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DEKAF: Spectral Multi-Regime Basic-State Solver for

Boundary-Layer Stability

Koen J. Groot,∗Fernando Miró Miró,†Ethan S. Beyak,‡

Alexander J. Moyes,‡Fabio Pinna,§Helen L. Reed¶

∗Delft University of Technology, Delft, 2629HT, The Netherlands
†§Von Kármán Institute for Fluid Dynamics, Rhode-St-Genèse, 1640, Belgium

‡¶Texas A&M University, College Station, TX 77843, USA

As the community investigates more complex flows with stronger streamwise variations
and uses more physically inclusive stability techniques, such as BiGlobal theory, there is a
perceived need for more accuracy in the base flows. To this end, the implication is that
using these more advanced techniques, we are now including previously neglected terms of
Op1{Re2q. Two corresponding questions follow: (1) how much accuracy can one reasonably
achieve from a given set of basic-state equations and (2) how much accuracy does one need
to converge more advanced stability techniques? The purpose of this paper is to generate
base flow solutions to successively higher levels of accuracy and assess how inaccuracies ul-
timately affect the stability results. Basic states are obtained from solving the self-similar
boundary-layer equations, and stability analyses with LST, which both share Op1{Req ac-
curacy. This is the first step toward tackling the same problem for more complex basic
states and more advanced stability theories. Detailed convergence analyses are performed,
allowing to conclude on how numerical inaccuracies from the basic state ultimately prop-
agate into the stability results for different numerical schemes and instability mechanisms
at different Mach numbers.

Nomenclature

CF Crossflow
CGL Chebyshev-Gauss-Lobatto
DEKAF Digits by Ethan, Koen, Alex, and Fernando
EPIC Texas A&M’s Euonymous Parabolized Insta-

bility Code
FD Finite Difference
FD-q qth-order finite Difference
GICM Groot-Illingworth-Chebyshev-Malik interpo-

lation routine
LST Linear Stability Theory
M1,M2 First and second Mack mode
PSE Parabolized Stability Equations
QZ Generalized Schur Decomposition
TS Tollmein-Schlichting
VESTA VKI Extensible Stability and Transition

Analysis

Symbols

α Streamwise perturbation wavenumbers
β Spanwise perturbation wavenumbers
βH Hartree parameter
γ Ratio of specific heats, cp{cv
δ˚ Displacement thickness
δ˚e Energy thickness
δ˚h Enthalpy thickness
ε Measure of error
η Self-similar wall-normal coordinate
θ Non-dimensional streamwise semi-total en-

thalpy gradient
θ˚ Momentum thickness
κ Thermal conductivity
λ Second viscosity coefficient
µ Dynamic viscosity
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ξ Marching streamwise coordinate
ρ Mass density
ψ Dimensional streamfunction
ω Angular perturbation frequencies

A,B, C,D, E ,F Parameters for F pηq
A Jacobian matrix
a0, a1, a2 Non-dimensional grouping parameters
C Chapman-Rubesin parameter
c.c. Complex conjugate
cp Specific heat at constant pressure
cv Specific heat at constant volume
D Differentiation matrix
Ec Eckert number, streamwise component
Ecw Eckert number, spanwise component
F Initial guess for boundary layer profiles
fη Non-dimensional streamwise velocity compo-

nent
g Non-dimensional semi-total enthalpy
H Semi-total enthalpy, h` u2{2
h Static enthalpy
H˚ Shape factor
I Integration matrix
j Reciprocal of non-dimensional mass density
k Non-dimensional spanwise velocity compo-

nent
` Blasius length
M Mach number of the freestream
N Number of computational nodes in η domain
p Static pressure
Pr Prandtl number
Q Inviscid flow speed

a

u2e ` w
2
0

q Instantaneous flow field state vector, or order
of FD method

R Right-hand-side vector
r Recovery factor

Re Reynolds number based on `
Rex Reynolds number based on x
S Sutherland’s constant
T Temperature
t Time coordinate
u Streamwise velocity
v Wall-normal velocity
w Spanwise velocity
X Computational space
x Streamwise coordinate
y Wall-normal coordinate
z Spanwise coordinate

¨1 Perturbation flow variable
ˆ̈ Newton-Raphson iterative perturbation vari-

able
¨ Base flow variable
¨ Newton-Raphson guessed-solution variable
˜̈ Perturbation flow variable

¨,m Index for given collocation node
¨0 Constant reference value
¨η Differentiation with respect to η
¨max Maximum value
¨ref Reference value
¨T Differentiation with respect to T
¨ξ Differentiation with respect to ξ
¨ad Adiabatic value
¨eig Property of the eigensolver
¨e Boundary layer edge value
¨i Critical value or imaginary part
¨r Real part
¨w Wall value
¨y Differentiation with respect to y
| ¨ |8 Infinity-norm
| ¨ |F Frobenius-norm

I. Introduction

Boundary layer flow over solid surfaces undergoes laminar-turbulent transition at high enough Reynolds
numbers, which is associated with a steep increase in skin friction and heat transfer. The latter are

important design parameters, rendering transition prediction an important practice. The common approach
to the prediction of transition on airfoils and nose cones is the combination of linear stability methods and
the semi-empirical eN -method, see Van Ingen1 and Smith & Gamberoni.2 Although finding its inception
over 60 years ago, this technique is nowadays still the state-of-the-art for industrial applications.3,4

Stability methods can be split into several categories. The classical method, here referred to as the LST
(Linear Stability Theory) approach, determines the stability characteristics captured in a velocity profile at
a given streamwise location. Only the wall-normal gradient in the flow variables is accounted for, which is
justified because the inherently neglected streamwise derivatives of slowly developing flows are small; the
small parameter being 1{Re, where typically Re “ ρe Ue `{µe “

a

ρe Ue x{µe “
?
Rex “ Op103q. The PSE

(Parabolized Stability Equation) method improves upon this by accounting for these so called non-parallel
effects up to first order. This means that the model error associated to LST is Op1{Req, while that of PSE
is Op1{Re2q.

The BiGlobal approach accounts for all effects due to higher order streamwise derivatives of the flow
and hence does not introduce a model error. In fact, the term with the smallest order of magnitude in the
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BiGlobal system of equations for compressible flow is:5

T
Ec

Re

dµ

dT

ˆ

Bv

Bx

˙2

, (1)

which, when B{Bx and v are Op1{Req, is of Op1{Re5q. To be precise, the method yields a correction of
Op1{Re2q with respect to PSE, which means that numerical errors should be brought down to op1{Re2q,a

heuristically speaking, to isolate the otherwise neglected effects.
Substituting the BiGlobal approach for LST or PSE in their domain of applicability (i.e. slowly developing

flows) is unnecessarily expensive, given the extra theoretical and numerical difficulties that have to be faced.
This can only be justified when BiGlobal stability analysis is used for more complex, two-dimensional and
streamwise inhomogeneous cases. However, the behavior of the spectrum provided and extra physical features
accounted for by this method is incompletely understood, even for the simple flow cases like that over a flat
plate.6–10 Understanding the additional physical mechanisms accounted for in the BiGlobal method in
simplified cases, however small, is essential before rigorous studies of more complex flows can be analyzed.

These methods require the prior computation of a base flow solution, and they are notorious for requiring
a highly accurate solution of the basic state, see Reed et al.11 Several arguments are given in the literature
in this regard.

For BiGlobal analysis, the basic state needs to satisfy the Navier-Stokes equations, which is assumed in
deriving the stability equations, see Theofilis.12 The shear layers principally contributing to the production
of perturbation energy need to be resolved, see Arnal,13 and that the stability results must be converged as
the resolution of the basic state is increased, see Reed et al.11

Basic questions remain, however, such as:

• Does grid convergence information of the base flow translate into convergence of the stability results?

• What is the effect of interpolating the base flow solution onto the stability grid?

• Do basic-state inaccuracies affect stability results computed with different numerical schemes equally?

• Do different instabilities and flow regimes require the same level of basic-state convergence and stability
grid resolution?

The first endeavors in this direction must start at reconsidering self-similar boundary-layer solutions.
Their accurate solution is highly important, because they will have to serve as either the initial condition to
non-self-similar marching codes or boundary conditions for full Navier-Stokes solvers.b

The main goal of the current study is to investigate the required accuracy of these self-similar base flow
profiles, corresponding to particular cases, to ensure a given intended accuracy for the stability results. To
this end, the compressible variants of the self-similar Falkner-Skan-Cooke equations are solved by deploying
the pseudo-spectral Chebyshev collocation method,14–16 being a method prevalently deployed for the stability
problem itself.17,18 It provides maximal numerical (spectral order) accuracy per computational node. That
way, performing this analysis is tractable over a large range of base flow accuracy. This allows estimating
the error introduced by the base flow on the stability (classical LST) results. In turn, this enables generating
benchmark results for a variety of instability mechanisms and flow regimes.

The paper is arranged as follows. First, the equations governing general self-similar compressible boundary-
layer profiles and the associated instability modes are briefly revisited in section II. The numerical method
is discussed in III, focusing on the preservation of the accuracy of the self-similar flow field on which the
stability analysis is performed. The boundary-layer and stability results together with their associated error
studies are presented in sections IV and V respectively.

