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Abstract—Post-induction hypotension (PIH) occurs shortly af-
ter anesthesia induction and is related to several post-operative
complications. Medications delivered during induction and main-
tenance of anesthesia are significantly related to PIH occurrence,
which remains common due to the intricate nature of clini-
cal factors. To enhance decision-making on anesthestic dosing,
machine learning (ML) is proposed to predict the risk of PIH
associated with specific anesthetic dosages. This study focuses
on the development of a prediction model for PIH to support
anesthesia decision-making. Trained on 320 cases from the
VitalDB database, the model incorporates demographic data,
vital signs, and medication dosing information. By including the
dosage of propofol administered during the induction period
as an input variable, the algorithm predicts PIH risk before
induction, providing valuable insights into the safety of propofol
dosage plans. The results were validated using nested cross-
validation, achieving high performance (precision of 0.83 and
recall of 0.84). Moreover, an advisory model demonstrates the
potential for personalizing a safe propofol anesthetics range for
an individual patient.

Index Terms—Postinduction hypotension, Anesthesia, Machine
learning

I. INTRODUCTION

Effective management of arterial hypotension is crucial
throughout surgical procedures, as the resulting organ ischemia
may lead to serious complications or even mortality [1]. The
induction period commands special attention in hypotension
care. Induction refers to the early stage of anesthesia when
anesthetics and other medications are administrated at a high
infusion rate to rapidly induce unconsciousness in patients.
Hypotension occurring shortly after induction is termed post-
induction hypotension (PIH) and is directly associated with
anesthetic drugs such as propofol or remifentanil [2] [3].
Throughout the history of anesthesia, continuous efforts have
been made to prevent PIH by adjusting the anesthesia plan. For
example, modifying the types and dosage of the anesthetic
is thought to be helpful [4]. Presently, anesthesia plans are
determined based on characteristics of patients and experience-

driven preference of anesthesiologists. Unfortunately, such
plans suffer from shortcomings in accuracy and personaliza-
tion, particularly in planning for patients with compromised
health conditions [5].

In response to these limitations, various machine learning
studies leveraging insights from big data have been proposed.
A logistic regression model has been developed to predict
hypotension during intensive care unit stays [6]. Although
the model demonstrates an impressive performance with an
AUC (area under the receiver operating characteristic curve)
value of 0.95, it relies on high-fidelity waveforms of arterial
pressure, introducing a bias in the dataset toward patients’
healthy status. Contrastingly, non-invasive signals of arterial
pressure have been analyzed in studies of PIH prediction [7]
[8]. Both works utilize features extracted from demographic
data, intraoperative medications, and vital signs. However,
due to the emphasized raw nature of the data, minimal data
processing is employed in [7], resulting in limited performance
with an AUC value of 0.76. Although the AUC improves
to 0.84 in [8], the work lacks a convincing validation ap-
proach when incorporating feature selection. Furthermore,
these studies focus on analyzing data late after induction,
targeting early warning of PIH but offering little information
for anesthesiologists on how to proactively prevent PIH.

In this study, our main objective is to develop an ML-based
predictive model for PIH that aligns with clinical requirements
previously overlooked or unaddressed. To enhance practica-
bility, we redefine the prediction target PIH, making it more
commonly applicable within the anesthesia context. To im-
prove predictive capabilities beyond previous PIH predictions,
we apply advanced ML techniques, addressing challenges such
as dataset imbalance and feature extraction. Specifically, we
adopt nested validation for a more robust evaluation while
identifying efficient features. For actionable suggestions for
preventing PIH, we design a novel implementation workflow
centered around the ML-based prediction model. The algo-20
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rithm enhances result reliability and applicability, facilitating
safer anesthesia planning advice for anesthesiologists.

II. MATERIALS AND METHODS

A. Data Collection

The dataset for this study is sourced from VitalDB [9],
an open-source surgical database that comprises records from
non-cardiac routine or emergency surgeries conducted at Seoul
National University Hospital in the Republic of Korea. The
study focuses on a population of 320 adult patients who
underwent general anesthesia and obtained propofol during the
surgery. The recorded data encompasses three main categories:

1) Demographic Data: The demographic information is
collected from electrical health records, including age, gender,
height, weight, BMI (Body Mass Index), and preoperative
disease records.

