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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• We developed a new generic physico- 
biochemical model for fecal bacteria.

• We validated and evaluated the model 
for Escherichia coli in estuarine and 
coastal waters.

• Including UVA and UVB photo- 
inactivation improves E. coli die-off 
predictions.

• Photo-inactivation is significant in clean 
waters but less significant with high 
CDOM.

• Sediment composition should be 
considered when predicting peaks in 
turbid waters.

A R T I C L E  I N F O
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A B S T R A C T

The risk of infection by enteric pathogens in bathing waters is generally monitored by using fecal indicator 
bacteria (FIB). Mechanistic models are efficient tools to predict FIB concentrations in bathing waters, both in 
near-future forecasting and in long-term climate change projections. However, most existing mechanistic FIB 
models are limited by the availability of observations for validation and incorporation of all relevant physical, 
biological, and chemical (physico-biochemical) processes. Therefore, the quantitative influence of different 
physio-biochemical processes and impact factors is missing. To enhance the understanding of FIB fate in different 
aquatic systems, we developed a comprehensive yet generically applicable physico-biochemical model, focused 
on Escherichia coli (E. coli). It includes a die-off module and a sediment interaction module. Separate validation of 
the two sub-modules demonstrated the reliability of our modeling approach. The die-off module shows a higher 
R2 value (0.88) and lower RMSE value (1.1 day-1) than the existing models (0.48–0.79, and 1.8–7.2 day -1). This 
demonstrated an improvement by adding Ultraviolet-A and Ultraviolet-B (UVB) inactivation and UV spectrum 
extinction due to colored dissolved organic matter (CDOM) absorption. According to our sediment module 
validation, considering the impact of sediment composition on E. coli attachment can improve the allocation of 
E. coli between waters and sediments. Sensitivity analysis showed that 1) photo-inactivation is important in low 
CDOM waters, but not in high CDOM waters, where the UV penetration is limited; 2) the impact of sediment 
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interaction can extend the duration of a peak event in high turbid waters. This work demonstrated the dominant 
impact factors in different aquatic systems for E. coli prediction. The new generic model enables better simulation 
of bathing water quality across different types of aquatic environments, which can be a useful tool to inform 
management at bathing sites. Future applications can choose processes selectively from the new FIB physico- 
biochemical model and couple it with appropriate hydrological/hydrodynamic models to address specific 
environmental conditions and research purposes.

1. Introduction

Waterborne pathogens at bathing sites, originating from wastewater 
treatment plant effluents, agricultural runoff, combined sewer over
flows, and sewer leakages or septage, pose a significant public health 
risk. The EU Bathing Water Directive (EU, 2006) regulates recreational 
bathing water quality based on biweekly fecal indicator bacteria (FIB) 
monitoring, such as E. coli and Enterococcus. However, this frequency 
may not be sufficient for capturing peak events due to rapid changes in 
FIB concentrations (Jozić et al., 2024). High-frequency monitoring is 
costly, and sample transport and the standard enumeration method 
introduce time lags that limit early warning (Enns et al., 2012). FIB 
modeling helps address these gaps and enables near-future forecasting 
and the impacts of climate change on bathing water quality (King et al., 
2021; Sterk et al., 2013).

Current FIB prediction models mainly target rural catchments and 
sub-catchments and typically operate at a daily timestep (De Brauwere 
et al., 2014a; Kim et al., 2017; Ouattara et al., 2013; Tong et al., 2024; 
Worku Meshesha et al., 2020). They generally comprise three compo
nents: 1) an emission module estimating FIB sources to aquatic systems; 
2) a physico-biochemical module describing in-system phys
ico-biochemical processes of FIB; and 3) a hydrology/hydrodynamics 
module simulating horizontal and vertical transport. The emission and 
hydrological module components are typically site-specific, but the 
physico-biochemical processes tend to be consistent across aquatic en
vironments (Cho et al., 2016; de Brauwere et al., 2014b). To study FIB 
fate and transport across various water types—from land to sea in both 
urban and rural settings—a universally applicable physico-biochemical 
FIB module is needed (Hipsey et al., 2008). However, recent review 
studies (Cho et al., 2016; Nelson et al., 2018) suggested that the current 
models lack sufficient details in photo-inactivation and sediment inter
action, which are the key processes alongside Natural die-off (die-off in 
darkness) (de Brauwere, 2014).

Photo-inactivation can have a strong impact on the FIB die-off. UV 
disinfection is widely used in waste stabilization ponds and constructed 
wetlands (Silverman and Guest, 2022; Zhang et al., 2019). Sunlight in
activates FIB via two mechanisms: 1) endogenous damage, triggered by 
absorbing photons in the UVB and UVA (280 – 400 nm) range, and 2) 
exogenous damage, which needs external photosensitizers (e.g., natural 
organic matter) as media (Nelson et al., 2018). Given that shorter 
wavelengths have stronger effects on inactivation (Nelson et al., 2018), 
Photo-inactivation rates should reflect cumulative effects across the 
spectrum. However, the current FIB physico-biochemical models tend to 
simplify this mechanism (Cho et al., 2016), by ignoring the 
photo-inactivation impact (De Brauwere et al., 2014a; Kim et al., 2017; 
Ouattara et al., 2013; Thorndahl et al., 2024; Worku Meshesha et al., 
2020) or by estimating it from a total radiation coefficient while also 
neglecting light extinction caused by colored dissolved organic carbon 
(CDOM) (Shi et al., 2024; Tong et al., 2024).

UV extinction is highly sensitive to water turbidity (Wang and 
Seyed-Yagoobi, 1994). CDOM is the dominant absorber for UV radiation 
in the ocean and inland waters (Kuhn et al., 1999; Laurion et al., 2000). 
CDOM are often adequate in FIB sources, like wastewater effluents and 
overflows (Gonsior et al., 2011; Kalev et al., 2021), and transport with 
FIB to bathing waters. Resuspension sediments from bather activities 
also reduce UV penetration (Graczyk et al., 2010). Therefore, CDOM and 
suspended sediment should be considered when calculating E. coli 

photo-inactivation. Given the clear positive relation between dissolved 
organic carbon (DOC) and CDOM concentrations in global aquatic en
vironments (Fichot and Benner, 2011; Li et al., 2018), DOC concentra
tion, which is easier to measure and commonly simulated in water 
quality models, can be used to estimate UV attenuation (Morris et al., 
1995). To incorporate FIB photo-inactivation by the UVA+UVB spec
trum into the new model, four steps need to be taken (Nelson et al., 
2018): (1) characterizing the spectrum upon water surfaces; (2) esti
mating the spectrum extinction in waters; (3) predicting endogenous 
inactivation, and (4) exogenous inactivation. Since E. coli is not 
noticeably susceptible to exogenous inactivation (Nguyen et al., 2015), 
the fourth step is omitted in this study.

