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Abstract

Turbulent layers high in the atmosphere cause anisoplanatic phase aberrations, that are re-
sponsible for image degradation [6, 33, 46]. Adaptive Optics (AO) aims to correct for these
aberrations by sensing them with a wavefront sensor and performing the correction with phase
conjugate devices [18].

Various wavefront sensors have been designed and successfully implemented over the years,
including the curvature sensor, interferometers, the Shack-Hartmann (SH) sensor and the
pyramid sensor [7, 32, 40, 51]. In recent work the plenoptic sensor, an intermediate between
the SH and pyramid sensor designs [10, 32, 37], has been proposed to improve on modern
wavefront sensing. It has been reported to be beneficial in presence of strong or complex
wavefronts, such as deep turbulence conditions [18, 47].

The goal of this thesis is to investigate the SH and plenoptic wavefront sensors, with the
specific application on the correction of anisoplanatic aberrations that vary throughout the
field of view. The contribution of this thesis to the field of AO is the development of a
simulation toolbox in MATLAB. This toolbox is designed to simulate the SH and plenoptic
sensors, providing a comparative study between the two.

The comparative simulations reinforced results obtained from a corresponding Literature
Survey. The SH sensor can outperform the plenoptic sensor on many occasions. If both
sensors share the same microlens array (MLA) the plenoptic sensor scores worse in terms
of performance metrics. By adjusting the MLA of the plenoptic sensor its dynamic range
and sensitivity can be improved, such that it outperforms the SH sensor. Additionally, it
was shown that the plenoptic sensor performs best for strong aberrations, simulated using
randomly-generated Kolmogorov screens. On the other hand, it fails in the presence of weak
aberrations where the SH performs best.

The developed toolbox allows for iso- and anisoplanatic aberrations to be reconstructed in
a single frame, by differentiating between aperture plane reconstruction and phase screen
retrieval. Multiple approaches are implemented in the toolbox, such that different recon-
struction methods can be selected depending on experimental conditions.

Master of Science Thesis S. A. Stouten



ii

S. A. Stouten Master of Science Thesis



Table of Contents

Preface ix

Acknowledgements xi

1 Introduction 1

2 Adaptive Optics 3

3 Wavefront Sensors 5
3-1 Brief Outline Wavefront Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3-2 Shack-Hartmann Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3-2-1 Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3-2-2 Sensor Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-2-3 Adjustments to the SH Sensor . . . . . . . . . . . . . . . . . . . . . . . 11
3-2-4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3-3 Plenoptic Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-3-1 Working Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-3-2 Sensor Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3-3-3 Adjustments to the Plenoptic Sensor . . . . . . . . . . . . . . . . . . . . 22
3-3-4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-4 Comparison of the Shack-Hartmann and Plenoptic Sensors . . . . . . . . . . . . 25
3-4-1 Practical Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3-4-2 Theoretical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3-4-3 Practical Comparison of Metrics . . . . . . . . . . . . . . . . . . . . . . 28
3-4-4 Comparing Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3-4-5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Master of Science Thesis S. A. Stouten



iv Table of Contents

4 Isoplanatic versus Anisoplanatic Aberrations 33
4-1 Atmospheric Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4-2 Anisoplanatic Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Simulation Toolbox 39
5-1 Discrete Modelling of Waves and Wave Propagation . . . . . . . . . . . . . . . . 40
5-2 Supporting Toolbox Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5-2-1 Digitizing Sensor Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5-2-2 Field Shifting - manipmat.m . . . . . . . . . . . . . . . . . . . . . . . . 46
5-2-3 Preliminary Conditions - checkprelim.m . . . . . . . . . . . . . . . . . . 48
5-2-4 Generating Input Phase Aberrations - getpupil.m . . . . . . . . . . . . . 51
5-2-5 Focal Plane Propagation - planeprop.m . . . . . . . . . . . . . . . . . . 54
5-2-6 Retrieving Phase Gradients - getPG.m . . . . . . . . . . . . . . . . . . . 58
5-2-7 Reconstruct Phase - getphase.m . . . . . . . . . . . . . . . . . . . . . . 67
5-2-8 Retrieve Phase Screen - getscreen.m . . . . . . . . . . . . . . . . . . . . 70
5-2-9 Correct Aberration - correctphase.m . . . . . . . . . . . . . . . . . . . . 76
5-2-10 Plenoptic Ray Tracing - plenopticRT.m . . . . . . . . . . . . . . . . . . 77

5-3 Modelling the Shack-Hartmann and Plenoptic Sensors . . . . . . . . . . . . . . . 80
5-3-1 Shack-Hartmann sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5-3-2 Plenoptic 4F sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5-4 Isoplanatic Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5-4-1 Isoplanatic Zernike Modes . . . . . . . . . . . . . . . . . . . . . . . . . 85
5-4-2 Isoplanatic Kolmogorov Screens . . . . . . . . . . . . . . . . . . . . . . . 89
5-4-3 Iterative Isoplanatic Phase Correction . . . . . . . . . . . . . . . . . . . 93
5-4-4 Conclusion on Isoplanatic Results . . . . . . . . . . . . . . . . . . . . . . 101

5-5 Comparing the Shack-Hartmann and Plenoptic 4F Sensor . . . . . . . . . . . . . 101
5-6 Anisoplanatic Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusion 113
6-1 Recommendations for Future Research . . . . . . . . . . . . . . . . . . . . . . . 115

A Background Information 117
A-1 Geometrical versus Wave Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A-1-1 Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A-1-2 Wave Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A-1-3 Free Space Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A-2 The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A-3 The Point-Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A-4 Zernike Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
A-5 Basic Modal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A-5-1 Implementation with Square Sub-images . . . . . . . . . . . . . . . . . . 133
A-6 Basic Zonal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A-6-1 Implementation with Southwell Geometry . . . . . . . . . . . . . . . . . 138
A-7 The Minimum-Variance Unbiased Least Squares Estimator . . . . . . . . . . . . 141

S. A. Stouten Master of Science Thesis



Table of Contents v

Bibliography 147

Glossary 153
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Master of Science Thesis S. A. Stouten



vi Table of Contents

S. A. Stouten Master of Science Thesis



List of Algorithms

1 Focal Plane Fresnel Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 56
1 Focal Plane Fresnel Propagation (continued) . . . . . . . . . . . . . . . . . . 57
1 Focal Plane Fresnel Propagation (continued) . . . . . . . . . . . . . . . . . . 58
2 Image Cluster Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2 Image Cluster Detection (continued) . . . . . . . . . . . . . . . . . . . . . . . 64
3 Plenoptic Pixel Reshuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4 Retrieve Phase Gradients from Sensor Image . . . . . . . . . . . . . . . . . . 67
5 Reconstructing Aperture Plane Phase . . . . . . . . . . . . . . . . . . . . . . 68
6 Retrieving Phase Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Retrieving Phase Screen (continued) . . . . . . . . . . . . . . . . . . . . . . . 76
7 Correcting Reference Phase Aberrations . . . . . . . . . . . . . . . . . . . . . 77
8 Plenoptic Phase Screen Reconstruction using Ray Tracing . . . . . . . . . . . 79
9 Simulating SH Sensor Image and Phase Reconstruction . . . . . . . . . . . . 82
10 Simulating plenoptic 4F (P4F) Sensor Image and Phase Reconstruction . . . 84

Master of Science Thesis S. A. Stouten



viii LIST OF ALGORITHMS

S. A. Stouten Master of Science Thesis



Preface

This document presents the report written for my MSc Thesis Project, demonstrating my
contribution to the field of Adaptive Optics. My interest for this field was sparked by one
of the assignments of the course Filtering & System Identification, given by prof.dr.ir Michel
Verhaegen. The way that Control Engineering and System Identification could be used to
correct images of stars, thousands of kilometres away, inspired me to meet with dr. Oleg
Soloviev. He inspired me to follow courses on Control for High-Resolution Imaging and
the Adaptive Optics Project, where I learned the workings of wavefront sensors, wavefront
reconstruction and the basics of simulating such systems. With my background in Mechanical
Engineering and Systems & Control I was inspired by the field of optics, as it was something
different than I experienced in previous studies and it would pose and interesting challenge.
From this perspective I chose the plenoptic sensor for my MSc Thesis Project, it had not
been presented in previous courses and so I could extend my understanding of physics and
mathematics beyond what I already knew.

This thesis documents a literature survey on wavefront sensing, putting the emphasis on two
specific sensors that are selected for a comparative study. As support of this study a simulation
toolbox is developed in order to simulate the selected sensors. This toolbox implements an
anisoplanatic aberration model such that the influence of atmospheric turbulence on the
sensor images can be simulated. The implementation of this anisoplanatic model, together
with the toolbox development as a whole represents by contribution to the field of Adaptive
Optics and computational imaging.

This thesis is written for readers interested in Adaptive Optics, wavefront sensors and wave-
front correction. Chapter 1 introduces the topic, gives an overview of the work in wavefront
sensing and defines the research questions. Chapter 2 introduces the basics of Adaptive Op-
tics, Chapter 3 covers the studies in wavefront sensing, focussing on the working principles
of the Shack-Hartman and plenoptic sensors. The representation of atmospheric turbulence
is detailed in Chapter 4, introducing the effect of anisoplanatism on the imaging process.
The development of the simulation toolbox is elaborated in Chapter 5, presenting important
algorithms simulation results. The final chapter, Chapter 6 concludes the work done, answers
the research questions and provides recommendations for future study and improvements.

Delft, University of Technology S. A. Stouten
February 19, 2021
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“Remember to look up at the stars and not down at your feet. Try to make sense
of what you see and wonder about what makes the Universe exist. Be curious.
And however difficult life may seem, there is always something you can do and
succeed at. It matters that you don’t just give up.”
— Stephen Hawking





Chapter 1

Introduction

Throughout the ages scientists have used telescopes to investigate the cryptic cosmos, imaging
enormous stellar objects millions of kilometres away. These systems have grown both in
size and power, but even the largest telescopes suffer from atmospheric turbulence [9, 27].
Inhomogeneities in Earths atmosphere introduce phase aberrations to light that reaches the
surface, severely affecting image quality [33]. A common solution is to employ Adaptive
Optics (AO) systems to increase the image quality of the telescope [13, 17, 27, 33, 41]. Using
a wavefront sensor (WFS) these systems can compensate for these aberrations, resulting in
a sharp image.

For most applications the Shack-Hartmann (SH) wavefront sensor is used, a sensor that has
been developed thoroughly for decades [2, 47]. This sensor performs excellently under weak
aberrations, but its performance depends on local complexities and fails under strong and
complex aberrations [18, 25, 26, 47].

To improve on the design of the SH sensor a number of new wavefront sensors emerged.
Designs that showed promise within this development were the pyramid and plenoptic sen-
sor. The pyramid sensor showed an increased sensitivity and adjustable pupil sampling as
well as increased closed-loop performance [35, 40]. The plenoptic sensor further improved
performance by increasing the pupil sampling and the dynamic range capabilities [47].

Standard methods allow wavefront sensors to interpret the recorded image and produce a
reconstruction of the aberrations, sensed in the aperture plane. In practice these aberrations
are not introduced here but outside the wavefront sensor (WFS) and thus sensed aberrations
may differ depending on the imaging location. If sensed aberrations do not change throughout
the field of view (FOV) one considers them isoplanatic aberrations. In reality this is often not
the case and the aberrations vary over the FOV, making them anisoplanatic aberrations [6,
33, 46].

For the purpose of astronomy the solution to this anisoplanatic problem starts by describing
atmospheric turbulence. The statistics of this turbulence can be represented by the common
model of Kolmogorov theory [6, 13, 17, 31, 39]. The three-dimensional volume of atmospheric

Master of Science Thesis S. A. Stouten



2 Introduction

turbulence itself can be approximated by dominant layers, which can be represented by phase
screens [33, 46].

The aim of this thesis is to investigate if the plenoptic sensor is a viable competitor to the
SH wavefront sensor and could serve as a better alternative in the presence of anisoplanatic
aberrations. The theoretical part of this work is focussed on the working principles of various
wavefront sensors and performs a comparative study on two of these sensors: the SH and
plenoptic WFS. This comparison leads to the conclusion that the SH sensor does not yield
effortlessly and can still outperform the plenoptic sensor on many occasions. For specific
sensing tasks at hand however, the plenoptic sensor can be designed to triumph.

The practical part of this thesis is focussed around the development of a simulation toolbox
to test these optical systems and perform similar comparisons. The purpose of this toolbox
is to simulate the WFS imaging process, reconstruct the phase aberrations and correct for
them. In the context of this thesis the toolbox is used to compare the SH and plenoptic
sensors performance, not develop faster algorithms for wavefront reconstruction.

The narrative of this report is guided by the following research questions, that have been
established for this thesis at the time of literature survey:

How does the plenoptic sensor improve modern wavefront sensing and will
it provide a better alternative to the Shack-Hartmann sensor?

How can anisoplanatic phase reconstruction be conducted in a
single frame?

The report is structured to highlight this narrative and the purpose of the toolbox, starting
with an introduction to the basics of AO in Chapter 2. A brief overview of common wavefront
sensor is given in Chapter 3, followed by an in-depth investigation of the SH and plenoptic
sensors. Chapter 4 discusses the nature of atmospheric turbulence and introduces anisopla-
natic aberrations to the imaging process. These two chapters collect the literature survey
conducted for this thesis. The development of the toolbox, important algorithms and results
are presented in Chapter 5. The thesis comes to a close in Chapter 6, where the conclusions
and future recommendations are presented.

S. A. Stouten Master of Science Thesis



Chapter 2

Adaptive Optics

Most Adaptive Optics (AO) systems are defined by three important parts: 1) the wavefront
sensor (WFS), 2) the deformable mirror (DM) and 3) the control system [12, 13, 17, 40].
An AO system is added to an existing imaging system, such as a telescope or microscope to
increase the performance in a number of ways. An overview of the basic components of an
AO system applied to a telescope is shown in Figure 2-1.

Light that is emitted from a distant star arrives at the outer layers of Earth’s atmosphere
with a plane and undistorted wavefront. Atmospheric turbulence between these outer layers
and Earth’s surface interfere with incoming light and the wavefront arriving at the telescope
aperture is no longer plane but distorted [17]. The incoming light can be defined as a complex
field U = Aejφ, where A is the magnitude and φ the phase of light, with j the imaginary unit.
The aberrations that result from atmospheric turbulence end up in the phase term φ(ρ, t),
that is a function of both spatial aperture coordinates ρ ∈ R2 and time t.

The ultimate goal of the AO system is to reconstruct the phase correctly and to compensate
for it, such that the light that falls on the image sensor is approximately a plane wave. For
more details about the wave-nature of light, the reader is referred to Appendix A-1-2. The
wavefront of light w(x, y) can be related to the phase of the corresponding complex field
φ(x, y) using the wavelength of light λ, expressed in [m]:

φ(x, y) ≈ 2π
λ
. (2-1)

The path of light through an AO system can be traced as illustrated in Figure 2-1 for a
telescope. Here light is collected by the telescope and limited by the telescope’s aperture.
The aperture located in the aperture plane ensures that all light travelling through it ends up
on the image sensor. Light should thus only be limited by the aperture and nowhere else.

Beyond the telescope light comes into contact with the DM, in Figure 2-1 the adaptive
mirror, which can be controlled to change its shape and affect incoming wavefronts. The DM
introduces a phase delay in a similar manner as lenses do, elaborated in Appendix A-1-2, but
also reflects incoming light to change its direction.

Master of Science Thesis S. A. Stouten



4 Adaptive Optics

After the DM the light beam is split in two by a beam splitter, such that one part goes
through the original imaging system forming an image, while the other part of light goes
through the WFS. The beam splitter enables one to obtain an image and sense the wavefront
at the same time, since a WFS takes in all light to produce its measurements.

These measurements are sent to a control system that translates them into a control action
for the DM, closing the AO-loop traced by the dashed line.

The goal of this loop is to drive the distorted wavefront of incoming light to a corrected
wavefront that is close to a plane wave. The ultimate goal of the AO system is to perform
this loop in real-time, offering continuous real-time aberration correction, such that much
sharper images can be obtained.

Figure 2-1: Basic adaptive optics system [27].

As noted in [17, 32], an important complication in astronomical imaging and wavefront sensing
is that light is scarce and a WFS may not be able to accurately sense the atmospheric
aberrations. Stars and other stellar science objects are often indicated by a stellar or visual
magnitude, where a larger magnitude means the object is less bright. As an example, a to-be-
imaged object with stellar magnitude of 13 or more, will be too faint for the WFS to function
properly. For this reason AO operates around the vicinity of bright stars that act as a guiding
beacon for objects close to them. This assumes that the light coming from both the guide
star and science object experience roughly the same turbulence, such that measurement from
the guide star can be used to correct aberrations associated with the imaged object.

This thesis is centred around wavefront sensing and reconstruction, as indicated in Chapter 1,
which will be discussed in Chapter 3. For the purpose of aberration correction a highly
idealized DM is used but further analysis on DM and control systems are beyond the scope
of this work and not discussed. The correction of aberrations is addressed together with the
development of the simulation toolbox in Chapter 5.

S. A. Stouten Master of Science Thesis



Chapter 3

Wavefront Sensors

The wavefront sensor (WFS) is one of the most important parts of an Adaptive Optics (AO)
system. This chapter presents a brief overview of common wavefront sensors and discusses
the principles of both wavefront sensing and reconstruction. This chapter concentrates on the
Shack-Hartmann (SH) and plenoptic sensors, discussing their working principles, drawbacks
and possible adjustments. Following the details of each sensor a comparison is drawn between
the two on multiple grounds, on which the conclusion of this chapter is based. The information
presented in this chapter follows from a literature survey conducted for this thesis.

3-1 Brief Outline Wavefront Sensors

This section presents a brief overview of wavefront sensors. As stated by [51], a WFS can
be defined as any optical system that provides wavefront information on an incident beam of
light. Such a device differs from an ordinary image sensor, such as a CCD or CMOS image
sensor, that only records the intensity distribution of incoming light. It has been stated
by [40], that no optical device can record the wavefront of light directly, but instead a WFS
infers information on the wavefront of incident light based on the recorded intensity pattern.
The WFS then produces an estimate of the measured wavefront that can be translated by
a computer into a control signal for the deformable mirror (DM) [27]. Typical examples
of wavefront sensors are Curvature sensors, Interferometers, the SH WFS and the pyramid
sensor [7, 32, 40, 51] which will be touched upon below. For more details on the representation
of light and its propagation through thin lenses, the reader is referred to Appendix A-1.

The four examples of wavefront sensors are briefly outlined using [11, 40, 47, 51], starting with
the curvature sensor. This sensor can be used to detect local focus or defocus of incoming
light. Two images are taken, one at a distance l in front of the focal plane and one at a
distance l behind the focal plane, with the focal distance f >> l. By comparing both images
additional curvature distributions with respect to a plane wave can be extracted.

An interferometer uses a reference beam of light with known intensity and phase to interfere
with the aberrated beam of the same wavelength. Then, by observing the resulting interfered
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6 Wavefront Sensors

intensity pattern information on both the intensity and phase distributions can be revealed.
The SH WFS uses a microlens array (MLA) to spatially samples incoming light. Each lenslet
images a spatial part of the wavefront into a focussed spot on the image sensor. This spot’s
deviation from the reference is used to determine the local tilt of the imaged wavefront part.
Finally, the pyramid sensor uses a four-sides glass pyramidal prism and a set of lenses to split
a focussed beam into four images on an image sensor. The locations of illuminated pixels
then reveal information on the incident wavefront slopes.
In addition to common sensors, the plenoptic sensor has been proposed to surpass the SH
WFS when exposed to strong and complex wavefronts [18, 47]. As explained in [10, 32, 37],
the plenoptic sensor can be interpreted as an intermediate design between the SH and pyramid
sensors. The design contains a main objective lens, an MLA and an image sensor, such as
a CCD detector. The illuminated pixels and the corresponding locations reveal the phase
information, just as the pyramid sensor does, but the MLA makes it possible to sample the
incoming light from multiple points of view.
The plenoptic sensor will be compared to wavefront sensors of similar design, such that a
thorough comparison can be done on both design and sensor performance. The SH WFS has
been used in AO extensively and received many years of study [2, 25, 26, 47], making it a
sensor worth investigating. The pyramid sensor has been proposed as a better alternative to
the SH sensor through improved design [2, 9, 40]. The glass prism at the centre of its design is
expensive to manufacture and prone to misalignment errors, as reported by [2, 22]. It is clear
that the pyramid WFS involves significantly more mechanical and design complexities than
the SH and plenoptic sensors. Additionally, the designs of the pyramid sensor and plenoptic
WFS are very similar. With these arguments the pyramid sensor is omitted from further
investigation and the remainder of this chapter will explore the SH and plenoptic sensors
further.
Throughout this thesis the terms wavefront reconstruction and phase reconstruction are used
interchangeably, as they refer to the same reconstruction algorithm. In this argument both
phase and wavefront reconstruction only differ in factor 2π/λ through approximation (2-1).

3-2 Shack-Hartmann Sensor

The SH WFS has been successfully implemented in AO systems for the past decades [2, 47].
It gained widespread application through its reliability and accuracy, low sensitivity to both
noise and misalignments and a simple implementation [26, 32, 47]. Furthermore it does not
require any reference wavefronts during the sensing process [26].
The SH sensor is investigated on a number of topics. First, the working principles of the
WFS will be elaborated, discussing the image formation process and phase reconstruction.
Second, drawbacks of the sensor design are discussed, followed by several possible adjustments.
Finally, performance metrics for the SH sensor are derived and listed.

3-2-1 Working Principles

Image Formation The sensor itself consists of an array of identical microlenses, often called
lenslets due to their size, with an imaging sensor placed at the lenslet focal distance behind

S. A. Stouten Master of Science Thesis



3-2 Shack-Hartmann Sensor 7

fmla

Aberrated wavefront

Plane wavefront

Local tilts

Δx1 Δx2 Δx3 Δx4
Image plane

centroids

Figure 3-1: Inspiration taken from [26]. An aberrated wavefront incident on a Shack-Hartmann
sensor is focussed by the individual (blue) microlenses. The wavefront is sampled locally, meaning
the local part of the wavefront directly incident on the microlens is focussed. The local tilts are
directly related to the displacements ∆xi of the local centroids, indicated by the stars in the
image plane. Through ∆x the local tilt with respect to a plane wave (red) can be found, which
would be focussed in the focal point of each microlens.

the array [5, 25, 26]. A two-dimensional illustration of the lenses and the imaging process
is shown in Figure 3-1. The MLA, as further explained in [25], spatially divides incoming
wavefronts into discrete sections, which are focussed by their corresponding lenslet into a
spot. Each lenslet images light onto a specific section on the image sensor, the lenslet sub-
image [51, 52]. From Figure 3-1 it can be concluded that each sub-image must be the same
size as the lenslet itself, such that the image is divided into equally sized sub-images.

As highlighted in Section 3-1, the deviation of the spot from the centre of the sub-image is
proportional to the local tilts of the wavefront. If for a certain lenslet the imaged wavefront
section is flat, the spot will be imaged in the focal point, directly behind the geometric centre
of the lenslet. In Figure 3-1 this is illustrated by the ’Plane wavefront’ that is imaged in
the geometric centre of each sub-image. If the wavefront section deviates from a flat wave,
illustrated by the imaging of the ’Aberrated wavefront’ in Figure 3-1, the spot on the image
sensor will be displaced with respect to the centre. Actual SH sensor images are shown
in Figure 3-3 and Figure 3-4 which will be discussed later.

Unfortunately, lens imperfections and diffraction effects prevent the focussed spot from being
a single illuminated pixel. Instead, one obtains the point spread function (PSF), which is
further elaborated in Appendix A-3. To find the displacements in both x- and y-directions,
defined as ∆x and ∆y respectively, one must find the centroid of the PSF. The standard
approach of doing so is computing the image first moment [26, 51].

Phase Reconstruction The image first moment equations are defined in (3-1), which result
in displacement (∆x,∆y) of the centroid with respect to the centre of the sub-image. The
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fmla

Image plane

(i,j)

t

s

Iij

Figure 3-2: Illustration of image first moment calculation for the SH sub-images. Each lenslet
(i, j) images light into its sub-image, containing intensity pattern Iij represented by pixels (s, t).
By defining local spatial coordinates (x̃, ỹ) in each sub-image one can find the spatial displacement
(∆xij ,∆yij).

physical quantities involved in these equations are illustrated in Figure 3-2. For starters, each
lenslet and corresponding sub-image is associated with indices (i, j). Each lenslet (i, j) images
the spatially sampled wavefront onto sub-image (i, j), where the centroid is represented by
the 4-point stars analogous to the imaging process shown in Figure 3-1. Each sub-image
contains the recorded intensity pattern Iij that is composed of pixels associated with index-
pair (s, t). This means that for lenslet (i, j) one can select pixel (s, t) that contains intensity
value Iij (s, t). Finally, to obtain the spatial displacements instead of pixel displacements,
one can define a local spatial coordinate grid (x̃, ỹ) for each sub-image. These coordinates
span the physical size of the sub-image with their centre aligned with the sub-image centre.
For example, for a square sub-image with half-width rmla, both x̃ and ỹ are defined from
−rmla to +rmla. The geometric centre of the sub-image should correspond to coordinates
(x̃, ỹ) = (0, 0). With these definitions one can describe each pixel in the whole SH image by
indices (i, j, s, t), such that the entire SH image is described by intensity function ISH(i, j, s, t).

If the MLA contains an M ×N grid of lenslets, each containing a sub-image that consists of
P ×Q pixels, displacements (∆x,∆y) can be found through image first moments:

∆x(i, j) =
∑P
s=1

∑Q
t=1 x̃(s, t) · Iij(s, t)∑P

s=1
∑Q
t=1 Iij(s, t)

,

∆y(i, j) =
∑P
s=1

∑Q
t=1 ỹ(s, t) · Iij(s, t)∑P

s=1
∑Q
t=1 Iij(s, t)

.

(3-1)

The obtained displacements are related to the wavefront defined in the aperture plane. In
order to eliminate possible sensor noise in the retrieval of displacements (∆x,∆y), pixel
intensities Iij (s, t) can be set to zero if they fall below a certain threshold value [26].
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3-2 Shack-Hartmann Sensor 9

This standard approach approximates the aberrated wavefront as a discrete set of local
tilts [18, 25, 26, 51]. If the aberrated wavefront is purely a tilted plane wave, the result-
ing point-spread function (PSF) is shifted from the centre proportional to the wavefront
slope. This can be seen by comparing the first three wavefront shapes in Figure A-7, the
plane wave ’piston’ and the tilted plane waves ’tip’ and ’tilt’. By measuring the centroids one
measures the displacement in each sub-image caused by the average slopes of each wavefront
section. This results in a data set of local tilts that correspond to a two-dimensional spatial
location [18]. Through geometrical optics, elaborated in Appendix A-1-1, one can extract
these average slopes Sx and Sy by dividing displacements ∆x and ∆y by the lenslet focal
distance fmla. Invoking approximation (2-1) allows one to relate each centroid (∆xij ,∆yij)
to the average phase gradient of light incident on lenslet (i, j):

∂φ (xij , yij)
∂x

= −2π
λfmla

∆xij ,

∂φ (xij , yij)
∂y

= −2π
λfmla

∆yij ,
(3-2)

where the spatially sampled section of lenslet (i, j) is indicated by coordinates (xij , yij). The
minus sign corrects for the direction inversion through imaging. If a wavefront with slopes in
positive x- and y-directions is imaged by a lens, the focal spot is imaged in negative x- and
y-coordinates. Thus the minus sign ensures positive centroid coordinates correspond to neg-
ative gradients. With gradients (3-2) the phase in the aperture plane can be reconstructed,
using either the modal or zonal reconstruction algorithm elaborated in Appendix A-5 and Ap-
pendix A-6.

The spatial sampling of the MLA enables one to specify the type of information encoded
in pixel intensity ISH(i, j, s, t). Indices (s, t) specify the position of the pixel in the sub-
image which are used to determine the centroids (3-1) and thus the average slopes. Indices
(i, j) on the other hand specify which lenslet is considered and thus which average slope is
measured. This means that in ISH(i, j, s, t) the spatial information is encoded in index-pair
(i, j), whereas angular information is encoded in (s, t).

3-2-2 Sensor Drawbacks

There are a number of drawbacks to be recognized from the SH WFS design. One drawback
stated by [47] is that the MLA limits both the lateral resolution and range of measurable
wavefront tilts. Each sub-image is the same size as the lenslets so the maximum detectable
displacements wavefront slopes are limited by the lenslet size. More complex or strong wave-
fronts may result in too strong individual displacements, such that spots are focussed in
different sub-images and either merge or switch places [25, 47].

