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Abstract. Numerical simulations of fluid-structure interaction typically require vast com-
putational resources. Finite-element techniques employing goal-oriented hp-adaptation
strategies could offer a substantial improvement in the efficiency of such simulations.
These strategies rely on dual-based a-posteriori error estimates for quantities of interest.
However, the free-boundary character of fluid-structure-interaction problems forms a fun-
damental complication, as it yields the underlying domain unknown a-priori. Instead, the
domain comprises part of the solution. Consequently, the well-established generic frame-
work for dual-based error estimation is not applicable.

In this work we develop a framework for dual-based a-posteriori error estimation for
free-boundary problems such as fluid-structure interaction. The framework is based on the
embedded-domain approach and an extension operator which enables the comparison of
approximate solutions on distinct domains. Given an approximate fluid and structure so-
lution, we present a dual problem on the corresponding approximate fluid domain. Finally,
we employ the dual solution to present an exact error representation formula.

1 INTRODUCTION

The numerical solution of fluid-structure-interaction problems is a challenging en-
deavor. Typically, in numerical procedures for fluid-structure interaction, vast computa-
tional resources are consumed by the subsystem that is of least practical interest, viz., the
fluid. Finite-element techniques employing goal-oriented hp-adaptation strategies could
offer a substantial improvement in the efficiency of such simulations. These adaptation
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strategies rely on dual-based a-posteriori error estimates for quantities of interest. Con-
siderable work on a-posteriori error estimation and adaptation for generic boundary value
problems and the corresponding canonical variational formulations has been performed
by Oden and Prudhomme, Becker and Rannacher, a.o.; see Refs [2, 8].

The aforementioned framework for a-posteriori error estimation and adaptation does
however not encompass fluid-structure interaction owing to the free-boundary character
of the interface between the fluid and the structure. The position of the interface and,
hence, the shape of the fluid domain are unknown a-priori. Instead, they form part of
the solution. Consequently, fluid-structure-interaction problems lead to so-called shape-
dependent variational formulations, which are noncanonical. This forms a significant
complication for the dual-based error estimation.

In the present work we develop a framework for dual-based a-posteriori error estimation
for fluid-structure interaction. To enable a comparison, the discrepancy in the underlying
domains of distinct approximate solutions is accommodated by embedding all domains
in a sufficiently-large fixed hold-all domain and by introducing an extension operator
which extends functions to this hold-all domain. Then, given an approximate fluid and
structure solution, we propose a dual problem on the corresponding approximate fluid
domain and, as usual, the primal residual functional evaluated at the dual solution yields
the error estimate. We furthermore employ the dual solution to obtain an exact error
representation formula.

The contents of this paper are arranged as follows: Section 2 presents the fluid-
structure-interaction model problem in shape-dependent variational form and introduces
several prototypical quantities of interest. In section 3 we review dual-based error estima-
tion for canonical variational formulations. Furthermore, we elucidate the complication
of shape-dependent variational formulations with respect to canonical forms. Using the
embedded-domain approach, we develop in section 4 the dual-based error estimation for
fluid-structure interaction. Numerical experiments for a simple application are presented
in section 5. Finally, section 6 contains concluding remarks.

2 PROBLEM STATEMENT

For simplicity, we restrict ourselves to a simple model problem which possesses the
prominent features of fluid-structure interaction. We assume that the fluid and the struc-
ture separately are governed by linear differential equations. It is to be noted, however,
that the aggregated fluid-structure-interaction problem can be nonlinear on account of
geometric nonlinearity induced by the coupling at the fluid-structure interface. This non-
linearity originates from the variations in the fluid domain and from the external force by
the fluid on the structure in the displaced structure configuration. Moreover, we assume
that it is appropriate to select identical test and trial spaces for the variational formulation
of the fluid problem.
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Figure 1: Definition of fluid and structure domains and interface for the 2D panel flow problem. Refer-
ence structure configuration (α = 0) [left ] and current structure configuration due to structure displace-
ment α [right ].

