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Abstract

This paper introduces the concept of the Voronoi Split-Screen
in Augmented Reality inside a Sailing Regatta visualization
application. We are making use of existing methods in 2D
environments and modifying them to treat the implications of
merging the screen where a user has complete camera control
(3D/AR/VR).

This is done in three phases which take into account the
3D coordinates of the cameras, while considering the distance
between objects, and mapping them from world space coor-
dinates to screen space. Another important aspect analyzed
is the orientation of the main camera compared to where the
event is taking place.

Furthermore, the algorithm will also give the user guidance
on reaching key events by pointing towards them using an ar-
row, as well as possibilities of choosing the amount of screen
size they would like to have when an event is happening by
using a slider. The proposed method provides a good starting
point for tackling the problem of multiple key events happen-
ing at the same time, but it requires large enough displays
such that the cells can be properly visualized.

Keywords: Dynamic Split-Screen, Voronoi Diagrams,
Event Visualization, Augmented Reality

1 Introduction

1.1 Background

Sports have a long tradition of providing spectators with ex-
citing moments throughout their competitions. With the cur-
rent technological advances, these events can be visualized in
multiple environments, such as 2D/3D on a computer, Aug-
mented Reality using a mobile device, or even Virtual Reality
by wearing a headset.

Once these events happen, a user should not feel con-
strained or compelled to watch them, if he chooses to view
other parts of the race. Therefore, this paper showcases a
method that emphasizes user interaction and helps them to
smoothly engage with such events, without losing their full
control of the camera.

Envisioning race events clearly can be difficult, even more
in AR/VR environments where the camera cannot be com-
pletely controlled programmatically and the user is free to
roam with all degrees of freedom, as discussed by Christie
et al. (2008). This creates ergonomic constraints on the dis-
tance the camera must be pointed in the direction of the
real-world scene to be augmented, called the “magic lens”
metaphor (Kurkovsky et al., 2012, p.71).

Moreover, the field of view of the user is limited to the
size and resolution of the smartphone’s display screen, and
the ability to use the mobile device while walking might have
a negative impact on image visualization and clarity. Dras-
cic and Milgram (1996) discuss the same problem in a vir-
tual reality setting, where a narrow field of view makes the
user wearing a head-mounted display unable to see important
parts of the world and have incomplete and inaccurate depth
perception.

The Computer Graphics and Visualization Group at TU
Delft, in collaboration with the Sailing Innovation Cen-
ter, is developing a new Augmented Reality/Virtual Reality

(AR/VR) application (Figure 1a) for experiencing sailing re-
gattas, which are sporting events consisting of a series of boat
or yacht races. This application is meant to engage and in-
form those new to the sport of sailing, as well as those who
already know the sport well. A captivating way is therefore
needed for visualizing the competitors and key moments of
an event (Figure 1b).
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Figure 1: (a) Main Camera View in AR that follows the user’s phone
movement. (b) Event Camera View that displays a collision. The
proposed method will discuss showing both images in an equal pro-

portion when the user is not close enough to visualize the event.
Original images from the Sailing+ AR Application.
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1.2 The Voronoi Approach

This research aims to answer the question "How can a virtual
camera system engagingly exhibit interesting race events, in
an interactive AR/VR setting?”.

In order to approach this, one may consider delving deeper
into how can multiple mandatory/primary points of focus
be handled. Taking into account the many issues related to
AR/VR settings described in the previous section, the user
camera is hard to be tweaked and modified. However, mak-
ing use of additional cameras that can be automated will let
the user keep full control of movement whilst still having a
way to visualize key events.

Having a split-screen is, therefore, a possible solution and
the method is dividing the screen horizontally or vertically,
such that both points of interest will be on the screen at the
same time. This has the drawback that when the primary
points approach each other, both screen subdivisions would
display the same environment twice, effectively wasting half
of the valuable screen.

Previous work optimizes the screen space using the
well-known Voronoi diagrams (Senechal et al., 1995) to
implement a “dynamic split-screen”. A line as a separator
between points changes its orientation dynamically according
to the position of the points while they move (Figure 2a,b).
This line vanishes when the points get too close to each other
(Figure 2c).
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Figure 2: (a) The screen is split to show both points (red and blue)
when they are far away from one another. (b) The separator line
changes its orientation dynamically based on the points’ positions
in world space while they move (arrows). (c) The separator line
vanishes once the points move towards each other and are close by.



