-
ily overestimated since many studies specifically focus on this
type of modification. A similar trend was observed in the
Uniprot database entries for the proteins of S. cerevisiae, in which
also phosphorylation appears to be the most frequent type of
modification in yeast (The Uniprot Consortium 2017). In addi-
tion to phosphorylation, other common modifications such as
acetylation and methylation have been frequently described
and were found involved in a variety of cellular processes.
For example, in yeast glycolysis, the shuttling back and forth
of Hexokinase 2 between the nucleus and cytoplasm is reg-
ulated by phosphorylation (Fernańdez-Garcı́a et al. 2012). Fur-
thermore, studies over the past years have demonstrated that

Table 1. Number of PTMs and protein targets described for S. cere-
visiae as found in the YAAM database (http://yaam.ifc.unam.mx,
November 2019), where frequencis may include sites captured more
than once (Ledesma et al. 2018).

Modification # Mods # Proteins

Acetylation 10052 1814
Disulfide 264 79
Glycosylation 1972 424
Lipidation 183 128
Methylation 287 143
Nitration 16 15
N-terminal Acetylation 762 687
Oxidation 875 605
Phosphorylation 87739 3955
Succinylation 1754 570
Sumoylation 138 48
Ubiquitination 14883 2355
Coverage
Estimated total modified proteins 4759
Modified proteins of the proteome (%) approx. 70

phosphorylation seems to affect many more processes, such as
cell signalling (Fresques et al. 2015), glycerol metabolism (Nakic
et al. 2016), regulation of nucleotide and amino acid biosynthesis
(Oliveira et al. 2015), regulation of the outgrowth of autophago-
somal membranes in autophagy (Papinski et al. 2014) and DNA
damage checkpoint signalling (Memisoglu et al. 2019). Moreover,
lysine acetylation (and glutamine methylation) is an evolution-
arily highly conserved modification, which regulates chromatin
accessibility and, therefore, affects gene expression directly (All-
frey, Faulkner and Mirsky 1964; Tessarz et al. 2014; Lawrence et al.
2017). Recent studies on PTMs in yeast are summarised in Sup-
plementary Table 1 (Supporting Information). For a more exten-
sive reviews on post-translational modifications in yeast, in par-
ticular for phosphorylation, we refer readers to recent reviews
from Oliveira and Sauer (2012), Tripodi et al. (2015) and Chen and
Nielsen (2016). Nevertheless, the functionality of many modifi-
cation sites and (unknown) modifications remain to be investi-
gated to date.

In this review, recent advancements in proteomics for unre-
stricted discovery of protein modifications are summarised, as
data analysis remains the major challenge in identifying mod-
ifications. Moreover, we discuss the critical trade-off between
maximum proteome coverage and maximum sequence cover-
age in the context of a comprehensive functional characterisa-
tion of PTMs.

ADVANCES IN BIOINFORMATICS TOOLS FOR
UNRESTRICTED PTM DISCOVERY

Currently, the most frequently employed approach in discov-
ery proteomics is referred to as shotgun proteomics (Fig. 2).
Thereby, (in a bottom-up approach) protein extracts are anal-
ysed following proteolytic digestion using liquid chromatogra-
phy (LC) coupled to tandem mass spectrometry (MS/MS) (Aeber-
sold and Mann 2003). After chromatographic separation of the
proteolytic digest, peptides are analysed for (accurate) mass
that further triggers automatic fragmentation to obtain peptide
sequence information (Yates et al. 1993; Mann and Wilm 1994;
Washburn, Wolters and Yates 2001; Zhang et al. 2013). The spec-
tra are then matched against a predefined protein database, gen-
erally derived from public repositories or genome sequencing

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

syr/article-abstract/20/1/foz088/5682490 by D
elft U

niversity of Technology user on 28 January 2020

http://yaam.ifc.unam.mx


Den Ridder et al. 3

Figure 2. Protein identification by (a bottom-up) shot-gun proteomics experiment. The typical workflow consists of cell lysis, protein extraction from (yeast) cells and
subsequent digestion into peptides using specific proteases (step 2). In step 3, the peptides are separated by liquid chromatography and further detected following
electrospray ionisation (ESI) by data depended analysis, which automatically collects fragmentation spectra from (top intense) peptide signals, in step 4. In step 5, the

fragmentation spectra (MS/MS) are commonly identified by database search approaches, matching fragmentation spectra to in-silico peptides derived from the target
proteome database. Finally, the result of a typical shotgun proteomics experiment is depicted, in which roughly half of the spectra could not be assigned to a target
protein sequence of the database. Similar identification rates have been reported in a survey reinvestigating hundreds of shot-gun proteomics experiments by Griss
et al. (2016). To improve the identification rate, several approaches can be taken, which however should always start with confirming the quality of the aquired spectra.

