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1
Introduction

Transformer[19], originally proposed for the machine translation task, has become the state-of-art
methods for tasks in both Natural Language Processing[2, 7] and Vision domains[1, 4, 6, 8, 13, 20, 21].
Cancer treatment via radiotherapy requires the segmentation of tumors and organs-at-risk (OAR) on
diagnostic scans like CT. Convolution-based UNet architectures [11] have dominated this task for years.
However, the recent success of Transformers in the vision domain has raised the question whether they
can replace convolutions as the primary image processing operation in medical segmentation [10, 18,
22].

1.1. Report Structure
The report is divided into three parts: the part 1 briefly introduces the motivation, research question

and experiments; the part 2 is the scientific paper which describes the project in detail; The part 3 is
the supplements materials to help readers understand the project.

The part 3 introduces vanilla Transformer[8], Swin-Transformer[14] and nnFormer[22] successively,
which helps with the understanding of nnFormer, the window-based Transformer, used in part 3. A brief
introduction of position encodings is included to get clearer awareness of experiments in part 2. Finally,
dataset description in part 3 explains the organs at risk in the experiments by showing the ground truth
visual masks of different organs.

1.2. Motivation
Cancer treatment via radiotherapy requires 3D CT segmentation to help with the dose distribution

by segmenting tumors and organs at risk. Convolutions[11] have dominated the medical segmenta-
tion domain for years. However, the recent success of Transformers in the vision domain inspires the
application of Transformers in 3D medical segmentation to provide more accurate segmenting masks.
Preceding studies[9, 10, 18, 22] have applied the Transformer to 3D segmentation by replacing the
convolutions with Transformer blocks in the UNet structure. However, due to the scarcity of medical
data, one of the deficiencies of such work is that their data sets are small, leading to potential overfitting
[9, 10, 22]. Consequently, the Transformer and convolution are compared when they both overfit on
small data scales and the results may not be sufficient to differentiate them. Another deficiency is that
Transformers and convolutions are compared in different general structures without ensuring equiva-
lent parameter count[10, 17, 18, 22]. In addition, no existing method has closely examined the different
components of the Transformer. The researchers[17, 18] who compare the Transformers with convo-
lutions draw their conclusion by comparing two Transformer-based and convolution-based models but
not investigating the reason behind. Inspired by ConvNeXt[16], we analyze different components of a
transformer and replace them with more traditional deep learning operations like convolutions and pool-
ing while ensuring equivalent parameter count and similar neural architectures. To solve the overfitting
problem, we construct six different data scales to evaluate the Transformer and the compared model on
both small and large data scales. In addition, unlike previous methods which train and test on a same
dataset, we evaluate on a separate dataset with different clinical protocols for CT scan acquisition to
test the generalization capability of the compared models.
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1.3. Research Questions 2

1.3. Research Questions
Inspired by the Convnext[16] and driven by the above motivations, we attempt to answer our main

research question:

• What is the effect of various components of a Window-Based Transformer under different
data scales?

We answer this question by evaluating the performance of the Window-Based Transformer in con-
text of replacing its various components in different data scales. As shown in figure 1.1, we aim to
answer this main question by conducting three experiments successively.

It is often claimed that the Transformer has an advantage over the convolution in 3D medical seg-
mentation. And Swin-Transformer block, the fundamental building block of the window-based Trans-
former, often serves as the replacement for convolutions. Therefore, we bring out our first question:

• What is the role of Swin-Transformer blocks compared to convolution blocks on different data
scales?

The results show that Swin-Transformer blocks perform poorly in comparison with convolutions on
large data scales. Surprisingly, we find that convolution also benefits more from both increased data
scales and pretraining weights compared to the Transformer. In addition, though Transformer shows
small advantage over convolution on small data scales, both of them suffer from overfitting. Therefore,
we hypothesize that a simpler operation can outperform both Transformer and convolution on small
data scales by reducing overfitting. In this case, we raise the question:

• Can a simpler operation Max-Pooling take the place of the Self-Attention mechanism on small
data scales?

The results of the pooling operation suggest that the pooling outperforms both Transformer and con-
volution on small data scales. This indicates that it may always be better to choose simpler operations
in low data regimes. We believe Transformer’s underperformance could be explained by the lack of
understanding of position information of voxels in our data scales. Therefore, we investigate different
position encodings in the Transformer by asking the question: What is the effect of different position
encodings?

• What are the effects of different position encodings?

We compare the absolute position embedding(learned and Sinusoid), relative position bias, and no
position encodings in this experiment. The results indicate that the gaps in performance across different
position encodings and no encodings are not large in all experiment settings. This further supports our
hypothsis that the Transformer’s underperformance could be explained by the lack of understanding in
position information of voxels on our data scales.
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Figure 1.1: The visual abstract for our network architecture and our three experiment settings. On left part, the yellow tiles of
squares denote the sampled sub-volumes from the CT scans; The blue tiles of squares denote the predicted masks for
segmentation; The 3D Transformer blocks used are the 3D Swin-Transformer block. On the right part, we show the evaluated
components and the replacement for each: The orange blocks in EXP denote that we only replace the Window-based
Self-Attention with pooling. We use labels with black background to show the place to insert position encodings: the absolute
position embeddings are added once to each position on the feature map after patch embedding; the relative bias is added in
computing Self-Attention matrix in each Swin-Transformer block.
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Abstract
Literature on medical imaging segmentation claims

that self-attention-based Transformer blocks perform better
than convolution in UNet-based architectures. This recently
touted success of Transformers warrants an investigation
into which of its components contribute to its performance.
Moreover, previous work has a limitation of analysis only at
fixed data scales as well as unfair comparisons with others
models where parameter counts are not equivalent. This
work investigates the performance of the window-Based
Transformer for prostate CT Organ-at-Risk (OAR) segmen-
tation at different data scales in context of replacing its
various components. To compare with previous literature,
the first experiment replaces the window-based Transformer
block with convolution. Results show that the convolution
prevails as the data scale increases. In the second exper-
iment, to reduce complexity, the self-attention mechanism
is replaced with an equivalent albeit simpler spatial mix-
ing operation i.e. max-pooling. We observe improved per-
formance for max-pooling in smaller data scales, indicat-
ing that the window-based Transformer may not be the best
choice in both small and larger data scales. Finally, since
convolution has an inherent local inductive bias of posi-
tional information, we conduct a third experiment to imbibe
such a property to the Transformer by exploring two kinds
of positional encodings. The results show that there are in-
significant improvements after adding positional encoding,
indicating the Transformers deficiency in capturing posi-
tional information given our data scales. We hope that our
approach can serve as a framework for others evaluating
the utility of Transformers for their tasks. Code is available
via https://github.com/prerakmody/window-
transformer-prostate-segmentation.

1. Introduction

Transformer [42], originally proposed for the machine
translation task, has become the state-of-art methods for

tasks in both Natural Language Processing [2, 12] and Vi-
sion domains [1, 8, 11, 13, 29, 45, 51]. In vision domain,
ViT [13] set the foundation by creating a general struc-
ture for applying the Transformer blocks in classification
tasks. However, when it comes to extending the applica-
tion to other tasks such as object detections and semantic
segmentation, ViT suffered from certrain restrictions. The
subsequent methods have broadened the use of Transformer
by addressing the limitations in Vanilla ViT. For example,
those methods have reduced the complexity in the Self-
Attention mechanism [6,20,22,30], created multi-scale fea-
ture maps [30, 32, 44, 57] and introduced the inductive bi-
ases from convolutions [9, 11, 28, 30, 45, 49]. Encouraged
by the previous work, researchers are attempting to apply
the Transformer to the medical imaging domain.

Cancer treatment via radiotherapy requires the segmen-
tation of tumors and organs-at-risk (OAR) on diagnos-
tic scans like CT. Convolution-based UNet architectures
[24] have dominated this task for years. However, the
recent success of Transformers in the vision domain has
raised the question whether they can replace convolutions
as the primary image processing operation in deep learn-
ing [18, 38, 54]. In particular, are Transformers capable of
replacing convolutions in 3D medical segmentation, where
locality bias of convolutions plays an important part in seg-
menting borders between organs?

Specifically in the 3D medical segmentation, the
window-based Transformer [54] has been used since the
vanilla Transformer suffered from a computational com-
plexity quadratic to the image size. Nevertheless, due to
the scarcity of medical data, one of the deficiencies of such
work is that their data sets are small, leading to potential
overfitting [18,54]. Consequently, the Transformer and con-
volution are compared when they both overfit in small data
scales. Our work remedies this by analysing transformers
in a UNet-based architecture at six different data scales. In
addition, we use a separate test set to evaluate the general-
ization capability for compared models. Another deficiency
is that the Transformer and convolutions are compared in
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different general structure without ensuring equivalent pa-
rameter count [18, 54, 54]. Transformers usually have sev-
eral times parameters when compared to convolution. For
example, nnFormer with 150m parameters are compared
to nnUNet with 30m parameters. Transformers also have
different network architectures to the compared convolu-
tion method. The advantages may result from techniques
such as skip connections, random paths, and Layer Normal-
ization. Inspired by ConvNeXt [31] we analyze different
components of a transformer and replace them with more
traditional deep learning operations like convolutions and
pooling while ensuring equivalent parameter count and sim-
ilar neural architectures. Our results indicate that window-
based Transformers perform worse than the comparison
model in all our data scales for 3D prostate CT segmen-
tation. Perhaps, Transformers need to evolve further to re-
place convolutions in the medical segmentation domain.

2. Related Work
In this section we first review UNet, which is the widely-

used architecture in medical segmentation. Then, we go
through the previous Transformer applications in the medi-
cal segmentation.

UNet [37], first applied in 2D slices and then extended
to 3D CT scans and MRI images [10], is one of the fun-
damental convolution-based architectures in medical image
segmentation. After the success of the initial UNet, sev-
eral improved models that incorporated ideas from other
domains based on the original UNet have emerged. For in-
stance, the success of ResNet [19] and DenseNet [21] stim-
ulated the development of ResUNet [47], ResUNet++ [25],
Multi-ResUNet [23] and DenseUNet [16]. Additionally, the
aggregation of the output from the deep and shallow layers
inspired the UNet++ [55, 56]. Besides, the combination of
attention mechanisms and UNet resulted in the Attention-
UNet [35], Attention-UNet++ [27], MA-UNet [3], SCAU-
Net [53], and AA-UNet [36].

Similar to the techniques above, the success of Vi-
sion Transformer motivated researchers to apply the Trans-
former blocks to the UNet structure. The Transformer
blocks were used to extract the long-range dependencies in
the image and were placed at deep layers due to computa-
tional complexity, while convolution blocks were used to
extract low-level feature maps and were placed at shallow
layers, such as UT-Net [14], TransUnet [7], MCTrans [26]
and TransClaw U-Net [5]. In the meanwhile, transferring
the architecture directly from the vision domain has be-
come a trend, for example, Swin-Transformer [30] to Swin-
UNet [4] and LeVit [15] to LeVit-UNet [48]. MedT [41]
and MBT-Net [52] adopted the Axial-Attention [20] block
to reduce the computational complexity while taking the ad-
vantage of the Self-Attention mechanism.

Researchers also apply the Transformer to 3D medical

segmentation. However, this process is still at the initial
stage. TransBTS [43] used the Transformer block to fuse
the feature maps from 3D ConvNets. Besides, UNETR [18]
replaced the convolution blocks with Transformer blocks
in the 3D-UNet encoder. On top of that, Swin-UNETR
[17] changed the vanilla Transformer blocks with Swin-
Transformer blocks. Similarly, nnFormer [54] replaced
convolutions with Swin-Transformer blocks in both the en-
coder and the decoder and incorporated the model in the
frame of the nnUNet [24]. In addition, D-Former [46] was
inspired by the dilated convolution and restricted the Self-
Attention in a dilated block to reduce the complexity and
enlarge the receptive field. We also built our experiment
based on the nnUNet [24] that provides a general frame-
work to handle arbitrary medical segmentation datasets by
condensing and automating the segmentation pipeline. By
doing so, we simplified the experiment’s design of incorpo-
rating Transformers into the UNet.

Researchers compared convolutions with Transformers
in the medical domain [33, 38]. The method introduced
by Christos Matsoukas [33] was restricted to 2D segmen-
tation. And both methods did not delve into the different
components of the Transformer, nor did they create differ-
ent data scales in comparison. To dig deeper, We were in-
spired by the Convnext [31] which replaced the components
of a ResNet step by step and surpasses the performance
of a Swin-Transformer. In addition, we have adopted the
idea that the general architecture of the Transformer plays
a significant role in performance from MetaFormer [50],
MLP-Mixer [34, 39] and Conv-Mixer [40]. They splitted
the Transformer block in to two parts: the Self-Attention
correponds to the spatial-mixing and the feed-forward net
goes with the channel-mixing. Both parts can be replaced
by other existent deep-learning operations while maintain-
ing the performance.

3. Method
3.1. Data

We use prostate CT data containing annotations of four
organs: bladder, prostate, rectum, and seminal vesicles. The
data is collected from three institutes, c.f. Haukeland Med-
ical Center of Norway (HMC), Leiden University Medical
Center in the Netherlands (LUMC) and Erasmus Medical
Center in the Netherlands (EMC), containing 179, 475 and
56 CT scans, respectively. EMC is used as the test data set,
while HMC and LUMC are used as the training datasets.
Due to differences in clinical protocols for CT scan acqui-
sition, the EMC dataset has larger volumes of the prostate
and bladder, which makes it a challenging test dataset.

3.2. Network Architecture
As shown in Figure 1, the Window-based Transformer

network in evaluation is nnFormer [54], which employs
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Figure 1: The visual abstract for our network architecture and our three experiment settings. On left part, the yellow tiles
of squares denote the sampled sub-volumes from the CT scans; The blue tiles of squares denote the predicted masks for
segmentation; The 3D Transformer blocks used are the 3D Swin-Transformer block. On the right part, we show the evaluated
components and the replacement for each: The orange blocks in EXP denote that we only replace the Window-based Self-
Attention with pooling. We use labels with black background to show the place to insert position encodings: the absolute
position embeddings are added once to each position on the feature map after patch embedding; the relative bias is added in
computing Self-Attention matrix in each Swin-Transformer block.

Swin (shifted-window)-Transformer blocks in the encoder
and decoder of a UNet architecture. Please note that the first
two layers of this architecture are convolution-based patch-
embedding layers to extract low-level feature maps. For-
mula 1 shows the computation in a Window-based Trans-
former block for Layer l and l+1: X l−1 ∈ RB×N×L×C

is the flatten output of the last layer, where B, N, L, C de-
note the batch size, the number of 3D windows, the num-
ber of tokens in one window, and the channel size, re-
spectively. To flatten the feature map and divide it into
multiple windows, we first split the feature map in to N
parts where N = ⌈H

M ⌉ × ⌈W
M ⌉ × ⌈ D

M ⌉, H, W, D, M de-
note the height, weight, depth of the CT scans and the 3D
window size. Then we flatten each window by reshaping
the 3D window to 1D sequence where the sequence length
L = M ×M ×M .

X̂ l = W-MSA(LN(Xl−1)) + Xl−1

X l = MLP(LN(X̂l)) + X̂l

X̂ l+1 = SW-MSA(LN(Xl)) + Xl

X l+1 = MLP(LN(X̂l+1)) + X̂l+1

(1)

The Window-based Multi-Head Self-Attention is then
computed in each 3D window as shown in formula 2, in

which Q, K, V are queries, keys and values, each linear
transformed by the input flattened sequence; d denotes the
size of the key and query. To compute Multi-Head Self-
Attention in a shifted-window based, each 3D window is
shifted towards right bottom by (⌊M

2 ⌋, ⌊M
2 ⌋, ⌊M

2 ⌋) voxels.
Besides, the bottom and rightmost voxels are shifted to the
top and leftmost, since there is no extra space on the right
bottom side.

Attention(Q,K,V) = Softmax(
QKT

√
d

)V
(2)

As shown in the left part of Figure 1, we have three
experiment settings to examine the different components
of the Transformer network: First, two Swin-Transformer
blocks in one layer are replaced by two 3-by-3 convolutions;
second, the Self-Attention mechanism within the block is
replaced by the pooling operation; third, different position
encodings are compared with the model without any posi-
tion encodings.