In that sense, the objective of this research is to provide a
solution for implementing the Voronoi split-screen in the con-
text of the Sailing+ application from a 2D setting to 3D/AR.
Since most dynamic split-screens use 2D points in screen
space to map pixels, merging in terms of 3D camera rota-
tion and translations will have some implications that will be
discussed further. The solution will focus on handling two
cameras on the same screen at the same time, but there is a
possibility of extending to multiple cameras if the need arises.

The upcoming sections are structured in the following way:
Section 2 provides the methodology used to tackle the prob-
lem and Section 3 presents the main results of the implemen-
tation in the context of a video demonstration. Following
this, Section 4 discusses the performance and the drawbacks
that the method has when multiple key events are happen-
ing at the same time, with open issues for improvement in
future research. Finally, Section 5 draws a conclusion with
an overview of the extent the research question has been an-
swered.

2 Methodology

This section contains a description of the research techniques
used to answer the research question and details the algorithm
and its three phases. Section 2.1 introduces the notion of
Voronoi diagrams with regards to the Sailing+ application and
details the split phase where the screen is split into two equal
parts, Section 2.2 describes the transition phase between the
split-screen and merge, where the user receives more screen
space when it approaches an event. Finally, Section 2.3 dis-
cusses how the user camera takes over the entire screen in
order for the event to be engagingly visualized, and how we
are solving the orientation problems found in an environment
with more than two dimensions.

The Euclidean distance between the 3D world space coor-
dinates of the user and event camera objects defined in Equa-
tion 1 determines the split-screen phases. In this equation,
(my, mg, mg3) are the 3D (x,y, z) coordinates of the main
user camera position and (eq, ez, eg) the 3D (z, y, z) coordi-
nates of the event camera position. The table in Appendix B
displays the mathematical notation used in this paper.

d(m, e) = \/(m1 —e1)? + (my — €2)* + (m3 — e3)? (1)

The computed Euclidean distance is bound in the [0, c0)
range. We define an interval [min, max] in Equation 2 which
will delimit the transition phase. If the distance d(m, e) de-
termined in Equation 1 is higher than max, the split phase
occurs. Finally, if the distance is lower than min, the merge
phase takes place. The two edges (min, max) that establish
the three phases can be modified in the algorithm.

merge d(m, e) < min
transition min < d(m, e) < max
split d(m, e) > mazx

phase(d(m, e)) =

2

2.1 The Split Phase

The method applies the concept of a Voronoi diagram by gen-
erating it using Graphics Hardware for fast computations as

(Max, — min,) - r — (Max, — min,,)
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seen in Hoff et al. (1999). The Voronoi diagram (Figure 3)
is a partition of space in regions called Voronoi cells. These
cells consist of finitely many points of the Euclidean plane
closer to that cell center than any other.

Figure 3: Voronoi diagram with multiple Voronoi cells, which are
regions obtained from the intersection of half-spaces. Each has a
different color and consists of every point in the Euclidean plane
whose distance is less than or equal to its distance to any other cell
center. Image by Eiserloh (2016).

Our focus is on two such cells, with their respective cell
centers representing the user (Figure 1a) and event (Figure
1b) camera positions. The points that need to be closer to the
cell centers in our case are on-screen pixels. In order to dis-
play both cells simultaneously (Figure 4), we are adjusting
the O(nlogn) Euclidean Space geometric sweepline algo-
rithm for Voronoi diagrams as described by Fortune (1987).

Figure 4: A dynamic separator line (middle) changes its orientation
based on the position of the user’s camera (highlighted with blue,
left), which is far away from the race, relative to the event camera
(highlighted with red, right) in order to have an equal screen distri-
bution. Original image from the Sailing+ 3D Application.

Since every point is independent of another, a part of the al-
gorithm is implemented inside the fragment shader, the stage
that will process a Fragment generated by the rasterization
into a set of colors (Akenine-Moller et al., 2018, Chapter 3.6).