Further, modifications could be added to the database to increase database coverage. Finally, an unrestricted modification search could be performed to identify
unexpected modifications.

itself. In common, cellular shotgun proteomics experiments cre-
ate enormous amounts of sequencing spectra. For example, as
much as 80 000 MS/MS spectra could be obtained for an 1 hour
yeast proteome experiment (Hebert et al. 2014).

State-of-the-art proteomics workhorses, such as the
quadrupole Orbitrap mass spectrometer (Zubarev and Makarov
2013), are capable of acquiring spectra at high speed (such
as >20 Hz), high resolving power and high mass accuracy
fragmentation spectra, supporting the identification of several
thousands of proteins in less than 1 hour of analysis time
(Olsen et al. 2005; Kelstrup et al. 2018). Nevertheless, only a
fraction of fragmentation spectra (on average less than half)
is confidentially matched to the proteome database (Fig. 2)
(Griss et al. 2016). It is estimated that a good proportion of
those unidentified, but high-quality spectra, may originate
from unexpected (including not considered) modifications (or
sequence variants) not present in the database (Chick et al. 2015;
Griss et al. 2016). Where the majority of modified peptides may
be readily detected by the employed method, their confident
identification, however, often fails. Peptides containing mod-
ifications could, for example, not only be shared by different
proteins (protein inference), but several overlapping modified
peptides could also share the same modified site (Langella et al.
2017).

Identification is commonly realised by a database match-
ing algorithm, where the acquired fragmentation spectra are
matched against in silico spectra from predefined protein
sequence databases (Steen and Mann 2004). Modifications are
thereby detected as mass deviations from the native peptide
mass peak, and that, in the ideal case, can be further allocated
to single amino acids (Fig. 3A).

However, identification of PTMs by the simple addition of
mass increments (modifications) is restricted. First, it assumes
prior knowledge of the modifications present in a sample.
Second, consideration of multiple modifications leads to an

exponential increase in search space, impacting on computa-
tional efforts and challenging common statistical parameters,
resulting in increased false negative as well as false positive
identifications (Ahrné, Muller and Lisacek 2010; Na, Bandeira
and Paek 2012; Ma and Lam 2014). To overcome limitations
of database-restricted approaches, alternative algorithms have
been established, with the most common tools and latest devel-
opments being listed in Table 2. These open modification search
tools do not require specifying the modification before analysis
and can, therefore, also identify unexpected modifications. Cur-
rent bioinformatics tools use different strategies such as multi-
round search, de-novo sequencing, sequence-tagging or spec-
tral library-based approaches. PeaksPTM, for example, is a multi-
round search tool incorporated into the PEAKS proteomics soft-
ware solution (Ma et al. 2003), enabling efficient searches for all
modifications listed in the UNIMOD database, simultaneously
(Han et al. 2011; Bateman 2019).

Following identification of the proteins present in a sample,
modifications are searched using a ‘one-PTM-per-peptide’ limi-
tation to avoid exponential growth of the search space. During
this process, sample-common PTM types are identified, generat-
ing a finite set of relevant modifications used to search for pep-
tides containing two or more PTMs (Han et al. 2011). Another
multi-round tool—G-PTM-D—employs a similar strategy, but
uses a mass-tolerant open search strategy in the first round (Li
et al. 2017). A further advanced version was published by Solnt-
sev et al. (2018) that increases the speed and accuracy. Alterna-
tively, de novo sequencing derives the peptide sequence from a
tandem mass spectrum without a protein database. This strat-
egy is used by deNovoPTM to identify modified peptides. How-
ever, algorithms are computationally demanding, consider only
a restricted number of modifications and require high-quality
fragmentation spectra (He, Han and Man 2013). A more efficient
de-novo PTM identification workflow, termed Open-pNovo, has
been published by Yang et al. (2017).
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Figure 3. Peptide modification search. (A) Unrestricted modification search as obtained by using the Byonic software tool (Table 2). The observed mass shifts (between
0 and 150 Da) on tryptic peptides from a yeast shot-gun proteomics experiment are represented in a histogram graph. Commonly, many mass additions derive from

artificial modifications introduced during sample preparation, while others are of natural origin. However, the distinction between both types is a delicate step during
data processing and evaluation. Common mass shifts found are indicated by an arrow: deamidation (0.98 Da) 13C isotope precursor selection (1.0 Da), methyl (14.0 Da),
oxidation (15.98 Da), sodium adduct (22.0 Da), acetyl (42.0 Da), iron adduct (52.9 Da), carbamidomethyl (57.0 Da) and dicarbamidomethyl or ubiquitin (114.0 Da).
Phosphorylation (80.0 Da) was observed only at low frequency in this search, even though it appears to be the most commonly observed PTM in yeast (Ledesma et al.