3.2.1 Method 1: Replacing Swin-Transformer block
with convolution block

Literature on medical image segmentation has shown supe-
rior performance of window-based Transformers over con-
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volutions [18, 54]. We test this notion by replacing the
window-based Transformer blocks with a sequence of two
convolutions, as shown in formula 3. We also ensure that
their parameter counts are equivalent and proceed to com-
pare these models across multiple data scales. It is hypoth-
esized that the Transformer will perform poorly in low-
data regimes, since its attention mechanism is incapable
of understanding relative position information of voxels, a
quality important for precise tasks like segmentation and
inherent to convolutions. Conversely, the lack of an in-
herent prior for imaging data, may allow Transformers to
learn complex dependencies in the large-data regime, hence
boosting performance.

X l = Conv(LN(Xl−1)) + Xl−1

X l+1 = Conv(LN(Xl)) + Xl (3)

3.2.2 Method 2: Replacing the Self-Attention with
Pooling

In the spirit of further analyzing components of the Trans-
former block and inspired by the MetaFormer [50] to re-
duce computational complexity, we replace the attention
mechanism with a much simpler spatial feature mixing op-
eration, i.e pooling, as shown in formula 4. Replacing the
complex attention mechanism with a simpler pooling oper-
ation may also reduce the chance of overfitting in low-data
regimes. We hypothesize that max-pooling will outperform
self-attention in small data scales while self-attention will
prevail gradually with increased data scale. This is because
the complex nature of the attention mechanism when com-
pared to max pooling might allow it to model spatial fea-
tures provided additional data.

X̂ l = Max-Pooling(LN(Xl−1)) + Xl−1

X l = MLP(LN(X̂l)) + X̂l

X̂ l+1 = Max-Pooling(LN(Xl)) + Xl

X l+1 = MLP(LN(X̂l+1)) + X̂l+1

(4)

3.2.3 Method 3: Evaluating Positional Encoding

Under the assumption that failures of window-based Trans-
formers might be due to its inability to model positional
dependencies, we explore two different positional encod-
ing methods and compare them with a model without any
positional encodings, as shown in formula 5. The first is
absolute positional embedding that is added to the feature
map after the convolutional patch-embedding. Therefore,

the added absolute position embedding has the same di-
mension as the feature map input to the first Transformer
block. Moreover, the absolute positional embedding can be
divided into learned and unlearned positional embedding.
We can extend original 1D sinusoid positional embedding
to 3D case by following the formula 6. The second method
is the relative positional bias that is added when comput-
ing the attention matrix in each Swin-Transformer block.
Our base Transformer model uses relative positional bias
which we expect to perform better as per work done in lit-
erature [54].

X0 = X0 + Zembedding

Attention(Q,K,V) = Softmax(
QKT

√
d

+ B)V (5)

PE(x, y, z, 2i) = sin(x/100006i/D)

PE(x, y, z, 2i + 1) = cos(x/100006i/D)

PE(x, y, z, 2j + D/3) = sin(y/100006i/D))

PE(x, y, z, 2j + 1 + D/3) = cos(y/100006i/D)

PE(x, y, z, 2k + 2D/3) = sin(z/100006i/D)

PE(x, y, z, 2k + 1 + 2D/3) = cos(z/100006i/D)

(6)

4. EXPERIMENTS AND RESULTS
4.1. Experiment Settings

This work uses two datasets for training i.e. HMC (or
clinic A) and LUMC (or clinic B). The HMC dataset is
split into two parts for 2-fold cross validation and also cre-
ating smaller data scales. They contain 94 and 85 CT scans
respectively and are henceforth referred to as A1 and A2.
We make 6 combinations of these datasets c.f. A1, A2, A,
A1+B, A2+B, A+B to create multiple data scales. Note, that
the data from clinic B is not used for pretraining, but rather
as additional scans during training. In addition, we use the
clinic B to pretrain the models and then finetune on A1,
A2, and A so as to test the compared models’ performance
in pretraining context. Three experiments are conducted
to compare the window-based Transformer to its counter-
parts on two geometric metrics i.e. Dice and 95th percentile
Hausdorff Distance (HD95) averaged over all scans of the
test dataset. In addition, we adopt wilcoxon signed rank test
with p value equal to 0.5 to reveal the statistical significance
between two compared models in each organ and average of
all organs.

The models are trained using a combination of Dice
and cross-entropy loss in deep supervision for 500 epochs.
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The window-based Transformer and convolution contain
158.49M and 155.85M parameters, respectively. The
CT scans are first resampled to the median spacing of
each dataset and then randomly sampled patches of size
(128,128,64) are the input to the network. Models were
trained with Pytorch 11.3 on a single Nvidia RTX6000
(24GB memory). In addition to the lineplots in Figure 2,
the full test experiment results are in Appendix A.

4.2. Experiment 1: Replacing Swin-Transformer
block with convolution block

Surprisingly, Figure 2 (a) and Figure 6 (a)(b)(c)(d) show
that the Transformer performs better on lower data scales
and the convolution gradually surpasses it with the increase
of data. The convolution performs poorly in the lower-data
regime since the lack of data coupled with its locality bias
may not allow it to learn sufficient global shape-based infor-
mation, but only local textural information in the neighbour-
hood of a voxel (seminal vesicle in Figure 6 (b)). A lower
supervision loss during training and higher performance in
cross-validation experiments on clinic A also are indicators
of the overfitting nature of convolutions in our smaller data
regimes. The higher performance of convolutions in our
larger data scales may imply that the Transformer needs
more data to learn the dependencies within the data (jagged
nature of bladder in Figure 6 (c)).

In the pretraining context, Figure 2 (b) and Figure 6
(i)(j)(k)(l) suggest that both the Transformer and the convo-
lution benefit from pretraining. However, compared to the
results on small data scales, the gaps between the Trans-
former and convolution are eliminated after pretraining.
In this light, the convolution benefits more from pretrain-
ing compared to the Transformer. Nevertheless, Figure 6
(i)(j)(k)(l) show that both pretrained models still have insuf-
ficient predictions compared to the ground truth, especially
the zigzag border lines in 6 (i),(k) due to the lack of locality
bias in the Transformer block.

Next, we conduct additional experiments to further ver-
ify our conclusions. We halve the parameters both for the
Transformer and convolution models to 75m and repeat the
experiment. Figure 2 (c)(d) shows that after we halved the
parameters, the Transformer performs better on lower data
scales and the convolution gradually surpasses it with in-
creased data or within pretraining context. It is identical to
the experiments in the original parameter count. In addi-
tion, compared to the initial experiments, the performance
gap enlarges between the Transformer model and the con-
volution model in large data scales and pretraining context.
This indicates that the Transformer is more sensitive to the
parameter reduction compared to the convolution in our ex-
periment settings.

(a) (b)

(c) (d)

Figure 2: Experiments 1: Line plots showing the mean and
95th percentile confidence interval of Dice and HD95. The
x-axis denotes the various training data scales with clinics
A and B while A2, A1 denote the first and second part of
clinic A. The subscript Pretrain denotes that the model is
pretrained on B and finetuned on given dataset. ∗ denotes
a statistical difference in at least one organ and † denotes a
statistical difference on average and for at least one organ.

4.3. Experiment 2: Replacing the Self-Attention
with Pooling

In line with our expectations, Figure 2 (b) and Figure 6
(e)(f)(g)(h) suggest that max-pooling outperforms in small
data scales compared to the window-based self-attention
mechanism and the latter surpasses with the increase of data
scale. Thus, both convolution and window-based Trans-
former fail to be well-trained under small data scales. These
results indicate that the simplicity of pooling may be essen-
tial to high performance in small data regimes.

Apart from that, Figure 3 (a)(b) and Figure 6
(m),(n),(o),(p) show that the Transformer model benefits
from pretraining, while the Pooling operation fails to ele-
vate the performance even with pretraining. This might fur-
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(a) (b)

Figure 3: Experiments 2: Line plots showing the mean and
95th percentile confidence interval of Dice and HD95. The
x-axis denotes the various training data scales with clinics
A and B while A2, A1 denote the first and second part of
clinic A. The subscript Pretrain denotes that the model is
pretrained on B and finetuned on given dataset. ∗ denotes
a statistical difference in at least one organ and † denotes a
statistical difference on average and for at least one organ.

ther indicate that a larger data scale compared to our clinic
A is desired for our Transformer model.

In addition, we have compared the average-pooling and
max-pooling in the smallest three data scales. Figure 5
(d) indicates that max-pooling has an advantage over the
average-pooling. A possible explanation for this is that the
max-pooling extracts the important local features, which
contributes to segmenting the edges and borders, while the
average-pooling smooths them.

Similar to the first experiment, pooling also outperforms
in the seminal vesicle on small data scales

4.4. Experiment 3: Evaluating Positional Encoding

Figure 4 (a),(b),(c),(d) shows that in spite of statistical
differences, the gaps in performance across the different po-
sitional encodings is not large in all experiment settings.
The lack of a large difference between the models with
some form of positional encoding and those without, in-
dicates that the current data scales are either insufficient to
train the positional encodings well or that a better positional
encoding design is needed for medical segmentation. Con-
trary to Transformers, both convolutions and pooling have
some form of inductive bias (i.e. locality and neighbour-
hood structure). This could be one reason that the window-
based Transformer is not the best choice in both our smaller
and larger data scales.

(a) (b)

(c) (d)

Figure 4: Experiment 3: Line plots showing the mean and
95th percentile confidence interval of Dice and HD95. The
x-axis denotes the various training data scales with clinics
A and B while A2, A1 denote the first and second part of
clinic A. The subscript Pretrain denotes that the model is
pretrained on B and finetuned on given dataset. In (a)(b), †,
‡ and ∗ denote a statistical difference between the relative
bias and no encoding, absolute embedding and no encoding,
and the two positional encoding respectively on the average
of all organs. In (c)(d), ∗ denotes a statistical difference in
at least one organ and † denotes a statistical difference on
average and for at least one organ.

4.5. Side Experiments

An additional side experiment is conducted to compare
the performance of nnUnet and the convolution and Trans-
former models. Figure 5 (a) shows that nnUnet needs
more data to surpass the Transformer. In this light, it of-
ten serves as a baseline in comparison with the Transformer
models on data scales that are insufficient to meet its data
hunger. In addition, we constructed the Transformer-S and
Transformer-L by halving and doubling the parameters, re-
spectively and compare them with both the Transformer and
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convolution. Figure 5 (b) shows that the convolution even
outperforms the Transformer-L in the large data scales. In-
dependent from the other experiments, we conduct the ex-
periment to verify the effectiveness of the Layer Normal-
ization. Figure 5 (c) shows that removing the Layer Nor-
malization from the Transformer model decreases the per-
formance and more in large data scales.

4.6. Validation Results

We conduct the two-fold cross-validation on dataset
clinic B. As the validation set, clinic B shares more similar-
ities with the training set compared to the test set clinic C,
which is taken by different CT machines and annotated by
distinct physicians. The results in the appendix B, show that
convolution outperforms the Transformer in most small and
large data scales(pretraining and finetuning); max-pooling
performs equally with the Transformer in most data scales.
This shows the convolution’s more powerful capability in
fitting the training data and predicting the validation data
on current data scales. Besides, in line with the test set, the
gaps in performance across the different positional encod-
ings are not significant in all validation settings.

5. Discussion And Conclusion

This study evaluates different components of the
window-based Transformer to understand their role in its
performance. Unlike previous work, we maintain a con-
stant parameter count across models and also analyze the
effect of the components under different data scales and
pretraining context. Our results show that window-based
Transformers perform poorly in comparison with convolu-
tions on large data scales. Surprisingly, we find that con-
volution also benefits more from both increased data scales
and pretraining weights compared to the Transformer. We
believe this underperformance could be explained by the
lack of understanding of positional information of voxels
in our data scales. The results of the pooling operation sug-
gest that it may always be better to choose simpler oper-
ations in low data regimes. The comparable performance
of models with and without positional encodings further
supports our first claim. Thus, we conclude that for our
dataset the window-based Transformer is not the best choice
in both small and larger data scales. Please note that our
largest data scale may not be sufficient for Transformers
which are well-known to be data hungry. Future work could
use our approach to understand Transformers by either seg-
menting other organs or using different medical imaging
modalities. Additionally, it may be worth exploring self-
supervised methods as they could potentially benefit the
data hungry Transformer.

(a) (b)

(c) (d)

Figure 5: Side Experiments: Line plots showing the mean
and 95th percentile confidence interval of Dice and HD95.
The x-axis denotes the various training data scales with clin-
ics A and B while A2, A1 denote the first and second part
of clinic A. In (a), †, ‡ and ∗ denote the statistical differ-
ence between the relative bias and no encoding, absolute
embedding and no encoding, and the two positional encod-
ing respectively on the average of all organs. In (b), The
subscript and superscript denote the statistical difference of
the Transformer-L and Transformer-S respectively; †, ‡ de-
note a statistical difference with the Transformer and con-
volution model respectively. In (c)(d), †denotes a statistical
difference on average and for at least one organ.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6: CT scans showing the prediction (dotted line) and ground truth (solid line) for the prostate (red), bladder (green)
and seminal vesicle (yellow). (a),(b),(e),(f) and (c),(d),(g),(h) show results when trained on the smallest and largest data scale
respectively. (i),(j),(m),(n) and (k),(l),(o),(p) show the results when trained on the smallest and with Pretrained-Finetuned on
largest data scale respectively
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A. Test Experiment results

The full experiment result is shown in this section. We found that Seminal Vesicle is a good indicator of performance
since it is small and irregular compared to other organs.

A.1. Experiment1: Replacing Swin-Transformer Block with Convolution

The test experiment results for replacing Swin-Transformer Block with Convolution are shown in table 1 and table 2. The
results after halving the parameters size are shown in table 3 and table 4.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 81.82+5.07 83.15 83.83+4.43 85.44 95.65+3.24 96.66 74.31+9.66 74.48 73.48+15.59 77.45
Conv A 81.73+5.77 83.53 83.57+6.29 85.81 95.45+3.79 96.77 75.75+7.45† 76.09 72.14+17.07 78.27
Trans A1 81.31+5.12 82.31 83.44+4.25 84.11 95.69+3.4 96.75 72.8+10.81 72.54 73.3+14.29 76.77
Conv A1 80.51+6.55 82.08 81.46+9.95 84.46 95.8+3.57† 96.99 73.81+7.63 73.48 70.97+17.63† 75.56
Trans A2 78.77+6.61 80.32 80.21+7.97 83.04 94.23+3.92 95.59 73.94+8.75 74.44 66.69+18.93 74.68
Conv A2 77.9+7.8 80.15 80.84+8.94† 84.07 94.01+4.55 95.77 75.02+7.7† 74.37 61.75+20.71 69.37
Trans A+B 82.81+3.97 83.28 84.56+5.33 86.08 95.58+2.56 96.26 73.29+7.5 73.26 77.81+9.96 79.05
Conv A+B 83.95+3.88† 84.57 86.59+4.57† 87.72 96.13+1.85† 96.55 74.55+7.52† 74.39 78.55+10.48 80.39
Trans A1+B 82.82+3.94 83.41 84.53+5.69 86.24 96.08+2.41 96.62 73.24+7.61 72.68 77.43+10.27 78.48
Conv A1+B 83.69+3.95† 84.36 85.6+5.11† 87.11 96.58+1.72† 96.96 74.06+7.59† 73.47 78.52+10.45 79.17
Trans A2+B 81.95+4.19 82.91 84.88+5.08 86.53 95.29+2.3 95.83 72.8+8.02 72.95 74.84+10.83 75.14
Conv A2+B 82.68+4.07† 83.34 86.28+4.47† 87.54 95.64+2.21† 95.98 73.94+7.49† 73.75 74.84+10.86 76.26
Trans⋆ A 82.89+4.14 84.07 84.92+4.31 86.47 95.7+3.25 96.55 74.87+7.18 74.29 76.08+12.96 78.68
Conv⋆ A 83.04+4.94 84.34 85.16+5.41 87.42 95.8+3.2† 96.62 75.39+7.43 75.75 75.8+14.28 80.66
Trans⋆ A1 82.18+4.69 83.44 84.27+4.1 85.36 95.93+3.37 97.1 74.13+7.66 73.25 74.41+14.85 78.59
Conv⋆ A1 82.15+4.88 83.38 84.23+6.12 86.34 96.31+2.91† 97.14 74.22+7.52 73.34 73.86+14.62 77.22
Trans⋆ A2 80.9+5.39 82.78 83.02+5.6 85.09 94.69+3.69 95.78 74.45+7.53 74.83 71.45+16.22 75.86
Conv⋆ A2 80.34+7.3 82.85 83.79+7.2† 86.19 94.62+3.78 95.54 75.01+7.88† 74.9 67.94+19.47† 74.48

