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Abstract—Inadvertent bird nest destruction by au-
tonomous mowing machines poses significant threats
to the breeding success of meadow birds. Drone-
based detection methods represent the current state-
of-the-art for bird nest localization to attain mower
circumvention. However, they only identify 80% of
bird nests with average localization error of 3.344
meters and are restricted to specific application times.
This paper introduces alternative, fully automated
nest localization systems integrated with autonomous
mowers. Two strategies are proposed, 1) Directly
detecting bird nests using thermal data, or 2) In-
directly, by tracking birds and extrapolating their
trajectories back to their nests using RGBD data.
These methods were validated with warmed chicken
eggs hidden in grasslands and with drones simulating
bird flight. YOLOv8 models were modified for both
approaches. The thermal localization method is able
to detect all bird nests with an average confidence
of 73.4%. It allows for real-time localization and
yields one unnecessary nest circumvention for every
ten bird nests saved due to false positives. This
method is shown to be effective in all breeding season
temperatures, both day and night. Conversely, the
trajectory extrapolation method detects birds with
an average confidence of 82.2% and has localization
error of 0.794 meters. Birds taking flight prematurely
or from locations other than nests impact the number
of bird nests saved and the number of unnecessary
circumventions. It is demonstrated that this method
fails to detect birds during nighttime. In conclu-
sion, an automated thermal-based localization sys-
tem integrated with autonomous mowers outperforms
both RGBD- and current state-of-the-art drone-based
methods. This study highlights therefore the potential
of thermal-based solutions for bird nest protection in
grasslands.

Index Terms—Meadow birds, Autonomous mower,
Nest localization, Object detection, Object tracking.

I. INTRODUCTION

The Netherlands hosts several meadow bird
species, including the black-tailed godwit (known as
’grutto’ in Dutch), the northern lapwing (’kievit’),
the Eurasian oystercatcher (’scholekster’), the north-
ern shoveler (’slobeend’) and the common redshank
(’tureluur’) [1]. Alarmingly, the populations of these
species have nearly halved in the last twenty years,
putting the entire biodiversity of meadows under
significant pressure [2]. Suitable nesting sites are
disappearing at a high pace due to urbanization,
climate change and intensification of farming ac-
tivities [3]. Further emphasizing the urgency of this
situation, the Dutch Red List of Birds categorizes
the shoveler as ’vulnerable’ and both the godwit
and redshank as ’near threatened’ [4]. Protection of
these bird species is therefore of utmost importance,
starting with safeguarding their breeding success.

Damaging meadow bird nests is for this reason
prohibited by Dutch legislation and guidelines have
been established for their management [5]. This is
vital, since grassland birds all hatch and breed on
the ground, making their nests particularly vulnera-
ble to mowing activities [6]. One protection strategy
involves locating and documenting the position of
nests, after which these sites are protected with
no-mow zones of at least 50 square meters. This
establishes a safe and food-rich environment for
bird chicks before leaving their nests [7]. The
methodology and implications of this nest protec-
tion approach make up the main focus of this thesis
report.



A. Problem statement

Rapid technological advancements in the agricul-
ture domain intensify the threats to meadow birds.
As a result, there’s growing interest in developing
innovative farming solutions that minimize ecolog-
ical impact. Among the most recent innovations are
electrically powered and fully autonomous mowing
machines [8]. These machines can independently
harvest fresh grass from grasslands, transport it and
feed it to dairy cattle, matching the amount of grass
distributed to cows’ daily nutritional needs [9].
Despite their many advantages, there is an under-
lying concern: the automated movements of such
machinery could unintentionally damage or destruct
bird nests.

The protection strategy mentioned in the pre-
vious subsection can be integrated with these au-
tonomous mowing machines to overcome this. The
bird nests’ geographical coordinates can be sent
to their software systems, which can then modify
their trajectories accordingly. One of the emerging
solutions to find these coordinates is the use of
drones or unmanned aerial vehicles (UAVs). Var-
ious researches have shown that bird surveys using
UAVs have a similar number of located nests as
manual inspections, while having a much higher
speed [10]–[13]. However, the need for separate
aerial investigations prior to mowing introduces
operational inefficiencies, as mowing cannot be
initiated until these investigations are completed.
Because their deployment requires operators, they
typically occur only once at the start of the breeding
season [14]. Consequently, bird nests created after
a drone-based localization effort remain at risk of
destruction.

B. Research objectives and scope

There is an urgency to protect meadow birds,
and given the limitations of existing methods, there
arises a need for alternative and innovative solu-
tions. A nest localization system integrated with an
autonomous mower could potentially locate nests
on its route and seamlessly adapt it accordingly.

This thesis explores the feasibility of such an
integrated and automated method. It investigates
the challenges associated with nest localization
and proposes novel mower-integrated approaches.
A further aim is to empirically validate these pro-

posed strategies, quantifying their performance and
benchmark them against drone-based methodolo-
gies. Combining the research objective and scope,
the following research question can be formulated:
Which mower-integrated methods are feasible for
automated real-time nest localization of meadow
birds in grasslands and how do these methods
compare to the conventional drone-based method
in terms of number of bird nests saved, accuracy,
operational constraints and resources required? It
should be noted that ’resources required’ reflects
both financial and computational aspects.

C. Outline

Subsequent to this introduction, this thesis con-
tinues with a theoretical background, which ex-
plores methods for nest localization and outlines
the operating principle of object detection models.
The following section presents the outcomes of the
drone-based method put into practice. Section IV-A
and Section IV-B describe the methodology of two
proposed methods for automated nest localization.
Section V follows with the empirical findings de-
rived from these methods. A discussion of these
findings is presented in Section VI. Finally, conclu-
sions are provided in Section VII.

II. THEORETICAL BACKGROUND

A. Definitions

This research focuses on various methods for
localization of bird nests in grasslands. Bird nest
localization involves determination of a nest’s ge-
ographical position, often represented in terms of
global coordinates. A method’s effectiveness in this
task is quantified by its localization error, which
is defined as the Euclidean distance in meters be-
tween a nest’s actual and its predicted location [15].
Lower error distances indicate higher localization
accuracy. Furthermore, this study introduces the
Nest Protection Error Rate (NPER) as a measure
of the effectiveness of nest protection. It quantifies
the ratio of incorrectly identified nests which aren’t
present, resulting in unnecessary no-mow zones,
against the number of nests that are correctly iden-
tified.

Object detection is required before localization
can take place, and is focused on recognizing ob-
jects in their environment without determining their
geographic coordinates yet [10].
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B. Key concepts

Based on studies about manual localization of
bird nests, there are roughly two search ap-
proaches [16]:

1) directly identifying nests in grasslands by
structurally searching every area;

2) tracing birds as they fly away from or to their
nests, hence indirectly localizing nests.

These methods remain the most accessible and
commonly employed practices among bird-watchers
globally [17]. Recent technological advancements
have opened up possibilities for automation of these
methods, which will be further elaborated upon in
the following subsections.

1) Direct localization of bird nests: Although
this method yields the most direct results, manually
surveying entire grasslands at once does not only
consume significant time and labor but also intro-
duces the risk of disturbing nests. As mentioned
before, aerial counting methods have been investi-
gated to overcome these difficulties.

Literature has highlighted the effectiveness of
drones equipped with visual and thermal cameras
for bird nest localization. Because bird eggs have
an average temperature of 37.7°C, they are warmer
than their surroundings and can be detected by
thermal cameras [18]. Integrating both visual and
thermal imagery has proved to greatly enhance
the detection of bird nests, especially for camou-
flaged bird nests not discernible with visual cameras
alone [12], [13], [19].

For example, agricultural collectives Lopiker-
waard and Den Hâneker both employ the drone-
based approach for counting and localization of
nests. The drone finds heat spots possibly caused
by bird nests, prompting subsequent manual inspec-
tions of these areas to confirm the identity of the
heat spots [14]. Engagement in these inspections
led to additional insights, which are elaborated
upon in more detail in Section III. The drone-based
methodology is adaptable to a nest localization
system integrated with an autonomous mower. A
thermal camera positioned at its front and directed
to the surface can systematically examine its imme-
diate surroundings for heat spots indicating nests.
Such a setup benefits from closer proximity to the
ground with respect to aerial inspections, possibly
increasing detection accuracy [20].

2) Birds’ trajectory extrapolation: Manually lo-
cating bird nests can also take place by observ-
ing birds as they fly away when a disturbance
approaches and investigating the area where they
departed from. As meadow birds occupy their nests
on average 76.9 ± 2.7% of the time during the
breeding season, this could be a feasible method
for bird nest localization [21].

Although literature about automation of this pro-
cess is unavailable, it is possible to attach a RGB
depth (RGBD) camera to a mowing machine, pro-
viding both color and depth information. This cam-
era can determine its distance to birds flying up
from the grass as the machine comes too close [22].
Their trajectories can be traced back to the ground,
identifying areas with a higher probability of con-
taining a nest.

C. Object detection

Whether one is analyzing heat spots that suggest
the presence of bird nests or examining flying birds
using RGB data, the ability to detect objects is
fundamental. This involves the use of models to
generate bounding boxes around objects and label-
ing them in the corresponding category [23], [24].
The objective is to develop models that account
for variations in position, size and orientation, as
well as differences in viewpoints, lightning and
occlusion [25].

Convolutional neural networks (CNNs) are the
state-of-the-art for high quality object detection
in real-time [26]. Based on deep-learning, they
identify features from images by themselves [24].
Object detection in RGB images relies on visual
features such as colors, gradients and textures,
whereas detection in thermal images primarily fo-
cuses on contrasts caused by temperatures dif-
ferences. Training images improve the CNN by
iteratively adjusting its weights to minimize the
difference between predicted outputs and ground
truth [27]. A validation dataset is typically used to
assess performance on unseen data, and adapt the
model accordingly. Final evaluation is carried out
on a completely separate test set [24].