As stated by [26] standard approach (3-1) is only suitable if each sub-image contains a single
focal spot. Even more so, centroids are assigned to the sub-image they are imaged in, which
means that spots moving beyond their respective sub-image are incorrectly assigned to dif-
ferent indices (i, j). In this context spot merging is likewise problematic as (3-1) detects the
average centroid of the merged spots.

The impact of this spot merging is reported by [18] and shown in Figure 3-3 and Figure 3-4
for varying turbulence strengths. The leftmost image of Figure 3-3 corresponds to weaker
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10 Wavefront Sensors

turbulence and it can be clearly seen that the spots are well-aligned. The rightmost image
corresponds to medium turbulence and already shows spots merging along the left side and
bottom-right of the image. Finally, in Figure 3-4 strong turbulent conditions are present that
result in drastic spot merging and the absence of spots in other sub-images. Using (3-1) under
such conditions results in several averaged centroids, as well as zero-centroids in sub-images
that are not illuminated - whose spot has moved to different sub-images.

Figure 3-3: Turbulence effects on the Shack-Hartmann pattern. Weak turbulence on the left
shows a clear pattern, while medium turbulence on the right begins to show some black-outs and
spot merges. The dashed red line shows the annular aperture of the optical system [18].

Figure 3-4: Strong turbulence effects on the Shack-Hartmann pattern. Multiple spots per
detection area can be seen and more black-outs have occured. The dashed red line shows the
annular aperture of the optical system [18].

A second limitation is light economy, reported by [25]. The MLA spatially samples light,
dividing the number of photons over the sub-images. Small lenslets collect less light than
larger ones up to the point that noise significantly affects the results. This noise, according
to [9, 10, 25], can be divided into photon quantum noise and sensor read noise. The former,

S. A. Stouten Master of Science Thesis



3-2 Shack-Hartmann Sensor 11

as explained in [25], results from the Poisson distribution describing how many photons arrive
at each pixel during exposure. The latter affects all slope-bases sensors, as noted in [9, 10]. It
can be minimized by reducing the number of detectors, elaborated further in Section 3-2-3.

Another drawback that can be identified for all gradient-based wavefront sensors is the fact
that discontinuities in the phase cannot be detected, as reported by [26]. Phase gradients
are measured and integrated to obtain the phase, approximating the phase as a continuous
surface. These undetectable discontinuities are identified as piston modes, averaged constants
that do not affect phase gradients or reconstructions [7, 26, 43].

As a final note towards the limitations, strong wavefronts and atmospheric turbulence have ad-
ditional effects on the incoming light, such as self-interference, anisoplanatism, branch-points
and branch-cuts [18]. The basic notions of atmospheric turbulence and the anisoplanatic
model are discussed in Chapter 4 of this thesis, but more complex details and effects are
beyond the scope of this study. The reader is referred to [51] for further elaborations.

3-2-3 Adjustments to the SH Sensor

From literature a number of adjustments can be made to the design of the SH sensor. The
adjustments listed do not cover all possibilities but do provide an overview on how the per-
formance of the sensor can be adjusted to fit certain requirements. The adjustments have
been divided into software and hardware based.

Software Software-based adjustments are algorithmic changes which are coined as smart
algorithms [51]. One such algorithm applicable to the SH sensor, is the addition of blob
detection in image pre-processing before computing the centroid [51]. Blob detection identifies
clusters of illuminated pixels and helps to isolate the focused spots from noise and other
random high order phase oscillation structures.

Blob detection is also helpful when multiple point sources are simulated. If each of these
sources is imaged incoherently one obtains as many focal spots in each sub-image as there
are sources, provided that the focal spots are sufficiently separated. If this is the case, blob
detection isolates the spots such that all centroids can be detected in the same sub-image
using image first moments (3-1). A minimum condition of sufficient spot separation can be
obtained from the Rayleigh resolution criterion for diffraction-free imaging. This is elaborated
further in Appendix A-3. The benefit of blob detection for imaging multiple point sources is
clear and is thus implemented in this work, further detailed in Section 5-2-6.

Removing noise in the data is also reported in [51], by either averaging over multiple integral
paths or solving minimum mean square error (MMSE) equations. The latter is already imple-
mented in this work, by reconstructing either the phase or orthonormal Zernike coefficients
with the minimum-variance unbiased estimate (MVUE). The former is based on the weak law
of large numbers and that each phase gradient is retrieved independently from neighbouring
sub-images. Averaging over different integral paths should result in an mean error of zero.

Hardware One hardware adjustment mentioned in Section 3-2-2 is replacing the pixels under
each lenslet by a 2× 2 quad cell to minimize sensor read noise [7, 9, 10, 11]. Figure 3-5 shows
the behaviour of this quad cell for small and large focal spots.
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12 Wavefront Sensors

Figure 3-5: Taken from [9]: "The sensor signal is approximately linear for small displacements
and saturates for larger displacements. A larger spot size (right) results in a wider range for which
the signal is linear, at the expense of the signal gain or sensitivity."

If the sensed displacements of the focal spot are small compared to its spatial width b one
can determine said displacements by averaging over sub-aperture areas Ai [7]:

∆x (i, j) = b

2
A1 −A2 −A3 +A4
A1 +A2 +A3 +A4

,

∆y (i, j) = b

2
A1 +A2 −A3 −A4
A1 +A2 +A3 +A4

,

(3-3)

For flat wavefronts each spot will be imaged in the cell centre and areas A1 . . . A4 are all
equal. Any tilt in the wavefront will shift the spot away from the centre, up to the point that
either of the four areas A becomes zero. This is illustrated in the saturation of the sensor
signal in Figure 3-5. This saturation results from the spot moving away from area pairs (for
example A1 +A3 or A2 +A4), such that some values Ai become zero. Larger spots have the
ability to move further away from the centre before saturation occurs, increasing the linearity
range. As reported by [9] one minimizes sensor and read noise with quad-cells, but severely
undersamples the image, possibly reducing the dynamic range of the SH sensor.
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3-2 Shack-Hartmann Sensor 13

3-2-4 Performance Metrics

The general performance of a WFS can be quantified by a number of metrics [18, 47]. It is
assumed that the small angle approximation holds, such that tan(θ) ≈ θ (A-2).

Dynamic range The dynamic range represents the maximum measurable wavefront tilt [18].
For the SH sensor this tilt is limited to the lenslet size and focal distance. As reported
by [18, 47] and mentioned in Section 3-2-1, each sub-image is the same size as the lenslet
itself and the maximum detectable tilt is therefore confined to this size:

∂w(x, y)
∂u

∣∣∣∣SH
max

= dmla
2fmla

, u = {x, y}, (3-4)

where w(x, y) is the wavefront defined by spatial x- and y-coordinates, dmla and fmla are the
size and focal distance of the MLA lenslets.

Sensitivity The sensitivity quantifies the minimum detectable wavefront tilt [18]. In the
standard image first moment approach these tilts are obtained at sub-pixel accuracy. This
means that the SH sensitivity depends on multiple contributions, such as spot size, detector
noise and the intensity distribution on the sub-image [9, 26]. An alternative is to express
the sensitivity proportional to the pixel accuracy, dropping the statistical influences from its
description. This pixel accuracy is equal to the minimum detectable slope if one is restricted
to integer displacements. Such a sensitivity has been adopted in [18] and could be interpreted
as a maximum sub-pixel accuracy:

∂w(x, y)
∂u

∣∣∣∣SH
min

∝ dpix
2fmla

, u = {x, y}, (3-5)

where dpix the size of the image sensor pixels. If the image sensor contains an uneven number
of pixels the sensitivity of the SH WFS is described by:

∂w(x, y)
∂u

∣∣∣∣SH
min

∝ dpix
fmla

, u = {x, y}. (3-6)

Another alternative is to quantify the sensitivity as the minimum wavefront curvature that
can be unambiguously detected, as reported by [47]. This results in an expression for the
diffraction limit of the SH sensor:

dmla >
√

2λfmla, (3-7)

which physically means that the Fresnel number should be larger than 2. For the practical
case of dmla >>

√
2λfmla, moving away from the diffraction limit, the detectable minimum

curvature R simplifies to:
R > 2fmla. (3-8)
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14 Wavefront Sensors

Gradient sample size: The gradient sample size represents the number of phase gradients
that are collected from a single sensor image, an independent sample. The centroids in the
SH sensor are computed for each lenslet in the MLA as defined by (3-1). According to [18]
the gradient sample size is equal to the number of illuminated sub-images. As long as the
aperture plane is properly defined and all light falls on the MLA, the gradient sample size is
equal to the number of sub-images fitting on the image sensor:

NSH
gradient =

(
wsens
dmla

)2
= M2, (3-9)

where wsens is the image sensor width and the MLA consists of an M ×M lenslet grid.

Conclusion on Performance Metrics The SH sensor is known for its high accuracy for
weaker aberrations, which is reflected by the expressions for sensitivity in (3-5) and (3-6) that
are relatively low, considering pixel size dpix in the order of 100 micrometers. This sensitivity
can be adjusted freely by changing the resolution of the image sensor.

The dynamic range is limited by ratio dmla/fmla, which can be increased by either increasing
dmla or decreasing fmla. The best option is increasing dmla since a decrease in fmla also
degrades the SH sensitivity. Unfortunately, increasing the lenslet size also means increasing
the sections of spatially sampled wavefronts, resulting in larger sections of wavefront being
approximated by one average slope. This will lead to increased wavefront reconstruction
errors, unless the aberrations are restricted to purely tilted waves.

3-3 Plenoptic Sensor

The plenoptic WFS is based on the plenoptic camera [30] and the modern description of
the light-field presented in [1]. A plenoptic camera samples this four-dimensional light field
uniquely through its particular design, enabling it to refocus the image at different depths,
after the image has been captured [30, 51]. Using the plenoptic camera to obtain wavefront
measurements is reported by several authors [10, 36, 52] where its design provided advantages
compared to the SH sensor, which only records the two-dimensional focal plane image.

The plenoptic sensor and camera contain three basic elements: 1) The objective lens, 2) an
image sensor such as a CCD or CMOS sensor and 3) an MLA [10, 18, 30, 36, 47, 51]. The
MLA is placed behind the objective lens in front of the image sensor, such that each lenslet
creates a sub-image of the pupil on the image sensor [36]. This pupil is the aperture plane of
the plenoptic sensor, the front focal plane of the objective lens. Figure 3-6 shows these basic
elements and how the incident wavefront is related to the sub-images.

Literature distinguishes between two configurations of the plenoptic sensor, the 3F and 4F
configurations. The plenoptic 3F (P3F) sensor discussed in [36] places the MLA in the back
focal plane of the objective lens. The plenoptic 4F (P4F) sensor discussed in [53] places
the microlens array at fobj + fmla behind the objective lens, such that objective lens back
focal plane and array front focal plane overlap. This creates Keplerian configuration between
objective lens and each lenslet in the MLA [18, 53]. Literature also reports the design of the
plenoptic sensor to be intermediate between the SH and pyramid sensor designs [10, 32, 36,
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3-3 Plenoptic Sensor 15

Figure 3-6: The basic elements of a 4F plenoptic sensor. The focal distances of the objective lens
and MLA lenslets are indicated by f1 and f2, respectively. The light field complex amplitude is
expressed by functions ti, where t1(x, y), t2(u, v) and t3(s, t) correspond to the complex amplitude
of the object lens front and back focal plane and MLA image plane, respectively [51].

37, 47]. The structure of this section is the same as in Section 3-2. The working principles
of the plenoptic sensor will be elaborated first, discussing the image formation and phase
reconstruction. The design drawbacks and possible adjustments are discussed next, followed
by derivation of the performance metrics for the plenoptic sensor.

The physical image obtained from a plenoptic WFS is shown in Figure 3-7, using the same
annular aperture as in Figure 3-3 and Figure 3-4. Comparing Figure 3-7 shows clear differences
between the plenoptic and SH sub-images, details that will be discussed below.

Figure 3-7: A zoomed-in plenoptic image that shows the sub-images and which parts of the
aperture plane are imaged in each sub-image, depending on the slopes in the aperture [18].
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16 Wavefront Sensors

3-3-1 Working Principles

Image Formation As explained in [36] the MLA samples light such that each lenslet im-
ages the aperture plane from a slightly different point of view, depending on the angle of
arrival. Figure 3-8 illustrates the image formation of three aberration-free plane wavefronts,
each emitted incoherently from a star at optical infinity. The aperture plane of the plenoptic
sensor is located fobj in front of the objective lens.

fobj fobj fmla

Objective lens MLA

z-axis

(a)

fobj fobj fmla

Objective lens MLA

fmla

z-axis

(b)

Figure 3-8: Image formation in the P3F (a) and P4F (b) sensors for different tilted plane waves.
The objective lens separates the incoming wavefronts depending on the angle of arrival and three
sub-images are fully illuminated. The process is shown for both the 3F (a) and 4F (b) setups.

The aperture plane contains three tilted plane waves whose angles of arrival depend on the
angular location of the star. These angles, which can be related to phase gradients through
approximation (A-6), result in each plane wave to be focussed by different lenslets and thus
three sub-images are illuminated. With light being considered incoherent, each of the three
plane waves fully covers the aperture and thus each sub-image is fully illuminated.

By means of principal rays, defined by [29], one can associate each lenslet with an angle of
arrival as illustrated by Figure 3-9. The collection of these angles for all lenslets in the MLA
is referred to as the quantized angular spectrum [18]:

(α, β) = dmla
L

(m,n) , (3-10)

where dmla is the lenslet size and L is the distance between objective lens and MLA, equal to
fobj and fobj + fmla for the 3F and 4F configurations respectively. Indices m and n quantify
the displacement for each lenslet with respect to the optical axis, in x- and y-directions.
This means that for a square M ×M MLA with uneven M the centre lenslet is given by
(m,n) = (0, 0), the one above it (1, 0) and the lenslet in the top-left corner by

(
−M−1

2 , M−1
2

)
.

The quantized angular spectrum (3-10) can be interpreted by drawing the principal ray from
the objective lens to each lenslet, which is illustrated for three lenslets in Figure 3-9. If a
tilted plane wave is focussed exactly in the lenslet centre, for the 3F configuration, or in the
front focal plane along its principal ray, for the 4F configuration, one obtains the same image
formation as illustrated by Figure 3-8. The angle between principal ray and optical axis is
equal to the wavefront gradient (A-5) and thus proportional to the phase gradient (A-6). The

S. A. Stouten Master of Science Thesis



3-3 Plenoptic Sensor 17

geometric centres of each sub-image can be determined using the angular spectrum and the
sensor geometry, as shown in Figure 3-9.

fobj fmla

z-axis

α

dmla

dobj

fobj

(a)

fobj fmla

z-axis

fmla

α

fobj

(b)

Figure 3-9: Illustration of the geometrical locations of several plenoptic sub-images, shown for
both the P3F (a) and P4F (b) sensors.

In practice the aberration-free example of Figure 3-8 is not feasible. A more realistic scenario
is illustrated by Figure 3-10, where atmospheric turbulence introduces an arbitrary aberration
profile. This profile is indicated by the black dashed lines, located at some distance from the
aperture plane in Figure 3-10. One point source is considered at optical infinity that emits a
plane wave. The turbulence affects this wave such that the wavefront in the aperture contains
three distinct slopes, indicated by the coloured line-segments. Analogous to Figure 3-8 these
segments are imaged by separate lenslets and end up on separate sub-images. However, as
the slopes only cover a part of the aperture the sub-images are only partly illuminated, as
opposed to the example in Figure 3-8.

fobj fobj fmla

Objective lens MLA

z-axis

(a)

fobj fobj fmla

Objective lens MLA

z-axis

fmla

(b)

Figure 3-10: Image formation in the P3F (a) and P4F (b) sensors for an aberrated wavefront.
The objective lens separates the light based on the wavefront slopes and three partly-illuminated
sub-images appear on the image sensor. The illustration is inspired by Figure 3 and Figure 4
in [18].

Examples Figure 3-8 and Figure 3-10 illustrate how slopes in the aperture plane affect the
patterns in the sub-images. To determine which pixels on the sensor image belong to which
sub-image one needs the geometric centre as well as its size. Determining this size has
been thoroughly discussed in literature, using either the image-side f-number [1, 30, 36] or
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numerical aperture [18, 47]. Under the paraxial approximation (A-2) both can be reduced to
the same equality:

dobj
L

= dmla
fmla

, (3-11)

where L is the separation between objective lens and MLA, equal to fobj and fobj + fmla for
the 3F and 4F configurations respectively. If this equality is upheld, the size of sub-images
will be maximized without overlap [30, 47] and be equal to the lenslet size dmla. This equality
is given physical meaning in [30], stating that the sub-images are cropped if the left-hand size
of (3-11), the objective lens side, is smaller than the MLA side. Conversely if the objective lens
side is larger the sub-images will be larger than dmla and may overlap, introducing cross-talk
to the image. Throughout this thesis (3-11) will be referred to as the plenoptic equality.

To extract slope measurements from the plenoptic sensor image and perform subsequent
reconstruction one needs to address the relation between aperture plane and sensor image,
defined through sensor geometry. These steps will be detailed below.

Phase Reconstruction Figure 3-11 shows that each pixel in the plenoptic image is related
to a specific region in the aperture plane. As stated in [36], all rays that pass through the
green square in the pupil arrive at one of the sub-images depending only on the angle of
arrival, quantified by (3-10). This means that illuminated pixels are assigned angles based on
their sub-image location, revealing the wavefront slopes of corresponding spatial locations in
the aperture.

Figure 3-11: Correspondence between pupil and pupil images. Every pupil coordinate is re-
imaged on the corresponding position of each pupil image, depending on the arriving angle of the
incoming ray [36].

For purposes of consistency with Section 3-2-1 each lenslet in the MLA and corresponding
sub-image is associated with index-pair (i, j). Each pixel in a sub-image is associated with
index-pair (s, t), in the same fashion as illustrated in Figure 3-2 for the SH sensor. This means
that a similar intensity function Iplen(i, j, s, t) can be defined for the plenoptic image, where
each pixel is represented by indices (i, j, s, t).
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The microlens array in the plenoptic sensor has a different function than in the array in
the SH sensor, which is reflected in the information encoded in the image pixels. The SH
MLA spatially samples incoming wavefronts, as explained in Section 3-2-1. In the plenoptic
sensor the objective lens focusses incoming light onto the MLA and individual lenslets image
it based on the angular spectrum (3-10). As such the microlens array performs angular
sampling of incident wavefronts. Each pixel in plenoptic sub-image (i, j) is assigned the
corresponding angular spectrum, whereas its position (s, t) in said sub-image defines the
region in the aperture plane this pixel refers to. This means that in the plenoptic intensity
Iplen(i, j, s, t) spatial information is encoded by index-pair (s, t) and angular information by
(i, j), opposite to the SH image encoding.
The SH WFS design enables one to obtain slopes that represent a two-dimensional spatial
location, as addressed in Section 3-2-1. In the plenoptic image each sub-image is related to
the entire two-dimensional aperture, such that the plenoptic slope measurements represent
a four-dimensional entity: a two-dimensional spatial location and two-dimensional angular
information. Recent literature describes two different models that use this information for
slope acquisition, one for the CAFADIS camera by Rodríguez-Ramos et al. [36, 37, 38] and
one using geometrical ray tracing by Davis, Ko and Wu [18, 51, 52], both elaborated below.

Slope Acquisition 1 - CAFADIS Model The model used by Rodríguez-Ramos et al. in [36,
37, 38] employs a modified image first moment calculation to find the slopes, using the relation
between pupil and image in Figure 3-11. This approach is based on the slope model of Clare
and Lane [10], which in turn is a generalized version of Ragazzoni’s method of retrieving
the slopes for a pyramid WFS. The lenslet and sub-image pixel notation, associated with
indices (i, j) and (s, t) respectively, is retained from previous notations. The modification of
the image first moment equations (3-1) is manifested in averaging over all sub-images, instead
of pixels in each sub-image. Through geometry the obtained slopes are the gradients of the
wavefront in the aperture plane, which are found by:

Sx(s, t) = −dmla
L

∑M
i=1

∑N
j=1 δM (j)Iij(s, t)∑M

i=1
∑N
j=1 Iij(s, t)

,

Sy(s, t) = dmla
L

∑M
i=1

∑N
j=1 δN (i)Iij(s, t)∑M

i=1
∑N
j=1 Iij(s, t)

,

(3-12)

where the lenslets are represented by index-pair (i, j) in an M ×N MLA. In a similar fashion
to (3-2) direction inversion is corrected for. Additionally the row- and column indices (i, j) are
switched as they correspond to −y- and +x-directions respectively. Each sub-image contains
intensity pattern Iij(s, t). The δ-function converts lenslet indices (i, j) to index-displacements
from the optical axis, such that (3-12) is in accordance with angular spectrum (3-10):

δA(k) = k − A+ 1
2 , (3-13)

The CAFADIS model uses the full plenoptic image to obtain two-dimensional slope informa-
tion of the aperture plane, similar to the SH centroid method [18]. This suggests that the
CAFADIS slope acquisition is not optimal, since the four-dimensional information is used to
obtain information on a two-dimensional spatial location.
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Slope Acquisition 2 - Ray Tracing Model The model used by Ko, Davis and Wu in [18,
51, 52] is based on geometrical optics, where the information encoded in each plenoptic pixel
defines a distinct light ray. Davis, Ko and Wu have used several algorithms in their work
on the plenoptic sensor, with the ’Single phase screen reconstruction’ algorithm being the
most straightforward and applicable one. This algorithm does not place the slopes in the
aperture plane, as the SH and CAFADIS acquisition models do, but assumes atmospheric
turbulence is described by a dominant two-dimensional aberration profile located somewhere
along the optical path. This model is illustrated in Figure 3-12, where a two-dimensional
dominant turbulence affects a collimated beam of light rays. The aberrated light rays that
arrive at the plenoptic aperture plane are represented by lower-case dash-dotted k-vectors.
The bottom half of Figure 3-12 shows the AO-corrected step, where the dominant turbulence
is reconstructed and compensated for, such that light rays passing this turbulence arrive at
the plenoptic sensor approximately collimated, represented by upper-case vectors K.

Figure 3-12: An illustration of the Ray Tracing model for the plenoptic sensor, showing how
individual light rays travel from dominant turbulent phase screen to the sensor. The top half shows
how the aberrated rays arrive at the plenoptic sensor. The bottom half shows the closed-loop
with an AO system that corrects for this phase screen. Taken from [52]: "Phase compensation
algorithm diagram for beam distortion caused by dominant turbulence occurring over a short
distance"

The algorithm is described by the following steps, interpreted from [52]. The final step
stated in [52] describes the phase reconstruction and is removed from these steps, as phase
reconstruction is considered later in this section.

1. Record the plenoptic image and obtain separate sub-images, one for each lenslet.

2. Transform all pixels into a cluster of vectors with endpoint the spatial pixel location
(proportional to (s, t)) and direction equal to the angular spectrum of their correspond-
ing sub-image (proportional to (i, j)). The thickness of the vector is proportional to
intensity value Iplen(i, j, s, t), the ray intensity.

3. Adjust the vector directions according to relative locations in the sub-image due to the
"vignetting" effect.
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4. Back-propagate the vectors through the MLA, objective lens up to the location of the
dominant turbulence.

5. From the back-propagated cluster remove rays that fall beyond a reasonable spatial
range or have abruptly different directions with respect to their neighbours.

6. Propagate the remaining cluster of vectors to the aperture plane of the plenoptic sensor,
assuming no turbulence affects the light rays between dominant screen and aperture
plane.

7. Combine both clusters of light rays and extract their directions to form the wavefront
gradients of the dominant turbulence.

Finally, after obtaining the sensed slopes with either the CAFADIS or Ray Tracing model one
can invoke approximation (A-6) to obtained the phase gradients. The gradients allow one to
reconstruct the phase aberration using either the modal reconstruction algorithm elaborated
in Appendix A-5 or the zonal algorithm elaborated in Appendix A-6. The complete algorithm
of the Ray Tracing model is detailed in Section 5-2-10 with an example illustration.

There are two major differences between the phase reconstruction of the CAFADIS and Ray-
Tracing models. First, the CAFADIS model produces a guaranteed number of detected
slopes due to averaging the pixels over all sub-images. The Ray Tracing model does not
offer such a guarantee but Ko and Davis report a minimum number of gradients in [18] as
a tractable alternative. This minimum is equal to the guaranteed number of the CAFADIS
model, whereas the maximum goes up to the total number of illuminated pixels on the whole
sensor image. More details on the number of obtained slopes is found in Section 3-3-4.

The second difference is that the Ray Tracing model reconstructs the phase aberration at the
location of assumed dominant turbulence. This model accounts for light propagation through
the sensor but also in free space before it arrives at the aperture plane. On the other hand, the
CAFADIS model places the slopes and its reconstruction in the aperture plane of the plenoptic
sensor, without considering free space propagation. At first glance it may seem convenient
to explicitly include free space propagation, but this also means that all light propagation is
fixed in the domain of geometrical optics. This means that diffraction and other wave-nature
effects are not considered in the Ray Tracing model. The CAFADIS model enables free choice
of the propagation model, leaving more design flexibility for implementation.

3-3-2 Sensor Drawbacks

The plenoptic sensor is significantly more complex in its design but does share some design
aspects with the SH sensor, so similar drawbacks can be expected. For example, the plenoptic
sensor is also limited by the physical dimensions of the MLA, but now in terms of angular
resolution. Each lenslet effectively senses one slope according to the angular spectrum (3-10),
such that the number of detectable slopes is reduced to the number of lenslets in the MLA.
Compared to the SH design it is easier to detect stronger slopes by simply adding more
lenslets to the MLA, increasing the angular range. Conversely, the plenoptic sensor has more
difficulty detecting smaller slope variations, since the difference between angles in the angular
spectrum (3-10) is limited by the lenslet size.
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Another major drawback is the plenoptic equality (3-11) that prevents cross-talk in the plenop-
tic image [1, 18, 30, 47]. This equality constrains the sizes and focal distances of all lenses in
the plenoptic sensor, restricting the degrees of freedom in designing the plenoptic sensor.

A third drawback is the finite size of the objective lens that limits the size of the wavefront
to be sensed. The physical dimensions of the objective lens define the aperture plane and
determines which part of incident light ends up on the image. The SH WFS experiences the
same drawback but for the physical dimensions of the MLA. In practice the MLA is larger
than the objective lens and the SH sensor is less constrained in design than the plenoptic
sensor, which indicates that the plenoptic sensor may suffer more from this drawback.

Finally, the plenoptic sensor suffers from the general slope-based WFS drawbacks discussed
in Section 3-2-2, such as light economy, image sensor noise and the inability to detect discrete
jumps in the wavefronts [7, 9, 10, 11, 25, 26].

3-3-3 Adjustments to the Plenoptic Sensor

In a similar fashion to the SH sensor, a number of adjustments for the plenoptic WFS design
can be noted, divided into software- and hardware based. The listed improvements to do not
cover all possibilities but provide an overview of possible adjustments to the current design.

Software Considering the similarities between SH and plenoptic sensors, software-based im-
provements implemented on one can often be carried over to the other, with minor alterations.

One such example is reshuffling the pixels in the plenoptic image to separate the images of
multiple point sources, analogous to blob detection described for the SH sensor. This reshuf-
fling is based on the equivalence between the SH and plenoptic WFS from a geometrical
optics point of view. The pixels on the plenoptic image are reshuffled by switching lenslet
indices (i, j) with pixel indices (s, t), switching the type of information encoded in the pix-
els. This results in a Hartmannogram-like image, enabling one to reconstruct the phase for
multiple imaged point sources, as was described for the SH sensor. This pixel reshuffling is
implemented in the toolbox and further elaborated in Section 5-2-6.

Other adjustments are improvements to the reconstruction speed listed by [51]. Here Wu ob-
tains the slopes from the Ray Tracing model and notes that the full reconstruction algorithm
is reliable but computationally demanding. Several scenarios and applications do not require
the full knowledge of the reconstruction but profit from fast algorithms. One of these algo-
rithms discussed is the ’Tree Reconstruction Algorithm’ that uses graph theory and a fixed
number of DM actuators to select the most informative pixels in the plenoptic image, using
a minimal number of measurements for reconstruction and correction. Another algorithm
listed is the "Checkerboard Reconstruction Algorithm" that is based on the same plenoptic
reshuffling principle as explained above, but is again used to obtain the most informative
pixels rather than separation of multiple imaged point sources.

Hardware The first drawback above stated the low sensitivity of the plenoptic WFS when
compared to the SH sensor. For weak aberrations all light will be collected by the centre
lenslet or its neighbours, such that small slope variations will remain undetected. Vdovin,
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Soloviev and Loktev discussed the addition of a scattering pupil function in [47], to improve
light distribution over the MLA. By increasing the number of illuminated pixels one decreases
the reconstruction error for a single detected slope.

