
Modifying 
a path into
the shortest 
path

Xiaowei Duan



MODIFYING A PATH INTO THE SHORTEST PATH

by

Xiaowei DUAN

to obtain the degree of Master of Science
in Electrical Engineering

Track Wireless Communication and Sensing
at the Delft University of Technology,

to be defended publicly on Tuesday December 20, 2022 at 11:00 AM.

Student number: 5337593
Project duration: February, 2022 – December, 2022
Thesis committee: Prof.dr.ir. P.F.A. Van Mieghem, TU Delft,chair

Dr. J.L.A. (Johan) Dubbeldam, TU Delft
Ir. Rogier Noldus, Ericsson,TU Delft

Supervisors: Prof.dr.ir. P.F.A. Van Mieghem, TU Delft
Zhihao Qiu, TU Delft, daily supervisor



To my mom



PREFACE

This thesis, Modifying a path into the shortest path, represents the end of my two and
a half years of study at the Delft University of Technology. I completed the Master of
Science degree in Electrical Engineering with this project at the Network Architectures
and Services (NAS) group. Studying at the Delft University of Technology is unforgettable
for me.

Firstly, I would like to express my sincere gratitude to my supervisor, Professor Piet
Van Mieghem for his support and constant guidance during the entire thesis period.
Secondly, I would like to thank my daily supervisor, Ir. Zhihao Qiu, for his weekly
brainstorming sessions, guidance on the structure of my thesis and helpful advice about
this project. I would like to thank Erik de Vries for his guidance on how to execute
simulations and codes using QCE clustering. In addition, I would like to thank Professor
Johan Dubbeldam for being on my thesis committee. Notably, I am particularly grateful
to Ir. Rogier Noldus for his valuable suggestions for my thesis. Words cannot express
how thankful I am. I am fortunate to obtain their help and it must be the most treasured
experience I had during my study at the Delft University of Technology.

During my thesis time, a lot of things in my life changed. I have also had moments of
disappointment and confusion. I would like to thank my parents for their support and
encouragement. I would also like to thank my friend Yuan Hua for her company, and my
friend Ying Jin as well as Xuemeng Tian for their support behind the scenes. Finally, I
would also like to thank myself. Thanks for my persistence, optimism and efforts.

Xiaowei Duan
Delft, December 2022

iii





ABSTRACT

Modifying a path into the shortest path can be dealt with by the method to process
the inverse shortest path problem (ISPP). ISPP is a problem based on graph theory,
that is to design link weights in a graph to satisfy that given paths are the shortest
between the corresponding node pairs. It can be used in networks of complex systems
to solve practical problems such as re-routing in transportation systems and reallocating
resources in IP networks. This thesis proposes two new methods based on the simplex
algorithm, the split path method (Sp) and the limit constraints method (Lc), to solve
the inverse shortest path problem with one predefined path (ISPP-S). The different
approaches used to find the constraints in these two methods affect the obtained
optimal solution and running time. By analyzing the simulation results (running time,
adjustment of link weight as well as the relationship between path length and running
time) of these two algorithms in graphs with various structures, we can evaluate the
efficiency of Sp and Lc and summarize their applicable networks. After modification,
these two methods can be utilized to solve the extended inverse shortest path problem
with multiple target paths (ISPP-M) and with target paths in a spanning tree (ISPP-T).
In addition, the applicability of these two algorithms is also extended from directed
graphs to undirected graphs. The application of Sp and Lc algorithms in a variety of
empirical networks is also discussed. Through the analysis of the above problems and
the experimental results, we discover that Sp is more suitable to solve ISPP with relatively
few constraints (ISPP-S or ISPP in small-sized networks); Lc performs better when
solving ISPP with relatively more constraints (ISPP-M or ISPP in large-sized networks).

Key words: The inverse shortest path problem, Network, Graph theory,
Mathematical optimization, Simplex algorithm
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1
INTRODUCTION

A complex system is a system composed of individual parts or components linked
together in some way [1]. A society with billions of people, a transportation system with
thousands of roads and a nervous system containing a large number of neurons are all
complex systems. Actually, we are surrounded by complex systems. How to describe,
understand or even control complex systems and reveal their fundamental laws and
principles, network science may provide an answer.

Network science is an emerging discipline that has its origins in graph theory. Many
practical problems in complex systems can be transformed into mathematical problems
based on graph theory. The inverse shortest path problem (ISPP), the topic of this thesis,
is a graph-theory based problem. We can solve ISPP in complex systems to improve or
control these systems.

1.1. MOTIVATIONS
Modifying a path into the shortest path is known as the inverse shortest path problem
(ISPP) [2][3][4][5], which can be dealt with by the method to process ISPP. The inverse
shortest path problem is motivated by real-world traffic models. When people travel
from one place to another, distance is not the only factor that influences their choice
of route. Various factors (such as tolls on the route, traffic congestion, the number of
service centers, etc.) are concerned by them when selecting routes. Taking all factors
into account, people would have an assessment of the specific cost for each route. In
their opinion, the cost of the route they choose is the lowest. However, the routes chosen
by them tend to be different from what the road network planner had preconceived
based on relevant knowledge. So when planners analyze chosen routes, they need to
redistribute the priori cost of routes to match the assessments of cost that people have
in their minds. At the same time, the change before and after reallocation should not
be too great. This is because people’s perceived costs are not entirely accurate and only
provide bounds on the travel cost. The previous costs set by planners are still informative
and cannot be completely ignored.

1
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2 1. INTRODUCTION

Not only the traffic in the real road networks, but also the traffic flow in an IP
network is a motivating example for studying the inverse shortest path problem. In the IP
network, the data package should be allocated the shortest path to be transferred by the
operator, which heavily affects the network’s performance [6]. When the performance
of the network is not ideal, adjusting weights is one method and the administrator
can adjust the weight setting to ensure that the data package transmission path is
the shortest. But how to configure administrative weights is unclear, and it is hard
for the administrator to immediately adjust network parameters to keep the entire
network working efficiently. This problem can be solved as an ISPP by mathematical
programming in a short time.

These two motivating examples not only indicate reasons for studying the inverse
shortest path problem but also point out two important parameters that we should focus
on during the study. One is the amount of adjustment, and the other is the processing
time. However, previous studies mainly focus on the algorithm to solve the inverse
shortest path problem, and research on these parameters is insufficient.

1.2. OBJECTIVES
The objective of the thesis is to explore the inverse shortest path problem (ISPP),
including

• Understanding the content of ISPP.

• Proposing new algorithms to solve ISPP.

• Implementing previous algorithms and new algorithms in Matlab language;
choosing graphs with different structures as experimental subjects and
experimenting with all algorithms; analyzing and comparing their experimental
results (running time and weight adjustment).

• Modifying algorithms to apply to ISPP extension problems and applying these
algorithms to solve ISPP in empirical networks.

1.3. THESIS OUTLINE
The structure of this thesis is as follows:

• Chapter 2: We mainly introduce ISPP and previous studies about it. This chapter
starts with the basics of graph theory. Then, we explain ISPP specifically based
on knowledge of graph theory. Finally, we provide a brief overview of relevant
works on ISPP and introduce two previously known algorithms, the quadratic
programming method (Qp) and the column generation method (Cg), in detail.

• Chapter 3: We propose two new algorithms—the split path method (Sp) and the
limited constraints method (Lc), and describe specifics about these algorithms.
We also provide their flowcharts, pseudo codes, and complexity analysis.

• Chapter 4: We test four methods (Qp, Cg, Sp, Lc) for solving the ISPP with a single
prescribed path (ISPP-S) in four different types of directed graphs. We analyze the
efficiency of each algorithm by its running time and the total weight adjustment.
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• Chapter 5: We extend the ISPP-S to the ISPP with several target paths (ISPP-M) as
well as the ISPP with target paths in a spanning tree (ISPP-T). We also discuss the
feasibility of Sp and Lc in undirected graphs. Simulations and experimental results
of these extension problems are included.

• Chapter 6: We simulate some empirical networks and use the four algorithms
described above to solve specific ISPP in these networks.

• Chapter 7: The numerous results obtained in the former chapters are summarized
and some conclusions are drawn from the experiments. We also give some
suggestions for further investigation.





2
THE INVERSE SHORTEST PATH

PROBLEM

This chapter introduces the inverse shortest path problem (ISPP), its related work
and existing algorithms to solve the ISPP. In order to clarify ISPP, we present relevant
knowledge of graph theory beforehand because the definition of ISPP involves some of
these terms.

2.1. GRAPH THEORY
A diagram composed of a collection of points with lines connecting them can depict the
structure of real-world networks [1]. The concept of graphs is derived mathematically
from such structures using points, representing "nodes", and lines, representing "links".
The feature of each object in networks can be described as properties of graphs and
quantitated by graph metrics.

2.1.1. BASIC STRUCTURAL PROPERTIES
The topology of a network can be represented by a graph G . Nodes in the graph can
specify objects in the network, and the node set is denoted by N . Links connecting
nodes can represent connections between two objects. The link set can be represented
as L . An adjacency matrix A, a square N ×N matrix with elements of 0 or 1, can be used
to represent the graph [7]. If there is no link between node i and node j , ai j = 0; else,
ai j = 1. In some cases, each link in the graph has an associated value: the link weight w .
This type of graph is called a "weighted graph". The link weight is often given a specific
physical meaning (such as traffic flow, email latency, construction costs, etc.) to describe
the properties of the connection between two objects. A weighted matrix W which has
the same dimension as matrix A is defined, and its elements are w . If ai j = 0, wi j = 0,
there is no link from node i to node j .

A graph can be defined as a directed or undirected graph, which depends on whether
its links have a fixed direction. In the directed graph, the link from node i to node j (li j )

5
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is different from the link from node j to node i (l j i ). So the weight of these two links ai j

may not be equal to a j i . But in the undirected graph, ai j = a j i . Then we introduce some
parts of the graph:

• Path: Paths are basic entities in connecting two nodes in a graph G [8], denoted
by P . There are no repeated nodes or links in a path and the path length pl is the
number of links contained in the path [9].

• Shortest path tree: The concept of the shortest path tree is based on the spanning
tree. A spanning tree of an undirected graph G is a tree that contains all of the
nodes of G . If a spanning tree T is a shortest path tree, the weight of the path from
the root node r to every node t in this tree should be the shortest between node
pairs (r, t ) in graph G .

2.1.2. TOPOLOGICAL METRICS
The primary metrics we used in this thesis are listed below.

• Degree: The degree of nodes d determines how strongly a group of nodes are
tied. The node degree d indicates the number of a node’s neighbors, which is the
number of nodes connecting to it. So d ∈ [0, N −1]. This definition is aimed at the
undirected graph. For a directed graph, the degree of each node can be divided
into ’in-degree’ (the number of links terminating at this node) and ’out-degree’(the
number of links starting from this node).

The degree distribution is a description of the degree of all nodes in the graph. For
a random graph, the node degree is a variable. When randomly selecting a node,
the probability of its degree d equals to k (k = 1,2, ... for a connected graph) is the
degree distribution Pr(d = k). Mathematically,

Pr(d = k) = Nk

N
(2.1)

where Nk is the number of nodes whose degree is equal to k, N is the number of
nodes in the whole graph.

• Betweenness: Betweenness is a crucial parameter when studying the shortest path
problem. The betweeness of a link l is defined as

Bl =
σi j (l )

σi j
(2.2)

where σi j is the number of shortest paths from node i to j , and σi j (l ) is the
number of shortest paths between i and j traversing link l [8].

2.1.3. TYPE OF GRAPHS
After explaining the common metrics of graph theory, we introduce four graphs with
different structures as test subjects for the subsequent experiments. We mainly state
their features as well as how to build them up.
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ER GRAPH

Erdős–Rényi (ER) random graph is first proposed by Paul Erdős and Alfréd Rényi [10],
which is constructed by taking N nodes and generating a link between each pair of nodes
with probability p.

The specific generation process of ER graph is as follows.

• Set the value of connection probability p.

• Select an arbitrary pair of nodes i and j .

• Choose a value uniformly from 0 to 1. If this value is less than or equal to the
probability p, a link exists between nodes i and j .

• Repeat the above steps until all node pairs are selected.

This model is defined as G(N , p), which is the related variants of ER random graph
model.

Figure 2.1 plots the degree distribution of a ER graph G(1000,2ln(N )/N ) (a
1000-node ER graph with connection possibility p = 2ln(N )/N ). The degree distribution
of the ER graph is Binomial distribution.

Pr(d = k) =
(

N −1
k

)
pk (1−p)N−1−k (2.3)

0 5 10 15 20 25

k

0

0.02

0.04

0.06

0.08

0.1

0.12

P
r(
d=
k)

Figure 2.1: The degree distribution of ER graph

BA GRAPH

Barabási–Albert (BA) graph is a scale-free network, in which most nodes are only
connected to a few nodes (hubs). The degree of hubs is larger than the degree of other
nodes.

The process of constructing BA graph is as follows,

• First, make m0 nodes in the graph as hubs and connect them to each other to
generate a complete graph.
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• Then, gradually add one new node at a time. Generate m1 (m1 < m0) links between
the new node and old nodes.

• The new node prefers to connect nodes with a high degree. The probability of old

node i with degree di being connected is Pri = di∑n
j=1 d j

(n is the number of nodes

in current graph).

The constructed BA graph can be denoted by G(N ,m0,m1).
The degree distribution of BA graph should obey Power-law.

Pr(d = k) ∼ k−γ (2.4)

Where γ is called the power law exponent, whose value is typically in the range [2,3] in
the real world.

For a BA graph G(1000,5,1), after computing Pr(d = k) and taking the logarithm of
both sides of the formula 2.4, we plot them in Figure 2.2. Figure 2.2 depicts a line with a
slope equal to the power law exponent γ, where γ= 2.373.