Bird nests typically measure less than 30 cen-
timeters, classifying them as small objects [1].
Small objects detection remains challenging for
many detectors due to their limited visual informa-
tion and resolution, next to their lack of contextual

3



cues [28]. They are also easily occluded by other
objects, further complicating their perception [29].
Yet, multiple overviews of the state-of-the-art for
small object detection found that the You Only
Look Once (YOLO) algorithms demonstrate an
optimal balance between detection accuracy and
speed for small objects [26], [30], [31]. While two-
stage detectors provide higher accuracy, their slower
processing speed limits real-time application. Other
one-stage detectors showed lower accuracy com-
pared to YOLO in small object detection. Notably,
Li et al. and Hong et al. specifically evaluated multi-
ple object detection models for real-time visual bird
and bird nest detection [10], [11]. They confirmed
the state-of-the-art performance of the YOLO al-
gorithms in this context. Based on their findings
as well as literature on small object detection, the
YOLO algorithms are deemed the most suitable
choice for the objectives of this research.

1) The YOLO algorithms: The YOLO algo-
rithms achieve their fast detection speed by pro-
cessing input images in one pass, predicting bound-
ing boxes and their respective class probabilities
simultaneously [32]. This approach allows for real-
time object detection while maintaining a reason-
able level of accuracy. YOLOv8 is the most recent
of the YOLO series and outperforms all previous
models in both speed and accuracy on numerous
datasets, including those with small objects [33]–
[35]. Consequently, YOLOv8 will be used for object
detection in the continuation of this study.

Five variants of YOLOv8 are available: Nano,
Small, Medium, Large, and Extra Large. YOLOv8n
(Nano) has the smallest number of parameters and
is therefore the fastest to train, while YOLOv8x
(Extra Large) is the most accurate yet the slowest
among them. The implementations of these models
are based on [36].

YOLOv8 is associated with various hyperparam-
eters affecting the model’s train time, computational
costs, accuracy and its ability to transfer to new,
unseen data. The number of epochs specifies how
many times the entire training dataset is passed
through the model, while the batch size defines the
number of training images that are passed simulta-
neously. The batch size primarily impacts memory
usage and training duration [37]. The image size de-
termines the dimensions input images are resized to,

before passing through the network. Smaller images
reduce computational costs and training time, while
larger ones preserve details and improve detection,
especially in the context of small objects [38].

How much the weights are updated during train-
ing is determined by the learning rate. Higher
learning rates can lead to faster convergence but
possibly to a less optimal solution, whereas lower
learning rates offer more accurate convergence but
might require more training epochs [39]. The initial
learning rate lr0 and final learning rate lr0 * lrf
guide the model during training. Finally, the mini-
mum detection confidence threshold does not affect
the model’s training but determines the minimum
confidence score that a detection must have to be
considered valid.

2) Training evaluation: Precision P and recall
R are two performance metrics commonly used in
the evaluation of detection models [10]. Precision,
defined as in equation 1, is the ratio of true pos-
itives (TP) among all predicted bounding boxes,
both correct and incorrect. A higher precision value
indicates fewer false positives (FP).

P =
TP

TP + FP
(1)

Recall on the other hand measures the ratio
of correct predictions with respect to the ground
truth bounding boxes. Recall is calculated with
equation 2. A higher recall value indicates a lower
number of false negatives (FN).

R =
TP

TP + FN
(2)

Following precision and recall, another metric is
the False Discovery Rate FDR, which is defined as
the proportion of false positives among the the total
number of predictions [40]. The FDR should ideally
be low and is defined as in equation 3.

FDR =
FP

TP + FP
(3)

While FDR is related to NPER in measuring
false positives, NPER focuses more on practical
implications as not all false positives yield equal
numbers of unnecessary nest circumventions.

The trade-off between precision and recall can
be visualized with the precision-recall (PR) curve.
The average precision (AP) of each class is the
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area under the PR-curve [41]. The mean Average
Precision (mAP) calculates the mean AP-value of
all classes.

The precision and recall metrics are closely
related to the Intersection over Union (IoU)
value [42]. IoU measures the area of overlap and
the area of union between a predicted bounding box
and the ground truth. Bounding boxes with an IoU
above a certain threshold are considered TP, while
those below would result in FP [42]. The mAP50-95
metric averages the mAP values for a range of IoU
thresholds from 0.50 to 0.95. mAP50-95 provides
a rigorous evaluation of the model’s accuracy, as it
requires highly accurate bounding boxes.

Next to these metrics, the bounding box loss
is of importance, which quantifies the difference
between predicted and ground truth bounding box
coordinates using the mean squared error [36]. By
monitoring the behavior of training and validation
losses overfitting can be detected. If the model starts
to overfit, the training loss will continue to decrease,
while the validation loss might stop decreasing or
even start to increase [43]. This indicates that the
model performs increasingly better on the training
data but fails to generalize to new data [44], [45].

D. Object tracking

The second method for nest localization employs
birds’ trajectory extrapolation. At the foundation
of trajectory generation lies object tracking; lo-
cating a moving object or multiple objects over
successive frames in a video, thereby constructing
a trajectory [46]. There are multiple algorithms
available for object tracking, but one of the easi-
est to implement and computationally efficient ap-
proaches is Simple Online and Realtime Tracking
(SORT) [47]. The algorithms relies on bounding
boxes retrieved from an object detection model,
combined with a Kalman filter to predict locations
of objects in subsequent frames [48]. It associates
new detections with existing tracks by calculating
the IoU [49]. Its main limitations are its inability
to handle occlusions and reappearances, as SORT
might assign a new trajectory ID. In the context
of birds flying up from the grass, occlusion won’t
frequently occur as meadows often offer limited
obstacles. The SORT algorithm used in this research
is retrieved from [49].

E. Reformulation of research question

After exploring possible methods for autonomous
mower-integrated bird nest localization, the for-
mulated research question can be redefined: In
terms of number of bird nests saved, localization
accuracy, operational constraints and resources re-
quired, which method — thermal camera based,
RGBD camera based, or drone-based — proves to
be the most effective for automated real-time bird
nest localization in grasslands?

III. BENCHMARK METHOD

A. Methodology

The conventional drone-based method was put
into practice on April 18th 2023 at the grasslands
behind Blokland Dairy in Goudriaan, The Nether-
lands. Bird nest localization was carried out with
a DJI Mavic 3 Thermal drone, especially designed
for surveying nature [50]. This drone is equipped
with three cameras; a 48 Megapixel Wide visual
camera with 24 mm lens, a 12 Megapixel Zoom
visual camera with 162 mm lens and a thermal
camera with field of view (FOV) of 60° × 49°
(H × V) and resolution of 640 × 512 pixels. It
also features Real Time Kinematic (RTK), which
enables centimeter accurate positioning. Its flight
time with a full battery is 45 minutes.

Two volunteers of collective Den Hâneker helped
out with the bird localization effort. One operated
the drone and investigated the thermal camera’s
live stream to find heat spots, after which the
Zoom visual camera was used to identify them.
If a possible bird nest was detected, the second
volunteer examined the corresponding location in
the grassland. After confirmation of a nest, its
heat spot was marked on the drone’s map and its
coordinates were calculated.

To ensure the largest temperature difference be-
tween bird eggs and their surroundings, the drone
took flight over the grasslands precisely at sunrise,
at 6 o’clock in the morning. Earlier in the morn-
ing would yield larger differences in temperatures
hence better visibility of nests, but flying a drone
before sunrise is not permitted by Dutch law [51].
The grasslands of Blokland Dairy have an area of
approximately 16 hectares and investigating them
with the drone took around 3 hours.
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Figure 1: Two godwit nests as found during the
drone localization effort at Blokland Dairy.

B. Results and insights

Six nests were found during the localization
effort; five godwit nests and one from a shoveler,
as presented in Figure 1. The drone software’s
localization error was on average 3.344 ± 0.773
meters, as determined in Table IX in Appendix IX.
Heat spots merely indicated possible locations and
the nests still had to be found within this area, while
being extremely careful not to destroy the nests.

Once the nests were discovered in the grasslands,
their positions were more accurately mapped using
a Trimble R2 GNSS receiver, with up to centimeter
accuracy [52]. These locations were forwarded to
the software of the autonomous mower operating
at Blokland Dairy, which then adapted its mowing
route to circumvent these areas, as illustrated in
Figure 11 in Appendix IX.

Even with the relatively low temperature of the
surroundings, approximately two thirds of possible
bird nest locations turned out to be false positives,
hence NPER equals 2. These heat spots were caused
by bare patches of grass, fresh poop or molehills
emitting heat and couldn’t be identified with the
Zoom visual camera alone. The exact number of
bird nests that remained undetected during this lo-
calization effort was unknown. However, collective
Lopikerwaard employs a similar nest localization
method and is able to detect approximately 80%,
confirmed through manual inspections of the mead-
ows.

While the drone-based approach offers significant
advantages in terms of speed compared to manual
inspections, it still requires a large time investment
due to limited battery life, high number of false
positives and low localization accuracy. Moreover,
this method is limited to specific application times
like sunrise for localization, which becomes pro-

gressively earlier as the breeding season advances.
It has to be carried out before the mowing process
and only happens once at the beginning of the
breeding season, meaning that bird nests created
after a drone-based localization effort would still be
destructed. It can be concluded that there is substan-
tial room for improvement within this benchmark
method.

IV. METHODOLOGY

The two proposed methods for automated bird
nest localization have been implemented for com-
prehensive comparison, after which they were ex-
tensively tested and evaluated.