Sediment serves as a reservoir for FIB in both fresh and marine wa
ters (Fluke et al., 2019; Labite et al., 2010; Pachepsky and Shelton, 
2011). To capture this, some FIB physico-biochemical models incorpo
rate the sediment interaction, including attachment-detachment, sedi
mentation, resuspension, and hyporheic exchange (Kim et al., 2010, 
2017; Shi et al., 2024; Thupaki et al., 2013). In most previous modeling 
studies, the attachment between FIB and suspended sediment is irre
versible and determined by a constant partitioning rate, ignoring the 
positive relation between suspended sediment concentration and 
attached FIB (Garcia-Armisen and Servais (2009). More recent ap
proaches adopt a dynamic partitioning rate, based on suspended sedi
ment concentrations and a constant partitioning coefficient (KSS), 
representing the absorption capacity of suspended sediment per unit to 
FIB (Bai and Lung, 2005; Gao et al., 2011; Thupaki et al., 2013). 
Nevertheless, the partitioning coefficients were valued arbitrarily in a 
range of 0.01 – 10 m3 g-1. Kim et al. (2010, 2017) pointed out that the 
partitioning coefficient, as an intrinsic character determined by sus
pended sediment composition, is a function of the clay proportion in 
total suspended sediments (TSS). Incorporating this function in the 
model requires detailed TSS dynamics. Fortunately, given the progress 
of TSS simulation in current water quality models, this can be tackled by 
coupling the FIB physico-biochemical module with an existing TSS 
module.

This study aims to develop a generic mechanistic FIB model incor
porating the latest understanding of E. coli physico-biochemical pro
cesses. While the model is developed and validated based on E. coli data, 
it can be adapted to other fecal bacteria and viruses by reparameteri
zation. Compared to the existing models, the new model 1) considers the 
photo-inactivation due to the UVA+UVB spectrum, in which extinction 
caused by CDOM and TSS is included; 2) introduces a dynamic KSS based 
on clay and non-clay sediment fractions. By comparing with observa
tions from previous studies, the new functions have been validated 
individually via a box model. The sensitivity of the impact factors in 
different types of aquatic ecosystems was evaluated via sensitivity 
analysis. By coupling with a specific emission module and hydrology/ 
hydrodynamics module, this new FIB model can be widely applied for 
FIB predictions in various water systems.

2. Materials and methods

In this study, we first developed a new generic module representing 
key processes affecting E. coli in surface waters (Section 2.1). The 
module was developed within Delwaq: the water quality model within 
the Delft3D-WAQ modelling framework (Deltares, 2020), which is based 
on the advection-diffusion-reaction equation. We then applied a box 
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model for model validation with literature data and sensitivity analysis. 
The box model functions as a single grid cell of 3D hydrodynamic models 
(Fig. 1b). It can reproduce site-specific conditions for different envi
ronments by choosing different input data: either from literature or from 
existing 3D model applications. By comparing with observations time, 
the box model enables efficient test, calibration, validation and sto
chastic analysis under varying hydrodynamic scenarios.

Temperature and salinity are commonly and validation data from 
literature (Maraccini et al., 2016; Nguyen et al., 2015), we compared the 
new module with two existing model descriptions in Delwaq and in 
SWAT (Section 2.2). We also assessed the sensitivity of E. coli die-off 
rates using boundary conditions from two 3D models representing 
different aquatic systems (Section 2.3). Table 1 summarizes the simu
lation time, activated modules and impact factors for model comparison 
and the sensitivity analysis scenarios. The impact factors we considered 
in the study include temperature, salinity, radiation, DOC concentration, 
and sediment concentration and composition.

2.1. FIB physico-biochemical model development

As shown in Fig. 1a, E. coli die through photo-inactivation and nat
ural die-off. To represent the sediment interaction, we defined three 
bacterial states: 1) unattached E. coli in the water column; 2) attached 
E. coli; 3) sedimented E. coli, either in pore water or in deposited sedi
ment. These E. coli states can transfer via attachment-detachment, 
deposition, resuspension, and hyporheic exchange.

E. coli die-off is modeled by a total die-off rate (ktot, h-1) that com
bines natural die-off in darkness (kdark, h-1) and endogenous photo- 
inactivation (kphoto, h-1). kdark is determined by temperature and 
salinity (Chan et al., 2015). Details are provided in the supplementary 
information (SI 1.1). 

ktot = kdark + kphoto (1) 

The total die-off applies to unattached bacteria. For attached and 
sedimented bacteria, photo-inactivation was excluded, and temperature 
and salinity effects were reduced by 50 % and 90 %, respectively, due to 
sediment protection (Garzio-Hadzick et al., 2010). Key equations, pa
rameters and sources are shown in 2.1.1–2.1.3 and Table S1, with model 
inputs and outputs listed in Table S2.

2.1.1. Endogenous photo-inactivation
To estimate photo-inactivation, we first derived the UVA + UVB 

spectrum from the total global solar radiation (TGSR). We used a con
stant UVA + UVB fraction (fUVA+UVB) and standard UV spectra (Est1.05 (λ)
and Est1.5 (λ) (Kirk, 1981; (Annually, 1995), Figure S1) to redistribute the 

intensities across 300 – 400 nm. Tair mass is a temperature sensitivity 
coefficient for air mass given by (https://www.knmi.nl/over-het-knmi 
/nieuws/lichte-lucht-zware-lucht, Figure S2, Table S1). 

E0(0, λ) = TGSR × fUVA+UVB × f(λ) (2) 

f(λ) =
(
Est1.05 (λ) + Est1.5 (λ)

)
× Tair mass

∑400
λ=300

[(
Est1.05 (λ) + Est1.5 (λ)

)
× Tair mass

] (3) 

The second step was estimating UV penetration with depth (z, m), 
since CDOM is the main UV absorber in natural waters (Bricaud et al., 
1981; Zhang et al., 2020). The total diffuse attenuation coefficient 
(Ktot(λ), m-1) was calculated as the sum of CDOM attenuation coefficient 
(KCDOM(λ), m-1), backscattering coefficient of inorganic suspended sedi
ment (bscatter, m-1), and inherent attenuation coefficient of pure water 
(Kpure(λ), m-1). 