This approach is illustrated in Figure 3-13 for the original plenoptic sensor (left), the sensor
with a scattering pupil instead of an objective lens (middle) and the plenoptic sensor with
a scattering pupil directly behind the objective lens (right). Vdovin, Soloviev and Loktev
concluded that the scattering pupil function preserved the wavefront uniqueness and could
reconstruct the original light ray directions.

Figure 3-13: Taken from [47]: "Plenoptic WF sensor described in [10] (left), WF sensor with
scattering pupil (middle), same with a collective lens (right)"

Another hardware-based adjustment for the plenoptic sensor is proposed in [38] where the
phase reconstruction is handled by a custom processing chip referred to as a Field Pro-
grammable Gates Array (FPGA) instead of a Graphics Processing Unit (GPU). These chips
can be specifically tailored for the computations at hand, speeding up the signal processing
capabilities significantly. Naturally these chips can be implemented in the SH design, as
reported by [26].

Finally, the light beam focussed by the objective lens can be modulated as illustrated by Fig-
ure 3-14 and elaborated in [32]. This adjustment has been reported for the pyramid WFS as
well [2, 10, 35], hinting at similarities between both sensors. Modulation is accomplished by
rotating the beam using a tip-tilt mirror conjugated to the aperture plane. It was concluded
by [32] that the linearity of the plenoptic sensor was roughly similar to the SH linearity when
modulation was added, greatly improving the plenoptic sensor sensitivity.

The study conducted by [32] compares the plenoptic and SH sensors on the minimum de-
tectable slopes. This is an interesting perspective and as such this work will be further
examined in the comparison between the SH and plenoptic sensor.
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Figure 3-14: Modulation for the plenoptic sensor. The modulation amplitude and angle are
given by R and θ respectively, with s the optical axis from the centre of the mirror through the
centre of the MLA. Taken from [32]: "The schematic diagram of the circular modulation"

3-3-4 Performance Metrics

To compare the plenoptic and SH wavefront sensors, the same performance metrics discussed
in Section 3-2-4 and quantified by [18, 47] should be used. In this section the metrics are
elaborated for the plenoptic sensor assuming that the small angle approximation holds (A-2).

Dynamic range The maximum detectable wavefront tilt that can be detected is limited
by the finite size of both image sensor and MLA. Each lenslet corresponds to an angular
coordinate through (3-10) and thus the dynamic range lies at the maximum of this quantified
angular spectrum. If the MLA consists of an M × N lenslet grid, the maximum detectable
tilt is found to be:

∂w(x, y)
∂u

∣∣∣∣plen
max

= dmla
L

(m,n)
∣∣∣∣
max

= dmla
L

max(M,N)− 1
2 , u = {x, y}, (3-14)

where w(x, y) is the incoming wavefront and L is separation between objective lens and MLA,
equal to fobj and fobj + fmla for the 3F and 4F configurations, respectively.

Sensitivity Both slope acquisition models place the wavefront slopes based on the sub-image
location and angular spectrum (3-10). Since this spectrum is expressed as a function of indices
m and n, the plenoptic sensitivity can be described by taking the difference between spectra,
or in other words:

∂w(x, y)
∂u

∣∣∣∣plen
min

= dmla
L

, u = {x, y}. (3-15)

Gradient sample size The plenoptic gradient sample size follows the same definition as the
SH gradient sample size: the number of phase gradients collected from a single sensor image.
The CAFADIS slope model finds the aperture plane slopes by averaging over all sub-images,
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such that the number of slopes is equal to the number of illuminated pixels in a single sub-
image:

NC
gradient = π

4

(
dmla
dpix

)2

, (3-16)

where dmla and dpix are the spatial sizes of the lenslets and image sensor pixels, respectively,
both expressed in [m]. The premultiplication of π/4 takes a circular objective lens into
account. If the objective lens is square this premultiplied factor should be left out.

The Ray Tracing model treats each illuminated pixel as an individual light ray and a potential
slope measurement, but the actual gradient sample size can only be determined after prop-
agating all rays back to the dominant turbulence location and discarding unrealistic rays.
This dynamic metric is noted by [18] and a minimum sample size is reported as tractable
alternative. This minimum is equal to the number of illuminated pixels if only one lenslet
images the incoming light, which is equal to the actual gradient sample size of the CAFADIS
model.

NRT
min,gradient = π

4

(
dmla
dpix

)2

. (3-17)

Conclusion of Performance Metrics Literature reports the dynamic range of the plenoptic
sensor as a significant improvement on the SH design, which is reflected in (3-14). Simply
by adding more lenslets to the MLA, or increasing the lenslet size the dynamic range can be
increased.

The plenoptic sensitivity is more problematic on the other hand, as it is determined by the
ratio of lenslet size with distance between objective lens and MLA, dmla/L. The sensitivity
can be improved either by considering smaller lenslets or increasing the focal length of the
objective lens and/or MLA. Unfortunately, the plenoptic equality (3-11) prevents one to freely
change either dmla or L, without changing the other lens parameters, making a decrease in
the sensitivity difficult.

3-4 Comparison of the Shack-Hartmann and Plenoptic Sensors

Taking the sets of equations in Section 3-2-4 and Section 3-3-4 into account, a comparison
between the SH and plenoptic sensor can be performed. Before arriving at such a comparison
a few practical restrictions are set to provide helpful insights. These restrictions are not
to be kept strict, rather provide insight on what to expect in practical cases. After briefly
addressing these practicalities, the performance metrics are placed parallel and a comparison
is made. This details section three comparisons that support each other toward the conclusion.
First, a theoretic discussion is performed on the defined performance metrics in Section 3-2-4
and Section 3-3-4. Then, two practical comparisons are included, one being the work of Ko
and Davis [18] that uses very similar metrics and one the work of Pengzhi, Jieping, Yonghui
and Hongjun [32] that investigates the sensitivity of both sensors.
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3-4-1 Practical Restrictions

Lens and Pixel Sizes From previous figures and schematics depicting the plenoptic sensor
it is clear to see that the objective lens is the largest lens in the sensor. The MLA lenslets
are in their turn larger than the pixels that make up the image sensor. Considering this, one
can define a practical restriction to be:

dobj > dmla > dsens. (3-18)

Minimum Image Sensor Sizes Both sensors differ in the minimum size required for the
image. For the SH sensor it is the same size as the MLA, but the plenoptic sensor requires
a larger image sensor to fit all sub-images, as shown in Figure 3-9. Take the MLA to be an
M×M grid of lenslets, withM uneven such that the centre lenslet is aligned with the optical
axis. The minimum image sizes for the SH and plenoptic sensors are then found to be:

hSHsens = M · dmla, (3-19)

hplensens = dmla

(
M + fmla (M − 1)

L

)
, (3-20)

where L is the separation between objective lens and MLA, equal to fobj and fobj + fmla
for the 3F and 4F configurations. One can derive (3-20) with the geometry in Figure 3-9
combined with the quantized angular spectrum (3-10) for the outer lenslet.

3-4-2 Theoretical Comparison

For clarity the performance equations derived in Section 3-2-4 and Section 3-3-4 are summa-
rized in Table 3-1. The MLA consists of a square M ×M lenslet grid each of size or pitch
dmla and with focal distance fmla. The size of the objective lens and its focal distance are
given by dobj and fobj , respectively. The size of each pixel, assumed square, is given by dpix.
The distance between objective lens and MLA in the plenoptic sensor is given by constant
L, equal to fobj and fobj + fmla for the 3F and 4F configurations respectively. The maxi-
mum and minimum detectable wavefront tilts are given by the dynamic range and sensitivity
respectively. As a third performance metric the gradient sample size Ngradient is given, the
number of phase gradients each sensor outputs.

Performance metrics Shack-Hartmann sensor: Plenoptic sensor:

Dynamic range dmla
2fmla

(M−1)dmla
2L

Sensitivity dpix
2fmla (even) or

dpix
fmla

(uneven) dmla
L

Gradient sample size M2 π
4

(
dmla
dpix

)2

Table 3-1: Selected performance metrics for the SH and plenoptic sensors, based on [18, 47]

The most significant improvement of the plenoptic design upon the SH sensor, as stated by
literature, is the increase in dynamic range and possibility to sense more complex wavefronts.
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Comparing the dynamic ranges in both sensors gives insight on the conditions to make this
claim true:

(M − 1)dmla
2L ≥ dmla

2fmla
−→M ≥ L

fmla
+ 1.

Solving this inequality for both the P3F and P4F sensor configurations results in:

M ≥ fobj
fmla

+ 1 (3F), (3-21)

M ≥ fobj + fmla
fmla

+ 1 −→M ≥ fobj
fmla

+ 2 (4F), (3-22)

where the term fobj/fmla will always be larger than one, shown by rewriting the numerical
aperture equality (3-11) and considering practical limitation (3-18):

dobj
fobj

= dmla
fmla

−→ fobj
fmla

= dobj
dmla

> 1, (3F) ,

dobj
fobj + fmla

= dmla
fmla

−→ fobj + fmla
fmla

= dobj
dmla

> 1 (4F) .

The comparison of the dynamic ranges shows an important difference between the SH and
plenoptic sensor. The plenoptic dynamic range increases as more lenslets are added to the
MLA, whereas the SH dynamic range depends solely on the finite sizes of these lenslets. As
long as all plenoptic sub-images fit on the image sensor one could increase the number of
lenslets in the MLA, increasing the plenoptic dynamic range effortlessly. If the image sensor
is limited its size will determine the maximum increase to the plenoptic dynamic range,
depending on how many sub-images fit on the image sensor.

The next claim is that the plenoptic sensor can sense more complex wavefronts, meaning that
more gradient samples are available for reconstruction. In a similar fashion to the dynamic
range, one can compare Ngradient for both sensors:

Nplen
gradient = π

4

(
dmla
dpix

)2

≥M2 = NSH
gradient,

where Nplen
gradient represents both the CAFADIS gradient sample size and the Ray Tracing

minimum sample size. The inequality can be simplified into a condition for the plenoptic
gradients sample size to be larger or equal to that of the SH sensor:

dmla
dpix

≥ 2M√
π
. (3-23)

Within practical restriction (3-18) this inequality is not difficult to meet for the plenoptic
sensor, as long as the pixels are significantly smaller

While the dynamic range and gradient sample size should be kept as large as possible, the
sensitivity should be kept small in order to sense small variations in the wavefront slopes. For
the SH sensor this means to have small pixels, but for the plenoptic sensor it means using
small MLA lenslets. Both of these changes are prone to sensor noise, as stated in [9, 10, 25].
Clare and Lane [10] stated that the slope measurement error increases as the lens diameter
decreases, partly due to a decrease in light that reaches each sub-image. This notion is also
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supported by [9, 25]. Furthermore, an increase in the number of image plane detectors or
pixels also increases the contribution of read noise to the measurements, as stated by [9].
On the other hand, it is reported by Vdovin, Soloviev and Loktev in [47] that the relative
wavefront reconstruction error decreases as more pixels are available.

The elaboration of the theoretical comparison, as well as the analysis of performance metrics
in Section 3-2-4 and Section 3-3-4, reveals a number of trade-offs in the design of both sensors
which will be summarized here:

1. Increasing dynamic range in the SH sensor is best done by increasing the lenslet size,
but this increases the wavefront section corresponding to the detected average slope,
leading to wavefront reconstruction errors. In the plenoptic sensor the dynamic range is
increased best by adding more lenslets to the MLA without serious repercussions, other
than the financial impact of needing a different MLA.

2. Decreasing the SH sensitivity is best done by decreasing the physical size of the im-
age sensor pixels, leading to stronger contributions of sensor noise. The freedom of
decreasing the plenoptic sensitivity is restricted by the plenoptic equality, but is best
approached by taking the smallest possible MLA lenslets. This in turn reduces the
dynamic range unless more lenslets are added to the MLA.

3. The gradient sample size of the SH sensor is determined by the number of lenslets in the
MLA, which is limited to the dimensions of MLA available. For the plenoptic sensor it
is equal to the number of pixels contained in each sub-image, which in turn is limited
to the dimensions of image sensor available.

3-4-3 Practical Comparison of Metrics

Another interesting comparison is the performance of both sensors when the same MLA is
used, which was done by Ko and Davis [18]. The formulation of the performance metrics by
Ko and Davis is slightly different from the equations outlined in Table 3-1. In this thesis a
minimum image sensor size is considered as boundary condition, while Ko and Davis use and
image sensor with fixed size and express the SH sensitivity in pixel accuracy. Despite the
slight difference in formulations the obtained results documented in Table 3-2 and Table 3-3
are very similar.

Ko and Davis consider two scenarios in [18]: Scenario 1, where both sensors share the same
MLA and Scenario 2, where the plenoptic MLA and objective lens are altered to match the
SH performance more closely. The design parameters and resulting performance metrics have
been collected in Table 3-2 and Table 3-3, for scenario 1 and 2 respectively.

The number of lenslets in the MLA has not been reported, but can be estimated by matching
the parameters and metrics to equations in Table 3-1 and comparing MLA specifications
online [14]. This lead to the assumptions that the MLA in Scenario 1 contains a 33 × 33
lenslet grid and the plenoptic MLA in Scenario 2 a 55× 55 grid.
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Shack-Hartmann 1 Plenoptic 1

Image sensor pixel size dpix 5.5 µm 5.5 µm
Image sensor resolution 1820× 1820 pixels 1820× 1820 pixels
MLA pitch dmla 300 µm 300 µm
MLA focal length fmla 18.8 mm 18.8 mm
Beam diameter 10 mm 10 mm
Objective lens diameter dobj N/A 10 mm
Objective lens focal length fobj N/A 627 mm

Sensitivity 0.293 mrad 0.479 mrad
Maximum tilt 8.00 mrad 7.97 mrad
Gradient sample size 1111 2975

Table 3-2: Design parameters and resulting performance metrics for the Shack-Hartmann and
plenoptic sensor under Scenario 1: A common MLA [18].

Shack-Hartmann 1 Plenoptic 2

Image sensor pixel size dpix 5.5 µm 5.5 µm
Image sensor resolution 1820× 1820 pixels 1820× 1820 pixels
MLA pitch dmla 300 µm 185 µm
MLA focal length fmla 18.8 mm 11.5 mm
Beam diameter 10 mm 10 mm
Objective lens diameter dobj N/A 10 mm
Objective lens focal length fobj N/A 622 mm

Sensitivity 0.293 mrad 0.298 mrad
Maximum tilt 8.00 mrad 8.01 mrad
Gradient sample size 1111 1131

Table 3-3: Design parameters and resulting performance metrics for the Shack-Hartmann and
plenoptic sensor under Scenario 2: The plenoptic MLA is changed to match the performance of
the SH sensor from Scenario 1 in Table 3-2 [18].

With the performance metrics matched in Scenario 2, one could improve the plenoptic dy-
namic range by adding more lenslets to the MLA. The gradient sample size can be improve by
increasing the image sensor resolution, without compromising the sensitivity that is matched
to the SH sensor. On the other hand, increasing the number of pixels on the image sensor
improves the SH sensitivity - assuming one uses the same pixel size in both sensors.
Ko and Davis [18] conclude that in the matched case of Scenario 2, Plenoptic Sensor 2 outper-
forms Shack-Hartmann Sensor 1. Under strong turbulent conditions and complex wavefronts
the SH image first moment method is prone to branch-cuts, cross-talk and other turbulent
effects. The plenoptic design is much less susceptible to these problems and will thus perform
better in this case, despite performance metrics being matched.
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Another conclusion that can be drawn from this study is that given the exact same MLA, a
plenoptic sensor will not outperform the SH sensor in terms of dynamic range and sensitivity.

3-4-4 Comparing Linearity

The linearity of both sensors has been investigated in [32], where the sensed slope is compared
to the input wavefront slope. The comparison was performed using a SH sensor with an
16× 16 MLA and sub-images containing 8× 8 pixels. The plenoptic sensor was used without
modulation, had a 8 × 8 MLA and 16 × 16 pixels in the sub-images, such that the gradient
sample size was equal in both sensors. Furthermore, the comparison was undertaken in open-
loop and for different lenslet sizes, shown in Figure 3-15.

Figure 3-15: Comparison of the SH and plenoptic sensor linearity as a function of MLA lenslet
size, depicted as px and d, expressed in arcseconds. Taken from [32]: "Linearity of the wavefront
sensor: (a) Shack-Hartmann sensor and (b) the plenoptic sensor without modulation".

By adding modulation one can improve the sensitivity of the plenoptic sensor, as was described
in Section 3-3-3. This adjustment is based on the similar improvement in the pyramid WFS [2,
9, 32]. The sensitivity improvement is further investigated by [32], where modulation lead
to a significant increase of the linearity, up to the point that the linearities of both SH and
modulated plenoptic sensor were roughly the same. The improved linearity of the plenoptic
sensor is shown in Figure 3-16 for a lenslet size of 1 arc sec or 194 µm. It is readily seen
that adding the slightest modulation improves the sensitivity. However, further improving
the linearity is detrimental for the sensing of the slopes, as can be seen by the green line
in Figure 3-16 for a modulation amplitude of d = 194 µm. It is concluded by [32] that
modulation does improve the plenoptic linearity, but should not be chosen too large.

The closed-loop correction performance was also investigated for both sensors, shown in Fig-
ure 3-17 for the unmodulated and in Figure 3-18 for the modulated plenoptic sensor. The
modulation amplitude is not explicitly mentioned but based on the results in Figure 3-16 one
should assume the amplitude lies between 0.125d and 0.5d.
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Figure 3-16: Taken from [32]: "Linearity of the plenoptic sensor with circular modulation".

In each figure the root mean square (RMS) error of the residual aberration is shown on the
vertical axis, with the stellar magnitude of the imaged object on the horizontal axis. Objects
with a larger stellar magnitude are less bright leading to an increase in the RMS error.
Furthermore the strength of turbulence is given by D/r0, the ratio of telescope diameter
and the Fried parameter. This ratio is varied across the three figures in of Figure 3-17
and Figure 3-18, where a higher value indicates stronger turbulence.

Figure 3-17: Results obtained from [32]: "Comparison of the RMS (nm) of Shack-Hartmann
and plenoptic sensor without modulation for different magnitudes, in turbulence of severity:
(a) D/r0 = 5, (b) D/r0 = 10, (c) D/r0 = 15."

It should be noted that this comparison tests the sensitivity of both sensors, thus will not
reflect the dynamic range benefits of the plenoptic sensor. This is also observed in the closed-
loop performance, where the SH sensor clearly outperforms the unmodulated plenoptic sensor.

According to [32], it is reasonable that the Shack-Hartmann sensor performs better, because
it has a better linearity and thus sensitivity compard to the plenoptic linearity. Only for stars
fainter than magnitude 7 (81 photons per sub-image) the plenoptic sensor catches up - save
for the case of strong atmospheric turbulence with D/r0 = 15.
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Modulation in the plenoptic sensor improves its closed-loop performance to roughly equal
that of the Shack-Hartmann sensor. Unfortunately it performs worse than the SH sensor
with decreasing brightness. Again, this is reasonable according to [32] as the modulated
plenoptic sensor is significantly more sensitive to signal-to-noise ratio (SNR). Modulation
disperses the spot on the plenoptic image, meaning that for low brightness and thus low SNR
the reconstruction error in the modulated plenoptic sensor increases more drastically.

Figure 3-18: Results obtained from [32]: "Comparison of the RMS (nm) of Shack-Hartmann
and plenoptic sensor with modulation for different magnitudes, in turbulence of severity:
(a) D/r0 = 5, (b) D/r0 = 10, (c) D/r0 = 15."

3-4-5 Conclusion

The conducted and reported investigations do not point out which WFS is better. The design
of the plenoptic sensor facilitates relatively easy adjustments to the dynamic range, but it will
suffer in the presence of weaker aberrations due to low sensitivity. The comparative studies
in [18, 32] have shown that the SH sensor still outperforms the plenoptic sensor in experiments,
unless specific adjustments or considerations are taken, such as decreasing lenslet size, adding
more lenslets to the microlens array or modulating the beam focussed on the plenoptic MLA.
The range of adjustments if determined by the freedom of the MLA design.
The adjustments can be quantified through a comparison of the performance metrics. Equat-
ing the metrics dynamic range, sensitivity and gradient sample size for both sensors results
in an inequality for each metric:

M ≥ L

fmla
+ 1,

dpix
2fmla

≥ dmla
L

,

dmla
dpix

≥ 2M√
π
,

(3-24)

where satisfaction to one inequality means the plenoptic sensor outperforms the Shack-
Hartmann sensor on that metric.
This concludes the literature survey contributed to wavefront sensing. The next chapter will
discuss a brief study in aberrations and atmospheric turbulence, introducing the concepts of
isoplanatic and anisoplanatic aberrations. The simulation toolbox, the author’s own contri-
bution, is presented in Chapter 5.
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Chapter 4

Isoplanatic versus Anisoplanatic
Aberrations

The principles of wavefront sensors discussed in Chapter 3 reconstruct the phase in the aper-
ture plane using the sensor image, but no effects of external turbulences have been taken into
account. For purposes in astronomy and telescopes these external influences originate from
layers of atmospheric turbulence. The goal of this chapter is to highlight important concepts
of this form of turbulence and present the reader with solutions of modelling atmospheric
turbulence. Of these solutions one model is selected to simulate turbulence in the simula-
tion toolbox, further elaborated in Chapter 5. Furthermore, the effect of anisoplanatism is
introduced and how it is accounted for in the selected model for atmospheric turbulence.

4-1 Atmospheric Turbulence

As stated by [52], atmospheric turbulence is a natural phenomenon causing inhomogeneities in
the refractive index of air. As light travels through such inhomogeneous media the directions
of light rays are adversely affected. In terms of wave optics these inhomogeneities introduce
phase aberrations to the light [33]. The nature of atmospheric turbulence is a complex, highly
dynamic and statistical phenomenon as indicated by [6, 13, 17, 51]. For the purpose of this
thesis it is only highlighted in a few important equations, but for profound elaborations the
reader is referred to aforementioned sources.

Kolmogorov Statistics A common statistical model to describe atmospheric turbulence is
Kolmogorov theory that assumes small-scale structures in turbulent air to be locally homoge-
nous and spatially isotropic [6, 13, 17]. To quantify the strength of turbulence one uses the
refractive-index structure coefficient C2

n(h), explained in [13]. For horizontal propagation it
is assumed constant, but for vertical propagation it depends on altitude h and can be found
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using the Hufnagel-Valley model, for example:

C2
n(h) = 0.00594

(
v

27

)2 (
10−5h

)10
exp

( −h
1000

)
+ 2.7 · 10−16 exp

( −h
1500

)
+A exp

(−h
100

)
,

(4-1)

where v is the root-mean-square wind speed in [m/s] and A = C2
n(0) is the nominal value of

the coefficient at height 0. The coherence of light can be indicated by the coherence length
or Fried parameter r0 [13] and can be found by integrating C2

n(h) from the ground up to the
altitude of observation L, as done in [17]:

r0 =
[
0.423

(2π
λ

)2
sec(ζ)

∫ L

0
C2
n(h)dh

]−3/5

, (4-2)

where ζ is the angular distance between guide star and science object to image. Typical values
of r0 for visible light range from less than 5 cm in strong daytime to 20 cm at good observation
sites at night. Larger values for r0 result in better seeing conditions [13, 17]. Interestingly
enough, as stated by [17], the Fried parameter r0 can be interpreted as the aperture diameter
for which the mean-square wavefront error is approximately 1 rad2.

Alternative Solutions Describing atmospheric turbulence with Kolmogorov statistics results
in a robust and dynamic three-dimensional representation, but is often too complex for di-
rect implementation. A number of alternatives have been derived over the years, such as
defining an optical transfer function (OTF) for each point in the field of view (FOV) using
an anisoplanatic function [6]. This method makes thorough use of underlying statistics, but
requires lengthy experiments and is parameter-unfriendly. Another method is the classical
Adaptive Optics (AO) control approach, where identification experiments lead to a linearized
state-space description of the complex atmospheric dynamics [17]. Such approaches can be
very effective, but a complex and lengthy analysis of the problem remains. A rather straight-
forward and more tractable solution is to model layers of atmospheric turbulence as phase
screens [33, 46, 52, 54]. Its description allows easy combination with the simulation frame-
work.

Phase Screen Model Wu and Chui use multiple phase screens to simulate layers of dis-
tortion [54]. The dynamic three-dimensional volume of atmospheric turbulence is thus ap-
proximated by a number of dominant layers. The effect of such a layer on passing light can
be represented by a two-dimensional transparent screen that imposes a phase aberration.
By placing multiple phase screens in series, complex three-dimensional turbulence can by
tractably simulated. In some cases dominant layers of turbulence can be identified such that
atmospheric turbulence can be represented by only a few or even a single phase screen, as
described by [52].

Such a single phase screen model is clearly illustrated by [46] and shown in Figure 4-1. In
this figure the ’Pupil Plane’ is the entry of the wavefront sensor (WFS), throughout this work
coinciding with the aperture plane. Imaged stars are simulated as point sources in the ’Object
Plane’. These sources emit incoherent light that passes the ’Phase Plane’ and ends up in the
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4-1 Atmospheric Turbulence 35

pupil plane, where it is imaged by the WFS. The phase aberration representing atmospheric
turbulence is defined in the phase plane as a two-dimensional phase surface, indicated by the
curved line. In this specific illustration two point sources - blue and green - are considered
in the object plane, each corresponding to the optical path of the same colour. Each object
illuminates a section of the phase plane and thus propagates this section to the pupil plane.
If light is emitted incoherently the pupil plane will contain two distinct phase aberrations -
one for each object - that will be imaged simultaneously on the sensor image.

Figure 4-1: A schematic representation of the single phase screen model, showing how objects
illuminate different sections of this screen and propagate different phases onto the ’Pupil Plane’.
The propagation of light through free space is illustrated by projecting it onto the ’Pupil Plane’.
Obtained from [46].

Kolmogorov Screens By combining the phase screen model with Kolmogorov theory one
can generate random two-dimensional phase screens with Kolmogorov statistics. Common
approaches to generating such Kolmogorov screens involve the turbulence structure function
and Kolmogorov power spectral density (PSD) [17, 20, 31, 39]. The structure function for
Kolmogorov phase fluctuations is reported by [31] and written as:

Dφ(r) = 6.88
(
r

r0

)5/3
, (4-3)

where r is the distance between two discretely-sampled phase points and r0 is the Fried
parameter (4-2). Combining the structure function with a refractive-index PSD allows one to
write the PSD for phase fluctuations, which is elaborated by Schmidt in [39]. For Kolmogorov
turbulence this PSD can be written in terms of two-dimensional angular frequency κ =
2π
(
fx~i+ fy~j

)
[rad/m] and is expressed as:

ΦK
φ (κ) = 0.49r−5/3

0 κ−11/3. (4-4)

The phase PSD and the phase covariance function are related through the Fourier trans-
form [51], which means that Cφ can be obtained by an inverse Fourier transform of (4-4). In
practice this is not tractable since (4-4) grows as frequency κ goes to zero. This means that
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the PSD and thus the phase variance is infinite for low frequencies. This problem has been
reported by [17, 20, 31]. A workaround reported in [20] involves defining the covariance of
the phase over a finite region with the mean phase removed, as the low frequencies are pre-
dominant in this piston mode. An alternative solution is using more sophisticated turbulence
models such as the von Kármán PSD to replace the Kolmogorov PSD [12, 17, 28]. This PSD
is also provided in its original and modified form by Schmidt [39]:

Φφ(κ)V K = 0.49r−5/3
0(

κ2 + κ2
0
)11/6 , (4-5)

Φφ(κ)MVK = 0.49r−5/3
0

e(−κ2/κ2
m)(

κ2 + κ2
0
)11/6 , (4-6)

where l0 and L0 are the inner and outer scales, the average sizes of the smallest and largest
turbulent eddies, respectively. The variables κm = 5.92/l0 and κ0 = 2π/L0 are chosen to
match the high and low frequency behaviour predicted by dimensional analysis, as put by
Schmidt. The phase PSD description allows one to find the turbulent phase covariance Cφ
by inverse Fourier transform. Obtaining phase aberration φ from this covariance is described
by [20], where the eigenvalue decomposition of the phase is substituted into the covariance:

Cφ = E
[
φφT

]
∝
(
UΛU−1

) (
UΛU−1

)−1
= UΛU−1UΛU−1 = UΛ2U−1. (4-7)

Matrices Λ and U contain the eigenvalues and eigenvectors of φ. By generating a random
vector ~x, where each element xi is independently generated with a variance proportional to
Λ2
i , a random phase can be obtained:

φ = U~x. (4-8)

This provides one a mathematical model to generate random Kolmogorov phase screens.