A. Thermal bird nest detection model

1) Field data collection: There were no au-
tonomous mowing machines available for experi-
mentation during the course of this research, as their
operations were not to be disrupted. For this reason,
an alternative setup was devised. Using a quad with
aluminum bars mounted to it, a thermal camera

Figure 2: Experimental setup consisting of FLIR
thermal camera (1) attached to a quad via aluminum
bars (2) and a tension strap (3).
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could be attached, creating a mobile system with a
designated camera height and angle, see Figure 2.
This approach facilitated systematic investigation
of various configurations for the thermal camera,
without interfering with mowing activities. During
measurements, the quad’s velocity was set to resem-
ble the speed of an autonomous mower of 1 m/s.

Two thermal cameras were available for exper-
imentation; a Hikvision Thermal & Optical Bi-
Spectrum Network Dome Camera DS-2TD1217-
2/V1 and a FLIR Vue Pro R 640. The Hikvision
camera offers the advantage of integrated thermal
and visual imagery, making it possible to verify
identities of heat spots and potentially reducing the
number of false positives, similar to the benchmark
method and research conducted by McKellar et
al. [12]. It has a FOV of 90° × 66° (H × V),
resolution of 160 × 120 pixels and can measure
temperatures up to distances of 15 meters [53].
The FLIR (Forward-Looking Infrared) camera was
taken off a drone used for bird nest localization
in previous years by collective Den Hâneker. With
a lens of 13 mm, the camera provides a FOV
of 45° × 37° (H × V) and resolution of 640 ×
512 pixels [54]. FLIR cameras share the same
operating principle as other thermal cameras, but
distinguish themselves through their emphasis on
real-time thermal imaging and their superior image
quality [55]. During trial measurements, the Hikvi-
sion camera demonstrated good potential in terms
of field of view. However, its limited resolution
proved to be a major drawback, as the small eggs’
heat spots were difficult to distinguish from other
heat sources. As a result, the Hikvision camera
was discarded, and subsequent measurements were
carried out with the FLIR camera.

A series of experimental measurements were
conducted to find an optimal camera angle and
height. Although larger angles with the horizontal
provided wider fields of view, nests were only
discernible when the camera was directly overhead.
This was due to grass covering the eggs, obstructing
a clear perspective. Smaller angles on the other hand
diminished the distance at which nests could be
detected. An angle of 20 degrees with respect to
the horizontal yielded the most practical outcomes.
Three distinct camera heights were tested: 1.70,
2.65 and 3.71 meters. While the highest option

naturally yielded the widest field of view, 2.65
meters was more closely associated to the height of
autonomous mowers, offering more insight in the
feasibility of this method without having to create
extensions on the mower. At a camera height of
2.65 meters and an angle of 20 degrees relative to
the horizontal, the camera’s field of view measured
2.33 by 2.09 meters (H × V). The FOV’s midpoint
was situated 1.235 meters ahead of the camera,
providing a theoretical distance from which nests
can be detected of 2.28 meters.

The FLIR camera used in this study has several
features specifically implemented for bird nest de-
tection. Active Contrast Enhancement (ACE) em-
phasizes temperature differences in captured im-
ages, highlighting warm objects while making the
environment appear darker. In this research, the
ACE value was set to its maximum. The Digital
Data Enhancement (DDE) parameter controls the
sharpness of the thermal image. It was set to its
maximum value by default to accentuate contours,
crucial for identification of nests. Additionally, the
Smart Scene Optimization (SSE) feature increases
visibility of objects with small temperature differ-
ences compared to their surroundings, making them
appear as if they have a higher temperature than
they actually do. In the context of bird nest detec-
tion, their exact temperature is of less importance
than their visibility, which is why this value was
also set to its maximum. One drawback of setting
all these features to their highest values is that
outcomes of this method might not be generalized to
other thermal cameras. Furthermore, it could lead to
overemphasis on temperature differences, possibly
leading to more false positives.

At the start of measurements in May, half of the
bird eggs at Blokland Dairy already hatched and
their nests were abandoned. To protect the nests
that remained, measurements were not conducted on
these nests but they were replicated instead. Grocery
store-bought chicken eggs with sizes M and L were
used for this purpose, as they are representative of
various sizes of meadow bird eggs [56]–[58]. The
independent variables in this experimental study
were the lateral distance between camera and nest,
the number of eggs per nest and the temperature
difference of the eggs with respect to their sur-
roundings, see Table I. The nest size variations align
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with typical numbers of eggs laid per nesting at-
tempt [59], [60]. The values of the egg temperature
difference are explained in Appendix X. The eggs
were heated with a water bath at a set temperature,
after which they were hidden in the grass in a way
that resembled the natural bird nests in Figure 1 as
much as possible.

Table I: Independent variables of measurements
related to direct bird nest localization with a thermal
camera.

Lateral distance Number of Egg
to nest eggs temperature

difference ∆T
[m] [-] [°C]
0 1 17

0.40 2 21
0.80 4 25
1.15 5 29

33

2) Dataset and annotation: In total, 73 videos
with a frame rate of 10 frames per second (fps)
were collected. Each video was split up into its
frames for annotation purposes, resulting in 7153
images. 2876 of these images were null-images,
displaying no bird nests and only background, while
the remaining 4277 images contained either one or
two bird nests. Five distinct experimental conditions
were designated as the test set to ensure it included
entirely new data, each condition with four videos
corresponding to the number of eggs. Consequently,
3999 images were labeled as train set, 1013 as
validation set, and 2141 as test set, achieving a split
of train : val : test = 56 : 14 : 30%. Although
this distribution wasn’t ideal, it was essential to
ensure the test set comprised of all egg temperature
variations.

The annotation procedure took place manually
using the annotation tool Roboflow1. An example of
the thermal data gathered and the annotation process
is shown in Figure 3.

3) YOLOv8 implementation: All models trained
in this study utilized an NVIDIA GeForce GTX
1070 Ti GPU with 8 GB of graphics memory.
YOLOv8m (Medium) was the largest model that
could be trained without running into memory
limitations, and a batch size of 16 proved to be
the largest feasible size for this model. The three

1Roboflow, online annotation tool, https://roboflow.com/

smallest YOLOv8 models - YOLOv8n, YOLOv8s
(Small) and YOLOv8m - were trained on the ther-
mal dataset. Using a batch size of 16 for 100 epochs,
training times were 1.824 hours for YOLOv8n,
3.416 hours for YOLOv8s and 7.437 hours for
YOLOv8m, while their maximum achieved accu-
racy values were 0.789, 0.802 and 0.810 respec-
tively. Figure 14a in Appendix XII demonstrates
a consistent trend of increasing accuracy as model
size increases, thereby prompting to consider larger
architectures.

The effects of hyperparameter adjustments and
data augmentation in the sections below will be
examined using YOLOv8n. Unless stated otherwise,
the following hyperparameters are used for training:
epochs = 40, lr0 = lrf = 0.001, imgsize = 640 × 480
and batch = 32. The learning rates are default values
for YOLOv8 [36]. The image size is maintained
at its original dimensions to persevere resolution,
improving visibility of details. The batch size is set
based on GPU limitations. With each new training
strategy, a new YOLOv8 model is initialized, hence
there is no transfer learning from any other pre-
trained models.

Hyperparameter tuning. The impact of dif-
ferent batch sizes on the mAP50-95 metric was
assessed while keeping other parameters at their
standard values, see Figure 14b in Appendix XII.
The effect is, as expected, found to be negligible:
the highest mAP50-95 achieved over 40 epochs was
0.763 using a batch size of 64, while the lowest

Figure 3: Example of data gathered with FLIR
camera, including annotation of a bird nest.
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value was 0.755 with a batch size of 8, resulting
in a mere 1.045% difference. Notably, a model
with a batch size of 8 doesn’t converge within the
specified number of epochs and remains unstable,
which explains its lowest mAP-value.

Additionally, two learning rate schedules were
studied: linearly decreasing, where lr0 = lrf, and
constant, where lrf = 1. The results are reported in
Figure 14c and 14d in Appendix XII respectively.
In both cases, an initial learning rate of lr0 = 0.001
yielded the best outcomes, with the linear decreas-
ing schedule outperforming the constant one. There-
fore, the default learning rates lr0 = lrf = 0.001
were determined to be the optimal ones. Again, the
effect of this hyperparameter proved to be minimal,
as the difference between best and worst-performing
schedules was only 4.858%.

Data augmentation. Augmenting a dataset
creates variations of each original training image,
introducing new, unseen instances. This added di-
versity exposes the model to a wider range of
scenarios, making it more robust and less sensitive
to overfitting [61]. Various augmentation techniques
were explored and compared, focusing on highlight-
ing the contrast between the distinctive white heat
patterns and the dark background.

To this end, seven different augmentation ap-
proaches were investigated and Figure 17 in Ap-
pendix XIII presents examples of the augmented
training images. A horizontal flip was introduced
to increase the number of images available for
training. Gaussian noise can improve the robustness
of the model to different levels of thermal noise.
This augmentation was achieved by adding values
sampled from a Gaussian distribution to 5% of
the pixels. Adding cutouts to each training image
can simulate object occlusion, forcing the model to
focus on other features of the objects [62]. Cutouts
were introduced with six boxes per images, each
sized at 10% of the image dimensions. Apply-
ing a blur reduces details and suppresses noise,
possibly making features of the heat spots more
distinguishable against their background. This effect
was achieved using a Gaussian filter with a standard
deviation of 5, which controls the amount of blur-
ring applied. With mosaic augmentation, multiple
images were combined into one, simulating com-
plex scenes and new interactions between objects,

potentially improving small object detection [63].
Variability to image brightness - both brightening
and darkening - are meant to make the model more
resilient to lightning conditions [61]. Brightness ad-
justments were made by multiplying all pixel values
by either 0.75 or 1.25. Finally, adapting bounding
box brightness involves locally scaling each pixel
in the bounding box region with either 0.75 or
1.25. This approach proves particularly valuable for
objects with different lightning conditions compared
to their background. Annotations of original im-
ages are transformed for every data augmentation
approach, as demonstrated in Figure 17, eliminating
the need for manual re-annotation. All values men-
tioned here are default values for each augmentation
technique and provide a solid starting point. Data
augmentation produced two new instances for every
training image, except for horizontal flip which
produced only one, increasing the train dataset from
3999 to 11997 images.