Fig. 1. Schematization of the FIB model (a) and the box model scheme with required boundary inputs (b). Photo-inactivation refers to damage via UV radiation; 
natural die-off includes various loss processes (e.g., predation, nutrient limitation). CDOM represents colored dissolved organic carbon.

Table 1 
Different scenarios in model comparison and sensitivity analysis.

Name Simulation 
time

Active 
module

Active 
factors

Model 
source

Model 
comparison

M0 10 days Die-off T, S, I, 
DOC

This 
study

​ M1 10 days Die-off T SWAT
​ M2 10 days Die-off T, S, I Delwaq
Sensitivity 

analysis
S1 1 year Die-off T, S This 

study
​ S2 1 year Die-off T, S, I This 

study
​ S3 1 year Die-off T, S, I, 

DOC
This 
study

​ S4 1 year Die-off +
sediment 
interaction

T, S, I, 
DOC, 
KSS_C*

This 
study

​ S5 1 year Die-off +
sediment 
interaction

T, S, I, 
DOC, 
KSS_D*

This 
study

​ E1 250 h Die-off T, S This 
study

​ E2 250 h Die-off T, S, I This 
study

​ E3 250 h Die-off T, S, I, 
DOC

This 
study

​ E4 250 h Die-off +
sediment 
interaction

T, S, I, 
DOC, 
KSS_D*

This 
study

*Note: KSS_C and KSS_D represent constant and dynamic partitioning rates, 
respectively. The KSS_C value is 0.01 m3 g-1 (Bai and Lung, 2005; Gao et al., 2011; 
Thupaki et al., 2013). T, S, and I are temperature, salinity and radiation, 
respectively.
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E0(z, λ) = E0(0, λ) × eKtot (λ)×z (4) 

Ktot(λ) = KCDOM(λ) + Kpure(λ) + bscatter (5) 

bscatter =
(

b∗
clay × Cclay + b∗

sand × Csand

)
× Pback (6) 

E0(0, λ) is the UV intensity at the water surface (W m-2), Kpure(λ) is 
calculated based on the studies of Morel et al. (2007); Smith and Baker 
(1981). b∗clay and b∗sand are the scattering coefficients of clay and sand (m2 

g-1), respectively (Stramski et al., 2007); Pback (-) is the backscattering 
probability (Bi et al., 2023), KCDOM(λ) is modeled as an exponential 
decay function (Jerlov, 2014; Shifrin, 1998): 

KCDOM(λ) = A × e− se×λ (7) 

Where, se (nm-1) is a spectral slope parameter representing CDOM 
composition, with a recommended value of 0.015 (Bricaud et al., 1981; 
Jerlov, 2014; Shifrin, 1998; Twardowski et al., 2004). A, as an ampli
tude, reflects CDOM concentration. With the DOC concentration (CDOC) 
and CDOM extinction coefficient (KCDOM(λ)) in natural waters (rivers, 
lakes, coastal seas) from previous studies (Huovinen et al., 2003; Lau
rion et al., 2000; Morris et al., 1995; Scully and Lean, 1994), we 
developed a DOC–amplitude (A) relation (See 3.1). To make sure the 
relation is fitting for the UVA + UVB spectrum, only samples with more 
than three KCDOM values across the spectrum were included (SI).

The endogenous UV-induced reaction was calculated following Sil
verman and Nelson (2016). Details are in SI 1.1.

2.1.2. Attachment and detachment with suspended sediment
Bacterial attachment can be explicitly described by the extended 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (van Loosdrecht 
et al., 1989). To simplify calculations and use commonly available input 
data, we adopted the “fast” attachment-detachment kinetics (Thupaki 
et al., 2013). These assume that attachment-detachment processes are 
faster than other processes, and masses of unattached and 
suspended-sediment attached E. coli are in equilibrium all the time (Bai 
and Lung, 2005; De Brauwere et al., 2014a; Gao et al., 2011). 

fdf =
Cb, attach

Cb,free + Cb,attach
(8) 

fdf =
CSS × KSS

1 + CSS × KSS
(9) 

CSS = Cclay + Cnon− clay (10) 

Where, Cb,free and Cb,attach are the concentrations of unattached E. coli 
and suspended-sediment attached E. coli (CFU m-3), respectively. fdf 
represents the partitioning rate (-), CSS is TSS concentration (g m-3). KSS 

is the partitioning coefficient. Unlike a constant partitioning coefficient 
(KSS, -), we defined it as a function of the percentage of clay (Pclay, %) in 
TSS (Kim et al., 2017). 

KSS = 10− 1.6 ×
(
Pclay

)1.98 (11) 

Pclay =
Cclay

(
Cclay + Cnon− clay

) × 100% (12) 

We distinguished clay (Cclay, g m-3) and non-clay sediment (Cnon− clay, g 
m-3) by the settling velocities (Table S1). The clay sediment represents 
fine sediment with higher E. coli attachment capacity than the coarser 
non-clay sediment.

2.1.3. Interaction with sediment
Kim et al. (2017) indicated that sedimentation, resuspension, and 

hyporheic exchange are essential processes of the interactions between 
FIB and sediment. We assumed the unattached bacteria have no settling 
velocity, while attached bacteria settle based on a weighted average 

settling velocity of two suspended sediments (SI 1.2). Sedimentation 
and resuspension depend on shear stress. Hyporheic exchange is deter
mined by sediment density, volumetric seepage velocity, and bacteria 
concentration in pore waters. Equations are detailed in the SI (SI 
1.2–1.4). Sedimentation, resuspension and vertical transport of sedi
ment were calculated by the Delwaq model (Deltares, 2020) and coupled 
with the sediment–bacteria interaction module.

2.2. Die-off module validation and comparison

Table 1 lists the die-off module comparison scenarios (M0-M2). M0 is 
the new die-off module. M1 only considers the impact of temperature 
(SWAT model, (Kondo et al., 2021)); M2 considers the impacts of tem
perature, salinity, and photo-inactivation rates, estimated from visible 
light (Delwaq model, (Chan et al., 2015; Tong et al., 2024)).