2.1 Fluid-structure-interaction problem

To formulate the variational problem associated with the fluid, we consider in con-
junction with each (admissible) structural displacement α the open bounded fluid do-
main Ωα ⊂ R

N (N = 1, 2, 3). The boundary ∂Ωα of the fluid domain consists of the
interface Γα between the fluid and structure and the fixed boundary ∂Ωα \ Γα. See Fig. 1
for an illustration of the domains for the familiar 2D panel flow problem [6].

On the domain Ωα the fluid is subject to a boundary-value problem which we condense
into the abstract variational statement:

Find u ∈ U(Ωα) :

FΩα
(u, v) = fΩα

(v) , ∀v ∈ U(Ωα) ,
(1a)

where the fluid solution u and test function v are elements of an appropriate Hilbert (or
Banach) space U(Ωα) on the variable fluid domain Ωα. Furthermore, FΩα

: U(Ωα) ×
U(Ωα) → R and fΩα

: U(Ωα) → R are a bilinear and linear functional, respectively. We
use the subscript Ωα on F and f to indicate that these are shape functionals which depend
on the fluid domain Ωα.

To formulate the variational problem associated with the structure, we consider the
structural reference configuration Σ0 ⊂ R

N and we associate with each structural dis-
placement field α in the Hilbert (or Banach) space A(Σ0) the deformed structure config-
uration Σα ⊃ Γα. We condense the boundary-value problem for the structure into the
abstract variational statement:

Find α ∈ A(Σ0) :

S(α, β) = sα,u(β) , ∀β ∈ A(Σ0) ,
(1b)

where S : A(Σ0) × A(Σ0) → R is a bilinear form corresponding to the standard internal
work and sα,u : A(Σ0) → R is a linear form corresponding to the external work. The
latter contains the loads exerted by the fluid on the structure in the deformed configura-
tion. Therefore, it bears a (nonlinear) dependence on α and u. This is indicated by the
subscript.
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We combine the two separate variational equations into one aggregated equation by
introducing the semilinear form (nonlinear in its first entry)

(
(α, u), (β, v)

)
7→ C

(
(α, u); (β, v)

)
:= FΩα

(u, v) − fΩα
(v) + S(α, β) − sα,u(β) :

(
A(Σ0) × U(Ωα)

)
×

(
A(Σ0) × U(Ωα)

)
→ R

(2)

The coupled fluid-structure system is then described by

Find (α, u) ∈ A(Σ0) × U(Ωα) :

C
(
(α, u); (β, v)

)
= 0 , ∀(β, v) ∈ A(Σ0) × U(Ωα) .

(3)

As the structure and the fluid are involved simultaneously, (3) constitutes a nonlin-
ear mixed variational problem. However, (3) is a noncanonical variational problem in
that u and v reside in the shape-dependent function space U(Ωα) which depends on
the unknown α. We therefore refer to (3) as a shape-dependent variational formulation.
Throughout, we assume that (3) has a (locally unique) solution (α, u).

2.2 Errors in quantities of interest

In particular, our interest will be restricted to specific quantities q(α, u) ∈ R (objective
functionals) of the solution (α, u) of (3), rather than the solution itself. It is to be noted
that the functional q(·, ·) can be domain dependent via α, i.e.,

(α, u) 7→ q(α, u) : A(Σ0) × U(Ωα) → R . (4)

A quantity of interest can for instance be the weighted-average of the fluid solution u

on Ωα (assuming u to be scalar):

qave(α, u) :=

∫

Ωα

ϕu dΩ ,

where the weight ϕ : Ωα → R is a prescribed smooth function. Another example of a
quantity of interest pertains to properties of the fluid solution at the interface:

qfb(α, u) :=

∫

Γα

ϕγ(u) dΓ ,

where again the weight ϕ : Γα → R is a given smooth function and where γ denotes a
trace operator.