100 101

k

10-3

10-2

10-1

100

P
r(
d=
k)

Figure 2.2: The degree distribution of BA graph

2D LATTICE GRAPH

In graph theory, a lattice graph is a graph whose drawing is embedded in Euclidean space
Rn , forming a regular tiling. Compared to other types of graphs, the structure of 2D
lattice graph is fixed and regular.

Due to the special structure of 2D lattice graph, we can construct it from a geometric
perspective. Every node in the graph corresponds to a point in the plane with integer
coordinates. The range of x-coordinates is [1,n0], the range of y-coordinates is [1,n1],
and n0 ×n1 = N (N is the number of nodes in graph). If the distance between two nodes
is equal to 1, there is a link formed between them in the direction of increasing value of
the coordinate axis. 2D lattice graph can be denoted by G(N ,n0 ×n1).

In Figure 2.3, the 100-node 2D lattice graph can be represented as G(100,10×10). The
degree of four vertices (red points) is 2, the degree of nodes on the sides (yellow points)
is equal to 3, and the degree of rest nodes is 4. This law holds for all 2D lattice graphs of
any size.
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Figure 2.3: The structure of 2D lattice graph

CONFIGURATION GRAPH

The configuration model is a model of a random graph with a specified degree sequence,
rather than degree distribution [11].

The steps for generating a configuration graph with N nodes are as follows:

• Consider a degree sequence K , whose elements ki uniformly distributed in range
[1,K ] (K and ki are positive integers, i ∈ [1, N ]).

• Set each node has ki half links. To ensure that the graph can be successfully
constructed, the sum of ki should be even.

• Uniformly select a pair of nodes at random and merge their half links into one.
Then from the remaining half link set, continue to choose two half links. Repeat
this step until there are no more half links.

The generated configuration graph may have self-loops or multi-links. But with the
number of nodes increasing, the number of self-loops and multi-links will decrease.

We build a configuration graph G(1000,[1,10]) with 1000 nodes and a degree range
of [1,10]. Figure 2.4 indicates that its degree distribution is uniform.

1 2 3 4 5 6 7 8 9 10

k

0

0.05

0.1

0.15

P
r(
d=
k)

Figure 2.4: The degree distribution of configuration graph
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2.2. THE INVERSE SHORTEST PATH PROBLEM
With priori knowledge of graph theory, we now concentrate on the inverse shortest path
problem (ISPP).

ISPP is to reassign link weights such that predetermined paths become the shortest
between corresponding origins and destinations, and the adjustment of the graph’s
weight is minimized [5].

Consider a graph G(N ,L ,W ) with N nodes, L links, and link weighted matrix W
with elements wl (l ∈L ), and a set of n paths Pn are given. The source of the i th path Pi

is denoted by si and the destination of it is ti (i ∈ [1,n]).
The goal of the ISPP is to make target paths Pi become the shortest path between

node si to node ti with the new link weighted matrix W ′, w ′
l represents its elements.

Meanwhile, the sum of link weight changes should be minimal. The weighted
adjustment of whole graph can be expressed as

∑
l∈L |w ′

l −wl |.
Then the inverse shortest path problem can be formulated as

min
∑

l∈L

|w ′
l −wl | (2.5)

whereby

{
Pi is the shortest path from si to ti with W ′, i = 1,2, ...,n

wl , w ′
l ≥ 0, l ∈L

When n = 1, we defined it as the ISPP with a single target path (ISPP-S); when n > 1,
it can be considered the ISPP with multiple target paths (ISPP-M).

Our study starts from the ISPP-S and then extends to the ISPP-M as well as its special
case, making a spanning tree become to the shortest path tree (ISPP-T).

2.3. RELATED WORK
After introducing the definition of ISPP, now we review some related work that has been
carried out.

In the past few decades, there have been some developments in the study of the
inverse shortest path problem. Burton and Toint [12] initially used the quadratic
programming under the l2 norm to solve the inverse shortest path problem in 1992.
Since then, more and more scientists have started to study ISPP. In 1995, Xu [4] found
that the feasible weight vectors of ISPP can form the extreme directions of the polyhedral
cone and explored the relationship between ISPP and the minimum cut problem. In
the same year, Zhang et al. [3] applied the column generation algorithm to solve
the ISPP formulated as the linear programming problem under l1 norm. In 2003,
András Faragó [13] focused on the application of ISPP for route finding in high-speed
telecommunication networks. Mobarakeh Karimi [14] studied ISPP with multiple
objectives under the bottle type weighted hamming distance in 2018.

This section mainly discusses two typical algorithms to solve ISPP. One is proposed
by Burton and Toint[12] and based on a quadratic programming model, which we call
the quadratic programming method (Qp). The other uses linear programming, designed
by Zhang [3], and is called the column generation method (Cg).
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2.3.1. THE QUADRATIC PROGRAMMING METHOD
Burton and Toint[12] suggest this method based on the Goldfarb-Idnani (GI) method for
convex quadratic programming. Goldfarb and Idnani [15] proposed it as a variant of
the dual quadratic programming method. The GI method works by computing a series
of optimal solutions to a dual quadratic programming problem using an active set of
constraints from the original problem. Before we introduce Qp, we’ll go over some of the
details of the GI algorithm.

PRIOR KNOWLEDGE

• Dual quadratic programming problem

The form of a quadratic programming problem can be represented as follows:

mi n L(x) = 1
2 xTQx +λT(Ax −b)+ cTx (2.6)

The form of its dual problem is like:

max g (λ) =− 1
2λ

T AQ−1 ATλ− (cTQ−1 AT +bT)λ (2.7)

According to the weak duality of the dual QP problem, the objective function
value of the primal problem is always no less than that of its dual problem; that
is to say, the dual optimality means the primal feasibility (the optimal solution of
the dual problem is the feasible solution of the primal problem).

• The active set method

The active set algorithm is applied in convex optimization to find the active
constraints that function in the calculation. This method reduces the number of
constraints during each iteration, which simplifies the computation. The value
of the Lagrange multiplier corresponding to the constraint is used to determine
whether this constraint is still binding. Constraints with negative Lagrange
multipliers should be dropped from the active set. In this algorithm, inequality
constraints should be converted into equality constraints [2], which is easier to
calculate.

The process of the active set algorithm is depicted in Figure 2.5.

Figure 2.5: The procedure of the active set method [16]
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ALGORITHM DESCRIPTION

Define a directed graph G(N ,L ,W ) with N nodes, L links, and link weighted matrix
W . A predefined path Pi j is given, and node i , j are the source and destination of Pi j

respectively. Path P∗
i j is defined as the shortest path between node i and node j .

Qp is based on the GI algorithm which is a dual quadratic programming method, so
it is necessary to keep the dual feasibility when searching for the optimal solution. The
steps of Qp are as follows:

• Step 0: Initialization. Transform the primal problem to the dual problem. Empty
the active set and let Lagrange multipliers u be equal to 0.

• Step 1: Find constraints and check whether path Pi j is the shortest path between
node i to node j ; if yes, the algorithm stops; if not, select one violated constraint
q .

• Step 2: Compute the primal and dual step directions d and r , which determine the
direction of approximation to the optimal solution. When d = 1, its corresponding
link weight increases; when d = −1, its corresponding link weight decreases; and
when d = 0, the link weight is maintained.

• Step 3: Determine the maximum steplength t f by the dual direction r . The actual
step length should not exceed this value to maintain dual feasibility. When t f is
infinite, the algorithm stops and there is no solution to the original problem.

• Step 4: Calculate the steplength tc which meets qth constraints. The actual
steplength t is the smaller of t f and tc (t = mi n[t f , tc ]). Take the step and obtain
new link weights,

w ′
l = wl + td , l ∈L (2.8)

Then update Lagrange multipliers u.

• Step 5: If t ̸= t f , add this constraint q to the active set. Update associated
parameters, return to step 1, and check whether all constraints have been satisfied.

• Step 6: If the step length t is equal to the maximum step length t f , the constraint
corresponding to the Lagrange multiplier u < 0 no longer has a binding effect and
should be removed from the active set. Then go to step 2.

The complete flowchart of Qp can be seen in Appendix B.1.

EVALUATION

Qp can solve ISPP relatively effectively. But in some cases, Qp cannot find the optimal
solution, which is called the infeasible solution case. It is related to the steplength and
step direction chosen for each iteration.

There are two main reasons for the infeasible solution case:

• In the first iteration, the steplength t is calculated without considering the
restriction that it cannot exceed the link weights. Actually, the value of each link
weight changed is equal to the steplength t . If t > wl and dl =−1, combining with
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equation 2.8, wl may be negative (the weight of link l is negative). Therefore, it
is possible to form a ring with negative weight, making it hard to find a solution.
When link weights become larger, this situation may improve.

• There are two ways to make the target path become the shortest path: decreasing
the weights of links on Pi j and increasing the weights of links on other paths
between node i and node j . Qp uses both of them, and the increasing or
decreasing values are all equal to the steplength t . Additionally, the total weight
of the target path Pi j and that of the shortest path P∗

i j are forced to be balanced,

which is more challenging to obtain the optimal solutions.

2.3.2. THE COLUMN GENERATION METHOD
Different from Burton’s algorithm based on the convex quadratic programming, Zhang
[3] formulates ISPP as a special linear programming (LP) problem. As the size of the
graph grows, the number of constraints also increases, which makes the basic LP model
take more time to solve many inequalities. Zhang uses column generation algorithm to
solve the dual problem of LP. Column generation algorithm makes the time to solve the
LP problem significantly reduced. So Cg is efficient in solving ISPP with a large number
of constraints. To make it easier to understand Cg, we explain the knowledge in advance.

PRIOR KNOWLEDGE

• Column generation algorithm

Column generation algorithm is the core of the column generation method (Cg),
it refers to the LP algorithm designed to solve problems in which there are a
huge number of variables compared to the number of constraints [17]. It limits
the original problem (master problem) to a restricted master problem. After
obtaining the optimal solutions to the restricted master problem, check whether
all constraints are satisfied. If yes, the algorithm stops, and the original optimal
solution is found. If not, a variable that may improve the objective function is
merged into the LP model. The correlative coefficient column of this variable is
also added to the coefficient matrix of LP model. This process is repeated until the
optimal solution is obtained.

• Dual problem of linear programming

Cg also utilizes the dual problem of LP. If the original problem is too difficult to
solve, we can simplify the calculation by solving its corresponding dual problem.
The original problem and its corresponding dual problem are as follows:

The original problem:

max
n∑

j=1
c j x j (2.9)

whereby

{∑n
j=1 ai j x j É bi (i = 1, · · · ,m)

x j Ê 0 ( j = 1, · · · ,n)
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The dual problem:

min
m∑

i=1
bi yi (2.10)

whereby

{∑m
i=1 ai j yi Ê c j ( j = 1, · · · ,n)

yi Ê 0 (i = 1, · · · ,m)

The dual problem of LP has some properties that are used in Cg:

– Property 1: The number of constraints in the original problem is the same as
the variables’ number in the dual problem.

When the number of the primal problem’s constraints is too large, the dual
problem can induce some algorithmic simplifications.

– Property 2: The dual of the dual is the primal itself. We explain it with an
example. The dual problem of formula 2.9 is formula 2.10. Then we find the
dual problem of formula 2.10,

max
n∑

j=1
c j z j (2.11)

whereby

{∑n
j=1 ai j z j É bi (i = 1, · · · ,m)

z j Ê 0 ( j = 1, · · · ,n)

The solution z of formula 2.11 is the same as the solution x of formula 2.9
(primal problem). As a result, we can acquire the primal optimal solution.

ALGORITHM DESCRIPTION

Consider an undirected graph G(N ,L ,W ) with N nodes, L links and a link weight
matrix W . A restricted path Pi j linking node i and node j is given.

The process of the whole algorithm is as follows:

• Initially process the original problem and transform it into the standard form of its
dual problem. A set of slack variables is introduced to make all constraints become
equality constraints, so that the simplex method can be used.

max c̃T v (2.12)

whereby

{
Ãv = 12L

v Ê 0
(2.13)

where v is the variable vector containing the dual variables and the slack variables.
c̃ is the coefficient matrix consisting of the link weight, and Ã is the coefficient
matrix obtained by constraints.

• Using the simplex algorithm finds the optimal basis B as well as its coefficient cB .
The dual solution π of equation 2.12 can be calculated by B and cB .

π= [π1T
,π2T

] = cT
B B−1 (2.14)
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According to Property 2 of the dual problem,π is the primal optimal solution of the
restricted master problem. π1 is the link weight increase vector, π2 is the vector of
decrease. And the new link weights can be expressed as

w ′
l = wl +π1

l −π2
l , l ∈L (2.15)

• If any constraints are violated, choose one randomly and find its coefficient
column associated with the variables (ak0, j0 and ck0, j0 ). Merge them with the
corresponding coefficient matrix, Ã = [Ã, ak0, j0 ], c̃ = [c̃,ck0, j0 ].

• Repeat the above steps until all constraints are satisfied.

The flowchart for Cg can be found in Appendix B.2.

EVALUATION

• Due to using the dual method, the number of variables in the original problem
equals the number of constraints in its dual problem. Solving ISPP with a few
constraints in graphs of considerable size tends to take a long time. Actually, the
number of links (variables) in real-world networks tends to be much larger than
the number of constraints, which may lead to the inefficiency of Cg in practical
applications. More details are provided in Chapter 6.

• Cg needs to introduce slack variables, and the number of introduced slack
variables is relevant to the number of links. When the graph contains a large
number of links, Cg requires more memory to store variables and run.

2.3.3. ALGORITHMIC FRAMEWORK FOR SOLVING ISPP
From above analysis of two algorithms, we can summarize the framework of algorithms
for solving ISPP. The input is a graph, and the output is a graph with the same structure
but different link weights.

• First find the constraints.

• Then model ISPP as an optimization problem. Express the constraints
mathematically and find the optimal solution.

• Finally, check whether all constraints are satisfied. If yes, stop; otherwise, repeat
the above steps.

The flowchart of this framework is shown in Appendix B.3.