Our module requires DOC concentration as an input, but only few 
available datasets include DOC observations. This restricts the number 
of datasets for validation of our new module. We used a dataset 
(Table S3)from two field experiments in California: at Pillar Point Har
bor, San Joaquin Marsh and Arroyo Burro Lagoon, representing marine, 
freshwater and brackish water, respectively (Maraccini et al., 2016; 
Nguyen et al., 2015). To construct a similar condition at these three 
locations, the box model used measured E. coli, DOC concentration, 
salinity, and water depth from these two field experiments as initial 
conditions, and records of air temperature and radiation from the Na
tional Weather Service (https://www.weather.gov/) as inputs. Given 
that the field experiments were in situ incubations, horizontal input was 
not considered here.

2.3. Sensitivity analysis

Temperature and salinity are commonly used in E. coli predictions. 
The new model added UV-induced inactivation, UV extinction and 
sediment interaction. To explore these new functions’ effects (Table 1), 
we performed a sensitivity analysis by incrementally adding new impact 
factors to the base scenario (S1 and E1). Five long-term scenarios (S1 – 
S5) represented stable low-flow conditions: S1) die-off module only 
controlled by T (temperature) and S (salinity); S2) die-off module 
controlled by T, S, and I (radiation), without the extinction; S3) the 
complete die-off module, including extinction; S4) the complete die-off 
module plus sediment interaction module with a constant partitioning 
coefficient (KSS_C); S5) the complete die-off module plus the complete 
sediment interaction module.

In addition, four short-term scenarios (E1 – E4, Table 1) for peak 
E. coli contamination events were performed. By increasing the input of 
E. coli concentration from 0 to 2.4 × 106 CFU 100ml-1 and lasting for 
three hours between hours 25th - 28th, an accidental E. coli injection due 
to a combined sewer overflow was reproduced. Then we checked the 
event duration (above 250 CFU 100ml-1, based on the EU Bathing Water 
directive). The peak E. coli concentration was a weighted average of 
literature values (Erichsen et al., 2006; Thorndahl et al., 2024) and the 
injection duration was based on the dilution efficiency of the box model. 
For the impact factors, E1–3 were the same as S1–3, while E4 considered 
sediment interaction (S5). S4 was omitted because the constant parti
tioning coefficient tends to overestimate E. coli flux from sediment 
resuspension orders of magnitude in natural waters (Section 3.3), which 
is not comparable to other scenarios.

The long- and short-term sensitivity analyses were performed using 
the box models with boundary inputs from two sites in the Netherlands, 
representing coastal (Katwijk) and estuarine (Scheldt) conditions 
(Table 2). Locations of the two sites are shown in Fig. 2a-c. The time 
series’ horizontal boundary inputs covering one year with daily time 
resolution (see Table 2 and Figure S3) were derived from the output of 
two 3D models: the DCSM-FM North Sea model (Zijl et al., 2013) for the 
Katwijk site in 2006 and the Scheldt estuary model for the Scheldt site in 
2014 (Stolte and Schueder, 2019) (Figure S3). The bathing water areas 
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are normally shallower than two meters, however, the output of the 
nearshore shallow area (<2 m) in the two 3D models is not represen
tative because of the spatial resolution. Therefore, we chose two meters 
(yearly average) to make sure the water level dynamics derived from the 
two sites are representative. The vertical boundary inputs, including air 
temperature and TGSR, were from KNMI (Koninklijk Nederlands Mete
orologisch instituut, https://dataplatform.knmi.nl/).

The boundary inflow rate of the box model is determined based on an 
approximately 2.5-day residence time. The computational timestep is 
one hour, and the simulation times for each scenario are in Table 1. The 
first 5 simulation days serve as a spin-up.

2.4. Sediment interaction module validation

The validation of the sediment interaction module was also based on 
the two box models in Section 2.3. Observations of E. coli in waters and 
sediments by the enumeration method were collected from previous 
studies (Devane et al., 2020; Fluke et al., 2019; Kim et al., 2010; Labite 
et al., 2010; Pachepsky and Shelton, 2011). Since our model aims to be 

applied to natural surface waters, only observational locations in natural 
waters, such as rivers, lakes, and coastal seas, were included. S5 was run 
with a gradient of E. coli boundary concentrations (4 × 102, 4 × 103, 4 ×
104, and 4 × 105 CFU 100ml-1), and the simulated E. coli distributions 
between waters and sediments were compared with observations.

We also compared KSS_D (S5) and KSS_C (S4) with a value of 0.01 m3 g- 

1, which is widely used in previous modeling work (Bai and Lung, 2005; 
Gao et al., 2011; Thupaki et al., 2013). Hence, we had 16 simulations (2 
areas × 4 input concentrations × 2 types of KSS) in total for the sediment 
interaction module validation. Hereafter, each simulation is labeled as 
“scenario name + area”, e.g., “S5_Katwijk”.

3. Results and discussion

3.1. Photo-inactivation module

Since DOC data is more accessible than CDOM from observations and 
simulation in water quality models, using DOC concentration to calcu
late KCDOM (attenuation coefficient of UV by CDOM, in eq. (7)) improves 
input accessibility. Therefore, we established a relation (A = 179.6 ×

CDOC
1.19) between the amplitude A (in eq. (7)), which is a proxy of 

CDOM abundance in waters, and DOC concentrations from literature 
(Fig. 3). This empirical relation enables KCDOM calculation from DOC 
concentrations.

In most locations, our new die-off module (M0) captured the 
observed decline of E. coli concentrations in the field experiments by 
Maraccini et al. (2016) (Fig. 4). However, the predictions of Arroyo 
Burro – Winter I and San Joaquin Marsh – Winter I were relatively poor 
compared to others. As the UV spectrum prediction in eq. (2) matched 
observations well (Figure S5), two possible factors may explain how the 
UV extinction calculation leads to these deviations.

Due to the insufficient input data for a multi-layer water column 
model, our modelling simulations have no vertical variation, meaning 
the model results represent homogenous shallow water. However, the 
error bars of the observed die-off rate, representing the ranges of E. coli 
concentration at different water layers between 2 cm and 99 cm, indi
cate heterogeneous vertical distributions. Contrarily, the samples from 
Arroyo Burro – Winter I and San Joaquin Marsh – Winter are only from a 

Table 2 
General setup of the box models (time series at the boundary were taken from 
the North Sea model and the Scheldt model).