4-2 Anisoplanatic Aberrations

The illustration of the single phase screen model in Figure 4-1 shows that two different phase
aberrations are observed in the pupil plane. Due to their position in the object plane, both
point sources illuminate a different section of the phase plane and thus propagate a different
aberration to the pupil plane. From the perspective of the WFS this means that for different
points in its FOV - the object plane - different aberrations are sensed. Such aberrations that
vary throughout the FOV are referred to as anisoplanatic aberrations [6, 33, 46]. In the phase
screen model of Figure 4-1 these aberrations are both dependent on the location of the phase
screen and the separation between objects.

Phase Screen Location One contribution to anisoplanatism in the pupil plane is the dis-
tance between phase plane and object plane. In illustration Figure 4-1 one can determine
the common path between two objects by the overlap of their optical paths. As the phase
screen moves closer to the object plane the common path before the phase screen decreases.
This means that the difference between illuminated phase screen sections and thus the dif-
ference of the aberrations in the pupil plane increases. By introducing distance ratio RL this
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contribution to anisoplanatism can be quantified:

RL = l1
l1 + l2

, (4-9)

where l1 is the distance between object plane and phase plane and l2 is the distance between
phase plane and pupil plane, as illustrated in Figure 4-1. With this ratio three cases of
anisoplanatism can be identified:

• 100 % anisoplanatism, RL = 0: The phase screen overlaps with the object plane and
there is no common path between point sources and phase screen. Each point source
uniquely propagates a section of the phase screen to the WFS.

• 100 % isoplanatism, RL = 1: The phase screen overlaps with the pupil plane and the
common path between object plane and phase screen is equal for each point source. For
each point source in the FOV the sensed aberrations will be the same.

• Anisoplanatism, 0 < RL < 1: The phase screen is located somewhere between object
plane and pupil plane and the degree of anisoplanatism depends on distance ratio RL.

The second case is a special situation, where the WFS detects isoplanatic aberrations, which
are equal for each point in the FOV, the direct opposite of anisoplanatic aberrations. In reality
atmospheric turbulence is often multiple kilometres away from a WFS and the dominant
turbulent layers never overlap with the sensor pupil. Nevertheless one can approximate the
aberrations as isoplanatic depending on their distance to bright objects.

Separation Between Objects - Isoplanatic Angle As mentioned in Section 4-2, both phase
screen location and separation between point sources affect the degree of anisoplanatism. This
second contribution is also stated by [6, 13]. Chapter 2 mentioned the important complication,
supported by [17, 32], that light is scarce in astronomic imaging. This means that a WFS may
not be able to accurately sense the aberrations from each imaged star. Common practice in
AO systems is to use a bright guide star or laser beacon to provide sufficient light to accurately
sense aberrations. As this distance between guide stars and science object grows, so does the
difference between their respective aberrations. This means that the AO correction degrades
for larger distances between guide star and science object [6]. To this end one can define
the isoplanatic angle θ0 that defines the region where one can assume aberrations to be
isoplanatic. As formulated by [13, 17]: it can be used as a measure of spatial correlation of
the atmospheric turbulence for different viewing angles and is often in the range of 5−10µrad
or several arcseconds. If the viewing angle between an object and a guide star is less than
θ0, the mean-square error between the two reconstructed phases is less than 1rad2. It is
emphasized in [17] however, that only 0.1 % − 1 % of stars in the sky fit the criterion of the
isoplanatic angle, meaning that many science objects either lack a natural guide star or fall
outside the isoplanatic angle.

An alternative solution is the use of artificial guide stars, such as laser beacons. These beacons
operate by projecting a laser beam into the air to create a laser guide star close to the object
to be imaged thus enforcing artificial isoplanatism. Unfortunately, these systems introduced
other disadvantages, reported by [17], such as significant increase to system complexity and
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cost, but also conical anisoplanatism. Laser beacons create guide stars up to 100 km altitude,
depending on the type of laser used, which is significantly closer to the Earth’s surface than
natural guide stars. This results in the back-scattered light from the laser beacon to form a
conical beam as it reaches the surface, sampling a different part of the atmosphere than light
coming from a distant star.

Finally, it is also reported in [17] that these systems become unstable when the telescope
diameter is too large, which led to the development of Multi-Conjugate Adaptive Optics
(MCAO), where multiple AO systems and laser guide stars work together to achieve AO
correction. As one can imagine, this increases the complexity and costs of the AO system
even more. These downsides provided a drive to further develop anisoplanatic models and
the incorporation of these models in AO setups [6, 33, 46]. To this end this thesis restricts
itself to the use of one WFS to solve the anisoplanatic aberration problem.

Conclusion The theory highlighted in this chapter is part of the conducted literature survey,
where the description of atmospheric turbulence and corresponding models have been inves-
tigated. This chapter concludes by having presented a straightforward model of simulating
single or multiple layers of dominant turbulence. This phase screen model is used to generate
input aberrations for the simulations.

The phase screen model enables a clear description of anisoplanatism and how anisoplanatic
aberration are implemented. Additionally, the illustration in Figure 4-1 propagates the phase
screen to the pupil plane by means of Projection. Two approximations of free space propaga-
tion, one of them being the Projection method, are discussed in Appendix A-1-3. For reasons
presented in that discussion the Projection method will be used the propagate light through
the phase screen onto the pupil plane.

The combination of the single phase screen model with Projection defines a so-called forward
model for phase generation. This can be used to generate phase screens and corresponding
input aberrations for the WFS simulations. By reversing the directions one can defined a
backwards model, that propagates the pupil plane phases back to the phase screen. This
backwards model will be used to reconstruct the phase screen in presence of anisoplanatic
aberrations.

The implementation of these phase generation methods will be elaborated in Chapter 5, that
collects the development of the simulation toolbox, the author’s contribution in this thesis.
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Chapter 5

Simulation Toolbox

In order to produce wavefront sensor images and compare the plenoptic and Shack-Hartmann
(SH) sensors, simulations in MATLAB are carried out. The development and results of a
simulation toolbox present the majority of the author’s contribution to modern wavefront
sensing. The core of this toolbox is designed for isoplanatic aberrations, which are treated
as aberrations generated in the wavefront sensor (WFS) aperture. The toolbox is extended
to work with anisoplanatic aberrations by adding models for free space propagation and
atmospheric turbulence. The toolbox itself is a collection of MATLAB-functions written by
the author that are implemented by the main code or simulation front-end CSS.m.
The goal of this chapter is to detail the development of the simulation toolbox and present
important results. At first, the implementation of the discrete Fourier transform (DFT) and
subsequent constraints will be discussed in Section 5-1. Second, Section 5-2 details the most
important toolbox functions that facilitate WFS simulation. Third, the actual algorithms to
simulate the SH and plenoptic WFS will be presented in Section 5-3, supported by previ-
ously stated functions. Fourth, the developed algorithms are used to produce reconstruction
results for simulated aberrations, presented in Section 5-4 up to Section 5-6, that lead to the
conclusion of this chapter.
As mentioned in Section 3-1 the SH and plenoptic WFS are considered for further study.
The plenoptic sensor can be configured as the plenoptic 3F (P3F) sensor by placing the
microlens array (MLA) inside the objective lens back focal plane. The plenoptic 4F (P4F)
sensor positions the MLA further behind the objective lens, such that objective lens back
focal plane and MLA front focal plane overlap. This configuration significantly simplifies
simulations, as will be explained further in Section 5-3. Additionally, each lenslet in the MLA
of the P4F sensor forms a mini-Keplerian telescope with the objective lens, fixing the P4F
sub-image locations beforehand. With this in mind, only the P4F sensor is considered of both
configurations.
The presented algorithms make extensive use of the intensity patterns stored in the sensor
images and sub-images. Throughout this chapter these terms will be used interchangeably, as
the only function of the images is to provide the necessary intensity-values to the algorithm.
Thus, if algorithms refer to sub-images or sensor images, they refer to the intensity patterns.
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5-1 Discrete Modelling of Waves and Wave Propagation

Before elaborating the framework of the developed simulation toolbox, the treatment of
discretely-sampled waves and their propagation through lenses is presented. The discrete-
space analysis of wave propagation allows one to define the simulation constraints that ensure
correct propagation of discretely-sampled waves through lenses. This section will discuss the
equation for discrete wave propagation, the implementation of pupil functions and the deriva-
tion of multiple constraints for the simulation framework. Throughout this thesis the objective
lens of the plenoptic sensor is circular, whereas the lenslets in the MLA are considered square.

Light can be represented as a bundle of light rays or as a complex wave. In order to adequately
simulate the propagation of light through lenses diffraction must be accounted for. This means
that wave optics should be the model of propagating light through optical systems. For more
background information on representations of light, the reader is referred to Appendix A-
1. At any distance z along its optical path, light is described by the two-dimensional field
U(x, y) = A(x, y)ejφ(x,y), where x and y are the spatial coordinates in the transverse plane
and j is the imaginary unit. This field has amplitude A(x, y) and phase φ(x, y).

One of the main goals of the simulation toolbox is obtaining a correct sensor image, not
simulating the complex field as a three-dimensional volume. Additionally, wave propagation
can be simplified to a Fourier transform operation if one propagates it from the front focal
plane to the back focal plane of a lens, as elaborated in Appendix A-1-2. With this in mind,
the propagation of light is represented by two-dimensional complex fields located at these
focal planes. The propagation between these planes through an optical system is described
by the following equation:

U2(x, y) = 1
jλf
F{Pl(ξ, η)U1(ξ, η)}, (5-1)

where U1(ξ, η) and U2(x, y) are the complex fields at the front and back focal planes respec-
tively, represented by the transverse spatial coordinate pairs (ξ, η) and (x, y). The wavelength
of light is represented in [m] by λ, the lens focal distance by f and the lens pupil function
by Pl(ξ, η). This pupil function will be properly defined and detailed below. The Fourier
transform is implemented by operator F{}.

For the purpose of simulations the complex fields are represented by discretely-sampled matri-
ces, such that U = A�ejφ ∈ CN×N , where � represents the element-wise Hadamard product.
Here N is the number of matrix elements along one dimension, which will be referred to as the
grid size of the matrix - assuming square matrices. In the same argument (5-1) is described
by its discretized counterpart as well:

U2 = 1
jλf
Fd{Pl � U1}, (5-2)

where Fd{} implements the DFT. One should be extra careful with the implementation
of (5-2) since the Fourier transform expresses the output matrix in the frequency coordinates
of the input matrix. To obtain matrix U2 in its spatial domain a coordinate transform is
necessary, which will be elaborated in the second boundary equation later in this section. For
more details on the discretized effects of the DFT the reader is referred to Appendix A-2.
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Pupil function The lens pupil function Pl shown in (5-1) and (5-2) enforces the physical
dimensions of the lens onto the field. Its definition is given by (A-20) and repeated here:

Pl(x, y) =
{

1 if
(
x2 + y2) ≤ r2

0 otherwise
(Circular lens),

Pl(x, y) =
{

1 if |x| ≤ r AND |y| ≤ r
0 otherwise

(Square lens),
(5-3)

where r is the radius or half-width of the lens. In the case of discrete simulations the pupil
function can be implemented as a two-dimensional pupil mask. This is a binary matrix with
a corresponding x- and y-grid that imposes the physical dimensions. The mask is uniformly
0 except for x- and y-coordinates that fall inside the lens dimensions, where its value is 1
as defined in (5-3). An example of four masks is shown in Figure 5-1, where the masks are
generated with two different centres and two different shapes, since both square and circular
lenses are used throughout the simulations.

Figure 5-1: Examples of pupil masks generated by MATLAB. The size of the mask is set to 1,
each lens has a radius of 0.2. The mask grid size is set to N = 500. From left to right: A circular
lens on the optical axis with origin (0, 0), a circular lens with origin (−h/4, h/4), a square lens
on the optical axis and finally, a square lens with origin (−h/4, h/4).

Constraint - Phase difference The complex exponent in U = A � ejφ ∈ CN×N limits the
maximum phase difference that allows unique representation of the phase. The exponent itself
is periodic with 2π such that ejb+2π = ejb, a phenomenon often referred to as phase wrapping.
For discretely-sampled phases this wrapping may or may not affect the propagation through
a wavefront sensor. If the absolute phase difference |∆φ| between sampled points, referred to
as the phase jump, does not exceed 2π the propagation is not affected.

An example of the phase wrapping problem is shown in Figure 5-2 for waffle aberration
φ = −2π cos (x− y). The spatial coordinates x and y are defined from −7π/3 to +7π/3. For
each aberration φ a complex field U = e−jφ is defined, where amplitude A is set to 1. The
wrapped phase is retrieved by taking the natural logarithm of each field U . The left pair
of images represents the waffle aberration represented on a 1000 × 1000 discretely-sampled
grid, such that the phase jumps are smaller than 2π. Despite the higher phase values being
wrapped back the phase gradients remain intact and one can still distinguish the waffle shape
from the retrieved phase. The second pair of images represent a severely undersampled waffle
aberration, represented on a 10× 10 grid. Due to the low grid size this aberration consists of
the piece-wise piston terms valued at −2π, 0 and 2π, such that both phase values and phase
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jumps are wrapped back to 0. This is reflected by the retrieved phase aberration that is now
uniformly 0.

Figure 5-2: An example of the phase wrapping problem. The left pair of images show the input
aberration φ and the retrieved phase, which is obtained by taking the natural logarithm of ejφ.
In both examples phase wrapping affects the retrieved phase but in the latter, where the absolute
phase differences are equal to 2π, also the overall phase gradient is affected. This significantly
changes the shape of the retrieved phase.

To illustrate the effect on the imaging process both aberrations are propagated through a lens
using the DFT. The pupil mask in both propagations are 0 in the pixels on the outer edges
and 1 elsewhere. Furthermore, the images shown are not realistically recorded WFS images,
but the absolute values of the Fourier transformed fields normalized to a maximum value of
1. A realistic approach of obtaining the digital sensor image is explained in Section 5-2-1.
The images clearly show that undersampling can be detrimental in the phase description and
propagation

Figure 5-3: The images of the example aberrations in Figure 5-2. For each aberration a com-
plex field is defined and propagated through a lens with the DFT. The a image represents the
normalized absolute value of the Fourier transformed field.

The above example clearly shows that undersampling can be detrimental in the complex field
description and propagation. It is important to keep the absolute phase differences below 2π,
such that the phase gradients of the field remain intact. To this end the following constraint
is defined for two-dimensional phase matrices φ(i, j) ∈ RN×N :

|φ(i, j)− φ(i+ 1, j)| < 2π,
|φ(i, j)− φ(i, j + 1)| < 2π,

|φ(i, j)− φ(i+ 1, j + 1)| < 2π
(5-4)
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Constraint - Sizes Input and Output Planes As explained in the beginning of this section
the DFT dominates the propagation of light through lenses. Unfortunately the DFT, imple-
mented by the Fast Fourier Transform (FFT) algorithm in MATLAB, does not preserve the
physical representations of the in- and output fields, as elaborated in Appendix A-2. If the
light at the input plane with size h1 is represented by field U1 = A1 � ejφ1 ∈ CN×N , the
physical size h2 of the output plane, where output field U2 ∈ CN×N is placed though (5-2) is
described by:

h2 = λfN

h1
, (5-5)

where wavelength λ, h1 and h2 are expressed in [m] and both U1 and U2 in transverse spatial
coordinates. Parameter N is the grid size of both input and output planes.

Constraint - Minimum Grid Size Lenses The output of the DFT depends on the range of
frequencies available and is thus susceptible to aliasing. High frequency content that falls
outside the frequency range of the DFT is ’folded back’ into this range, translating higher
frequencies to lower ones and causing aliasing. For the propagation of light these frequencies
are traced back to the gradients of phase aberration φ. The phenomenon of aliasing has been
discussed in Appendix A-2 and the best solution is to simply increase the range of frequencies
represented in the DFT, thus increasing grid size N . As is further elaborated in Appendix A-
2, this is an ill-posed problem since the to-be-sensed aberration φ is unknown. One possible
solution is to assume that the lens focussing is significantly stronger than the phase aberration.
This assumption results in the phase directly behind the lens to be approximately equal to
the known lens phase delay (A-19), neglecting all unknown phase terms. Then the Nyquist-
Shannon sampling theorem can be applied for the phase differential to result in a minimum
grid size:

N >
4R2

λf
+ 1, (5-6)

where R and f are the lens radius and focal distance expressed in [m].

Constraint - Fixed Pixel Size The size of the image sensor pixels can be taken into account
before propagation, given this parameter is known. The elaboration of this approach in Ap-
pendix A-2 will be outlined here. As opposed to (5-6), where a minimum grid size was derived
to ensure a certain frequency range, one could decrease the frequency step size, resulting in a
finer grid in the image and ensuring a required pixel size. If one increases both physical size
h1 and grid size N linearly, keeping ratio N/h1 constant, the resulting output plane retains
its original size h2 but is sampled much more densely. This process is referred to as padding,
where zeroes are added along the edges of matrices, in this case complex fields U and pupil
masks. For a fixed pixel size p one can find the required image plane grid size by:

M = λfN

2Rp , (5-7)

where N is the grid size inside the lens, fixed for example by minimum (5-6). This means that
an N ×N pupil mask can be defined for the physical dimensions of the lens and subsequently
padded with (M −N) /2 zeroes on all sides. The same holds for complex fields U = A� ejφ
that are propagated through said lens.
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The four constraints listed above establish the foundation of simulating light propagation
through lenses and thus wavefront sensors. Through out this work they will be referred to as
the keystone equations.

5-2 Supporting Toolbox Functions

The equations derived in Section 5-1 establish the foundation for simulating light propagation
through lenses and wavefront sensors, but do not simulate the sensor image itself. As explained
in the introduction of this chapter, the developed simulation toolbox is a collection of functions
perform specific aspects of the WFS simulations. This section will elaborate on important
features of the simulation toolbox, either by implemented concepts or specific functions. These
elaborations enable a compact presentation of the WFS algorithmsin Section 5-3, by a cascade
of individual functions. The distinction between function and implemented concept lies in the
title of the subsection. Specific functions are accompanied by names of corresponding m-files,
implemented concepts are a part of functions or algorithms and thus have no dedicated m-file.

This section does not cover all toolbox features, as some are irrelevant to the chapter’s nar-
rative. In the same argument only the important elements of each function are highlighted,
omitting some insignificant input and output arguments. If necessary the functions are pre-
sented alongside pseudocode. Furthermore, it should be noted that the functions are designed
to work in the order as implemented by front-end code CSS.m and the algorithms for the SH
and P4F sensor. As such, multiple input arguments reoccur throughout various functions. To
improve readability the input arguments of several such functions are collected in Table 5-1,
where the algorithms will refer to. Some of these listed parameters have been detailed in prior
sections of chapters, others will be addressed by their respective functions.

Parameter description

SH
sensor

P4F
sensor

checkprelim

getpupil.m

planeprop.m

getPG
.m

getscreen

Lens Parameters
Focal distance MLA lenslets fobj X X X - X X -
Focal distance objective lens fobj - X X - X X -
Number of MLA lenslets M (M ×M MLA) X X X - X X -
Radius MLA lenslets rmla X X X - X X -
Radius objective lens robj - X X - X X -

Sensor Size Parameters
Aperture plane size P4F hP4F

ap - X X X X - X
Aperture plane size SH hSHap X - X X X - X
Grid size aperture plane P4F NP4F - - - X - - -
Grid size aperture plane SH NSH - - - X - - -
Image size P4F hP4F

im
- X - - X X -

Table 5-1: List of parameters necessary to simulate SH sensor, P4F sensor and input arguments
for important toolbox functions
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Image size SH hSHim X - - - X X -
Pixel size P4F dP4F

pix
- X X - X - -

Pixel size SH dSHpix X - X - X - -
Pupil plane size hpupil - - - - - - X
WFS type ’sensor_type’ - - - - X X X

Fourier Transform Parameters
Propagation image size (for
"sub-propagation") P4F hP4F

sub

X X X - X - -

Propagation image size (for
"sub-propagation") SH hSHsub

X X X - X - -

Light and Phase Screen Parameters
Aberration type ’abtype’ X X - X - - -
Aperture plane phase aberration φap - - - - - - X
Aperture plane phase gradients ∂φap/∂u - - - - - - X
Fried parameter r0 X X - X - - -
Input complex field Uin - - - - X - -
Distance ratio phase screen RL X X - X - - X
Spatial xyz locations point sources
O ∈ Rno×3 X X - X - X X

Sensor image P4F IP4F - - - - - X -
Sensor image SH ISH - - - - - X -
Wavelength λ X X X X X X X
Zernike mode(s) z X X - X - - -
Zernike mode strength(s) Sz X X - X - - -

Reconstruction Parameters
Slope model P4F sensor ’P4Fslopes’ - X - - - - -
Reconstruction type ’rec_method’ X X - - - - X
Retrieval type ’screen_method’ X X - - - - X

Other Parameters
Paraxial approximation tolerance (%) ’tol’ X X X - - - -
Table 5-1: List of parameters necessary to simulate SH sensor, P4F sensor and input arguments
for important toolbox functions (continued)

5-2-1 Digitizing Sensor Image

The intensity distribution of a complex field U (x.y) = A(x, y)ejφ(x,y) is given by the absolute
value squared, as shown in Appendix A-1-2:

Ic = |U (x, y)|2 = |A (x, y)|2 , (5-8)
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where Ic represents the continuous intensity pattern, where the recorded intensity values are
continuous variables. Image sensors, such as CCD or CMOS sensors, record this intensity
pattern and produce digital integer pixel-values proportional to the pixel bit depth. This
physical recording is simulated by taking the absolute value squared, normalizing it and
multiplying it by the maximum pixel value. This recording is rounded to integer values with
operator R{} such that the digitized image is found by:

Id = R
{

2b Ic
max (Ic)

}
, (5-9)

where the pixel bit depth is given by b, such that an 8-bit pixel records 28 = 256 pixel values.
Id is the digitized image, where the recorded values are discrete variables between 0 and
256. In this work sensor images and propagated complex fields are presented in this digitized
format. Complex fields introduced in the sensor aperture plane are defined with a uniform
amplitude A (x, y) = 1. It is thus more informative to present the aperture plane fields by
their aberrated phases.

5-2-2 Field Shifting - manipmat.m

The implementation of the DFT in MATLAB shifts all zero-frequency components to the
centre of the image, as explained in Appendix A-2. For lenses on the optical axis this does
not pose a problem as zero-frequencies end up in the focal point. It becomes problematic for
off-axis lenslets such as an MLA, where each lens images to its own sub-image in a specific
region in the image plane.
The problem is shown for the SH sensor in Figure 5-4, where the MLA contains a 5×5 lenslet
grid and the propagated fields are shown for lenslet 1 and 23. This selection is arbitrary since
all 25 lenslets show the same behaviour: the image contains pixels close to the centre and fall
within the centremost sub-image, indicated by the red outline. The same problem is shown
for the P4F sensor in Figure 5-5. The generated aberration was a trefoil aberration (Zernike
Z−3

3 in double-index ordering or Z10 in single-index Noll’s ordering).
In Figure 5-4 each lenslet is indicated by its pupil mask, shown on the first and third image.
For the P4F sensor each lenslet receives the light focussed by the objective lens, so the complex
field behind objective lens is shown instead. The lenslets themselves are indicated by the red
outlines.

Figure 5-4: Propagation of a complex field through two different lenslets in a 5× 5 MLA. From
left to right: the pupil mask of lenslet 1, the corresponding lenslet image, the pupil mask of
lenslet 23 and the digitized imaged field. The red circles in the propagated fields represent the
image area corresponding to the centremost lenslet, lenslet 13. The simulated phase is a trefoil
aberration, the grid size is set to N = 700.
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Figure 5-5: Propagation of a complex field through two different lenslets in the P4F sensor for
a 5 × 5 MLA. From left to right: the objective lens image with the pupil function of lenslet 1
indicated in red, the corresponding image of lenslet 1 with the centremost sub-image indicated in
red and the same for lenslet 23 and its image. The simulated aberration is a trefoil aberration.

Figure 5-4 and Figure 5-5 illustrate that the DFT aligns all propagated light to the centre of
the image, as all light is imaged by the centremost lenslet. To obtain the correct sub-image
each propagated field is shifted to the correct sub-image location. In the toolbox this is done
for the propagation of each lenslet (i, j), where the centre of propagated field Uout ∈ CN×N is
aligned with the geometric centre of corresponding sub-image (i, j). This shifting is illustrated
for the SH sensor in Figure 5-6 and for the P4F sensor in Figure 5-7.

Figure 5-6: Propagation of a complex field through one lenslet in a 5 × 5 MLA, including the
shift of the image plane field to its correct image area. From left to right: the pupil mask of the
lenslet, the (wrapped) phase of the pupil-limited incident field and the images of both unshifted
and shifted propagated field. The red circle in the unshifted image to the centremost lenslet
(lenslet 13) sub-image, while the red circle in the shifted field, the rightmost image, corresponds
to the correct sub-image of lenslet 9. The simulated phase is a trefoil aberration, the grid size is
set to N = 700.

Figure 5-7: Propagation of a complex field through one lenslet in the P4F sensor for a 5×5 MLA.
From left to right: the pupil function of lenslet 9, the image of the field incident on lenslet 9, which
is indicated by the red outline, and the images of both unshifted and shifted propagated fields. In
the unshifted image the red outline shows the centremost sub-image, whereas the outline indicated
the correct sub-imageo f lenslet 9 in the shifted (rightmost) image. The simulated aberration is
a trefoil aberration.
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5-2-3 Preliminary Conditions - checkprelim.m

Before simulations start, one should check that all simulation parameters enable correct prop-
agation and imaging. These checks include for example the plenoptic equality, minimum grid
sizes, validity of the paraxial and minimum image sensor sizes. Each performed check will be
individually detailed here.

Enforcing Plenoptic Equality The design of the P4F sensor is severely constrained by the
plenoptic equality, as explained in Section 3-3-1. The equality for the P4F sensor is defined
by substituting L = fobj + fmla in (3-11):

dobj
fobj + fmla

= dmla
fmla

, (5-10)

where dobj and fobj are the size and focal distance of the objective lens, dmla and fmla the
same for the MLA lenslets. If this equality is not upheld it will be enforced by changing the
objective lens focal distance:

fobj = dobjfmla
dmla − dobj

.

Validity Paraxial Approximation Throughout this work many equations rely on the paraxial
approximation. The validity of this approximation allows one to propagate light using Fres-
nel diffraction, or to write plenoptic equality (5-10) and angular spectrum (3-10) as linear
equations. If the relative error between a trigonometric function and its argument is less than
1 % one can approximate the sine-, cosine- and tangent-functions by:

sin (θ) ≈ θ, cos (θ) ≈ 1, tan (θ) ≈ θ. (5-11)

In order to check the validity for all lenses one computes the ratio of lens radius r by its focal
distance f and compares it to the tangent thereof. The paraxial approximation can be used
in the simulations if:

|θ − tan (θ)|
tan (θ) < 0.01, (5-12)

where θ = r/f . This criterion is checked for each lens in the optical system.

Determine Padding Factor In order to enforce the numerical aperture of the lens during
propagation padding is required. As explained in Section 5-1 and Appendix A-2, the required
padded grid size M is found by fixing the image plane pixel size p. By dividing M by the
grid size inside the lens N , one can obtain the padding factor :

apad = λf

pd
, (5-13)

where λ is the wavelength of light, d the size or pitch of the lens and f its focal distance. In
the simulation toolbox this padding is applied before propagation on individual lenses without
influencing how these lenses are spatially defined. This padding and propagation are properly
addressed in Section 5-2-5.
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Determine Aperture and Image Plane Sizes As explained in Section 5-1, the propagation
through a WFS is performed by Fourier transforms between the focal planes of lenses. The
physical dimensions of the input plane is imposed by the lens pupil mask.

In the SH sensor light is propagated through each lenslet of the MLA. The aperture plane
is defined at the microlens front focal plane, whereas the image is formed in the array back
focal plane. Its design, detailed in Section 3-2, lead to the conclusion that both aperture and
image planes should be at least as large as the size spanned by the MLA lenslets 2Mrmla:

hSHap ≥ 2Mrmla,

hSHim ≥ 2.2Mrmla,
(5-14)

where the MLA consists of an array ofM×M lenslets, each with radius or half-width rmla. A
10 % tolerance is added in the image plane size to ensure sufficient space on the image for the
algorithm. It is assumed that the MLA is packed without space between lenslets, such that
its size is equal to 2Mrmla. If physical aperture and image sizes are provided, condition (5-14)
will be checked for both. If either condition fails the provided parameter is updated with the
minimum value.