II. Governing equations

A Cartesian coordinate system is presumed, respectively designating x, y and z as the streamwise, wall-
normal and spanwise coordinates. The current interest supposes steady and spanwise invariant boundary-
layer flow cases, implying the flow does not contain derivatives in z and time, t. The velocity components

aHere the small-o notation is implied: opχq „ ε ă χ and Opχq „ ε ď χ.
bNote that marching codes, solving the boundary-layer equations introduce a model error of Op1{Req as opposed to the

model-error-free full Navier-Stokes problem.6,7
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of these flows in the x-, y- and z-directions are denoted by u, v and w, respectively. The overbars are
introduced for purposes of consistency with the stability framework. Evaluating variables at the edge of the
boundary layer (attained for large wall-normal coordinates) is indicated with the subscript e. The edge-value
corresponding to w is an exception to this, it is instead denoted by w0, because the aforementioned spanwise
in-variance forces this value to be a global constant.

II.A. Self-similar boundary-layer equations

The compressible boundary-layer equations are stated as follows:

ρ u
Bu

Bx
` ρ v

Bu

By
“´

Bp

Bx
`
B

By

ˆ

µ
Bu

By

˙

, (2a)

0 “
Bp

By
, (2b)

ρ u
Bw

Bx
` ρ v

Bw

By
“
B

By

ˆ

µ
Bw

By

˙

, (2c)

ρ u
BH

Bx
` ρ v

BH

By
“
B

By

ˆ

µu
Bu

By

˙

` µ

ˆ

Bw

By

˙2

`
B

By

ˆ

κ
BT

By

˙

, (2d)

Bρ u

Bx
`
Bρ v

By
“ 0. (2e)

Here H denotes the semi-total enthalpy.c Far enough from the leading edge, boundary layers develop slowly
in the streamwise direction, allowing the solution profiles to settle into a shape independent of x. The
equations governing these self-similar profiles are obtained by using the Illingworth transformation.d

This expresses the equations in function of the self-similar η and marching ξ variables, which relate to x
and y through:

dηpx, yq “
uepxq

a

2ξpxq
ρpx, yqdy; dξpxq “ ρepxquepxqµepxqdx. (3)

Partial derivatives with respect to ξ and η will hereafter be denoted with the subscripts ξ and η, respectively.
Furthermore, the following non-dimensional variables are introduced for the streamwise and spanwise

velocity components and the (semi-total) enthalpy:

fηpξ, ηq “ u{ue; kpξ, ηq “ w{w0; gpξ, ηq “ H{He. (4)

The variable f is originally related to the dimensional stream-function: ψ “ f
?

2ξ, whose existence implies
inherently satisfying the continuity equation.

By expressing the boundary-layer equations in the self-similarity coordinates, one obtains the compressible
equivalents of the Falkner-Skan-Cooke equations:

pC fηηqη ` ffηη ` βHpj ´ f
2
η q “ 2ξ pfηfξη ´ fηηfξq (5a)

pC kηqη ` fkη “ 2ξ pfηkξ ´ kηfξq (5b)

pa1 gηqη ` fgη ´ θfηg ´ pa2fηfηηqη ` a0k
2
η “ 2ξ pfηgξ ´ gηfξq (5c)

Here: j “ ρe{ρ “ jpgq, the Hartree parameter βH represents the streamwise pressure gradient, the Chapman-
Rubesin parameter C denotes the density-viscosity profile, θ represents the streamwise semi-total enthalpy
gradient, and a0, a1 and a2 are grouping parameters. All are respectively defined as follows:

βH “
2ξ

ue

due
dξ

, C “
ρµ

ρeµe
, θ “

2ξ

He

dHe
dξ

,

a0 “
Ecw

1` Ec{2
C, a1 “

C

Pr
, a2 “ Ec

1´ 1{Pr

1` Ec{2
C. (6)

cThe semi-total enthalpy H “ h` u2{2 considers only the streamwise component of the kinematic energy, not the spanwise
component (w2{2).

dThe name of this transformation is referred to differently in different references. We consider what is referred to as the
Levy-Lees transformation by Schlichting et al. [19, p. 247], the Lees-Dorodnitsyn transformation by Anderson [20, p. 279] and
the Illingworth transformation by White [21, p. 511].
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Furthermore, Ec “ u2e{he and Ecw “ w2
0{he denotes the streamwise and spanwise Eckert number, M is

the freestream Mach number and Pr “ cpµe{κe represents the Prandtl number. The total enthalpy in the
freestream is presumed to be conserved, which imposes θ “ 0. This is equivalent to enforcing Euler’s energy
conservation equation in the freestream.e,f

Throughout this paper, the flow is assumed to be calorically perfect. The boundary-layer assumptions
require the pressure to be constant in the wall-normal direction (Eq. 2b). The equation of state therefore
imposes that the density must be inversely proportional to the temperature. Furthermore, Sutherland’s law
is used as the closure relationship for the dynamic viscosity, µ, Stokes’s hypothesis is used for the second
viscosity coefficient, λ,g and the thermal conductivity, κ, follows by assuming a constant Prandtl number.
This can be expressed as:

ρ

ρe
“
T e

T
,

µpT q

µref

“

ˆ

T

T ref

˙

3
2 T ref ` S

T ` S
,

λ

λe
“ ´

2

3

µ

µe

κ

κe
“

µ

µe
. (7)

where µref and T ref are a reference viscosity and temperature, respectively, and S is the Sutherland constant.
Note that µe “ µpT eq ‰ µref .

The ξ-derivatives, forming the right hand side terms of system (5), encode the solutions’ streamwise
history. Self-similar solutions are sought in this study, which requires dropping these terms.

The system is completed with the following edge and wall boundary conditions:

lim
ηÑ8 fηpηq “ 1, fp0q “ fηp0q “ 0, lim

ηÑ8 kpηq “ 1, kp0q “ 0, lim
ηÑ8 gpηq “ 1, (8)

whereas the following conditions respectively portray an iso-thermal or adiabatic wall condition:

gp0q “ gw, or gηp0q “ 0, (9)

where gw represents the non-dimensional semi-total enthalpy at the wall.

II.B. Stability problem

The boundary-layer solution constitutes the laminar base flow for this problem. If a low disturbance envi-
ronment is present, one can decompose the instantaneous flow field, denoted as q, into the laminar base flow,
q, and a linear perturbation field, q1:

q “ q ` q1, (10)

and q1 ! q. That is, the perturbation is assumed to be infinitesimally small with respect to the base flow,
which naturally leads to (linear) stability methods.

As elaborated upon before, the variations in the base flow in the x-direction, time and the spanwise
z-direction are discarded. This assumption allows using the classical Fourier ansatz associated to the LST
analysis:

q1 “ q̃pyq eipαx` βz´ωtq ` c.c., (11)

Here q̃ “ rũ ṽ w̃ T̃ p̃sT are the perturbation amplitude y-profiles, α and β are the streamwise and spanwise
wavenumbers and ω is the angular frequency of the perturbation. c.c. abbreviates the operation of taking
the complex conjugate. The wavenumber β should not be confused with the Hartree parameter, βH . In
general, α and ω are considered to be complex, where ´αi and ωi respectively represent the exponential
perturbation amplification in the x-direction and time. The amplitude function q̃ is merely the shape of the
wave in y and is normalized to have maximal magnitude 1. The spatial stability problem is considered here,

eNote that since dw0{dξ “ 0, the semi-total enthalpy gradient dHe{dξ is identical to the total enthalpy gradient.
fIf this is not enforced, as η Ñ8, g approaches the asymptotic value at an algebraic as opposed to exponential rate, which

is illustrated as follows. Consider a calorically perfect freestream, i.e. j “ g and fξ, fηη , kη , gξ, gη and higher order η-derivatives
all approach 0. That is, these variables are negligibly small. The term fgη , however, remains finite due to f „ η. In this case,
equation (5c) simplifies to gη{g “ θfη{f , which can be solved to yield: g “ cstfθ, where cst “ lim

ηÑ8
1{fpηqθ, so to satisfy the

condition lim
ηÑ8

gpηq “ 1. If θ “ 0, this behavior is nullified.
gNote that this variable does not appear in system (5), but it does in the stability problem.
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which implies that one solves for α P C, while ω, β P R are given. The perturbation solutions are governed
by the compressible LST equations:

i β γ ũM2 pw

T
`

γ ṽM2 p uy
T

`
i α γ ũM2 p u

T
´

i γ ω ũM2 p

T
“

T̃ µT uy y
Re

`
T̃ µT T Ty uy

Re `
T̃y µT uy

Re `
i α ṽ µT Ty

Re `
ũy µT Ty

Re ´ i α p̃´ αβ w̃ µ
Re `

i α ṽy µ
Re

`
ũy y µ
Re ´

β2 ũ µ
Re ´

2α2 ũ µ
Re ´

αβ w̃ λ
Re `

i α ṽy λ
Re ´ α2 ũ λ

Re ,

(12a)

i β γ ṽM2 pw

T
`

i α γ ṽM2 p u

T
´

i γ ω ṽM2 p

T
“

i β T̃ µT wy
Re `

i α T̃ µT uy
Re

`
2 ṽy µT Ty

Re `
i β w̃ λT Ty

Re `
ṽy λT Ty

Re `
i α ũ λT Ty

Re ´ p̃y `
i β w̃y µ

Re `
2 ṽy y µ

Re

´
β2 ṽ µ
Re ´

α2 ṽ µ
Re `

i α ũy µ
Re `

i β w̃y λ
Re `

ṽy y λ
Re `

i α ũy λ
Re ,

(12b)