2.3.4. OBSERVATION
By analyzing Qp and Cg, we know that there are two ways to make the target path Pi j

the shortest, decreasing weight of one or more links on path Pi j and increasing weight
of links on the initial shortest path between node i and node j . Compared to the former,
the latter cannot guarantee Pi j to be the shortest.

For example, in the graph of G given in Figure 2.6, we assign weights to each link.
Path Pi j = [i , s, j ] is the identified path represented by solid black lines. The shortest
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path between node i and node j is solid lines in blue (i −k − j ). The constraint can be
expressed as an inequality:

wi s +ws j ≤ wi k +wk j (2.16)

As Figure 2.6 shows, in the left graph, the weight of path i − s − j : |Pi j | = wi s +ws j =
4, whereas the shortest path from i to j is path i − k − j : |P ′

i j | = wi k + wk j = 2. After

optimization, the weight of link li k increased to 3 and the inequality 2.16 is satisfied.
However, in the right graph, the shortest path is still i − j rather than i − s − j .

Figure 2.6: An example to explain observation

As a result, reducing the weight of one or more links on the prescribed path Pi j is
likely a better approach because this method makes the path Pi j be the shortest path
between nodes i and node j in most cases. The betweenness for some or more links on
this identified path increases (the number of shortest paths in graph G that traverse one
or more links on this identified path has increased).



3
ALGORITHM DESIGN

After analyzing and evaluating two existing algorithms, the quadratic programming
method (Qp) and the column generation method (Cg), we try to propose new algorithms
to solve the inverse shortest path problem (ISPP) more efficiently. The efficiency of an
algorithm to solve ISPP can be quantified as two parameters: the running time tr and
the total weight adjustment ∆. A shorter running time means a feasible solution can be
obtained faster in practical applications and we aim to design a new algorithm to solve
ISPP rapidly.

Based on the algorithmic framework for solving ISPP in section 2.3.3, the running
time is determined by the time spent on constraint discovery, solving the optimization
problem, and checking whether all constraints are satisfied. We concentrate on reducing
the number of active constraints (constraints used in optimization) to shorten the time
of optimization. However, simply minimizing the number of constraints used may take
more time because the obtained solution in each iteration may not be the optimal
solution, which results in more iterations. In order to reduce the total running time, a
trade-off should be made between the number of active constraints and the number of
iterations.

In order to simplify solving the optimal solution, two existing methods (Qp and
Cg) select one constraint in each iteration and combine it with the old constraints. In
addition, they apply the dual problem. Our methods, the split path method (Sp) and the
limited constraints method (Lc), differ in that they select constraints in distinct ways,
replace the old constraints with new ones, and directly solve the original problem using
the simplex algorithm.

3.1. THE SIMPLEX METHOD
Our algorithms are both based on the simplex method, which is widely used to
solve linear programming problems. Dantzig [18] proposed it based on the idea of
step-by-step descent along the edges of the convex polyhedron from one vertex to an
adjacent one.

The complete steps of the simplex method are:

17
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• Express the problem to standard mathematical form of the simplex method

• Introduce slack variables, transform inequality constraints into equality
constraints.

• Pivot operation, change the basis.

• Check for optimality and identify optimal values

3.2. SPLIT PATH METHOD
The basic technique of this method is to find the constraints by splitting the path, so we
call it the split path method (Sp).

3.2.1. ALGORITHM DESCRIPTION
We first assume a directed graph G(N ,L ,W ), together with a path Pi j between the
origin i and the destination j . The links on path Pi j are stored in the set P0, which
are represented by solid black lines in Figure 3.1.

Figure 3.1: An example of graph

SELECT ACTIVE CONSTRAINTS

We select specific constraints by splitting path Pi j , which is the core of the split path
method. The selected constraints are defined as active constraints and are used to
calculate the optimal solution.

First we classify other paths (except Pi j ) between node i and node j into to two
groups. Group 1 contains orange paths which do not have overlapping links with path
Pi j , which is the path i −k − j and i − j in the graph G . While the rest of the paths from
node i to node j belong to Group 2.

Then we restrict link lst and divide the predetermined path Pi j into two parts P 1
i j and

P 2
i j . In Figure 3.1, P 1

i j is the subpath i−s−t−m, and P 2
i j is s−t−m− j . We should ensure

that the weight of every subpath in Pi j , either from the start link li s to the restrict link lst
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or from the restrict link lst to the last link lm j of Pi j , is less than the weight of all paths
with the same source and destination as each subpath. As a result, these constraints can
produce a set of inequalities.

Group 1 contains these inequalities,{
wi s +wst +wtm +wm j ≤ wi k +wk j

wi s +wst +wtm +wm j ≤ wi j
(3.1)

And Group 2 consists of these inequalities,

wi s +wst ≤ wi t

wi s +wst ≤ wi k +wkt

wi s +wst ≤ wi k +wks +wst

wst +wtm +wm j ≤ ws j 1

wst +wtm +wm j ≤ ws j 2

(3.2)

With the longer prescribed path and more complicated graph structure, these
inequalities are not enough. So we need to traverse all links (except the start link li s

and end link lm j ) on the target path and restrict them one by one.
As the size of the graph continues to grow, the number of inequalities generated by

constraints also increases. To reduce the running time and simplify calculations, we
can ignore some constraints and only maintain the requirement that these (sub)paths
should be shorter than their corresponding shortest paths (solid lines in Figure 3.1)
instead of comparing all paths with the same source and destination (both solid and
dotted lines in Figure 3.1). The shortest path in Group 1 is stored in the set Q, and in
Group 2 is stored in sets P1 and P2, respectively. These three sets can be combined into
the setΩ. So after some inequalities dropped, the merged inequality set is as follows,

wi s +wst ≤ wi k +wkt

wst +wtm +wm j ≤ ws j 1

wi s +wst +wtm +wm j ≤ wi k +wk j

(3.3)

Then we restrict other links, such as ltm , and treat them the same way. The number
of constraints is related to the path length (pl ). When desired path Pi j contains one link
or two links (pli j = 1 or 2), there is one constraint: the weight of Pi j should be less than
that of the shortest path from node i to node j . As a result, the number of constraints nc

in each iteration is as follows:

nc =
{

1+2× (pli j −2), if pli j > 1

1, if pli j = 1
(3.4)

SOLVE THE LINEAR PROGRAMMING PROBLEM

With nc inequalities and the objective function min
∑

l∈L |w ′
l −wl |, an LP model can be

formed. We apply the simplex algorithm to solve it.
Due to the simplex algorithm requests the standard form of the objective function,

we introduce two intermediate variables, x+
l and x−

l , l ∈L .
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x+
l =

{
w ′

l −wl if w ′
l > wl

0 if w ′
l < wl

(3.5)

x−
l =

{
wl −w ′

l if wl > w ′
l

0 if wl < w ′
l

(3.6)

So, the objective function can be transformed as :

|w ′
l −wl | = x+

l +x−
l , l ∈L (3.7)

and
min

∑
l∈L

|w ′
l −wl | = min

∑
l∈L

x+
l + ∑

l∈L

x−
l (3.8)

Then we can consider x+
l as the element of the increasing column vector X + and x−

l
as the element of the decreasing column vector X −. the coefficient matrix c is all-one
matrix with 2L elements (L is the number of links in graph).

Constraints can be represented as∑
l∈P0

(x+
l −x−

l +wl ) É ∑
l∈Ω

(x+
l −x−

l +wl ) (3.9)

x+
l Ê 0, l ∈L

0 É x−
l É wl , l ∈L

The complete matrix form of this linear programming problem is,

mincT [X +; X −] (3.10)

whereby

{
[A,−A][X +; X −] É b

X + Ê 0,0 É X − ÉW

where c is the 2L ×1 all-ones matrix. Matrices A and −A are the coefficient matrices
of variables X + and X −, respectively.

Al =


1, if l ∈P0 and l ∉Ω
−1, if l ∈Ω and l ∉P0

0, if l ∈P0 ∩Ω
(3.11)

The size of matrix A is nc × L. The elements of column matrix b can be obtained by∑
l∈Ωwl −

∑
l∈P ′ wl , and the order of b is nc ×1.

To solve this linear programming problem, we need to add the slack variables z to
generate equation constraints and use the simplex algorithm (the number of variables z
equals the number of constraints nc ).

minc ′T x (3.12)

whereby

{
A′x = b′

x Ê 0
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where x = [X +; X −; z]; A′ = [A,−A, I ], I is the identity matrix; b′ = [b;0], 0 is the all-zero
column vector.

Then, the column of matrix A′ should do a linear transformation to identify its
redundant parts. Assuming an orthogonal matrix O,

A′OT = [B N ] (3.13)

and B ∈Rm×m (B is a full rank basis), N ∈Rm×(n−m) (m = nc ,n = 3L).
According to the properties of the orthogonal matrix, A′OT Ox = b′, so we set Ox = x̂,

[B N ]x̂ = b′ (3.14)

And we let x̂ = [x̂T
B x̂T

N ]
T

, so
B x̂B +N x̂N = b′ (3.15)

Here, we set x̂N = 0, because it can be considered as the slack variables. The basic
vector x̂B can be calculated, and we can get an extreme point in this situation.

Then, the basis B needs to be changed by pivot operation. In general, the pivot
operation changes the positions of one non-basic vector and one basic vector. The
non-basic vector is the input vector, and the basic vector is the output vector. Therefore,
different extreme points can be obtained. The optimal solution can be found until the
objective value cannot be lowered. We can define a parameter rc to determine if the
objective value is at its minimum.

rc
T = c ′N

T − c ′B
T B−1N (3.16)

and c ′N , c ′B are the coefficient matrices corresponding to N and B , respectively.
If r T

c Ê 0 is always valid no matter how to change the basis, it means that the
minimum is found, and the simplex algorithm should be finished.

ACCURACY CHECK

Solutions obtained under these constraints are approximations and may not satisfy all
constraints in the original problem. Because ensuring the weight of the predefined
(sub)path is smaller than the respective shortest path can be obtained by increasing this
shortest path’s weight. In this case, one of the other paths may become the shortest. The
specific analysis has been mentioned in section 2.3.4.

To further explore the effectiveness of the algorithm with only one iteration, we
choose the BA graph G(N ,5,1) (with 5 hubs and each time generating one link) to test
and statistic their accuracy through the number of total iteration i ter . If i ter = 1, the
algorithm can calculate the optimal solution in one go; if i ter > 1, the solution after
iteration is approximated.
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As seen from Table 3.1, the accuracy of the split path method is very close to 1 (100%)
in BA graph. As the number of nodes in the BA graph increases and the number of hubs
maintains, the accuracy increases. So, when the BA graph size is large and the number of
hubs is far more less than the the number of total nodes, we can sacrifice a little accuracy
for a shorter running time. In other types of graphs, the accuracy decreases as the graph
structure becomes more complex (a large number of nodes and links). But when the
size of graphs is small (N < 10), the accuracy remains high. Related data is shown in
Appendix C.

Table 3.1: The split path method’s accuracy after one iteration

Graph
Nodes

10 20 50 100 200 500 1000

BA graph 0.9750 0.9806 0.9878 0.9851 0.9921 0.9924 0.9942

We aim to obtain the optimal solution such that all constraints are satisfied, there are
two ways to achieve this goal.

• Use a loop and repeat the entire algorithm until all constraints are satisfied.
Correspondingly, the running time may increase.

• Set the upbound of the increasing vector X + to 0, which is not allowed to increase
link weights. This approach makes it more likely that the optimal solution will be
obtained after only one iteration. But it still needs loops in some cases, and the
adjustment of link weight may increase.

Sp chooses the first approach. Repeat the whole algorithm until all constraints of
original problem are satisfied.
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3.2.2. FLOW CHART
Figure 3.2 is the flow chart of Sp, which briefly shows the entire algorithm.

Figure 3.2: The step of the split path method
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3.2.3. PSEUDOCODE

Algorithm 1: The split path method based on the simplex method

Input : G(N ,L ,W ), W with elements wl , a prescribed path Pi j

Output: G(N ,L ,W ′), W ′ with elements w ′
l

1 find constraints, target (sub)paths ∈P0, corresponding shortest (sub)paths ∈Ω
2 for l ∈ 1 : L do
3 bl ←

∑
l∈Ωwl −

∑
l∈P0 wl

4 get b
5 for l ∈ 1 : L do
6 if l ∈P0 \Ω then Al ← 1;
7 else if l ∈Ω\P0 then
8 Al ←−1
9 else

10 Al ← 0

11 get A
12 x ← [X +; X −; z] // add slack variables
13 A′ ← [A;−A; I ], b′ ← b, c ′ ← c
14 A′x = b′ // express constraints as equations
15 x ← SIMPLEX(A′,b′,c ′) // the simplex method
16 return x = (x1, x2, ..., xn)
17 if All constraints are satisfied then x is the optimal solution, stop, and

w ′
l = wl +X +

l −X −
l , l ∈L ;

18 else
19 Repeat above steps.

3.2.4. COMPLEXITY
The complexity of Sp determined by the complexity of constraints discovery, the
complexity of the simplex method and the complexity of checking step. It also depends
on the number of iterations i ter , but i ter is uncertain. Here we ignore i ter and only
discuss the complexity of one iteration.

For the constraints discovery, its complexity is related to the length of the target path
pl and the shortest path algorithm (Dijkstra’s shortest path algorithm [19]). The former
complexity is O(1+2∗ (pl −2)), when pl > 1 or O(pl ), when pl = 1. Combine them and
simplify, its complexity is O(pl ). The latter complexity is O(L +N l og2(N )) [20] (L is the
number of links, N is the number of nodes). So the complexity of constraints discovery
is O(pl ∗ (L+N l og2(N ))).

For the simplex method, its complexity is exponential because the worst case
requires traversing all 2n vertices on the boundary to find the optimal solution. The
traversal process depends heavily on the particular rules used for the pivot operation
[21]. It is still an unsolved problem so far. In the worst case, the complexity of this
method is O(2n) for one iteration.