Normalizing camera positions
In order to work with pixel coordinates, we need to compute
the normalized camera positions from the 3D world space co-
ordinates to screen space (Figure 5), according to the aspect
ratio, which is being done inside a script called per frame that
is attached to the user’s camera game object.

The normalization is done by converting the world., cam-
era coordinates which are in a seemingly infinite range into a
[0, 1] interval.
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Figure 5: Normalization of camera positions M (Main camera) and E (Event camera) from world space to screen space. (a) The maximum
and minimum values of = and y (max, min) between the world,, camera coordinates are computed. (b) Subtracting min from all points,
gives us the upper right corner of the viewport (Max). (c) The diff, (in case of Max or diff /2 for E and M) from the first case of Equation 3
is added to the result from (b) in order to correct the camera positions for the screen aspect ratio. (d) Dividing all points to the Max computed

at point (c) yields the normalized coordinates.

This is done by finding the maximum and minimum values
of z and y (max, min) between the world,,, camera coordi-
nates (Figure 5a).

Then, we compute the upper right corner of the viewport
(Max) by subtracting min from max and we do the same for
both cameras coordinates (Figure 5b).

The 2D Vector diff corrects all the points for the screen
aspect ratio r as seen in Equation 3, where r it the screen
width divided by height (Figure 5c).

Half of this diff is added to the camera positions, whilst
the entire diff is added to Max. Finally, the normalization of
camera coordinates will be computed by dividing them to the
new Max (Figure 5d).

The steps shown in Figure 5 are included in Equation 4,
where diff is defined in Equation 3. The normalized result
of the camera positions 2D coordinates will be in our case
always on the edges of the screen opposite to one another
(Figure 6).
world,,,, — min + 94T A
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We are using the Euclidean distance defined in Equation 5,
to compute which pixel is closest to what camera, where
(p1,p2) are the 2D (z,y) coordinates of the pixel being ren-
dered and (c1, ¢2) the 2D («, y) coordinates of each camera.

normalized =

Pixel P(p1,p2)

Figure 6: Pixel P with coordinates (p1, p2) belongs to the Voronoi
cell with center in E (Event camera) because it is at a smaller Eu-
clidean distance than the Voronoi cell with center in M (Main cam-
era). The pixels that are on the blue/red line between the two cells
are at the same distance between the center of these cells and form
the separator line.

d(p,¢) = \/(c1 —p1)? + (c2 — p2)? 5)

Camera layering and separator line

In order to mimic the cell generation, instead of computing
cells from one side of the screen to the other as done by For-
tune (1987), the event cameras are layered to render before
the main camera each time an event is happening. This means
that the main camera will be a layer below the event camera.
To create the Voronoi cells, if a pixel is closer to the event
camera (Figure 6), it will be rendered on screen. All pixels
that are closer to the main user’s camera defined by the 2D
Euclidean distance in Equation 5 will be discarded from the
event camera, thus showing the user camera rendered below
it in the other half of the screen (Figure 4).

Figure 7: The cell center M (Main camera) is translated in the point
M’ (new cell center of the Main camera for the transition phase)
and M” (used for computing the line) respectively, in the direction
of the event camera along the line that ties both cameras. Pixel P
(bottom left) is closer to M’, rather than E (Event camera), therefore
it belongs to the Main cell. Pixel P’ (middle right) is closer to E than
M, therefore it belongs to the Event cell. Because it is closer to M”
than E, it is colored in dark blue to form the separator line between
the M (or M’ in transition) and E cells.

The pixels that are at an equal distance to both of the cam-
eras will be colored to represent the separator line between
them. Since a pixel is not enough to create the separator line,
we will translate the center of the cell from the main cam-
era towards the event camera position along the line which
ties both cameras, on a distance equal to the thickness of the



line we would like to display in that frame (M” in Figure 7,
computed in Equation 6).
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In this equation, (m, e) represent the 2D positions of the
main and event cameras, [t represents the separator line thick-
ness which can be set from inside the algorithm, and d(m, e)
is the 2D Euclidean distance between cameras.
This way, the pixels that belong to the event, but are closer
to the new center of the main cell will be colored as a separa-
tor line between cells.