Table 1: Experiment 1: Replacing Swin-Transformer block with convolution block. The Dice mean and standard deviation
on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A. † represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 10.31+3.77 9.46 5.42+2.38 4.5 2.98+2.57 1.89 26.96+11.64 26.61 5.88+4.39 4.49
Conv A 10.35+4.51 9.07 5.84+3.8 4.54 3.7+4.59 1.81 26.42+11.79† 25.32 5.45+4.06 3.71
Trans A1 10.37+3.59 9.5 5.5+2.25 4.87 3.2+2.76 1.89 27.17+10.63 25.91 5.61+3.84 4.64
Conv A1 10.99+4.52† 9.35 6.45+4.56 5.06 3.35+3.35 1.76 28.06+11.32† 27.0 6.11+4.83 4.67
Trans A2 11.18+4.56 9.99 6.58+3.54 5.73 4.31+3.94 2.59 26.93+11.96 26.71 6.89+4.94 4.92
Conv A2 11.51+5.27 10.09 6.6+4.26 5.2 4.66+4.96 2.41 26.7+12.41 27.0 8.08+5.86 5.97
Trans A+B 9.95+3.13 9.54 5.11+1.56 4.69 2.42+1.65 1.83 27.82+11.24 27.0 4.45+2.21 4.09
Conv A+B 9.62+3.33† 9.12 4.65+1.42† 4.5 2.14+1.09† 1.75 27.39+12.02† 25.96 4.31+2.32 3.92
Trans A1+B 10.11+3.1 9.53 5.2+1.59 4.88 2.3+1.76 1.79 28.32+11.15 27.27 4.61+2.44 4.11
Conv A1+B 9.82+3.15† 9.32 4.94+1.4† 4.71 2.08+1.0 1.72 28.05+11.65 27.0 4.21+2.14 3.9
Trans A2+B 10.35+3.31 9.89 5.09+1.5 4.58 2.44+1.41 1.99 28.55+11.98 28.26 5.33+2.64 4.64
Conv A2+B 10.21+3.4 9.71 4.85+1.56† 4.51 2.33+1.42† 1.88 27.9+12.12† 27.01 5.75+2.93 5.69
Trans⋆ A 10.03+3.54 9.2 5.17+2.39 4.4 2.74+2.58 1.76 27.33+11.69 26.74 4.89+3.09 3.94
Conv⋆ A 9.96+4.04 8.87 5.18+3.08 4.48 2.97+3.4 1.79 26.86+11.71† 24.88 4.84+3.68 3.74
Trans⋆ A1 10.41+3.84 9.38 5.45+2.53 4.5 3.29+3.87 1.77 27.44+10.91 26.66 5.49+3.61 4.66
Conv⋆ A1 10.44+3.9 9.18 5.48+3.2 4.5 2.84+3.46† 1.73 27.93+11.43 26.92 5.49+3.68 4.55
Trans⋆ A2 10.68+4.16 9.75 5.74+3.16 4.67 3.46+3.13 2.23 27.24+11.85† 26.87 6.3+4.96 4.82
Conv⋆ A2 10.64+4.85 9.23 5.63+3.61 4.5 3.62+3.9 2.22 26.5+12.38 25.96 6.81+5.23 4.56

Table 2: Experiment 1: Replacing Swin-Transformer block with convolution block. The HD95 mean and standard deviation
on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A. † represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 81.45+5.15 82.68 83.59+4.76 85.24 95.57+3.18 96.6 73.56+9.57 73.24 73.08+15.71 78.35
Conv A 81.31+6.34 82.92 83.03+7.44 85.32 95.32+3.78 96.57 75.46+7.28† 75.48 71.43+17.75† 78.48
Trans A1 81.06+5.38 82.59 83.17+4.39 84.14 95.68+3.37 96.93 72.8+10.94 72.57 72.58+15.0 77.05
Conv A1 80.28+6.93 82.41 81.34+10.32 84.42 95.45+4.14 97.04 73.61+7.54 73.1 70.7+17.48† 75.82
Trans A2 78.06+7.47 80.05 80.15+8.53 83.36 94.21+4.08 95.67 73.65+9.27 73.69 64.21+21.09 72.49
Conv A2 77.69+8.24 80.17 79.58+10.87 83.61 93.72+4.9† 95.62 74.96+7.66† 74.26 62.5+20.53 69.99
Trans A+B 82.01+4.02 82.77 83.98+5.68 84.6 95.41+2.54 96.07 72.17+7.79 71.94 76.47+9.57 77.56
Conv A+B 83.51+3.93† 84.39 85.98+4.63† 87.42 95.97+2.08† 96.45 73.87+7.65† 73.59 78.22+10.41† 79.98
Trans A1+B 81.7+4.1 82.15 83.43+6.02 85.09 95.51+2.48 96.01 71.85+7.52 71.07 76.02+10.21 77.88
Conv A1+B 83.53+4.07† 84.11 85.42+5.08† 87.06 96.32+2.08† 96.79 73.87+7.56† 73.65 78.5+10.94† 79.71
Trans A2+B 80.98+4.57 81.73 84.02+5.5 84.9 95.2+2.35 95.68 72.19+8.09 72.43 72.5+12.38 74.91
Conv A2+B 82.44+4.12† 82.81 86.34+4.33† 87.27 95.47+2.11† 95.85 73.65+7.74† 73.23 74.3+11.06† 75.53
Trans A2+B 80.98+4.57 81.73 84.02+5.5 84.9 95.2+2.35 95.68 72.19+8.09 72.43 72.5+12.38 74.91
Conv A2+B 82.44+4.12† 82.81 86.34+4.33† 87.27 95.47+2.11† 95.85 73.65+7.74† 73.23 74.3+11.06† 75.53
Trans⋆ A 82.16+4.8 83.33 84.13+4.38 85.77 95.63+3.19 96.51 74.33+7.36 73.86 74.57+14.7 78.74
Conv⋆ A 83.07+5.09† 84.09 85.04+6.37† 87.26 95.86+3.07† 96.73 75.37+7.39† 75.56 76.0+13.71 79.61
Trans⋆ A1 81.72+4.97 83.26 83.87+4.27 85.05 95.86+3.46 97.07 73.6+7.93 72.63 73.54+15.38 78.12
Conv⋆ A1 82.36+5.05† 83.56 84.03+7.9† 86.71 96.27+3.13† 97.18 74.04+7.5 73.72 75.09+13.72 78.9
Trans⋆ A2 80.75+5.64 82.55 82.99+5.28 84.74 94.65+3.59 95.66 74.28+7.84 74.85 71.09+16.59 75.8
Conv⋆ A2 80.27+7.06 82.46 83.5+7.03† 85.92 94.59+3.86 95.64 74.58+7.89† 74.15 68.4+18.83 75.11

Table 3: Experiment 1: Replacing Swin-Transformer block with convolution block after halving the parameters. The Dice
mean and standard deviation on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A. †
represents statistical significant difference(p<0.05 between the annotated method and Trans with the same training set

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 10.41+3.84 9.76 5.47+2.48 4.76 3.09+2.63 1.95 27.43+11.68 26.86 5.66+4.02 3.91
Conv A 10.45+4.65 8.98 5.92+3.90 4.53 3.70+4.04 1.90 26.50+11.91 25.50 5.67+4.43† 4.08
Trans A1 10.48+3.82 9.73 5.7+2.49 4.69 3.78+4.36 1.79 26.81+10.46 25.53 5.62+3.95 4.58
Conv A1 11.23+4.82† 9.42 6.65+4.91 5.11 3.74+4.04 1.76 28.14+11.35† 26.73 6.37+5.02† 4.72
Trans A2 11.57+5.1 10.1 6.45+3.76 5.39 4.39+4.14 2.46 26.68+11.93 26.79 8.74+9.39 5.54
Conv A2 11.65+5.45 9.94 6.91+4.58† 5.86 5.03+5.59 2.43 26.84+12.4 27.01 7.8+5.79 5.6
Trans A+B 10.2+3.15 9.81 5.31+1.67 5.05 2.51+1.73 1.95 28.32+11.27 27.66 4.67+2.21 4.4
Conv A+B 9.79+3.32† 9.32 4.83+1.54† 4.5 2.21+1.33† 1.79 27.85+11.9 27.0 4.26+2.27 3.74
Trans A1+B 10.24+3.0 9.81 5.47+1.68 5.24 2.86+3.18 1.97 28.14+10.25 27.07 4.48+2.02 3.94
Conv A1+B 9.87+3.19† 9.21 5.05+1.56† 4.75 2.19+1.38† 1.73 28.03+11.64 27.0 4.2+2.18 3.82
Trans A2+B 10.4+3.22 10.24 5.31+1.49 4.86 2.48+1.4 2.15 28.11+11.19 28.36 5.69+3.0 5.15
Conv A2+B 10.24+3.32 9.82 4.83+1.47† 4.53 2.32+1.23† 1.91 28.0+12.23 28.26 5.8+2.87 5.44
Trans⋆ A 10.42+3.8 9.41 5.51+2.37 4.8 2.85+2.67 1.79 27.61+11.63 26.84 5.72+4.24 4.3
Conv⋆ A 9.9+3.89† 8.89 5.12+3.12† 4.42 2.62+2.45† 1.76 26.84+11.82† 25.35 5.01+3.69† 3.83
Trans⋆ A1 10.51+3.89 9.4 5.55+2.46 4.63 3.35+3.98 1.77 27.32+10.67 26.44 5.8+3.89 4.54
Conv⋆ A1 10.29+3.95† 9.0 5.41+3.9† 4.5 2.85+3.51† 1.71 27.79+11.37 26.94 5.13+3.46† 4.18
Trans⋆ A2 10.69+4.22 9.59 5.78+3.0 4.87 3.41+3.03 2.21 27.28+12.06 26.19 6.29+4.9 5.01
Conv⋆ A2 10.87+5.27 9.46 5.7+3.66 4.6 3.64+3.74 2.23 26.7+12.46 26.8 7.45+8.73† 4.49

Table 4: Experiment 1: Replacing Swin-Transformer block with convolution block after halving the parameters. The Dice
mean and standard deviation on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A. †
represents statistical significant difference(p<0.05 between the annotated method and Trans with the same training set

A.2. Experiments 2: Replacing the Self-Attention with Pooling

The test experiment results for replacing the Self-Attention with pooling are shown in table 5 and table 6. The experiment
results for comparing average-pooling and max-pooling are shown in table 7 and table 8.

A.3. Experiments 3: Evaluating Positional Encoding

The test experiment results for evaluating positional encoding are shown in table 9 and 10. The experiment results for
comparing learned absolute position embedding and sinsusoid position embedding are shown in table 11 and 12.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 81.82+5.07 83.15 83.83+4.43 85.44 95.65+3.24 96.66 74.31+9.66 74.48 73.48+15.59 77.45
Pool A 82.38+4.66 84.02 84.61+4.3† 85.38 95.74+2.95 96.54 74.72+7.86 74.92 74.44+14.4 79.12
Trans A1 81.31+5.12 82.31 83.44+4.25 84.11 95.69+3.4 96.75 72.8+10.81 72.54 73.3+14.29 76.77
Pool A1 82.17+4.99† 83.56 83.9+4.3 84.42 96.04+2.85† 96.83 72.96+11.34 72.9 75.78+13.81† 78.38
Trans A2 78.77+6.61 80.32 80.21+7.97 83.04 94.23+3.92 95.59 73.94+8.75 74.44 66.69+18.93 74.68
Pool A2 80.05+6.74† 82.8 81.73+6.71† 83.6 94.58+3.71† 95.87 75.15+7.6† 75.62 68.74+18.28† 73.71
Trans A+B 82.81+3.97 83.28 84.56+5.33 86.08 95.58+2.56 96.26 73.29+7.5 73.26 77.81+9.96 79.05
Pool A+B 82.17+4.71 83.57 84.9+5.17 86.64 95.54+2.88 96.41 73.34+7.6 73.34 74.92+13.58 77.25†
Trans A1+B 82.82+3.94 83.41 84.53+5.69 86.24 96.08+2.41 96.62 73.24+7.61 72.68 77.43+10.27 78.48
Pool A1+B 82.46+4.18 83.31 84.29+5.61 86.13 96.15+2.25 96.75 73.23+7.49 72.72 76.15+10.94 76.82†
Trans A2+B 81.95+4.19 82.91 84.88+5.08 86.53 95.29+2.3 95.83 72.8+8.02 72.95 74.84+10.83 75.14
Pool A2+B 81.66+4.36 82.91 85.18+5.05 86.93 94.95+2.76† 95.68 73.47+7.48 73.37 73.05+10.8† 74.12
Trans⋆ A 82.89+4.14 84.07 84.92+4.31 86.47 95.7+3.25 96.55 74.87+7.18 74.29 76.08+12.96 78.68
Pool⋆ A 81.81+5.29† 83.49 84.28+4.11† 84.98 95.54+3.36 96.7 73.45+10.32 74.0 73.97+15.32† 78.74
Trans⋆ A1 82.18+4.69 83.44 84.27+4.1 85.36 95.93+3.37 97.1 74.13+7.66 73.25 74.41+14.85 78.59
Pool⋆ A1 81.97+5.31 83.56 83.95+3.88 84.65 95.74+3.25† 96.62 72.85+10.88† 72.43 75.32+14.87 79.06
Trans⋆ A2 80.9+5.39 82.78 83.02+5.6 85.09 94.69+3.69 95.78 74.45+7.53 74.83 71.45+16.22 75.86
Pool⋆ A2 79.76+6.95† 81.14 82.19+6.4† 83.97 94.51+3.76 95.88 73.55+10.87 74.97 68.78+17.46† 73.28

Table 5: Experiments 2: Replacing the Self-Attention with Pooling. The Dice mean and standard deviation on EMC
Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 10.31+3.77 9.46 5.42+2.38 4.5 2.98+2.57 1.89 26.96+11.64 26.61 5.88+4.39 4.49
Pool A 10.16+3.79 9.59 5.26+2.39† 4.76 2.78+2.26 1.83 26.91+11.7 26.28 5.68+4.28 4.57
Trans A1 10.37+3.59 9.5 5.5+2.25 4.87 3.2+2.76 1.89 27.17+10.63 25.91 5.61+3.84 4.64
Pool A1 10.03+3.5† 9.3 5.42+2.28 4.5 2.92+2.47 1.79 26.71+11.05† 25.51 5.06+4.11† 3.89
Trans A2 11.18+4.56 9.99 6.58+3.54 5.73 4.31+3.94 2.59 26.93+11.96 26.71 6.89+4.94 4.92
Pool A2 10.84+4.48† 9.84 6.19+3.53† 5.17 3.74+3.11† 2.26 27.16+11.75 27.01 6.26+4.66† 4.92
Trans A+B 9.95+3.13 9.54 5.11+1.56 4.69 2.42+1.65 1.83 27.82+11.24 27.0 4.45+2.21 4.09
Pool A+B 10.35+3.52 9.94 5.15+2.16 4.5 2.61+2.14 1.95 28.49+11.98 28.5 5.15+3.15† 4.48
Trans A1+B 10.11+3.1 9.53 5.2+1.59 4.88 2.3+1.76 1.79 28.32+11.15 27.27 4.61+2.44 4.11
Pool A1+B 10.31+3.12 9.66 5.36+1.63 5.05 2.29+1.55 1.83 28.82+11.46 27.88 4.77+2.17 4.78
Trans A2+B 10.35+3.31 9.89 5.09+1.5 4.58 2.44+1.41 1.99 28.55+11.98 28.26 5.33+2.64 4.64
Pool A2+B 10.77+4.53 10.05 4.95+1.91 4.53 2.69+1.92 2.19 28.42+12.11 28.59 7.01+9.72 5.6
Trans⋆ A 10.03+3.54 9.2 5.17+2.39 4.4 2.74+2.58 1.76 27.33+11.69 26.74 4.89+3.09 3.94
Pool⋆ A 10.34+3.84† 9.89 5.25+2.55 4.58 3.07+2.72† 1.89 27.6+11.93 28.5 5.43+3.24† 4.43
Trans⋆ A1 10.41+3.84 9.38 5.45+2.53 4.5 3.29+3.87 1.77 27.44+10.91 26.66 5.49+3.61 4.66
Pool⋆ A1 10.31+3.55 9.85 5.57+2.76 4.5 3.3+3.02 1.79 27.41+10.62 27.32 4.95+2.92 4.46
Trans⋆ A2 10.68+4.16 9.75 5.74+3.16 4.67 3.46+3.13 2.23 27.24+11.85† 26.87 6.3+4.96 4.82
Pool⋆ A2 10.98+4.59† 10.27 6.04+3.44† 5.18 3.85+3.37† 2.39 27.6+12.3† 28.12 6.43+4.56 5.07