Parameter Unit Katwijk Scheldt

General setup Initial E. coli CFU 100ml-1 400
Area m2 10,000
CDOC g m-3 0.0
Cclay g m-3 0.0
Csand g m-3 0.0

Constant boundary Flow m3 day-1 0.5
E. coli CFU 100ml-1 400 (S1-S5) 

0 or 2.4 × 106 (M1 – M4)
Timeseries 

boundary
Temperature ◦C 5.5 – 18.8 0.0 – 25.1
Salinity Ppt 26.1 – 31.1 2.0 – 10.2
TGSR W m-2 4.2 – 318 5 – 322
CDOC g m-3 1.0 – 3.0 3.6 – 5.5
Cclay g m-3 0.1 – 7.8 4.2 – 14.0
Csand g m-3 0.0 – 16.8 10.1 – 68.0
Tau Pa 0.0 – 0.8 0.0 – 0.7
z M 0.8 – 3.5 1.95 – 2.1

Fig. 2. Location in the Netherlands of the sites (red triangles) where model forcing conditions for the box models have been derived (b) for Katwijk and (c) Scheldt.
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single layer at 15 cm (Maraccini et al., 2016). Therefore, the first pos
sibility is that the observations in these two sites with a single-layer 
sampling are not representative of the average concentration in the 
whole column.

Since both poor performance results happened in winter, another 
explanation could be the influence of the seasonal variation of terrestrial 
input. Pillar Point Harbor, Arroyo Burro, and San Joaquin Marsh 

represent marine, brackish, and freshwater sites, respectively. 
Compared to Pillar Point and Arroyo Burro, San Joaquin Marsh is more 
vulnerable to land-based impacts (Maraccini et al., 2016). Terrestrial 
input, from catchments and wastewater treatment plants, can strongly 
impact the composition of CDOM in receiving waters (Bogard et al., 
2019; Wilkinson et al., 2013). However, the variation of UV absorption 
capacity, triggered by the changing CDOM composition (Twardowski 
et al., 2004), was ignored in our model. We have se as a parameter to 
adjust the impact from CDOM compositions in the M0 module, but set as 
a constant value so far. se could be parameterized by users for specific 
regions in future applications.

3.2. Die-off model comparison

According to the comparisons of die-off rates between different 
simulations and observations (Maraccini et al., 2016 and Nguyen et al., 
2015) (Fig. 5), the prediction from our M0 module was better than 
existing approaches (M1 and M2) based on the Root Mean Squared Error 
(RMSE) and R-Squared (R2) (details in S2). The M1 module (Fig. 5b, e), 
which calculated the die-off rate without photo-inactivation damage, 
highly underestimated the observed die-off rates. The results from the 
M1 module (without radiation) only varied in a narrow range, between 
0 and 2 day-1. On the contrary, using visible light intensity to quantify 
photo-inactivation damage (M2, with visible light radiation) signifi
cantly overestimated the die-off rates (Fig. 5c, f, h).

As shown in Fig. 5g-h, the fluctuation of total radiation at water 
surfaces varied between 200 and 300 W m-2, which is a considerably 
narrow range compared to the seasonal variation in other regions (Iqbal, 
2012). Besides, there was no distinct relation between total radiation at 
surface water and observed/modelled die-off rates. For DOC, Fig. 5I 

Fig. 3. Relation between DOC concentration and amplitude (insert shows 
detail for CDOC < 2 mg L-1), based on published observation data.

Fig. 4. Validation of the die-off module (M0) in three sites (a-c in winter; D-g in summer. Observations from Maraccini et al., 2016).

H. Wang et al.                                                                                                                                                                                                                                   Water Research 291 (2026) 125199 

6 



shows that the highest DOC concentrations (dark purple) are associated 
with the lowest die-off rates. These indicate that in a region with less 
seasonal fluctuation of solar radiation but high fluctuation of DOC, 
E. coli photo-inactivation is highly correlated with light absorption of 
CDOM.

Water temperature and salinity cannot be used to predict the die-off 
rate solely (M1), especially in low-temperature periods (Fig. 5b). How
ever, when high DOC concentration (> 6 mg L-1) restricts the penetration 
of light, modelled die-off rates from M0 are in a similar range (0 – 2 day- 

1) to the predictions from M1. This suggests that in waters rich in CDOM, 
the impact of photo-inactivation is less distinguishable. This is probably 
why the M1 module has been widely used for modelling E. coli die-off 
rate in small catchments and wetlands (De Brauwere et al., 2014a; 
Niazi et al., 2015; Sowah et al., 2020; Worku Meshesha et al., 2020) 
where the CDOM concentration is usually high (Seitzinger et al., 2005).

On the contrary, solar radiation is essential for calculating E. coli die- 
off rate in “clearer” coastal waters (Chan et al., 2015; Gao et al., 2015; 
Huang et al., 2015, 2017; Thupaki et al., 2013), but calculating the 
photo-induced damage as a linear function of total radiation and 
neglecting the extinction by CDOM (as in the M2 model, Fig. 5h) over
estimated the E. coli die-off rate. CDOM concentrations in coastal waters 
have seasonal patterns due to riverine input and in situ primary pro
duction (Zweifel et al., 1995), which can induce a significant impact on 

E. coli die-off variation.

3.3. Validation of sediment interaction module

Few studies measured suspended sediment attached E. coli due to 
sampling uncertainty (Devane et al., 2020). Therefore, we used the 
E. coli distribution between waters and sediments from previous studies 
to validate the sediment interaction module (Section 2.4) (Devane et al., 
2020; Fluke et al., 2019; Kim et al., 2010; Labite et al., 2010; Pachepsky 
and Shelton, 2011). Observed ratios of E. coli concentrations in waters 
versus in deposited sediments ranged from 2:1 (10th percentile) to 
1263:1 (90th percentile) (Fig. 6a). S5 (dynamic sediment partitioning 
coefficient, KSS_D) simulations yielded ratios of 11:1–281:1, within the 
observed 10th - 90th percentiles (Fig. 6b). The average ratio from 
S5_Katwijk was 66:1, which was higher than that from the S5_Scheldt 
(14:1), resulting from a higher clay proportion in the Katwijk model 
(Figure S4). In contrast, the ratio in S4_Katwijk (3265:1) was lower than 
in S5_Scheldt (4797:1) (Fig. 6c). Besides, the KSS_C allocated more E. coli 
into the deposited sediment, leading to a ratio up to 14,791:1, well 
above the 90th percentile of observations.