The P4F design is significantly more complex and involves a cascade of two Fourier transform
operations. The aperture plane is defined in the front focal plane of the objective lens, whereas
the image forms in the back focal plane of the microlens array. There is an intermediary plane
where objective lens back focal plane and array front focal plane overlap. Here the image of
the objective lens is carried over to the MLA. From its design, detailed in Section 3-3 and
illustrated in Figure 3-6, the minimum sizes of these planes can be determined. The aperture
plane should be at least as large as the objective lens, whereas the image of the objective lens
should be large enough to fill the MLA. Finally, the minimum size for the P4F image is found
through geometry and given by (3-20). The following minimum sizes are listed as follows:

hP4F
ap ≥ 2robj ,
hP4F
mla ≥ 2.2Mrmla,

hP4F
im ≥ 2.2rmla

(
M + fmla (M − 1)

fmla + fobj

)
,

(5-15)

where robj and rmla are the radii or half-widths of the objective lens and MLA lenslets, fobj
and fmla their focal distances and M ×M the array lenslet grid. Again, 10 % tolerances have
been added to the objective lens propagated field and the P4F image, to ensure sufficient
space for in the algorithms.

Minimum Grid Size SH Sensor With the lens dimensions and focal plane sizes determined
one can express the minimum required grid sizes for the SH, to ensure a properly-sampled
image. The SH image is formed by propagating the aperture plane field through the MLA for
each individual lenslet, where separate pupil masks are defined for each lenslet. It is assumed
that each lenslet images to the whole image, such that (5-5) can be written as:

hSHim = λfmlaN

2rmla
.
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If image size hSHim is fixed, either by minimum (5-14) or provided, the above equation can be
rewritten to solve for grid size N . Additionally, the minimum grid size for each MLA lenslet
is described by (5-6), by substituting R = rmla and f = fmla. The minimum grid size for the
aperture plane found by appropriate scaling of the larger of these two, expressed as:

NSH
min =

hSHap
2rmla

·max
[(

4r2
mla

λfmla
+ 1

)
,

(
hSHim · 2rmla
λfmla

)]
. (5-16)

In the formation of the output argument, this grid size is rounded up to the nearest even
integer, as is done for every grid size throughout the toolbox functions.

Minimum Grid Size Plenoptic Sensor For the P4F sensor a similar analysis can be per-
formed, but due to the cascaded Fourier transform it is not feasible to retain one grid size
throughout the entire sensor. The physical size of the field focussed by the objective lens is
found by invoking (5-5):

hP4F
mla = λfobjN

hP4F
ap

and the physical size of the image, in the back focal plane of the MLA, is described by:

hP4F
im = λfmlaN

hP4F
mla

= λfmlaN

λfobjN
hP4F
ap = fmla

fobj
hP4F
ap < hP4F

ap .

From (5-15) it can be seen that the image should be larger than the MLA size, which means
in most practical cases that it should also be larger than the aperture plane size. The size
of the image can be increased by either resampling the field before propagation through the
MLA, or implement a stricter padding. The latter will be elaborated here.

It is assumed that each MLA lenslet images to the whole image, such that the minimum grid
size for the microlens array is given by:

NP4F
min,mla = 1.1M ·max

[(
4r2
mla

λfmla
+ 1

)
,

(
hP4F
im · 2rmla
λfmla

)]
,

where the 1.1M prefactor ensures the grid size is defined for a physical size of 2.2Mrmla,
the size of the MLA with 10 % tolerance. The aperture plane should be represented by the
same grid size at minimum, to fit all sub-images on the P4F image. Additionally the physical
size of the field propagated through the objective lens should fit on the MLA, resulting in a
minimum grid size inside the objective lens:

NP4F
min,obj = max

[(
4r2
obj

λfobj
+ 1

)
,

(
4.4Mrobjrmla

λfobj

)]
.

This means that the grid size inside the objective lens should be equal to NP4F
min,obj at minimum.

The aperture plane is found by padding the objective lens mask up to a grid size of NP4F
min,mla.

As such, the latter represents the minimum grid size to correctly simulate the P4F image:

NP4F
min = NP4F

min,mla = 1.1M ·max
[(

4r2
mla

λfmla
+ 1

)
,

(
hP4F
im · 2rmla
λfmla

)]
. (5-17)
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The physical size of the aperture plane is equal to the physical size of the padded objective
lens:

hP4F
ap =

(
NP4F
min,mla

NP4F
min,obj

)
· 2robj . (5-18)

In a similar fashion to the minimum SH grid size, NP4F
min is rounded up to the nearest integer

in the formation of the output arguments of checkprelim.m.

Minimum Grid Size Sub-propagation The minimum grid sizes ensure correct light propa-
gation but also establish a bottleneck in the toolbox. For larger MLAs - read M > 11 - the
minimum grid size requirements for the MLA can effortlessly surpass 1000. The introduced
bottleneck is an exponential growth of computation time, where the MLA image is simulated
through M2 Fourier transforms of N × N fields. Clearly, increasing M increases both the
minimum grid size N in the Fourier transforms as the total number of transforms performed,
resulting in an exponentially increasing simulation time.

In the expressions for the minimum grid sizes (5-16) and (5-17) the second term is often
the larger of the two. This term can be reduced and thus the bottleneck circumvented, by
introducing "sub-propagation". Instead of imaging to the whole image plane, each lenslet in
the MLA propagates the input field to a smaller region on the image. By substituting the
physical size of this region hsub, specified by user input, in (5-5) one can significantly reduce
the minimum grid size required for propagation.

If one simulates weak aberrations in the SH WFS, it is realistic to assume that each focal
spot stays in its corresponding sub-image. This means that at minimum each lenslet only
needs to image to a region of size hSHsub = 2rmla. The P4F sensor geometry ensures that each
lenslet images only to its corresponding sub-image, unaffected by aberration strength and
such hP4F

sub = 2rmla can be used as well.

The toolbox allows the user to specify the physical size of sub-propagation for each sensor,
but the default values are set to hSHsub = 10rmla and hP4F

sub = 6rmla. This means that each
lenslet in the SH MLA images to a 5×5 sub-image grid on the image, with the corresponding
lenslet image in the centre of this grid. Since the P4F sub-images are not placed side-by-side
each lenslet in the P4F MLA simply images to a region three times the size of one sub-image.

5-2-4 Generating Input Phase Aberrations - getpupil.m

The simulation framework allows two methods of generating phase aberrations. These will be
represented by square N×N discretely-sampled phase screens. It was detailed in Section 4-2,
that anisoplanatism is affected by the phase screen location and distance between individual
point sources. In this thesis the isoplanatic angle is not considered and thus anisoplanatism
is only dependent on the location of the phase screen, represented by distance ratio RL (4-9).
If the phase screen is located inside the pupil plane, such that RL = 1, the toolbox performs
isoplanatic reconstruction. For any value of RL between 0 and 1 anisoplanatic reconstruction
is performed, the case of 100 % anisoplanatism with RL = 0 is not considered in this thesis.
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Aberration Representations One method is the common representation by Zernike polyno-
mials, which are ordered by Noll’s index and adjusted with user-defined aberration strengths.
The mathematical model and some examples of Zernike polynomials are detailed in Ap-
pendix A-4. One can generate determinate screens by selecting specific modes and strengths,
but pseudo-random screen can be generated as well. This has been implemented by drawing
aberration strengths from a pseudo-random normal distribution. By specifying the first k
number of modes to consider, the mean strength and scale, one can modify the randomized
distribution as desired.

Another representation is by Kolmogorov statistics, as explained in Section 4-1. By specifying
the coherence length of light or Fried parameter r0, one can generate random two-dimensional
phase screens that adhere to Kolmogorov theory.

Pupil Plane versus Aperture Plane Throughout this work both pupil and aperture planes
have been used to indicate the same location - the entry of the WFS - but a distinction
must be made between them. The entry of the WFS is referred to as the pupil plane when
free space propagation is discussed, where it represents the endpoint of free space. When
internal propagation through a WFS is considered its entry is referred to as the aperture
plane and is the start of sensor propagation. Besides nomenclature there is also a difference in
physical size. The aperture plane sizes of each sensor are determined either by the preliminary
conditions Section 5-2-3 or given parameters. The pupil plane size is set equal for both SH
and P4F sensor such that the generated phase screens are represented on the same physical
plane but only differ in required grid size. The size of the pupil plane is set to the maximum
of the aperture plane sizes:

hpupil = max
(
hSHap , h

P4F
ap

)
. (5-19)

Phase Screen Model and Free Space Propagation After the phase screen is defined by
representation of either Zernike modes or Kolmogorov statistics, it will be placed in three-
dimensional free space, as illustrated by Figure 5-8. This illustration is a three-dimensional
representation of the single phase screen model Figure 4-1. The distance ratio RL (4-9)
determines where the phase screen is placed between object plane and pupil plane.

The illustration of the phase screen model in Figure 4-1 propagated light to the pupil plane
by projection. This method, detailed further in Appendix A-1-3, used in this thesis, as it
guarantees fixed grid size N in the pupil plane. This parameter is crucial in the simulations as
it ensures correct propagation of light through the Fourier transform. It should be noted that
the validity of this approximation decreases as the aberration strength or distance between
phase screen and pupil plane increases.

To obtain the projected aberrations in the pupil plane one needs four parameters: object
locations O, distance ratio RL, pupil plane physical size hpupil its grid size Npupil. Each
object is defined as a point source that fully illuminates the pupil plane. By knowing the
pupil plane size hpupil and distance ratio RL one can find the size of the phase screen cut-
outs, the sections of phase screen that each point source illuminates. These cut-outs are
represented by the dashed coloured squares in Figure 5-8. Their sizes are found through
geometry:

hpupil
L1 + L2 = hc

L1 −→ hc = RL · hpupil. (5-20)
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The Projection method enables one to find the cut-out centres, by tracing a line from each
point through phase screen to the centre of the pupil plane. Where this line intersects with
the phase screen the cut-out centre is found, shown in Figure 5-8 by the coloured X. Each
point source is defined by spatial x- and y-coordinates, collected by matrix O =

[
Ox Oy

]
for all sources. Cut-out centres dc are found through geometry:[

dc,x dc,y
]

= (1−RL)
[
Ox Oy

]
, (5-21)

where dc,x and dc,y are the x- and y-coordinates of the cut-out centres respectively. The size
of the phase screen can be determined in a number of ways. In this work the furthest point
in all cut-outs is selected, based on its x- or y-coordinate with a 10 % tolerance:

hscreen = 1.1
(

max
([
|dc,x| |dc,y|

])
+ hc

2

)
. (5-22)

By separating dc in its absolute x- and y-components the furthest distance in either x or y is
found. This results in a square phase screen that encloses all phase cut-outs.

pupil plane

phase screen

object plane

L1

L2

Figure 5-8: Three-dimensional visualisation of the phase screen model to represent atmospheric
turbulence. One layer of turbulence is considered, which is represented by the Phase Screen at
a distance L2 from the pupil plane. The phase screen cut-outs illuminated by each point source
are found in the intersection of the Phase Screen with each objects FOV. These parts are shown
by the coloured dashed squares lines in the Phase Screen.

Finally, the true benefit of the Projection method can be demonstrated. As explained in Ap-
pendix A-1-3, a fixed grid size N - one of the most crucial simulation parameters - is guar-
anteed. The preliminary conditions define the minimum grid size N in an aperture plane of
size hap, such that the WFS image can be simulated. In the other direction, one can find the
grid size Npupil in the pupil plane:

Npupil = RE
{
hpupil
hap

N

}
,
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where operator RE{} rounds its argument up to the nearest even number. The Projection
method places phase screen cut-outs in the pupil plane, which means that each cut-out should
be represented on a Npupil×Npupil grid. This allows one to find the phase screen grid size by
linear scaling and rounding up to the nearest even integer:

Nscreen = RE
{
hscreen
hc

Npupil

}
, (5-23)

such that the phase screen can be generated as a square Nscreen×Nscreen matrix, via Zernike
modes or Kolmogorov statistics.

Object-based Tilt In the Projection model described above the coordinates O of a simulated
point source do not influence the imaging process. Take for example a point source at angular
coordinates

[
θx θy

]
= 1

Oz

[
Ox Oy

]
=
[
rmla
2fmla

rmla
2fmla

]
imaged by the SH sensor without

atmospheric turbulence. In geometrical optics light rays emitted from this point source enter
the aperture plane at angles θx and θy. This means that the focal spots are imaged with
displacement

[
− rmla

2 − rmla
2

]
with respect to the sub-image centre.

With the Projections method the phase screen contains a flat phase which is projection onto
the pupil plane. This means that each MLA lenslet images a complex field with a constant
phase term, resulting in focal spots in the sub-image centres.

In order to obtain the correct spot locations as dictated by geometrical optics, object-based
tilt (OBT) needs to be added. This is an additional phase term derived from a tilt aberration
(Zernike modes Z1

1 and Z−1
1 ) defined on the unit square. The OBT is added in the pupil

plane with size hpupil, which means that an additional factor hpupil/2 is added to ensure the
right phase gradients are obtained. The OBT for simulated point source i is written as:

φOBT,i = πhpupil
λ

(θx,i �X + θy,i � Y ) , (5-24)

where X and Y are spatial coordinates on the unit square and (A-6) is invoked to obtain the
phase aberration from the tilt wavefront.

For each point source i the pupil plane phase is obtained by adding the projected phase screen
cut-out φcut,i to the OBT:

φp,i = φcut,i + φOBT,i. (5-25)

In the example above, the Projection method now results in a tilted phase in the aperture,
such that the focal spots on the SH sensor image are found at displacement

[
− rmla

2 − rmla
2

]
with respect to the sub-image centre.

5-2-5 Focal Plane Propagation - planeprop.m

The discrete-space propagation through the focal planes of a lens (5-2) is implemented by
toolbox function planeprop.m. The function is called for each propagation step and for each
sensor, which means one call for the SH sensor and two for the P4F sensor. Beyond simply
performing the DFT on an input field, it also checks that all input arguments enable correct
propagation. An overview of planeprop.m is given as pseudocode in Algorithm 1. To improve
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readability of the pseudocode, rounding up operator RE{} is omitted when grid sizes are
determined, but is implemented in planeprop.m.

First, the function checks that the current parameters satisfy the minimum size require-
ments (5-14) and (5-15). Next it generates the spatial locations of the lenslets and sub-images,
referred to as MlaLoc and CellLoc. Finally it checks if padding or resampling is needed and
adjusts the parameters where necessary. With all these preparations carried out the field can
be propagated, which is done for each lenslet in the current step with an individual pupil
mask. This means that the P4F objective lens is propagated through with 1 DFT operation,
while theM ×M MLA requiresM2 DFT operations - one for each lenslet. After propagation
the dimensions of the output field are compared to the minimum sizes and either trimmed or
padded if necessary.

In order to reduce nested for-loops the simulation toolbox associates each lenslet in theM×M
microlens array with index i = 1, . . . , . . .M2, instead of index-pair (i, j) used in earlier
chapters. This double-index notation was adopted on purpose such that the working principles
of the SH and P4F could be clearly presented and discussed. The switch from (i, j) to single-
index notation i simplifies the toolbox functions, but does require one to store the spatial
MLA information separately. This is done in matricesMlaLoc ∈ RM2×5 and CellLoc ∈ RM2×5,
storing the information for the MLA and sub-images, respectively. The first three columns of
MlaLoc contain the spatial locations of the M2 lenslet centres, whereas the fourth and fifth
columns store the index-displacements of the corresponding centre. For example, lenslet i = 1
in a 5×5 MLA of the SH sensor corresponds toMlaLoc(i) =

[
−4rmla +4rmla 0 −2 +2

]
,

where the y-coordinate is defined positive in upward direction and the MLA is set at distance
z = 0. The same structure is used for the sub-images and stored in matrix CellLoc. Each
sub-image pixels remains associated with (s, t).

Function planeprop.m implements padding around each lenslet propagated through in order
to enforce the numerical aperture during propagation and ensure a specified image pixel size.
This padding is only applied during propagation and does not influence the spatial locations
of lenslets or their sub-images. As explained in Section 5-2-3 the user can choose to image to
a sub-region on the image, decreasing the minimum grid size requirements and speeding up
simulation times. If the user specifies this sub-region size as input parameter hsub as "sub"
DFT propagation is selected that implements this imaging. If the user request propagation
to the entire image, using the "full" DFT propagation, one needs to specify hsub = 0.

After propagation through each individual lenslet the output field is shifted to the correct
spatial location on the image, dictated by the information stored in CellLoc. The shifted
fields are added together to form the ’total’ output field.
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Algorithm 1 Focal Plane Fresnel Propagation
Input: See Table 5-1
Output: Output field Uout, its physical size hout, sub-image outlines and locations Cell and
CellLoc, and pupil mask Mtot

1: function planeprop.m
2: Determine the input grid size N from input field Uin ∈ CN×N
3: Determine minimum sizes of the input and output planes, hmin,in and hmin,out
4: Depending on ’sensor_type’ set focal distance f , distance between objective lens and

MLA L and lens radius r
5: Generate lenslet and sub-image spatial locations MlaLoc and CellLoc
6: Generate lenslet and sub-image outlines Mla and Cell for plotting purposes
7: Determine physical quantities of the Fourier transform operation depending on input

parameters:
8: if hsub = 0 then
9: % The Fourier transform propagates to the whole image %

10: Set the minimum propagation size equal to specified image size D = him
11: else
12: % The Fourier transform propagates to an image region % with size hsub
13: Set the minimum propagation size equal to this size D = hsub
14: end
15: if dpix = 0 then
16: Set Fourier propagation fprop = "full"
17: Determine size of image hout = λfN

hin
18: else
19: Set Fourier propagation fprop = "sub"
20: Determine the grid size in each individual lens Nlens = N ·hmin,in

M ·hin
21: Determine the padding factor to ensure pixel size dpix in the image: apad = λf

2rdpix
22: end
23: Determine the physical size of the Fourier transform output hout = λfN

hin
24: if hout < D then
25: % The size of the propagated field is not enough to fill the required size D %
26: Determine required grid size Nnew = hinD

λf

27: Resample input field Uin and determine new output size hout = λfNnew
hin

28: Update the grid size N = Nnew

29: end
30: Determine the required grid sizes for each Fourier transform:
31: if hsub = 0 then
32: if fprop = "full" then
33: % The Fourier transform takes the whole input plane and propagates to the

whole image %
34: Set the grid size of the image Nimage = N
35: else if fprop = "sub" then
36: % The Fourier transform takes individual lenses with padding and propagates

to the whole image %
37: Set the image grid size by adding lens padding: Nimage = Nlens · apad
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Algorithm 1 Focal Plane Fresnel Propagation (continued)
38: end
39: else
40: if fprop = "full" then
41: % The Fourier transform takes the whole input plane and propagates to a region

in the image %
42: Set the image grid size by linearly scaling N : Nimage = hmin,out

hout
N

43: Set the image size to its minimum: himage = hmin,out
44: else if fprop = "sub" then
45: % The Fourier transform takes individual lenses with padding and propagates

to a region in the image %
46: Set the grid size of this region by adding lens padding: Nim,sub = Nlens · apad
47: Determine the image grid size: Nimage = hmin,out

hout
Nim,sub

48: Determine the physical size of the image: himage = Nimage
Nim,sub

hout
49: end
50: end
51: Define zero-matrices Uout ∈ CNimage×Nimage and Mtot ∈ RN×N
52: Perform the lens propagation:
53: for i = 1 : M2 do
54: Generate the pupil mask for lens i
55: if fprop = "full" then
56: Generate N ×N lens mask Mlens,i with the pupil function for lens i
57: Add it to the total pupil mask: Mtot = Mtot +Mlens,i

58: Pupil-limit the input field: Ulim,i = Uin �Mlens,i

59: else if fprop = "sub" then
60: Using spatial locations MlaLoc and grid size Nlens extract the field incident on

lenslet i, Ulens,i from input field Uin
61: Set the values of the same pixels in Mtot to 1
62: Pad it with zeros to obtain Ulim,i ∈ RNimage×Nimage
63: end
64: Propagate the field with (5-2): Uim,i = 1

jλfFd{Ulim,i}
65: if ′sensor_type′ =′ plenoptic′ then
66: % To ensure each plenoptic sub-image stays within the bounds of the projected

aperture, the propagated field is filtered with a Gaussian Mask %
67: Generate a spatial coordinate grid spanning the physical dimensions of Uim, i
68: Define a circular aperture mask on these coordinates with diameter equal to

the size of each plenoptic sub-image (2rmla)
69: Filter Uim,i with Toolbox function gaussmask.m
70: end
71: if hsub = 0 then
72: Shift the propagated (and possibly filtered) field to its correct sub-image loca-

tion with Toolbox function manipmat.m
73: Generate an empty matrix Ushift,i ∈ CNimage×Nimage
74: Place the propagated (and possibly filtered) field in the correct pixels in Ushift,i
75: endAdd shifted field Ushift,i to the output field Uout = Uout + Ushift,i
76: end
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Algorithm 1 Focal Plane Fresnel Propagation (continued)
77: Compare the physical image size himage to the used specified parameter him
78: if himage < him then
79: Pad the output field with zeroes to obtain requested size him
80: else if himage > him&him > hmin,out then
81: % The requested output size is larger than the minimum size so excessive pixels

on the edges are trimmed away %
82: Remove excess pixels from edges of Uout to obtain the requested size him
83: end
84: Update the physical size of the output field
85: end

5-2-6 Retrieving Phase Gradients - getPG.m

The first goal of the toolbox is simulating the propagation of light through a WFS and
obtaining the its image. Retrieving measurements from this image and performing phase
reconstruction is the second goal. Toolbox function getPG.m reads the digitized sensor image
and extracts the phase gradients depending on the selected WFS using approximation (A-6).

The specific method of retrieving the gradients depends on two input parameters; the sensor
type - either SH or P4F - and the number of simulated point sources np. If only one point
source is simulated the retrieval is straightforward and performed using the models discussed
in Chapter 3. Unfortunately simulating only one point source is not realistic. It is nearly
impossible to isolate light coming from a single star so the toolbox allows the simulation
of multiple point sources. This does require additional image post-processing before phase
gradient retrieval can be performed. This section will detail the retrieval process for both
the SH and P4F sensor, differentiating between single and multiple point source imaging,
abbreviated by (SPI and (MPI) respectively.

SH gradient retrieval - SPI If only one point-source is simulated for the retrieval of gradients
from a SH sensor image, one can directly use the image first moment calculation (3-1) on each
sub-image, as shown in Figure 5-9. The image is represented by matrix ISH ∈ RNSH×NSH ,
containing M2 focal spots for each lenslet in the M ×M microlens array. In Section 3-2-1
each lenslet and corresponding sub-image was indicated by index-pair (i, j). As explained
in Section 5-2-5, each lenslet is associated with index i and its corresponding information
saved in MlaLoc(i) and CellLoc(i).

Each sub-image Ii(s, t) is extracted from ISH by converting the geometric locations of lenslet
i - the values in the first two columns of MlaLoc(i) - into a set of pixels on the image, as
shown for lenslet 1, 38 and 97 in Figure 5-9. Each square sub-image consists of P ×P pixels,
where P is found by:

P = RE
{2rmla
hSHim

NSH
}

where hSHim and 2rmla are the physical sizes of the SH image and sub-image, respectively.
OperatorRE{} rounds its argument up to the nearest even number. The local coordinates
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(x̃, ỹ) are expressed in pixels, such that x̃, ỹ = −P/2, . . . , P/2. The adjusted image first
moment calculation is thus written as:

∆px(i) =
∑P
s=1

∑P
t=1 x̃(s, t) · Ii(s, t)∑P

s=1
∑Q
t=1 Ii(s, t)

,

∆py(i) =
∑P
s=1

∑P
t=1 ỹ(s, t) · Ii(s, t)∑P

s=1
∑Q
t=1 Ii(s, t)

,

(5-26)

where centroids (∆px,∆py) are the computed centroids expressed in pixels. The Hartmanno-
gram in Figure 5-9 is obtained with an 11×11 MLA, where the physical size of each sub-image
on the image is indicated by the red squares. The red dots show the geometric centre of each
sub-image. The sub-images of lenslets 1, 38 and 97 are magnified to show the locations of both
sub-image centre and computed centroid, market as an enlarged dot and cross respectively.

Figure 5-9: Demonstration of SPI gradient retrieval in the Hartmannogram. The simulated
aberration is a random Kolmogorov screen with r0 = 8 · 10−5 incident on an 11× 11 MLA. Each
sub-image is indicated by red squares, their geometric centres by red dots. The sub-images for
lenslets 1, 38 and 97 are magnified to show to contents more clearly. In these sub-images both
sub-image centre (dot) and centroid (X) are enlarged to be clear to the reader. The total image
is digitized such that the maximum intensity is equal to 256.

The obtained pixel displacements are converted back to metric displacement by geometry:

(∆x,∆y) = hSHim
NSH

(−∆py,∆px)

In this conversion pixel displacements ∆px and ∆py are expressed in index-format, meaning
that positive ∆px corresponds to negative ∆y. As was explained in Section 3-2-1 one can
obtain the slopes by division of the metric displacements by the lenslet focal length fmla..
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Approximation (A-6) allows one to find the phase gradients from these slopes:

∂φ(i)
∂x

= −2π∆x
λfmla

,

∂φ(i)
∂y

= −2π∆y
λfmla

,

(5-27)

where
(
∂φ(i)
∂x , ∂φ(i)

∂y

)
represents the average gradient in both directions of phase φ(x, y) incident

on lenslet i. The incident phase is defined as the phase in the aperture plane. The minus sign
is added to account for the direction reversion due to the lens focussing. A positive phase
gradient in either direction results in a negative displacement or centroid in the image.

P4F gradient retrieval - SPI As explained in Section 3-3-1, each sub-image is assigned one
slope with the P4F quantized angular spectrum (3-10):

(α, β) = 2rmla
fmla + fobj

(m,n) , (5-28)

where α and β are the slopes in x- and y-direction and pair (m,n) the index-displacements
of the lenslet centre with respect to the optical axis. This means that for the centremost
lenslet (m,n) = (0, 0) such that it corresponds to slopes of value 0. For each sub-image i this
information is stored in CellLoc(i,4:5).

Each pixel in the plenoptic image is assigned such a slope depending on the sub-image,
which is the same in both the CAFADIS and Ray Tracing methods. The CAFADIS model
does distance itself from the Ray Tracing model in averaging over all sub-images, instead of
retaining all pixels as they are and building a geometrical light field. Function getPG.m is
designed to retrieve the gradients and place them directly in the aperture plane. The Ray
Tracing model assigns gradients and propagates the light back through the sensor, making it
incompatible with the design of getPG.m. For this reason the CAFADIS model is used here
and the Ray Tracing model is implemented by toolbox function plenopticRT.

The CAFADIS model assigns slopes to each pixel depending on the sub-image, using a
modified image first moment calculation that averages over sub-images, instead of pixels
as in (5-26). Using the index-displacements stored in CellLoc and invoking (A-6) the phase
gradients are found bys:

φ(s, t)
∂x

= −4πrmla
λfobj + fmla

∑M2
i=1 Ii(s, t) · CellLoc(i, 4)∑M2

i=1 Ii(s, t)
,

φ(s, t)
∂x

= −4πrmla
λfobj + fmla

∑M2
i=1 Ii(s, t) · CellLoc(i, 5)∑M2

i=1 Ii(s, t)
.

(5-29)

The minus sign is included with the same argumentation as in the SH retrieval, where positive
phase gradients result in negative displacements.