2) Vital Signs Recordings: Recordings include intermittent
measurements of blood pressure, heart rate, oxygen saturation,
and electrocardiogram signals. Each vital sign is measured
every 2 seconds.

3) Medication Dosing Data: Data on the anesthetics, va-
sopressor drug, and analgesia medication are acquired at the
same sampling rate as the vital signs. They include infusion
details (rate and volume) of propofol, remifentanil, phenyle-
phrine, ephedrine, and epinephrine.

To ensure dosage suggestions could be provided before
propofol administration, the vital signs as input features are
collected before the induction starts. However, medication
data are collected until the end of induction. During model
application, anesthesiologists can manually input medication
dosing data based on their anesthesia plan, allowing the
predictive model to assess the safety of the proposed plan.
The workflow of the model is depicted in Fig. 1, illustrating
its functionality in real-world use.

B. Primary Outcome

The primary outcome of the predictive model is the PIH
occurrence. Detection of PIH events is achieved through a
one-minute measurement window going along the initial 15
minutes after induction. Specifically, an event is classified
as PIH if over 90% of the Systolic Blood Pressure (SBP)
values within the measurement window are below 75 mmHg
or showed a relative drop of more than 30% from the baseline
[10]. Employing the relative definition adds a more personal-
ized touch to the results, aligning with clinical experiences.
The distribution of the binary outcomes reveals 191 instances
of positive PIH events and 121 instances of negative non-PIH
events, indicating a slight data imbalance (9.7%).

C. Features Engineering

We extract a total of 88 individual statistical features from
the dataset. Additionally, 17 combinatorial features are gen-
erated by calculating ratios or polynomials of demographic
features and vital signs. This combinatorial approach helps to
enrich the representation of raw features. Certain features, such
as the shock index (the ratio of heart rate to SBP), have been

previously established as highly relevant to the occurrence of
hypotension during surgery [11] [12].

In an ML model, not all features contribute effectively to a
given prediction task; some may even introduce unnecessary
complexity or noise that hampers the model. Identifying the
most relevant and informative features from the original set is
crucial for prediction accuracy. There are various techniques
for feature selection, categorized into filter methods, wrapper
methods, and embedded methods [13]. We apply Recursive
Feature Elimination (RFE) [14], a powerful wrapper method
for small-size classification problems. RFE starts by training
the model on the entire set of features and then iteratively
removes the least significant feature based on a predefined
criterion, such as accuracy or precision. This recursive process
continues until a predetermined number of features remains.
Importantly, feature selection in our model is integrated during
cross-validation to prevent data leakage, ensuring an unbiased
and automated process.

D. Model Development

1) ML Predictive Model: The prediction problem of our
work is in fact a binary classification problem, categorizing
the predictive results into either PIH events or non-PIH events.
The ML-based prediction model is built using the established
algorithms, including the Logistic Regression (LR), Random
Forest (RF) [15], and Extreme Gradient Boosting (XGBoost)
[16] models. LR holds a relatively simple structure, facilitating
interpretation at the cost of potential compromise in prediction
performance. Both RF and XGBoost are representations of
ensemble learning methods, with specific emphasis on decision
trees in the ensemble. While RF and XGBoost excel in captur-
ing non-linear relationships, they may be susceptible to noise
which is common in clinical data. Hence, beyond the three
individual models, we explore an additive simple averaging
ensemble method. The scheme averages the generated proba-
bilities of binary results (between 0 and 1) from XGBoost and
RF models and determines the final outcome based on a chosen
threshold, striking a balance between accuracy and stability.
To address the slight imbalance in the dataset, the Synthetic
Minority Over-sampling Technique (SMOTE) method [17],
an oversampling algorithm that generates new data points in
the feature space, is applied. Moreover, each model is fine-
tuned on hyper-parameters, with the tuning process embedded
into the validation. This procedure is known as nested cross-
validation, as depicted in Fig 2. The step is emphasized due to
the fact that the XGboost algorithm is sensitive to parameters
that its performance largely depends on the selection of hyper-
parameters. Without the nesting step, there is a risk of data
leakage, potentially leading to over-fitting issues and bias in
the result, thus impairing prediction [18].

2) Dosage Advisory Model: The dosage advisory model is
essentially an application of the predictive model, with certain
input features manually planned instead of being derived
from recordings. It processes vital signs and demographic
information from the patients, along with the anesthesia plan
(propofol dosage) provided by the anesthesiologist as input.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 05,2025 at 13:01:11 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. The designed workflow of model implementation in clinical practice.