Table 6: Experiments 2: Replacing the Self-Attention with Pooling. The HD95 mean and standard deviation on EMC
Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
AvgPooling A 80.92+6.37 83.03 83.13+5.55 84.51 95.47+3.04 96.56 74.68+8.31 74.8 70.39+20.0 78.88
MaxPooling A 82.38+4.66† 84.02 84.61+4.3† 85.38 95.74+2.95† 96.54 74.72+7.86 74.92 74.44+14.4 79.12
AvgPooling A1 80.26+6.33 82.96 82.22+6.03 84.33 95.71+3.38 96.86 72.11+10.5 72.52 70.98+16.89 77.27
MaxPooling A1 82.17+4.99† 83.56 83.9+4.3† 84.42 96.04+2.85† 96.83 72.96+11.34† 72.9 75.78+13.81† 78.38
AvgPooling A2 78.1+8.11 80.58 80.11+8.44 82.96 94.25+3.8 95.81 74.32+8.6 74.98 63.71+22.98 76.09
MaxPooling A2 80.05+6.74† 82.8 81.73+6.71† 83.6 94.58+3.71† 95.87 75.15+7.6† 75.62 68.74+18.28† 73.71

Table 7: Comparing average-pooling with max-pooling in small data scales. The Dice mean and standard deviation on EMC
Test set(clinic C). † represents statistical significant difference(p<0.05 between the annotated method and Trans with the
same training set
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
AvgPooling A 10.66+4.52 9.46 5.52+2.89 4.55 3.18+2.56 1.9 26.94+11.97 27.0 7.0+6.18 4.34
MaxPooling A 10.16+3.79 9.59 5.26+2.39 4.76 2.78+2.26† 1.83 26.91+11.7 26.28 5.68+4.28 4.57
AvgPooling A1 10.77+4.18 9.79 6.0+3.15 5.02 3.34+2.96 1.79 27.27+10.42 26.92 6.48+4.87 4.79
MaxPooling A1 10.03+3.5† 9.3 5.42+2.28† 4.5 2.92+2.47† 1.79 26.71+11.05† 25.51 5.06+4.11† 3.89
AvgPooling A2 11.66+5.39 10.17 6.46+3.66 5.67 4.18+3.68 2.46 26.77+12.07 27.0 9.24+9.95 4.75
MaxPooling A2 10.84+4.48† 9.84 6.19+3.53 5.17 3.74+3.11† 2.26 27.16+11.75 27.01 6.26+4.66† 4.92

Table 8: Comparing average-pooling with max-pooling in small data scales. The HD95 mean and standard deviation on
EMC Test set(clinic C). † represents statistical significant difference(p<0.05 between the annotated method and Trans with
the same training set

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans w/o A 81.98+4.61 82.59 84.01+4.29 85.46 95.7+3.06 96.69 74.37+8.99 74.51 73.84+14.21 77.68
TransR A 81.82+5.07 83.15 83.83+4.43 85.44 95.65+3.24 96.66 74.31+9.66 74.48 73.48+15.59 77.45
TransA A 81.4+5.28†‡ 82.47 83.78+4.57 85.31 95.58+3.45 96.81 74.15+9.05 73.66 72.09+16.51†‡ 76.87
Trans w/o A1 81.21+5.32 82.32 83.37+4.56 84.24 95.63+3.64 96.81 72.84+10.62 72.54 72.99+15.04 76.46
TransR A1 81.31+5.12 82.31 83.44+4.25 84.11 95.69+3.4 96.75 72.8+10.81 72.54 73.3+14.29 76.77
TransA A1 81.39+5.08 82.42 83.67+4.2 84.26 95.75+3.46 96.99 72.97+10.62 72.87 73.18+14.06 75.76
Trans w/o A2 79.16+6.52 80.72 80.34+8.2 83.43 94.29+4.05 95.71 74.13+8.01 75.07 67.88+17.97 73.65
TransR A2 78.77+6.61† 80.32 80.21+7.97 83.04 94.23+3.92† 95.59 73.94+8.75 74.44 66.69+18.93 74.68
TransA A2 78.62+6.94† 80.49 80.15+8.18 82.86 94.29+3.98 95.76 73.92+8.43 74.4 66.12+19.57† 73.13
Trans w/o A+B 82.64+4.06 83.24 84.55+5.57 86.35 95.59+2.67 96.19 73.16+7.7 72.8 77.27+10.22 78.36
TransR A+B 82.81+3.97† 83.28 84.56+5.33 86.08 95.58+2.56 96.26 73.29+7.5 73.26 77.81+9.96† 79.05
TransA A+B 82.81+4.01 83.69 84.91+5.33‡ 86.59 95.58+2.71 96.28 73.57+7.43† 73.36 77.19+10.32 78.17
Trans w/o A1+B 82.62+4.06 82.92 84.01+5.98 85.55 95.99+2.73 96.63 73.1+7.45 72.46 77.4+9.98 78.75
TransR A1+B 82.82+3.94† 83.41 84.53+5.69† 86.24 96.08+2.41† 96.62 73.24+7.61 72.68 77.43+10.27 78.48
TransA A1+B 82.11+4.0†‡ 82.47 84.1+6.06‡ 86.16 95.78+2.3†‡ 96.35 72.17+7.71†‡ 71.55 76.41+10.04†‡ 77.42
Trans w/o A2+B 82.15+3.96 82.62 84.86+4.88 85.51 95.57+2.17 96.0 73.19+7.55 73.08 74.98+10.03 74.89
TransR A2+B 81.95+4.19 82.91 84.88+5.08 86.53 95.29+2.3† 95.83 72.8+8.02† 72.95 74.84+10.83 75.14
TransA A2+B 81.92+3.98†‡ 82.37 84.49+5.41†‡ 85.51 95.23+2.28†‡ 95.76 72.89+7.43† 72.62 75.07+9.85 75.77
Trans w/o ⋆ A 82.57+4.31 83.6 84.57+4.45 86.13 95.88+2.83 96.58 74.53+7.35 73.89 75.28+13.76 78.33
TransR⋆ A 82.89+4.14† 84.07 84.92+4.31† 86.47 95.7+3.25† 96.55 74.87+7.18† 74.29 76.08+12.96† 78.68
TransA⋆ A 82.69+4.62 83.79 84.58+4.54‡ 86.6 95.73+3.22† 96.52 74.92+7.27† 74.4 75.54+14.63 79.66
Trans w/o ⋆ A1 82.32+4.54 83.76 84.09+4.49 85.91 96.03+3.27 97.18 73.95+7.69 72.77 75.22+13.97 78.46
TransR⋆ A1 82.18+4.69 83.44 84.27+4.1 85.36 95.93+3.37 97.1 74.13+7.66 73.25 74.41+14.85 78.59
TransA⋆ A1 82.43+4.63 83.6 84.24+4.52 85.3 95.98+3.44 97.12 74.34+7.48† 73.68 75.15+14.16 78.7
Trans w/o ⋆ A2 81.11+5.08 82.59 83.25+5.23 85.56 94.7+3.47 95.76 74.53+7.41 74.24 71.96+15.42 76.39
TransR⋆ A2 80.9+5.39 82.78 83.02+5.6 85.09 94.69+3.69 95.78 74.45+7.53 74.83 71.45+16.22 75.86
TransA⋆ A2 81.12+5.22 82.61 83.54+5.17†‡ 85.32 94.79+3.59†‡ 95.82 74.62+7.48 74.3 71.54+16.08 75.52

Table 9: Experiments 3: Evaluating Positional Encoding. The Dice mean and standard deviation on EMC Test set(clinic
C). † represents statistical significant difference(p<0.05 between the annotated method and Transformer without Positional
encoding with the same training set. ‡ represents statistical significant difference(p<0.05 between the annotated method and
Transformer with relative positional bias(Trans) with the same training set.

A.4. Side Experiments

The test experiment results for the comparison between models of different size(75m,150m,300m) are shown in table 13
and table 14. The experiment results for the comparison between models with/without Layer Normalization are shown in
table 15 and table 16.

B. Validation Experiment results
B.1. Experiment1: Replacing Swin-Transformer Block with Convolution

The validation experiment results for replacing Swin-Transformer Block with Convolution are shown in table 17 and table
18. The results after halving the parameters size are shown in table 19 and table 20.

B.2. Experiment 2: Replacing the Self-Attention with Pooling

The validation experiment results for replacing the Self-Attention with pooling are shown in table 21 and table 22. The
experiment results for comparing average-pooling and max-pooling are shown in table 23 and table 24.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans w/o A 10.48+3.92 9.66 5.37+2.41 4.7 3.42+4.62 1.79 27.41+11.76 27.0 5.72+3.89 4.36
TransR A 10.31+3.77† 9.46 5.42+2.38 4.5 2.98+2.57 1.89 26.96+11.64† 26.61 5.88+4.39 4.49
TransA A 10.48+4.06 9.17 5.48+2.6 4.62 3.44+4.18‡ 1.79 26.97+11.47† 25.5 6.03+4.48 4.67
Trans w/o A1 10.48+3.88 9.32 5.74+2.74 4.78 3.67+3.97 1.91 27.03+10.42 25.52 5.5+3.83 4.6
TransR A1 10.37+3.59 9.5 5.5+2.25 4.87 3.2+2.76† 1.89 27.17+10.63 25.91 5.61+3.84 4.64
TransA A1 10.35+3.79† 9.42 5.56+2.54 4.74 3.3+3.1 1.85 27.03+10.74 25.52 5.52+3.68 4.62
Trans w/o A2 11.15+4.48 10.06 6.59+3.86 5.61 4.17+3.98 2.46 27.22+11.85† 27.04 6.61+4.68 5.35
TransR A2 11.18+4.56 9.99 6.58+3.54 5.73 4.31+3.94 2.59 26.93+11.96 26.71 6.89+4.94 4.92
TransA A2 11.33+4.66† 9.95 6.58+3.9 5.77 4.3+4.13 2.46 27.32+12.07‡ 27.02 7.13+5.28† 5.19
Trans w/o A+B 10.11+3.34 9.55 5.14+1.73 4.57 2.43+1.88 1.83 28.29+11.6 27.03 4.58+2.29 4.2
TransR A+B 9.95+3.13† 9.54 5.11+1.56 4.69 2.42+1.65 1.83 27.82+11.24† 27.0 4.45+2.21† 4.09
TransA A+B 9.95+3.18† 9.34 5.0+1.65† 4.6 2.42+1.85 1.8 27.81+11.16† 27.0 4.58+2.28 4.19
Trans w/o A1+B 10.07+3.17 9.4 5.37+1.83 5.01 2.4+2.1 1.79 27.94+10.68 27.0 4.56+2.17 4.38
TransR A1+B 10.11+3.1 9.53 5.2+1.59 4.88 2.3+1.76 1.79 28.32+11.15 27.27 4.61+2.44 4.11
TransA A1+B 10.08+3.05 9.62 5.18+1.62 4.8 2.46+1.63†‡ 1.91 28.02+10.77 27.07 4.67+2.18 4.31
Trans w/o A2+B 10.33+3.31 9.82 5.11+1.35 4.92 2.35+1.25 1.95 28.48+11.8 28.39 5.37+2.75 5.03
TransR A2+B 10.35+3.31 9.89 5.09+1.5 4.58 2.44+1.41† 1.99 28.55+11.98 28.26 5.33+2.64 4.64
TransA A2+B 10.27+3.14 9.92 5.18+1.54 4.85 2.47+1.39 2.07 28.21+11.23 27.89 5.22+2.51 4.51
Trans w/o ⋆ A 10.16+3.49 9.41 5.25+1.98 4.73 2.61+2.11 1.79 27.44+11.64 26.49 5.33+3.5 4.54
TransR⋆ A 10.03+3.54† 9.2 5.17+2.39† 4.4 2.74+2.58 1.76 27.33+11.69 26.74 4.89+3.09† 3.94
TransA⋆ A 10.19+3.66‡ 9.32 5.27+2.32 4.5 2.72+2.58 1.76 27.57+11.79‡ 25.73 5.2+3.6 4.19
Trans w/o ⋆ A1 10.36+3.75 9.2 5.46+2.26 4.55 3.21+3.85 1.77 27.5+10.75 27.0 5.29+3.5 4.36
TransR⋆ A1 10.41+3.84 9.38 5.45+2.53 4.5 3.29+3.87† 1.77 27.44+10.91† 26.66 5.49+3.61 4.66
TransA⋆ A1 10.24+3.75 9.27 5.41+2.39 4.53 3.22+3.61 1.79 27.06+10.52†‡ 25.96 5.28+3.57 4.6
Trans w/o ⋆ A2 10.61+4.09 9.81 5.64+2.95 4.69 3.36+2.85 2.23 27.31+11.94 27.0 6.14+4.58 4.72
TransR⋆ A2 10.68+4.16 9.75 5.74+3.16 4.67 3.46+3.13† 2.23 27.24+11.85 26.87 6.3+4.96 4.82
TransA⋆ A2 10.73+4.3 9.69 5.54+3.03‡ 4.57 3.28+2.89‡ 2.22 27.39+11.85‡ 26.88 6.69+7.48 4.89

Table 10: Experiments 3: Evaluating Positional Encoding. The HD95 mean and standard deviation on EMC Test set(clinic
C). † represents statistical significant difference(p<0.05 between the annotated method and Transformer without Positional
encoding with the same training set. ‡ represents statistical significant difference(p<0.05 between the annotated method and
Transformer with relative positional bias(Trans) with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
TransA A 81.4+5.28 82.47 83.78+4.57 85.31 95.58+3.45 96.81 74.15+9.05 73.66 72.09+16.51 76.87
TransS A 81.59+4.88 82.49 83.57+4.91 85.54 95.58+3.31 96.7 74.16+8.26 73.56 73.02+15.04 76.93
TransA A1 81.39+5.08 82.42 83.67+4.2 84.26 95.75+3.46 96.99 72.97+10.62 72.87 73.18+14.06 75.76
TransS A1 81.15+5.32 82.45 83.44+4.25 84.59 95.76+3.27 96.82 72.7+10.41† 72.36 72.71+15.47 76.65
TransA A2 78.62+6.94 80.49 80.15+8.18 82.86 94.29+3.98 95.76 73.92+8.43 74.4 66.12+19.57 73.13
TransS A2 79.1+6.76† 80.63 79.92+8.23 82.67 94.35+3.95† 95.86 74.02+8.46 74.96 68.12+18.56† 74.54
TransA A+B 82.81+4.01 83.69 84.91+5.33 86.59 95.58+2.71 96.28 73.57+7.43 73.36 77.19+10.32 78.17
TransS A+B 82.58+3.97† 83.33 84.73+5.46 86.01 95.48+2.62† 96.13 72.91+7.43† 72.73 77.21+9.94 77.56
TransA A1+B 82.11+4.0 82.47 84.1+6.06 86.16 95.78+2.3 96.35 72.17+7.71 71.55 76.41+10.04 77.42
TransS A1+B 82.58+4.01† 83.08 84.45+6.06 86.11 95.77+2.48 96.37 72.72+7.48† 71.65 77.37+9.9† 77.63
TransA A2+B 81.92+3.98 82.37 84.49+5.41 85.51 95.23+2.28 95.76 72.89+7.43 72.62 75.07+9.85 75.77
TransS A2+B 81.63+4.26 81.82 84.88+5.36† 86.83 95.13+2.26 95.74 72.89+7.55† 72.75 73.61+12.03 75.47
TransA⋆ A 82.69+4.62 83.79 84.58+4.54 86.6 95.73+3.22 96.52 74.92+7.27 74.4 75.54+14.63 79.66
TransS⋆ A 82.72+4.2 83.8 84.93+4.19† 86.3 95.76+3.14 96.63 74.6+7.34† 74.23 75.6+12.84 78.37
TransA⋆ A1 82.43+4.63 83.6 84.24+4.52 85.3 95.98+3.44 97.12 74.34+7.48 73.68 75.15+14.16 78.7
TransS⋆ A1 82.28+4.52 83.35 84.26+4.42 85.51 95.92+3.43 97.04 73.94+7.55 73.72 75.0+13.4 78.49
TransA⋆ A2 81.12+5.22 82.61 83.54+5.17 85.32 94.79+3.59 95.82 74.62+7.48 74.3 71.54+16.08 75.52
TransS⋆ A2 81.09+5.31 82.53 83.5+5.06 85.0 94.84+3.57† 95.9 74.63+7.5† 74.73 71.41+16.32 75.79

Table 11: Comparison between learned and unlearned sinusoid absolute position embedding. The Dice mean and standard
deviation on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical
significant difference(p<0.05 between the annotated method and Trans with the same training set.