γ ṽM2 pwy
T

`
i β γ w̃M2 pw

T
`

i α γ w̃M2 p u

T
´

i γ ω w̃M2 p

T
“

T̃ µT wy y
Re

`
T̃ µT T Ty wy

Re `
T̃y µT wy

Re `
w̃y µT Ty

Re `
i β ṽ µT Ty

Re ´ i β p̃`
w̃y y µ
Re ´

2 β2 w̃ µ
Re

´
α2 w̃ µ
Re `

i β ṽy µ
Re ´

αβ ũ µ
Re ´

β2 w̃ λ
Re `

i β ṽy λ
Re ´

αβ ũ λ
Re ,

(12c)

i β γ T̃ M2 pw

T
`

i α γ T̃ M2 p u

T
`

γ ṽM2 p Ty
T

´
i γ ω T̃ M2 p

T

“
pγ´1q T̃ M2 µT pwyq

2

Re `
2 pγ´1q w̃y M2 µwy

Re `
2 i β pγ´1q ṽM2 µwy

Re

`i β pγ ´ 1qM2 p̃ w `
pγ´1q T̃ M2 µT puyq

2

Re `
2 i α pγ´1q ṽM2 µuy

Re

`
2 pγ´1q ũy M2 µuy

Re ` i α pγ ´ 1qM2 p̃ u`
T̃ κT Ty y

PrRe `
T̃ κT T pTyq

2

PrRe

`
2 T̃y κT Ty

PrRe `
T̃y y κ
PrRe ´

β2 T̃ κ
PrRe ´

α2 T̃ κ
PrRe

´i pγ ´ 1qωM2 p̃` pγ ´ 1q ṽM2 py,

(12d)

´
i β T̃ w

T
`

i β p̃ w
p ´ i α T̃ u

T
`

i α p̃ u
p ´

ṽ Ty
T

` i ω T̃
T
´

i ω p̃
p `

ṽ py
p ` i β w̃ ` ṽy ` i α ũ “ 0.

(12e)

These equations are obtained by linearizing the Navier-Stokes equations about the boundary-layer base
flow and incorporating the Fourier ansatz (11). Note that the linearized continuity equation has been
simplified by dividing all terms by ρ “ γM2 p{T . This improved the norm of the corresponding matrix
system, which resulted in a decrease of the Frobenius norm, and therefore a minimum eigenvalue error, of
several orders of magnitude.

As for the wall boundary conditions applied to the amplitude variables, no-slip boundary conditions
are specified for the velocity amplitudes, ũp0q, ṽp0q, and w̃p0q, and a compatibility conditionh is used for
the pressure amplitude p̃p0q. For the cases where ωr ‰ 0, it is physically justified to specify a homogeneous
Dirichlet condition on the wall temperature, T̃ p0q, independently from the basic-state thermal wall condition.i

The treatment of the free-stream boundaries also varies among the different research groups. Typical ap-
proaches are to consider Dirichlet conditions on all perturbation amplitudes except for the pressure amplitude
(accounted for through a compatibility condition),18,23 or Neumann conditions on all amplitudes.22,24,35

III. Numerical methodology

Having elaborated upon the governing equations, this section describes the numerical methodology de-
ployed in solving them. First finite-difference and Chebyshev discretizations, together with the Runge-Kutta
methods are discussed. Second, the DEKAF boundary-layer solver is introduced. A consistent interpolation
technique is then presented, and finally the set-up and Newton-Raphson solution method are treated. The
latter requires the prescription of an initial guess of the solution, which is elaborated upon last.

hTypical examples of used compatibility conditions are the linearized continuity or wall-normal momentum equation, eval-
uated at the wall.22

iFor the high perturbation frequencies usually considered, the thermal inertia of the wall resists any heat absorption.22 For
the stationary crossflow instability, the frequency is equal to zero, so this reasoning does not apply. However, in the current
paper this instability is considered in incompressible flow conditions only. In this situation, the effect of the temperature
perturbation is negligible, again justifying the use of a homogeneous Dirichlet condition on T̃ p0q.
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III.A. Discretization methods

Finite-difference methods are foundational to many numerical algorithms for solving differential equations.
The central idea is to substitute derivatives (e.g., Bf{Bx) by ratios of finite differences (∆f{∆x).25 These
differences may be expressed on a given computational stencil corresponding to a certain order of accuracy,
provided the discretization is mathematically convergent to the original differential equation. Over an
interval, state variables of a differential equation may be discretized, which can then be formulated as a
matrix equation that can be solved with standard linear algebra techniques.26

Chebyshev collocation equips Chebyshev-Gauss-Lobatto (CGL) nodes,14 which provide “an optimal plac-
ing of interpolating points to minimize the error in Lagrange interpolation”, see Burden & Faires.27 Since it
uses the complete node stencil to determine the derivative at a collocation node, it yields spectrally accu-
rate approximations. For more details on the discretization method, see Trefethen,15 Canuto et al.14 and
Orszag.17

Often in computational science, Runge-Kutta methods are used to numerically integrate differential equa-
tions.28 These algorithms can be characterized by combining several finite-difference steps, each involving
an evaluation of the differential equation, and then matching a higher-order Taylor series.26 However, these
methods can require significant amounts of computer time, even if the solution propagation is monitored for
adaptively changing the finite-difference step-sizes. Despite this they remain a common numerical technique
for laminar basic-state resolution.29

III.B. DEKAF boundary-layer solver

The boundary-layer equations (5) with the self-similarity simplifications are solved using the DEKAF (Digits
by Ethan, Koen, Alex and Fernando) boundary-layer solver. It uses a Chebyshev pseudo-spectral discretiza-
tion on the linearized boundary-layer equations, which are solved with a Newton-Raphson method (see
§ III.D). Function suites provided by Weidemann & Reddy16 are used to compute the differentiation matri-
ces and perform Lagrangian interpolation with Chebyshev polynomials.

To provide a higher resolution of the boundary layer, the mapping introduced by Malik18 is used in the
η-space. That is, both the CGL node distribution and the differentiation matrices, as originally defined
on the computational X-space spanning r´1, 1s, are transformed to the domain r0, ηmaxs in η-space. The
interior coordinate ηi is defined, which splits the domain in two parts, each containing half the number of
nodes. It is a common practice to place this coordinate at the edge of the boundary layer. One can then
retrieve dimensional quantities by undoing the Illingworth transformation (3). The necessary integration for
the inverse Illingworth transformation is done while retaining spectral accuracy by inverting the Chebyshev
differentiation matrix (see Appendix A).

III.C. GICM interpolation

Equation (3) illustrates that the density has an impact on the scaling of y with respect to η. Usually ρ ă ρe
inside the boundary layer, meaning that the distance between nodes in the η-grid will be stretched as they
are mapped to the y-grid. This poses an important implication for the location of the collocation nodes.
If η-nodes are generated and mapped to the y-space, they do not align with y-nodes, that are originally
generated in the y-space, even though the same yi and ymax are used. This in-equivalence can be illustrated
as follows. Let m be the index corresponding to a particular collocation node:

XCGL,m P r´1 0 1s
Malik
ÞÑ η1,m P r0 ηi ηmaxs

Illingworth
ÞÑ y1,m P r0 yi ymaxs

‰

XCGL,m P r´1 0 1s
Malik
ÞÑ y2,m P r0 yi ymaxs.

For all y2,m ‰ 0, yi or ymax, y2,m is unequal to y1,m in general. For this reason, having to interpolate the
solution is inevitable.

This is where the optimal Lagrangian interpolation properties of the Chebyshev CGL-nodes are highly
beneficial. The interpolation is naturally performed by passing from the node XCGL-coordinates (corre-
sponding to y1) to the X2-coordinates (corresponding to y2). To obtain the latter X2-coordinates, one must
perform the inverses of the Illingworth transformation and Malik mapping (noted Illingworth´1 and Malik´1,
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respectively):

X2,m
Malik´1

Ð[ η2,m
Illingworth´1

Ð[ y2,m. (13)

The inverse Illingworth transformation depends on the density ρ evaluated on the y2-nodes, however. So,
an iterative procedure is set up that updates the latter ρ-values. A spline interpolation from the y1- to the
y2-nodes is performed as the initial guess, while the Lagrangian interpolation is used in subsequent steps.
The procedure is repeated up to the point where machine precision convergence is attained for the X2-
node positions. These nodes are thereafter used to perform the final interpolation to the y2-node positions.
This interpolation method is from now on referred to as the Groot-Illingworth-Chebyshev-Malik (GICM)
interpolation routine. Its performance is assessed among the results.