The development of the mAP50-95 value for the
various augmentation methods is depicted in Fig-
ure 16 in Appendix XIII. The maximum mAP50-95
values over 40 epochs are presented in Table XIII,
along with a comparison to no augmentation. Image
brightness adjustments proved most effective for
the thermal dataset, but Table XIII illustrates the
potential of blur, cutouts and noise augmentation
techniques. Variations of these approaches were
further explored in Figure 18 in Appendix XIII. It is
evident from these graphs that default brightness ad-
justments are the most effective. For blur and noise
augmentations, lower parameter values improved
results, while a higher number of boxes enhanced
the performance of the cutout approach. Still, none
surpassed the default brightness adjustments.

The brightness method was explored further by
combining it with best-performing variants of blur,
cutouts and noise augmentation techniques. Fig-
ure 19 in Appendix XIII shows that combinations
of brightness augmentation tended to decrease per-
formance on the validation set.

In conclusion, the most effective model for the
thermal dataset is YOLOv8m with a batch size of 16
and brightness augmentation by scaling pixel values
by either 0.75 or 1.25. Other hyperparameters are
set to their standard values.
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(a) RGB frame with predicted bounding box, trajec-
tory, depth value and global coordinates, in meters.

(b) Depth frame with center of bounding box and neighbouring
pixels.

Figure 4: Data gathered with Intel RealSense D455 Depth Camera.

B. Bird tracking algorithm using depth data

1) Field data collection: Autonomous mowers
are typically equipped with two RGB cameras for
obstacle avoidance [8]. However, reproducing this
setup for experimental purposes proved challenging,
requiring two calibrated cameras mounted on a
moving vehicle. A ready-to-use RGBD camera was
easier to implement and did not call for extensive
re-calibration whenever the camera’s height or angle
was adjusted.

The autonomous mowers’ camera setup is repro-
duced with an Intel RealSense D455 Depth Camera,
which combines a RGB camera with two infrared
sensors [64]. This camera calculates the distance of
each pixel relative to itself, after which it can de-
termine the location of objects in three dimensions.
The infrared sensors offer a 87°× 58° (H × V) FOV
and operate within a range of 0.6 up to 6 meters,
with a depth error less than 2% at 4 m.

Many configurations were examined to optimize
the depth camera’s FOV. Placing the camera at a
greater height intuitively expanded its FOV, yet it
simultaneously decreased the range at which depth
information could be captured. Additionally, tilting
the camera was necessary for optimal visibility
in different weather conditions, such as rain and
direct sunlight, but also reduced the camera’s FOV.
Finally, a height of 2 meters and an angle of
22.5 degrees with respect to the horizontal were
established as the most suitable configuration. This
setup yielded a FOV of 4.11 by 2.40 meters (H × V).
The FOV’s center was situated 3.20 meters ahead
of the camera’s own position, theoretically enabling
it to detect birds from up to 4.40 meters away.

Table II details the independent variables used in
this experimental study. The values for lateral and

longitudinal distances aim to assess performance
when birds are either flying up inside or outside the
depth camera’s FOV. It has been confirmed by the
volunteers of collective Den Hâneker, who helped
out with the benchmark localization effort, that 2
up to 5 meters are realistic values for birds taking
flight from their nests when a machine approaches.

As emphasized earlier, the hatching bird nests
at the study location were to remain undisturbed
throughout the measurement period. Birds flying
away from their nests were simulated by a control-
lable drone, measuring 25 by 7.5 by 6 centimeters,
taking off from a designated landing pad. It must
also be noted that all measurements were conducted
with a stationary camera rather than a moving one.
Mounting the camera to a moving vehicle, such as
a quad, introduced challenges. The uneven meadow
grounds caused many disturbances to the recorded
videos, yielding inaccurate depth measurements.

Table II: Independent variables of measurements
related to bird trajectory extrapolation with a RGBD
camera.

Lateral distance Longitudinal distance Direction
to nest to nest
[m] [m] [-]
0 2 left
1 3 right
2 4
4 5
5

2) Dataset and annotation: The depth camera
captures both visual and depth information, refer
to Figure 4 for an example of the data collected.
A YOLOv8-based detection model processes the
visual data, and, once detections are made, depth
information is extracted correspondingly. It’s worth
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noting that the object detection model is exclusively
involved with the RGB dataset.

A total of 61 videos were captured over the
course of three different days, featuring three differ-
ent backgrounds and lightning conditions. The test
set consisted exclusively of videos acquired during
one of these days, serving to evaluate the model’s
performance on unseen data. Two additional videos
were created, in which the drone took off from
shaded areas, which were also included in the train
and validation sets. The videos were recorded at
30 fps and split up into their frames for annotation
purposes. To maintain variability of the dataset, du-
plicate or highly redundant frames were excluded,
resulting in 3786 images. This dataset consisted of
1253 null-images and 2533 images displaying the
drone. Among these, 2132 images were allocated
for training, 713 for validation, and 941 for testing,
thereby dividing the dataset at 69 : 17 : 14%
respectively. The annotation procedure took place
manually using the annotation tool Roboflow.

3) YOLOv8 implementation: Similar to the pre-
vious method, the effects of hyperparameter tuning
and data augmentation techniques were investigated
to find the YOLOv8 model that showed optimal
performance when trained on the visual dataset.
All training strategies were again executed on an
NVIDIA GeForce GTX 1070 Ti GPU with 8 GB
of graphics memory.

Figure 15a in Appendix XII depicts the outcomes
of YOLOv8n, YOLOv8s and YOLOv8m models
trained on the visual dataset, with batch = 16 to
avoid exceeding GPU limitations. The maximum
mAP50-95 values achieved in 100 epochs are 0.668
for YOLOv8n, 0.713 for YOLOv8s and 0.719 for
YOLOv8m, with respective training times of 0.934
hours, 1.864 hours and 3.976 hours. Optimization
of hyperparameters and data augmentation strate-
gies are carried out with YOLOv8n. The following
hyperparameters are used, unless stated otherwise:
epochs = 40, lr0 = lrf = 0.001, imgsize = 1280 × 720
and batch = 32.

Hyperparameter tuning. The effect of batch
size on the mAP50-95 metric is demonstrated in
Figure 15b in Appendix XII. Comparable to the
thermal dataset, the influence of the batchsize on
training outcomes is small, with a batch size of
64 achieving the highest mAP50-95 value equal

to 0.612, and a batch size of 8 achieving 0.580,
resulting in a difference of 5.322%. The effects
of learning rate schedules are presented in Fig-
ures 15c and 15d in Appendix XII. It is evi-
dent that a linear decreasing schedule outperforms
a constant one, with the smallest learning rates
lr0 = lrf = 0.0001 yielding highest mAP50-95
values. All constant learning rate schedules perform
exactly the same.

Data augmentation. Given the dataset’s uni-
formity and limited size, characterized by a single
drone flying up from the ground against different
backgrounds, it becomes crucial to apply data aug-
mentation techniques. Initial training of the model
revealed some areas of struggle for object detection,
especially when the black drone moved in front of a
dark background or when it wasn’t directly facing
the camera and flying at an angle. Consequently,
the data augmentation techniques examined here
specifically aim to highlight the contrast between
the drone and its background and enable the model
to recognize the object in various orientations and
sizes.

Gaussian noise, Gaussian blur and variations in
image and bounding box brightness were applied to
serve the first objective, with their implementation
elaborated in Subsection IV-A3. Next to these, the
effects of saturation adjustments and grayscale on
the model’s performance were assessed. Saturation
controls the intensity of colors in an image. Adjust-
ments of saturation involve scaling the saturation
component of each pixel with a specified factor,
with default values equal to 0.50 and 1.50 [65].
Converting images to grayscale completely removes
color information, forcing the model to solely focus
on intensity contrasts. Furthermore, introducing a
horizontal and vertical shear on each bounding box
adds variability to the drone’s viewpoint, potentially
aiding its detection from multiple angles [62]. Each
bounding box was subjected to a random shear of ±
15°, both horizontally and vertically. The effect of
mosaic augmentation was also explored, but cutouts
weren’t as the drone was never occluded by other
objects in this dataset. Figure 23 in Appendix XIII
displays examples of the augmented training images
mentioned here. With data augmentation, two new
versions of each training image were created, in-
creasing the train dataset from 2132 to 6396 images.
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The effects of the eight data augmentation strate-
gies were explored using the YOLOv8n model and
their training outcomes are presented in Figure 20
and Table XIII in Appendix XIII, along with a com-
parison to no augmentation. Bounding box shear
augmentation outperforms the alternative methods,
closely followed by brightness, saturation, blur and
noise. Variations of the associated parameters of
these augmentation techniques were examined to
identify configurations that surpass their initial im-
plementations. The effects of these variations can
be observed in Figure 23 in Appendix XIII. Both
bounding box shear and blur perform best with their
default values. Brightness adjustments with lower
values yield better outcomes, while scaling the
saturation component with 0.25 and 1.75 exceeds
the performance of bounding box shear, making this
the most effective augmentation technique.