M’=m+1t-

Centering the event camera inside the cell

The centers of the Voronoi cells follow the changes in the
positions of the cameras in the 2D screen space such that the
center of the camera is always translated into the center of its
respective cell. This way the split will always change based
on where a camera is in the plane relative to the other. Thus
the user knows if his camera is on the top/bottom/left/right
side of the event camera.

In order to always show the event in the middle of its cell,
we compute the pixel deviation from the center of the event
camera along the line connecting the main camera to the event
camera (Figure 7) at a distance of 75% from the main camera
as seen in Equation 7, where (m, e) are the main and event
2D camera positions in screen space.

pixel_deviation = m + 0.75 - (¢ — m) @)

We will apply this deviation to each pixel that belongs to the
event camera cell. We add or subtract this deviation to the
pixel position depending on the location of the pixel in screen
space.

Guiding the user towards the event location

During this phase, an arrow at the top of the main user’s cam-
era screen points towards the position of the event camera, to
guide the user’s way to the event (Figure 8, highlighted with
purple). This is achieved by creating a 3D arrow object that
looks into the direction of the event location and based on
how the split is oriented, it will shift its position on the edge
of the main camera view to either be on top/bottom/left/right,
following the main camera position.

Figure 8: An arrow (highlighted with purple, top middle) is placed
on the main camera view and points towards the event which in this
case is at the bottom. The slider (highlighted with yellow, top left)
is used to increase or decrease the camera views image, depending
on the direction of the camera they would rather see (main to the left
or event to the right). The reset button in the middle will revert the
slider to its original position. Original image from the Sailing+ 3D
Application.

Another guidance feature is a slider located at the top left
of the screen (Figure 8, highlighted with yellow) which can
be moved in the direction of the camera that the user would
rather see. Sliding all the way to the right will result in only
the event being displayed and sliding to the left will increase
the main camera view. The reset button in the middle will
put the slider back to its original position with both cameras
having the same screen size.

When we increase the main cell, the center of the cell is
translated in the direction of the event camera along the line
that ties both cameras (Figure 7), or the opposite direction
along the same line when the user’s shifts the slider to in-
crease the event view. This way, we increase the number of
pixels that belong to one cell compared to the other. This prin-
ciple of a "weighted” Voronoi cell will be further explained in
the next section.

2.2 The Transition Phase

The transition is the intermediate phase between the split
phase and the merge phase and consists of raising the screen
space allocated to the main user’s camera detrimental to the
event camera (Figure 7) using the Weighted Generalization of
the Voronoi Diagram described by Ash and Bolker (1986).

In order to achieve this, we use an interval between the
lower and upper bound of the Voronoi Weight (Equation 2),
which can be modified inside the algorithm and is based on
the world space distances between cameras. The merge phase
happens when the distance is below the lower bound of the
interval, whilst the split phase commences if the distance be-
tween cameras is higher than the upper bound.

If the Euclidean distance between cameras in 3D world
space coordinates (Equation 1) is inside the range of the in-
terval (Equation 2), we compute a smooth Hermite interpola-
tion between 0 and 1 as seen in Equation 8 (Tatarchuk, 2003,
p-94) which is transposed in screen space. In this equation,
represents the 3D Euclidean distance between cameras, while
man and max are the lower and upper bounds of the Weight
interval.

0 T < min
322 — 223 min <z <maz (8)
1 T > max

smoothstep(z) =

The result is used in Equation 9 to compute the translated
position of the main camera found on the line between the
main and event camera (Figure 7, M’). In this equation,
(m, e) represent the 2D positions of the main and event cam-
eras, smoothstep(dist) is the interpolation defined in Equa-
tion 8, where dist is the 3D Euclidean distance between the
main and event cameras.

€e—Im

d(m,e)

The translation will be closer to the event camera, to be able
to attract like a magnet more pixels to the user camera. In this
sense, the weighted cell of the main camera is increased as
seen in Figure 9.

The separator line between cells (Figure 9b) will shorten
depending on the result of the interpolation from Equation 8.