Let (αh, uh) ∈ A(Σ0) × U(Ωαh) be an approximation, obtained by the Galerkin finite-
element method for example. The corresponding approximate value of the quantity of
interest is q(αh, uh). Given our restricted interest, the primary measure for the accuracy
of the approximation is the target-quantity error

Eq := q(α, u) − q(αh, uh) .
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Our objective is to develop for (3) a framework for dual-based a-posteriori estimation of
the error in the quantity of interest, Eq, analogous to the existing framework for canonical
variational problems. In the next section we review relevant theory regarding a-posteriori
error estimation for canonical variational problems and, subsequently, we develop an anal-
ogous framework accommodating shape-dependent variational formulations such as (3).

3 DUAL-BASED ERROR ESTIMATION FOR CANONICAL VARIATIONAL
FORMULATIONS

A general paradigm for the a-posteriori error estimation of quantities of interest (ob-
jective functionals) has been established for canonical variational formulations in [2, 8].
Essentially, a computable error estimate is obtained by evaluating the primal residual
functional at the solution of an appropriately defined dual problem. This section presents
a brief summary of the theory.

3.1 Canonical setting

Consider the canonical variational problem

Find u ∈ U :

B(u; v) = b(v) , ∀v ∈ U ,
(5)

where B(·; ·) is a semilinear form (nonlinear in the first entry) and b(·) a linear functional
on the Banach space U with norm ‖ · ‖. The quantity of interest is the value of the
(possibly nonlinear) functional

q : U → R (6)

for the solution u of (5). Let uh ∈ U be any approximation to the solution u of (5). The
purpose of a-posteriori error estimation is to obtain a computable estimate of the target
quantity error

Eq := q(u) − q(uh) .

3.2 Dual-based error representation

A dual-based approach to this estimation solves the linear dual (or adjoint) problem

Find z ∈ U :

B′(uh; z)(δu) = q′(uh)(δu) , ∀δu ∈ U ,
(7)

where (·)′ indicates the Gâteaux derivative of (·) with respect to its arguments up to the
semi-colon “ ; ”. That is, B ′(uh; z) and q′(uh) are linear functionals on U such that

B′(uh; z)(δu) = lim
t→0

B(uh + t δu; z) − B(uh; z)

t
,

q′(uh)(δu) = lim
t→0

q(uh + t δu) − q(uh)

t
,
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for all δu ∈ U .
Let us define the residual functional at uh corresponding to the primal problem (5) as

R(uh; ·) := b(·) − B(uh; ·) .

Furthermore, we set the error e := u − uh. The dual solution z is the key element in
linking the primal problem with the error in the quantity of interest. This is expressed in
the following a-posteriori error representation formula:

Theorem 1 (Becker and Rannacher [2]) Given any approximation uh ∈ U of the
solution u of (5), let z ∈ U be the solution of the dual problem (7). It holds that

Eq := q(u) − q(uh) = R(uh; z) + R , (8)

with remainder

R :=

∫ 1

0

(

q′′(uh + te)(e)(e) − B ′′(uh + te, z)(e)(e)
)

(1 − t) dt .

Proof The proof is based on standard Taylor-series formulas such as

q(u) − q(uh) = q′(uh)(e) +

∫ 1

0

q′′(uh + te)(e)(e)(1 − t) dt ,

and can be found in [2]. �

Note that the remainder term R in (8) is quadratic in the error e. Hence, the residual
evaluated with the dual solution, R(uh; z), provides an error estimate for Eq which is
second-order accurate. It is exact if B(·; ·) and q(·) are linear functionals.

3.3 Approximate dual problem

The dual problem (7) cannot generally be solved exactly and we will have to content
ourselves with approximations instead. Let zh ∈ U be an approximation to the solution z

of (7). Furthermore, we set e := z − zh. We clearly have the representation formula

Eq = R(uh; zh) + R(uh; e) + R . (9)

Eq. (9) is the basis for many a-posteriori error estimates and adaptive finite-element
techniques. We refer to [4, 5] for additional details and supplementary examples.