Efforts were made to increase performance by
combining the saturation method with the other
five best-performing approaches, using their optimal
configurations. The results, depicted in Figure 22,
clearly demonstrate that combining saturation aug-
mentation with these methods reduces mAP50-95
values.

In conclusion, the best-performing model for this
dataset employs a YOLOv8m architecture, batch
size of 16, learning rates lr0 = lrf = 0.0001 and
saturation augmentation that scales each pixel’s
saturation component by either 0.25 or 1.75. This
particular model will be implemented in the bird
tracking algorithm described in Appendix XI.

(a) (b)

Figure 5: Confusion matrices of thermal test set
on the left and evaluation nests on the right, with
confidence threshold equal to 0.30.

V. RESULTS

This section presents the performance of the two
localization methods on their corresponding test
data. An independent dataset comprising thermal

Table III: Characteristics of ten evaluation nests.
Nest Lat. Lon. Number Temperature

number distance distance of eggs difference ∆T
to nest to nest

[-] [m] [m] [-] [°C]
1 0.95 4.90 5 16.5
2 1.20 2.10 1 16.5
3 1.15 2.35 1 20.5
4 2.5 2.10 2 20.5
5 0.90 3.50 4 24.5
6 1.10 1.80 1 24.5
7 1.00 5.30 5 28.5
8 2.46 2.80 4 28.5
9 1.15 2.75 4 32.5
10 0.00 4.90 2 32.5

and RGBD imagery from ten evaluation nests is
introduced, detailed in Table III. While the test sets
are intended to include unseen data as much as pos-
sible, as outlined earlier, this new dataset provides
a more comprehensive assessment by incorporating
data captured in a different environment. Moreover,
it serves as a robustness test, identifying vulnerabil-
ities and evaluating suitability for future real-world
applications.

A. Thermal bird nest detection model

The YOLOv8m model trained on the augmented
thermal data, as discussed at the end of Sec-
tion IV-A, starts to overfit after 63 epochs. The
validation loss graph crosses the training loss graph
at this point, see Figure 24 in Appendix XIV.

1) Test set: Confusion matrices corresponding
to various confidence thresholds are outlined in
Figure 26 in Appendix XIV. The number of true
negatives remains uncertain, since the background
was not annotated. A confidence threshold of 0.30
is selected and its associated confusion matrix is
outlined in Figure 5a. This threshold strikes a bal-
ance between false positives, false negatives and the
distance from the mower a nest is first detected, as
presented in Table IV. There are no statistically sig-
nificant differences in these first detection distances
across various confidence thresholds, as determined
by a two-sample t-test [66]. The mAP50-95 value
on the test set is 0.785 ± 0.165.

The distance a nest is first detected as a func-
tion of the confidence threshold is visualized in
Figure 27 in Appendix XIV. The Pearson cor-
relation coefficient r is -0.954, and based on a
two-tailed t-test, this correlation proved significant
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Table IV: Detection results and average first nest de-
tection distance as a function of confidence thresh-
old, for the test set of the thermal bird nest detection
model.

Conf. True False False First nest
threshold positives positives negatives detection

[-] [-] [-] [-] [m]
0.10 787 30 396 1.890 ± 0.655
0.20 787 30 396 1.878 ± 0.652
0.30 774 25 409 1.836 ± 0.636
0.40 753 19 430 1.727 ± 0.734
0.50 727 15 456 1.626 ± 0.747

(p < 0.05) [67]. With the selected confidence
threshold of 0.30, the first nest localization distance
is on average 1.836 ± 0.636 meters.

2) Evaluation nests: Figure 29 through Fig-
ure 38 in Appendix XV show thermal images of
the evaluation nests, along with their corresponding
visual images. The performance of the YOLOv8m
model applied to thermal data from these evaluation
nests is summarized in Figure 5b and for every
nest separately in Table V. The average detection
confidence of all TP is 0.822 ± 0.094. The FDR
value equals 0.012. As all FP originate from a single
heat spot, NPER equals 0.1. The confidence asso-
ciated with each detection relative to its distance
is presented in Figure 6. The Pearson correlation
coefficient r before the dashed line is 0.862, which
is statistically significant as determined by a two-
tailed t-test [67], [68]. The thermal bird nest detec-
tion model processes frames at a speed of 45 fps.

The correlation coefficients r between the inde-
pendent and dependent variables associated with
the thermal measurements are depicted in Table VI.
Only the correlation between number of eggs and

Figure 6: Detection confidence for thermal evalu-
ation nests, thresholded at 0.30, relative to longi-
tudinal distance from the camera. The dashed line
represents the location directly beneath the camera.

first detection distance is found to be significant
(p < 0.05), determined by a two-tailed t-test [67],
[69]. The correlation between temperature differ-
ence and recall is visualized in Figure 7. Corre-
lations between dependent variables are listed in
Table XIV in Appendix XIV.

Table V: Detection results of YOLOv8 model ap-
plied to thermal data from evaluation nests with a
confidence threshold of 0.30.

Nest True False False
number positives positives negatives

1 153 0 34
2 4 0 192
3 360 0 48
4 67 0 146
5 179 0 1
6 36 0 62
7 41 0 33
8 43 0 141
9 66 12 152
10 34 0 144

Table VI: Pearson correlation coefficient r between
independent and dependent variables of both ther-
mal test set and thermal evaluation nests, hence
n = 30. Statistically significant correlations are
underlined.

Lateral Number
of eggs

Temperature
r distance difference

to nest ∆T
P -0.022 -0.049 -0.002
R -0.074 0.030 0.269

mAP50-95 -0.065 -0.055 0.394
FDR -0.046 -0.035 0.321
First

detection 0.298 0.457 -0.102
distance

Detection -0.375 0.026 -0.048confidence

Figure 7: Recall as a function of the temperature
difference ∆T between nest and surroundings, with
detection confidence threshold equal to 0.30.
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B. Bird tracking algorithm using depth data

The YOLOv8m model trained on the visual
dataset starts to overfit after 49 epochs. Here, the
validation loss starts increasing while the training
loss continues to decrease, as presented in Figure 25
in Appendix XIV.

1) Test set: Confidence thresholds ranging from
0.65 to 0.85 were investigated and their respective
confusion matrices are depicted in Figure 28 in
Appendix XIV. Lower thresholds yield many false
positives, while higher thresholds rapidly reduce
the number of true positives. A threshold of 0.75
is selected and its associated confusion matrix is
outlined in Figure 8a. With this threshold, the mAP-
value on the test set is 0.519 ± 0.152.

(a) (b)

Figure 8: Confusion matrices of visual test set on
the left and evaluation nests on the right, with 0.75
confidence threshold

2) Evaluation nests: The confusion matrix corre-
sponding to the evaluation nests is presented in Fig-
ure 8b, where FDR = 0.517. The detection results
of each nest separately are outlined in Table VII.
The average detection confidence of all TP is 0.734
± 0.172.

The bird tracking algorithm runs at 17 fps. Nests
1 and 10 are excluded from further evaluation as the
drone never occurs within the camera’s depth range
here. Figure 9 illustrates the relationship between
the absolute distance to the drone’s take-off location
and the localization error, with r = 0.124. Only
depth values equal to or smaller than 3.2 meters are
considered, assessing the bird tracking algorithm’s
performance rather than the depth camera’s capaci-
ties. The number of detections available for location
predictions is also depicted. The Pearson correlation
coefficient r is -0.608 between the number of detec-
tions and the localization error. As p = 0.002 based
on a two-tailed t-test, this correlation is significant
[70]. Correlations between other independent en

dependent variables are presented in Table VIII. The
correlations between lateral distance and recall R,
mAP50-95 and detection confidence are significant
based on a two-tailed t-test [67].

The localization error of the evaluation nests is
on average 0.794 ± 0.578 meters for a commonly
observed grass length of 20 centimeters. This error
is 0.801 ± 0.520 meters for drone take-off locations
inside the camera’s FOV, and for those outside
the FOV 0.781 ± 0.641 meters. This difference
is not statistically significant [66]. The effect of
variations in grass length on the localization error is
visualized in Figure 10. The correlation coefficient
equals 0.979, which is statistically significant as
p = 0.0004. Correlations between dependent vari-
ables are listed in Table XV in Appendix XIV.

Table VII: Detection results of YOLOv8 model
trained on visual dataset, applied to evaluation nests.
The detection confidence threshold is 0.75.

Nest True False False
number positives positives negatives

1 129 429 39
2 107 0 1
3 29 0 10
4 206 0 5
5 94 0 76
6 32 0 66
7 40 0 111
8 28 0 6
9 98 0 18
10 82 476 31

Figure 9: Effect of distance from which the drone
takes off on localization error, with a confidence
threshold equal to 0.75 and grass length of 0.20 m.
Unless stated otherwise, n = 10.
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Table VIII: Pearson correlation coefficient r be-
tween independent variables and detection results
of RGBD test set and evaluation nests, with n = 23.
Statistically significant correlations are underlined.

r
Lon. distance Lat. distance

to nest to nest
P -0.339 0.033
R -0.165 -0.519

mAP50-95 -0.080 -0.527
FDR 0.320 -0.254

Localization 0.402 -0.193error
Detection -0.429 -0.576confidence

VI. DISCUSSION

A. Thermal bird nest detection model

1) Bird nests saved: Figure 5b and Table V
demonstrate a considerable number of FN as the
model sometimes loses sight of nests or fails to
recognize them immediately. Nonetheless, the sub-
stantial number of TP indicates that the model suc-
cessfully detects each evaluation nest in numerous
frames, enabling effective circumvention. Its aver-
age detection confidence 0.734 ± 0.172 highlights
this capability.