The comparison in Fig. 6b indicates that using clay and non-clay 
components is a reasonable approach for modeling E. coli attachment- 
detachment. The KSS_C value used in S4 (0.01 m3), commonly applied 

Fig. 5. Comparison of the die-off modules. Symbols, circles in (a), (d), (g), triangles in (b) and (c) and squares in (c), (f) and (h) represent the results from M0, M1 and 
M2, respectively. Observations are from (Maraccini et al., 2016 and Nguyen et al., 2015). Error bars show ± one standard error of duplicates.
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in previous models (Bai and Lung, 2005; Gao et al., 2011; Thupaki et al., 
2013), appears too high for E. coli attachment (Fig. 6c). Direct KSS 
measurements are rare, only limited groundwater studies reported the 
KSS values between 1 × 10–4 and 1 × 10–6 m3 g-1 (Gantzer et al., 2001; 
Lindqvist and Enfield, 1992; Reddy and Ford, 1996). This range was 
consistent with the KSS_D simulation by the box models (Figure S4), but 
two to four orders of magnitude lower than the KSS_C. In addition, using 
KSS_C also ignored the impact of TSS composition on E. coli attachment.

3.4. Sensitivity analysis

In our long-term scenarios (S1-S5, Table 1), scenario S2 (without 
CDOM extinction) predicted lower E. coli concentrations than the other 
scenarios (Fig. 7). As discussed in Section 3.2, ignoring the extinction by 
CDOM can overestimate the UV-induced damage, whereas including 
CDOM extinction (S3) reduces radiation effects. The Scheldt_S3 con
centrations were similar to the Scheldt_S1 (T-test, P = 4.39, details in S2) 
(Fig. 7b) due to high DOC concentrations and aligned seasonal patterns 
of DOC concentration and radiation (Figure S3). These indicate that the 
UV penetration is too low to inactivate E. coli. This explains why tem
perature alone can “adequately” predict E. coli in catchments with high 
DOC concentrations (De Brauwere et al., 2014a; Niazi et al., 2015; 
Sowah et al., 2020; Worku Meshesha et al., 2020). However, Katwijk_S1 
showed 44 % higher average unattached E. coli concentration than 
Katwijk_S3 (Fig. 7a), highlighting the importance of UV inactivation in 
clear waters with low DOC concentrations (Chan et al., 2015; Gao et al., 
2015; Huang et al., 2015, 2017; Thupaki et al., 2013).

The concentrations in S5 were very similar to S3 (T-test, P = 4.01 for 
Katwijk; 2.83 for Scheldt). Since the long-term scenarios represent a 
steady baseflow/low-flow period (Table 2), E. coli concentrations in 
waters and in sediments remain in equilibrium. As a result, sediment 

interaction has no visible effect in the long-term sensitivity analysis.
In the short-term sensitivity analysis (E1-E4, Table 1), E4 (including 

interactions with sediment) had a bigger tail than the other scenarios 
(Fig. 8). This extended tail appeared in both summer and winter and 
started earlier in the Scheldt_E4. Due to high turbidity, the event dura
tion in Scheldt_S4 was prolonged by 29–44 h compared to E3 in both 
seasons. In Katwijk, the difference among E1, E2, and E3 was significant, 
but the difference between E3 and E4 above the threshold was insig
nificant (Fig. 8a-b).

As mentioned in 2.3, the short-term sensitivity analysis simulated 
peak E. coli pollution events. Since no sediment interaction was involved 
in E1–3, deposited sediment could not accumulate and release E. coli 
during and after the peak event. In E4, higher TSS in the Scheldt created 
a larger E. coli reservoir in deposited sediment than in Katwijk_E4 during 
peak events, leading to greater post-event release. The longer exceed
ance in Scheldt_E4 shows that sediment interaction can extend the E. coli 
pollution above the threshold by roughly 30 h after a peak. To prevent 
the post-event pollution and warn bathers of a potential extended risk, 
sediment interaction could be included in E. coli forecasts for highly 
turbid waters, especially during peak events.

3.5. Model limitations and applications

Model validation and comparison with the existing models indicated 
that the new model can give a more reliable prediction of photo- 
inactivation and distribution of E. coli between waters and sediments. 
Incorporating UV spectrum, DOC and suspended sediment concentra
tions for photo-inactivation calculation improved the dynamics of pre
diction. The introduction of the dynamic partitioning coefficient added 
the effect of suspended sediment composition on the attachment pro
cess. However, the new model requires additional inputs (Table 2, 

Fig. 6. E. coli concentrations in waters vs sediments collected from previous studies (a) and from the box models S5 with KSS_D (b) and S4 with KSS_C (c). The Error 
bars mean fluctuation within a year. The red lines represent the 10th (2:1) and 90th (1263:1) percentiles of the observed ratios. The black lines represent the 
maximum and minimum ratios from the simulation results.

Fig. 7. Long-term sensitivity analysis: unattached E. coli concentration simulations from Katwijk_S1-Katwijk_S5 (a) and from Scheldt_S1-Scheldt_2 (b). The scenarios 
are in Table 1.
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Table S2) and increases model complexity. Besides, variability of CDOM 
composition may affect UV extinction, but is not yet included in the box 
models. The correlation between Kss and Pclay was based on a regression 
model from a previous study and requires more observational data in 
future studies. Currently, the new model has been validated only in box 
models, instead of in whole hydrology/hydrodynamics model domains. 
Future applications could integrate it with 1D/2D/3D hydrology and 
hydrodynamics models at various temporal-spatial scales. Parameters 
listed in Table S1 could be re-parameterized for other fecal bacteria or 
viruses with similar processes to E. coli. Future work is planned on 
applying our new E. coli model to a coupling model (inland 1D hydrol
ogy model + nearshore 3D hydrodynamic model) to forecast E. coli and 
support bathing water management across the source-to-sea system.

4. Conclusions

A new FIB physico-biochemical model has been developed to predict 
E. coli concentrations in natural waters and support bathing water 
management. It consists of a die-off module and a sediment interaction 
module, including the independent natural die-off, photo-inactivation, 
UV extinction, attachment-detachment, sedimentation, resuspension, 
and hyporheic exchange. The main conclusions from model validation, 
comparison and sensitivity analysis are as follows: 

(1) The new die-off module has a lower RMSE value (1.1 day-1) and a 
higher R2 value (0.88) than the existing models (1.8–7.2 day − 1, 
and 0.48–0.79), indicating an improvement in agreement with 
observations. However, the validation dataset remains limited. It 
is recommended that future studies provide comprehensive FIB 
die-off data alongside relevant environmental factors.