3.4 Complication for shape-dependent variational formulations

The above general paradigm for error estimation is unsuitable for the shape-dependent
variational formulation (3), as (3) does not conform to the canonical variational form (5).
In particular, the space U(Ωα) which accomodates the solution to the fluid problem de-
pends on the the unknown α.
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To elucidate this complication, let us consider an approximation (αh, uh) ∈ A(Σ0) ×
U(Ωαh) of the solution (α, u) ∈ A(Ω0) × U(Ωα) of (3) and let us try to obtain an error
representation formula as in Theorem 1. We need a Taylor-series formula of the form:

q(α, u) − q(αh, uh) = q′(αh, uh)(eα, eu) + higher order terms ,

where eα := α − αh ∈ A(Σ0). However, at this point it is not clear what eu should be.
Interpreting the derivative q′(αh, uh) as a linear functional on A(Σ0)× U(Ωαh), it follows
that eu ∈ V (Ωαh). However, it cannot be equal to u− uh; this does not make sense since
u ∈ V (Ωα) and uh ∈ V (Ωαh), i.e., the actual solution u and its approximation uh are
defined on different domains. A proper interpretation of eu is presented below.

4 DUAL-BASED ERROR ESTIMATION FOR SHAPE-DEPENDENT VARI-
ATIONAL FORMULATIONS

In this section we describe a framework for the dual-based a-posteriori error estimation
of the shape-dependent variational formulation (3). It is based on a conception of the
variable fluid domains as subsets embedded in a sufficiently-large fixed hold-all domain.
The domain-dependent functions can then be extended onto the fixed hold-all domain.
In this manner, the shape-dependent variational form can be recast into canonical form,
which in turn allows us to formulate the dual-problem appropriately. As usual, evaluating
the primal residual functional with the dual solution yields the error estimate. In addition,
we also present an exact error representation formula.

4.1 Embedded-domain approach

Consider a large-enough fixed hold-all open domain ΩE, such that for each admissible α

the corresponding fluid domain Ωα is a subset of ΩE. See Fig. 2 for an illustration
of the fixed hold-all domain for the 2D panel flow problem. If the fluid domains Ωα

are Lipschitzian, then there generally exists a continuous linear extension operator Eα :
U(Ωα) → U(ΩE) which extends functions from Ωα onto ΩE, i.e.,

(Eαu)|Ωα
= u , ∀u ∈ U(Ωα) .

See, e.g., [1], page 83.
Let uE and vE denote functions in U(ΩE). We define the extended form CE : (A(Σ0)×

U(ΩE)) × (A(Σ0) × U(ΩE)) → R of the semilinear functional C given in (2) as

CE

(
(α, uE); (β, vE)

)
:= C

(
(α, uE|Ωα

); (β, vE|Ωα
)
)

. (10)

Clearly, the extended solution (α, Eα(u)) of our shape-dependent variational formula-
tion (3) is a solution of the extended problem

Find (α, uE) ∈ A(Σ0) × U(ΩE) :

CE

(
(α, uE); (β, vE)

)
= 0 , ∀(β, vE) ∈ A(Σ0) × U(ΩE) .

(11)
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Figure 2: Illustration of the fixed hold-all domain ΩE = Ωα ∪ Γα ∪ Ωc
α used in the embedded-domain

approach for the 2-D panel flow problem.

The extended formulation (11) has a unique solution uE up to its value on the comple-
ment Ωc

α := ΩE \ (Ωα ∪ Γα). The extended form of the quantity of interest is straightfor-
wardly defined as the functional qE : A(Σ0) × U(ΩE) → R,

qE(α, uE) := q(α, uE|Ωα
) . (12)

Note that the variational problem (11) and the quantity of interest (12) are in the
canonical form according to (5) and (6), respectively. This allows us to employ the
framework for dual-based error estimation described in section 3.