From Table V it is clear that all FP are caused
by a single heat spot, contributing to an NPER
of 0.1. This translates into substantially fewer un-
necessary no-mow zones compared to the drone-
based method, for which NPER = 2. A solution
for further enhancement might involve setting a
minimum number of detections for a location to
be considered a nest, but this increases the risk of
missing nests. For instance, nest 2 is detected in
only four frames. To address both the number of FP
and FN, gathering more data and obtaining realistic
thermal data from actual bird nests is recommended.

2) Localization accuracy: Although localization
accuracy for this method cannot be directly deter-
mined, the maximum value of the mAP50-95 metric
on the test set is 0.785 ± 0.165, indicating that
bounding boxes are predicted close to the ground
truth. With the location of bounding boxes within
the camera’s FOV and the autonomous mower’s
world coordinates known, localization is straightfor-
ward and can achieve a high level of accuracy [71].
To quantify this method’s localization error, the
bird nest detection model should be trained with

Figure 10: Absolute localization error of evaluation
nests as a function of the grass length, for a detec-
tion confidence threshold of 0.75.

and applied to thermal data gathered with an au-
tonomous mower, localizing actual bird nests. The
current model allows for an average nest localiza-
tion distance of 1.836 ± 0.636 meters. A significant
correlation exists between the number of eggs in a
nest and the distance it is first detected. Generally,
larger nests are associated with greater heat spots
and might be detected more easily. Exceptions could
be caused by positioning of the eggs and the angle
at which the nests are captured, see Figure 35 and
Figure 36 in Appendix XV.

Another aspect to consider is the model’s confi-
dence score based on nest proximity, as presented
in Figure 6. There is a statistically significant corre-
lation for data points occurring before the location
directly beneath the camera, marked by the dashed
line. This indicates that as nests are closer to
the camera and are presumably more visible, the
model’s detection confidence increases.

3) Operational constraints: There is no signifi-
cant correlation between temperature difference and
recall, observable in Figure 7. This suggests that this
nest localization method remains effective across
all temperature conditions encountered during the
breeding season. Although this absence of correla-
tion might initially seem counter-intuitive, several
reasons might explain this observation. The model
has been extensively trained on a large dataset
comprising nests with a wide range of tempera-
tures across a variety of scenarios, improving the
model’s robustness [72]. Moreover, the ACE and
SSE features of the FLIR camera potentially made
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all heat spots appear similarly white, regardless of
their actual temperature. This may have made the
model rely more on other features for detection,
such as nest coverage and the specific shape of heat
spots.

While thermal cameras can be used both day
and night, as demonstrated by Gauthreaux et al., all
training and evaluation data of this approach is gath-
ered during warm sunny days [73]. This method’s
effectiveness in various weather conditions is to be
determined.

It should also be noted that meadow birds do
not breed their eggs the first days after laying,
which means they aren’t warmed up and hard to
detect [16].

4) Resources required: The thermal camera used
in this study comes with a considerable cost, mak-
ing this method financially less attractive [54]. On
the other hand, it requires less resources than the
drone-based method, as this approach doesn’t need
a drone nor two operators. Research should be
conducted into the compatibility of more affordable
thermal cameras, assessing how differences in ther-
mal resolution and absence of ACE, DDE and SSE
features might impact performance. As measure-
ments conducted with the Hikvision thermal camera
were discarded, this camera’s resolution might serve
as a minimum baseline.

The detection model’s operating speed of 45
fps highlights its real-time capabilities [74]. With
the thermal camera capturing videos at 10 fps,
this could allow for implementation of this method
on more affordable and less powerful hardware,
potentially reducing financial costs.

B. Bird tracking algorithm using depth data

1) Bird nests saved: The average confidence of
detections is 0.822 ± 0.094. While the FDR is
notably high at 0.517, these FP don’t result in
unnecessary nest circumventions, hence NPER = 0.
The tracking algorithm removes all trajectories from
which the first and last bounding boxes have an IoU
that is too high, eliminating standing still objects
and false positive detections.

It should be noted that unnecessary circumven-
tions can still occur if birds take flight from lo-
cations other than nests. The bird density in the
Netherlands is on average 0.77 for every hectare
of meadow during the breeding season [1], [75].

Assuming all fly up when a mower approaches,
this could potentially lead to numerous unnecessary
no-mow zones, greatly affecting this method’s effi-
ciency and complicating the mowing process.

Additionally, meadow bird species like the god-
wit and oystercatcher fly away prematurely when
disturbed, sometimes even with the disturbance still
a few hundred meters away [17]. This behavior
introduces the risk of still inadvertently mowing
nests, which can also occur when birds are not on
their nests. As the nest occupancy of meadow birds
is on average 76.9 ± 2.7% during the day, almost
a quarter of nests is still at risk of destruction [21].
If a bird feels threatened and does not take flight
at all, this method would also fail to ascertain the
location of its nest [16].

2) Localization accuracy: The average localiza-
tion error of this method is 0.794 ± 0.578 meters,
with no statistical significant difference between
take-off locations inside or outside the camera’s
FOV. This error is notably lower than the one of the
drone-based method and shows less variation. There
is a significant correlation between grass length and
localization error, suggesting that grass length has
a crucial impact on localization accuracy.

In Figure 9 localization errors range from 0.139
to 1.672 meters. Excluding data points where
n < 10, the algorithm can localize nests from dis-
tances of 2.110 up to 5.385 meters with an average
error of 0.419 ± 0.223 meters. This indicates an
improved detection range compared to the previous
method and suggests that the actual detection range
could be even larger, as the current data represents
only the boundaries of the tested range. In Figure 9
there is a significant negative correlation between
the number of data points available for extrapolation
and the localization error. The number of data points
is equal to the amount of detections within the
camera’s depth range. This is determined by the
lateral distance, as evidenced by the significant
correlations between lateral distance and both re-
call and detection confidence. The lateral distance
affects the angle at which the drone is perceived by
the camera, influencing its visibility and attributing
to this correlation.

Volunteers from collectives Lopikerwaard and
Den Hâneker highlighted that localization accuracy
may inherently be limited for this method. Certain
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meadow bird species, such as the lapwing and
the redshank, tend to walk several meters from
their nests before taking flight to lead predators
away [16]. No literature is available about typical
distances meadow birds might travel before flying
or how this behavior varies among different species.
Further observational studies are required to assess
how this behavior impacts localization accuracy.

3) Operational constraints: Reliable bird detec-
tion in visual data is not possible during the night,
hence bird nest localization can only be carried
out during daytime [73]. It is recommended to
collect RGBD data in various weather conditions
and conduct additional research into this method’s
effectiveness in these conditions. Moreover, as men-
tioned in the previous section, meadow birds do
not breed their eggs the first days after laying [16].
During this period, their nests cannot be localized
using this method.

4) Resources required: It was initially assumed
that this method could easily be implemented in
the available RGB cameras of autonomous mow-
ers, but insights of this research underscored their
limitations. They are tilted too much downwards to
provide proper field of view, capturing only birds
directly in front of the mower. In addition, the
cameras’ frame rate of 10 fps limits the number of
frames a bird would be visible, potentially affecting
the ability to extrapolate its trajectory. For these
reasons, it is recommended to employ a separate
RGBD camera, specifically for the purpose of bird
trajectory extrapolation. When mounting to an au-
tonomous mower, this study’s findings can be taken
into account for optimal camera configurations.
Notably, the financial costs of the RGBD camera
used in this research are substantially lower than
those of the thermal camera and the drone-based
methods [64].

This method, operating at 17 fps, demands more
computational capacity compared to the thermal ap-
proach, which runs at 45 fps on the same hardware.
While both involve object detection, this method
also identifies tracks, extracts depth data and extrap-
olates trajectories. With its processing speed lower
than the video capturing rate of 30 fps, its real-
time applications might be limited [74]. This raises
the need for more powerful hardware, increasing
financial costs.

C. Limitations and future considerations

In this research, alterations and simplifications
are made in an effort to replicate eggs, nests and
breeding birds. Store-bought chicken eggs probably
have other physical and thermal characteristics than
bird eggs, but no literature is available about their
differences. Bird eggs are warmed up by parent
birds, which differs from how the chicken eggs were
heated with water at a specific temperature. More-
over, as the birds fly away when a mower arrives,
it is uncertain how quickly they cool down. While
temperature differences were kept as realistic as
possible during the experiments, it should be noted
that cooling rates and core temperatures between
bird eggs and chicken eggs might differ. Addition-
ally, the bird nests in this study were made by
humans in an effort to replicate birds’ nest building
techniques as illustrated in Figure 1. Naturally, there
are some differences between the two, observable
in Appendix XV. Gathering thermal data of actual
bird nests is essential to investigate the real-world
capabilities of the bird nest localization model.

Flying birds were replicated by a drone, which
has a fixed shape and is therefore easier to detect,
in contrast to birds which appear different each
time they flap their wings [76], [77]. The drone’s
flying pattern is also substantially distinctive with
respect to birds’, as can be observed in Figure 13in
Appendix XI [22]. This raises the need for re-
examination of this method using data from actual
birds, investigating their flying patterns and corre-
sponding regression models. This could potentially
have a large impact on localization accuracy.

Other limitations were introduced by the thermal
camera mounted to bars connected to a quad. This
setup intuitively gives more camera movements than
when attached to a mower, as the quad is more
sensitive to small hills in the meadows and the bars
amplified these movements. This resulted in videos
with more motion and possibly less clear heat spots.
Data should therefore be gathered with a thermal
camera mounted on an autonomous mower to assess
the model’s real-world performance.