2018). However, this modification type usually occurs at low stoichiometry and, therefore, enrichment methods are commonly applied to inrease sensitivity, which
was not performed in the experiment shown above. (∗) Indicated mass shifts can also represent amino acid substitutions, which require case-by-case investigations.
Inset: assignment of high-resolution mass shifts. Where high-resolution mass spectrometry can resolve 15.99 (oxidation) from a closely related addition at 16.02 Da.
Other amino acid substitutions such as Ala→Ser show exactly the same composition and, therefore, mass shift. (B) The degree of formylation of Enolase 2 (S. cerevisiae)

is quantified following a common shotgun proteomics experimental set-up with or without the use of formic acid as a solvent for protein solubilisation. The use of
formic acid during sample handling introduced a considerable number of formylated peptide artefacts, as shown for Enolase 2.

Table 2. Recently developed open modification search tools for PTM discovery.

Software tool (Main) Approacha

Fully
unrestricted? Download link Reference

MSFragger Error tolerant search Yes http://www.nesvilab.org/software Kong et al. (2017)
DeNovoPTM De novo sequencing No http://www.mybiosoftware.com/deno

voptm-ms-based-peptide-identificatio
n-software-tool.html

He, Han and Man (2013)

Open-pNovo De novo sequencing No http://pfind.ict.ac.cn/software/pNovo/i
ndex.html

Yang et al. (2017)

TagGraph De novo sequencing/error tolerant
search

Yes http:
//sourceforge.net/projects/taggraph

Devabhaktuni et al. (2019)

ANN-Solo Spectral library/error tolerant
search

Yes https:
//github.com/bittremieux/ANN-SoLo

Bittremieux et al. (2018)

SpecOMS Spectral library/error tolerant
search

Yes https://github.com/matthieu-david/Sp
ecOMS

David et al. (2017)

G-PTM-D Multi-round/error tolerant search Yes https:
//github.com/smith-chem-wisc/gptmd

Li et al. (2017)

MetaMorpheus Multi-round search No https://github.com/smith-chem-wisc
/MetaMorpheus

Solntsev et al. (2018)

PeaksPTMb Multi-round search No http://bioinfor.net/ptm Han et al. (2011)
Byonicb Various types, including sequence

tagging/error tolerant search
Yes www.proteinmetrics.com/products/by

onic/
Bern, Kil and Becker (2012)

MODa Sequence tagging/error tolerant
search

Yes https://omictools.com/moda-2-tool Na, Bandeira and Paek (2012)

Open-pFind Sequence
tagging/multi-round/error tolerant

Yes http://pfind.ict.ac.cn/software/pFind3 Chi et al. (2018)

PIPI Sequence tagging/error tolerant
search

Yes http://bioinformatics.ust.hk/pipi.html Yu, Li and Yu (2016)

aMany tools utilise hybrid-type approaches.
bCommercial platform(s).
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The first developed unrestricted search tools included
sequence-tag based approaches (Mann and Wilm 1994; Tabb,
Saraf and Yates 2003; Tanner et al. 2005). Here, only de novo-
sequence tags (extracted peptide sequence fragments of three
to four amino acids) are required to find possible peptide
matches from a sequence database. The differences between the
expected and observed mass of the match are then assumed to
be mutations or modifications. Sequence-tag-based approaches
were then also the baseline for faster, further developed tools
such as MODa, a ‘multi-blind’ spectral alignment algorithm (Na,
Bandeira and Paek 2012). Many software tools further employ
hybrid approaches to improve accuracy and speed. Open-pFind,
for example, uses first a sequence-tag based approach fol-
lowed by a restricted search in which modification types and
protein sequence entries are set by semi-supervised machine
learning (Chi et al. 2018). Kong et al. (2017) established a novel
fragment-ion indexing method implemented in a database
search tool termed MSFragger. This tool provided a substantial
improvement in search speed and made unrestricted modifi-
cation searches feasible for particularly large data sets. More
recently, TagGraph was established by Devabhaktuni et al. (2019),
which is an unrestricted de novo sequence-tag approach util-
ising a fast string-based search including a probabilistic vali-
dation model optimised for PTM assignments. Another com-
mercial software package that enables advanced modifica-
tion searches is Byonic (Bern, Kil and Becker 2012). This tool
includes an option for Modification Fine Control that is also a
fully unrestricted search approach for unanticipated modifica-
tions, termed Wildcard Search (Fig. 3A). An alternative peptide
modification search strategy utilises spectral libraries. Thereby,
identification of modified peptides are interpolated from the
identification of unmodified reference spectra (Frewen et al.
2006; Lam et al. 2007; Zhang et al. 2011; Ma and Lam 2014; Griss
2016). This process results in improved accuracy and higher
identification rates but is limited to peptides being present in
the database. More recent developments here include the ANN-
SoLo tool from Bittremieux et al. (2018) and the SpecOMS tool
developed by David et al. (2017). It should be noted that most
of the recently developed algorithms have not been applied in
microbial or yeast proteomics to any significant degree, poten-
tially due to difficulties in obtaining good false discovery rate
(FDR) estimates and the risk of extensive false positive identifi-
cations (Fu and Qian. 2014).