4.2 Dual-based error representation

Let (αh, uh) ∈ A(Σ0) × U(Ωαh) be an approximation to the fluid-structure-interaction
model problem (3). The extension of uh is Eαhuh ∈ U(ΩE). Following the approach of
section 3, we obtain the dual problem by linearizing the extended forms (11) and (12)
about (αh, Eαhuh):

Find (ζ, zE) ∈ A(Σ0) × U(ΩE) :

C ′
E

(
(αh, Eαhuh); (ζ, zE)

)
(δα, δuE) = q′E(αh, Eαhuh)(δα, δuE) ,

∀(δα, δuE) ∈ A(Σ0) × U(ΩE) .

(13)

Similar to the extended problem (11), we assume that the dual problem (13) has a unique
dual solution zE up to its value on the complement Ωc

αh = ΩE \ (Ωαh ∪ Γαh). To resolve
the nonuniqueness, note that

C ′
E

(
(αh, Eαhuh); (ζ, zE)

)
(δα, δuE) = C ′

(
(αh, uh); (ζ, zE|Ω

αh
)
)
(δα, δuE|Ω

αh
) , (14)

q′E(αh, Eαhuh)(δα, δuE) = q′(αh, uh)(δα, δuE|Ω
αh

) , (15)

where the Gâteaux derivatives C ′((αh, uh); (ζ, zE|Ω
αh

)) and q′(αh, uh) are linear functionals
on A(Σ0) × U(Ωαh). In conclusion, we can define the dual problem as the following
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variational problem on the approximate domain Ωαh :

Find (ζ, z) ∈ A(Σ0) × U(Ωαh) :

C ′
(
(αh, uh); (ζ, z)

)
(δα, δu) = q′(αh, uh)(δα, δu) ,

∀(δα, δu) ∈ A(Σ0) × U(Ωαh) .

(16)

That the solution (ζ, z) of the dual problem (16) is indeed appropriate for linking the
primal problem (3) with the error in the quantity of interest is expressed by the following
theorem:

Theorem 2 (Error representation) Given any approximation (αh, uh) ∈ A(Σ0)×U(Ωαh)
of the solution (α, u) ∈ A(Σ0)×U(Ωα) of (3), let (ζ, z) ∈ A(Σ0)×U(Ωαh) be the solution
of the dual problem (16). It holds that

Eq := q(α, u) − q(αh, uh) = −C
(
(αh, uh); (ζ, z)

)
+ R , (17)

with remainder R = Rq + RC , where

Rq :=

∫ 1

0

q′′E
(
αh + teα, Eαhuh + teu

)
(eα, eu)(eα, eu)(1 − t) dt ,

RC :=

∫ 1

0

−C ′′
E

(
(αh + teα, Eαhuh + teu); (ζ, Eαhz)

)
(eα, eu)(eα, eu)(1 − t) dt ,

and where eα := α − αh and eu := Eαu − Eαhuh.

The error representation formula (17) for shape-dependent variational formulations is the
analogue of (8) for canonical variational problems. Formula (17) has a remainder which
is quadratic in the errors eα and eu. Therefore, −C((αh, uh); (ζ, z)) provides an effective
error estimate. Furthermore, (17) can be used as the basis for other a-posteriori error
estimates and adaptive finite-element techniques.

Although shape-dependent variational formulations are inherently nonlinear, there is an
interesting case for which the error estimate −C((αh, uh); (ζ, z)) coincides with the actual
error. This occurs if the error in the geometry vanishes, i.e., eα = 0, and if the functionals
are linearly-dependent on the fluid solution, i.e., the functionals C((α, u); (β, v)) and
q(α, u) are linear with respect to u.