For the checking part, its complexity is also depend on the number of original
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constraints. For a single path ISPP, there is one constraint in primal problem. So e only
need to compare the weight of this identified path with that of the path obtained by
Dijkstra’s algorithm. Thus, the complexity is O(L+N l og2(N )).

3.3. LIMIT CONSTRAINTS METHOD
The limit constraints method (Lc) uses a different way to split the predetermined path
to reduce the number of constraints and thus simplify the process of solving a linear
programming problem.

3.3.1. ALGORITHM DESCRIPTION
Consider a directed graph G(N ,L ,W ), a target path Pi j from node i to node j is given.

SELECT ACTIVE CONSTRAINTS

To demonstrate how the limit constraints method chooses constraints, we use a
small-sized graph as an example.

On the example graph given in Figure 3.4, suppose that, the solid black line is defined
as the prescribed path Pi j , Pi j = [i , s, t , j ]. The blue lines are the shortest path between
different pairs of nodes.

Figure 3.3: An example of graph

Lc compares paths from the source i to every node (s, t , j ) in prescribed path Pi j

with their corresponding shortest paths. The subpaths from node i to each node of Pi j

are stored in the set P0 and their corresponding shortest paths are stored in the set Q.
According to this method, constraints can be expressed as the following inequalities:

wi s ≤ wi k +wks

wi s +wst ≤ wi k +wkt

wi s +wst +wt j ≤ wi k +wk j

(3.17)

Compared with Sp, Lc has fewer constraint conditions when the target path is long.
The number of constraints is nc = pl , and pl is the path length of the target path.



3

26 3. ALGORITHM DESIGN

SOLVE THE LINEAR PROGRAMMING

Combine above inequalities with the objective function after rewritten as the standard
form of the simplex method. We can obtain:

mi n c ′T v (3.18)

whereby

{
A′v = b′

v Ê 0

where v = [X +; X −; z]; A′ = [A,−A, I ], I is the identity matrix; b′ = [b;0], 0 is the all-zero
column vector. The specific solution procedure is the same as that for Sp.

ACCURACY CHECK

The set of solutions v is also approximated, just like the solution of Sp after one iteration.
We also choose the BA graph G(N ,5,1) (with 5 hubs and each time generating one link)
to statistic accuracy after one iteration. Table 3.2 illuminates the accuracy in BA graph.

Table 3.2: Accuracy after one iteration in BA graph

Graph
Nodes

10 20 50 100 200 500 1000

BA graph 0.9617 0.9694 0.97348 0.9823 0.9861 0.9848 0.9921

Compared with Sp, the accuracy of Lc after one iteration is lower. It is more obvious
in other types of graphs displayed in Appendix C. It still needs a checking step to
ensure accuracy. Therefore, we modify this algorithm to further reduce the number of
constraints, shorten the running time and ignore the accuracy after one iteration.

MODIFICATION

We select only one violated constraint to approach the optimal solution instead of using
all three constraints in equation 3.17. Although more iterations are required, the time
for each iteration under one constraint may be shorter than the iterations needed to
compute the optimal solution under many constraints.

How to choose a violated constraint is important for the efficiency of the algorithm.
We need to find a more binding condition in order to approach the optimal solution
faster. We define a parameter E as the total weight difference between the target
(sub)paths in set P0 and its associated shortest (sub)paths in set Q.

E = ∑
l∈Q

wl −
∑

l∈P0

wl (3.19)
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Figure 3.4: An example of graph

According to Figure 3.4, we can obtain

E1 = (wi k +wks )−wi s ,E2 = (wi k +wkt )− (wi s +wi t ),E3 = (wi k +wk j )− (wi s +wst +wt j )

E1 = (1+1)−3 =−1,E2 = (1+2)− (3+2) =−2,E3 = (1+4)− (3+2+3) =−3

We select the constraint whose associated E is the most negative. As a result, the third
constraint is picked and b = E3. The number of constraints in each iteration nc is equal
to 1. Then use the simplex method to generate a set of link weights.

Finally, check the solution for optimality. If all original constraints are met, stop.
If not, replace the previous constraint with a new constraint whose E is minimal, and
repeat algorithm.
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3.3.2. FLOW CHART
Figure 3.5 is the flow chart of Lc, which briefly illustrates the entire algorithm.

Figure 3.5: The step of the limit constraints method
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3.3.3. PSEUDOCODE

Algorithm 2: The limit constraints method based on the simplex method

Input : G(N ,L ,W ), W with elements wl , a prescribed path Pi j

Output: G(N ,L ,W ′), W ′ with elements w ′
l

1 find constraints, target (sub)paths ∈P0, corresponding shortest (sub)paths
∈Q

2 E ←∑
l∈Q wl −

∑
l∈P0 wl , l ∈L

3 choose the minimum Ei , b ← Ei

4 for l ∈ 1 : L do
5 if l ∈P0 \Q then Al ← 1;
6 else if l ∈Q \P0 then
7 Al ←−1
8 else
9 Al ← 0

10 get A
11 x ← [X +; X −; z] // add slack variables
12 A′ ← [A;−A; I ], b′ ← b, c ′ ← c
13 A′x = b′ // express constraints as equations
14 x ← SIMPLEX(A′,b′,c ′) // the simplex method
15 return x = (x1, x2, ..., xn)
16 if All constraints are satisfied then x is the optimal solution, stop, and

w ′
l = wl +X +

l −X −
l , l ∈L ;

17 else
18 Repeat above steps.

3.3.4. COMPLEXITY
The complexity of Lc in one iteration is similar to that of Sp. When finding constraints,
the complexity is O(nc ∗ (L+N l og2(N ))) (nc is the number of constraints in each
iteration, N is the number of nodes, L is the number of links), i.e. O(pl ∗ (L+N l og2(N )))
(pl is the length of target path). After modification, nc = 1, so the complexity is
O(L+N l og2(N )). The complexity of the simplex algorithm is O(2n) and the complexity
of the checking step is also O(L+N l og2(N )).





4
SIMULATION AND RESULTS

This chapter presents simulations of four algorithms (Cg, Qp, Sp, Lc; Qp and Cg are
benchmarks) for solving the inverse shortest path problem with a single target path
(ISPP-S) in different types of directed graphs. Compare and analyze their corresponding
experimental results to demonstrate efficiency of our algorithms.

4.1. SIMULATION
This section gives a detailed description of experimental subjects, metrics for
comparison as well as steps of simulation.

4.1.1. EXPERIMENTAL SUBJECT
We choose four types of graphs introduced in Chapter 1 as experimental subjects.
Here we set some parameters to specify the properties of the different graphs in the
experiment. The number of nodes and links are important factors that affect the size
of the graph [22], so we set N = 10,20,50,100,200,500,1000 (N is the number of nodes).
Some specific parameters for different types of graphs are as follows:

• ER graph: We set the connection possibility p = 2l n(N )/N to construct connected
ER graphs. The ER graph can be represented by G(N ,2ln(N )/N ).

• BA graph: We set m0 = 5, m1 = 1, so the BA graph has 5 hubs, and generates one
link between a new node and one of old nodes each time. Generated BA graphs
can be denoted by G(N ,5,1).

• 2D lattice graph: A 2D lattice graph can be seen as a rectangular with u0 nodes in
its length, u1 nodes in its width. Its notation is G(N ,u0×u1). So we set a series of 2D
lattice graph to G(10,5×2); G(20,5×4); G(50,10×5); G(100,10×10); G(200,20×10);
G(500,25×20); G(1000,40×25).

• Configuration graph: We set the degree range is [1,10], so the configuration graph
is G(N , [1,10]). The construction method mentioned in section 2.1.3 may generate
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self-loops and multi-links. In experiments, all self-loops should be deleted. In the
directed graph, we can maintain two links with different directions between a pair
of nodes.

We construct these graphs as the undirected graphs. However, since most networks
in reality are directed, we start with directed graphs. So except for the direction of
links in 2D lattice graph matching the link generation direction, the direction of links
is uniformly random.

4.1.2. METRICS FOR COMPARISON
• Running time: In complex systems, it is essential to find the ideal solution quickly

so that modifications can be made rapidly to keep the system in proper operation.
According to the analysis at the beginning of chapter 3, the running time tr is
determined by the time of each iteration ti and the number of iterations i ter .
The time of each iteration ti is the sum of constraints discovery time td , the
optimisation time to and the checking time tk . Fewer constraints mean the shorter
optimization time to .

• Adjustment of link weight: For a fixed graph, no matter what methods are used,
the value of the minimum adjustment of link weights is unique. The weighted
adjustments of various methods reflect which method’s ’optimal solution’ is the
closest to this real value. The factor that influences the total weighted adjustment
is the active constraint.

• Path length: Path length is the number of links on a path. A longer path means
more time spent on search constraints. The running time may be affected by the
path length.

4.1.3. SIMULATION
We wrote these algorithms in Matlab language and run programs on Lenovo Thinkpad
20T8A000CD. Perform 10,000 experiments on each type of graphs mentioned above in
QCE cluster. The simulation for each experiment is as follows:

• Randomly generate a directed graph ( ER graph, BA graph, 2D-lattice graph, and
configuration graph) G(N ,L ,W ) with N nodes, L links and W is a link weight
matrix. The elements wl of the matrix W are numbers uniformly distributed in
range [0,1], l ∈L .

• Randomly select a path Pi j : 1. randomly select a node i as the source; 2. randomly
select a integer pl from [1, N −1] as the path length of the target path; 3. select a
path whose source is node i , its length is pl and its destination is node j . If path
Pi j is the shortest between i and j , re-select a path.

• With the graph G and the path Pi j as inputs, obtain a new link weight matrix W ′
with elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate their total weight
adjustment ∆=∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each link l .
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4.2. RESULT

4.2.1. RUNNING TIME
We use error bars to plot the running time of different methods. The X-axis represent the
number of nodes in graph and the Y-axis is the logarithmic form of running time.

Figure 4.1 indicates that running times of Sp and Lc are generally shorter than other
methods. They are more efficient than Qp in ER, 2D lattice and configuration graphs. In
graphs with 1000 nodes, Lc has better performance than Sp. This is because the number
of active constraints of Sp is much more than that of Lc in large-sized graphs.

However, the running time of Cg is longer than that of Sp and Lc; this is because Cg
uses the dual LP problem. For the ISPP-S, compared to the number of variables (the
number of links), the number of constraints is still relatively small. After transforming
the original problem to the dual problem, the number of constraints is more than
variables, which increases the complexity of optimization and to is longer.

The running time of Qp is short in BA graphs with fewer nodes (N < 100), and also
in graphs with relatively few nodes (N = 10). The reason is that Qp needs to balance
the weight of paths by increasing or decreasing link weights by the same value, which is
relatively easy to achieve in graphs with a simple structure.
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Figure 4.1: The running time of four algorithms solving ISPP-S in four different types of directed graphs.
X-axis represent the number of nodes N ; Y-axis is the logarithmic form of the running time. Blue line-Cg; red

line-Qp; yellow line-Sp; green line-Lc.
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4.2.2. ADJUSTMENT OF LINK WEIGHT
Error bars are used to display the total adjustment of link weights. The X-axis represent
the number of nodes in graph and the Y-axis is the sum of link weight adjustment.

Figure 4.2 illustrates that the total weight adjustment of Cg, Sp and Lc is generally
similar in all kinds of small-size graphs (N < 100). Especially in BA graphs, the weight
adjustment of each method tends to be equal in most cases, this is because the structure
of BA graphs is relatively simpler.

Adjustment of Qp changes most. This is because the active set method requests the
weight of links involved in active constraints to balance, which means all links should
increase or decrease the same value simultaneously. So the step length has multiple
decimal places and the link cannot change its weight flexibly. Links with negative
weights generated in the iteration also need additional adjustments, which increases the
weight adjustment.

Compared with Qp, the total weight adjustment of other methods (Cg, Sp, Lc) are
close. With the size of graphs growing, their adjustments tend to be unequal. The reason
is the different steplength and step direction under distinct active constraints and the
steplength actually is the weight adjustment in each iteration.
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(c) 2D lattice graph
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Figure 4.2: The weight adjustment of four algorithms solving ISPP-S in four different types of directed graphs.
X-axis represent the number of nodes N ; Y-axis is the sum of link weight adjustment. Blue line-Cg; red

line-Qp; yellow line-Sp; green line-Lc.
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4.2.3. PATH LENGTH
We use error bars to display the relationship between running time and path length. The
X-axis represent the path length pl ; Y-axis is the logarithmic form of the running time.

Figure 4.3 shows that the running times of Cg, Sp and Lc are mostly independent
of the path length. The total running time is determined by the time per iteration ti

and the number of iterations i ter . Due to the fewer constraints of ISPP-S, the optimal
solution can be obtained without too many iterations in these three methods and the
total running time is mainly affected by the time of each iteration ti . The time ti includes
the time of constraints discovery td , the time of finding optimal solution to and the time
of checking. Although the time td depends on the path length in Sp and Lc, it is much
shorter than the time to solve the LP model to and can be negligible. So the running
times of these three methods are not significantly impacted by the path length.

However, the running time of Qp is positively correlated with the path length.
Compared with the above three methods, Qp requires more iterations to obtain the
optimal solution, which leads to an increase in the total running time. After each
iteration, the number of constraints in the active set increases, and the running time
to find the optimal solution to also increases.
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(b) BA graph with 50 nodes
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(c) 2D lattice graph with 100 nodes
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Figure 4.3: The relationship between running time and path length in (a) directed ER graph with 20 nodes, (b)
directed BA graph with 50 nodes, (c) directed 2D lattice graph with 100 nodes and (d) directed configuration
graph with 200 nodes. X-axis represent the path length pl ; Y-axis is the logarithmic form of the running time.

Blue line-Cg; red line-Qp; yellow line-Sp; green line-Lc.
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4.3. SUMMARY
For ISPP-S in different types of directed graphs, Sp and Lc work more efficiently than Qp
and Cg.