M’ = m + (1 — smoothstep(dist)) - ©)



Figure 9: Magnetism effect of the main camera, which attracts more pixels to it as the distance between itself and the event camera decreases.
(a) Main camera view (left) increases as the distance between itself and the event camera (right) decreases. (b) The separator line as well as
the event (bottom left) shrink smoothly as the main camera takes over. (c) Main camera view is visualizing the event on the entire screen
space. Original images from the Sailing+ 3D Application.

We achieve this by translating the main camera from M’
in point M” towards the event camera as seen in Figure 7,
by using Equation 10. In this equation, smoothstep(dist) is
the interpolation defined in Equation 8, where dist is the 3D
Euclidean distance between the main and event cameras. Fi-
nally, It represents the separator line thickness which can be
set from inside the algorithm, and d(m, e) is the 2D Euclidean
distance between cameras.

9 _ M\ : €e—m
M” = M’ + smoothstep(dist) - It d(m.e)

The center of the event camera is translated to keep the
event centered no matter how small the Voronoi cell becomes,
as described in Section 2.1, Equation 7.

In this phase, the arrow will disappear as the event is close
enough to be engagingly visualized by the user, but the slider
will remain on the top left as in Figure 8, to let the user have
full control of what he would rather see.

2.3 The Merge Phase

The merge phase happens when the 3D Euclidean distance is
smaller than the min value defined in Equation 2. However,
despite being in close range to the event camera, the user can
still choose to look in a different direction than where the
event is taking place. Due to this fact, we need to establish
a new interval (Equation 11) that takes into account multiple
key points:

(10)

1. The 3D Euclidean distance between the point where the
forward vector of the main camera intersects the regatta
field and the competitor that the event camera is pointing
towards (Figure 10, dark blue and red lines).

. The world space angle formed between two 3D vectors,
the main camera to the center of the viewport and the
main camera to the point where the event competitor in
the regatta field is (Figure 10, angle «).

3. The 2D normalized Euclidean distance between the
main camera center of the viewport and the event com-
petitor (Figure 10, purple line).

If the 3D Euclidean distance from the first point (Figure
10, between H and E) is greater than a maximum visible
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distance, and the world space angle (second point) is greater
than a maximum visible angle (both of which are defined in
the algorithm), then the M_split phase occurs.

Regatta field

Figure 10: Main camera pointing at the regatta field (light blue area).
H represents the point with world space coordinates where the for-
ward vector (dark blue) going from the camera intersects the regatta
field. E is the point with the world space coordinates of the competi-
tor participating in an event. C is the center of the viewport (white)
with coordinates (0.5,0.5), and E’ is the point with the coordinates
of the event competitor.

The computed 2D Euclidean distance between cameras
D(m, e) described at the third point is bound in the [0, c0)
range. The interval [Min, Max] in Equation 11 will de-
limit the M_transit phase. If the distance is higher than
Maz, the M_split phase occurs. Finally, if the distance is
lower than Min, the M_merge phase takes place, where the
user’s camera will take over the entire screen. The two edges
(Min, Max) that establish the three phases can be modified
in the algorithm.

M_merge D(m,e) < Min
Phase(D(m, e)) = ¢ M_transit Min < D(m,e) < Max
M_split D(m,e) > Max

(1)

Handling the transit and split phases
In the M_transit phase, we compute the smoothstep(x) from
Equation 8. In this equation, x is the D(m, e) distance, while

man and max are the lower and upper bounds of the interval
(Min, Max).

E, <E;andE, >1-E,
E,<1-E;andE, > E,
E, <1-E;andE, <E,
E, >E; andE, >1-E,

12)



In both phases (M_transit and M_split), we simulate the
movement of the camera positions along the edges of the
screen opposite to one another as seen in Figure 6 using the
2D coordinates of the center of the viewport and the competi-
tor’s position (Figure 10, C and E”).

To achieve this simulation, we will translate both points on
the edges of the screen by using Equation 12, depending on
the event position of the competitor E relative to the center of
the viewport M. The result of this translation can be seen in
Figure 11, where M and E will be the center of the Voronoi
Cells for these two phases.
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Figure 11: Translation of the center of the viewport M and the com-
petior’s position that participates in the event E. After applying
Equation 12, we obtain a list of two 2D vectors representing the
center of the Voronoi cells, which will always be on the edges of the
screen at opposite ends of each other (M and E as seen previously
in Figure 6).