Proof of Theorem 2 The extended forms CE and qE of C and q, respectively, imply
an appropriate Taylor-series formula. Let pE(·, ·) denote the functional CE((·, ·); (β, v))
or qE(·, ·). We clearly have the following Taylor-series formula for the extended forms:

pE(α, uE) − pE(αh, uh
E) = p′E(αh, uh

E)(eα, eE,u)

+

∫ 1

0

p′′E
(
αh + seα, uh

E + seE,u

)
(eα, eE,u)(eα, eE,u)(1 − s) ds , (18)
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where eα = α − αh ∈ A(Σ0) and eE,u = uE − uh
E ∈ U(ΩE). Hence, if we consider the

target quantity error Eq = q(α, u) − q(αh, uh) and make use of the extension operator to
transform to the extended form, we can write

Eq = qE(α, Eαu) − qE(αh, Eαhuh)

= q′E(αh, Eαhuh)(eα, eu) + Rq

= q′(αh, uh)(eα, eu|Ω
αh

) + Rq ,

where we used (15) in the last step. Next, we use the dual problem (16) to obtain

Eq = C ′
(
(αh, uh); (ζ, z)

)
(eα, eu|Ω

αh
) + Rq .

It then follows from (14), the Taylor-series formula (18) and (10) that

Eq = C ′
E

(
(αh, Eαhuh); (ζ, Eαhz)

)
(eα, eu) + Rq

= CE

(
(α, Eαu); (ζ, Eαhz)

)
− CE

(
(αh, Eαhuh); (ζ, Eαhz)

)
+ Rq + RC

= C
(
(α, u); (ζ, (Eαhz)|Ωα

)
)
− C

(
(αh, uh); (ζ, z)

)
+ Rq + RC .

Finally, we obtain the proof by noting that C((α, u); (ζ, (Eαhz)|Ωα
)) = 0 according to our

primal problem (3). �

5 APPLICATION

Our goal is to apply the above framework for dual-based error estimation to fluid-
structure-interaction problems. However, the framework also encompasses other types of
free-boundary problems. To exemplify the essential attibutes of the framework, in this
section we consider numerical experiments for a simple one-dimensional free-boundary
problem. For this simple model problem, we derive the shape-dependent variational
form, we formulate the dual problem and we present illustrative numerical results. In
particular, we demonstrate by numerical computation that the dual-based error estimate
indeed represents a second-order-accurate approximation of the true error, in accordance
with Theorem 2.

5.1 One-dimensional free-boundary problem

In the one-dimensional setting, we characterize the variable domain as Ωα = (0, α) ⊂ R.
The free-boundary corresponds to a single point, Γα = {α}. The model free-boundary
problem that we consider is to find the suitably smooth function u : Ωα → R and the
free-boundary position α ∈ A(Γ0) = R subject to the following equations:

−uxx = f , in Ωα , (19a)

u = 0 , on ∂Ωα \ Γα = {0} , (19b)

ux = 0 , on Γα , (19c)

u = g , on Γα , (19d)

10
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where we indicate a spatial derivative using the subscript (·)x = d
dx

(·). The data f and g

are smooth and have support [0,∞).
We will be interested in the following quantities:

qave(α, u) =

∫

Ωα

u(x) dx ,

qfb(α, u) = u(α) .

5.2 Shape-dependent variational formulation

We recast this problem into the shape-dependent variational form (3) by interpreting
Eqs. (19a–c) as an ordinary elliptic boundary value problem with a homogeneous Dirichlet
and Neumann condition, and (19d) as the free-boundary condition. Introducing the
domain-dependent function space

U(Ωα) = {u ∈ H1(Ωα) | u(0) = 0} ,

we condense (19a–c) into the standard variational form conforming to (1a)

Find u ∈ U(Ωα) :
∫

Ωα

ux vx dx =

∫

Ωα

fv dx , ∀v ∈ U(Ωα) ,
(20a)

The equivalent of Eq. (19d) conforming to (1b) is

Find α ∈ R :

g(α)β = u(α)β , ∀β ∈ R ,
(20b)

Adding (20a) and (20b), we obtain the final shape-dependent variational formulation
of (19) conforming to (3) with

C
(
(α, u); (β, v)

)
=

∫

Ωα

(
ux vx − fv

)
dx +

(
g(α) − u(α)

)
β .