SAMPLE PREPARATION ARTEFACT OR
NATURAL PTM?

Whenever a peptide modification is detected, analysts have to
make a decision regarding whether the observed modification
is a genuine proteoform variant or whether it is an artefact
introduced during the experiment. However, this is sometimes
a very delicate process. Formylation, for example, is a natural
histone modification (Jiang et al. 2007), which however can also
be introduced during sample preparation when using formic
acid-containing buffers to increase the solubility of hydropho-
bic peptides and aggregates (Fig. 3B) (Zheng and Doucette
2016). The same holds for carbamylation, which is frequently
introduced when using buffers containing (high-molarity) urea
(Kollipara and Zahedi 2013), or unspecific alkylation reac-
tions introduced by extensive iodoacetamide treatment, broadly
used during sulfhydryl alkylation reactions (Boja and Fales
2001; Müller and Winter 2017). Furthermore, chemically labile
amino acid residues may undergo oxidation, deamidation,

pyroglutamate formation, dehydration or metal ion adduct
formation (Liu et al. 2005; Hao et al. 2011; Purwaha et al. 2014).
Many of those chemically introduced modifications may, how-
ever, occur naturally in protein ageing processes and are, there-
fore, difficult to discriminate from sample preparation artefacts
regardless of the method employed (Stadtman et al. 2005). In
addition to preserving the native state of a peptide during sam-
ple preparation, chromatographic and ionisation properties dur-
ing the analysis process also need to be chosen thoughtfully,
particularly for modifications such as phosphorylation, which
undergo rapid enzymatic hydrolysis and in-source fragmenta-
tion leading to neutral loss (Carapito et al. 2009). Where other-
wise comparable protocols are used for cell lysis, protein extrac-
tion and proteolytic digestion compared to conventional discov-
ery proteomics experiments, the analysis and interpretation of
post-translational modifications requires additional careful con-
siderations (Olsen and Mann 2013). Harsh conditions not only
produce ambiguous identifications, but also induce mass spec-
trometric signal multiplications, reducing the discovery rates for
both native and naturally modified peptides (Herbert et al. 2003;
Grassl et al. 2009; Kollipara and Zahedi 2013).

MAXIMISE PROTEOME- OR SEQUENCE
COVERAGE?

The proteome-wide discovery of post-translational modifica-
tions is challenged by factors such as sub-stoichiometric occur-
rence, competitive ionisation (sensitivity), computational limi-
tations and lack of effective validation strategies. Thus, when
a proteome-wide analysis of a certain type of modification is
performed, peptide fractionation techniques are employed to
reduce the number of signals and, therefore, increase sensitivity.
Suitable methods are based on any physicochemical properties
such as size, charge or hydrophilicity but also on affinity (Li et al.
2007; Han et al. 2008). Alternatively, targeted mass pre-selected
subset of modifications has also been performed, but typically
only for quantification purposes rather than discovery (Adachi,
Narumi and Tomonaga 2016; Soares and Blackburn 2016; Arsova,
Watt and Usadel 2018). For tools supporting quantitation, we
refer to a recent review from Allmer (2012). However, over recent
decades, it has become apparent that most proteins are modi-
fied by more than one modification at a time, and many modifi-
cations do not function in an isolated manner but seem instead
to interact with modification sites from the same or other pro-
teins, a process referred to as PTM cross-talk (Minguez et al. 2012;
Guan et al. 2013; Swaney et al. 2013; Venne, Kollipara and Zahedi
2014; Huang et al. 2015). This process, however, is changing the
view on how protein modifications are ideally investigated. For
example, for the sake of improving sensitivity, an enrichment
for a specific modification increases coverage for this particu-
lar modification tremendously, but it may abolish information
essential for understanding a complete process.