If the competitor’s position is outside of the main camera
viewport [0, 1], when the user changes its camera orientation,
or if the event will continue outside of the viewport, then we
will normalize this new position using the previous Equation
4.

In these phases, the behaviour of the Voronoi cells and the
separator line between, as well as the event camera cell cen-
tering, and the mentioned guidance features are the same as
described in Sections 2.1 and 2.2.

Once the 2D distance D(m, e) is below the transition inter-
val, the user’s camera will take over the entire screen (Figure
9c). As the user distances himself from the event, the algo-
rithm will smoothly return to the transition and split phases
consequently. If the event ends in this phase, the user will
simply remain in complete control of the camera, and the
split-screen is removed. At the beginning of the race, or if
a new event happens, the screen will be in one of the three
phases, depending on the position of the event compared to
where the user camera is at that current moment in time.

3 Results

Events are an important part of the race and there should be
a way to showcase them even though the user is not directly
looking in their direction. That is where the split-screen al-
gorithm comes into play. In this section, we showcase the
results of the technique presented in the three phases.

The screen will display two Voronoi Cells, one for the main
user camera and one for the event. Depending on the position

of the user’s camera relative to the event, the split along with
the separator line between will shift their direction to show
where the event is happening (Figure 4).

If the user’s camera is above the event camera, the event
will be displayed at the bottom of the screen, if the user’s
camera is on the left of the event camera, the event will be
displayed on the right side of the screen. This will happen
similarly in the other two directions.

During this time an arrow is pointing towards the location
of where the event is currently happening, and the user only
needs to follow it to see everything from the point of view of
the event camera. Another guidance feature, in case the user
chooses not to move their camera at all, is moving the slider
on the top left of the screen in the direction of the camera that
they would rather see. If they choose the main camera, the
event cell will slowly shrink until the entire main camera view
takes over. If they would rather see the event, then the event
camera cell will increase in size depending on the movement
of the slider. The reset button in the middle will put the slider
back at its original position (Figure 8).

In the transition phase that happens when the user ap-
proaches the event, the center of the Voronoi cell correspond-
ing to the main camera is shifted closer to the center of the
event cell similar to the split-phase, based on the main cam-
era position relative to the event camera (Figure 9a). The
event cell will always be centered in the remaining screen,
even though the view starts shrinking (Figure 9b). The user
will still be able to choose what he would rather like to see
in this phase, by shifting the top left slider towards its desired
camera.

Finally, we have reached the merge phase, where the user
camera is in the range of the event camera, therefore the only
active camera is now the one of the user’s (Figure 9c). How-
ever, they can still choose to rotate their camera away from
the event, even though the camera positions are close to each
other.

In that case, the screen will start to shift inside a transition
phase again, which will result in a full split with the arrow
that guides the user in the direction of the event. This time,
the split follows the direction of where the user is pointing his
camera relative to the event position and he can also choose
to shift the slider to choose the camera he would like to see
most. He can also perform full rotations around the event and
the split will work in the same way, by shifting depending
on the location of the event to the center of the main camera
viewport.

Thus, the solution solves the Augmented Reality issue of
the user having complete control of the smartphone equipped
with a camera on the opposite side of the display, and allows
the user to engage with the event regardless of his camera
movement.

Since the split-screen effect is highly dynamic, the results
are best visualized inside a video, rather than in figures. It
shows the user engaging with an event by moving through all
three phases of the algorithm. The demo is presented in the
3D environment of the Sailing+ application but the camera
movement mimics the Augmented Reality behavior of a user
with a phone camera.


https://www.youtube.com/watch?v=IFyQEPxTfW0
a

Figure 12: Center deviation of the event camera. (a) There is no information to render in the corners of the event Voronoi cell (white).
(b) The empty edges are replaced with a texture similar to the water inside the regatta field (top left and bottom right, yellow).