As a digression, we mention that the existence of (possibly nonunique) solutions (α, u)
to (20) can be established using the Green’s function φy

α ∈ U(Ωα) for (20a), that is,

u(y) =

∫

Ωα

φy
α(x)f(x) dx . (21)

Substituting this in (20b) shows that an admissible solution for α exists if and only if the
map

α 7→

∫

Ωα

φα
α(x)f(x) dx − g(α)

has roots in (0,∞). Each root is a solution for α. The corresponding solution for u is
determined by Eq. (21).

11
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5.3 Dual problem

Given an approximation (αh, uh) ∈ R × U(Ωαh), the dual problem is given by (16),
where in this case (ζ, z) ∈ R × U(Ωαh) and the derivative of C is given by

C ′
(
(αh, uh); (ζ, z)

)
(δα, δu) =

∫

Ω
αh

zx δux dx − ζ δu(αh)

+
((

uh
x zx − fz

)
(αh) +

(
gx − uh

x

)
(αh) ζ

)

δα , ∀(δα, δu) ∈ R × U(Ωαh)

Note that the first two terms originate from the differentiation at uh in direction δu.
The other terms are induced by the shape-derivative at αh in direction δα. These terms
only contain values at the free boundary Γαh = {αh}. We refer to [3, 7] for more details
regarding shape derivatives.

The derivatives of the quantities of interest are

qave′(αh, uh)(δα, δu) =

∫

Ω
αh

δu dx + uh(αh) δα

qfb′(αh, uh)(δα, δu) = δu(αh) + uh
x(α

h) δα .

In this case, the dual-based error estimate −C((αh, uh); (ζ, z)) can be divided in three
contributions:

−C
(
(αh, uh); (ζ, z)

)
=

∫

Ω
αh

(f + uh
xx)

︸ ︷︷ ︸

rint

z dx − uh
x(α

h)
︸ ︷︷ ︸

rNeu

z(αh) −
(
g(αh) − uh(αh)

)

︸ ︷︷ ︸

rfbc

ζ .

The first contribution can be attributed to the interior residual rint, weighted by the
dual solution z. The second contribution is due to the Neumann-boundary-condition
residual rNeu, weighted by the dual solution at the free boundary, z(αh). The third
contribution emanates from the residual pertaining to the free-boundary condition, rfbc,
weighted by the dual solution ζ.

5.4 Numerical experiments

In the numerical experiments, we specify the data as:

f(x) = 16
9

, g(x) = 7
2
− x ,

which gives the solution
(
α, u(x)

)
=

(
3
2
, 8

9
x(3 − x)

)
. (22)

The exact values of the quantities of interest are

qave(α, u) = qfb(α, u) = 2 .

12
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Figure 3: Exact solution (α, u(x)) and approximation (αh, uh(x)) of the free-boundary problem (20) [left ].
Dual solutions zave(x) and zfb(x) of the dual problem corresponding with the quantity of interest qave

and qfb, respectively [right ].

Dual-based error estimates To show some typical results, we set the approximation
(
αh, uh(x)

)
=

(
2, 5

4
x
)

.

Figure 3 [left ] plots uh(x) and u(x). The approximation gives the following approximate
values for the quantities of interest:

qave(αh, uh) = qfb(αh, uh) = 5
2

.

For the quantity of interest qave, it can be verified that the dual solution is given by
(
ζave, zave(x)

)
=

(
109
82

, x(55
82

− 1
2
x)

)
.

See Fig. 3 [right ] for a plot of zave(x). The true value of the target-quantity error, Eqave ,
and the corresponding dual-based estimate, Estqave , are

Eqave = qave(α, u) − qave(αh, uh) = −1
2

,

Estqave = −C
(
(αh, uh); (ζave, zave)

)
= −2177

4428
≈ −0.4916 .