• The running time of Sp and Lc are shorter than that of Qp and Cg in ER graphs, 2D
lattice graphs, configuration graphs and large-sized BA graphs(N > 100). Lc has a
better performance than Sp in graphs with complicated structures (both N and L
are large).

• The total weight adjustment of Sp and Lc is equal to Cg in most cases and
sometimes a little larger than it, but smaller than Qp.

• The effect of path length on the running time of Sp and Lc is minimal. These two
methods can efficiently handle a target path of any length.



5
EXTENSIONS

Chapter 2, 3, and 4 mainly research the inverse shortest path problem with only one
prescribed path (ISPP-S). We expand the number of the target paths from one to more
than one and attempt to adapt these algorithms to deal with the inverse shortest path
problem with multiple target paths (ISPP-M) and the inverse shortest path problem with
target paths in a spanning tree (ISPP-T).

Given that the above experiments used directed graphs, we should also think about
whether our methods (Sp and Lc) can be used for undirected graphs.

5.1. ISPP-M
ISPP-M requests that various target paths Pi (i = 1,2, ...,n, n is a positive integer greater
than 1) in a graph G(N ,L ,W ) become the shortest path between their corresponding
starting and ending node pairs (si , ti ). This problem can be expressed as

min
∑

l∈L

|w ′
l −wl | (5.1)

whereby

{
Pi is the shortest path from si to ti with W ′, i = 1,2, ...,n

wl , w ′
l ≥ 0, l ∈L

Figure 5.1 shows an ISPP-M with 5 prescribed paths (n = 5) in a graph.
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Figure 5.1: The ISPP-M with 5 identified paths

5.1.1. MODIFICATION
Compared to the ISPP-S, the ISPP-M has n prescribed paths and more constraints. We
can decompose this problem into n subproblems. Each subproblem requests one target
path Pi to become the shortest one between corresponding node pairs (si , ti ).

The way to choose active constraints for each target path is the same as mentioned
in section 3.2 and 3.3.

But, assuming that path P1 has become the shortest path between node s1 and node
t1, when we solve the second subproblem whose target path is P2, the weight of links
on path P1 may be increased to make path P2 be the shortest one between node pairs
(s2, t2). In such a situation, path P1 may not be the shortest path between node s1 and
node t1.

Considering this issue, we combine each set of constraints corresponding to each
target path. In this way, all predetermined paths can simultaneously become shorter
than the original shortest path between their associated sources and destinations.
However, the solution here is still an approximation. Algorithms need to loop more times
to find the optimal solution, which takes a lot of time.

There are two ways to avoid this situation:

• Maintain previous constraints and merge new constraints with them in the next
iteration.

• Only reduce the weight of links on target paths to satisfy all constraints [23]. The
weights of links on previous target paths are not affected when processing other
prescribed paths. But this method will increase the total adjustment of link weight.

When choosing the first approach, the number of constraints will increase after each
iteration. The time for optimization to will become longer, so we can solve its dual
problem to avoid complex calculations.

For the split path method, we choose the first approach and find its optimal solution
by solving its dual problem. Add new constraints to the original ones rather than simply
replacing the old ones with the new ones. The approach for selecting constraints is to
split the target path, which is the same as the method mentioned in section 3.2.
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For the limit constraints method, we select the second approach and set the
upbound of increasing vector as 0. So other links that are not part of the current target
path will not be influenced. The old constraints will be dropped after each iteration.

5.1.2. SIMULATION
The simulation for ISPP-M is similar to ISPP-S. The difference is that the input of
algorithms is 5 paths, so it is unnecessary to investigate the path length here. We run
programs on the Lenovo Thinkpad 20T8A000CD and perform 1,000 experiments on
each type of graphs mentioned in section 4.1.1 in QCE cluster. The simulation for each
experiment is as follows:

• Randomly generate a directed graph ( ER graph, BA graph, 2D-lattice graph, and
configuration graph) G(N ,L ,W ) with N nodes, L links and W is a link weight
matrix. The elements wl of the matrix W are numbers uniformly distributed in
(0,1), l ∈L .

• Randomly select 5 paths Pi ,(i = 1,2, ...,5). Request that at least one of the target
paths not be the shortest between its corresponding source and destination.

• With the graph G and 5 paths Pi as inputs, obtain a new link weight matrix W ′ with
elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .

5.1.3. RESULTS

RUNNING TIME

We use error bars to plot the running time of different methods. The X-axis represents
the number of nodes in a graph and the Y-axis is the logarithmic form of running time.

The running time of solving ISPP-M is as shown in Figure 5.2. In small-sized graphs
(N ≤ 20), Sp’s running time is usually the shortest. With the increasing number of
nodes in graphs, Lc performs better. The reason is that as the size of graphs grows,
new constraints need to be merged with the old ones in Sp, so the number of active
constraints will increase. But the number of active constraints in Lc will remain the same.
More constraints mean longer optimization time, so Lc’s optimization time to is shorter
than Sp’s.
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Figure 5.2: The running time of four algorithms solving ISPP-M with 5 target paths in four different types of
directed graphs. X-axis represents the number of nodes N ; Y-axis is the logarithmic form of the running time.

Blue line-Cg; red line-Qp; yellow line-Sp; green line-Lc.

ADJUSTMENT OF WIGHT

Error bars are used to display the total adjustment of link weights. The X-axis represents
the number of nodes in graph and the Y-axis is the sum of link weight adjustment.

From the previous analysis, we know that the difference in weight adjustment is
influenced by the steplength and step direction in each iteration.

Combining Figure 5.2 and 5.3, we find that the weight adjustment of Cg and Sp is the
smallest, although their running time is a little longer. This is because these two methods
still maintain the old constraints and the set of constraints becomes more binding with
the addition of the new constraints. The weight adjustment in each iteration is more
accurate.

Lc only decreases the weight of the target path, which may lead to a larger weight
adjustment (steplength) in each iteration. It sacrifices the total weight adjustment to
obtain a shorter running time. However, the increase in link weight adjustment is within
an acceptable range.



5.2. ISPP-T

5

41

10 20 50 100 200 500 1000
0

50

100

150

200

250

300
W

ei
gh

t a
dj

us
tm

en
t

Weight adjustment of ER graph

Cg
Qp
Sp
Lc

(a) ER graph
10 20 50 100 200 500 1000

0

5

10

15

20

25

W
ei

gh
t a

dj
us

tm
en

t

Weight adjustment of BA graph

Cg
Qp
Sp
Lc

(b) BA graph

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

W
ei

gh
t a

dj
us

tm
en

t

Weight adjustment of 2D lattice graph

Cg
Qp
Sp
Lc

(c) 2D lattice graph
10 20 50 100 200 500 1000

0

10

20

30

40

50

60

W
ei

gh
t a

dj
us

tm
en

t

Weight adjustment of configuration graph

Cg
Qp
Sp
Lc

(d) Configuration graph

Figure 5.3: The weight adjustment of four algorithms solving ISPP-M with 5 target paths in four different types
of directed graphs. X-axis represents the number of nodes N ; Y-axis is the sum of link weight adjustment. Blue

line-Cg; red line-Qp; yellow line-Sp; green line-Lc.

5.1.4. SUMMARY
For ISPP-M in different types of directed graphs,

• Lc can solve this problem within a short time. Sp runs fast in relatively small-sized
graphs and its running time becomes longer in graphs with complicated
structures.

• The total weight adjustment ∆ of Lc is larger than others’ in 2D lattice graphs. In
other graphs, Lc’s weight adjustment is relatively larger but smaller than Qp’s.

5.2. ISPP-T
ISPP-T is a special variant of ISPP-M. Find the spanning tree T of a graph G such that
T becomes the shortest path tree of graph G , i.e., the weight of path from root r to any
other nodes ti in the spanning tree is the shortest from r to ti in the original graph G
[24]. Figure 5.4 shows an example of ISPP-T in the 2D lattice graph. The solid black lines
and red nodes compose a spanning tree of the lattice graph. The tree’s root r is node 1.
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Figure 5.4: The spanning tree of 2D lattice graph with 100 nodes

This problem can be expressed as follows,

min
∑

l∈L

|w ′
l −wl | (5.2)

whereby

{
T is the shortest path tree of graph G

wl , w ′
l ≥ 0, l ∈L

5.2.1. MODIFICATION
ISPP-T can apply improved algorithm Lc for ISPP-M in section 5.1. Because this problem
needs every subpath with source r to be the shortest, the way to search for constraints
in Lc is perfectly suited to this problem. But it is unnecessary to split target paths using
Sp, so we delete the process of splitting the path, Sp has become a totally new method
which utilizes all constraints and the simplex method to solve the linear programming
problem. We name it the all constraints method (Ac).

5.2.2. SIMULATION
The simulation of ISPP-T is similar to that of the above problems. But the input,
prescribed paths, should be changed to a spanning tree that is not the shortest path
tree of graph G . We run programs on Lenovo Thinkpad 20T8A000CD and perform 1,000
experiments on each type of graphs mentioned in section 4.1.1 using QCE cluster. The
simulation for each experiment is as follows:

• Randomly generate a directed graph ( ER graph, BA graph, 2D-lattice graph, and
configuration graph) G(N ,L ,W ) with N nodes, L links and W is a link weight
matrix. The elements wl of the matrix W are numbers uniformly distributed in
(0,1), l ∈L .

• Find the spanning tree T of the graph.

• With the graph G and the spanning tree T as inputs, obtain a new link weight
matrix W ′ with elements w ′

l by different algorithms.
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• Record the running time tr of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .

5.2.3. RESULTS
In ISPP-T with a lot of constraints, it is hard for Qp to find the optimal solution. We set
the total adjustment ∆ to infinity when infeasible solution cases occur. Additionally, Cg
needs to introduce slack variables, which may exceed the default memory of Matlab in
some graphs (ER graphs with more than 200 nodes). These cases will be ignored.

RUNNING TIME

We use error bars to plot the running time of different methods. The X-axis represents
the number of nodes in graphs and the Y-axis is the logarithmic form of running time.

Figure 5.5 shows the running time of different methods taken on different graphs.
From this figure, Lc and Ac run relatively fast. Ac has better performance in ER graphs
and configuration graphs. This is because fewer active constraints are not sufficient to
find the optimal solution quickly, Lc needs more iterations, which leads to an increase in
its total running time.
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Figure 5.5: The running time of four algorithms solving ISPP-T in four different types of directed graphs.
X-axis represent the number of nodes N ; Y-axis is the logarithmic form of the running time. Blue line-Cg; red

line-Qp; yellow line-Ac; green line-Lc.
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ADJUSTMENT OF WIGHT

Error bars are used to display the total adjustment of link weights. The X-axis represent
the number of nodes in graph and the Y-axis is the sum of link weight adjustment.

Figure 5.6 demonstrates that the weight adjustment of Cg and Ac is the smallest,
while that of Lc is the largest. The reason is the same as mentioned in ISPP-M, Lc’s
adjustment of each iteration ∆i is a little larger. As the number of iterations of Lc
increases, the total adjustment ∆ increases significantly. In addition, Qp cannot deal
with ISPP-T in the large-sized networks.
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Figure 5.6: The weight adjustment of four algorithms solving ISPP-T in four different types of directed graphs.
X-axis represents the number of nodes N ; Y-axis is the sum of link weight adjustment. Blue line-Cg; red

line-Qp; yellow line-Ac; green line-Lc.

5.2.4. SUMMARY
For ISPP-T, the running time of Ac and Lc are both shorter, and Ac has a better
performance in relatively complicated graphs (ER graphs and configuration graphs).
The weight adjustment of Lc far exceeds that of other methods, especially in large-sized
graphs.
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5.3. UNDIRECTED GRAPH
Compared with directed graphs, the undirected graph with the same number of nodes
has more paths, and the length of these paths tends to be longer. This means that, the
ISPP in undirected graphs has more constraints.

5.3.1. MODIFICATION
In the process of searching constraints, we need to find the shortest path with the same
origin and destination as the target path and compare their weights. In undirected
graphs, the existence of negative weight links makes it more difficult to find the shortest
path. With negative weights in undirected graphs, Dijkstra’s shortest path algorithm is no
longer applicable [25]. Bellman–ford algorithm [26] can handle negative links in directed
graphs but not undirected graphs.

However, Cg, Sp and Lc have set bounds to avoid generating negative links and
Dijkstra’s shortest path algorithm [19] is still available. Therefore, there is no need to
modify these methods.

In Qp, the unsuitable steplength may lead to generating negative link weights (see
section 2.3.1 for specific reasons). So we need to employ a technique that can calculate
the shortest path in an undirected graph containing negative link weights. We can
calculate the weight of all paths between the same source and destination as the target
path. Compare them and obtain the shortest one.

5.3.2. SIMULATION
The simulation is the same as the previous simulations. But the experimental subjects
are the undirected graphs. We need to set the link direction of the experimental subjects
mentioned in section 4.1.1 to undirected. When dealing with ISPP-S, the number of
predefined paths is 1; when solving ISPP-M, the number of identified paths is 5; in
ISPP-T, the constraint is to make a spanning tree T become the shortest path tree. We
use Matlab to perform 1,000 experiments in QCE cluster.

5.3.3. RESULTS
Because Qp needs to traverse all paths to find the shortest path, it may exceed Matlab’s
default memory. For Qp, we only show its results obtained from the graphs that can be
handled. The infeasible solution case will be ignored. Because the optimization process
of the algorithms has not changed, the total weight adjustment is the same as previous
results. Here we only investigate the influence on the running time.

RUNNING TIME

We use error bars to plot the running time of different methods. The X-axis represents
the number of nodes in a graph and the Y-axis is the logarithmic form of running time.

ISPP-S
Figure 5.7 shows the running time of algorithms for solving ISPP-S in undirected

graphs, where the line ends means that the running time is too long and is considered
infinite.

Sp performs well in graphs with fewer nodes. With the increasing number of nodes,
the path tends to be long and the number of constraints increases. The optimization
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time will become longer. Compared to Sp, the running time of Lc is stable, the reason is
that there is one constraint in every iteration.