B.3. Experiment 3: Evaluating Positional Encoding

The validation experiment results for evaluating positional encoding are shown in table ?? and 26. The experiment results
for comparing learned absolute position embedding and sinsusoid position embedding are shown in table 27 and 28.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
TransA A 10.48+4.06 9.17 5.48+2.6 4.62 3.44+4.18 1.79 26.97+11.47 25.5 6.03+4.48 4.67
TransS A 10.39+3.89 9.33 5.5+2.66 4.58 3.19+2.99 1.95 27.12+11.6 25.95 5.74+3.96† 4.27
TransA A1 10.35+3.79 9.42 5.56+2.54 4.74 3.3+3.1 1.85 27.03+10.74 25.52 5.52+3.68 4.62
TransS A1 10.48+3.73 9.44 5.65+2.48 4.72 3.3+2.97 1.85 27.46+10.99† 25.51 5.49+3.93 4.67
TransA A2 11.33+4.66 9.95 6.58+3.9 5.77 4.3+4.13 2.46 27.32+12.07 27.02 7.13+5.28 5.19
TransS A2 11.21+4.56 9.99 6.7+3.96 5.72 4.43+4.39† 2.38 27.13+12.13 27.09 6.59+4.98† 5.01
TransA A+B 9.95+3.18 9.34 5.0+1.65 4.6 2.42+1.85 1.8 27.81+11.16 27.0 4.58+2.28 4.19
TransS A+B 10.01+3.25 9.68 5.02+1.71 4.67 2.48+1.81 1.94 28.02+11.39 27.49 4.54+2.17 4.09
TransA A1+B 10.08+3.05 9.62 5.18+1.62 4.8 2.46+1.63 1.91 28.02+10.77 27.07 4.67+2.18 4.31
TransS A1+B 9.98+3.0 9.57 5.09+1.69 4.55 2.47+1.81 1.95 27.93+10.67 27.19 4.43+2.16† 4.23
TransA A2+B 10.27+3.14 9.92 5.18+1.54 4.85 2.47+1.39 2.07 28.21+11.23 27.89 5.22+2.51 4.51
TransS A2+B 10.24+3.33 9.77 4.97+1.57† 4.57 2.51+1.37† 2.18 27.85+11.65 27.0 5.63+3.11 4.7
TransA⋆ A 10.19+3.66 9.32 5.27+2.32 4.5 2.72+2.58 1.76 27.57+11.79 25.73 5.2+3.6 4.19
TransS⋆ A 10.16+3.6 9.25 5.11+2.33† 4.5 2.79+2.5 1.79 27.6+11.75 26.96 5.16+3.19 4.23
TransA⋆ A1 10.24+3.75 9.27 5.41+2.39 4.53 3.22+3.61 1.79 27.06+10.52 25.96 5.28+3.57 4.6
TransS⋆ A1 10.37+3.85 9.24 5.45+2.72 4.5 3.42+4.07 1.79 27.49+10.83† 26.68 5.13+3.02 4.51
TransA⋆ A2 10.73+4.3 9.69 5.54+3.03 4.57 3.28+2.89 2.22 27.39+11.85 26.88 6.69+7.48 4.89
TransS⋆ A2 10.6+4.09 9.7 5.59+2.94 4.89 3.3+2.92 2.21 27.21+11.97† 26.59 6.31+4.71 4.81

Table 12: Comparison between learned and unlearned sinusoid absolute position embedding. The HD95 mean and standard
deviation on EMC Test set(clinic C). ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical
significant difference(p<0.05 between the annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A2 78.77+6.61 80.32 80.21+7.97 83.04 94.23+3.92 95.59 73.94+8.75 74.44 66.69+18.93 74.68
Conv A2 77.9+7.8 80.15 80.84+8.94 84.07 94.01+4.55 95.77 75.02+7.7 74.37 61.75+20.71 69.37
Trans-L A2 79.52+6.35†‡ 81.11 81.69+7.11† 84.27 94.65+3.91†‡ 95.99 74.83+8.23† 75.48 66.91+18.31‡ 72.83
Trans-S A2 78.06+7.47† 80.05 80.15+8.53‡ 83.36 94.21+4.08 95.67 73.65+9.27‡ 73.69 64.21+21.09†‡ 72.49
Trans A2+B 81.95+4.19 82.91 84.88+5.08 86.53 95.29+2.3 95.83 72.8+8.02 72.95 74.84+10.83 75.14
Conv A2+B 82.68+4.07 83.34 86.28+4.47 87.54 95.64+2.21 95.98 73.94+7.49 73.75 74.84+10.86 76.26
Trans-L A2+B 82.31+3.9‡ 82.89 85.24+4.99‡ 86.95 95.37+2.3‡ 95.91 73.98+7.68 74.03 74.66+9.77 75.54
Trans-S A2+B 80.98+4.57†‡ 81.73 84.02+5.5†‡ 84.9 95.2+2.35†‡ 95.68 72.19+8.09‡ 72.43 72.5+12.38†‡ 74.91
Trans A1 81.31+5.12 82.31 83.44+4.25 84.11 95.69+3.4 96.75 72.8+10.81 72.54 73.3+14.29 76.77
Conv A1 80.51+6.55 82.08 81.46+9.95 84.46 95.8+3.57 96.99 73.81+7.63 73.48 70.97+17.63 75.56
Trans-L A1 81.11+5.42 82.87 83.15+4.96 84.42 95.76+3.6† 96.94 73.01+10.75 72.74 72.53+15.54‡ 77.49
Trans-S A1 81.06+5.38 82.59 83.17+4.39 84.14 95.68+3.37‡ 96.93 72.8+10.94 72.57 72.58+15.0 77.05
Trans A1+B 82.82+3.94 83.41 84.53+5.69 86.24 96.08+2.41 96.62 73.24+7.61 72.68 77.43+10.27 78.48
Conv A1+B 83.69+3.95 84.36 85.6+5.11 87.11 96.58+1.72 96.96 74.06+7.59 73.47 78.52+10.45 79.17
Trans-L A1+B 83.41+3.94† 83.81 85.15+5.26†‡ 86.83 96.34+2.04†‡ 96.89 73.48+7.74‡ 73.12 78.66+10.21† 79.44
Trans-S A1+B 81.7+4.1†‡ 82.15 83.43+6.02†‡ 85.09 95.51+2.48†‡ 96.01 71.85+7.52†‡ 71.07 76.02+10.21†‡ 77.88
Trans A 81.82+5.07 83.15 83.83+4.43 85.44 95.65+3.24 96.66 74.31+9.66 74.48 73.48+15.59 77.45
Conv A 81.73+5.77 83.53 83.57+6.29 85.81 95.45+3.79 96.77 75.75+7.45 76.09 72.14+17.07 78.27
Trans-L A 81.75+4.85 83.12 83.47+4.93† 84.88 95.77+3.3 96.79 74.49+8.65‡ 74.52 73.27+15.6 77.79
Trans-S A 81.45+5.15† 82.68 83.59+4.76 85.24 95.57+3.18†‡ 96.6 73.56+9.57†‡ 73.24 73.08+15.71 78.35
Trans A+B 82.81+3.97 83.28 84.56+5.33 86.08 95.58+2.56 96.26 73.29+7.5 73.26 77.81+9.96 79.05
Conv A+B 83.95+3.88 84.57 86.59+4.57 87.72 96.13+1.85 96.55 74.55+7.52 74.39 78.55+10.48 80.39
Trans-L A+B 83.42+3.92†‡ 84.09 85.3+4.91†‡ 86.18 95.82+2.4†‡ 96.51 74.03+7.44† 73.93 78.51+9.88 80.05
Trans-S A+B 82.01+4.02†‡ 82.77 83.98+5.68†‡ 84.6 95.41+2.54†‡ 96.07 72.17+7.79†‡ 71.94 76.47+9.57†‡ 77.56

Table 13: Comparison between models of different size. The Dice mean and standard deviation on EMC Test set(clinic C).
† represents statistical significant difference(p<0.05 between the annotated method and Transformer with the same training
set. ‡ represents statistical significant difference(p<0.05 between the annotated method and the convolution with the same
training set.

B.4. Side Experiments

The validation experiment results for the comparison between models of different size(75m,150m,300m) are shown in
table 29 and table 29. The experiment results for the comparison between models with/without Layer Normalization are
shown in table 31 and table 20.

17



Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A2 11.18+4.56 9.99 6.58+3.54 5.73 4.31+3.94 2.59 26.93+11.96 26.71 6.89+4.94 4.92
Conv A2 11.51+5.27 10.09 6.6+4.26 5.2 4.66+4.96 2.41 26.7+12.41 27.0 8.08+5.86 5.97
Trans-L A2 11.05+4.47 10.21 6.14+3.55†‡ 5.06 3.86+3.73†‡ 2.2 27.05+12.11 26.77 7.14+5.1‡ 5.38
Trans-S A2 11.57+5.1 10.1 6.45+3.76 5.39 4.39+4.14 2.46 26.68+11.93† 26.79 8.74+9.39 5.54
Trans A2+B 10.35+3.31 9.89 5.09+1.5 4.58 2.44+1.41 1.99 28.55+11.98 28.26 5.33+2.64 4.64
Conv A2+B 10.21+3.4 9.71 4.85+1.56 4.51 2.33+1.42 1.88 27.9+12.12 27.01 5.75+2.93 5.69
Trans-L A2+B 10.36+3.37‡ 9.9 5.11+1.55‡ 4.78 2.39+1.49 1.95 28.09+12.04 27.36 5.85+3.09 5.16
Trans-S A2+B 10.4+3.22‡ 10.24 5.31+1.49†‡ 4.86 2.48+1.4‡ 2.15 28.11+11.19 28.36 5.69+3.0 5.15
Trans A1 10.37+3.59 9.5 5.5+2.25 4.87 3.2+2.76 1.89 27.17+10.63 25.91 5.61+3.84 4.64
Conv A1 10.99+4.52 9.35 6.45+4.56 5.06 3.35+3.35 1.76 28.06+11.32 27.0 6.11+4.83 4.67
Trans-L A1 10.58+3.94†‡ 9.46 5.74+2.66 4.67 3.31+3.12 1.84 27.47+11.33 25.89 5.81+4.19 4.63
Trans-S A1 10.48+3.82‡ 9.73 5.7+2.49† 4.69 3.78+4.36 1.79 26.81+10.46 25.53 5.62+3.95 4.58
Trans A1+B 10.11+3.1 9.53 5.2+1.59 4.88 2.3+1.76 1.79 28.32+11.15 27.27 4.61+2.44 4.11
Conv A1+B 9.82+3.15 9.32 4.94+1.4 4.71 2.08+1.0 1.72 28.05+11.65 27.0 4.21+2.14 3.9
Trans-L A1+B 9.86+2.94† 9.4 4.96+1.45† 4.64 2.16+1.42† 1.72 27.92+10.72 26.87 4.41+2.41 4.01
Trans-S A1+B 10.24+3.0‡ 9.81 5.47+1.68†‡ 5.24 2.86+3.18†‡ 1.97 28.14+10.25 27.07 4.48+2.02 3.94
Trans A 10.31+3.77 9.46 5.42+2.38 4.5 2.98+2.57 1.89 26.96+11.64 26.61 5.88+4.39 4.49
Conv A 10.35+4.51 9.07 5.84+3.8 4.54 3.7+4.59 1.81 26.42+11.79 25.32 5.45+4.06 3.71
Trans-L A 10.34+3.81 9.37 5.58+2.59† 4.84 2.94+2.6 1.79 27.21+11.8‡ 26.47 5.64+4.01 4.54
Trans-S A 10.41+3.84 9.76 5.47+2.48 4.76 3.09+2.63 1.95 27.43+11.68†‡ 26.86 5.66+4.02 3.91
Trans A+B 9.95+3.13 9.54 5.11+1.56 4.69 2.42+1.65 1.83 27.82+11.24 27.0 4.45+2.21 4.09
Conv A+B 9.62+3.33 9.12 4.65+1.42 4.5 2.14+1.09 1.75 27.39+12.02 25.96 4.31+2.32 3.92
Trans-L A+B 9.82+3.19†‡ 9.32 4.9+1.45†‡ 4.51 2.34+1.62†‡ 1.79 27.56+11.56† 26.94 4.46+2.29 3.67
Trans-S A+B 10.2+3.15†‡ 9.81 5.31+1.67†‡ 5.05 2.51+1.73†‡ 1.95 28.32+11.27†‡ 27.66 4.67+2.21† 4.4

Table 14: Comparison between models of different size. The HD95 mean and standard deviation on EMC Test set(clinic C).
† represents statistical significant difference(p<0.05 between the annotated method and Transformer with the same training
set. ‡ represents statistical significant difference(p<0.05 between the annotated method and the convolution with the same
training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 81.82+5.07 83.15 83.83+4.43 85.44 95.65+3.24 96.66 74.31+9.66 74.48 73.48+15.59 77.45
Trans w/o LN A 80.78+5.48† 82.48 82.76+4.94† 84.57 95.03+3.56† 96.39 72.34+11.25† 73.14 73.0+15.9 77.03
Trans A1 81.31+5.12 82.31 83.44+4.25 84.11 95.69+3.4 96.75 72.8+10.81 72.54 73.3+14.29 76.77
Trans w/o LN A1 80.59+5.82 81.99 83.34+4.04 84.02 94.95+4.39† 96.46 71.88+11.61† 72.94 72.2+15.71 76.18
Trans A2 78.77+6.61 80.32 80.21+7.97 83.04 94.23+3.92 95.59 73.94+8.75 74.44 66.69+18.93 74.68
Trans w/o LN A2 77.61+7.55† 80.12 77.36+8.25† 80.03 93.69+3.69† 95.08 71.63+10.98† 71.85 67.77+21.23 74.61
Trans A+B 82.81+3.97 83.28 84.56+5.33 86.08 95.58+2.56 96.26 73.29+7.5 73.26 77.81+9.96 79.05
Trans w/o LN A+B 79.65+4.13† 81.02 80.62+6.42† 81.82 94.11+3.55† 95.29 70.0+9.44† 70.08 73.87+11.21† 75.92
Trans A1+B 82.82+3.94 83.41 84.53+5.69 86.24 96.08+2.41 96.62 73.24+7.61 72.68 77.43+10.27 78.48
Trans w/o LN A1+B 79.78+4.22† 80.82 80.91+6.19† 82.22 94.73+3.26† 95.75 70.05+8.39† 69.85 73.42+13.5† 76.42
Trans A2+B 80.47+4.24 81.29 83.22+5.78 84.7 94.47+2.46 95.02 70.41+7.21 70.46 73.78+10.81 74.92
Trans w/o LN A2+B 78.55+5.52† 80.43 80.03+6.77† 80.74 94.1+3.54 95.31 70.21+8.32 70.03 69.85+14.84† 72.2