Feasibility of the trajectory extrapolation method
was tested using a static camera, which eliminates
a lot of challenges that moving cameras face [71].
With a camera mounted on a moving mower, a more
extensive bird detection model has to be trained to
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account for variations in size, orientation and view-
point of birds [78]. More importantly, trajectories
might appear differently when the camera itself is
moving. Other limitations were introduced by the
restricted depth range of the RGBD camera used in
this study. Using depth cameras with larger ranges
could extend the localization distance and improve
accuracy.

Finally, the SORT algorithm cannot handle oc-
clusions; if two birds would overlap it loses track
of their trajectories [47]. Given that the visual data
examined in this study never features more than one
flying object, this limitation isn’t a problem here.
Nonetheless, more advanced and robust trackers
should be explored for utilization in real-world
scenarios [79], [80].

While enhancing the dataset can significantly
improve the models’ performance, further opti-
mization should also be considered. Experimenting
with different architectures, hyperparameters and
augmentation approaches than discussed in this
research could yield better outcomes [10]. Other
parameters values and augmentation combinations
should also be investigated [11], [81].

Despite this study’s focus on individual meth-
ods, future research might examine combinations
of thermal and RGBD cameras. Such a combined
system could benefit from an increased distance at
which nests can be detected, while simultaneously
reducing the number of false positives.

VII. CONCLUSION

This research can be concluded by answering
the research question: In terms of number of bird
nests saved, localization accuracy, operational con-
straints and resources required, which method —
thermal camera based, RGBD camera based, or
drone-based — proves to be the most effective
for automated real-time bird nest localization in
grasslands?

Integrating autonomous mowers with a thermal
camera has proven effective for real-time bird nest
detection, achieving an average detection confi-
dence of 0.734. However, the current setup yields
an NPER of 0.1 due to false positives, leading to 1
unnecessary circumvention for every 10 nests. This
approach offers the potential for highly accurate
localization and is effective across all temperature
conditions present during the breeding season, both

day and night. Its performance in conditions other
than sun remains uncertain. It can localize nests
from an average distance of 1.836 ± 0.636 meters
to the mower. Alternative thermal cameras should
be explored to make this method more financially
appealing.

The bird trajectory extrapolation method inher-
ently performs well in terms of number of nests de-
tected. Yet, the overall number can be compromised
by the absence of birds from their nests. The track-
ing algorithm effectively filters out false positives
generated by the detection model, hence NPER = 0,
but unnecessary no-mow zones can still be caused
by birds flying up from locations other than nests.
Bird nest locations can be predicted with an av-
erage localization error of 0.794 ± 0.578 meters
and from 2.110 up to 5.385 meters distance. This
method is limited to daytime operations and its real-
time applications are constricted. Implementing a
separate RGBD camera for trajectory extrapolation
is recommended, yet financial resources required
are considerably lower than those of the other
two methods. At the same time, its computational
resources needed are higher.

With the drone-based method, approximately
80% of bird nests are saved with NPER of 2.
The average localization error is 3.344 ± 0.773
meters, which is considerably higher than the other
two methods. This method is constrained to spe-
cific application times such as sunrise. Furthermore,
localization must be executed every time before
mowing, to ensure all newly created bird nests are
protected. This method requires more resources than
the other two, including a drone and two operators
for the localization effort.

In summary, an automated thermal-based mower-
integrated localization system outperforms both the
RGBD camera and drone-based approaches in num-
ber of bird nests saved, localization accuracy and
operational constraints, but not in financial re-
sources required. Its effectiveness and accuracy in
detecting bird nests make it a promising solution
for real-time bird nest localization in grasslands,
but challenges remain due to unnecessary no-mow
zones caused by false positives. Real-world evalua-
tions using thermal data from autonomous mowers
detecting actual bird nests in various weather con-
ditions are recommended.
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IX. DRONE-BASED LOCALIZATION OUTCOMES

Nest Location determined Location determined Distance [m]
with drone with Trimble receiver

shoveler 1 N 51.90374309° N 51.90376133° 3.562
E 4.92008089° E 4.92012383°

godwit 2 N 51.903888513° N 51.90387011° 3.267
E 4.919905304° E 4.91994242°

godwit 3 N 51.904664473° N 51.90465069° 4.643
E 4.920275351° E 4.92021147°

godwit 4 N 51.905253597° N 51.90522808° 2.942
E 4.920622616° E 4.92061128°

godwit 5 N 51.904720632° N 51.90469067° 3.348
E 4.921487012° E 4.92148222°

godwit 6 N 51.904224333° N 51.90423203° 2.302
E 4.922332735° E 4.92236389°

Average distance 3.344

Table IX: Nest locations at Blokland Dairy.

Figure 11: Autonomous mower’s route modification around bird nest, with yellow no-mow zone.
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X. EGG TEMPERATURE DIFFERENCE AS INDEPENDENT VARIABLE

Images captured by a thermal camera are primarily affected by the temperature of the soil at the
surface [13]. When the drone-based localization effort was conducted in April, the soil temperature
was considerably lower compared to when experiments were concluded in June. The Royal Netherlands
Meteorological Institute (KNMI) records the soil temperature every six hours at their weather station in
De Bilt, see Table X, which is their closest station to Goudriaan [82]. Given that the soil temperature
varies by only 0.5°C across all their stations in the Netherlands, it can assumed that the soil temperatures
were relatively similar in De Bilt and Goudriaan.

Table X: Average soil temperatures in De Bilt during all months of the breading season, recorded
throughout the day. Data retrieved from [82].

Month Average soil temperature Average
at 06:00h at 12:00h at 18:00h at 24:00h temperature

[°C] [°C] [°C] [°C] [°C]
April 8.9 9.4 10.6 9.9 9.7
May 15.3 16.5 18.1 16.8 16.7
June 19.9 21.1 22.0 21.2 21.0

Bird eggs have an average temperature of 37.7°C when brooded by a parental bird [18]. The
temperature difference ∆T between each of the ground temperatures in Table X and a bird egg is
depicted in Table XI. Considering these temperature differences, values as displayed in Table I were
selected for the measurements. Larger temperature differences with the surroundings indicate colder days
in April and nighttime scenarios, while smaller differences can simulate warmer days in June or midday
conditions.

During the measurements conducted on June 22nd, 27th, and 28th, the average ground temperature
was 23.1°C. To simulate the various environmental conditions, the grocery store-purchased eggs were
subjected to controlled temperatures. These temperatures were equal to the egg temperature differences
from Table I plus the ground temperature.

Table XI: Temperature difference ∆T between soil temperatures depicted in Table X and bird eggs.

Month Average temperature difference ∆T Average temperature
at 06:00h at 12:00h at 18:00h at 24:00h difference

[°C] [°C] [°C] [°C] [°C]
April 28.8 28.3 27.1 27.8 28.0
May 22.4 21.2 19.6 21.0 21.0
June 17.8 16.6 15.7 16.5 16.7
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XI. BIRD TRACKING ALGORITHM

The Intel RealSense D455 Depth Camera captures both RGB and depth information. The local
coordinate system of this depth camera is depicted in Figure 12.

Figure 12: Local coordinate system of Intel D455 Depth Camera, retrieved from [64].

The tracking algorithm is made up of five parts, which include (1) Object detection, (2) Object
tracking, (3) Depth retrieval, (4) Global coordinate calculation and (5) Extrapolation of trajectories.

Object detection. The modified YOLOv8 model is employed in the tracking algorithm. In
each frame of the visual video, detections are made and stored in a data frame; each row corresponds to
a detection, with frame number and xmin, ymin, xmax and ymax coordinates of a bounding box, along
with a confidence score.

Object tracking. The SORT algorithm matches new detections to already existing tracks
based on an IoU threshold of 0.3 [49]. Its adds a track ID to each row of the data frame. If the IoU of a
track’s first and last bounding boxes is higher than 0.5, the track is assumed to be caused by a stationary
object or false positive and discarded.

Depth retrieval. Remaining detections are grouped by frame number, and while looping
through the frames, depth information is retrieved for all detections associated to a frame. As the
visual information is captured with a RGB camera and the depth information with two separate infrared
sensors, their coordinate systems are distinct. The relationship between the separate 3D coordinate
systems is described by the camera extrinsics, containing a rotation and translation matrix. The
rs.rs2_project_color_pixel_to_depth_pixel function of the librealsense library aligns
the pixels from the visual detection with those in the depth stream [83]. The captured depth information
provides the distance to the bounding box’ center of each detection. By integrating this depth data with
the intrinsic parameters of the camera it is possible to map 2D pixel locations into corresponding 3D
point locations within the camera’s local coordinate system. This transformation is achieved through
the use of the rs2_deproject_pixel_to_point function of the librealsense library, which also
provides undistortion of the depth image. This results in 3D coordinates of the center of each predicted
bounding box, within the camera’s local coordinate system.

The center of each detection might occasionally lack a corresponding depth value or may be located
just beside the drone, resulting in a very high depth value. To address these inconsistencies, depth values
of four surrounding pixels are also retrieved, as illustrated in Figure 4. If the measured depth value of the
bounding box center exceeds a certain threshold or does not exist, depth values of these four neighboring
pixels are assessed. All values above the threshold are discarded, and the depth of the bounding box’s
center is determined by averaging the remaining values. If all depth values are above the threshold, no
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depth information can be associated with the predicted bounding box. The threshold is set to 3.2 meters,
based on some trial-and-error tests.

if depth_value > threshold:
valid_depth_values = [depth_value for depth_value in [depth_value1,
depth_value2, depth_value3, depth_value4] if 0 < depth_value <= threshold]

if valid_depth_values:
avg_depth_value = sum(valid_depth_values) / len(valid_depth_values)
depth_value = avg_depth_value

Global coordinate calculation. Until now all derived 3D coordinates are presented within
the local coordinate system of the camera, as depicted in Figure 12. The camera configuration used
during measurements is achieved by first introducing a translation of two meters in the negative local
Y-direction and then a rotation around the X-axis of negative 22.5°. These operations can be described
by their respective translation and rotation matrices, as in equation 4, where α = -22.5° and h = 2 meters.