Qp spends a lot of time when the graph structure tends to be complex. This is
because there are negative link weights during the iteration. So Qp needs a long time
calculating the weight of paths.
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Figure 5.7: The running time of four algorithms solving ISPP-S in four different types of undirected graphs.
X-axis represents the number of nodes N ; Y-axis is the logarithmic form of the running time. Blue line-Cg; red

line-Qp; yellow line-Sp; green line-Lc.

ISPP-M & ISPP-T
For ISPP-M, Figure 5.8 displays that, Qp can only deal with BA graphs as well as

small-sized graphs; Sp and Lc still perform better. As the size of graph grows and the
number of constraints increases, Lc’s running time asymptotically approaches that of
Cg due to a large number of iterations. Sp’s running time exceeds that of Cg because of a
larger size of active constraints set after every iteration.

For ISPP-T, the running time of Lc is longer than Ac and they exceed Cg in large-sized
graphs. Column generation algorithm is gradually showing its advantages.
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Figure 5.8: The running time of four algorithms solving ISPP-M (a)-(d) and ISPP-T (e)-(h) in four different
types of undirected graphs. X-axis represents the number of nodes N ; Y-axis is the logarithmic form of the

running time. Blue line-Cg; red line-Qp; yellow line-Sp/Ac; green line-Lc.



5

48 5. EXTENSIONS

5.3.4. SUMMARY
• The running time of Lc for solving ISPP-S and ISPP-M is relatively short. It takes

longer time in ISPP-T and exceed the time of Cg in large-sized undirected graphs.

• When dealing with ISPP-S, the running time of Sp is longer than others in large
ER graphs. After modification, its performance has been improved when solving
ISPP-M. When Ac handling ISPP-T in large-sized undirected graphs, it performs
worse than Cg.

• Cg can efficiently handle the ISPP-T problem in undirected graphs with complex
structures.



6
EMPIRICAL APPLICATIONS

The inverse shortest path problem (ISPP) can be applied to resource reallocation
and route reprogramming in empirical networks. This chapter mainly introduces
four networks in real life (US airlines network [27], Protein interaction network [28],
University email network [29] and European roads network [29]) and how to apply four
methods (Qp, Cg, Sp, Lc) to solve relevant ISPP in these networks. The basic statistical
properties of these four networks are shown in Table 6.1.

Table 6.1: Basic statistical properties of empirical networks

Network number of nodes (N ) number of links (L)
US airlines network 332 2.1k
Protein interaction network 1.8k 4.4k
University email network 1.1k 5.5k
European roads network 1.2k 1.4k

6.1. US AIRLINES NETWORK
The U.S airline network [27] can be seen as an undirected graph, which describes
airlines between different US airports. Airports are represented by nodes, airlines are
represented by links, and traffic flow on each airline is the link weight.

6.1.1. PHYSICAL MEANING
Assuming that, here is a route from DTW airport in Detroit to Miami’s FLL airport via ATL
airport in Atlanta. Due to flight flow control, ATL airport cannot accommodate many
airplanes. Flights would need to be adjusted to reduce traffic flow on the route via ATL.
This route can choose a new transit city (keep the same origin DTW and destination FLL
as before). Based on the physical meaning, we can map traffic flow problem to ISPP with
multiple target paths (ISPP-M). All routes via ATL can be considered as the target paths.

49
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6.1.2. SIMULATION
Figure 6.1 shows the US airline network. The simulation is as follows:

• Give the US airlines network with the link weight matrix W whose elements are
wl , l ∈L .

• Select a node representing the "ATL airport" (yellow point in Figure 6.1). Target
paths (black solid lines in Figure 6.1) are all paths containing this node and their
path length are equal to 2.

• With the graph G and the target paths as inputs, obtain a new link weight matrix
W ′ with elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .

Figure 6.1: US airline network

6.1.3. RESULTS
Table 6.2 indicates their running time and total adjustment of link weights. Lc takes the
shortest time to deal with this problem. The weight adjustments of Cg, Sp and Lc are the
same, all lower than that of Qp.

Table 6.2: US airline network

Result
Method

Column generation Quadratic programming Split path Limit constraints

Running time(s) 0.181613 3.501054 0.974586 0.040649
Weight adjustment 27.6254 38.9748 27.6254 27.6254

6.2. PROTEIN INTERACTION NETWORK
The protein interaction network [28] is considered to be directed. The nodes of it are
proteins; links are the channel for transmitting signals. The link weight can be defined
as transmission time, which determines which product can be generated.
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6.2.1. PHYSICAL MEANING
One of the critical functions of proteins is to generate chemical products for human
metabolic processes. The transmission time of signal will decide the product generated
[30]. We plot Figure 6.2 to explain more clearly how the protein works.

There are four proteins in Figure 6.2. If protein A sends a signal to protein B, it
needs to be via another protein, C or D, as a medium. There are two routes (A-C-B
or A-D-B) available for this signal, and it tends to choose the shortest one. This signal
will change after it passes through medium D, and the changed signal will stimulate
protein B to produce another product that is different from the one we want to obtain.
In order to ensure that protein B will generate the target product, the transmission time
on route A-C-B must be shorter than that on A-D-B. We can adjust the signal delivery
time through external intervention. This kind of problem can be considered as ISPP-S.
The route for signal transmission is the path in the network. We predetermine a path
and request that it should be the shortest in order to obtain the target chemical product.

Figure 6.2: Protein interaction network

6.2.2. SIMULATION
The protein network can be simplified as Figure 6.3. The simulation is as follows:

• Give the protein interaction network with the link weight matrix W whose
elements are wl , l ∈L .

• Select a specific target path based on a target product to be generated (black solid
lines in Figure 6.2).

• With the graph G and this target path as inputs, obtain a new link weight matrix
W ′ with elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .
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Figure 6.3: Protein interaction network

6.2.3. RESULTS
Table 6.3 shows that Sp and Lc are more effectively used in this network, their running
times are the shortest.

Table 6.3: Protein interaction network

Result
Method

Column generation Quadratic programming Split path Limit constraints

Running time(s) 0.8662 0.0341 0.0152 0.0134
Weight adjustment 5 5 5 5

6.3. UNIVERSITY EMAIL NETWORK
The university email network can be considered a directed network. The nodes in this
network are universities, the links represent email sending and receiving, and the link
weights indicate the different delay times when sending or receiving emails.

6.3.1. PHYSICAL MEANING
The university email network is similar to the routing network. Some emails about
academic communication and data sharing are urgent and need to be sent within a
shorter period of time. A guideline for sending and receiving emails is as follows:
The delay in direct contact between the two universities must not exceed the delay in
forwarding through the other university, which ensures efficient communication. The
communication rule can be expressed as an ISPP-S problem. The delay of directed
communication should be the shortest, meaning that this target path has minimal
weight compared with other paths between the same node pair.

6.3.2. SIMULATION
Figure 6.4 is a university email network. The simulation is as follows:

• Give the university Email network with the link weight matrix W whose elements
are wl , l ∈L .
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• Select two universities and set the link connecting them as the target path (black
solid lines in Figure 6.4).

• With the graph G and this target path as inputs, obtain a new link weight matrix
W ′ with elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .

Figure 6.4: University email network

6.3.3. RESULTS
Table 6.4 illustrates that Cg (long running time) and Qp (no solution) are not suitable for
handling one short target path in a large network.

Table 6.4: University email network

Result
Method

Column generation Quadratic programming Split path Limit constraints

Running time(s) 21.387559 0.349255 0.086833 0.082319
Weight adjustment 0.0198 inf 0.0198 0.0198

6.4. EUROPEAN ROADS NETWORK
In this undirected network, we address cost allocation. The network’s nodes are
European cities; links are the roads connecting them; and the link weight is the
investment in road construction.
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6.4.1. PHYSICAL MEANING
Before planning the construction of roads, each local government needs to dedicate
some finances to the paths across its territory. Due to the different financial strengths of
each country, some routes are shorter and do cost little but have a significant investment.
Therefore, a thorough professional analysis and survey will be conducted to select routes
and reduce their investment and distribute it to other routes with the same origins and
destinations. But other routes cannot be allocated too much money, otherwise it would
not be fair to some countries that provide significant funding. This problem can be seen
as an ISPP-S problem. Reassigning the investment on each route is redistributing the
link weights on each path.

6.4.2. SIMULATION
Figure 6.5 shows the network and the identified path. The simulation is as follows:

• Give the European roads network with the link weight matrix W whose elements
are wl , l ∈L .

• Select an over-invested route as the target path (black solid lines in Figure 6.5).

• With the graph G and this target path as inputs, obtain a new link weight matrix
W ′ with elements w ′

l by different algorithms.

• Record the running time of each algorithm and calculate each algorithm’s total
weight adjustment ∆ = ∑

l∈L

∣∣w ′
l −wl

∣∣, where w ′
l and wl are the weight of each

link l .

Figure 6.5: European roads network

6.4.3. RESULTS
Table 6.5 depicts that Sp is the most suitable method to deal with this type of problems
in this network (short running time and minimal weight adjustment).
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Table 6.5: European roads network

Result
Method

Column generation Quadratic programming Split path Limit constraints

Running time(s) 0.3734 0.0017 0.0120 0.0205
Weight adjustment 18 inf 18 21

6.5. SUMMARY
According to the above results, the ISPP in empirical networks can be easily solved by Sp
and Lc. Their running time is far shorter than that of Cg and Qp, especially when solving
ISPP-S. Their associated adjustment of link weight is also relatively small. However, Qp
is not really suitable for handling the large-sized complex network. It is possible to fail to
find the optimal solution. Cg takes a long time to deal with problems where the number
of variables far exceeds the constraints, but this type of problem is common in real-world
complex networks.





7
CONCLUSION AND FUTURE WORK

This chapter reviews the primary objectives of this thesis, provides an overview of the
completed research, and makes some suggestions for future work.

7.1. CONCLUSION
The main objective of this thesis is to propose new algorithms to modify a path into the
shortest path, which is also known as the inverse shortest path problem (ISPP).

This thesis begins with the properties and metrics of graph theory and random graph
constructions. We introduce ISPP, provide an overview of prior research on ISPP, and
explain and evaluate two existing algorithms, the quadratic programming method (Qp)
and the column generation method (Cg) in Chapter 2. These two methods are as the
benchmarks in following experiments.

We have proposed two algorithms, the split path method (Sp) and the limit
constraints method (Lc), to solve ISPP with one target path (ISPP-S) in directed graphs
in Chapter 3. Then in Chapter 5 we have modified these two methods and made
them can deal with ISPP with multiple target paths (ISPP-M) and with target paths in a
spanning tree (ISPP-T) in directed graphs. Moreover, Sp and Lc can be used to handle the
undirected graphs without any modification. In Chapter 6, we applied these algorithms
(Qp, Cg, Sp, Lc) to solve ISPP in the real networks.

Corresponding simulations and results (running time, total weight adjustment as
well as path length) are shown in Chapter 4, 5, 6 respectively. There are two metrics that
we concentrate on: running time and the adjustment of link weights. They can provide
some insight into the effectiveness of our algorithms. We can draw a few inferences from
the study of all experimental results.

For the split path method, this approach works most effectively to solve ISPP-S in
small-sized directed graphs. Its running time is short, and the overall weight adjustment
is modest. After modification, this method can be used to handle ISPP-M. Sp still
performs well in directed graphs with few nodes, running fastest and adjusting fewer
weights. But this method is not applicable to solving ISPP-T. So we utilize all violated
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constraints instead of choosing constraints by splitting target path. Sp becomes another
method, the all constraints method (Ac). Ac can take the shortest time to solve ISPP-T in
directed graphs and the value of changing the weight is the smallest. This method is also
feasible in undirected graphs, and similar results can be obtained.

The reason why Sp is suitable for small networks is that, it uses more constraints
during each iteration than the other methods. In relatively small-sized graphs, the
number of constraints remains within a reasonable range and the complexity of
optimization is still lower. The optimization time to will not be affected significantly.
With this premise, more constraints make it possible to obtain the optimal solution in
only one iteration, which decreases the total running time.

For the limit constraint method, it seems to be the fastest of our general research
methods to solve ISPP-S and ISPP-M in large-sized directed graphs. Its running time
is generally the shortest and significantly shorter than other methods in graphs with
relatively complex structures (like configuration graph and ER graph). It is relatively
effective to solve ISPP-T. The results in undirected graphs are very similar to those in
directed graphs. But the total weight adjustment of Lc is larger than that of other
methods, which is related to the number of iterations.

Lc is more effective in large-sized complex networks, because the number of
constraints in each iteration is fixed and smaller. In every iteration of Lc, the
old constraints are totally replaced by new ones. While other methods merge new
constraints with old ones, the size of the active constraint set will grow after each
iteration.

In summary, for the ISPP with relatively few constraints (ISPP in small-sized
networks with simple structures or ISPP-S), the number of iterations i ter has a greater
impact on the total running time. Increasing the number of active constraints in
a reasonable range allows the optimal solution to be obtained in few iterations, so
the total running time will be short and the adjustment of link weight is relatively
small. So Sp is more efficient. For the ISPP with relatively more constraints (ISPP in
large-sized networks with complicated structures or ISPP-M), the entire running time
is more heavily influenced by the time of optimization to . We can restrict the number
of active constraints in each iteration to obtain the optimal solution rapidly. So Lc
is more effective. However, this approach would come at the cost of increasing the
weight adjustment. For the ISPP with a large number of constraints (ISPP-T), Ac is more
efficient in directed graphs and small-sized undirected graphs. When solving ISPP-T in
large undirected graphs, Cg shows its advantages.

In addition, when Lc and Sp are applied to the empirical networks, they are effective
for solving ISPP-S (with a large number of links and fewer con·‘straints). This type of
problem is common in the real-world complex systems.