Note that this interpolation is applicable to any y2 grid, as long as it is accompanied by an appropriate
and integrable differentiation matrix via the method described in Appendix A. One of its main advantages
is that it retains the spectral accuracy of the solution, through the use of the Lagrangian interpolation
methodology, independently from the size of the objective y2 grid. Boundary-layer solution profiles are
generally rather simple, and require a lower number of points than instability mode shapes. The GICM
interpolation accordingly allows for an optimal usage of grid points in both the basic-state and stability
problem, with negligible accuracy loss when transferring between grids. Moreover, it is also flexible with
respect to whichever numerical scheme is used to solve the stability problem (see § III.A).

III.D. Equation set-up and solution method

The numerical set-up applied here is a Newton-Raphson approach, based on directly inverting the linearized
Falkner-Skan-Cooke problem; i.e. the related Jacobian matrix. Just like the stability approach, a small
perturbation is applied to the variables, f , k and g, e.g.:

fpηq “ fpηq ` f̌pηq, (14)

where f is referred to as a pseudo-basic-state quantity and f̌ is the (steady, spatial) fluctuation. An initial
guess is made for the pseudo-basic-state quantities, which are detailed in § III.E.

After substituting this expansion into system (5) and dropping the non-linear terms in the fluctuations,
a linear system of equations is obtained, that can be written as:

AF̌ “ ´R, (15)

where F̌ “ rf̌η, f̌ , ǩ, ǧs
T . That is, f̌η and f̌ are treated as separate variables. This choice for F̌ results

in a matrix with at most second order differentiation matrices. This improved the conditioning of the
resulting problem significantly over using third order differentiation matrices, resulting in lower residuals
when performing Newton-Raphson iterations.

The Jacobian matrix A and the right hand side vector R only contain variables with double overbars,
these overbars are dropped in the remainder of this section for notation convenience. In particular, A contains
the coefficients multiplying the linear fluctuation quantities. The non-zero entries of the right hand side or
residual term, R, consist of a copy of system (5) evaluated on the pseudo-basic-state quantities. Next to the
equation residuals, R contains zeros in the rows corresponding to fη, which describe the evaluation of the
derivative f̌η “ Df̌ .

As a first step, the matrix A is built such that system (5) is evaluated on all collocation points, including
the boundaries. Due to the explicit appearance of the derivatives of the solution variables in the spectral
collocation method, as a second step, the boundary conditions (8) and (9) are applied by replacing the
differential equation evaluated at the boundary of interest by the boundary condition. In the initial guess
of the pseudo-basic-state variables, special care is invested in ensuring that the initial guesses/conditions
satisfy the boundary conditions identically. Hence, the boundary conditions for the fluctuation quantities
are homogeneous and the corresponding rows in R contain zeros.

If the pseudo-basic-state quantities satisfy system (5), R evaluates to zero and the invertibility of A then
implies that F̌ “ 0. If R ‰ 0, a Newton-Raphson iteration yields the fluctuation vector F̌ “ A´1R, which
represents the required distortion of the pseudo-basic-state variables to bring R closer to zero. These Newton-
Raphson iterations are continued up to the point where all variables, including the involved derivatives and
transport coefficients, are converged to machine precision.
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The link between the linear stability approach and the set-up of the Newton-Raphson method deserves
mentioning. Note that equation (14) is recovered when substituting α “ ω “ β “ 0 into equation (11).
The complex exponential evaluates to unity, so the implied complexification is annihilated. In essence,
the Newton-Raphson scheme corresponds to a reduced stability problem for infinitely long structures in
the streamwise, spanwise and temporal directions; the self-similar, spanwise invariant and steady base flow
problem.

III.E. Initial conditions

To form the first instance of R in system (14), an initial guess for the pseudo-basic-state quantities is required.
The convergence of the method was observed to be highly dependent on the quality of this initial guess. The
smaller the difference between the initial guess and the final solution, the higher the convergence rate to the
desired solutions. If the initial difference is too large, convergence to other, spuriously oscillatory, solutions
may result.

In order to avoid these spurious solutions, first, the unequivocal satisfaction of the boundary conditions
is paramount. Second, an initial guess based on the shape of boundary-layer profiles is used. A canonical
polynomial-exponential function is used for the initial guess for fη, g and k:

F pηq “ 1` pAη3 ` Bη2 ` Cη `Dqe´Eη2`Fη . (16)

where A, B, C, D, E and F are parameters, where E ‰ 0 in all cases. Hence, the function F pηq approaches
unity (super-)exponentially as η Ñ 8; automatically satisfying the freestream behavior and boundary con-
dition.

The parameters B, D, and F are fixed by the wall boundary condition on the function value and deriva-
tives, while the complementary parameters A, C, and E are obtained by fitting F pηq to several boundary-
layer solutions for a larger range of different Mach numbers and wall temperature ratios. To this end,
VESTA’s fourth-order Runge-Kutta boundary-layer solver23 was used to obtain fη, and g profiles, keeping
βH “ w0 “ 0. The initial condition for k is taken identical to that for fη.

A sample of the parameters A, C, and E is presented in tables 1 and 2. For test conditions other than
the computed ones, the set of parameters corresponding to the closest lower Mach number is taken. For
instance, to run M “ 5.8, the parameter set corresponding to M “ 5 is used. This demonstrated to yield
better convergence rates than when interpolating the reported values.j For the subsonic cases detailed in
table 4, the initial condition for g was taken to be a simple 1st-order polynomial satisfying its two boundary
conditions.

III.F. Stability codes

Three independent stability codes were used in executing the current study. In particular, VESTA (the VKI
Extensible Stability and Transition Analysis toolkit), the in-house stability code of TU Delft and EPIC (the
Euonymous Parabolized Instability Code).

The underlying principles of the stability solver in VESTA and the in-house stability solver of TU Delft
are very similar. Their description is reported elsewhere.23,30 VESTA and the TU Delft code are scheme-
independent, meaning that any discretization method can be used. For the majority of cases, Chebyshev
spectral collocation is used in these codes to solve the stability problem. In fact, the set-up of the self-similar
basic-state problem is directly analogous to the implementations of these codes; they provided the inspiration
for creating the DEKAF solver. The stability problem is solved using the QZ algorithm.31,32

EPIC is a compressible nonlinear parabolized stability equations (NPSE) solver in general three-dimensional
curvilinear coordinates that features additional linearized parabolized stability equations (LPSE) and linear
stability theory capability. EPIC has been used to analyze the stability of various boundary-layer instabilities
(e.g., first and second Mack modes and the crossflow instability) over three-dimensional geometries, such as
elliptic cones or yawed straight circular cones. Further details are given in the thesis of Oliviero24 and the
dissertation of Kocian.33 For the analysis performed in this paper, EPIC uses fourth-order finite-difference
schemes to evaluate derivative of basic-state and stability quantities throughout the boundary-layer interior
nodes, whereas second order schemes are used at the wall and freestream nodes, and their wall-normal neigh-
bors. The stability problem is solved using the Arnoldi iteration algorithm, which is accurate to Op10´13q.34

jExperience shows that using g profiles attaining values lower than the final profile is beneficial for the convergence behavior.
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Table 1. Sample of coefficients for the initial guess function Fpηq (Eq. 16) for fη for adiabatic wall conditions and
for several edge Mach numbers. Values of fηη,w, used to obtain B, D, and F are also listed. fηηη,w and fw values are
omitted since fηηη,w “ fw “ 0 for a non-blowing adiabatic wall with βH “ 0.

Me A C E fηη,w

0.01 4.07811e-02 9.44090e-02 5.19947e-01 4.69601e-01

0.5 4.05977e-02 9.00186e-02 5.20458e-01 4.72501e-01

1 4.00238e-02 7.62938e-02 5.21708e-01 4.81145e-01

2 3.86102e-03 -1.35885e-01 5.71351e-01 5.13780e-01

3 2.37842e-03 -2.61074e-01 5.59809e-01 5.60286e-01

4 -1.02949e-01 -8.57249e-01 5.06635e-01 6.12808e-01

5 -3.53516e-01 -1.42533e+00 4.20244e-01 6.66609e-01

6 -7.14969e-01 -1.84294e+00 3.33674e-01 7.19491e-01

7 -1.17384e+00 -2.18697e+00 2.31696e-01 7.70581e-01

8 -1.71532e+00 -2.48439e+00 3.01678e-02 8.19618e-01

9 -2.37924e+00 -2.68122e+00 -3.32850e-03 8.66601e-01

10 -2.91426e+00 -2.83399e+00 -3.78514e-03 9.11637e-01

15 -4.57399e+00 -3.35100e+00 -1.25733e-03 1.11264e+00

20 1.24255e-01 1.46899e+00 7.00088e-01 1.28412e+00

25 -6.80627e+00 -4.06865e+00 -8.83011e-04 1.43566e+00

Table 2. Sample of coefficients for the initial guess function Fpηq (Eq. 16) for g for adiabatic wall conditions and for
several edge Mach numbers. Values of gw and gηη,w, used to obtain B, D, and F are also listed. gη,w values are omitted
since gη,w “ 0 for adiabatic conditions.