Table 15: Comparison between the Transformer with/without Layer Normalization. The HD95 mean and standard devi-
ation on EMC test set(clinic C). † represents statistical significant difference(p<0.05 between the annotated method and
Transformer with Layer Normalization in the same training set.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A 10.31+3.77 9.46 5.42+2.38 4.5 2.98+2.57 1.89 26.96+11.64 26.61 5.88+4.39 4.49
Trans w/o LN A 11.35+6.19† 9.35 5.81+2.6† 4.86 5.75+17.44† 2.37 27.55+11.71 25.78 6.28+8.31 4.01
Trans A1 10.37+3.59 9.5 5.5+2.25 4.87 3.2+2.76 1.89 27.17+10.63 25.91 5.61+3.84 4.64
Trans w/o LN A1 10.85+4.7 9.59 5.59+2.43 4.72 4.47+5.16† 2.82 27.33+11.24 25.5 6.02+7.77 4.35
Trans A2 11.18+4.56 9.99 6.58+3.54 5.73 4.31+3.94 2.59 26.93+11.96 26.71 6.89+4.94 4.92
Trans w/o LN A2 12.19+6.65 9.96 7.31+3.34† 6.17 6.84+16.9† 3.0 26.82+11.5 26.2 7.81+9.78 4.92
Trans A+B 9.95+3.13 9.54 5.11+1.56 4.69 2.42+1.65 1.83 27.82+11.24 27.0 4.45+2.21 4.09
Trans w/o LN A+B 10.8+3.54† 10.21 6.26+2.31† 5.83 3.55+2.48† 2.9 28.26+11.63 26.77 5.13+2.48† 4.46
Trans A1+B 10.11+3.1 9.53 5.2+1.59 4.88 2.3+1.76 1.79 28.32+11.15 27.27 4.61+2.44 4.11
Trans w/o LN A1+B 10.91+3.28† 10.1 6.21+1.79† 5.97 3.2+2.45† 2.49 28.74+10.75 27.15 5.49+3.23† 4.65
Trans A2+B 10.4+3.08 10.04 5.52+1.55 5.19 2.94+1.37 2.61 28.02+10.85 27.0 5.13+2.39 4.66
Trans w/o LN A2+B 11.13+3.74† 10.43 6.34+2.34† 5.62 3.44+2.54 2.65 28.33+11.62 27.02 6.4+3.85† 5.36

Table 16: Comparison between the Transformer with/without Layer Normalization. The HD95 mean and standard devi-
ation on EMC test set(clinic C). † represents statistical significant difference(p<0.05 between the annotated method and
Transformer with Layer Normalization in the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 85.49+3.64 86.64 86.89+3.11 87.27 94.81+1.52 95.0 86.41+4.86 87.54 73.85+11.06 77.25
Conv A1 85.89+3.44† 87.02 87.13+3.41† 87.91 94.96+1.35 95.07 88.06+3.73† 88.81 73.42+12.69 77.69
Trans A2 84.03+4.05 84.97 86.22+2.7 86.3 92.76+3.2 93.59 85.05+6.77 87.25 72.1+10.19 74.26
Conv A2 84.02+4.16 85.48 86.42+2.71 86.3 93.78+2.05† 94.24 85.61+6.08† 87.63 70.28+11.7† 73.54
Trans A1+B 84.98+3.42 86.04 86.33+2.63 86.59 94.24+5.84 95.16 85.46+4.43 86.53 73.89+10.05 76.93
Conv A1+B 85.93+2.88† 86.8 86.73+2.99† 87.39 95.22+1.26† 95.33 86.58+4.27† 87.03 75.21+9.82† 77.91
Trans A2+B 83.97+3.84 84.32 86.64+3.03 87.0 93.65+2.3 94.32 85.8+5.59 88.13 69.81+9.81 70.25
Conv A2+B 84.87+3.32† 85.19 87.44+2.89† 87.95 94.38+1.87† 94.76 86.98+5.18† 89.24 70.69+8.89 72.36
Trans⋆ A1 85.9+3.29 86.81 87.02+3.14 87.4 95.15+1.32 95.33 87.0+4.76 87.87 74.42+10.59 78.33
Conv⋆ A1 86.19+3.09† 87.06 86.96+3.47 87.8 95.11+1.17 95.1 88.2+3.85† 89.0 74.48+10.78 77.72
Trans⋆ A2 85.22+3.53 85.56 86.94+2.77 87.36 94.19+1.73 94.35 85.98+5.94 87.82 73.77+8.71 74.82
Conv⋆ A2 84.98+3.69 86.19 86.79+2.82 87.05 94.5+1.69† 94.67 86.32+5.65† 88.07 72.3+9.61† 74.09

Table 17: Experiment 1: Replacing Swin-Transformer block with convolution block. The Dice mean and standard deviation
validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. ⋆ denotes
the pretraining on clinic B and fintuning on Training data.† represents statistical significant difference(p<0.05 between the
annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 4.87+1.63 4.5 3.68+1.12 3.5 2.59+1.15 2.22 9.77+6.03 10.0 3.45+1.65 2.9
Conv A1 4.38+1.4† 4.11 3.84+1.47 4.0 2.34+0.51† 2.17 7.95+4.81† 6.62 3.38+1.42 2.85
Trans A2 6.7+3.18 6.5 3.84+0.99 3.96 5.78+7.99 2.58 13.09+10.73 7.95 4.09+2.16 3.4
Conv A2 6.38+2.96 5.91 3.97+1.2 4.0 3.74+3.64† 2.28 13.06+10.19 8.61 4.76+2.76† 4.0
Trans A1+B 5.14+1.48 4.9 3.96+1.06 4.0 2.85+1.91 2.32 10.04+5.37 8.06 3.7+1.8 3.21
Conv A1+B 4.75+1.38† 4.52 3.84+1.11† 4.0 2.29+0.38† 2.17 9.48+5.27† 8.56 3.41+1.67† 2.79
Trans A2+B 5.26+2.45 4.41 3.72+0.95 3.66 2.81+1.58 2.38 9.89+8.83 6.05 4.64+2.29 4.0
Conv A2+B 5.36+2.45 4.75 3.69+1.1 3.48 2.33+0.51† 2.15 10.65+9.06 7.25 4.77+2.4 4.08
Trans⋆ A1 4.75+1.79 4.13 3.62+1.02 3.9 2.46+1.14 2.15 9.59+6.73 8.0 3.34+1.48 2.79
Conv⋆ A1 4.44+1.63† 4.01 3.87+1.41† 4.0 2.22+0.28 2.15 8.23+5.43† 6.06 3.43+1.87 2.8
Trans⋆ A2 5.45+2.61 4.47 3.62+0.99 3.47 2.61+0.86 2.35 11.84+9.35 8.2 3.74+1.63 3.25
Conv⋆ A2 5.77+3.12 4.72 3.88+1.13† 3.99 3.2+6.92† 2.0 11.8+9.28 8.05 4.19+1.99† 4.0

Table 18: Experiment 1: Replacing Swin-Transformer block with convolution block. The HD95 mean and standard deviation
validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. ⋆ denotes
the pretraining on clinic B and fintuning on Training data.† represents statistical significant difference(p<0.05 between the
annotated method and Trans with the same training set.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 85.49+3.56 86.52 86.87+3.09 87.41 94.94+1.48 95.17 86.52+4.67 87.1 73.61+11.12 77.86
Conv A1 85.87+3.38† 86.93 87.11+3.21† 87.6 95.03+1.32 95.13 87.85+3.86† 88.73 73.51+12.06 77.16
Trans A2 84.18+4.01 85.06 86.39+2.74 86.79 92.85+3.13 93.91 85.17+6.49 87.15 72.33+10.63 75.1
Conv A2 84.33+3.89 85.54 86.41+2.8 86.54 93.77+1.86† 94.19 85.64+5.95† 87.33 71.49+10.36† 74.85
Trans A1+B 83.45+3.9 84.53 84.54+2.88 84.72 93.59+6.7 94.9 83.64+4.9 84.25 72.05+10.45 75.12
Conv A1+B 85.69+3.05† 86.69 86.75+2.82† 87.0 95.0+1.8† 95.25 86.18+4.43† 86.97 74.85+10.2† 78.34
Trans A2+B 83.18+4.21 83.61 85.93+3.23 86.37 93.1+2.79 93.92 85.31+5.58 87.51 68.39+10.8 70.16
Conv A2+B 84.64+3.31† 84.84 87.27+2.93† 87.63 94.23+1.89† 94.53 86.8+5.1† 89.05 70.26+9.31† 71.79
Trans⋆ 86.27+3.02† 87.28 87.15+3.1 87.67 95.17+1.16 95.18 88.1+4.02† 88.6 74.66+10.74† 77.6
Conv⋆ A1 85.7+3.21 86.79 86.91+2.98 87.46 95.12+1.42 95.33 86.69+4.49 87.3 74.06+10.44 77.65
Trans⋆ A2 84.79+3.92 85.38 86.66+2.74 86.96 93.95+1.8 94.21 85.55+6.09 87.74 73.0+10.19 74.69
Conv⋆ A2 84.97+3.76 86.06 86.76+2.67 87.07 94.42+1.69† 94.7 86.16+5.88† 88.26 72.54+9.72 75.35

Table 19: Experiment 1: Replacing Swin-Transformer block with convolution block after halving the parameters. The Dice
mean and standard deviation validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating
on the A2, vice versa. ⋆ denotes the pretraining on clinic B and fintuning on Training data.† represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 4.84+1.49 4.53 3.68+1.12 3.6 2.51+0.94 2.21 9.72+5.75 8.0 3.46+1.59 2.87
Conv A1 4.46+1.5† 4.15 3.85+1.4 4.0 2.27+0.4† 2.16 8.31+5.04† 7.22 3.42+1.45 2.91
Trans A2 6.33+2.8 6.06 3.75+0.86 3.9 5.36+7.29 2.61 12.15+9.39 8.02 4.08+2.29 3.33
Conv A2 6.23+2.9 5.35 3.94+1.22 4.0 3.6+3.3† 2.38 12.99+10.29 8.34 4.38+2.4† 3.77
Trans A1+B 5.69+1.63 5.34 4.6+1.17 4.0 3.41+2.51 2.69 10.87+5.5 10.0 3.88+1.72 3.46
Conv A1+B 4.89+1.41† 4.73 3.87+1.09† 4.0 2.53+1.35† 2.19 9.54+5.26† 8.82 3.62+2.0† 2.98
Trans A2+B 5.37+2.43 4.47 3.81+0.93 3.91 3.06+1.87 2.6 9.82+8.6 6.27 4.79+2.47 4.0
Conv A2+B 5.53+2.5 4.82 3.71+1.02 3.61 2.38+0.56† 2.18 11.04+9.54† 7.55 4.99+2.49† 4.18
Trans⋆ A1 4.83+1.65 4.51 3.65+0.97 3.82 2.45+0.93 2.16 9.81+6.21 8.0 3.43+1.67 2.81
Conv⋆ A1 4.36+1.53† 3.91 3.81+1.36 3.85 2.22+0.31† 2.16 8.05+5.29† 6.11 3.38+1.86 2.79
Trans⋆ A2 5.75+2.75 4.8 3.66+0.91 3.5 2.89+1.34 2.54 12.4+9.97 8.26 4.05+2.35 3.13
Conv⋆ A2 5.59+2.82 4.4 3.8+1.11 3.67 2.66+1.42† 2.17 11.65+9.48 7.94 4.23+2.41† 3.86

Table 20: Experiment 1: Replacing Swin-Transformer block with convolution block after halving the parameters. The HD95
mean and standard deviation validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating
on the A2, vice versa. ⋆ denotes the pretraining on clinic B and fintuning on Training data.† represents statistical significant
difference(p<0.05 between the annotated method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 85.49+3.64 86.64 86.89+3.11 87.27 94.81+1.52 95.0 86.41+4.86 87.54 73.85+11.06 77.25
Pool A1 85.62+3.62 86.82 87.21+3.05† 87.74 94.72+1.59 94.98 86.38+4.93 87.41 74.18+10.75 78.0
Trans A2 84.03+4.05 84.97 86.22+2.7 86.3 92.76+3.2 93.59 85.05+6.77 87.25 72.1+10.19 74.26
Pool A2 83.87+3.91 84.55 85.6+3.1† 86.17 92.78+3.06 93.82 85.28+6.01 87.68 71.8+9.56 73.66
Trans A1+B 84.98+3.42 86.04 86.33+2.63 86.59 94.24+5.84 95.16 85.46+4.43 86.53 73.89+10.05 76.93
Pool A1+B 84.91+3.67† 86.25 86.5+2.81† 86.92 93.61+6.27† 94.96 85.91+4.75† 87.15 73.6+9.97 76.15
Trans A2+B 82.94+4.45 83.71 85.57+3.5 86.15 92.4+2.96 93.21 83.93+6.38 86.42 69.84+10.94 72.22
Pool A2+B 83.63+4.0† 84.17 86.36+3.26† 86.94 93.42+2.36† 93.76 85.74+5.74† 88.47 68.99+10.17 71.9
Trans⋆ A1 85.9+3.29 86.81 87.02+3.14 87.4 95.15+1.32 95.33 87.0+4.76 87.87 74.42+10.59 78.33
Pool⋆ A1 85.77+3.37 86.77 87.02+2.86 87.45 94.89+1.46† 95.18 87.07+4.28 87.83 74.09+10.36† 77.85
Trans⋆ A2 85.22+3.53 85.56 86.94+2.77 87.36 94.19+1.73 94.35 85.98+5.94 87.82 73.77+8.71 74.82
Pool⋆ A2 84.21+3.47† 84.53 85.8+3.02† 86.17 92.64+3.55† 93.71 85.24+6.13† 87.29 73.15+7.83 74.9

Table 21: Experiment 2: Replacing the Self-Attention with Pooling: The Dice mean and standard deviation validation
set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. ⋆ denotes the pre-
training on clinic B and fintuning on Training data.† represents statistical significant difference(p<0.05 between the annotated
method and Trans with the same training set.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 4.87+1.63 4.5 3.68+1.12 3.5 2.59+1.15 2.22 9.77+6.03 10.0 3.45+1.65 2.9
Pool A1 4.81+1.66 4.41 3.57+0.98† 3.84 2.55+0.97 2.22 9.55+5.87 8.12 3.56+1.76 2.81
Trans A2 6.7+3.18 6.5 3.84+0.99 3.96 5.78+7.99 2.58 13.09+10.73 7.95 4.09+2.16 3.4
Pool A2 6.7+3.1 6.32 4.04+1.1† 4.0 5.16+6.27 2.67 13.38+10.56 8.47 4.22+2.26 3.38
Trans A1+B 5.14+1.48 4.9 3.96+1.06 4.0 2.85+1.91 2.32 10.04+5.37 8.06 3.7+1.8 3.21
Pool A1+B 4.91+1.57† 4.48 3.86+1.04† 4.0 2.9+2.01 2.25 9.2+5.2† 8.0 3.67+1.83 3.08
Trans A2+B 5.58+2.5 4.57 3.9+0.92 4.0 3.52+2.2 2.74 10.5+9.03 6.0 4.42+2.47 3.52
Pool A2+B 5.86+2.94 4.86 3.97+1.4 3.64 2.83+0.91† 2.59 11.52+10.49 6.95 5.1+2.43† 4.08
Trans⋆ A1 4.75+1.79 4.13 3.62+1.02 3.9 2.46+1.14 2.15 9.59+6.73 8.0 3.34+1.48 2.79
Pool⋆ A1 4.49+1.45† 4.09 3.66+0.98 3.68 2.47+0.7† 2.19 8.32+5.14† 6.68 3.51+1.62† 2.96
Trans⋆ A2 5.45+2.61 4.47 3.62+0.99 3.47 2.61+0.86 2.35 11.84+9.35 8.2 3.74+1.63 3.25
Pool⋆ A2 6.73+4.21† 6.24 3.88+0.91† 4.0 6.67+14.53† 2.67 12.52+9.57† 8.36 3.85+1.65 3.33

Table 22: Experiment 2: Replacing the Self-Attention with Pooling: The HD95 mean and standard deviation validation
set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. ⋆ denotes the pre-
training on clinic B and fintuning on Training data.† represents statistical significant difference(p<0.05 between the annotated
method and Trans with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
AvgPooling A1 85.41+3.69 86.75 87.01+3.14 87.56 94.74+1.65 94.93 86.68+5.15† 87.53 73.2+11.09† 76.62
MaxPooling A1 85.62+3.62 86.82 87.21+3.05 87.74 94.72+1.59 94.98 86.38+4.93 87.41 74.18+10.75 78.0
AvgPooling A2 84.26+3.77† 85.25 86.27+2.76† 86.72 92.41+3.44† 93.68 85.5+6.11† 87.21 72.89+9.2† 75.01
MaxPooling A2 83.87+3.91 84.55 85.6+3.1 86.17 92.78+3.06 93.82 85.28+6.01 87.68 71.8+9.56 73.66

Table 23: Comparison between Avg-pooling and Max-pooling: The Dice mean and standard deviation on validation set.
Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents statistical significant
difference(p<0.05 between the annotated method and Trans(Max-pooling) with the same training set