(2) The model comparisons showed that photo-inactivation is crucial 
for estimating E. coli die-off rate, and CDOM extinction coefficient 
plays a key role in determining UVA + UVB extinction while DOC 
concentration is below ~6 mg L-1.

(3) Sediment interaction module using dynamic partitioning coeffi
cient produced the water-sediment E. coli distribution ratio 
within the observed 10th-90th percentile range, while the mod
ule using constant partitioning coefficient overestimated the 
ratio.

(4) Sensitivity analysis suggested that sediment release after a peak 
event can extend the pollution to roughly 30 h in highly turbid 
waters. Therefore, sediment interaction should be considered in 
E. coli modelling and forecasting.

Given the high flexibility of the model, it can be coupled with hy
drology and hydrodynamic models and applied to FIB modelling in 
various bathing waters. Based on the sensitivity analysis, we also 
recommend different process options for different aquatic systems. This 
new model offers a reliable tool for predicting pathogen risk in near- 
future forecasting and climate change projections to support bathing 
safety management.
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Bi, S., Hieronymi, M., Röttgers, R., 2023. Bio-geo-optical modelling of natural waters. 

Front. Mar. Sci. 10, 1196352. https://doi.org/10.3389/fmars.2023.1196352.
Bogard, M.J., Kuhn, C.D., Johnston, S.E., Striegl, R.G., Holtgrieve, G.W., Dornblaser, M. 

M., Spencer, R.G., Wickland, K.P., Butman, D.E., 2019. Negligible cycling of 
terrestrial carbon in many lakes of the arid circumpolar landscape. Nat. Geosci. 12, 
180–185. https://doi.org/10.1038/s41561-019-0299-5.

Bricaud, A., Morel, A., Prieur, L., 1981. Absorption by dissolved organic matter of the sea 
(yellow substance) in the UV and visible domains. Limnol. Ocean 26, 43–53. https:// 
doi.org/10.4319/lo.1981.26.1.0043.

Chan, Y., Thoe, W., Lee, J.H., 2015. Field and laboratory studies of Escherichia coli decay 
rate in subtropical coastal water. J. Hydro-Environ. Res. 9, 1–14. https://doi.org/ 
10.1016/j.jher.2014.08.002.

Cho, K.H., Pachepsky, Y.A., Oliver, D.M., Muirhead, R.W., Park, Y., Quilliam, R.S., 
Shelton, D.R., 2016. Modeling fate and transport of fecally-derived microorganisms 
at the watershed scale: state of the science and future opportunities. Water Res. 100, 
38–56. https://doi.org/10.1016/j.watres.2016.04.064.

De Brauwere, A., Gourgue, O., De Brye, B., Servais, P., Ouattara, N.K., Deleersnijder, E., 
2014a. Integrated modelling of faecal contamination in a densely populated 
river–sea continuum (Scheldt River and Estuary). Sci. Total. Environ. 468, 31–45. 
https://doi.org/10.1016/j.scitotEnviron.2013.08.019.

de Brauwere, A., Ouattara, N.K., Servais, P., 2014b. Modeling fecal indicator bacteria 
concentrations in natural surface waters: a review. Crit. Rev. Environ. Sci. Technol. 
44, 2380–2453. https://doi.org/10.1080/10643389.2013.829978.

Deltares, 2020. D-Water Quality User Manual. Deltares. https://oss.deltares.nl/web/de 
lft3d/manuals.

Devane, M.L., Moriarty, E., Weaver, L., Cookson, A., Gilpin, B., 2020. Fecal indicator 
bacteria from environmental sources; strategies for identification to improve water 
quality monitoring. Water Res. 185, 116204. https://doi.org/10.1016/j. 
watres.2020.116204.

Enns, A.A., Vogel, L.J., Abdelzaher, A.M., Solo-Gabriele, H.M., Plano, L.R., Gidley, M.L., 
Phillips, M.C., Klaus, J.S., Piggot, A.M., Feng, Z., 2012. Spatial and temporal 
variation in indicator microbe sampling is influential in beach management 
decisions. Water Res. 46, 2237–2246. https://doi.org/10.1016/j. 
watres.2012.01.040.

Erichsen, A.C., Kaas, H., Dannisøe, J., Mark, O., Jørgensen, C., 2006. Etablering af 
badevandsprofiler og varslingssystemer i henhold til EU’s nye badevandsdirektiv. 
Miljøstyrelsen Og DHI. Miljøprojekt.

Fichot, C.G., Benner, R., 2011. A novel method to estimate DOC concentrations from 
CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 38. https://doi. 
org/10.1029/2010gl046152.
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Huovinen, P., Penttilä, H., Soimasuo, M., 2003. Spectral attenuation of solar ultraviolet 
radiation in humic lakes in Central Finland. Chemosphere 51, 205–214. https://doi. 
org/10.1016/s0045-6535(02)00634-3.

Iqbal, M., 2012. An Introduction to Solar Radiation. Elsevier. https://doi.org/10.1016/ 
b978-0-12-373750-2.50017-3.

Jerlov, N.G. (2014) Optical oceanography. https://doi.org/10.1016/s0422-9894(08) 
x7043-6.
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Stramski, D., Babin, M., Woźniak, S.B., 2007. Variations in the optical properties of 
terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Ocean 
52, 2418–2433. https://doi.org/10.4319/lo.2007.52.6.2418.

Thorndahl, S., Nielsen, J.M., Rasmussen, M.R., 2024. Model-based prediction of bathing 
water quality in a lake polluted by fecal coliform bacteria from combined sewer 
overflows. J. Environ. Manage. 349, 119483. https://doi.org/10.1016/j. 
jenvman.2023.119483.

Thupaki, P., Phanikumar, M.S., Schwab, D.J., Nevers, M.B., Whitman, R.L., 2013. 
Evaluating the role of sediment-bacteria interactions on Escherichia coli 
concentrations at beaches in southern Lake Michigan. J. Geophys. Res. Oceans 118, 
7049–7065. https://doi.org/10.1002/2013jc008919.