Fig. 2. The structure of nested cross-validation.

When the logistic-core models predict the possibility of PIH,
anesthesiologists can hereby assess the risk and then make
reasonable decisions to limit the dosage to a safe range.

III. EVALUATION AND RESULTS

We apply leave-one-out cross-validation (LOOCV) for
model evaluation. LOOCV is a special case of k-fold cross-
validation where k equals the dataset size. In each round of
iteration, we train the model on all but one sample, and the left-
out sample was used for testing. LOOCV ensures that every
sample has an equal chance to be tested individually and also
benefits the small-size training due to the full usage of data.

Table I presents a summary of the performance of the
prediction models. All values of criteria are the mean values
across the whole rounds of LOOCV. Fig. 3 shows the PR
(Precision-Recall) curve and the ROC (Receiver Operating
Characteristic) curve of the three original models. Notably, the
XGBoost model showcases outstanding performance, achiev-
ing an accuracy of 0.81 and a precision of 0.83. The AUC

values of ROC and PR further underscore the good ability
of the model to maintain high precision while effectively
capturing positive instances and distinguishing between the
two classes. Evidently, the ensemble learning strategy im-
proves the performance compared to the LR model. However,
it does not guarantee the enhancement across all criteria.

TABLE I
EVALUATION COMPARISON OF MACHINE LEARNING MODELS

Criteria XGBoost Logistic
Regression

Random
Forest

Ensemble
Model

Accuracy 0.81 0.77 0.78 0.79
Precision 0.83 0.75 0.74 0.77
Recall 0.84 0.88 0.91 0.89
F1 Score 0.83 0.81 0.82 0.83
Specificity 0.79 0.81 0.85 0.83

Fig. 3. The PR curve and the ROC curve of different models.

During LOOCV, each individual case is tested in one iteration,
allowing for the illustration of the dosage advisory model. In
each testing case, we vary the propofol dosage to different
values, akin to how an anesthesiologist might adjust the
plan during clinical practice. The PIH possibilities at various
propofol dosage levels are then generated and plotted in Fig. 4.
However, stability is not consistently observed. In some cases
of the XGBoost model, the risk decreases as the propofol
dosage increases, contrary to clinical experience. Although
this anomaly does not necessarily imply a flawed model, we
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Fig. 4. Advisory model for propofol dosage. Each line represents an individual
test case in LOOCV. From left to right, columns correspond to the XGBoost
model, LR model, and the ensemble model. From top to bottom, rows depict
cases labeled with PIH (red lines), cases labeled with Non-PIH (blue lines),
and the mean values of each class across all cases (thick lines), respectively.
The thick lines in the last row illustrate the general trend of how the probability
varies corresponding to the increase in propofol dosage. In each subplot, the
input feature of propofol dosage varies from zero (-100%) to double the
amount (+100%) along the x-axis.

remain cautious about the result from the XGBoost method. In
contrast, by incorporating the results from LR, the ensemble
model corrects the trend of most cases, despite its relatively
inferior performance compared to the XGBoost model.

IV. CONCLUSION AND DISCUSSION

In this study, we explored demographic data, vital signs, and
medication dosing information to predict PIH. Our approach
leveraged various feature engineering techniques to enhance
the representative of input features. Through the integration
of feature selection and hyper-parameter optimization, we not
only maximized the performance of the ML models but also
mitigated data leakage. The LOOCV technique maximized
the utility of a limited dataset of small size. The XGBoost
model exhibited high performance in PIH prediction, and
through ensemble learning, the final model effectively bal-
anced the explainability and the prediction accuracy. In the
end, we developed an intuitive dosage advice workflow that
recommends a safe propofol dosage to prevent PIH before
induction for anesthesiologists. Notably, our work is the first
effort to combine probability prediction of hypotension with
pre-operative anesthetics dosage input, providing support for
decision-making in anesthesia care.

In future work, we will validate the proposed ML algo-
rithms on external datasets. To validate the dosage advisory

model, additional statistical analyses under the supervision of
anesthesiologists are recommended. We plan to tailor the pre-
diction tool by further designing and optimizing the algorithm
developed in this work for practical use by anesthesiologists.
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