SH gradient retrieval - MPI If multiple point sources are simulated, the gradients are
extracted from the SH image with the same equations (5-26). Before the gradient can be
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Figure 5-10: The SH sensor images for two objects located at (x1 = 0, y1 = 0, z1 = 1) [m]
and (x2 = 0.0019, y2 = −0.0019, z2 = 1) [m]. The first scenario (left) is aberration-free imaging,
whereas a defocus aberration is defined in the aperture plane of the second scenario (right).

retrieved however, image post-processing is necessary to separate the multiple focal spots.
The problem is illustrated in Figure 5-10. On the left the aberration-free image of two point
sources can be identified. The rightmost images shows the same, where a defocus aberration
(Zernike mode Z0

2 or Z4) with strength 9 · 10−7 [m] defined in the aperture plane.
The image first moment algorithm (5-26) computes one centroid over the whole sub-image
without knowledge on which pixel belongs to which spot. In the case of Figure 5-10 this
results in one averaged centroid for each sub-image, as opposed to one centroid per focal spot.
As noted in Section 3-2-3 one can isolate the focal spots using cluster detection as long as
they are sufficiently separated. This cluster detection is a common technique in computer
vision and image processing, with a plethora of algorithms freely available. The algorithm
used in this thesis is developed by own hand, such that time is not spent on finding an existing
algorithm with desired behaviour and rewriting it in order to work with getPG.m.
The developed algorithm getcluster.m detects separate groups of clustered pixels and com-
putes each cluster’s centroid. The image is associated with a spatial grid defined on a unit
square. This means that the output of getcluster.m must be scaled to the correct sub-image
dimensions 2rmla before phase gradients are obtained with (5-27). The algorithm itself is
called for each sub-image Ii (s, t) and requires four input parameters: the i-th SH sub-image,
number of objects np, threshold θ and distance tolerance dtol. Threshold θ filters the image
by setting pixel-values lower than θ to zero. Multiple thresholds can be specified by θ ∈ Rnt×1

such that getcluster.m performs detection on nt-filtered sub-images. From these nt-iterations
the best match is selected and returned as output. Input dtol controls the minimum distance
between the centres-of-mass of detected clusters and merges clusters that are too close. Its
default value is set to the Rayleigh resolution criterion (A-34).
The cluster detection of the aberration-free image with threshold θ ∈ R5×1 is shown in Fig-
ure 5-11. Based on the maximum intensity in the i-th sub-image, shown by ’SH image’
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Figure 5-11: An example of cluster detection in the aberration-free Hartmannogram of Figure 5-
11. The i-th sub-image is provided as input, here shown as ’SH image’. The maximum intensity
in this image determines the number of filtered images to process, where each threshold value is
shown in the image titles. The results of the algorithm are detected clusters and their centroids,
distinguishable by their colour. The red circle outlines the expected size of the original focal spots.

in Figure 5-11, the number of thresholds θ are determined. This sub-image lead to 5 thresh-
olds, whose values such that Ii (Ii < θ(i)) = 0, are shown above each detection result. Each
detected cluster is given its own colour, such that clustered pixels can be distinguished from
each other. The coloured crosses, here enlarged for emphasis, indicate each cluster’s centroid.
The red circles indicate the focal spot’s expected size, predicted by the Rayleigh resolution
criterion. In Figure 5-11 each filtered image returns the same clustering, in which case get-
cluster.m selects the clusters with the highest pixel count. If different filtered images return
different results, getcluster.m returns the best match, based on the number of clustered pixels,
their pixel-values and the cluster separation. This selection procedure prioritises detections
that result in the same number of clusters as simulated point sources. After the best match
is found, the cluster’s centroids are recomputed and returned by the algorithm.

The classification of focal spots, the knowledge which spot belongs to which imaged point
source, is not performed by getcluster.m. This challenge can be solved many ways, but
without explicit knowledge on the aberrations it is difficult to find an optimal solution. In
this thesis the classification problem is tackled in the multiple point source imaging (MPI)-
routine of getPG.m, where each focal spot is matched to the closest expected centroid. These
centroids are determined from the aberration-free image of the same point sources, which
means one only needs to source’s angular coordinates to find them. Each detected cluster is
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then matched to the point source whose aberration-free centroid is closest.

This matching means that the classification accuracy depends on the aberration strengths.
Each expected centroid is found by the aberration-free image of the corresponding source,
which means that they depend on the object-based tilt phase.. As explained in Section 5-2-4,
this phase term is added to the pupil plane phase of each point source, depending on its
angular coordinates. The OBT phase addition ensures that source’s position is reflected in
the aberration-free image. If this OBT is significantly stronger than the defined aberrations,
which is the case in the rightmost image of Figure 5-10, the centroid of each focal spot is only
slightly displaced with respect to the expected centroid. In this case it is very likely that each
centroid is correctly classified to its imaged source.

If the aberrations are stronger that the object-based tilt, the aberrated centroids may be
significantly displaced from their expected centroids. This means that too strong aberrations
may cause the centroids and thus gradients to be assigned to a different point source than
their own, resulting in an ill-posed phase reconstruction. This is an unfortunate side effect of
the MPI phase gradient retrieval and leaves room for future improvement.

Algorithm 2 Image Cluster Detection
Input: Image I, number of objects np, threshold θ, distance tolerance dtol
Output: Clustered pixels C, pixel colour-codings C_colour, cluster centroids C_com

1: function getcluster.m
2: % For each given threshold the input image is filtered, all non-zero pixels are collected

and sorted based on proximity to existing clusters %
3: Determine grid size N from image I ∈ RN×N and define x, y on unit square
4: Determine the number of thresholds supplied nt: θ ∈ Rnt×1

5: for i = 1 : nt do
6: Set all pixel-values below threshold θ(i) to zero: If = I, If (If < θ(i)) = 0
7: Collect all non-zero pixels and their indices in DATA ∈ RK×3 with row-indices in

the first column, column-indices in the second and pixel-values in the last.
8: Sort DATA on the first column and save it as matrix P
9: Define cell-array Csub to store clustered pixels and set iteration count wcount = 0

10: while P is non-empty do
11: Check if the stopping criterion is reached (maximum iteration count)
12: Determine the number of currently detected clusters nc
13: Select the first pixel from P as p_current = P (i, :)
14: Determine the distance between p_current and all pixels in each cluster (stored

in Csub) in both x- and y-directions
15: If current pixel p_current is at most 1 pixel removed from any pixel in any

cluster (directly neighbouring) assign a match to that cluster
16: if # matches = 0 then
17: No neighbouring clusters found, make a new cluster for p_current
18: else if # matches = 1 then
19: One neighbouring cluster found, assign p_current to this cluster
20: else if # matches > 1 then
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Algorithm 2 Image Cluster Detection (continued)
21: Multiple matches found, assign p_current to cluster with lowest pixel count.

Assign randomly is multiple clusters are possible
22: end
23: Set cluster colour-coding of p_current and save it in ColSub(i, :)
24: Remove p_current from P , update cluster count nc and iteration count wcount
25: end while
26: Find each cluster’s centre-of-mass image first moments and coordinates x, y
27: Merge clusters that have centres-of-mass less than dtol separated
28: Update the clustered pixels stored in Csub and their centres-of-mass
29: end
30: Collect all clustered pixels in cell-array C ∈ R1×nt. Do the same for the centres-of-mass

and colour-codings
31: Give each collection C{i} a score by multiplying the total number of clustered pixels

with the number of detected clusters. Normalize the score.
32: Keep collections C{i} with a score higher than 0.5 and more than one detected cluster.
33: Select best collection C{i} based on the detected pixels per individual cluster. Prior-

itize collections with detected clusters equal to the simulated object count np
34: Return the selected clusters, colour-codings and centres-of-mass
35: end

P4F gradient retrieval - MPI In the SH WFS each sub-image contains the focal spots of
the incident wavefronts, sampled in the spatial domain. The P4F sensor samples wavefronts
angularly, such that each sub-image represents the aperture plane filtered for a specific angle.
Cluster detection described for the SH will not work here. This is also concluded from Fig-
ure 5-12, showing the aberration-free P4F sensor image (left) and the addition of a defocus
in the aperture plane (right). In the SH sensor each sub-image contained separable focal
spots, but the P4F spreads the pixels over the sub-images. In order to separate the pixels
analogously to the SH MPI retrieval, one can reshuffle the pixels in the P4F image.

Figure 5-12: The P4F sensor images for aberration-free imaging (left) and the addition of a
defocus aberration with strength 9 · 10−7 [m] in the aperture plane (right).
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This plenoptic pixel reshuffling treats the SH and plenoptic sensor as equivalent in the sense
of geometrical optics, only differing in how the pixels are arranged. Take for example a square
M ×M MLA and assume both SH and P4F sub-images contain P ×P pixels. For clarity the
notation of Chapter 3 is used, associating each MLA lenslet and sub-image with index-pair
(i, j). In each sub-image the pixels are associated with index-pair (s, t), such that the pixel
intensity in each sensor image is given by ISH(i, j, s, t) and IP4F (i, j, s, t). In Chapter 3 it
was explained that these indices encode the type of information stored in the pixels, where
the SH WFS stores spatial information in indices (i, j) and angular information in (s, t). In
the P4F sensor these encodings are switched, which means that one could reshuffle the P4F
image to obtain an SH-like image by reversing the type of information encoded in the pixels.

In this new Plenoptic 4F Shack-Hartmann hybrid (P4FSH) image each sub-image represents
the spatial information (s, t), angular information (i, j) is represented by the pixels inside the
sub-image. Note that each P4F sub-image contains P × P pixels and as such the P4FSH
image will show P × P sub-images. This means that as long as M = P the SH and the
P4FSH sensors will use the same MLA.

The plenoptic reshuffling is performed for each lenslet (i, j), where pixel (s, t) is placed in
pixel (i, j) of lenslet (s, t) in the new P4FSH microlens array. An example of this reshuffling
is shown in Figure 5-13 in the aberration-free imaging of three point sources. The SH sensor
image in this situation would contain three distinct focal spots in each of its sub-images,
exactly what is produced by the P4FSH image. In this example it is straightforward to
distinguish the imaging of each point source. The next example defines a defocus aberration
in the aperture plane and images two point sources, shown in Figure 5-14. The pixels in the
aberrated image are spread over the sub-images, complicating the classification of which pixel
belongs to which source. The reshuffled image on in the middle demonstrates the advantage of
the reshuffling process, where a selection of sub-images is magnified to the right showing the
reshuffled structure. The reshuffling algorithm, implemented by the MPI-routine of getPG.m,
is shown in Algorithm 3.

Figure 5-13: An example of reshuffling the plenoptic 4F sensor image to obtain the P4FSH
image. Three objects sufficiently separated have been simulated without aberrations. From left
to right: The original P4F sensor image, the reshuffled P4FSH image and a closer look at the
P4FSH sub-images.
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Figure 5-14: An example of reshuffling the plenoptic 4F sensor image to obtain the P4FSH
image. Two objects sufficiently separated have been simulated with the addition of a defocus
aberration of magnitude 8 · 10−7 [m] in the aperture plane. From left to right: The original P4F
sensor image, the reshuffled P4FSH image and a closer look at the P4FSH sub-images.

Algorithm 3 Plenoptic Pixel Reshuffling
Input: Plenoptic image I, image size him, lenslet count M and their radius r in the M ×M
MLA and pixel locations of the sub-image centre CellLoc
Output: Reshuffled image Irs, pixel locations of shuffled sub-image centres CellLoc_rs

1: Obtain image grid size N from the plenoptic image I ∈ RN×N
2: Determine the number of pixels in each P × P sub-image: P = RE{ 2r

him
N}

3: Generate a P × P reshuffled MLA with each sub-image M ×M pixels large
4: for i = 1 : M2 do
5: Select i-th sub-image Isub,i ∈ RP×P from image I using CellLoc(i,1:2)
6: Select index displacement of i-th lenslet from CellLoc(i,4:5)
7: Assign each pixel in Isub,i to the corresponding lenslet in the P × P reshuffled MLA
8: Place each pixel in its reshuffled sub-image displaced CellLoc(i,4:5) pixels from sub-

image centre
9: end

The main difference between SH and P4FSH images, is that the reshuffled sub-images contains
individual pixels instead of focal spots. The plenoptic pixels encode spatial information,
whereas the SH sensor encodes it in entire sub-images. This is consistent with the inclusion
of diffraction effects that, such that the plenoptic sensor performs angular sampling. One
could interpret this sampling in an ordinary SH sensor with a P × P MLA by filtering the
Hartmannogram, retaining only the most intense pixel per spot in the SH sub-images.

An obvious benefit of the P4FSH image is that no complicated cluster detection algorithm
is required to find the centroids as these are already visible. What is necessary however is
the classification of which pixel belongs to the image of which point source. This problem is
solved in the same manner as described for the SH cluster detection, by matching the pixels
to the expected aberration-free locations. Just as with cluster detection this method may
incorrectly classify pixels when the phase aberrations are stronger than the object-based tilts.
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Overview of Phase Gradient Retrieval With all routines in the phase gradient retrieval
algorithm presented, pseudocode of getPG.m is provided to the algorithm’s structure

Algorithm 4 Retrieve Phase Gradients from Sensor Image
Input: See Table 5-1
Output: Retrieved phase gradients PG

1: function getPG.m
2: % Select retrieval routine based on sensor_type and np %
3: Determine number of simulated point sources np from O ∈ Rnp×3 and image grid size

N from I ∈ RN×N
4: if sensor_type = "SH" then
5: Set the gradient grid size equal to M , gradients are expressed on M ×M grid
6: if np = 1 then
7: Compute centroids using (5-26) and determine phase gradients PG ∈ RM2×2

8: else if np > 1 then
9: For each SH sub-image ISHi obtain clusters with getcluster.m

10: Determine distances d between cluster centroids and point source expected
centroids

11: Assign clusters to source with smallest distance d
12: Recompute the centroids of classified clusters and compute phase gradients

PGi ∈ RM2×2 for each source
13: end
14: else if sensor_type = "P4F" then
15: Determine the number of pixels P in each P × P sub-image by linear scaling and

rounding up to nearest even integer: P = RE
{

2rmla
him

N

}
16: if np = 1 then
17: Compute phase gradients PG ∈ RP 2×2 using CAFADIS model (5-29)
18: else if np > 1 then
19: Reshuffle the P4F image and compute the expected pixel locations
20: For each P4FSH sub-image IP4FSH

i , match intensity pattern to expected loca-
tions, assign sources to each pixel and save the classified pixel-displacements

21: For each point source compute the phase gradients PGi ∈ RP 2×2 with the
classified pixel-displacements

22: end
23: end
24: end

5-2-7 Reconstruct Phase - getphase.m

As explained in Section 5-2-6 the obtained gradients from getPG.m result either from the
image first moment model for the SH sensor, or from the CAFADIS model for the P4F sensor.
As such the gradients are placed in the aperture plane. The resulting phase reconstruction is
placed there as well. This thesis performs phase reconstruction using either the basic modal
or zonal models, elaborated in Appendix A-5 and Appendix A-6. The reconstruction is
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implemented by toolbox function getphase.m, whose pseudocode is presented in Algorithm 5.

Algorithm 5 Reconstructing Aperture Plane Phase
Input: Reconstruction method rec_method, reconstruction data DAT (2 × 1 cell-array),
aperture plane mask padding factor hpad, shape of aperture lens aplens
Output: Reconstructed phase φ

1: function getphase.m
2: if rec_method = "modal" then
3: Get parameters D = DAT{1} ∈ R3×1: aperture size hap = D(1), wavelength λ =

D(2) and output grid size Nout = D(3). Get gradients PG = DAT{2} ∈ RN2×2

4: Limit output grid size with predefined maximum size: Nout = min (Nout,maxN)
5: Assuming slopes are represented on square N ×N grid, retrieve grid size N
6: Determine the number of Zernike modes to consider: M = min

(
200, 1

2N
2
)

7: Find grid size of φ inside aperture: Ndef = Nout/hpad
8: Generate basis Zdef on grid size Ndef and gradients GX, GY on input grid size N
9: Stack gradients alternating between x- and y, resulting in matrix Gin ∈ R2N2×M

10: Orthonormalize the basis and gradients, resulting in matrices Z⊥,def ∈ RN
2
def×M

and G⊥,in ∈ R2N2×M and conversion matrices {βZ , βG} ⊂ RM×M

11: Check that Z⊥,def and G⊥,in are orthonormal: ZT⊥,defZ⊥,def = I & GT⊥,inG⊥,in = I

12: Scale gradients PG to wavefront slopes defined on unit square with aperture plane
size: fs = λhap

2π(N−1)PG

13: Stack the slopes alternating between x- and y-slopes, resulting in S ∈ R2N2×1

14: Estimate orthonormalized gradient coefficients γ with the MVUE: γ̃ =(
GT⊥,inG⊥,in

)−1
GT⊥,inS

15: Convert γ̃ to orthonormal Zernike coefficients: α̃ = βZβ
−1
G γ̃

16: Reconstruct φ from the orthonormalized Zernike basis φ̃ = 2π
λ Z⊥,def α̃ ∈ RN

2
def×1

17: Reshape φ̃ into Ndef ×Ndef array and pad with zeros until Nout ×Nout

18: else if rec_method = "zonal" then
19: Get cell size D = DAT{1} and phase gradients PG = DAT{2} ∈ RN2×2

20: Assuming slopes are represented on square N ×N grid, retrieve grid size N
21: Stack gradients in slope vector S ∈ R2N2×1 alternating between x- and y-slopes
22: Generate Southwell geometry matrices Ggrad ∈ R2N2×2N2 and GS ∈ R2N2×N2

alternating between x- and y-directions
23: Select all rows from Ggrad that contain a single 1 and zeros elsewhere and remove

these rows from both Ggrad and GS
24: Using the trimmed matrices determine averaged slopes Sa = 1

2GgradS ∈ R2N2×1

and cell geometry G = 1
DGS ∈ R2N2×N2

25: Estimate φ with the MVUE: φ̃ =
(
GTG

)−1
GTSa and reshape into φ̃ ∈ RN×N

26: end
27: Generate pupil mask in output dimensions with shape aplens and pupil-limit φ̃. Re-

turn reconstructed phase φ
28: end
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Modal Reconstruction - Orthonormality and Mode Limit The basic modal reconstruction
algorithm, elaborated in axrefax:BasicModal, discusses the limited to the number of modes
M that can be used for reconstruction. Using circular sub-images one should consider less
modes than measurements available, resulting in the criterion M < N2. Here it is assumed
that the slope measurements are represented on a N × N discretely-sampled grid. In the
simulations toolbox there is no guarantee that this criterion holds true, as the sub-images
generated are square. Additionally, the representation and reconstruction of the phase rests
on orthonormalized matrices.

In the following the orthonormality of the reconstruction matrices is checked for an increasing
grid size. If orthonormality can be guaranteed, the criterion M < N2 can be studied further.
The reconstruction matrices are the Zernike basis functions Z ∈ RN2×M and gradients G ∈
R2N2×M , where M Zernike modes and their slopes are represented on N × N discretely-
sampled grids. The gradients are stacked, alternating between x- and y-gradients, consistent
with the stacking in the zonal algorithm.

Matrices Z and G are orthonormalized using a modified Gram-Schmidt algorithm, that pro-
duces orthonormalized matrices Z⊥ ∈ RN2×M and G⊥ ∈ R2N2×M and conversion matrices
{βZ , βG} ⊂ RM×M , such that the original matrices can be retrieved by:

Z = Z⊥βZ ,

G = G⊥βG.

For any orthonormal matrix A holds C = ATA = I, where I is the identity matrix. For
matrix C one can state that each diagonal element should be equal to zero, such that cij =
1, i = j. To track orthonormality of matrix A ∈ RN×N for increasing grid sizes N the
following parameters are defined:

c = b ·
N∏
i=1

(
ATi Ai

)
,

b =
{

1, if ATA is diagonal
0, otherwise

(5-30)

where Ai is the i-th row of matrix A. This means that if c = 1 matrix A is orthonormal, if
c > 1 it is orthogonal and if c = 0 matrix A is neither.

The orthonormality is checked for both matrices Z⊥ and G⊥ using different grid sizes N =[
5 15 25 35 45 55

]
. The selected sizes are values encountered throughout reconstruc-

tion processes in this thesis. The considered modes M are upper-bounded by M < N2, such
both Z and G contain the same Zernike modes. The considered modes range from 1 to N2,
an exponentially growing range affecting computation times significantly. This is prevented
by taking a maximum of 45 values for M from this range, as long as N2 > 45, otherwise
M = 1, . . . , N2 can be used.

From the results shown in Figure 5-15 it is readily observed that condition M < N2 is not
met in any occasion, a result that does not come as a surprise. What is remarkable on the
other hand is that the orthonormality is broken around either M = 1

2N
2 or at M = 200, the

dotted and dashed vertical lines respectively. Upon closer inspection of the figures it becomes
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clear that orthonormality can be guaranteed as long as:

M < min
(1

2N
2, 200

)
(5-31)

Figure 5-15: The orthonormality is checked for increasing grid size N and number of modes M .
If the value on the vertical axis equals 1, the matrix is orthonormal. If the value is larger than
1 the matrix is orthogonal and the matrix is neither if the value if equal to 0. The condition is
not checked for each M = 1, . . . , N2 but rather 45 values for M are taken from the range of 1
and N2. This means that the orthonormality breaking point is not always aligned with either the
M = 0.5 ∗N2 (dotted) or M = 200 (dashed) vertical lines.

In the context of the simulation framework, N = 11 and N = 50 are reasonable and tractable
grid sizes for the SH and P4F slope measurements respectively. These result in M < 60 for
the SH and M < 200 for the P4F modal reconstruction.

Why precisely the orthonormality is broken beyond (5-31) is beyond the purpose of this thesis,
as it may be a programming error in the used algorithms or an intrinsic property of orthonor-
malizing a large number of columns. The important conclusion is the knowledge for which
values of M one can guarantee orthonormality. The upper-bound detailed in Appendix A-5
does not need to be accounted for. For reasonable sample densities orthonormality breaks
long before the M = N2 upper-limit is reached.

5-2-8 Retrieve Phase Screen - getscreen.m

In the case of anisoplanatic aberrations with RL ∈ 〈0, 1〉, reconstruction of the aperture
plane phase will not be enough for phase correction. Function getscreen.m restores screen at
distance 1−RL away from the aperture plane, which can be done by two retrieval methods.
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Both are elaborated here and included in pseudocode Algorithm 6. Both retrieval methods
use the Projection model for approximating free space propagation. As such, getscreen.m is
the inverse of the phase generation function getpupil.m elaborated in Section 5-2-4.
Knowing locations O ∈ Rnp×3 of the np simulated point sources and distance ratio RL, the
intersections of each source’s field of view (FOV) with the phase screen can be determined.
With the WFS pupil plane grid size N , one can find the minimum grid size of the phase
screen. Combining both concepts enables one to determine the exact pixels of the phase
screen that each point source illuminates, the phase screen cut-outs φcut ∈ RN×N×np.

Object-based Tip and Tilt Forward model getpupil.m determines each phase screen cut-out
and adds object-based tilt, such that the point source location is accounted for in the image.
This OBT is proportional to the angular coordinates of each i-th point source:

φOBT,i = 2π
λ

(
Ox,i
Oz,i

X + Oy,i
Oz,i

Y

)
, (5-32)

where O =
[
Ox Oy Oz

]
∈ Rnp×3 and {X,Y } ⊂ RN×N the x- and y-coordinates. These

spatial coordinates are defined on the unit square since phase φOBT is derived from Zernike
tip and tilt aberrations (Z1

1 and Z−1
1 respectively). In getpupil.m the OBT is added in the

pupil plane, which means that φOBT is represented on a plane with size hpupil (5-19) and
appropriate scaling is required. The pupil plane phase for point source i is expressed as:

φp,i = φcut,i + πhpupil
λ

(
Ox,i
Oz,i

X + Oy,i
Oz,i

Y

)
. (5-33)

To enforce the physical dimensions of the pupil plane on the phase gradients, one needs to
apply additional scaling:

∂φOBT,i
∂X

= πhpupil
λ

2
hpupil

Oy,i
Oz,i

= 2π
λ
θx,i,

∂φOBT,i
∂Y

= πhpupil
λ

2
hpupil

Oy,i
Oz,i

= 2π
λ
θy,i,

(5-34)

where θ =
[
θx θy

]
=
[
Ox
Oz

Oy
Oz

]
are the angular coordinates of the simulated point sources,

with respect to the pupil and aperture plane.
The correct phase screen cut-outs are found by removing the object-based tilt φOBT from
each aperture plane reconstruction:

φcut,i = φap,i −
πhpupil
λ

(θx,iX + θy,iY ) , (5-35)

where φap ∈ RM×M×np are the reconstructed aperture plane phases for each point source,
obtained from function getphase.m. This means that spatial coordinates X and Y should be
represented by M ×M matrices as well, as opposed to the N × N grid size in the forward
model of getpupil.m. One finds the gradients of the phase screen cut-outs in the same manner
by removing the OBT gradients:

∂φcut,i
∂X

= ∂φap,i
∂X

− 2π
λ
θx,i,

∂φcut,i
∂Y

= ∂φap,i
∂Y

− 2π
λ
θy,i.

(5-36)
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In this case gradients ∂φap,i/∂X and ∂φap,i/∂Y are the aperture plane phase gradients ob-
tained from function getPG.m.

Phase Screen Retrieval 1 - Phase Back-propagation The most straightforward method of
retrieving the phase screen is propagating the reconstructed aperture plane phases back to
the phase screen location. With the pupil plane grid size fixed by the reconstruction grid
size, one can determine the exact pixels in the phase screen that correspond to each cut-out.
Back-propagation with projection is then reduced to simply placing each pupil plane phase
in the corresponding pixels in the phase screen.

An unfortunate side effect of this method is illustrated in Figure 5-16. A tilt aberration is
generated in the phase screen and illuminated by 9 equidistant point sources, resulting in a
3×3 grid of cut-outs. The phase screen is retrieved by placing the pupil plane reconstructions
in their corresponding pixels, assuming the cut-outs is correctly reconstructed. Since the
piston mode - which represents an averaged constant phase term - cannot be detected each
phase reconstruction is zero-mean. As such, the retrieved phase screen as becomes piece-wise
zero-mean as in Figure 5-16. The retrieved sawtooth-pattern is clearly an incorrect retrieval
of the original phase screen.

Figure 5-16: The hidden piston influence on phase screen reconstruction. From left to right: The
phase screen and the corresponding cut-outs indicated by red squares, the phase screen profile
and the profile where each cut-out has its mean removed. All values that fall outside the unit
circle aperture are set to the minimum value of the original phase screen for clarity.

To present the problem as clear as possible the piece-wise zero-mean (PWZM) phase screen
on the right of Figure 5-16 was retrieved by extracting each cut-out, removing the mean
value and placing it back. No WFS sensing or reconstruction has been simulated as noisy
reconstruction could obscure the illustration of the problem.
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Figure 5-17: Two examples of parametrizing the piece-wise piston modes. The first two figures
show the phase screen from Figure 5-16 and the corresponding square regions for each piston
mode Pi. Outside of its corresponding region piston term Pi is zero. The last two figures show
the same for a phase screen with three cut-outs, similar to the Phase Screen in Figure 5-8. The
overlapping piston regions are indicated by the two thicker boxes. In the top-left box the total
piston contribution is equal to P1 + P2, whereas it is equal to P2 + P3 for the bottom-right box.

One can describe the problem by hidden piston modes in each of the phase screen cut-outs
that need to be reconstructed. The problem can be solved by introducing a piece-wise step
function P for these modes, where each constant piston term Pi is present in the pixels of cut-
out i. The piece-wise function is illustrated in Figure 5-17 for the phase screen in Figure 5-16
and in Figure 5-8. Then the actual phase screen can be represented by a total sum of each
phase screen cut-out and the corresponding piston term. For the following derivation np point
sources are simulated and each of their aperture plane reconstructions is represented by an
N ×N discretely-sampled grid. Through geometry one finds that the phase screen should be
represented by a Nscreen × Nscreen grid. Each cut-out is defined over N × N regions in this
screen and zero outside this region, such that φcut ∈ RNscreen×Nscreen×np. The phase screen
retrieval is then expressed as:

φscreen =
np∑
i=1

φcut,i + Pi �Mi = φscreen,d + P, (5-37)

where φscreen,d is the previously-determined PWZM phase screen obtained by simply adding
all cut-outs together. Function P is now represented by piston mask P ∈ RNscreen×Nscreen ,
obtained by summing together individual piston terms Pi multiplied with binary masks Mi

These masks are 1 inside the i-th cut-out and 0 outside. In the case of overlapping pixels one
should multiply φscreen with an averaging mask, explained further below.

Since the actual phase screen is unknown one can solve the hidden piston problem by minimiz-
ing the variance of φscreen in both x- and y-directions. Minimum variance results in a phase
screen that is as smooth as reconstruction measurements allow. The phase screen variance
is described by vectorizing the matrices in (5-37) twice, once row-wise in positive x-direction
and once column-wise in negative y-direction. the element-wise variance is computed by tak-
ing the last N2

screen − 1 terms of each vectorized matrix and subtracting them from the first
N2
screen − 1, similar to a single shift-register operation. This is performed by operator V{},

resulting in the following variances:

Vx = V{φvxscreen,d}+ V{P vx},
Vy = V{φvyscreen,d}+ V{P vy},

(5-38)
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where superscripts vx and vy refer to vectorization in x- and y-direction. The obtained
variances {Vx, Vy} ⊂ R(N2

screen−1)×1 are stacked in one large vector V ∈ R(2N2
screen−2)×1.