7.2. FUTURE WORK
Although Lc and Sp are efficient in most cases, they perform worse than Cg when solving
ISPP-T in large-sized undirected graphs. Additionally, when dealing with complicated
networks, Lc’s overall weight adjustment has a tendency to be bigger. So, the following
future work is suggested:
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• Further improve the algorithm to enhance the speed of solving ISPP-T in
undirected graphs.

• Find the balance between running time and the total weight adjustment such that
minimal weight adjustment can be achieved in a relatively short running time.
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This appendix presents all involving notations in graph theory and abbreviations in the
thesis.

A.1. INVOLVING NOTATIONS IN GRAPH THEORY

Table A.1: Notations in graph theory

Mathematical notation Purpose
G graph or network
N node set
L link set
N number of nodes
L number of links
A adjacency matrix
a element of adjacency matrix
W link weight matrix
w link weight
P path
T the shortest path tree
r root of the tree
d degree
Pr (d = k) degree distribution
B betweenness
γ power law exponent of degree distribution
G(N , p) ER graph
G(N ,m0,m1) BA graph
G(N ,n0 ×n1) 2D lattice graph
G(N , [1,K ]) Configuration graph
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A.2. ABBREVIATIONS IN THE THESIS

Table A.2: List of abbreviations

Abbreviations Full name
ISPP Inverse shortest path problem
ISPP-S Inverse shortest path problem with a

single prescribed path
ISPP-M Inverse shortest path problem with

multiple prescribed paths
ISPP-T Inverse shortest path problem with target

paths in a spanning tree
ER graph Erdős–Rényi graph
BA graph Barabási–Albert graph
GI Goldfarb-Idnani
LP Linear programming
Qp Quadratic programming method
Cg Column generation method
Sp Split path method
Lc Limit constraints method
Ac All constraints method
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This appendix presents the flowchart of the framework for solving ISPP, the quadratic
programming method (Qp) and the column generation method (Cg). All of them specific
show how to solve ISPP.
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B.1. FLOWCHART OF QP

Figure B.1: The steps of QP



B.2. FLOWCHART OF CG
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B.2. FLOWCHART OF CG

Figure B.2: The steps of Cg
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B.3. ALGORITHMIC FRAMEWORK FOR SOLVING ISPP

Figure B.3: Algorithmic framework for solving ISPP
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This appendix displays the accuracy of Sp and former Lc in different types of graphs.

C.1. ACCURACY OF ER GRAPH
The connection possibility of ER graphs p equals to 2log (N )/N . N is the number of
nodes.

Table C.1: Accuracy after on iteration in ER graph

Method
N

10 20 50 100 200 500 1000

Split path 0.9764 0.9385 0.9075 0.8714 0.8470 0.8242 0.6477
Former Limit constraints 0.9086 0.8777 0.7089 0.5516 0.3863 0.2228 0.1171

C.2. ACCURACY OF 2D LATTICE GRAPH
The structure of 2D lattice graphs is G(10,5×2); G(20,5×4); G(50,10×5); G(100,10×10);
G(200,20×10); G(500,25×20); G(1000,40×25) respectively. N is the number of nodes.

Table C.2: Accuracy after on iteration in 2D lattice graph

Method
N

10 20 50 100 200 500 1000

Split path 1 0.9758 0.9116 0.8195 0.7063 0.5515 0.4208
Former Limit constraints 0.9993 0.9831 0.9082 0.7781 0.5867 0.3606 0.2487
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C.3. ACCURACY OF CONFIGURATION GRAPH
The degree range of configuration graphs is [1,10]. N is the number of nodes.

Table C.3: Accuracy after on iteration in configuration graph

Method
N

10 20 50 100 200 500 1000

Split path 0.9769 0.9647 0.9508 0.9398 0.9337 0.9081 0.8989
Former Limit constraints 0.8684 0.7532 0.5542 0.4413 0.3614 0.2879 0.2534
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D.1. CONSTRUCTION OF BA GRAPH

1 function [G]=BA(N,m0,m1)
2 A = sparse(N,N);
3 for i=1:m0
4 for j= (i+1):m0
5 A(i,j)= round(rand());
6 end
7 end
8 for new = m0+1:N
9 Degree = sum(A(1:new-1,1:new-1));

10 DegreeInterval(1) = Degree(1);
11 for i=2:new-1
12 DegreeInterval(i) = Degree(i)+DegreeInterval(i-1);
13 end
14 AllDegree = sum(sum(A(1:new-1,1:new-1)));
15 for i = 1:m1
16 while 1
17 RandDegree = fix(AllDegree*rand()+1);
18 Ans = find(RandDegree <= DegreeInterval(1:new-1));
19 old = Ans(1);
20 if A(new,old) == 0
21 A(new,old) = 1;
22 break;
23 end
24 end
25 end
26 end
27 Degree = sum(A);
28 UniDegree = unique(Degree);
29 for i = 1:length(UniDegree)
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30 DegreeNum(i) = length(find(Degree==UniDegree(i)));
31 end
32 G=graph(A,’upper’);
33 m=numedges(G);
34 f=rand(1,m);
35 G.Edges.Weight=f.’;
36 end

D.2. CONSTRUCTION OF ER GRAPH

1 function [G]=ER(N,p)
2 A = zeros(N,N);
3 C = zeros(1,N);
4 for i=1:N
5 for j=i+1:N
6 b=rand();
7 if b<=p
8 A(i,j)=1;
9 else

10 A(i,j)=0;
11 C(1,i)=1;C(1,j)=1;
12 end
13 end
14 end
15 G=graph(A,’upper’);
16 m=numedges(G);
17 f=rand(1,m);
18 G.Edges.Weight=f.’;
19 end

D.3. CONSTRUCTION OF 2D LATTICE GRAPH

1 function [G]=lattice(N)
2 if N==10
3 n=5;
4 elseif N==20
5 n=5;
6 elseif N==50
7 n=10;
8 elseif N==200
9 n=20;

10 elseif N==500
11 n=25;
12 elseif N==1000
13 n=40;
14 elseif N==100
15 n=10;
16 end
17 A = delsq(numgrid(’S’,n+2));
18 G = graph(A,’omitselfloops’);
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19 A=full(adjacency(G));
20 A=A(1:N,1:N);
21 G=graph(triu(A),’upper’);
22 m=numedges(G);
23 f=rand(1,m);
24 G.Edges.Weight=f.’;

D.4. CONSTRUCTION OF CONFIGURATION GRAPH

1 function [G]=configurationD(N,deg)
2 Node_ofDegree=randi(deg,1,N);
3 d=sum(Node_ofDegree);
4 if mod(d,2)==0
5 else
6 [~,Q]=max(Node_ofDegree);
7 Node_ofDegree(Q)= Node_ofDegree(Q)-1;
8 d=d-1;
9 end

10 s=[];
11 t=[];
12 while 1
13 x=find(Node_ofDegree>=1);
14 u=randi(length(x),2,1);
15 B=x(u(1));
16 A=x(u(2));
17 s=[s,B];
18 t=[t,A];
19 if A~=B
20 Node_ofDegree(A)=Node_ofDegree(A)-1;
21 Node_ofDegree(B)=Node_ofDegree(B)-1;
22 else
23 Node_ofDegree(A)=Node_ofDegree(A)-1;
24 end
25 if Node_ofDegree==zeros(1,length(Node_ofDegree))
26 break
27 end
28 end
29
30 G=graph(s,t);
31 A=adjacency(G);
32 m=numedges(G);
33 f=rand(1,m);
34 G.Edges.Weight=f.’;
35 end
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E.1. THE COLUMN GENERATION METHOD

1 function [G,count]=CG(G,MP)
2 h=0;
3 CX=G.Edges.Weight;
4 m=numedges(G);
5 e=table2array(G.Edges);
6 ee=0.00001;
7 PE=[];
8 w=G.Edges.Weight;
9 count=0;

10 for i=1:length(e(:,1))
11 PE=[PE,findedge(G,e(i,1),e(i,2))];
12 end
13 A_1=sparse([zeros(m);-eye(m)]);
14 A_2=sparse([eye(m);zeros(m)]);
15 A_3=sparse([zeros(m);eye(m)]);
16 A_tilde=[A_1,A_2,A_3];
17 y_1=sparse(zeros(m,2*m).’);
18 y_2=sparse(ones(m,2*m).’);
19 y_3=sparse(ones(m,2*m).’);
20 Y=[y_1,y_2,y_3].’;
21 c_1=sparse(-w.’);
22 c_2=sparse(zeros(1,m));
23 c_3=sparse(zeros(1,m));
24 c_tilde=[c_1,c_2,c_3];
25 % constraint shortest path
26 flag=1;
27 while flag==1
28 count=count+1;
29 f=ones(2*m,1);
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30 a=-A_tilde.’;
31 b=-c_tilde;
32 aeq=[];
33 beq=[];
34 lb=zeros(2*m,1);
35 ub=[inf(1,m),w.’].’;
36 options = optimoptions(’linprog’,’Display’,’none’);
37 pi=linprog(f,a,b,aeq,beq,lb,ub,options).’;
38 if isempty(pi)
39 G.Edges.Weight=w;
40 break
41 else
42 pi1=pi(1,1:m);
43 pi2=pi(1,m+1:2*m);
44 w_tilde=(w.’+pi1-pi2).’; %w_tilde=-cj
45 G.Edges.Weight=w_tilde;
46
47
48 DD1=[];
49 D1=[];
50 for i=1:length(MP)
51 P=cell2mat(MP(i));
52 pe=[];
53 for j=2:length(P)
54
55 pe=[pe,findedge(G,P(j-1),P(j))];
56 end
57 dd1=sum(G.Edges.Weight(pe));
58 DD1=[DD1,dd1];
59 try
60 [~,d1,omegae]=shortestpath(G,P(1),P(end));
61 catch
62 h=1;
63 break
64 end
65
66 D1=[D1,d1];
67 if d1<dd1
68 peo=pe;
69 omegaeo=omegae;
70 end
71 end
72 if D1==DD1
73 G.Edges.Weight=w_tilde;
74 break
75 else
76 G.Edges.Weight=w;
77
78 QP1=ismember(PE,peo).’;
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79 u1=ismember(PE,omegaeo).’;%u is the QP_kj
80 QP_1=u1;
81 c1=w.’*(QP1-QP_1);
82 c_tilde=[c_tilde,c1];
83 a1=[QP_1-QP1;QP1-QP_1];
84 A_tilde=[A_tilde,a1];
85 flag=1;
86 end
87 end
88 if h==1
89 G.Edges.Weight=inf(m,1);
90 break
91 end
92 end
93 end

E.2. THE QUADRATIC PROGRAMMING METHOD

1 function [G]=QP(G,MP)
2 v=0;
3 u=0;
4 N1=[];
5 A_ind=[];
6 A=[];
7 r=0;
8 f=0;
9 epsilon=0.0001;

10 m=numedges(G);
11 c=G.Edges.Weight;
12 Aip=[];
13 Ain=[];
14 flag_1=1;
15 count=0;
16 h=0;
17 %% step 1
18 while flag_1==1
19 flag_1=0;
20 CIY=[];
21 E=[];
22 ipv=[];
23 inv=[];
24 c=real(c);
25 G.Edges.Weight=c;
26 count1=0;
27 if ~isempty(find(isnan(c)==1))
28 h=1;
29 break
30 else
31 for iu=1:length(MP)
32 P=cell2mat(MP(iu));
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33 PE=[];
34 for i=2:length(P)
35 PE=[PE,findedge(G,P(i-1),P(i))];
36 end
37 for node=2:length(P)
38 try
39 [~,~,edgepath]=shortestpath(G,P(1),P(node),"Method","auto");
40 catch
41 h=1;
42 break
43 end
44 [~,i_index_sp_vertex,i_index_p_vertex] = intersect(edgepath,
45 PE(1:node-1));
46 IP=edgepath;
47 IP(i_index_sp_vertex)=[];
48 IPV=0;
49 for i=1:length(IP)
50 IPV=IPV+G.Edges.Weight(IP(i));
51 end
52 IN=PE(1:node-1);
53 IN(i_index_p_vertex)=[];
54 INV=0;
55 for i=1:length(IN)
56 INV=INV+G.Edges.Weight(IN(i));
57 end
58 e=IPV-INV;
59 E=[E,e];
60 count1=count1+1;
61 ipv{count1}=IP;
62 inv{count1}=IN;
63 end
64 if h==1
65 break
66 end
67 end
68 if h==1
69 break
70 end
71 CIY_ind = find(c<-epsilon);
72 for vo=1:length(CIY_ind)
73 IY=zeros(m,1);
74 IY(CIY_ind(vo))=c(CIY_ind(vo));
75 CIY=[CIY,IY];
76 end
77
78 E=[E,c.’];
79 uE=find(E>-epsilon&E<0);
80 E(uE)=0;
81 uc=find(c>-epsilon&c<0);
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82 c(uc)=0;
83 ip=[ipv,num2cell(1:m)];
84 in=[inv,cell(1,m)];
85 %% step 2
86 if E<-epsilon==zeros(1,length(E))
87 G.Edges.Weight=c;
88 break
89 else
90 [IqV,IqI]=min(E);
91 nq=zeros(m,1);
92 if IqI<=count1
93 Iqp=cell2mat(ip(IqI));
94 Iqn=cell2mat(in(IqI));
95 nq(Iqp)=1;
96 nq(Iqn)=-1;
97 Eq = IqV;
98 Iq=nq.*c;
99 else