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
AvgPooling A1 4.72+1.59 4.4 3.73+1.24† 3.77 2.49+0.87 2.19 8.96+5.69† 8.0 3.68+1.63† 3.13
MaxPooling A1 4.81+1.66 4.41 3.57+0.98 3.84 2.55+0.97 2.22 9.55+5.87 8.12 3.56+1.76 2.81
AvgPooling A2 6.2+2.69† 5.98 3.75+0.89† 3.86 5.67+7.42† 2.91 11.5+8.63† 8.31 3.87+1.84† 3.35
MaxPooling A2 6.7+3.1 6.32 4.04+1.1 4.0 5.16+6.27 2.67 13.38+10.56 8.47 4.22+2.26 3.38

Table 24: Comparison between Avg-pooling and Max-pooling: The HD95 mean and standard deviation on validation
set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents
statistical significant difference(p<0.05 between the annotated method and Trans(Max-pooling) with the same training set
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans w/o A1 85.58+3.69 86.75 87.06+3.17 87.42 94.81+1.44 94.89 86.7+4.78 87.7 73.77+11.32 77.32
TransR A1 85.49+3.64† 86.64 86.89+3.11† 87.27 94.81+1.52 95.0 86.41+4.86† 87.54 73.85+11.06 77.25
TransA A1 85.74+3.5†‡ 86.79 87.07+2.98 87.3 94.87+1.41† 95.04 87.08+4.38†‡ 87.86 73.94+11.32 77.9
Trans w/o A2 84.13+3.99 84.99 86.02+2.97 86.53 92.56+3.71 93.73 85.21+6.69 87.49 72.73+9.69 74.83
TransR A2 84.03+4.05† 84.97 86.22+2.7 86.3 92.76+3.2 93.59 85.05+6.77† 87.25 72.1+10.19† 74.26
TransA A2 84.3+3.99†‡ 85.39 86.16+2.96 86.53 92.77+3.27†‡ 93.75 85.26+6.75‡ 87.63 72.99+9.57‡ 74.98
Trans w/o A1+B 84.59+3.42 85.54 85.79+2.87 86.2 94.29+4.3 95.04 84.82+4.76 85.93 73.45+10.21 76.44
TransR A1+B 84.98+3.42† 86.04 86.33+2.63† 86.59 94.24+5.84† 95.16 85.46+4.43† 86.53 73.89+10.05† 76.93
TransA A1+B 83.94+4.0†‡ 85.24 85.19+2.96†‡ 85.48 93.55+7.62†‡ 94.81 83.77+5.32†‡ 84.86 73.24+10.11‡ 75.44
Trans w/o A2+B 84.3+3.57 84.69 86.7+3.12 86.9 93.75+2.3 94.31 86.04+5.48 88.33 70.71+9.12 72.51
TransR A2+B 83.97+3.84† 84.32 86.64+3.03 87.0 93.65+2.3† 94.32 85.8+5.59† 88.13 69.81+9.81 70.25
TransA A2+B 84.18+3.54†‡ 84.35 86.51+3.17 86.6 93.54+2.28†‡ 94.09 85.93+5.58† 88.26 70.75+8.71‡ 72.33
Trans w/o ⋆ A1 85.86+3.3 86.95 87.08+3.02 87.41 95.03+1.32 95.15 86.89+4.5 87.45 74.42+10.58 78.07
TransR⋆ A1 85.9+3.29 86.81 87.02+3.14 87.4 95.15+1.32† 95.33 87.0+4.76 87.87 74.42+10.59 78.33
TransA⋆ A1 85.94+3.33† 87.06 87.1+3.03 87.58 95.12+1.26†‡ 95.3 86.94+4.39 87.58 74.59+10.64† 78.43
Trans w/o ⋆ A2 85.18+3.54 85.63 86.99+2.65 87.23 94.14+1.73 94.32 85.83+5.82 87.52 73.76+9.13 74.96
TransR⋆ A2 85.22+3.53 85.56 86.94+2.77 87.36 94.19+1.73† 94.35 85.98+5.94† 87.82 73.77+8.71 74.82
TransA⋆ A2 84.97+3.81†‡ 85.54 86.77+2.67†‡ 87.16 94.22+1.72† 94.34 85.78+6.08‡ 88.03 73.11+10.05† 74.64

Table 25: Experiment 3-Evaluating Positional Encoding: The Dice mean and standard deviation on validation set(clinic B).
Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents statistical significant
difference(p<0.05 between the annotated method and Transformer without Positional encoding with the same training set.
‡ represents statistical significant difference(p<0.05 between the annotated method and Transformer with relative positional
bias(Trans) with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans w/o A1 4.79+1.62 4.53 3.65+1.16 3.39 2.58+1.04 2.22 9.51+5.85 8.0 3.43+1.56 2.77
TransR A1 4.87+1.63† 4.5 3.68+1.12 3.5 2.59+1.15 2.22 9.77+6.03 10.0 3.45+1.65 2.9
TransA A1 4.7+1.56†‡ 4.45 3.67+1.11 3.65 2.53+1.02 2.22 9.18+5.77†‡ 8.0 3.42+1.7 2.79
Trans w/o A2 6.56+3.06 6.45 3.89+1.07 4.0 5.85+8.2 2.65 12.5+9.74 8.15 3.99+2.06 3.3
TransR A2 6.7+3.18 6.5 3.84+0.99 3.96 5.78+7.99 2.58 13.09+10.73† 7.95 4.09+2.16 3.4
TransA A2 6.69+3.42‡ 6.39 3.81+1.05† 3.73 6.55+10.65 2.5 12.49+9.95 8.0 3.92+1.99‡ 3.26
Trans w/o A1+B 5.48+1.91 5.15 4.11+1.08 4.0 2.84+1.34 2.34 11.05+5.85 10.0 3.93+3.48 3.0
TransR A1+B 5.14+1.48† 4.9 3.96+1.06† 4.0 2.85+1.91 2.32 10.04+5.37† 8.06 3.7+1.8 3.21
TransA A1+B 5.74+1.91†‡ 5.16 4.34+1.14†‡ 4.0 3.32+3.18†‡ 2.49 11.53+6.72‡ 10.0 3.76+1.86 3.11
Trans w/o A2+B 5.07+2.26 4.23 3.65+0.86 3.56 2.58+0.73 2.3 9.63+8.31 6.0 4.43+2.08 3.95
TransR A2+B 5.26+2.45 4.41 3.72+0.95† 3.66 2.81+1.58† 2.38 9.89+8.83 6.05 4.64+2.29‡ 4.0
TransA A2+B 5.06+2.15 4.48 3.74+0.89† 3.95 2.78+0.89† 2.44 9.32+7.7 6.03 4.4+1.96 3.96
Trans w/o ⋆ A1 4.84+1.83 4.33 3.62+1.02 3.77 2.38+0.74 2.17 9.96+6.83 8.0 3.39+1.75 2.78
TransR⋆ A1 4.75+1.79 4.13 3.62+1.02† 3.9 2.46+1.14 2.15 9.59+6.73 8.0 3.34+1.48† 2.79
TransA⋆ A1 4.74+1.61 4.32 3.55+0.95† 3.71 2.36+0.72 2.17 9.72+6.03 8.0 3.34+1.65† 2.76
Trans w/o ⋆ A2 5.52+2.59 4.56 3.58+0.92 3.42 2.69+0.99 2.36 12.06+9.45 8.15 3.75+1.73 3.14
TransR⋆ A2 5.45+2.61 4.47 3.62+0.99 3.47 2.61+0.86 2.35 11.84+9.35 8.2 3.74+1.63 3.25
TransA⋆ A2 5.65+2.7‡ 4.49 3.67+0.91† 3.55 2.57+0.74† 2.32 12.39+9.58‡ 8.02 3.98+2.14†‡ 3.22

Table 26: Experiment 3:Evaluating Positional Encoding. The HD95 mean and standard deviation on validation set(clinic B).
Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents statistical significant
difference(p<0.05 between the annotated method and Transformer without Positional encoding with the same training set.
‡ represents statistical significant difference(p<0.05 between the annotated method and Transformer with relative positional
bias(Trans) with the same training set.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
TransA A1 85.74+3.5† 86.79 87.07+2.98 87.3 94.87+1.41 95.04 87.08+4.38 87.86 73.94+11.32† 77.9
TransS A1 85.52+3.77 86.72 87.13+3.0 87.49 94.84+1.52 95.11 86.81+4.83 87.72 73.28+12.18 77.84
TransA A2 84.3+3.99† 85.39 86.16+2.96 86.53 92.77+3.27 93.75 85.26+6.75 87.63 72.99+9.57† 74.98
TransS A2 84.14+4.2 85.07 86.08+3.1 86.37 92.67+3.51 93.65 85.14+6.85 87.44 72.65+10.33 75.52
TransA A1+B 83.94+4.0 85.24 85.19+2.96† 85.48 93.55+7.62† 94.81 83.77+5.32 84.86 73.24+10.11 75.44
TransS A1+B 84.08+3.71 85.18 85.53+2.54 85.92 94.04+4.87 94.98 83.79+5.55 84.7 72.95+10.56 75.96
TransA A2+B 84.18+3.54† 84.35 86.51+3.17† 86.6 93.54+2.28† 94.09 85.93+5.58† 88.26 70.75+8.71† 72.33
TransS A2+B 83.79+3.75 83.98 86.17+3.33 86.4 93.44+2.32 94.04 85.61+5.57 88.0 69.94+9.75 71.07
TransA⋆ A1 85.94+3.33 87.06 87.1+3.03† 87.58 95.12+1.26 95.3 86.94+4.39† 87.58 74.59+10.64 78.43
TransS⋆ A1 85.93+3.22 87.02 86.92+3.02 87.14 95.09+1.29 95.26 87.18+4.37 87.79 74.52+10.61 78.41
TransA⋆ A2 84.97+3.81 85.54 86.77+2.67 87.16 94.22+1.72† 94.34 85.78+6.08 88.03 73.11+10.05 74.64
TransS⋆ A2 85.0+3.67 85.4 86.72+2.78 87.02 94.08+1.78 94.35 85.75+6.05 87.48 73.45+9.12 74.18

Table 27: Comparison between learned and unlearned sinusoid absolute position embedding. The Dice mean and standard
deviation on validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice
versa. ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical significant difference(p<0.05
between the annotated method and Trans with absolute position embedding in the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
TransA A1 4.7+1.56† 4.45 3.67+1.11 3.65 2.53+1.02 2.22 9.18+5.77 8.0 3.42+1.7† 2.79
TransS A1 4.79+1.65 4.39 3.68+1.2 4.0 2.58+1.13 2.22 9.38+6.02 8.0 3.53+1.87 2.95
TransA A2 6.69+3.42 6.39 3.81+1.05† 3.73 6.55+10.65 2.5 12.49+9.95 8.0 3.92+1.99† 3.26
TransS A2 6.56+3.04 6.47 3.93+1.25 4.0 5.84+8.45 2.63 12.46+9.87 8.1 4.03+2.1 3.33
TransA A1+B 5.74+1.91 5.16 4.34+1.14† 4.0 3.32+3.18† 2.49 11.53+6.72 10.0 3.76+1.86 3.11
TransS A1+B 5.76+1.76 5.42 4.22+1.12 4.0 3.0+1.61 2.41 11.95+6.64 12.0 3.88+1.89 3.33
TransA A2+B 5.06+2.15† 4.48 3.74+0.89† 3.95 2.78+0.89 2.44 9.32+7.7† 6.03 4.4+1.96 3.96
TransS A2+B 5.18+2.24 4.43 3.83+0.95 3.97 2.7+0.78 2.38 9.63+8.21 6.0 4.56+2.34 4.0
TransA⋆ A1 4.74+1.61 4.32 3.55+0.95† 3.71 2.36+0.72† 2.17 9.72+6.03 8.0 3.34+1.65 2.76
TransS⋆ A1 4.75+1.77 4.27 3.67+1.02 3.88 2.41+0.78 2.18 9.59+6.63 8.0 3.32+1.57 2.75
TransA⋆ A2 5.65+2.7 4.49 3.67+0.91 3.55 2.57+0.74† 2.32 12.39+9.58 8.02 3.98+2.14 3.22
TransS⋆ A2 5.69+2.64 4.53 3.73+0.96 3.74 3.04+3.25 2.51 12.11+9.36 8.11 3.88+1.93 3.26

Table 28: Comparison between learned and unlearned sinusoid absolute position embedding. The HD95 mean and standard
deviation on validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice
versa. ⋆ denotes the pretraining on clinic B and finetuning on clinic A .† represents statistical significant difference(p<0.05
between the annotated method and Trans with absolute position embedding in the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A2 84.03+4.05 84.97 86.22+2.7 86.3 92.76+3.2 93.59 85.05+6.77 87.25 72.1+10.19 74.26
Conv A2 84.02+4.16 85.48 86.42+2.71 86.3 93.78+2.05 94.24 85.61+6.08 87.63 70.28+11.7 73.54
Trans-L A2 84.55+3.77†‡ 85.24 86.41+2.88† 86.65 92.86+3.41†‡ 93.82 85.33+6.76† 87.68 73.58+8.92†‡ 75.3
Trans-S A2 84.18+4.01 85.06 86.39+2.74† 86.79 92.85+3.13†‡ 93.91 85.17+6.49‡ 87.15 72.33+10.63‡ 75.1
Trans A2+B 83.97+3.84 84.32 86.64+3.03 87.0 93.65+2.3 94.32 85.8+5.59 88.13 69.81+9.81 70.25
Conv A2+B 84.87+3.32 85.19 87.44+2.89 87.95 94.38+1.87 94.76 86.98+5.18 89.24 70.69+8.89 72.36
Trans-L A2+B 84.48+3.6†‡ 84.62 87.01+3.04†‡ 87.43 94.05+2.1†‡ 94.46 86.45+5.49†‡ 88.26 70.41+9.29† 71.21
Trans-S A2+B 83.18+4.21†‡ 83.61 85.93+3.23†‡ 86.37 93.1+2.79†‡ 93.92 85.31+5.58†‡ 87.51 68.39+10.8†‡ 70.16
Trans A1 85.49+3.64 86.64 86.89+3.11 87.27 94.81+1.52 95.0 86.41+4.86 87.54 73.85+11.06 77.25
Conv A1 85.89+3.44 87.02 87.13+3.41 87.91 94.96+1.35 95.07 88.06+3.73 88.81 73.42+12.69 77.69
Trans-L A1 86.06+3.36† 87.09 87.25+3.09† 87.62 95.07+1.4†‡ 95.23 87.44+4.3†‡ 88.38 74.47+10.71† 78.07
Trans-S A1 85.49+3.56‡ 86.52 86.87+3.09‡ 87.41 94.94+1.48† 95.17 86.52+4.67‡ 87.1 73.61+11.12 77.86
Trans A1+B 84.98+3.42 86.04 86.33+2.63 86.59 94.24+5.84 95.16 85.46+4.43 86.53 73.89+10.05 76.93
Conv A1+B 85.93+2.88 86.8 86.73+2.99 87.39 95.22+1.26 95.33 86.58+4.27 87.03 75.21+9.82 77.91
Trans-L A1+B 85.31+3.3†‡ 86.32 86.6+2.8† 86.93 94.56+3.42‡ 95.11 85.74+4.8†‡ 86.52 74.33+10.24†‡ 77.45
Trans-S A1+B 83.45+3.9‡† 84.53 84.54+2.88‡† 84.72 93.59+6.7‡† 94.9 83.64+4.9 84.25‡† 72.05+10.45‡† 75.12