Before moving on, two considerations should be accounted for. First, there is no use in
minimizing the variance over pixels with the same piston modes acting on them, which is
identified by zeros in V{P vx} and V{P vy}. If two pixels have the same piston term Pi acting
on them, the variance of these pixels will be uninfluenced by Pi it does not contribute to a
better estimation of Pi. Second, the minimization should result in an expression for piston
modes Pi, which means that they should be extracted from the variance equations. With
these considerations the stacked variances V can be written as a system of equations:

V =
[
Vx
Vy

]
=
[
V{φvxscreen,d}
V{φvyscreen,d}

]
+
[
V{P vx}
V{P vy}

]
= b+Ap, (5-39)

where the determined PWZM phase screen variances are collected by vector b, matrix A ∈
R(2N2

screen−2)×np collects the coefficients of the individual piston modes, obtained by decompo-
sition of the stacked piston variances and p ∈ Rnp×1 contains the parametrized piston modes.
Finally, by treating the total variance V as an error the argumentation of the minimum-
variance unbiased estimate (MVUE) can be applied to estimate the hidden piston modes:

p̃ =
(
ATA

)−1
AT b. (5-40)

With the piston terms determined one can generate an averaging maskMavg ∈ RNscreen×Nscreen
for the phase screen. Each pixel in this mask is the inverse of the number of independent
cut-outs defined on that pixel. Take for example a 2×2 phase screen, where 3 cut-outs overlap
in the top-left pixel, one cut-out is present in the bottom-right pixel and the remaining pixels
are not illuminated. The averaging mask then becomes:

Mavg =
[

1
3 1
1 1

]
, (5-41)

where the default value for non-illuminated pixels is set to 1, such that pixels with either one
cut-out or none are not averaged but retain their value. The retrieved phase screen is then
expressed as a function of Mavg, phase screen cut-outs and reconstructed piston modes Pi:

φscreen = Mavg �
( np∑
i=1

φcut,i +Mi � Pi

)
. (5-42)

Phase Screen Retrieval 2 - Local Reconstruction The first retrieval method described
above relies on a double reconstruction, once in the aperture plane and once for the hidden
piston terms. Such a reconstruction cascade is sensitive to measurement noise, as errors in
the obtained gradients can lead to errors in the piston estimation. An alternative method
circumvents this cascade by placing the sensed gradients in the phase screen instead. This
method is based on the Ray Tracing model presented for the plenoptic WFS in Section 3-
3-1, but switching the geometrical optics for the Projection method to describe free space
propagation.

In a similar fashion to the method above one needs the grid size in the pupil plane and spatial
parameters to define the phase screen cut-outs. Then, by placing each of the obtained phase
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gradients in their cut-outs and averaging over the overlapping pixels one obtains the phase
gradients in the phase screen. It should be noted that gradients outside the cut-outs are set
to 0 by default, as they are unknown to the reconstruction algorithm and undetected by the
WFS. The phase screen gradients are then reconstructed by function getphase.m, using either
the modal or zonal algorithm available. These algorithms are elaborated in Appendix A-5
and Appendix A-6 for the interested reader.

Pseudocode for Retrieving Phase Screens The two methods discussed are implemented by
function getscreen.m, which is presented by pseudocode here. In the pseudocode a distinction
is made between the required grid size, depending on which retrieval method is selected. Both
pupil plane grid sizes are indicated by N , but the number of phase gradients obtained from
getPG.m may not be the same as the number of phase points reconstructed by getphase.m.
Each grid size is rounded by to nearest even integer by operator RE{}. For readability this
operator is emitted from Algorithm 6 but is implemented by the code.

Algorithm 6 Retrieving Phase Screen
Input: See Table 5-1
Output: Phase screen φscreen ∈ RNscreen×Nscreen

1: function getscreen.m
2: Determine spatial centres of phase screen cut-outs

[
dc,x dc,y

]
= (1−RL)

[
Ox Oy

]
3: Determine physical sizes of cut-outs φcut and phase screen φscreen: hc = RL · hpupil

and hscreen = 1.1
(
max

([
|dc,x| |dc,y|

])
+ hc

2

)
4: % Based on parameter ′screen_type′ select retrieval method for the phase screen %
5: if screen_type = "phaseprop" then
6: % Retrieve phase screen by back-propagating pupil plane phase and estimating

hidden piston mode %
7: Determine pupil plane grid size N from pupil plane phases φp ∈ RN×N×np
8: Set the phase screen grid size by linear scaling: Nscreen = hscreen

hc
N

9: Define {φscreen,Mavg} ⊂ RNscreen×Nscreen of zeroes
10: for i = 1 : np do
11: Determine pixel selection where cut-out φcut,i is defined in phase screen and

according binary piston mask Mi ∈ RNscreen×Nscreen
12: Place pupil plane reconstruction φp,i in cut-out φcut,i ∈ RNscreen×Nscreen
13: Add 1 to the pixel selection in Mavg: Mavg(Mi = 1) = Mavg(Mi = 1) + 1
14: end
15: Overwrite all zeroes in Mavg with ones and invert it element-wise:

Mavg (Mavg = 0) = 1 and Mavg = M◦−1
avg

16: Compute averaged PWZM phase screenMavg�φscreen,d and piston mask P (5-37)
and vectorize them in both x- and y-directions

17: Stack variances of Mavg � φscreen,d to obtain b ∈ R2Nscreen×1 (5-39). Do the same
for P and obtain variance coefficients A ∈ R(2Nscreen−2)×np

18: Reconstruct piston terms p =
(
ATA

)−1
AT b ∈ Rnp×1

19: Retrieve phase screen φscreen = Mavg � (
∑np
i=1 φcut,i + pi �Mi)
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Algorithm 6 Retrieving Phase Screen (continued)
20: else if screen_type = "gradprop" then
21: % Place obtained gradients in phase screen and reconstruct the screen %
22: Set the phase screen grid size by linear scaling: Nscreen = hscreen

hc
N

23: Determine pupil plane grid size N from phase gradients PG ∈ RN2×2×np

24: Define zero-matrices PGscreen ∈ RN2
screen×2 and Mavg ∈ RNscreen×Nscreen

25: for i = 1 : np do
26: Determine pixel selection where φcut,i is defined in phase screen and according

binary piston mask Mi ∈ RN2
screen×1

27: Add i-th gradients PG (:, :, i) ∈ RN2×2 to index-selection of PGscreen and add
1 to these pixels in Mavg

28: end
29: Average the phase screen gradients Mavg � PGscreen and reconstruct phase screen

with getphase.m, modal or zonal reconstruction specified by rec_method
30: end
31: end

5-2-9 Correct Aberration - correctphase.m

As explained in Chapter 2, extensive analysis of the deformable mirror (DM) is beyond the
scope of this thesis and an idealized DM is used instead. The considered assumptions are:

• The DM has the same number of pistons as pixels in the reference phase screen

• Each DM piston has a completely independent response and has a continuously-valued
unlimited range

• The DM has 0 % hysteresis

These assumptions allow one to reduce the DM simulation to resampling the reconstructed
phase to the reference grid size and subtracting it from the reference phase. This is imple-
mented by function correctphase.m, which is detailed in pseudocode below.
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Algorithm 7 Correcting Reference Phase Aberrations
Input: Reference phase φref ∈ RNref×Nref , reconstructed phase φ ∈ RN×N , aperture mask
M ∈ RNref×Nref
Output: Residual phase φres ∈ RNref×Nref , root-mean-square error RMSE, phase profile
on DM φcorr ∈ RNref×Nref

1: function correctphase.m
2: Determine grid sizes N and Nref from φ ∈ RN×N and φref ∈ RNref×Nref respectively
3: Aperture-limit the reference phase with mask M : φref = φref �M
4: Resample the reconstructed phase φ to the reference grid size (implemented by own

function manipmat.m or MATLAB function im_resize.m) to obtain DM correction
profile φcorr ∈ RNref×Nref

5: Aperture-limit the correction phase with mask M : φcorr = φcorr �M
6: Compute the residual phase φres = φref − φcorr
7: Remove the piston term from residual phase φres = φres −mean (φres)
8: Extract all pixels of φres inside aperture mask M : pres = φres (M = 1)
9: Compute the residual RMSE from the extracted pixels: RMSE =

√
pTrespres
n , where

pres ∈ Rn×1 such that RMSE ∈ R
10: Return output arguments φres, RMSE and φcorr
11: end

5-2-10 Plenoptic Ray Tracing - plenopticRT.m

This thesis is focussed on a fair comparison between the Shack-Hartmann and plenoptic 4F
sensor. The CAFADIS model is based on image first moments and is very similar to the
gradient retrieval of the SH sensor. As such, much effort was put into the development of this
model, resulting in comparisons that highlight the benefits of the plenoptic design.
Compared to the development of the CAFADIS model, implemented by functions getPG.m,
getphase.m and getscreen.m, less emphasis is placed on the Ray Tracing model described by
Ko, Davis and Wu. This method is described with its own free space propagation and phase
screen reconstruction, that differ from the framework used to develop the toolbox.
To support the fair comparison between the SH and P4F sensors, the CAFADIS model is used
to reconstruct the P4F phases throughout this thesis. The Ray Tracing model is described
in plenopticRT.m and will be briefly introduced here.
The Ray Tracing model approximates light by a bundle of geometrical vectors, the light field.
The propagation of these vectors through lenses and free space is detailed in Appendix A-1-1,
but is summarized by the following equations in 2D:

h2 = h1 + (z2 − z1)α2,

α2 = α1 −
∆h2
f

In lenses,

α2 = α1 In free space.

(5-43)

At each propagation stage a light ray is represented by the coordinate along the optical axis
z-axis zi, the distance from the z-axis hi and the forward facing angle αi, which is positive
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in direction away from the optical axis. This model is readily extended to three-dimensional
propagation.

In plenopticRT.m each pixel in the recorded plenoptic image is converted into a pencil of
light rays, where the pencil thickness is determined by the pixel intensity. The image plane
slope of the pencil is determined by the sub-image and angular spectrum (5-28), whereas its
location is fixed by the spatial pixel location. The collective of pencil rays form the light field,
that is stepwise propagated back to the phase screen by inversely applying (5-43). This light
field consists of N pencil rays, propagated through M stages and stored in light field matrix
LF ∈ RN×M×4, where spatial coordinates h are stored in LF (:, :, 1) and LF (:, :, 2) and angles
α in LF (:, :, 3) and LF (:, :, 4).

An example of the geometrical back-propagation performed by plenopticRT.m is shown Fig-
ure 5-18. Here RL = 0.8 and an one point source is simulated on the optical axis. The phase
screen is generated using an astigmatism (Zernike mode Z2

2 ) with magnitude 5 · 10−5 [m].
The number of slopes forced to be equal to the maximum number of lenslets, represented on
a 7× 7 discretely-sampled grid.

Figure 5-18: Illustration of the Ray Tracing method for the P4F sensor with RL = 0.8 and one
point source simulated on the optical axis. The phase screen is generated with an astigmatism
aberration (Zernike mode Z2

2 ) with magnitude 5 · 10−5 [m]. The leftmost image shows the back-
propagated light field, where the phase screen and aperture planes are indicated by the dash-dotted
squares. The geometric centres of the sub-images are indicated by the blue dots. The rightmost
image shows the corresponding P4F sensor image, obtained using Algorithm 10.
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Algorithm 8 Plenoptic Phase Screen Reconstruction using Ray Tracing
Input: Plenoptic sensor image IP4F ∈ RN×N and its physical size him, physical lens
parameters robj , rmla, fobj , fmla, number of lenslets M in (M ×M) MLA
Output: Reconstructed phase φ

1: function plenopticRT
2: Read the plenoptic sensor image IP4F ∈ RN×N and obtain grid size N
3: Determine the number of pixels P in the P × P sub-images and round it up to the

nearest integer: P = RE
{

2rmla
him

N

}
4: Define the propagation stages: phase screen location, the P4F aperture plane, the

objective lens, the MLA and the image plane.
5: Set the coordinates of the stages along the optical axis and store in matrix Z ∈ RN2×5

6: Generate the spatial locations of the lenslet and sub-image centres, stored in matrices
MlaLoc ∈ RM2×5 and CellLoc ∈ RM2×5

7: % The sensor image is converted into N2 light rays whose spatial and angular coordi-
nates are stored in LF %

8: Allocate matrices for the light field LF ∈ RN2×5×4 and pixel intensities Irt ∈ RN2×1

9: for i = 1 : M2 do
10: Extract sub-image IP4F

i ∈ RP×P
11: Determine ray pencils iL corresponding to pixel locations of pixels in IP4F

i .
12: Assign each pixel its slope based on the angular spectrum and index-displacements

of sub-image i, stored in CellLoc(i,4:5)
13: Store slopes in LF (iL, 5, 3) and LF (iL, 5, 4) for the x- and y-directions.
14: Store the geometric positions of the pixels in LF (iL, 5, 1) and LF (iL, 5, 2) for the

x- and y-positions
15: Store the intensity values of the pixels in Irt(iL)
16: end
17: Remove pencils with an intensity value smaller than 10 (or adjusted by user) and

determine number of remaining pencil rays n
18: Propagate light field LF from image plane to the aperture plane using geometrical

optics model (5-43)
19: Define a spatial grid for the aperture plane and extract angular coordinates {LF (:

, 2, 3), LF (:, 2, 4)} ⊂ Rn×1, removing pencils outside physical range of aperture plane
20: Propagate the light field back to the location of the phase screen and remove pencil

rays not illuminating phase screen
21: Define the phase screen spatial grid and extract the angular coordinates {LF (:

, 1, 3), LF (:, 1, 4)} ⊂ Rn×1

22: Average the obtained angular coordinates from the phase screen and aperture plane,
resulting in slope matrices {Sx, Sy} ⊂ RM×M

23: Determine the phase gradients, reconstruct the phase and place it in the screen location
24: end
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5-3 Modelling the Shack-Hartmann and Plenoptic Sensors

As explained in the introduction of this chapter, only the plenoptic 4F sensor is considered
throughout this thesis. The 4F configuration of the plenoptic sensor allows for simpler prop-
agation equations and predetermined sub-image locations. The Shack-Hartmann sensor is
simulated as well and compared to the performance of the P4F sensor.

The complete simulation algorithms for both sensor will be presented in this section. The
extensive demonstration of the supporting toolbox functions in Section 5-2 allows one to
reduce the WFS algorithms to a cascade of these functions, greatly improving pseudocode
readability. The input parameters required for both algorithms are listed in Table 5-1. Results
from the simulation toolbox will be presented in the next sections.

5-3-1 Shack-Hartmann sensor

Simulating the SH WFS is reduced to a propagation from the aperture plane - the MLA
front focal plane - to the MLA back focal plane where the digital image is formed. The
preliminary conditions of checkprelim.m, detailed in Section 5-2-3, perform the necessary
checks and provide the aperture plane size hSHap and grid size NSH .

Function getpupil.m then generates aperture plane phase φ ∈ RNSH×NSH that can be used to
define the input field U1 = A � ejφ = ejφ ∈ RNSH×NSH . Magnitude A is equal to one such
that a square collimated beam illuminates the WFS. This complex input field is propagated
through anM×M microlens array by isolating each lenslet, pupil-limiting field U1 accordingly
and propagating it to the image plane with the DFT (5-2).

The propagation itself is handled by the toolbox function planeprop.m that employs the DFT
to propagate from the front to the back focal plane of a lens. The function checks input
arguments to ensure correct propagation, adds padding and generates pupil masks before
propagating field U1 to the image plane. Output field U2 is trimmed or padded to fit image
size requirements and finally converted to digital image ISH .

After the digital image is recorded, function getPG.m reads it and retrieves the phase gradients
using image first moments (5-26). These gradients are used to reconstruct the phase with
toolbox function getphase.m, employing either the modal or zonal reconstruction algorithms.
The implementation of these algorithms is detailed in Appendix A-5 and Appendix A-6.

The combination of functions getPG.m and getphase.m reconstruct the phase aberration
in the aperture plane. For isoplanatic aberrations this reconstruction is directly used for
phase correction. If the aberrations are anisoplanatic, the aperture plane reconstruction is
presented to function getscreen.m that back-propagates it to the location of the phase screen
and reconstructs said screen. Then the simulated aberration is compensated for using the
reconstructed phase screen. The correction step for both iso- and anisoplanatic aberrations
is performed by function correctphase.m.

An overview of the algorithm to simulate the SH image and reconstruct the aberrations is
presented in Algorithm 9.
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SH image examples To illustrate the workings of Algorithm 9 two examples of the simulated
Hartmannogram are shown. The reconstruction and correction is left for the reader to explore
in Section 5-4, where they are presented for both the SH and P4F WFS. Important design
parameters are listed in Table 5-2. The first example in Figure 5-19 shows the sensor image for
a focal distance fmla = 5mm, whereas Figure 5-20 shows it for a focal distance fmla = 10mm.

Figure 5-19: An example of simulating the SH sensor image with the CSS.m code and Algo-
rithm 9. From left to right: The phase aberration in the aperture plane pupil-limited with the
MLA pupil mask, the mask of the MLA itself and the final sensor image. The red outlines in the
sensor image show the sub-images. The generated phase screen is a trefoil aberration (Zernike
mode Z3

3 or Z9) with magnitude 8 ·10−7 [m]. The design parameters are listed in Table 5-2 under
’Example SH1’.

Figure 5-20: An example of simulating the SH sensor image with the CSS.m code and Algo-
rithm 9. From left to right: The phase aberration in the aperture plane pupil-limited with the
MLA pupil mask, the mask of the MLA itself and the final sensor image. The red outlines in the
sensor image show the sub-images. The generated phase screen is a trefoil aberration (Zernike
mode Z3

3 or Z9) with magnitude 8 · 10−7 [m]. The design parameters are listed in Table 5-2.
under ’Example SH2’.
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Algorithm 9 Simulating SH Sensor Image and Phase Reconstruction
Input: See Table 5-1

1: Parse all parameters and assign variables
2: Check the prerequisite conditions - checkprelim.m
3: Important parameters: aperture plane grid size NSH and physical size hap, number of

simulated point sources np, MLA parameters rmla, fmla and M
4: Display sensor performance metrics from Section 3-2-4
5: Generate the pupil plane phases φp ∈ RNSH×NSH×np - getpupil.m
6: % Simulate the SH sensor image for each point source O (i, :) %
7: for i = 1 : np do
8: Determine phase in aperture plane by selecting i-th 2D matrix from φp: φap =

φp (:, :, i) ∈ RNSH×NSH

9: Determine the MLA lenslet outlines Mla and centre locations MlaLoc
10: Generate MLA input field: Uin = e−jφap ∈ CNSH×NSH

11: Propagate the input field through the MLA, resulting in image plane field Uout, image
size him, sub-image outlines Cell and centre locations CellLoc - planeprop.m

12: Record the sensor image Ic,i = |Uout|2 of point source i and digitize it (5-9): ISHi =
2b Ic,i

max(Ic,i)
13: end
14: Obtain the total sensor image by summing over all ISHi : ISH = sum

(
ISHi

)
15: Retrieve phase gradients PGSH ∈ RM2×2×np for each simulated point source - getPG.m

(If np = using direct image first moments, if np > 1 using image first moments after
cluster detection with getcluster.m)

16: for i = 1 : np do
17: Select gradients from i-th point source PGi ∈ RM2×2 from PGSH

18: Reconstruct the aperture plane phase with either the modal or zonal algorithm spec-
ified by parameter ’rec_method’ - getphase.m

19: Store the reconstruction in 3D matrix φSHap (:, :, i) ∈ RM×M×np
20: end
21: Restore the phase screen. If RL = 1 object-based tip/tilt is removed from φSHap and the

phase screen is the average of the corrected φSHap . If RL ∈ 〈0, 1〉 the phase screen is found
by back propagation and retrieval - getscreen.m

22: Correct for the phase screen - correctphase.m
23: Return relevant variables and plot relevant figures

Parameter description Example SH1 Example SH2

MLA lenslet pitch 2rmla 0.3mm 0.3mm
MLA lenslet focal distance fmla 5mm 10mm
Number of lenslets M (M ×M MLA) 3 3
Image sensor pixel size dpix 5.2µm 5.2µm

Table 5-2: Design parameters for simulating two SH sensor images. Only relevant parameters
for the SH design are listed, other light and simulation parameters are left out.
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5-3-2 Plenoptic 4F sensor

By setting the plenoptic sensor in 4F configuration the propagation from aperture plane
to image can be performed by a direct cascade of DFTs (5-2). The first propagation is
performed from aperture plane through the objective lens, the second from MLA front focal
plane through the MLA onto the image plane.

The series of functions that lead to a correction of the phase aberration is the same as described
for the SH sensor shown in Algorithm 9, with the main difference that two calls to function
planeprop.m are made. The input field is defined as U1 = Aejφ = ejφ ∈ RNP4F×NP4F , where
φ is the simulated aperture plane phase obtained from function getpupil.m. Just as described
in Section 5-3-1 for the SH sensor magnitude A is set to 1 and grid size NP4F is determined
by the preliminary checks in checkprelim.m.

The first call to planeprop.m propagates input field U1 through the objective lens. Field U2
in the objective lens back focal plane is then propagated through the MLA in the second call
to planeprop.m, resulting in complex field U3 in the image. In both calls planeprop.m checks
the input parameters for correct propagation, adds individual padding and generates pupil
masks.

The algorithm that simulates the P4F sensor image and phase reconstruction is presented
in Algorithm 10 as an overview in pseudocode.

P4F image examples Similar to Section 5-3-1 two examples of the simulated P4F image
are shown, leaving the reconstruction and correction steps for Section 5-4. Important design
parameters are listed in Table 5-3. Both examples differ from the SH images in Section 5-3-1
as the aberration defined is stronger and more lenslets are considered in the MLA such that a
clearer image is obtained. The obtained images are shown in Figure 5-21 for an MLA lenslet
focal distance fmla = 5mm and for fmla = 10mm in Figure 5-22. Note that the pupil mask
aperture plane - defined with the size of the objective lens- lets only the central part of the
trefoil aberration through.

Figure 5-21: An example of simulating the P4F sensor image with the CSS.m code and Algo-
rithm 10. From left to right: The phase aberration in the aperture plane pupil-limited by the
objective lens pupil mask, the mask of the objective lens itself, the MLA pupil mask and the final
sensor image. The red outlines in the sensor image show the sub-images. The generated phase
screen is a trefoil aberration (Zernike mode Z3

3 or Z9) with magnitude 2 · 10−6 [m]. The design
parameters are listed in Table 5-3 under ’Example P4F1’.
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Algorithm 10 Simulating P4F Sensor Image and Phase Reconstruction
Input: See Table 5-1

1: Parse all parameters, assign variables and check prerequisite conditions - checkprelim.m
2: Important parameters: aperture plane grid size NP4F , number of simulated point sources
np, objective lens and MLA parameters robj , fmla, rmla, fmla and M

3: Display sensor performance metrics from Section 3-3-4
4: Generate the pupil plane phases φp ∈ RNP4F×NP4F×np - getpupil.m
5: % Simulate the P4F sensor image for each point source O (i, :) %
6: for i = 1 : np do
7: Determine phase in aperture plane by selecting i-th 2D matrix from φp: φap =

φp (:, :, i) ∈ RNP4F×NP4F

8: Determine the location of the objective lens and define its input field in the front focal
plane Uin = e−jφap ∈ CNP4F×NP4F

9: Propagate Uin through the objective lens onto the MLA front focal plane - planeprop.m
10: Determine the MLA lenslet outlines Mla and centre locations MlaLoc
11: Set the objective lens output field as input field for the MLA and propagate it through

the MLA, resulting in image plane field Uout, image size him, sub-image outlines Cell
and centre locations CellLoc - planeprop.m

12: Record the sensor image Ic,i = |Uout|2 of point source i and digitize it (5-9): ISHi =
2b Ic,i

max(Ic,i)
13: end
14: Obtain the total sensor image by summing over all IP4F

i : IP4F = sum
(
IP4F
i

)
15: % Retrieve phase gradients and reconstruct the phase screen for each point source %
16: if P4Fslopes = "CAFADIS" then
17: % Aperture plane reconstruction with CAFADIS model and back-propagation %
18: Retrieve phase gradients PGP4F ∈ RP 2×2×np for each simulated point source, with

P 2 the number of pixels in each P4F sub-image - getPG.m (If np = using CAFADIS
slopes, if np > 1 using CAFADIS slopes after plenoptic reshuffling with Algorithm 3)

19: for i = 1 : np do
20: Select gradients from i-th point source PGi ∈ RP 2×2 from PGP4F

21: Reconstruct the aperture plane phase with either the modal or zonal algorithm
specified by parameter ’rec_method’ - getphase.m

22: Store the reconstruction in 3D matrix φP4F
ap (:, :, i) ∈ RP×P×np

23: end
24: Restore the phase screen. If RL = 1 object-based tip/tilt is removed from φP4F

ap and
the phase screen is the average of the corrected φP4F

ap . If RL ∈ 〈0, 1〉 the phase screen
is found by back propagation and retrieval - getscreen.m

25: else if P4Fslopes = "RayTracing" then
26: % Assign light rays to all illuminated plenoptic pixels and propagate them back to the

phase screen location and reconstruct the screen locally %
27: Reconstruct the phase screen by propagating light rays back through the P4F sensor

using geometrical optics - plenopticRT.m
28: end
29: Correct for the phase screen - correctphase.m
30: Return relevant variables and plot relevant figures
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Figure 5-22: An example of simulating the P4F sensor image with the CSS.m code and Algo-
rithm 10. From left to right: The phase aberration in the aperture plane pupil-limited by the
objective lens pupil mask, the mask of the objective lens itself, the MLA pupil mask and the final
sensor image. The red outlines in the sensor image show the sub-images. The generated phase
screen is a trefoil aberration (Zernike mode Z3

3 or Z9) with magnitude 2 · 10−6 [m]. The design
parameters are listed in Table 5-3 under ’Example P4F2’.

Parameter description Example P4F1 Example P4F2

Objective lens pitch 2robj 2.1mm 2.1mm
Objective lens focal distance fobj 30mm 60mm
MLA lenslet pitch 2rmla 0.3mm 0.3mm
MLA lenslet focal distance fmla 5mm 10mm
Number of lenslets M (M ×M MLA) 7 7
Image sensor pixel size dpix 5.2µm 5.2µm

Table 5-3: Design parameters for simulating two P4F sensor images. Only relevant parameters
for the P4F design are listed, other light and simulation parameters are left out.

5-4 Isoplanatic Simulation Results

The simulation of the SH and P4F WFS is performed for a number of situations and phase
screens, of which the most prominent results are presented here. This section considers the
results for isoplanatic aberrations, which means that the phase screen is generated inside the
pupil plane andRL = 1. At first Zernike modes are used to describe this phase screen, followed
by random Kolmogorov screens. The aberrations in this section are reconstructed using both
modal and zonal algorithms. Anisoplanatic aberrations will be discussed in Section 5-6.

In these simulations the aperture planes of both Shack-Hartmann and Plenoptic 4F sensor
are kept equal, such that both have the same aberration defined in their aperture plane.

5-4-1 Isoplanatic Zernike Modes

To briefly show the phase reconstruction results for Zernike modes two modes are generated
in the aperture planes of each sensor and reconstructed. Each of the presented results consists
of four images: the phase aberration in the pupil plane, the WFS reconstruction, the phase
profile of the DM and the residual phase after DM correction. It should be noted that the
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DM phase profile is simply the WFS reconstruction resampled at the grid size of the pupil
plane, as the correction algorithm explained in Section 5-2-9 assumes an ideal DM. The
design parameters of these simulations are listed in Table 5-4, together with the number of
modes considered in the modal reconstruction.

At first the SH sensor is simulated for an astigmatism aberration - Zernike mode Z2
2 - with

magnitude 3 · 10−6 [m] defined in the aperture plane. Figure 5-23 shows the results for
the modal algorithm, whereas Figure 5-24 shows the zonal reconstructed results. The same
approach is taken for a defocus aberration - Zernike mode Z0

2 - with the same magnitude.
The corresponding reconstruction results are presented in Figure 5-25 and Figure 5-26.

Figure 5-23: Modal reconstruction of simulated SH image with Z2
2 and magnitude 3 · 10−6 [m].

Figure 5-24: Zonal reconstruction of simulated SH image with Z2
2 and magnitude 3 · 10−6 [m].

A clear difference and benefit of the modal reconstruction algorithm is the grid size of the
WFS reconstructed phase. In the zonal algorithm the number of reconstructed phase points
depends on the number of measurements available. This means that the DM profile will be
drastically resampled, for example with factor ∼ 80 in Figure 5-24. The modal algorithm
does not suffer nearly as much from this drawback, as the Zernike modes can be generated
at any grid size requested. In the Toolbox this generation is limited to a maximum grid of
256 × 256, which means that a resampling with factor ∼ 3 would be required to obtain the
DM profile in Figure 5-23.
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Figure 5-25: Modal reconstruction of simulated SH image with Z0
2 and magnitude 3 · 10−6 [m].

Figure 5-26: Zonal reconstruction of simulated SH image with Z0
2 and magnitude 3 · 10−6 [m].

The same behaviour is observed in Figure 5-25 and Figure 5-26. The decrease in reconstruction
grid size clearly affects the correction and thus the phase residual - the modal phase residual
shows a much better modal reconstruction. Additionally, the decrease in grid size density
undersamples the corners such that the zonal phase reconstruction is clearly weaker than the
modal counterpart.