100 Iqp=IqI-count1;
101 nq(Iqp)=1;
102 Iqn =[];
103 Iq=zeros(m,1);
104 Eq = IqV;
105 Iq=nq.*c;
106 end
107 end
108 if v==0
109 alpha=sqrt(length(Iqp)+length(Iqn));
110 % go to step5
111 flag_1=5;
112 else
113 u=[u;0];
114 %% step 3a
115 N1=[N1,nQ];
116 if v==1
117 R=alpha;
118 %go to the step 4
119 else
120 alpha=sqrt(norm(nq,2)^2-norm(z,2)^2);
121
122 R=[R,z;zeros(1,size(R,2)),alpha];
123 end
124 flag_1=4;
125 %% step 4
126 while flag_1==4
127 y=[];
128 for j = 1:v
129 Ijp=cell2mat(Aip(j));
130 Ijn=cell2mat(Ain(j));
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131 y(j)=length(intersect(Ijp,Iqp))+length(intersect(Ijn,Iqn))
132 -length(intersect(Ijp,Iqn))-length(intersect(Ijn,Iqp));
133 end
134 y=y.’;
135 if isempty(y)
136 break
137 else
138 z=pinv(R.’)*y;
139 r=pinv(R)*z;
140 alpha=sqrt(norm(nq)^2-norm(z)^2);
141 flag_1=5;
142 end
143 end
144 end
145 %% step 5
146 while flag_1==5
147 flag_1=0;
148 S=[];
149 tf1=[];
150 for xj=1:v
151 if r(xj)>0
152 S=[S,j];
153 tf1=[tf1,u(xj)/r(xj)];
154 end
155 end
156 if isempty(S)
157 tf = inf;
158 else
159 [tf,l]=min(tf1);
160 end
161 %% step 6
162 if alpha<= epsilon
163 %% step 7b
164 if tf==inf
165 break
166 else
167 u = u+tf.*[-r;1];
168 A(:,l)=[];
169 A_ind(l)=[];
170 Aip(l)=[];
171 Ain(l)=[];
172 v=v-1;
173 u(l)=[];
174 %go to step 3b
175 %% step 3b
176 N1(:,l)=[];
177 R(:,l)=[];
178 T=R(l:end,l:end);% Givens rotation
179 [~,n1]=size(T);
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180 R2=Givens_rotation(T);
181 R=[R(1:l-1,:);zeros(n1,l-1),R2];
182 y=[];
183 for j = 1:v
184 Ijp=cell2mat(Aip(j));
185 Ijn=cell2mat(Ain(j));
186 y(j)=length(intersect(Ijp,Iqp))+length(intersect(Ijn,Iqn))
187 -length(intersect(Ijp,Iqn))-length(intersect(Ijn,Iqp));
188 end
189 y=y.’;
190 if isempty(y)
191 break
192 else
193 z=pinv(R.’)*y;
194 r=pinv(R)*z;
195 alpha=sqrt(norm(nq)^2-norm(z)^2);
196 flag_1=5;
197 end
198 end
199 end
200 if flag_1==5
201 else
202 %lemma3
203 Y=CIY_ind;
204 X=[cell2mat(Aip),cell2mat(Ain)];
205 X=setdiff(X,Y);
206 X=unique(X);
207 V_allelements=[];
208 V_matrix=[];
209 islandV_index=[];
210 for col_index=1:size(A,2)
211 a_island=[cell2mat(Aip),cell2mat(Ain)];
212 if length(a_island)>1
213 V_allelements=[V_allelements;a_island];
214 V_matrix=[V_matrix,A(:,col_index)];
215 islandV_index=[islandV_index,col_index];
216 end
217 end
218 X=unique(V_allelements);
219 X=setdiff(X,Y);
220 d=zeros(m,1);
221 for i=1:m
222 if find(Iqp==i,1)%a(i) is the index of edge
223 delta1=1;
224 else
225 delta1=0;
226 end
227 if find(Iqn==i,1)%a(i) is the index of edge
228 delta2=1;
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229 else
230 delta2=0;
231 end
232 if find(X==i,1)%a(i) is the index of edge
233 delta3=1;
234 else
235 delta3=0;
236 end
237 if delta3==0
238 d(i)=delta1-delta2;
239 elseif ~isempty(V_matrix)
240 Ip_i_index_in_V=find(V_matrix(i,:)>0);
241 Ip_i = islandV_index(Ip_i_index_in_V);
242 In_i_index_in_V=find(V_matrix(i,:)<0);
243 In_i =[islandV_index(In_i_index_in_V)];
244 d(i)=delta1-delta2+delta3*(sum(r(In_i))-sum(r(Ip_i)));
245 else
246 d(i)=delta1-delta2;
247 end
248 end
249 if ~isempty(V_matrix)
250 if length(find(nq~=0))==1
251 q=find(nq~=0);
252 Ip_q_index_in_V=find(V_matrix(q,:)>0);
253 Ip_q = islandV_index(Ip_q_index_in_V);
254 In_q_index_in_V=find(V_matrix(q,:)<0);
255 In_q = islandV_index(In_q_index_in_V);
256 dTnq=1+sum(r(In_q))-sum(r(Ip_q));
257 else
258 dTnq=0;
259 for i = 1:length(Iqp)
260 Ip_q_index_in_V=find(V_matrix(Iqp(i),:)>0);
261 Ip_q = islandV_index(Ip_q_index_in_V);
262 In_q_index_in_V=find(V_matrix(Iqp(i),:)<0);
263 In_q = islandV_index(In_q_index_in_V);
264 dTnq=dTnq+(1+sum(r(In_q))-sum(r(Ip_q)) );
265 end
266 for i = 1:length(Iqn)
267 Ip_q_index_in_V=find(V_matrix(Iqn(i),:)>0);
268 Ip_q = islandV_index(Ip_q_index_in_V);
269 In_q_index_in_V=find(V_matrix(Iqn(i),:)<0);
270 In_q = islandV_index(In_q_index_in_V);
271 dTnq=dTnq+(1+sum(r(Ip_q))-sum(r(In_q)) );
272 end
273 end
274 else
275 if length(nq)==1
276 dTnq=1;
277 else
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278 dTnq=length(Iqp)+length(Iqn);
279 end
280 end
281 tc=-Eq/dTnq;
282 %% step 7a
283 t=min([tf,tc]);
284 c=c+t*d;
285 f=f+t*(0.5*t+u(size(A_ind,2)+1))*dTnq;
286 if v==0
287 u=u+t;
288 else
289 u=u+t.*[-r;1];%
290 end
291 if t==tc
292 A=[A,Iq];
293 A_ind=[A_ind,IqI];
294 Aip=[Aip,ip(IqI)];
295 Ain=[Ain,in(IqI)];
296 v=v+1;
297 nQ=nq;
298 flag_1=1;
299 %go to step 1
300 else
301 A(:,l)=[];
302 A_ind(l)=[];
303 Aip(l)=[];
304 Ain(l)=[];
305 v=v-1;
306 u(l)=[];
307 %go to step 3b
308 %% step 3b
309 N1(:,l)=[];
310 R(:,l)=[];
311 T=R(l:end,l:end);% Givens rotation
312 [~,n1]=size(T);
313 R2=Givens_rotation(T);
314 R=[R(1:l-1,:);zeros(n1,l-1),R2];
315 %% step 4
316 y=[];
317 for j = 1:v
318 Ijp=cell2mat(Aip(j));
319 Ijn=cell2mat(Ain(j));
320 y(j)=length(intersect(Ijp,Iqp))+length(intersect(Ijn,Iqn))
321 -length(intersect(Ijp,Iqn))-length(intersect(Ijn,Iqp));
322 end
323 y=y.’;
324 if isempty(y)
325 break
326 else
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327 z=pinv(R.’)*y;
328 r=pinv(R)*z;
329 alpha=sqrt(norm(nq)^2-norm(z)^2);
330 flag_1=5;
331 end
332 end
333 end
334 end
335 end
336 end
337
338 if h==1
339 G.Edges.Weight=inf(m,1);
340 end
341 end

E.3. THE SPLIT PATH METHOD

1 function [G,count]=SP(G,MP)
2 h=0;
3 m=numedges(G);
4 pe=[];
5 flag=1;
6 count=0;
7 CX=G.Edges.Weight;
8 epsilon=0.0000001;
9 while flag==1

10 A1=[];
11 B1=[];
12 c=G.Edges.Weight.’;
13 for v=1:length(MP)
14 P=cell2mat(MP(v));
15 pe=[];
16 for i=2:length(P)
17 pe=[pe,findedge(G,P(i-1),P(i))];
18 end
19 cd1=sum(G.Edges.Weight(pe));
20 try
21 [~,cd2,PE]=shortestpath(G,P(1),P(end));
22 catch
23 h=1;
24 break
25 end
26 if cd1==cd2
27 else
28 if length(pe)==1
29 ap=zeros(1,m);
30 an=zeros(1,m);
31 ap(pe)=1;
32 an(PE)=-1;
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33 A=ap+an;
34 B=cd2-cd1;
35 A1=[A1;A];
36 B1=[B1;B];
37 end
38 if length(pe)>=2
39 for u=1:length(pe)
40 [~,~,Pe1]=shortestpath(G,P(1),P(u+1));
41 sp=zeros(1,m);
42 sn=zeros(1,m);
43 sp(pe(:,1:u))=1;
44 sn(Pe1)=-1;
45 S=sp+sn;
46 bp=c(Pe1);
47 bn=-c(pe(:,1:u));
48 B=sum(bp)+sum(bn);
49 A1=[A1;S];
50 B1=[B1;B];
51 [~,~,Pe2]=shortestpath(G,P(u),P(end));
52 sp=zeros(1,m);
53 sn=zeros(1,m);
54 sp(pe(:,u:end))=1;
55 sn(Pe2)=-1;
56 S=sp+sn;
57 bp=c(Pe2);
58 bn=-c(pe(:,u:end));
59 B=sum(bp)+sum(bn);
60 A1=[A1;S];
61 B1=[B1;B];
62 end
63 end
64 end
65 end
66 uE=find(B1>-epsilon&B1<0);
67 B1(uE)=0;
68 if B1<-epsilon==zeros(1,length(B1))
69 G.Edges.Weight=c.’;
70 break
71 else
72 uu=find(c<0);
73 c(uu)=0;
74 count=count+1;
75 f=ones(2*m,1).’;
76 A2=[A1,-A1];
77 b2=B1;
78 lb=zeros(2*m,1);
79 ub=[inf(1,m),c].’;
80 Aeq=[];
81 beq=[];
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82 options = optimoptions(’linprog’,’display’,’none’);
83 x=linprog(f,A2,b2,Aeq,beq,lb,ub,options);
84
85
86 if isempty(x)
87 G.Edges.Weight=c.’;
88 else
89 X=x(1:m,:)-x(m+1:end,:)+c.’;
90 G.Edges.Weight=X;
91 end
92 DD1=[];
93 D1=[];
94 for i=1:length(MP)
95 P=cell2mat(MP(i));
96 pe=[];
97 for j=2:length(P)
98 pe=[pe,findedge(G,P(j-1),P(j))];
99 end

100 dd1=sum(G.Edges.Weight(pe));
101 DD1=[DD1,dd1];
102 try
103 [~,d1]=shortestpath(G,P(1),P(end));
104 catch
105 h=1;
106 break
107 end
108 D1=[D1,d1];
109 end
110
111 if D1==DD1
112 break
113 end
114 if h==1
115 G.Edges.Weight=inf(m,1);
116 break
117 end
118 end
119 end
120 end

E.4. THE LIMIT CONSTRAINTS METHOD

1 function [G,count]=LC(G,MP)
2 h=0;
3 CX=G.Edges.Weight;
4 m=numedges(G);
5 count=0;
6 flag=1;
7
8 A1=[];
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9 B1=[];
10 epsilon=0.000001;
11 while flag==1
12 EP=[];
13 Pe=[];
14 E=[];
15 COUNT=0;
16 c=G.Edges.Weight.’;
17 for u=1:length(MP)
18 P=cell2mat(MP(u));
19 pe1=[];
20 for v=2:length(P)
21 pe1=[pe1,findedge(G,P(v-1),P(v))];
22 end
23 for node=2:length(P)
24 pe=pe1(1:node-1);
25 cd1=sum(c(pe));
26 try
27 [~,cd2,edgepath]=shortestpath(G,P(1),P(node),’Method’,’auto’);
28 catch
29 h=1;
30 break
31 end
32
33 e=cd2-cd1;
34 if e<0
35 COUNT=COUNT+1;
36 E=[E,e];
37 Pe{COUNT}=pe;
38 EP{COUNT}=edgepath;
39 end
40 end
41 end
42 if isempty(E)
43 break
44 else
45 [Eq,IqI]=min(E);
46 ap=zeros(1,m);
47 an=zeros(1,m);
48 ap(cell2mat(Pe(IqI)))=1;
49 an(cell2mat(EP(IqI)))=-1;
50 A=ap+an;
51 A1=A;
52 B1=Eq;
53
54 end
55 uu=find(c<0);
56 c(uu)=0;
57
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58 if B1>-epsilon&B1<0
59 G.Edges.Weight=c.’;
60 break
61 else
62
63 f=ones(2*m,1).’;
64 A2=[A1,-A1];
65 b2=B1;
66 lb=zeros(2*m,1);
67 ub=[inf(1,m),c].’;
68 Aeq=[];
69 beq=[];
70 options = optimoptions(’linprog’,’Algorithm’,’interior-point’);
71 x=linprog(f,A2,b2,Aeq,beq,lb,ub,options);
72 count=count+1;
73 if isempty(x)
74 G.Edges.Weight=c.’;
75 else
76 X=x(1:m,:)-x(m+1:end,:)+c.’;
77 G.Edges.Weight=X;
78 end
79
80
81 DD1=[];
82 D1=[];
83 for i=1:length(MP)
84 P=cell2mat(MP(i));
85 pe=[];
86 for j=2:length(P)
87 pe=[pe,findedge(G,P(j-1),P(j))];
88 end
89 dd1=sum(G.Edges.Weight(pe));
90 DD1=[DD1,dd1];
91 try
92 [~,d1]=shortestpath(G,P(1),P(end));
93 catch
94 h=1;
95 break
96 end
97 D1=[D1,d1];
98 end
99

100 if D1==DD1
101 e4=count;
102 break
103 end
104 if h==1
105 G.Edges.Weight=inf(m,1);
106 break
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107 end
108 end
109 end
110 end
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