Hence, to explore functional aspects and interactions, the
analysis should aim to maximise protein sequence cover-
age of related pathways. In bottom-up proteomics, trypsin is
predominantly used for digestion of the proteome due to its
high specificity and ease of use (Tsiatsiani and Heck 2015). How-
ever, full sequence coverage is almost never achieved because
digestion also generates peptides with sub-optimal length for
MS detection (Swaney, Wenger and Coon 2010). To increase
sequence coverage, multi-proteolytic digestion approaches have
been proposed (Henriksen et al. 2012; Giansanti et al. 2016). Here,
the proteome is subjected to digestion with multiple proteases
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in parallel, resulting in complementary parts of the protein
sequence and thus higher sequence coverage. The use of Trypsin
in combination with LysC has, therefore, become common prac-
tice in the field of shotgun proteomics. Even though both pro-
teases share lysine as a cleavage site, LysC/Trypsin digests were
found most efficient to yield fully cleaved peptides (Glatter et al.
2012). Furthermore, the use of four alternative proteases (LysC,
ArgC, AspN and GluC) in addition to trypsin led to nearly a
three-fold improvement of sequence coverage for proteins at
low abundances in yeast (Swaney, Wenger and Coon 2010).

In this context, prediction tools have been developed to sup-
port experiments designing a full protein sequence coverage.
PTMselect is an example of such an open-source software tool,
which simulates multi-enzyme digestion to tailor the optimal
set of proteases for the discovery of global or targeted modifi-
cation from any single or multiple proteins (Perchey et al. 2019).
This approach allows sequence coverage to be achieved; how-
ever, it does not solve the sensitivity issues.

On the other hand, sensitivity for labile or very large modifi-
cations, such as phosphorylation and glycosylation (Grünwald-
Gruber and Altmann 2019), could be increased using alternative
fragmentation techniques such as electron transfer dissociation
(ETD) (Wu et al. 2007; Elviri 2012; Wuhrer 2013).

Finally, using alternative bottom-up MS technologies to the
commonly employed data-dependent acquisition (DDA), could
lead to increased detection of modified peptides. PTMs are gen-
erally observed at low stoichiometry and, therefore, not selected
for fragmentation using a data-dependent acquisition approach,
in which only ions with highest intensity are chosen. To over-
come this stochastic precursor ion selection, DIA methods could
be employed (Röst et al. 2014). Here, all precursor ions are sys-
tematically fragmented in predefined retention time and precur-
sor ion mass to charge (m/z) range. However, proper data analy-
sis software tools should be utilised to correctly identify, localise
and quantify the modifications (Meyer et al. 2017; Rosenberger
et al. 2017). Moreover, these tools are important for discrimi-
nation of co-isolated modified peptide isoforms resulting from
large precursor isolation windows (Rosenberger et al. 2017).

OUTLOOK

Research on post-translational modifications has advanced the
understanding of protein phosphorylation in metabolic flux con-
trol and the understanding of modification cross-talk in yeast
(Zahedi 2016; Chen, Wang and Nielsen 2017). However, many of
the latest developments for the analysis, discovery and quantifi-
cation of larger sets of post-translational modifications still chal-
lenge the field. Because many proteins undergo more than one
modification at a time, a comprehensive exploration will require
an examination beyond the most commonly investigated mod-
ifications such as phosphorylation and acetylation, by a simul-
taneous increase in protein sequence coverage.

A recent study on fission yeast by Telekawa et al. (2018)
demonstrated the comprehensive characterisation of a pro-
tein complex following affinity purification. This work provided
particularly high sequence coverage and gave insight on almost
40 modification sites of 3 different types of modifications within
1 complex. A similar study was performed by Šoštarić et al.
(2019), who demonstrated the impact of acetylation and phos-
phorylation on subunit interaction in 3 large yeast complexes.

Considering that many modifications can influence binding
affinities, modifications are often considered to be function-
ally associated (Duan and Walther 2015). A phosphoproteomics
study in yeast illustrated that phosphorylated proteins engage

in many more protein–protein interactions than their unmodi-
fied counterparts (Yachie et al. 2011). A better understanding of
the impact of modifications on protein complex formation and
on protein–protein or enzyme–substrate interactions may open
effective intervention points and targets for engineering.
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Rosenberger G, Liu Y, Röst HL et al. Inference and quantification
of peptidoforms in large sample cohorts by SWATH-MS. Nat
Biotechnol 2017;35:781–8.
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