Me A C E gw gηη,w

1 4.00238e-02 7.62938e-02 5.21708e-01 9.72390e-01 2.31501e-02

2 3.86102e-03 -1.35885e-01 5.71351e-01 9.25487e-01 7.03919e-02

3 2.37842e-03 -2.61074e-01 5.59809e-01 8.90527e-01 1.21084e-01

4 -1.02949e-01 -8.57249e-01 5.06635e-01 8.68205e-01 1.71673e-01

5 -3.53516e-01 -1.42533e+00 4.20244e-01 8.53808e-01 2.22184e-01

6 -7.14969e-01 -1.84294e+00 3.33674e-01 8.44094e-01 2.72722e-01

7 -1.17384e+00 -2.18697e+00 2.31696e-01 8.37231e-01 3.23289e-01

8 -1.71532e+00 -2.48439e+00 3.01678e-02 8.32186e-01 3.73857e-01

9 -2.37924e+00 -2.68122e+00 -3.32850e-03 8.28353e-01 4.24401e-01

10 -2.91426e+00 -2.83399e+00 -3.78514e-03 8.25358e-01 4.74904e-01

15 -4.57399e+00 -3.35100e+00 -1.25733e-03 8.16894e-01 7.26630e-01

20 1.24255e-01 1.46899e+00 7.00088e-01 8.13037e-01 9.77168e-01

25 -6.80627e+00 -4.06865e+00 -8.83011e-04 8.10866e-01 1.22686e+00
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A difference between the codes lies in their perturbation boundary conditions. VESTA and the TU
Delft code both use the wall-normal momentum equation as a compatibility condition, and a freestream
Dirichlet condition for all quantities except p̃ (enforced through the same compatibility condition evaluated
in the freestream).18,23 On the other hand, EPIC uses the continuity equation as a compatibility condition
and freestream Neumann conditions on all quantities (dq̃{dy|y“ymax

).22,24,35 These differences, however, are
expected to have no significant effect in the stability results.

To establish a reasonable verification with EPIC, the stability problem is solved using the FD-q li-
brary36,37 in VESTA, kindly provided by Dr. Hermanns. By using order q “ 4, it yields comparable results
to the scheme used in EPIC. Moreover, the deployment of the FD-q library allows comparing the perfor-
mance of the higher order FD-q method with respect to the Chebyshev collocation method. In the remainder,
‘FD-4’, ‘FD-8’ and ‘FD-10’ will specifically denote the fourth-, eighth- and tenth-order FD-q schemes. They
are not to be confused with a regular finite-difference scheme.

IV. Basic-state results

The current results are generated with the aim of providing a benchmark. To that end, it is very
important to specify the thermodynamic reference variables. By carefully scrutinizing the literature, in fact,
it was observed that many references do not provide such information completely, while small changes in the
parameters can yield large differences in the results, also in the essentially incompressible case M Ñ 0. The
parameters that are fixed among all considered cases are given in table 3; the shown precision is used as the
input exactly.

Table 3. Fixed thermodynamic reference and η-grid parameters

Pr γ cp pJ{pkg Kqq µref pkg{pm sqq T ref pKq S pKq ηi ηmax ÑFD-4

0.70 1.4 1004.5 1.716ˆ 10´5 273.15 110.6 6 100 500

As mentioned, the Illingworth transformation (3) factors the dilational effect of the density in the boundary
layer. Therefore the boundary-layer thickness is practically invariant in the η-coordinate. For this reason,
next to the thermodynamic reference values, also the values of the Malik mapping parameters, ηi and ηmax

are fixed and reported in this table. Note that fixing these parameters implies that the corresponding values
of yi and ymax change from case to case.

IV.A. Case description

A broad range of cases is investigated. For the incompressible flow regime (M “ 10´3), the CrossFlow (CF)
and Tollmien-Schlichting (TS) instabilities are considered. For higher sub- and supersonic Mach numbers
(M “ 0.8 and 2.5), the representative oblique (first) Mack mode (M1) are inspected. The oblique nature of
the latter modes is encoded in the non-zero spanwise wavenumber, β ‰ 0. Finally, the second Mack mode
(M2) is considered in the hypersonic pM “ 10q case. In table 4, the case-specific parameters are detailed for
representative cases, the cases are numbered I through V as indicated. Studies of the CF instability case on
self-similar boundary-layer profiles are very scarcely reported in the literature (to sufficient detail); which
obstructed establishing external verification. For that reason, the CF case is considered in the incompressible
flow regime only in this paper.

The local Blasius length is chosen as the reference length scale:

` “

d

µex

ρeQe
“

Re

Re1
, (17)

where Re1 denotes the unit Reynolds number and Re ” `Re1. Note that, in the limit M Ñ 0, this length
scale differs from that associated to the Illingworth transformation (3) by a factor

?
2. The used velocity

scale is:

Qe “

b

u2e ` w
2
0, (18)

i.e. the effective inviscid flow speed. The sweep angle Λ is defined such that: ue “ Qe cos Λ and we “ Qe sin Λ.
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Table 4. Case-specific parameters

M type Λ p˝q βH Re1 T e pKq Tw pKq Re ω pQe{`q β p1{`q ÑCheb

I 10´3 CF 45 0.2 1.0 ¨107 220 220 1000
?

2 0 π
?

2{15 150

II 10´3 TS 0 0 5.8 ¨102 300 adiab. 580 0.06 0 150

III 0.8 M1 0 0 2.0 ¨103 215 adiab. 580 0.04 0.1 150

IV 2.5 M1 0 0 5.0 ¨106 600/4.05 adiab. 3000 0.04 0.1 200

V 10.0 M2 0 0 9.8425 ¨106 278 adiab. 2000 0.075 0 500

Representative TS and Mack modes are unstable in zero sweep and zero pressure gradient circumstances,
so Λ “ βH “ 0 for these cases (rendering Qe “ ue). Furthermore, an adiabatic wall is considered.

For a CF instability to exist, the boundary layer must display a crossflow component. Such a component
is naturally established if the inviscid flow and the pressure gradient are not aligned. The skin friction points
in the same direction of the pressure gradient to establish the steady flow and is thus also not aligned with
the inviscid flow. In turn, the component of the skin friction orthogonal to the inviscid flow direction can
only be manifested by a flow component in that direction: the crossflow component. A maximal crossflow
component is achieved for Λ “ 45˝. Furthermore, a favorable pressure gradient is considered, βH ą 0, which
is representative of the neighborhood of the leading edge of an airfoil. In this case, an iso-thermal wall is
considered.

IV.B. Grid convergence

System (5) is solved with N nodes, and to accurately assess the convergence characteristics, the following
technique is used to evaluate the errors. Given a test grid with a particular number N of nodes, a finer
auxiliary grid was generated with 2N ´ 1 nodes. The solutions on the test and auxiliary grids are here
referred to as the test and auxiliary solutions, respectively. The auxiliary grid contains nodes at exactly
the same location as the test grid, while one additional node is added in between every consecutive pair of
nodes of the test grid. That is, the auxiliary solution at nodes with an odd index can be directly compared
with the test solution on the test grid, without interpolation. The corresponding error is expressed as
|εpq2N´1, qN q|8; evaluating the 8-norm of the difference in the variable is evaluated divided by its maximal
absolute magnitude evaluated at the auxiliary grid. In the context of this section, the variable fηη is chosen
for q, representative of the shear in the flow. The presented data-points always correspond to the number of
nodes N of the test grid.

As N increases linearly, the spectral convergence characteristics of the collocation scheme must result in
an exponential decrease of the magnitude of the error. The achievement of this trend is demonstrated for all
considered cases in figure 1, which verifies the spectral accuracy of the solver. The figure moreover indicates
that all velocity profiles, despite the large differences in the conditions, are converged for N ě 90. For this
reason, N “ 100 is used for the profiles that are used as the input for the stability problem. The inverse of
the slope of the line connecting the errors at N “ 30 and 90 is calculated for case IV, which indicates that
the error decreases by an order of magnitude if 6 additional nodes are used.

IV.C. Parameter accuracy

The representative base flow profiles corresponding to the cases in table 4 are illustrated in figure 9. It is
argued that, in order to yield identical stability results, one must be able to match the basic-state profiles
up to the derivative level(s). Therefore, next to the profiles themselves, also the first and second derivative
profiles are given. It should be noted that the temperature profiles in figures 9 (V(a),V(b),V(c)) are scaled
by a factor 10; this was required to have a reasonable view of the profiles related to the velocity. The largest
plotted value of y{` is yi{` (see table 6).