X ′

Y ′

Z ′

1

 =


1 0 0 0
0 cos(α) −sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1



1 0 0 0
0 1 0 −h
0 0 1 0
0 0 0 1



X
Y
Z
1

 (4)

The calculated local 3D point coordinates can be transformed to global coordinates using the inverse
of the matrices in equation 4. The origin of this global coordinate system is then located directly beneath
the camera, with its Y-axis directed into the ground and the Z-axis along the surface. For ease of
interpretation, an additional rotation of 90° around the X-axis is introduced, allowing the Z-axis to orient
upwards and the Y-axis to align with the ground. This global coordinate system is depicted in Figure 4.
Each frame of the visual stream is now associated with a bounding box around the drone, a distance
relative to the camera and a set of 3D coordinates within the global coordinate system, see Figure 4.
The trajectory is updated with every frame a detection is made.

Extrapolation of trajectories. Finally, the global X-, Y- and Z-coordinates of the drone in
each frame can be used to predict the location it came from. All detections with a depth value higher
than 3.2 meters are disregarded, and all detections with a Z-value below a set grass length as well. This
is to simulate a drone appearing from the grass, as the need for a landing pad made its departure less
bird-like.

When looking at the global coordinates retrieved at each detection, a linear pattern
can be distinguished for the first few detections, as depicted in Figure 13. The function
numpy.polynomial.polynomial.polyfit returns a linear regression model, and the coefficient
of a polynomial of degree 1 is found. This polynomial is the least squares fit to the first ten Z-
coordinates, if available. A linear regression model is also applied to the X- and Y-coordinates.
Subsequently, predictions about the previous and future values of these coordinates can be found
using np.polynomial.polynomial.polyval. The timestamp at which the Z-regression model
crosses Z = 0 is calculated, and this timestamp is used to find the corresponding X- and Y-coordinates
at the ground.
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total_index = len(t)
if total_index <= 10:

index = total_index
else:

index = 10

regression_model_z =
np.polynomial.polynomial.polyfit(t_normalized[0:index], z[0:index], deg=1)

z_predicted =
np.polynomial.polynomial.polyval(t_normalized, regression_model_z)

ground_z = 0

equation =
lambda time: np.polynomial.polynomial.polyval(time, regression_model_z)
- ground_z
roots = fsolve(equation)

ground_x = np.polynomial.polynomial.polyval(roots, regression_model_x)
ground_y = np.polynomial.polynomial.polyval(roots, regression_model_y)

Figure 13: World coordinates of drone departing from X = 0 and Y = 3, with linear regression lines through
the first 10 data points. The orange dots indicate the predicted ground timestamp and corresponding
coordinates.
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XII. YOLOV8 PARAMETER TUNING

(a) Modelsize, employing a batch size of 16 (b) Batch size

(c) Learning rates with linear schedule (d) Learning rates with constant schedule

Figure 14: Effect of various parameters on YOLOv8n outcomes trained on thermal dataset. All other
parameters are set to their standard values as detailed in Subsection IV-A3.
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(a) Modelsize, employing a batch size of 16 (b) Batch size

(c) Learning rates with linear schedule (d) Learning rates with constant schedule

Figure 15: Effect of various parameters on YOLOv8n outcomes trained on visual dataset. All other
parameters are set to their standard values as detailed in Subsection IV-B3.
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XIII. DATA AUGMENTATION OPTIMIZATION

Figure 16: Effect of various data augmentation techniques on detection accuracy of YOLOv8n trained on
thermal dataset.

Table XII: Maximum mAP50-95 values of YOLOv8n after 40 epochs of various data augmentation
techniques applied to thermal dataset. Their difference compared to no augmentation is also depicted.

Augmentation method Maximum mAP50-95 Difference from Percentage
value no augmentation difference

brightness 0.79803 0.03856 4.952
blur 0.79179 0.03232 4.167
cutouts 0.79171 0.03224 4.157
noise 0.78624 0.02677 3.464
horizontal flip 0.78008 0.02061 2.677
mosaic 0.76917 0.00970 1.269
bounding box brightness 0.76647 0.00700 0.917
no augmentation 0.75947 0 0
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(a) Original image (b) Horizontal flip

(c) Gaussian noise (d) Cutouts

(e) Gaussian blurring (f) Mosaic

(g) Image brightness (h) Bounding box brightness

Figure 17: Examples of data augmentation techniques applied to thermal image, including annotations.
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(a) Brightness (b) Blur

(c) Cutouts (d) Noise

Figure 18: Effect of parameters associated with data augmentation techniques for YOLOv8n model trained
on thermal dataset. Each augmentation method is assessed in three ways; in its default configuration
(represented by an orange dotted line), with a lower value for the parameter associated to it (in light blue)
and with a higher value (in dark blue).

Figure 19: Effect of brightness adjustments between 0.75 and 1.25 combined with best performing variants
of other data augmentation methods, for YOLOv8n trained on thermal dataset.
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Figure 20: Effect of various data augmentation techniques on YOLOv8n performance trained on visual
dataset.

Table XIII: Maximum mAP50-95 values of YOLOv8n after 40 epochs of various data augmentation
techniques applied to visual dataset. Their difference compared to no augmentation is also depicted.

Augmentation method Maximum mAP50-95 Difference from Percentage
value no augmentation difference

shear 0.67377 0.08154 12.882
brightness 0.67341 0.08118 12.828
saturation 0.67284 0.08061 12.744
blur 0.66981 0.07758 12.294
noise 0.66743 0.07520 11.940
mosaic 0.65419 0.06196 9.942
bounding box brightness 0.64411 0.05188 8.393
grayscale 0.63658 0.04435 7.218
no augmentation 0.59223 0 0
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(a) Original image (b) Grayscale

(c) Saturation (d) Bounding box shear

Figure 21: Examples of data augmentation techniques applied to visual image, including annotation.

Figure 22: Effect of saturation adjustments between 0.25 and 1.75 combined with best performing variants
of other data augmentation methods, for YOLOv8n model trained on visual dataset.
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(a) Bounding box shear, both horizontally and vertically (b) Brightness

(c) Saturation (d) Gaussian blur

(e) Gaussian noise

Figure 23: Effect of parameters associated with data augmentation techniques on YOLOv8n trained on
visual dataset outcomes. Each method is evaluated at its standard configuration (represented by an orange
dotted line), a lower value (light blue) and a higher value (dark blue)
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XIV. SUPPLEMENTARY RESULTS

Figure 24: Bounding box loss during training and validation stages of YOLOv8m trained on thermal
dataset with brightness adjustments.The graphs intersect at 63 epochs, after which overfitting occurs.

Figure 25: Bounding box loss of YOLOv8m trained on visual dataset with saturation adjustments, during
training and validation phases. After 49 epochs, the validation loss starts increasing while the training
loss continues to decrease.
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(a) Threshold of 0.10 (b) Threshold of 0.20 (c) Threshold of 0.40 (d) Threshold of 0.50

Figure 26: Confusion matrices of thermal test set, with different confidence thresholds for detections.

Table XIV: Pearson correlation coefficient r between dependent variables related to thermal bird nest
detection model. Statistical significant correlations are underlined.

First Detection
confidencer P R mAP50-95 FDR detection

distance
P - 0.223 0.745 -0.343 0.034 0.496
R 0.223 - 0.861 0.112 0.589 0.789

mAP50-95 0.745 0.861 - 0.071 0.083 0.399
FDR -0.343 0.112 0.071 - -0.180 0.780
First

detection 0.034 0.589 0.083 -0.180 - 0.107
distance

Detection 0.496 0.789 0.399 0.780 0.107 -confidence

Figure 27: Effect of confidence threshold on the distance a nest is first detected. The Pearson correlation
coefficient r equals -0.954, which is proved to be statistically significant (p < 0.05).
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(a) Threshold of 0.65 (b) Threshold of 0.70 (c) Threshold of 0.80 (d) Threshold of 0.85

Figure 28: Confusion matrices of visual test set, with different confidence thresholds for detections.

Table XV: Pearson correlation coefficient r between dependent variables related to bird trajectory
extrapolation method. Statistical significant correlations are underlined.

r P R mAP50-95 FDR Localization Detection
error confidence

P - -0.041 0.734 -0.542 0.165 0.136
R -0.041 - 0.800 0.093 0.269 0.428

mAP50-95 0.734 0.800 - 0.127 0.254 0.440
FDR -0.542 0.093 0.127 - 0.683 0.580

Localization 0.165 0.269 0.254 0.683 - 0.025error
Detection 0.136 0.428 0.440 0.580 0.025 -confidence
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XV. THERMAL AND VISUAL IMAGES OF EVALUATION NESTS

Figure 29: Nest 1, with 5 eggs and ∆T = 14.5°C.

Figure 30: Nest 2, with 1 egg and ∆T = 14.5°C.

Figure 31: Nest 3, with 1 egg and ∆T = 20.5°C.
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Figure 32: Nest 4, with 2 eggs and ∆T = 20.5°C.

Figure 33: Nest 5, with 4 eggs and ∆T = 24.5°C.

Figure 34: Nest 6, with 1 egg and ∆T = 24.5°C.
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Figure 35: Nest 7, with 5 eggs and ∆T = 28.5°C.

Figure 36: Nest 8, with 4 eggs and ∆T = 28.5°C.

Figure 37: Nest 9, with 4 eggs and ∆T = 32.5°C.
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Figure 38: Nest 10, with 2 eggs and ∆T = 32.5°C.
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