4 Discussion

4.1 Performance

Our algorithm performs in O(m - n) time complexity where
m is the number of active cameras (Voronoi cells) and n is
the number of pixels. However, this is a negligible issue for
two cameras in a fragment shader (O(2 - n)) and it will not
affect the framerate, making the algorithm fast enough for the
required seconds in which the event is taking place.

The technique allows the customization of controlling the
split-screen via several parameters. Firstly, the edges of the
distance intervals from Equation 2 and 11 can be modified
to better delimit when the event is still visible enough to be
engagingly visualized and when the transition leading to the
full split should begin and end. Moreover, the colors of the
separator line and the arrow pointing toward the event as well
as the line thickness can also be changed.

4.2 Shortcomings and Future Work

With the center displacement of the event cell and deviation
of the pixels, there will be areas in the cell where there is no
render information (Figure 12). In order to solve this prob-
lem, we render a texture similar to the one of the water where
the event is taking place. If the pixel coordinates x,y (com-
puted after the addition or subtraction of Equation 7) are not
in the range (0, 1), then the water texture will be rendered.

Another limitation of the algorithm happens when the
Voronoi cell of the event camera shrinks in the transition
phase. The line separator will shrink along with the event cell
and the smooth computed in Equation 8 will reach a very low
value. The line thickness is influenced by this smooth equa-
tion, therefore the line will disappear completely before the
event reaches the end. The solution to this is to set up a mini-
mum line thickness that can be modified in the algorithm. In
this way, the line will remain visible even if the event Voronoi
cell is at a small scale.

The solution presents a split for two cameras, but it can
be extended for multiple events happening at the same time
by adding more event camera cells. The difficulty is in cre-
ating a fair size balance when more points of focus come
into play (Figure 3), and an even ratio solution for more than
two points has been proven to not exist as discussed in Lenz
(2018). This means that the method can be extended to mul-
tiple key events, in case competitors are scattered far away in
the plane but there will be ”spatial adjacency” issues (Gold,
1991, p.66). It does not necessarily mean that it cannot be
done, however, a larger screen is needed in order to visual-

ize each camera properly, and given the fact that the applica-
tion targets mostly mobile phones, few of them have a large
enough display for more than two splits, as it will be hard for
the user to understand what is happening in all the different
camera views.

The method showcased in the figures and the accompany-
ing video is inside a 3D environment, yet it applies to any
setup, including mobile devices and AR environments. The
same can be said for projecting the application on a televi-
sion display. That will provide enough room for the cells
to be understood independently and it could encompass at
least three more additional splits, before the views become
unintelligible. Moreover, the split is transitioning smoothly
enough to not provoke motion sickness in a Virtual Reality
setting, therefore another possible extension of the algorithm
is to test it inside this setting and conduct a user study to see
if the addition is feasible with fast head tilt movements. For
environments that have the possibility of touching the screen,
the slider on the top left of the viewport can be completely
removed and replaced with user gestures, by sliding with a
finger the camera that the users would like to maximize.

5 Conclusions

We presented a technique for adding a split-screen effect to
the Sailing+ application in order for the user to engagingly
visualize key events happening throughout a sailing regatta.
The technique is based on concepts of Voronoi diagrams as
well as the Weighted Voronoi Generalization, applied to a
3D/AR environment.

The common usage of the algorithm is inside 2D video
games, to showcase cooperative players on the same screen.
Our approach demonstrates that the algorithm can be applied
in any context other than 2D, as seen in the previous section
(3D/AR/VR).

The split-screen algorithm is highly customizable, as ev-
erything from the phase intervals to the line thickness and
color can be changed for the most engaging results.
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case videos from different cameras at the same time. This
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maliciously and manipulate the result to provide misleading
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Another concern for this type of research is the repro-
ducibility of results. If the method is not clearly detailed,
future research will be hard to be conducted by others. Since
the source code is written inside a licensed application, read-
ers have to request access by contacting one of the paper au-
thors. The lines have been thoroughly documented to remove
ambiguity as much as possible.

B Mathematical Notation

The following table summarizes the mathematical notation
used in this paper.