To indicate the accuracy of the solutions in a different way, the boundary-layer integral parameters are
evaluated. In particular, the displacement thickness, δ˚, the momentum thickness, θ˚, shape factor, H˚, the
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Figure 1. Relative error versus the number of nodes for all cases in table 4.

energy thickness, δ˚e and the enthalpy thickness, δ˚h , defined as:

δ˚ “

ż 8

0

ˆ

1´
ρu

ρeue

˙

dy, θ˚ “

ż 8

0

ρu

ρeue

ˆ

1´
u

ue

˙

dy, H˚ “ δ˚{θ˚,

δ˚e “

ż 8

0

ρu

ρeue

ˆ

1´
u2

u2e

˙

dy, δ˚h “

ż 8

0

ρu

ρeue

T ´ T e

Tw ´ T e
dy, (19)

where the integrals are evaluated with the integration matrices, see Appendix A. In addition to the integral
parameters, the wall values of selected profiles are considered. For the cases considered, many values evaluate
to zero and therefore are not of particular interest. In the perspective of the non-zero sweep for case I, note
that the integral parameters evaluated at the wall are scaled with ue instead of Qe, the same applies to the
non-dimensionalization of the wall values. Note that δ˚h cannot be determined numerically for case I, where
Tw “ T e.

The resulting values of the integral parameters are reported in table 5, whereas the velocity gradient
values and mapping parameters, yi and ymax, are reported in table 6. The reported digits are found to
be significant by checking the matching digits for N “ 100 and 200, where N represents the number of
collocation nodes. I.e. values are not rounded. Due to the further use of the values of yi and ymax, they are
reported to their full extent corresponding to the N “ 100 case; the red digits were found to be non-significant
in relation to the N “ 200 case.

Table 5. Integral parameters.

δ˚{` θ˚{` H˚ “ δ˚{θ˚ δ˚e {` δ˚h{`

I 1.39181039 0.577324959 2.410792003 0.920585142 -

II 1.72078806681 0.66411466327 2.5911008474 1.0443754620 1.24967659

III 1.98658629736 0.66000141833 3.00997277002 1.03845829284 1.243088604

IV 4.2571098871 0.63906449395 6.6614714593 1.0085588870 1.209953346

V 27.043037097 0.418786146490 64.574813001 0.67454497161 0.8245472549

A good illustration of the method’s accuracy with respect to the sensitivity to changes in the temperature
is provided by the cases I and II. Both involve a very small Mach number, but are different in that an

13 of 26

American Institute of Aeronautics and Astronautics



Table 6. First u derivative at the wall and grid parameters (red digits are non-significant, specific for N “ 100).

pdu{dyqwp`{ueq yi{` ymax{`

I 0.485576015007 8.4852814593205892 141.42135632239169

II 0.3320572889362 8.4852818153039173 141.42135667837809

III 0.3033648852327 8.7653732078111020 141.70145010884812

IV 0.174839002926 11.110121719743736 144.04621197745197

V 0.036774705710 34.532948309235067 167.46903831963368

Table 7. Extra values evaluated at the wall for cases I (iso-thermal wall) and II (adiabatic wall).

pd2u{dy2qwp`
2{ueq Tw{T e pdT {dyqwp`{T eq pd2T {dy2qwp`

2{T eq

I -0.10000002172 1.0000000000000000 5.362 ¨ 10´8 ´5 ¨ 10´8

II 0˘ 3 ¨ 10´13 1.000000167143317 0˘ 8 ¨ 10´14 0˘ 3 ¨ 10´8

isothermal and adiabatic condition for the temperature is considered. Note that, for case II, Tw´T e is very
small, but non-zero. Using the approximation for the adiabatic wall temperature (see equations (7-35) and
(7-37a) of White21):

T ad

T e
“ 1` r

γ ´ 1

2
M2, where: r «

?
Pr, (20)

yields T ad{T e “ 1 ` 1.673 ¨ 10´7. In table 7, the computed value of Tw{T e is reported, which illustrates
that the former approximation yields 3 significant digits. Note that Tw{T e is identically equal to 1 for case
I, also reported in table 7. This is a non-trivial result, because the primitive solution variable corresponding
to g is the total enthalpy, H, whose wall value Hw{He is non-zero.

Due to the very small temperature change, the scaling of the boundary layer is affected to an equally
small extent. This change is best represented by the values of yi and ymax in table 6, both correspond to
ηi “ 6 and ηmax “ 100, respectively. Just like the temperature difference, these values change in the eighth
significant digit. The collocation approach is capable of resolving this difference up to several orders of
magnitude, as indicated with the underlined digits in table 6.

IV.D. Interpolation errors

In solving the stability problem, usually a different grid is used than that corresponding to the base flow
profiles. The spectral computational power of the method has the downside that the used grid is relatively
sparse, so caution should be exercised when interpolating. For that reason, the influence of interpolating
the solutions is tested. Specifically, the solution on the test grid is interpolated onto the auxiliary grid with
different methods (linear, spline or GICM interpolation), where it is compared to the auxiliary solution. The
exact errors defined in the previous section are referred to as the ‘no interp.’ errors in what follows. The
differences with these ‘no-interp.’ errors directly indicate the interpolation error; if the errors overlap, the
interpolation error is negligible. In this case, the variable gη is considered corresponding to case IV in table
4, specifically. The compressibility effects yield a large distortion of the y2- versus the y1-grid in this case.

The comparison of the errors are presented in figure 2. Clearly ‘linear’ and ‘spline’ interpolation yield a
large error with respect to the ‘no-interp.’ case. While the solution is completely converged for N “ 90, these
methods introduce errors of Op10´6q and Op10´3q, respectively. When performing GICM interpolation,
a remarkable agreement is found between the interpolated and auxiliary solution, rendering the GICM
interpolation curve to lie on top of the ‘no interp.’ errors. It is hence deduced that, despite the sparsity of
the grid used, GICM interpolation is exact to numerical precision.

V. Stability results

Given the converged boundary-layer solutions, the stability problem can be considered. For every case
in table 4, a single evaluation of the stability problem is performed for α, given real values of ω and β as the
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Figure 2. Grid convergence for case IV while interpolating the solution from the grid with N nodes to the one with
2N ´ 1.

input. The latter values are presented in table 4. Each case corresponds to a situation where the modes are
unstable. The eigenfunctions for all cases are shown in figure 10; note that the functions that are orders of
magnitude smaller are scaled to allow a representative view.

V.A. Stability grid convergence

While fixing the base flow resolution to N “ 100, the convergence characteristics of the eigenvalues are tested
by increasing the number of nodes used in the stability problem, denoted by Ñ . In this case, the measure
for the error is the absolute value of the difference in the eigenvalues with respect to the eigenvalue obtained
for the largest Ñ considered, scaled by the magnitude of the latter value.

The resulting convergence trends are illustrated for all cases in figure 3. For the Chebyshev spectral
collocation method, the errors decay exponentially with respect to Ñ , while a fourth-order polynomial rate
is attained when deploying the FD-q method with q “ 4. A remarkable fact is that the convergence is
significantly obstructed for the hypersonic case V when evaluated with the collocation method. This may
be explained by the demanding shape of the eigenfunction shown in figure 10. Nevertheless, an exponential
convergence rate is obtained.k This verifies the expected performance of both methods.

The FD-4 method results in Op10´6q errors for the largest Ñ shown in figure 3. As stated by Paredes et
al.38 and De Tullio et al.,39 the best compromise between accuracy and efficiency is acquired with FD-8 or
FD-10. In figure 4, the convergence curves are shown for these approaches, applied to case IV. Consistent
convergence rates are attained and a significant difference in accuracy is observed over FD-4; FD-8 and FD-10
attain the same convergence level as the spectral collocation method for Ñ « 420 and 250, respectively. An
interesting observation is that both methods have a smaller error than the Chebyshev collocation method
for Ñ “ 40; the first data-point.

V.B. Differentiating on the base flow or stability grid

For the previously considered cases, all basic-state profiles were interpolated onto the grids corresponding
tot he used stability method, including the spatial derivatives (dq{dy and d2q{dy2). One may argue that
the derivatives are most accurately represented on the grid and by the scheme (Chebyshev) with which the
basic-state solution is determined in the first place. The residuals were measured using those tools after
all. Another valid argument, however, is that one must provide the most accurate derivative profiles that
are consistent with the stability problem, specifically. In that case, it is preferred to evaluate the derivative
profiles on the grid and with the scheme associated to the stability problem instead. In fact, VESTA and the
in-house code of TU Delft are usually operated according to the first methodology: differentiate first with

kThe convergence rate for case V may be improved by considering a mapping that distributes the nodes more efficiently for
this case.
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Figure 3. Eigenvalue convergence with Ñ for all cases in table 4, fixing N “ 100, using Chebyshev collocation and FD-4.
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Figure 4. Eigenvalue convergence with Ñ for case IV, fixing N “ 100, using higher order FD-q methods and assessing the
difference that results when differentiating the base flow profiles consistent with the base flow discretization (Chebyshev)
or with the discretization of the stability problem (FD-q).
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the basic-state grid and scheme and interpolate thereafter; while EPIC considers the converse methodology:
interpolate the profiles first and then evaluate the derivatives consistently with the grid and scheme of the
stability problem.