Tong, X., Goh, S.G., Mohapatra, S., Tran, N.H., You, L., Zhang, J., He, Y., Gin, K.Y.-H., 
2024. Predicting antibiotic resistance and assessing the risk burden from antibiotics: 
a holistic modeling framework in a tropical reservoir. Environ. Sci. Technol. 58, 
6781–6792. https://doi.org/10.1021/acs.est.3c10467.

Twardowski, M.S., Boss, E., Sullivan, J.M., Donaghay, P.L., 2004. Modeling the spectral 
shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 89, 
69–88. https://doi.org/10.1016/j.marchem.2004.02.008.

van Loosdrecht, M.C., Lyklema, J., Norde, W., Zehnder, A.J., 1989. Bacterial adhesion: a 
physicochemical approach. Microb. Ecol. 17, 1–15. https://doi.org/10.1007/ 
bf02025589.

Wang, J., Seyed-Yagoobi, J., 1994. Effects of water turbidity and salt concentration levels 
on penetration of solar radiation under water. Sol. Energy 52, 429–438. https://doi. 
org/10.1016/0038-092x(94)90120-q.

Wilkinson, G.M., Pace, M.L., Cole, J.J., 2013. Terrestrial dominance of organic matter in 
north temperate lakes. Glob. Biogeochem. Cycles 27, 43–51. https://doi.org/ 
10.1029/2012gb004453.

Worku Meshesha, T., Wang, J., Demelash Melaku, N., 2020. A modified hydrological 
model for assessing effect of pH on fate and transport of Escherichia coli in the 
Athabasca River basin. J. Hydrol. 582, 124513. https://doi.org/10.1016/j. 
jhydrol.2019.124513.

Zhang, Y., Shi, K., Zhou, Q., Zhou, Y., Zhang, Y., Qin, B., Deng, J., 2020. Decreasing 
underwater ultraviolet radiation exposure strongly driven by increasing ultraviolet 
attenuation in lakes in eastern and southwest China. Sci. Total. Environ. 720, 
137694. https://doi.org/10.1016/j.scitotEnviron.2020.137694.

Zhang, Z., Li, B., Li, N., Sardar, M.F., Song, T., Zhu, C., Lv, X., Li, H., 2019. Effects of UV 
disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in 
secondary effluent from a municipal wastewater treatment plant. Water Res. 157, 
546–554. https://doi.org/10.1016/j.watres.2019.03.079.

Zijl, F., Verlaan, M., Gerritsen, H., 2013. Improved water-level forecasting for the 
Northwest European Shelf and North Sea through direct modelling of tide, surge and 
non-linear interaction. Ocean. Dyn. 63, 823–847. https://doi.org/10.1007/s10236- 
013-0624-2.

Zweifel, U.L., Wikner, J., Hagström, Å., Lundberg, E., Norrman, B., 1995. Dynamics of 
dissolved organic carbon in a coastal ecosystem. Limnol. Ocean 40, 299–305. 
https://doi.org/10.4319/lo.1995.40.2.0299.

H. Wang et al.                                                                                                                                                                                                                                   Water Research 291 (2026) 125199 

11 

https://doi.org/10.1039/c8em00047f
https://doi.org/10.1039/c8em00047f
https://doi.org/10.1016/j.jenvman.2014.12.042
https://doi.org/10.1016/j.jmarsys.2012.05.004
https://doi.org/10.1016/j.jmarsys.2012.05.004
https://doi.org/10.1080/10643380903392718
https://doi.org/10.1080/10643380903392718
https://doi.org/10.1016/0169-7722(95)00095-x
http://refhub.elsevier.com/S0043-1354(25)02102-5/sbref0049
http://refhub.elsevier.com/S0043-1354(25)02102-5/sbref0049
https://doi.org/10.1029/2005gb002606
https://doi.org/10.1016/j.watres.2023.120855
https://doi.org/10.1016/0021-9797(88)90136-1
https://doi.org/10.1038/s41893-022-00926-4
https://doi.org/10.1021/acs.est.6b03721
https://doi.org/10.1021/acs.est.6b03721
https://doi.org/10.1364/ao.20.000177
https://doi.org/10.1016/j.scitotEnviron.2020.140669
https://doi.org/10.1016/j.scitotEnviron.2020.140669
https://doi.org/10.1021/es403549s
https://vnsc.eu/publicaties/archief/update-of-the-water-quality-model-application-of-the-schelde-for-the-year-2014/
https://vnsc.eu/publicaties/archief/update-of-the-water-quality-model-application-of-the-schelde-for-the-year-2014/
https://vnsc.eu/publicaties/archief/update-of-the-water-quality-model-application-of-the-schelde-for-the-year-2014/
https://doi.org/10.4319/lo.2007.52.6.2418
https://doi.org/10.1016/j.jenvman.2023.119483
https://doi.org/10.1016/j.jenvman.2023.119483
https://doi.org/10.1002/2013jc008919
https://doi.org/10.1021/acs.est.3c10467
https://doi.org/10.1016/j.marchem.2004.02.008
https://doi.org/10.1007/bf02025589
https://doi.org/10.1007/bf02025589
https://doi.org/10.1016/0038-092x(94)90120-q
https://doi.org/10.1016/0038-092x(94)90120-q
https://doi.org/10.1029/2012gb004453
https://doi.org/10.1029/2012gb004453
https://doi.org/10.1016/j.jhydrol.2019.124513
https://doi.org/10.1016/j.jhydrol.2019.124513
https://doi.org/10.1016/j.scitotEnviron.2020.137694
https://doi.org/10.1016/j.watres.2019.03.079
https://doi.org/10.1007/s10236-013-0624-2
https://doi.org/10.1007/s10236-013-0624-2
https://doi.org/10.4319/lo.1995.40.2.0299

	Development and evaluation of a physico-biochemical model for Escherichia coli in bathing waters
	1 Introduction
	2 Materials and methods
	2.1 FIB physico-biochemical model development
	2.1.1 Endogenous photo-inactivation
	2.1.2 Attachment and detachment with suspended sediment
	2.1.3 Interaction with sediment

	2.2 Die-off module validation and comparison
	2.3 Sensitivity analysis
	2.4 Sediment interaction module validation

	3 Results and discussion
	3.1 Photo-inactivation module
	3.2 Die-off model comparison
	3.3 Validation of sediment interaction module
	3.4 Sensitivity analysis
	3.5 Model limitations and applications

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Supplementary materials
	Data availability
	References