Type Notation Examples
angle lowercase Greek | oy, ¢, p,1n, Y242, 60
scalar lowercase italic a, b, t, ur, v, wij;

vector or point lowercase bold a,u, vs h(p), h,

The angles and the scalars are real numbers from R.
Vectors and points are denoted by bold lowercase letters,
and the components are accessed in column vector format as

Vg
V= Uy
Vz

for a 3D vector.
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C Enlarged Figures

The following section provides the figures used in the paper at a larger scale.

Figure 13: (a) Main Camera View in AR that follows the user’s phone movement. (b) Event Camera View that displays a collision. The
proposed method will discuss showing both images in an equal proportion when the user is not close enough to visualize the event. Original
images from the Sailing+ AR Application.

’

Figure 14: (a) The screen is split to show both points (red and blue) when they are far away from one another. (b) The separator line changes
its orientation dynamically based on the points’ positions in world space while they move (arrows). (c) The separator line vanishes once the
points move towards each other and are close by.
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Figure 15: A dynamic separator line (middle) changes its orientation based on the position of the user’s camera (highlighted with blue, left),
which is far away from the race, relative to the event camera (highlighted with red, right) in order to have an equal screen distribution. Original
image from the Sailing+ 3D Application.
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Figure 16: An arrow (highlighted with purple, top middle) is placed on the main camera view and points towards the event which in this
case is at the bottom. The slider (highlighted with yellow, top left) is used to increase or decrease the camera views image, depending on the
direction of the camera they would rather see (main to the left or event to the right). The reset button in the middle will revert the slider to its
original position. Original image from the Sailing+ 3D Application.

Pixel P(p1,p2)

Figure 17: Pixel P with coordinates (p1, p2) belongs to the Voronoi cell with center in E (Event camera) because it is at a smaller Euclidean
distance than the Voronoi cell with center in M (Main camera). The pixels that are on the blue/red line between the two cells are at the same
distance between the center of these cells and form the separator line.
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Figure 18: The cell center M (Main camera) is translated in the point M’ (new cell center of the Main camera for the transition phase) and
M?” (used for computing the line) respectively, in the direction of the event camera along the line that ties both cameras. Pixel P (bottom left)
is closer to M, rather than E (Event camera), therefore it belongs to the Main cell. Pixel P’ (middle right) is closer to E than M?, therefore
it belongs to the Event cell. Because it is closer to M” than E, it is colored in dark blue to form the separator line between the M (or M” in
transition) and E cells.

Regatta field
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Main Camera Viewport

Figure 19: Main camera pointing at the regatta field (light blue area). H represents the point with world space coordinates where the forward
vector (dark blue) going from the camera intersects the regatta field. E is the point with the world space coordinates of the competitor
participating in an event. C is the center of the viewport (white) with coordinates (0.5,0.5), and E’ is the point with the coordinates of the
event competitor.
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Figure 20: Translation of the center of the viewport M and the competior’s position that participates in the event E. After applying Equation
12, we obtain a list of two 2D vectors representing the center of the Voronoi cells, which will always be on the edges of the screen at opposite
ends of each other (M and E as seen previously in Figure 6).
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Figure 21: Normalization of camera positions M (Main camera) and E (Event camera) from world space to screen space. (a) The maximum
and minimum values of = and y (max, min) between the world,, camera coordinates are computed. (b) Subtracting min from all points,
gives us the upper right corner of the viewport (Max). (c) The diff, (in case of Max or diff, /2 for E and M) from the first case of Equation 3
is added to the result from (b) in order to correct the camera positions for the screen aspect ratio. (d) Dividing all points to the Max computed
at point (c) yields the normalized coordinates.

Figure 22: Center deviation of the event camera. (a) There is no information to render in the corners of the event Voronoi cell (white).
(b) The empty edges are replaced with a texture similar to the water inside the regatta field (top left and bottom right, yellow). Original images
from the Sailing+ 3D Application.
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Figure 23: Magnetism effect of the main camera, which attracts more pixels to it as the distance between itself and the event camera decreases.
(a) Main camera view (left) increases as the distance between itself and the event camera (right) decreases. (b) The separator line as well as

the event (bottom left) shrink smoothly as the main camera takes over. (c) Main camera view is visualizing the event on the entire screen
space. Original images from the Sailing+ 3D Application.
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