To test the compatibility of the results, the stability problem corresponding to case IV is evaluated
with the FD-4, -8 and -10 methods, while differentiating the base flow profiles using the respective FD-q
differentiation matrices. The resulting error curves are also shown in figure 4. Apart from a slight increase
in the errors for small Ñ when differentiating with the FD-q matrices, both methods yield practically the
same errors. This demonstrates that one method is not preferred over the other in the search for accurate
solutions.

V.C. Base flow induced errors

The ultimate question that this study intends to answer is what accuracy is required for the base flow profiles
to ensure a particular accuracy of the stability results. To approach this question, the convergence tests for
increasing Ñ are redone while varying N as a parameter. The spectral collocation method is used for both
the basic-state and stability calculations. Figure 5 a) and b) illustrates two resulting convergence trends for
case IV.
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Ñ

10-10

10-5

100

ǫ
(α

)

ǫeig

a)

50 100 150 200 250 300
Ñ
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Figure 5. Convergence of the absolute eigenvalue error for case IV versus Ñ and treating N as a parameter. Dashed
line: eigensolver error, εeig. In a), the error with respect to the reference solution is considered, which is converged

with respect to both N and Ñ, this error is denoted by εpαq. In b), the error is considered with respect to the eigenvalue

that results for convergence in Ñ, but keeping N fixed, denoted by εN pαq.

First consider figure 5 a), which displays the convergence of the results through the error measure defined
before. For large enough N , increasing Ñ results in machine-precision-accurate stability solutions. For
Ñ ą 170, εpωq decreased below εeig, which represents the eigensolver precision, defined as follows:32

εeig “ ε||A||F , (21)

where ||A||F denotes the Frobenius norm of the left-hand-side matrix in the eigenvalue problem and ε is the
machine precision, 2.2 ¨ 10´16 in this case. The fact that the eigenvalue error drops below this level indicates
that the best possibly expected error level is reached. As before, these best possible stability solutions
(converged in both N and Ñ) are used as the reference to evaluate the errors in the eigenvalues for each case
I-V. The errors corresponding to the other cases computed with the collocation method specifically, shown
in figure 3, are also converged to magnitudes smaller than εeig. For all these cases, this convergence level is
attained for N “ 100.

For small N , as shown for case IV in particular for N ă 80, the error in the stability results reaches a
particular plateau while increasing Ñ . This implies that the solution approaches a different limit than the
reference solution as Ñ is increased.

To show that indeed a particular limit is reached for each considered N -value, a different error is defined.
In particular, the eigenvalue difference is considered with respect to the eigenvalue that results from conver-
gence in Ñ only, while N is kept fixed. This error is denoted by εN pαq. Figure 5 b) shows that convergence
of the stability results is attained for all considered N , even for N “ 18.

As exemplified in figure 5 a), however, the limiting solutions are not the same for N ă 80. For small N ,
errors in the base flow profiles contaminate the stability problem such that an incorrect solution is found
when performing grid convergence tests for the stability problem only. This emphasizes the point made by
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Reed et al.,11 that the effect of the resolution of the base flow on the stability results should be checked next
to the grid convergence of the stability problem itself.

Due to the access to the highly accurate reference solutions, the behavior of this hidden error can be
assessed. This is done by considering the ensemble convergence trend as Ñ and N are varied together. The
results of this study are represented by plotting the error in the base flow profiles versus the errors in the
eigenvalues; εpqq versus εpαq. In essence, this plot could be used as a guide: given a demanded accuracy of
the stability results on the horizontal axis, this plot shows the minimally required accuracy (or maximally
allowed errors) for the base flow profiles on the vertical axis. Again, the error in the base flow profiles is
determined by using the ‘no-interp.’ methodology, explained in §IV.D.

The resulting plots are shown in figure 6. As Ñ is increased, the corresponding ensemble of symbols
moves to the left (as illustrated with the blue-red color shift), indicating an improvement of the stability
information. For increasing N , the ensemble of symbols moves downwards, indicating an improvement in
the base flow accuracy; again the error is based on the variable fηη.

As Ñ increases, the data-points encounter the aforementioned threshold, which lies in the neighborhood
of the line corresponding to εpqq “ εpαq indicated with the dashed line. In fact, the maximal allowed error
in the base flow profiles lies above the line εpqq “ εpαq for nearly all cases. These errors can be one order of
magnitude larger as indicated with the solid line. So, if one would request stability data with an accuracy of
εpαq “ ε, the former result implies that the required order of magnitude of the error in the base flow can be
an order of magnitude larger, εpqq ą ε. Note that figure 6 displays the same threshold value when using the
Chebyshev collocation scheme of FD-4 to compute the stability results. This indicates that this threshold is
independent of the stability method. These results are expected to be dependent on the numerical scheme
used for the basic-state solution (Chebyshev spectral collocation).

To conclude, this shows that errors in the base flow (derivative!) profiles do not necessarily yield errors
in the stability results of the same magnitude. Theofilis40 states in this light that:

if numerical residuals exist in the basic state (at Op1q) they will act as forcing terms in the Opεq
disturbance equations and result in erroneous instability predictions.

The latter results show that this, in a sense, is true. However, the errors in the stability results do not
necessarily have the same order of magnitude as the errors in the base flow; they are possibly one order of
magnitude smaller.

V.D. Real versus imaginary part

As mentioned, the error measure that has been used up to this point involves the absolute value of the
difference of the eigenvalues. This measure does not discriminate between the errors in the real and imaginary
parts of the eigenvalue. Given the broad range of cases, an insight can be gained into the extent in which the
real and imaginary parts individually contribute to the error that is representative for stability calculations
in general.

To this end, figure 7 plots the relative error in the real part versus that in the imaginary part, based
on the data shown in figure 6. The data-points cluster around the dashed line, which corresponds to equal
contributions, εpαiq “ εpαrq. This implies that the error in the real and imaginary part of the eigenvalue
have the same order of magnitude. This implies that the trajectory of the eigenvalue through the complex
plane is bounded to a particular ellipse in the complex plane, when increasing Ñ . A linear fit is performed on
the data-points to assess the overall trend, which resulted in the proportionality relation: εpαiq „ εpαrq

0.95.
The fit is shown as the solid line in figure 7, which lies below the dashed line. This indicates that the error
in the eigenvalue tends to be dominated by the contribution of the error due to the real part.

V.E. Benchmark results

Having demonstrated that the solutions are converged with respect to both resolutions of the base flow and
the stability problem, the results are now presented as a benchmark for code verification.

The resolution of the base flow profiles is fixed to N “ 100. The stability codes that deploy the Chebyshev
collocation method, VESTA and the in-house stability code of TU Delft, use Ñ “ 150 for all cases except
cases IV and V. In those cases, Ñ “ 200 and 500 were considered, respectively. These numbers are also
reported in table 4.
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Figure 6. Errors in the base flow versus errors in the eigenvalues for all cases in table 4. Dashed line: εpqq “ εpαq. Solid
line: εpqq “ 10εpαq. Both εpqq and εpαq are relative errors; εpαq is computed versus the ‘best’ reference result, while εpqq

performs the ‘no-interp.’ method: comparing the solution computed with N nodes to the auxiliary solution on the grid
with 2N ´ 1 nodes.
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Figure 7. Contribution of the real and imaginary part to the total error in the eigenvalue for all convergence data
presented in figure 3. Dashed line: εpαiq “ εpαrq (correlation coefficient with respect to this line equals: 0.941). Solid
line: εpαiq „ εpαrq

0.95, fitting the εpαiq- to the εpαrq-values (correlation coefficient for this line: 0.969).

The comparison of the results generated with VESTA and the TU Delft code is shown in table 8. Next to
the real and imaginary part of α for the different codes, the relative errors and the values of εeig are tabulated
and the first digit that displays a mismatch is underlined for every case. Due to the spectral convergence
characteristics of the used numerical method the results match up to 13 significant digits. Moreover, the
match is very close to the theoretical limit indicated by εeig. For case III it is, in fact, exceeded. This yields
a successful completion of the cross-verification of VESTA and the in-house stability code of TU Delft.

For comparison purposes, purely incompressible (i.e. M “ 0) stability calculations are performed with
the TU Delft code for cases I and II. The use of the compressible and incompressible code is indicated with
the superscript c and i, respectively, in table 8. Due to the very small Mach number for cases I and II
(M “ 10´3), a very small difference in the eigenvalues is expected. Indeed, for case I (CF) and II (TS), this
difference turns out to be of Op10´10q and Op10´7q, respectively. The extreme accuracy provided by the
Chebyshev collocation method allows resolving this difference to several orders of magnitude (at least 2 for
case I (CF) and 4 for case II (TS)). This is a demonstration of that very small changes in the stability data
due to very small changes in the base flow can be accurately captured.

EPIC uses a fourth-order finite-difference scheme for the stability calculations by standard and is executed
using Ñ “ 500 for all cases. By deploying the FD-4 method for the stability calculations with VESTA, the
calculations performed with EPIC can be fairly evaluated.