For the quantity of interest qfb, the dual solution is given by
(
ζ fb, zfb(x)

)
=

(
32
41

, 9
41

x
)

.

See Fig. 3 [right ] for a plot of zfb(x). In this case, the true value of the error in the
quantity of interest, Eqfb, and the corresponding dual-based estimate, Estqfb, are

Eqave = qave(α, u) − qave(αh, uh) = −1
2

,

Estqave = −C
(
(αh, uh); (ζave, zave)

)
= −45

82
≈ −0.5488 .

The above exposition clearly demonstrates the applicability of the established dual-based
error-estimation framework for shape-dependent variational formulations.
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Figure 4: True value of the target quantity error Eqave and the dual-based error estimate Estqave for
the ∆α-family of approximations (αh, uh) given in (23) [left ]. Convergence of the error estimate Estqave

towards the true error Eqave with respect to the norm ‖(eα, eu)‖ given in (24) [right ].

Convergence of error estimates Error estimates for which we have an exact geometry
(αh = α) are equal to the true error as our 1-D problem and functionals of interest
are linear with respect to u; see also the discussion following Theorem 2. Hence, it is
interesting to investigate the convergence of the error estimate for the following ∆α-family
of approximate solutions:

(
αh, uh(x)

)
=

(
3
2

+ ∆α, 8
9
x(3 − x)

)
. (23)

This family converges to the exact solution (22) as ∆α → 0. Note that although uh has
the same expression as the exact u, their domains, (0, 3

2
+ ∆α) and (0, 3

2
), respectively,

are different for ∆α 6= 0.
For the quantity of interest corresponding to the average, qave, Figure 4 [left ] plots the

true value of the target quantity error Eqave and the dual-based error estimate Estqave with
respect to ∆α. It can be seen that the estimate approaches the exact error as ∆α → 0.
Moreover, the curve associated with the estimate is tangent to the curve for the exact
error at ∆α = 0. This corroborates that the estimate is second-order accurate.

To further elucidate the convergence behaviour, we first recall from Theorem 2 that
the error estimate Estqave is an O(‖(eα, eu)‖

2) approximation of the true error. Here, the
norm corresponds to

‖(eα, eu)‖
2 = |α − αh|2 + ‖Eαu − Eαhuh‖

2

U(ΩE) . (24)

In this case, the fixed hold-all domain can be set as ΩE = (0, αE), where αE is a sufficiently
large positive constant. Furthermore, for the extension operator Eα : U(Ωα) → U(ΩE) =
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{u ∈ H1(ΩE) | u(0) = 0}, we can take the constant extension defined by:

(Eαu)|Ωc
α

= u(α) .

We associate the following norm with U(ΩE):

‖u‖U(ΩE) =

∫

ΩE

|ux|
2 dx .

Figure 4 [right ] plots the error in the estimate, |Eqave − Estqave |, versus the norm of the
solution error ‖(eα, eu)‖ in a log-log plot. The figure clearly illustrates that the convergence
of the estimate is of second-order, in compliance with Theorem 2.

6 CONCLUSION

As fluid-structure-interaction problems are free-boundary problems, the generic frame-
work for dual-based a-posteriori error estimation for boundary value problems is not triv-
ially applicable. We developed a framework for dual-based error estimation which encom-
passes fluid-structure-interaction problems. The framework is based on the embedded-
domain approach and an extension operator, which enable a comparison of solutions
on distinct underlying fluid domains. Given an approximate solution of the fluid and
structure equations, we proposed a dual problem on the corresponding approximate fluid
domain. Finally, employing the dual solution, we presented an exact error representation
formula.

We assessed the developed framework on the basis of a 1D free-boundary problem. The
results confirmed the convergence behavior of the dual-based error estimate as predicted
by the theory.
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