Table 29: Comparison between models of different size. The Dice mean and standard deviation on validation set(clinic B).
Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents statistical signif-
icant difference(p<0.05 between the annotated method and Transformer with the same training set. ‡ represents statistical
significant difference(p<0.05 between the annotated method and the convolution with the same training set.
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Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A2 6.7+3.18 6.5 3.84+0.99 3.96 5.78+7.99 2.58 13.09+10.73 7.95 4.09+2.16 3.4
Conv A2 6.38+2.96 5.91 3.97+1.2 4.0 3.74+3.64 2.28 13.06+10.19 8.61 4.76+2.76 4.0
Trans-L A2 6.56+3.2† 6.4 3.73+0.9†‡ 3.8 5.75+8.1‡ 2.47 12.99+10.4 8.24 3.76+1.75†‡ 3.25
Trans-S A2 6.33+2.8† 6.06 3.75+0.86†‡ 3.9 5.36+7.29‡ 2.61 12.15+9.39†‡ 8.02 4.08+2.29‡ 3.33
Trans A2+B 5.26+2.45 4.41 3.72+0.95 3.66 2.81+1.58 2.38 9.89+8.83 6.05 4.64+2.29 4.0
Conv A2+B 5.36+2.45 4.75 3.69+1.1 3.48 2.33+0.51 2.15 10.65+9.06 7.25 4.77+2.4 4.08
Trans-L A2+B 5.21+2.37 4.5 3.64+0.86 3.68 2.45+0.55†‡ 2.19 10.14+8.68 6.19 4.62+2.22 4.0
Trans-S A2+B 5.37+2.43† 4.47 3.81+0.93†‡ 3.91 3.06+1.87†‡ 2.6 9.82+8.6 6.27 4.79+2.47† 4.0
Trans A1 4.87+1.63 4.5 3.68+1.12 3.5 2.59+1.15 2.22 9.77+6.03 10.0 3.45+1.65 2.9
Conv A1 4.38+1.4 4.11 3.84+1.47 4.0 2.34+0.51 2.17 7.95+4.81 6.62 3.38+1.42 2.85
Trans-L A1 4.63+1.6† 4.24 3.62+1.2† 3.63 2.41+0.78† 2.18 9.17+5.96† 8.0 3.34+1.51† 2.78
Trans-S A1 4.84+1.49‡ 4.53 3.68+1.12 3.6 2.51+0.94† 2.21 9.72+5.75‡ 8.0 3.46+1.59 2.87
Trans A1+B 5.14+1.48 4.9 3.96+1.06 4.0 2.85+1.91 2.32 10.04+5.37 8.06 3.7+1.8 3.21
Conv A1+B 4.75+1.38 4.52 3.84+1.11 4.0 2.29+0.38 2.17 9.48+5.27 8.56 3.41+1.67 2.79
Trans-L A1+B 5.1+1.65‡ 4.81 3.86+1.12† 4.0 2.71+1.68†‡ 2.22 10.24+5.71‡ 8.76 3.59+2.17†‡ 2.87
Trans-S A1+B 5.69+1.63‡† 5.34 4.6+1.17‡† 4.0 3.41+2.51‡† 2.69 10.87+5.5‡† 10.0 3.88+1.72‡† 3.46

Table 30: Comparison between models of different size. The HD95 mean and standard deviation on validation set(clinic B).
Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † represents statistical signif-
icant difference(p<0.05 between the annotated method and Transformer with the same training set. ‡ represents statistical
significant difference(p<0.05 between the annotated method and the convolution with the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 85.49+3.64 86.64 86.89+3.11 87.27 94.81+1.52 95.0 86.41+4.86 87.54 73.85+11.06 77.25
Trans w/o LN A1 84.74+3.87† 85.83 86.16+3.1† 86.5 94.35+1.65† 94.76 85.48+5.61† 86.53 72.96+10.94† 76.69
Trans A2 84.03+4.05 84.97 86.22+2.7 86.3 92.76+3.2 93.59 85.05+6.77 87.25 72.1+10.19 74.26
Trans w/o LN A2 82.73+4.61† 84.03 84.59+3.39† 85.48 92.23+3.25† 93.59 84.01+7.25† 86.62 70.08+11.07† 71.11
Trans A1+B 84.98+3.42 86.04 86.33+2.63 86.59 94.24+5.84 95.16 85.46+4.43 86.53 73.89+10.05 76.93
Trans w/o LN A1+B 82.13+4.88† 83.75 84.35+3.43† 84.86 92.43+10.4† 94.81 81.83+6.03† 82.91 69.91+11.59† 72.52
Trans A2+B 82.94+4.45 83.71 85.57+3.5 86.15 92.4+2.96 93.21 83.93+6.38 86.42 69.84+10.94 72.22
Trans w/o LN A2+B 81.3+5.4† 82.02 84.28+3.47† 84.48 91.02+10.1† 93.47 84.17+5.67 86.03 65.74+11.55† 66.05

Table 31: Comparison between the Transformer with/without Layer Normalization. The HD95 mean and standard deviation
on validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † rep-
resents statistical significant difference(p<0.05 between the annotated method and Transformer with Layer Normalizationin
the same training set.

Mean Prostate Bladder Rectum SeminalVesicle
Network Training Set µ+ σ median µ+ σ median µ+ σ median µ+ σ median µ+ σ median
Trans A1 4.87+1.63 4.5 3.68+1.12 3.5 2.59+1.15 2.22 9.77+6.03 10.0 3.45+1.65 2.9
Trans w/o LN A1 5.06+1.74 4.72 3.92+1.08† 4.0 2.88+1.57† 2.41 9.56+5.84 8.0 3.88+2.41† 3.11
Trans A2 6.7+3.18 6.5 3.84+0.99 3.96 5.78+7.99 2.58 13.09+10.73 7.95 4.09+2.16 3.4
Trans w/o LN A2 6.92+3.17† 6.31 4.32+1.15† 4.0 5.59+6.85† 2.73 13.27+10.86 8.65 4.5+2.34† 3.47
Trans A1+B 5.14+1.48 4.9 3.96+1.06 4.0 2.85+1.91 2.32 10.04+5.37 8.06 3.7+1.8 3.21
Trans w/o LN A1+B 7.05+4.27 6.15 4.76+1.28 4.39 3.75+5.74 2.62 15.41+16.0 12.0 4.28+2.16 4.0
Trans A2+B 5.26+2.45† 4.41 3.72+0.95† 3.66 2.81+1.58† 2.38 9.89+8.83† 6.05 4.64+2.29† 4.0
Trans w/o LN A2+B 5.91+2.4† 5.2 4.36+1.16† 4.0 3.54+1.99† 3.08 10.3+7.98 6.28 5.43+3.11† 4.2

Table 32: Comparison between the Transformer with/without Layer Normalization. The HD95 mean and standard deviation
on validation set(clinic B). Training set A1 denotes the model is trained on A1 while validating on the A2, vice versa. † rep-
resents statistical significant difference(p<0.05 between the annotated method and Transformer with Layer Normalizationin
the same training set.
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3
Supplements

In this project, we analyze the performance of the window-based Transformer based on the nn-
Former[22] that is a 3D version Swin-Transformer. Therefore, we will first briefly introduce the Vi-
sion Transformer, Swin-Transformer block[3]. We later discuss about the modification nnFormer[22] to
adapt it to 3D medical segmentation. Finally, we introduce the prostate data set we use in our project.

3.1. Vision Transformer

Figure 3.1: The overview of Vision Transformer structure and a Transformer encoder block. The picture is adapted from the
ViT paper[8].

As shown in figure 3.1, the vanilla ViT, consisting of multiple Transformer block, is first designed
for image classification tasks. The input images are first divided into non-overlapped patches and then
flattened to suffice the Transformer input requirements. A input image x ∈ RH×W×C with height H, width
W, channel C is first split to N patches p ∈ RP×P×C , where P is the patch size, N = HW

P 2 is the number
of patches. After the division, the image is flatten to a series of patches x ∈ RN×(P 2·C). The flattened
patches are then forwarded to the Linear Projection layer which maps the channel dimension C to
arbitrary dimension D. Finally, a series of patch embeddings with channel dimension D are added with
position embeddings and fed to the stacked Transformer blocks. To complete the image classification
task, a class embedding is concatenated at the beginning. The encoded class embedding is then input
to a MLP Head to predict the class label after going through the Transformer encoder.
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3.2. Swin-Transformer Block 30

The Transformer encoder, as shown on the left part of figure 3.1, is composed of two parts. The
first part is the Multi-Head Self- Attention which aggregates spacial information through Self-Attention
mechanism. In Self-Attention mechanism, the patch embeddings are first linear transformed to query,
key and value embeddings. Then the attention score between each patch pair is computed by the inner
products of each query embedding and key embedding. With the attenion scores as weights, the new
patch embedding is the weighted sum of all other patches’ value embeddings:

Attention(Q,K,V) = Softmax(QKT
√
d
)V

(3.1)

where Q, K, V are query, key and value embeddings,
√
d denotes the vector dimension of key and

query embeddings. The second part is the MLP layer, also called feed-forward net, which is composed
of two linear layers that aggregate the information in channel dimension.

3.2. Swin-Transformer Block
The Swin-Transformer Block follows the same procedure as described on the left part of Figure 3.1.

However, in order to reduce the complexity, it first divides the image into windows and then performs the
Self-Attention mechanism within each window. The comparison between the computational complexity
of the window-based Multi-Head Self-Attention and the vanilla Multi-Head Self-Attention mechanism is
indicated by the Formula 3.2:

Ω(MSA) = 4hwC2 + 2(hw)2C,

Ω(WMSA) = 4hwC2 + 2M2hwC, (3.2)

where h, w, C, M are the height, width, channel dimension, window size of the feature map respectively.
Furthermore, to enable the interaction between patches in different windows, it adapts two different
window partitions successively, as shown in figure 3.2.

Figure 3.2: Two different window partitions for the Swin-Transformer block. The picture is adapted from the Swin-Transformer
paper[14]

In order to compute the second window partition efficiently, the irregular window partition needs to
be turned into regular windows by cyclic shift. The regular windows partition means that each window
has the same shape so that they can be computed in parallel. Before discussing the cyclic shift, we
need to remember that each patch only interacts with other patches within the same window. Thus, we
have to ensure this property after converting the irregular window partition to the regular partition. The
process of cyclic shift is shown in Figure 3.3, as indicated by the word ’cyclic’, left-top patches A are
shifted to the right-bottom while the top and left patches, C and B, are shifted to the bottom and right. In
the implementation, the cyclic shift is ⌊M

2 ⌋ units, where M is the window size. For example, the feature
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map in Figure 3.3, is shifted for 2 units with the window size 4. After cyclic shift, the irregular window
partition is turned into four regular windows. To avoid the interactions of patches in different windows,
we need to apply the masks when computing the Self-Attention in new windows. For instance, as
shown in Figure 3.3, the right bottom window after cyclic shift consists of patches from top-left A, left
edge B, and top edge C. They are not supposed to be the neighbors in the original irregular partition.
Thus, we apply a mask to the attention matrix to manually assign the attention score between A,B,C and
grey patches to a minimum value that can be ignored. After performing the Self-Attention mechanism,
we reverse the window partition to the original partition by reverse cyclic shift so that the feature map
is recovered.

Figure 3.3: The cyclic shift process of the Swin-Transformer. The picture is adapted from the Swin-Transformer paper[14]

3.3. nnFormer
nnFormer[22] is a network architecture that combines the Swin-Transformer[14] and nnUNet[11].

The Figure 3.5 shows that overview of the nnFormer network. An encoder, a neck and a decoder
together form a U-shaped architecture. The encoder consists of a patch embedding layer and four
3D Swin-Transformer blocks while the decoder is composed of three 3D Swin-Transformer block and
a patch expanding layer. A sampled sub-volume of the 3D CT scan is input to the patch embedding
layer which consists of two consecutive convolution blocks to extract low-level features. The feature
map is then input to the 3D Swin-Transformer blocks to further extract feature maps while reducing the
resolution. The output of the encoder is then used as the input to the decoder as a neck. Subsequently,
the Swin-Transformer blocks in the decoder fuse the feature map from the former layer/neck and the
residual connection from the encoder. As the feature map gradually recovers the resolution, it is finally
passed through the patch embedding layer to perform the Trans-convolution to predict the masks.

Figure 3.4: The window partition for 3D Swin-Transformer: the total number of windows is 8 in the regular partition, while the
total number of windows is 27 in the irregular partition. The picture is adapted from the video Swin-Transformer
paper[liu2022swin]

3DSwin-Transformer blocks as a fundamental building blocks are used in nnFormer[22] . In fact with
a few lines of modification in performing the Self-Attention mechanism, a 2D Swin-Transformer block
can be converted to 3D Swin-Transformer block easily. The same structure is also used in videos for
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human action recognition[15]. As shown in Figure 3.4, the window partition is similar to it in 2D case
except for one more dimension in 3D case.

Figure 3.5: The overview of the nnFormer architecture. The picture is adapted from the nnFormer paper[22]

3.4. Position Encodings
The self-attentionmechanism itself is permutation-invariant to the input sequences [19]. This means

that the position of input image patches are not taken into account in the Self-Attention mechanism. In
particular, we compute the attention score of two patches by using the key and query embeddings which
both represent content information. However, it is possible that the distance of two patchesmatters. For
example, the neighbor patches might have a higher attention value than remote patches. Therefore, in
order to incorporate the position information into patch embeddings, we need to mannually introduce
the position encodings to the Transformer architecture. We introduce the position encodings discussed
in our project. However, there are other position encodings, such as CPT[5] which uses convolutions
to extract position information, Learnable Fourier position embeddings[12]. Thus, We regard it as one
of our limitations.

3.4.1. Absolute Position embedding
The absolute position embeddings can be divided into two categories: learned and fixed. The

learned absolute position embeddings used in Swin-Transformer[14] and ViT[19] have the same shape
as the output feature map of patch embedding. The embedding values are randomly sampled from a
normal distribution with mean 0 and standard deviation 0.02. Sinusoid position embedding is the fixed
absolute position embedding. We can extend original 1D sinusoid position embedding[19] in Formula
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3.3 to 2D and 3D case by following the Formula 3.4 3.5.

PE(pos, 2i) = sin(x/100002i/D)

PE(pos, 2i+ 1) = cos(x/100002i/D) (3.3)

PE(x, y, 2i) = sin(x/100004i/D)

PE(x, y, 2i+ 1) = cos(x/100004i/D)

PE(x, y, 2j+ D/2) = sin(y/100004j/D)

PE(x, y, 2j+ 1+ D/2) = cos(y/100004j/D)

(3.4)

PE(x, y, z, 2i) = sin(x/100006i/D)

PE(x, y, z, 2i+ 1) = cos(x/100006i/D)

PE(x, y, z, 2j+ D/3) = sin(y/100006j/D)

PE(x, y, z, 2j+ 1+ D/3) = cos(y/100006j/D)

PE(x, y, z, 2k+ 2D/3) = sin(z/100006k/D)

PE(x, y, z, 2k+ 1+ 2D/3) = cos(z/100006k/D)

(3.5)

where x,y,z denote the corresponding coordinates on the feature map, D denotes the dimension of the
position embedding, i,j,k denote the value location within embedding dimension(channel dimension).

3.4.2. Relative Position Bias
As shown in Formula 3.6, the relative position bias[14] is added when computing the attention matrix

in each Swin-Transformer block. Each Swin-Transformer layer constructs a look-up table to store all
possible relative position biases within a window. A layer with window size M has total number of
(2M − 1) × (2M − 1) × (2M − 1) relative positions. The bias is later added to the attention score
according to the relative position between query and key embeddings.

Attention(Q,K,V) = Softmax(QKT
√
d

+ B)V
(3.6)

3.5. Data
In this section, we briefly introduce the prostate CT data set we used in our project. We use prostate

CT data containing annotations of four organs: bladder, prostate, rectum, and seminal vesicles. The
data is collected from three institutes, c.f. Haukeland Medical Center of Norway (HMC), Leiden Univer-
sity Medical Center in the Netherlands (LUMC) and Erasmus Medical Center in the Netherlands (EMC),
containing 179, 475 and 56 CT scans, respectively. EMC is used as the test data set, while HMC and
LUMC are used as the training datasets. Due to differences in clinical protocols for CT scan acquisi-
tion, the EMC dataset has larger volumes of the prostate and bladder, which makes it a challenging
test dataset.

As mentioned above, due to different clinical protocols for acquisition, prostate CT scans from differ-
ent institutions have differences. The differences of three datasets in organ voxel numbers are shown
in figure 3.6. Patients are required to drink water before taking CTs by Erasmus Medical Center so the
EMC CT scans have a larger number of voxels in prostate and bladder. Apart from statistics, the 3D
visual differences of three datasets are shown in Figure 3.7.
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Figure 3.6: The number of voxels in each organ in three different datasets.

(a) (b) (c)

Figure 3.7: Visual examples: (a) from HMC dataset, (b) from LUMC dataset, (c)from EMC dataset. The green part is bladder;
the yellow part is seminal vesicle; the red part is prostate; the blue part is rectum.
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