The comparison of the results generated with VESTA and EPIC is tabulated in table 9. Again, the
relative errors for the real and imaginary parts are reported next to the real and imaginary parts themselves.
The digits provided by VESTA with FD-4 that differ from the numbers reported in table 8 are colored red.
The digit on which the result calculated with EPIC differs from that of VESTA is always located within
second places from the red digits. Furthermore, it was observed in figure 4 that errors of Op10´7q to Op10´5q

could be expected due to the convergence characteristics of the fourth-order (FD-4) finite differences. All
relative errors presented in table 8 are within this range, so the verification can be declared to be successful.

VI. Conclusion

Stability results are notoriously sensitive to changes in the base flow. In order to securely assess the
dependency of the stability information on minute differences in the base flow, the best numerical base flow
solutions must be used.
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Table 8. Eigenvalues obtained using Chebyshev spectral collocation. First mismatching digits are underlined.

solver αr prad{mq εpαrq αi prad{mq εpαiq εeig

I

VESTA -1.96373280971733 ¨103
6.2 ¨ 10´12 -3.51018997117582 ¨101

1.1 ¨ 10´11 7.7 ¨ 10´13

TUDc -1.96373280972951 ¨103
8.6 ¨ 10´10 -3.51018997331673 ¨101

2.8 ¨ 10´8 7.7 ¨ 10´13

TUDi -1.96373280803897 ¨103 -3.51019007106470 ¨101 6.8 ¨ 10´13

II

VESTA 1.67060311770109 ¨10´1

4.4 ¨ 10´12 -4.079840183775 ¨10´3

2.5 ¨ 10´12 2.0 ¨ 10´12

TUDc 1.67060311770840 ¨10´1

1.8 ¨ 10´7 -4.079840183356 ¨10´3

9.8 ¨ 10´7 2.0 ¨ 10´12

TUDi 1.67060341298808 ¨10´1 -4.079844179169 ¨10´3 1.5 ¨ 10´12

III
VESTA 3.41664315531627 ¨10´1

5.1 ¨ 10´13 -7.539434881703 ¨10´3

4.1 ¨ 10´13 1.6 ¨ 10´12

TUD 3.41664315531800 ¨10´1 -7.539434881563 ¨10´3 2.0 ¨ 10´12

IV
VESTA 1.07402614379007 ¨102

9.4 ¨ 10´13 -1.03977656691188 ¨100
5.1 ¨ 10´12 2.0 ¨ 10´12

TUD 1.07402614379108 ¨102 -1.03977656636347 ¨100 6.2 ¨ 10´13

V
VESTA 3.86915377502036 ¨102

4.7 ¨ 10´12 -7.98862348202598 ¨100
3.5 ¨ 10´12 2.9 ¨ 10´11

TUD 3.86915377503853 ¨102 -7.98862348069057 ¨100 1.7 ¨ 10´11

Table 9. Eigenvalues obtained using fourth-order finite differences. First mismatching digits are underlined; digits
corresponding to VESTA that do not match with table 8 are colored red.

solver αr prad{mq εpαrq αi prad{mq εpαiq

I
VESTA -1.9637324 ¨103

1.5 ¨ 10´5 -3.5101810 ¨101
3.0 ¨ 10´5

EPIC -1.9637621 ¨103 -3.5100744 ¨101

II
VESTA 1.6705982 ¨10´1

9.0 ¨ 10´6 -4.0798177 ¨10´3

4.1 ¨ 10´6

EPIC 1.6705832 ¨10´1 -4.0798009 ¨10´3

III
VESTA 3.4166345 ¨10´1

8.5 ¨ 10´6 -7.5392515 ¨10´3

5.1 ¨ 10´5

EPIC 3.4166054 ¨10´1 -7.5388700 ¨10´3

IV
VESTA 1.0740260 ¨102

3.5 ¨ 10´7 -1.0397715 ¨100
8.0 ¨ 10´6

EPIC 1.0740257 ¨102 -1.0397798 ¨100

V
VESTA 3.8691534 ¨102

2.7 ¨ 10´7 -7.9886366 ¨100
5.7 ¨ 10´5

EPIC 3.8691524 ¨102 -7.9890911 ¨100

To this end, this paper presents DEKAF (Digits by Ethan, Koen, Alex and Fernando), a code using
the Chebyshev spectral collocation method to discretize the compressible variant of the Falkner-Skan-Cooke
equations for self-similar boundary layers. The system of equations is solved with Newton-Raphson iteration.
Due to the high numerical order of the collocation method, the self-similar solutions are obtained up to
machine precision for a broad range of Mach numbers.

Due to the high sparsity of the collocation node grid for the basic state, having to interpolate onto the grid
used for the stability problem deteriorates the accuracy of the solutions to a significant extent if conventional
interpolation methods are used. This problem is solved by introducing a dedicated interpolation method
referred to as GICM (the Groot-Illingworth-Chebyshev-Malik interpolation method). This routine resolves
the complication introduced by the self-similarity transformation and grid mappings, so that the optimal
interpolation characteristics of the Chebyshev collocation method equipping Chebyshev Gauss-Lobatto nodes
can be accessed. The performance of GICM is found to be exact to numerical precision.

Given the highly accurate base flow solutions, the convergence characteristics of the stability problem are
assessed. Next to the stability grid convergence, also the effect of errors in the base flow profiles are assessed.
The combination of the Chebyshev discretization of the base flow profiles and GICM allows obtaining highly
accurate stability solutions for all Mach numbers. By using machine-precision resolution for both the basic-
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state and stability problem, the best possible stability solutions in double-precision arithmetic are found.
These benchmark solutions are cross-verified by using VESTA, EPIC and the in-house stability code of TU
Delft.

In agreement with Paredes et al.,37 the numerical convergence of the FD-10 method is found to be very
close to that of the Chebyshev collocation method. Moreover, computing the spatial derivatives of the basic-
state quantities with the numerical scheme used for the basic state (Chebyshev collocation) or with the FD-q
schemes, yielded practically the same eigenvalue accuracy.

By varying both the resolution of the basic-state and stability problems, it is assessed whether a criterion
exists that prescribes the required accuracy of the basic state to ensure a given accuracy of the stability
results. For low resolutions of the basic state, the basic-state inaccuracies contaminate the stability solution.
Therefore, convergence to an incorrect solution results when resolving the stability grid alone—while keeping
the basic-state resolution fixed. This effect was quantified by comparing the solutions with different basic-
state and stability grid resolutions to the benchmark solutions, for a variety of numerical techniques, flow
regimes and instability mechanisms.

Surprisingly, it is found for all considered cases that, given a representative error in the basic state of ε,
the relative effect on the stability results is consistently smaller than ε. This trend is found to be preserved
for the entire range of considered basic-state resolutions and the numerical discretization of the stability
problems (Chebyshev collocation and FD-4 are used). Instances are found where the effect on the stability
results is an order of magnitude smaller than ε.

Conversely, this demonstrates that converged stability results can be attained, now denoting the requested
error in the stability results by ε, from base flow profiles that are contaminated by an error of possibly an
order of magnitude larger, i.e. 10ε. Errors in the base flow can yield changes in the stability results that are
an order of magnitude smaller.

Appendices

A. Procedure for obtaining spectral-accuracy integration matrices

An integration is required to convert the self-similarity coordinate, η, back into the spatial coordinate,
y. In light of the pursued accuracy, this is performed with an integration matrix, I, that is the numerical
inverse of the differentiation matrix D delivered by the functions by Weidemann & Reddy,16 for a CGL grid
with N collocation nodes.

This is done in three steps, see figure 8. Specifically the case is illustrated for the integral with respect
to the y “ 0 coordinate corresponding to the wall. In the first step, the bottom row in the differentiation
matrix D is replaced by the corresponding row of the identity matrix. That is:

D̃N,i “ δNi for: i “ 1, . . . , N, (22)

where δji is the Kronecker delta. This annihilates the inherent null-space of the differentiation matrix,
which allows inverting the resulting matrix numerically, as a second step. In the third step, a row of ones is
subtracted from the bottom row. In terms of the symbols introduced in figure 8, the elements ĨN,i, with i
ranging from 1 to N , are replaced by the values IN,i, where:

IN,i “ ĨN,i ´ 1 for: i “ 1, . . . , N. (23)

This ensures that the integral evaluates to zero at the wall boundary.
A similar procedure can be performed on the top row to result in a matrix that integrates with respect

to the freestream boundary. Similarly, one can place the reference point at any of the interior collocation
points.

The spectral accuracy of the resulting integration matrix was confirmed by applying it to elementary
functions.
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Figure 9. Boundary-layer profiles of the x- and z- velocity components (resp. black and blue, qref “ Qe) and the

temperature (red, qref “ T e). The roman numerals correspond to those in table 4. The panel columns indicate the
function value (a) and the first (b) and second (c) derivatives.
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q̃ = w̃

q̃ = 10
6T̃

q̃ = 10
2p̃

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

II

q̃ = ũ
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Figure 10. Eigenfunctions profiles. The roman numerals correspond to those in table 4. For case I and II, the
incompressible stability solutions are indicated with the dots. The number of points Ñ “ 150 for all cases except V,
which required Ñ “ 500.
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