The same aberrations are defined for the P4F WFS, resulting in the reconstruction results
presented in Figure 5-27 up to Figure 5-30. The number of pixels in each P4F sub-image is
fixed to a maximum of 50 pixels such that reconstruction is achieved at reasonable speed.
This means that the isoplanatic phase reconstruction of the P4F sensor - using the CAFADIS
slope model (3-12) - uses much more measurements than the SH sensor. This is reflected in
the phase profile of the DM, which requires resampling with a lower factor. Additionally, the
objective lens requires a lower grid size for correct propagation and thus the aperture plane
grid size is lower as opposed to the SH sensor.

Figure 5-27: Modal reconstruction of simulated P4F image with Z2
2 and magnitude 3 ·10−6 [m].
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Figure 5-28: Zonal reconstruction of simulated P4F image with Z2
2 and magnitude 3 · 10−6 [m].

A primary conclusion that can be drawn from these results is that both zonal and modal
reconstruction algorithms work. The phase reconstruction is not as expected, but both al-
gorithms reconstruct the shape of the aberration very well. A second observation is that,
despite the significant increase in measurement count, the modal reconstruction outperforms
the zonal algorithm. Based on these two arguments, a smaller upsampling required for phase
correction and an overall better phase reconstruction, leads to the conclusion that the modal
algorithm outperforms zonal reconstruction in correcting for isolated Zernike modes.

The next simulation investigates the same for randomly generated Kolmogorov screens.

Figure 5-29: Modal reconstruction of simulated P4F image with Z0
2 and magnitude 3 ·10−6 [m].

Figure 5-30: Zonal reconstruction of simulated P4F image with Z0
2 and magnitude 3 · 10−6 [m].
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Parameter description SH sensor P4F sensor
Objective lens pitch 2robj - 2.1mm
Objective lens focal distance fobj - 60mm
MLA lenslet pitch 2rmla 0.3mm
MLA lenslet focal distance fmla 10mm
Number of MLA lenslets M (M ×M MLA) 11
Image sensor pixel size dpix 5.2µm
Wavelength of light λ 500nm
Number of reconstructed Zernike modes 60 200

Table 5-4: Relevant parameters for isoplanatic phase reconstruction in the SH and P4F sensors.

5-4-2 Isoplanatic Kolmogorov Screens

The reconstruction results for the Kolmogorov screens will be presented in a similar fashion
to Section 5-4-1. Both modal and zonal reconstruction algorithms are employed and design
parameters of Table 5-4 are retained. At first a Kolmorov screen with Fried parameter
r0 = 5 · 10−5 [m] is generated in the pupil plane, imaged by the SH sensor and reconstructed.
The results are shown in Figure 5-31 and Figure 5-32. The Kolmogorov screens in Figure 5-31
and Figure 5-32 contain larger patches of equal phase as opposed to the Zernike modes, which
is reflected by the small difference between the modal and zonal phase reconstructions. In
fact, the lower grid size in the zonal reconstruction resulted in an overall smoother residual.

Figure 5-31: Modal reconstruction of a random Kolmogorov screen, generated with r0 = 5 ·10−5

[m] and reconstructed using the SH sensor image.

Figure 5-32: Zonal reconstruction of a random Kolmogorov screen, generated with r0 = 5 ·10−5

[m] and reconstructed using the SH sensor image.
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The next Kolmogorov screen is stronger and generated with r0 = 3 · 10−5 [m]. Although the
zonal reconstruction captures the positive-valued phase regions of the screen well, the modal
algorithm captures both negative-valued regions and intermittent details better.

Figure 5-33: Modal reconstruction of a random Kolmogorov screen, generated with r0 = 3 ·10−5

[m] and reconstructed using the SH sensor image.

Figure 5-34: Zonal reconstruction of a random Kolmogorov screen, generated with r0 = 3 ·10−5

[m] and reconstructed using the SH sensor image.

The same Kolmogorov screens are generated for the P4F sensor. The following results show
that an increase in the number of obtained measurements significantly increases the recon-
struction performance in both modal and zonal algorithms.

Figure 5-35: Modal reconstruction of a random Kolmogorov screen, generated with r0 = 5 ·10−5

[m] and reconstructed using the P4F sensor image.
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Figure 5-36: Zonal reconstruction of a random Kolmogorov screen, generated with r0 = 5 ·10−5

[m] and reconstructed using the P4F sensor image.

The obtained residuals show that the zonal phase reconstruction fails at the edge of the
aperture. This means that the edges of the corresponding residual are much stronger than its
central part, overshadowing the central details. Overall it can be concluded that the modal
and zonal phase reconstructions lead to the same phase residual, without considering the pixels
around the aperture edge. Another interesting observation is that the zonal reconstruction is
significantly better in terms of reconstructing the Kolmogorov screen details.

Figure 5-37: Modal reconstruction of a random Kolmogorov screen, generated with r0 = 3 ·10−5

[m] and reconstructed using the P4F sensor image.

Figure 5-38: Zonal reconstruction of a random Kolmogorov screen, generated with r0 = 3 ·10−5

[m] and reconstructed using the P4F sensor image.

A closer look is taken at the modal phase reconstruction and how the orthonormal Zernike
coefficients change between pupil plane phase and its reconstruction. Function checkco-
effs.m generates M orthonormal N × N Zernike basis functions and stores them in matrix
Z⊥ ∈ RN2×M . An estimate is made of the orthonormal coefficients through a pseudo-inverse,
equivalent to the basic MVUE (A-62):

α̃ =
(
ZT⊥Z⊥

)−1
ZT⊥φ,
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where φ ∈ RN2 × 1 is the vectorized phase and α̃ the estimated coefficients. The coefficients
of both Kolmogorov screen and modal reconstruction are computed, referred to as α̃ref and α̃φ
respectively. Figure 5-39 and Figure 5-40 show how these coefficients change between reference
and reconstruction. Here the absolute value of the Kolmogorov coefficients α̃ref are plotted
against the absolute value of the difference |α̃ref − α̃φ|. The magnitude of these differences
is clarified by plotting it with a reversed (red) y-axis. This means that smaller red bars
point out smaller absolute differences between the reference and reconstruction, indicating
a better reconstruction of said mode. Figure 5-39 shows the coefficient decomposition for
the Kolmogorov screen generated with r0 = 5 · 105 [m], for both the SH and P4F sensors.
Figure 5-40 shows the same but for the stronger Kolmogorov screen, generated with Fried
parameters r0 = 3 · 10−5 [m].

From both figures it is clear that the modal reconstruction is generally mismatched on the
coefficients. From the reconstruction results above it is evident that the aberration profile is
reconstructed well, but there is a disagreement on the phase values. This is reflected by the
significant absolute difference in all plots.

Figure 5-39: The modal coefficient decomposition of the SH sensor (left) and the P4F sensor
(right), for a Kolmogorov screen generated with r0 = 5·10−5 [m]. The absolute coefficients of the
reference phase are shown in blue, the absolute difference between reference and reconstruction
coefficients in red. The latter is plotted with its own vertical axis, such that the magnitude of the
absolute difference per mode is clearly illustrated. Smaller red bars indicate smaller differences
and thus a better reconstruction per mode. The decomposition of the first 50 modes is shown.
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Figure 5-40: The modal coefficient decomposition of the SH sensor (left) and the P4F sensor
(right), for a Kolmogorov screen generated with r0 = 3·10−5 [m]. The absolute coefficients of the
reference phase are shown in blue, the absolute difference between reference and reconstruction
coefficients in red. The latter is plotted with its own vertical axis, such that the magnitude of the
absolute difference per mode is clearly illustrated. Smaller red bars indicate smaller differences
and thus a better reconstruction per mode. The decomposition of the first 50 modes is shown.

The results obtained from isoplanatic reconstruction, for both modal and zonal algorithms,
lead to the following conclusions:

• If the number of measurements is scarce (∼ 11), the modal algorithm is better. It
captures the stronger phase values and details better and does not require significant
resampling for correction. The zonal algorithm results in a smoother phase residual
due to its significant resampling but misses larger phase values and intermittent screen
details. Additionally, its reconstruction fails at the edges of the aperture.

• If a sufficient number of measurements is available (∼ 50), both algorithms perform very
similar. The zonal algorithms reconstruction the phase screen details better than the
modal counterpart, but suffers from the same aperture edge problems as it did before.

• Neither reconstruction reduces the residual as expected. To obtain a flatter phase
residual iterative correction is applied which will be detailed below.

5-4-3 Iterative Isoplanatic Phase Correction

The single-step isoplanatic phase corrections performed above does not flatten the phase
residual as expected. This reconstruction mismatch is attributed to the imaging process and
phase gradients retrieval. The most significant contributions to this mismatch are noise in
the pixel values, DFT pixel shifts and truncation errors.
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The first contribution results from light economy and is intrinsic to SH and P4F sensors, as
explained in Section 3-2-2. The second originates from the discrete Fourier transform used
in the imaging process. Depending on the field grid sizes the centres of these propagated
fields may be shifted by a pixel or two, possibly resulting in a faulty gradient retrieval. The
final contribution is a collection of multiple truncation errors, for example representing phase
aberrations and propagation by discrete pixels, representing the phase by a finite number of
modes M in the modal reconstruction or by a finite number of gradient measurements in the
zonal algorithm.

To improve performance the phase reconstruction and correction will be performed iteratively.
At each iteration the input phase screen is the residual phase aberration of the previous
iteration. The stopping criterion for this iterative correction is that the change in the residual’s
RMSE of the past two iterations is less than 0.1. A second stopping criterion is set for
a maximum number of 6 iterations. These stopping criteria are determined empirically,
concentrating on quick and significant improvements instead of perfect corrections.

Indifferent of chosen parameters the closed-loop phase reconstruction is performed by the
zonal algorithm. Initial tests of this closed-loop result in failed modal reconstructions after
the first iteration, whereas the zonal algorithm does not fail. This failure is attributed to the
finite number of modes considered in the modal reconstruction, which is upper-limited by:

M ≤ max
(1

2N
2, 200

)
,

where N2 is the number of slope measurement in either x- or y-direction. This criterion is
derived and explained in Section 5-2-7. This means that a maximum of 200 orthonormal
Zernike modes can be reconstructed by the implemented algorithm.

During the first iteration the modal reconstruction is able to identify the dominant modes
in the phase screen but cannot estimate the aberration completely - the same counts for the
zonal algorithm. The residual phase mostly contains higher-order oscillations and smaller
details, which can be described by higher-order Zernike modes. In the second iteration the
modal algorithm would require more than 200 modes to describe the remaining residual. As
these are unavailable, the modal algorithm fails to estimate the residual aberrations.

The zonal algorithm does not rely on this modal representation, which is reflected by its ability
to resolve phase screen details better. It is limited by the number of measurements available
which leads to large resampling factors, as explained above. From the second iteration on,
the residual aberrations are much smoother and flatter than the original phase screens. As
such, larger resampling factors are considered a minor hindrance.

To summarize, the iterative reconstruction algorithm implements the modal algorithm during
the first iteration, to remove most dominant contributions in the aberrations. From the second
iteration on the zonal algorithm is used instead to further flatten out the phase residual.
The iterative algorithm is tested for an astigmatism aberration - Zernike mode Z2

2 - with
magnitude 6 · 10−5[m]. The results for the first iteration, using modal reconstruction are
shown in Figure 5-41, whereas the results of the final iteration are shown in Figure 5-42,
obtained using zonal reconstruction.
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Figure 5-41: Isoplanatic iterative phase reconstruction for the SH sensor with a Zernike Z2
2

aberration and 6 · 10−6 [m] magnitude defined in the aperture plane. Iteration 1 out of 6.

Figure 5-42: Isoplanatic iterative phase reconstruction for the SH sensor with a Zernike Z2
2

aberration and 6 · 10−6 [m] magnitude defined in the aperture plane. Iteration 6 out of 6.

The iterative reconstruction scheme does not reduce the residual phase as expected. It is
most likely that the spatial resolution of the SH sensor cannot resolve the remaining smaller
details of the residual phase.

The next images show the iterative results for a Kolmogorov screen, generated with Fried
parameter r0 = 5 · 10−5 [m]. The obtained results already show that the iterative scheme
improves the phase reconstruction by 20 %. The reconstruction of the final iteration shows
that the SH does not sense the remaining residual well enough for correct reconstruction.

Figure 5-43: Isoplanatic iterative phase reconstruction for the SH sensor with a Kolmogorov
screen and r0 = 5 · 10−5 [m] defined in the aperture plane. Iteration 1 out of 6.
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Figure 5-44: Isoplanatic iterative phase reconstruction for the SH sensor with a Kolmogorov
screen and r0 = 5 · 10−5 [m] defined in the aperture plane. Iteration 6 out of 6.

A final test is performed for a stronger Kolmogorov screen, generated with r0 = 3 · 10−5 [m].
These results are shown below. As expected, the stronger aberration results in a higher RMSE
but also an increased performance between iteration 1 and 5 of more than 40 %. Despite the
improved performance of the iterative algorithm, it is clear that the phase aberrations cannot
be fully corrected for.

Figure 5-45: Isoplanatic iterative phase reconstruction for the SH sensor with a Kolmogorov
screen and r0 = 3 · 10−5 [m] defined in the aperture plane. Iteration 1 out of 6.

Figure 5-46: Isoplanatic iterative phase reconstruction for the SH sensor with a Kolmogorov
screen and r0 = 3 · 10−5 [m] defined in the aperture plane. Iteration 6 out of 6.

The algorithm’s inability to further reduce the residual can be attributed to two factors:

1. The phase reconstruction errors identified in the single-step corrections. Iterative re-
construction would only help reduce these errors instead of solving them entirely.

2. The scattering of pixels over the sensor image. Higher-order oscillations that remain in
the phase residual disperse the intensity patterns over the sub-images. This is especially
detrimental for the image first moment algorithm.
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The latter can be reinforced by observing the SH sensor images for the first and last iteration
of the r0 = 3·10−5 [m] Kolmogorov screen, shown in Figure 5-47 and Figure 5-48. Without the
first phase reconstruction the Hartmannogram in Figure 5-47 already shows significant spread-
ing per sub-image, something that can be identified for all simulated Kolmogorov screens due
to the higher-order phase oscillations. In the 5-th iteration this spreading is only worsened,
most likely leading to inaccurate centroid estimations and insufficient phase reconstructions.

Figure 5-47: Iterative SH sensor simulation of a Kolmogorov screen, generated with r0 = 3·10−5

[m]. The input phase aberration is shown on the left, the final SH sensor image on the right.
Iteration 1 out of 6.

Figure 5-48: Iterative SH sensor simulation of a Kolmogorov screen, generated with r0 = 3·10−5

[m]. The input phase aberration (phase residual of iteration 4) is shown on the left, the final SH
sensor image on the right. Iteration 6 out of 6.

The same aberration simulated for the SH sensor is provided to the P4F sensor as well, using
the same iterative scheme. The results are presented in Figure 5-49 up to Figure 5-54.
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Figure 5-49: Isoplanatic iterative phase reconstruction for the P4F sensor with a Zernike Z2
2

aberration and 6 · 10−6 [m] magnitude defined in the aperture plane. Iteration 1 out of 6.

Figure 5-50: Isoplanatic iterative phase reconstruction for the P4F sensor with a Zernike Z2
2

aberration and 6 · 10−6 [m] magnitude defined in the aperture plane. Iteration 6 out of 6.

Figure 5-51: Isoplanatic iterative phase reconstruction for the P4F sensor with a Kolmogorov
screen and r0 = 5 · 10−5 [m] defined in the aperture plane. Iteration 1 out of 6.

Figure 5-52: Isoplanatic iterative phase reconstruction for the P4F sensor with a Kolmogorov
screen and r0 = 5 · 10−5 [m] defined in the aperture plane. Iteration 6 out of 6.
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Figure 5-53: Isoplanatic iterative phase reconstruction for the P4F sensor with a Kolmogorov
screen and r0 = 3 · 10−5 [m] defined in the aperture plane. Iteration 1 out of 6.

Figure 5-54: Isoplanatic iterative phase reconstruction for the P4F sensor with a Kolmogorov
screen and r0 = 3 · 10−5 [m] defined in the aperture plane. Iteration 6 out of 6.

The results of the iterative P4F reconstruction algorithm are the same as previous results
presented for the SH sensor: The iterative algorithm offers almost no improvement for re-
constructing Zernike modes, but does significantly increase the performance for Kolmogorov
screens. For stronger Kolmogorov screens it is observed that both the initial reconstruction
error is larger, but also the iterative improvement to the RMSE.

Despite these similarities the P4F sensor does show significantly better reconstruction results
for the same input aberrations, an improvement that can be attributed to the following
differences between the sensors:

1. Gradient sample size: Using the CAFADIS modes P4F sensor retrieves a 50 × 50 grid
of phase gradients, whereas the SH sensor is limited to 11× 11 grids for the gradients.

2. Imaged aberration: In this comparison both P4F and SH aperture plane sizes are kept
equal for fair comparison, but the shapes of the aperture masks are not equal. The
P4F only images the central part of the aberration and blocks the corners, resulting in
a weaker sensed and reconstructed phase.

3. Sub-images: The P4F MLA performs angular sampling and thus enables better sepa-
ration of high- and low-frequency content, compared to the SH sensor. This benefit is
at the cost of sensitivity.

As with the observed Hartmannogram one can take a closer look at the P4F sensor images of
the last Kolmogorov screen, generated with r0 = 3 · 10−5 [m]. The input phases and resulting
sensor images are shown in Figure 5-55 and Figure 5-56. It can be readily observed that
scattering is also present in these images, due to the higher-order oscillations. As opposed to
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the image first moment calculations, the CAFADIS slope model is better suited to manage
this dispersion. On the other hand, the final iteration clearly shows the insufficient sensitivity
of the P4F sensor, inherent to its design. During iterative phase correction the dominant
phase values are reduced, pushing pixels in the plenoptic image to the centremost lenslets. If
the phase residual is weak enough all light is captured by the centremost lenslet, returning
phase gradients equal to 0.

Figure 5-55: Iterative SH sensor simulation of a Kolmogorov screen, generated with r0 = 3·10−5

[m]. The input phase aberration is shown on the left, the final SH sensor image on the right.
Iteration 1 out of 6.

This behaviour is recognized in the final iteration, where most pixels in the P4F image are
captured by the 3 × 3 sub-image grid in the centre, although the pixels in the centremost
lenslet are the brightest. This results in smaller gradients to be sensed and thus a weaker
phase reconstruction to be returned.

Figure 5-56: Iterative SH sensor simulation of a Kolmogorov screen, generated with r0 = 3·10−5

[m]. The input phase aberration (phase residual of iteration 4) is shown on the left, the final SH
sensor image on the right. Iteration 5 out of 6.
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5-4-4 Conclusion on Isoplanatic Results

The isoplanatic reconstruction and correction results have demonstrated how the developed
simulation toolbox can correct for phase aberrations in the aperture plane. Both zonal and
modal algorithms succeeded in reconstructing the overall aberration profile, but failed at
correctly capturing all phase values.

The comparison between modal and zonal reconstruction results lead to the conclusion that
both perform alike, given enough gradient measurements are available. If the number of sensed
gradients is scarce, the modal algorithm is better in removing dominant phase patches. In
the SH sensor this is especially beneficial, as its number of sensed gradients are limited by
the number of lenslets M2.

The single-step phase reconstruction is incapable of completely capturing the phase aberra-
tions, leading to the implementation of an iterative reconstruction and correction algorithm.
For simulated Zernike aberrations this iterative scheme does not improve results significantly.
It does perform better in the simulation of Kolmogorov screens, where the RMSE of the
phase residual is clearly reduced after 6 correction steps. Despite significant improvements
the iterative algorithm does not converge but stops at the maximum number of iterations.
As explained in Section 5-4-3, the stopping criteria are determined with emphasis on clear
improvements without too many iterations, instead of performing perfect correction.

Finally, the presented results show that the plenoptic 4F outperforms the Shack-Hartmann
sensor with the developed toolbox. It must be noted that this comparison is not conducted on
equal grounds, as the number of P4F phase gradients surpasses that of the SH sensor, giving
the P4F sensor the upper hand. Section 5-5 compares the sensors for isoplanatic aberrations
once more, by considering more fair grounds. Section 5-6 investigates the performance of the
anisoplanatic reconstruction algorithm.

5-5 Comparing the Shack-Hartmann and Plenoptic 4F Sensor

The isoplanatic results presented in Section 5-4 have shown the performance of the devel-
oped simulation toolbox for different types of simulations. This section uses the conclusions
of Section 5-4 to appropriately choose the experimental conditions, such that a comparison
on equal grounds between the SH and P4F sensors is conducted. Such a comparison should
not favour either sensor but highlight each of their qualities. This means that the number of
obtained gradient measurements, the gradient sample count, should be kept equal.

In order to answer the first research question posed in Chapter 1 the performance of both
sensors should be compared as clearly as possible. The chosen comparison is thus conducted
in an isoplanatic setting without iterative correction. The iterative scheme improves the
correction result, but does not favour either of the two sensors and as such does not benefit
the comparison. The phase reconstruction is conducted by the modal algorithm. The phase
screens will be generated using Kolmogorov screens for varying Fried parameters r0. The
parameters used in these simulations are listed in Table 5-5.

Previous isoplanatic simulations demonstrated the reconstruction results for varying input
conditions, such as different Zernike modes or Kolmogorov screens. These results have led
to interesting and clear conclusions on the developed algorithms themselves. For additional
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comparisons between both sensors, it is interesting how the phase reconstructions change
when design parameters are changed.

This comparison will be performed for three different Kolmogorov screens of varying strengths.
Each screen is imaged by the SH and P4F sensors for two different microlens arrays. Each
scenario is generated with the same aperture plane size, such that the same Kolmogorov
screen is imaged for different MLAs. This also means that the smaller array only images the
central part of the aberrations, which is reflected by the zero-padding present in the images.

Finally, the aperture plane sizes between SH and P4F sensor are kept equal. This was
mentioned above but additional emphasis is needed, as it means that the objective lens
parameters of the P4F sensor are adjusted to fit different MLA sizes. Looking back at the
performance metrics defined for the plenoptic sensor in Section 3-3-4 this reduces the dynamic
range and but may improve the sensitivity.

The first Kolmogorov screen is generated with r0 = 8 ·10−5 [m] and can be considered a weak
aberration, in comparison to previously employed screens. The sensors in the first scenario
use an 11 × 11 MLA and are referred to as SH 1 and P4F 1 respectively. Their results
are shown in Figure 5-57 and Figure 5-58, employing the same image structure as presented
in Section 5-4.

Figure 5-57: Isoplanatic phase reconstruction of the SH 1 sensor with an 11 × 11 MLA for a
Kolmogorov screen, generated with r0 = 8 · 10−5 [m].

Figure 5-58: Isoplanatic phase reconstruction of the P4F 1 sensor with an 11 × 11 MLA for a
Kolmogorov screen, generated with r0 = 8 · 10−5 [m].

The second scenario uses a 33 × 33 MLA and the results for corresponding sensors SH 2
and P4F 2 are shown below. The aberration defined in their aperture planes are the fully
illuminated versions of the Kolmogorov screen in Figure 5-57 and Figure 5-58.
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Figure 5-59: Isoplanatic phase reconstruction of the SH 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 8 · 10−5 [m].

Figure 5-60: Isoplanatic phase reconstruction of the P4F 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 8 · 10−5 [m].

A clear observation is the improvement of the phase correction, where the residual RMSE is
reduced by a factor 3 in both sensors. In the SH sensor this is simply due to the availability
of more gradient measurements. There is no change in the spatial sampling of the aperture
plane, only more spatial sections are imaged. In the P4F sensor it is both the increase in
spatial illumination and sensitivity that improves the results. From Table 5-5 it is seen that
the dynamic range of the P4F sensor remains approximately the same, while the sensitivity
is significantly improved. As explained above, the radius of the objective lens is increased
such that both SH 2 and P4F 2 have an equal aperture plane size. Due to the plenoptic
equality (3-11) the objective lens focal distance is increased accordingly, as long as the MLA
lenslet sizes remain unchanged. This results in an improvement of the P4F 2 sensitivity.

The same scenarios are simulated for a stronger Kolmogorov screen, generated with r0 =
5 · 10−5 [m]. The results are shown below, in Figure 5-61 up to Figure 5-64.

Figure 5-61: Isoplanatic phase reconstruction of the SH 1 sensor with an 11 × 11 MLA for a
Kolmogorov screen, generated with r0 = 5 · 10−5 [m].
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Figure 5-62: Isoplanatic phase reconstruction of the P4F 1 sensor with an 11 × 11 MLA for a
Kolmogorov screen, generated with r0 = 5 · 10−5 [m].

Figure 5-63: Isoplanatic phase reconstruction of the SH 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 5 · 10−5 [m].

Figure 5-64: Isoplanatic phase reconstruction of the P4F 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 5 · 10−5 [m].

Again, a significant improvement is observed between the two scenarios, where the larger
MLA improved correction results by a factor 2. In this experiment the P4F 2 sensor performs
better than its Shack-Hartmann counterpart.

A third and final Kolmogorov screen is simulated with Fried parameter r0 = 2 · 10−5 [m],
which can be regarded as a strong aberration in the context of these simulations. As such,
the SH 2 and P4F 2 are used for phase reconstruction, their results shown in Figure 5-65
and Figure 5-66.
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Figure 5-65: Isoplanatic phase reconstruction of the SH 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 2 · 10−5 [m].

Figure 5-66: Isoplanatic phase reconstruction of the P4F 2 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 2 · 10−5 [m].

As expected, the stronger screen is devastating to the phase reconstructions. From the SH 2
reconstruction it is clear that the SH sensor lacks the dynamic range to fully sense the aber-
rations. P4F 2 is less hindered by this problem since the stronger corners of the Kolmogorov
screen are blocked by the objective lens. Still, this example presents the opportunity for a
third P4F design. This P4F 3 uses an objective lens twice as small increasing its dynamic
range at the cost of sensitivity. The results are shown below.

Figure 5-67: Isoplanatic phase reconstruction of the P4F 3 sensor with a 33 × 33 MLA for a
Kolmogorov screen, generated with r0 = 2 · 10−5 [m].

It should be noted that the smaller objective lens passes less light and thus the sensed aber-
rations are weaker. Nevertheless, the increase on dynamic range allows one to image even
stronger aberrations. This can be observed from the obtained sensor images for this Kol-
mogorov screen, shown in Figure 5-68. The leftmost image shows the Hartmannogram ob-
tained from the stronger screen. The P4F 2 image is shown in the middle, with the P4F 3
image on the right.
The SH sensor image shows a strong dispersion of the pixels over the sub-images. This
spreading is detrimental for the image first moment calculation, as reflected by Figure 5-65.
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The image of the P4F 2 sensor shows that many sub-images are filled with the scattered
pixels, indicating that the dynamic range may not be sufficient for stronger aberrations. The
image of the P4F 3 sensor shows exactly the necessary improvement to the dynamic range.
Although a smaller section of the Kolmogorov screen is imaged, it is clear that even stronger
aberrations can be imaged as the dynamic range is sufficient. In comparison to SH 2 it should
be noted that the sensitivity is increased sixfold, which means that SH 2 is still better at
resolving the weaker phase details.

Figure 5-68: Obtained sensor images by simulating the SH 2 (left), P4F 2 (middle) and P4F 3
(right) sensors for a Kolmogorov screen generated with r0 = 2 · 10−5 [m]. This screen is placed
in the aperture plane of each sensor. The microlens contains 33× 33 lenslets.

Parameter description SH 1 P4F 1 SH 2 P4F 2 P4F 3
Objective lens pitch 2robj - 1650µm - 4950µm 2475µm
Objective lens focal distance fobj - 100mm - 320mm 155mm
MLA lenslet pitch 2rmla 150µm 150µm
MLA lenslet focal distance fmla 10mm 10mm
MLA lenslet grid 11× 11 33× 33
Image sensor pixel size dpix 5.2µm 5.2µm
Wavelength of light λ 500nm 500nm
Reconstructed Zernike modes 60 200
Performance metric
Dynamic Range 0.015 0.0136 0.015 0.0145 0.0291
Sensitivity 3 · 10−4 0.0027 3 · 10−4 9 · 10−4 0.0018
Gradient sample size 121 121 1225 1225 1225

Table 5-5: Simulation parameters and performance metrics of the comparison conducted between
the Shack-Hartmann and plenoptic 4F sensors.

Conclusions on the Comparisons The isoplanatic simulations conducted above support the
conclusions drawn from Chapter 3, where the SH sensor can still outperform the P4F sensor,
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based on the performance metrics. It is possible to improve the P4F performance, by for
example adding more lenslets to the MLA or reducing the objective lens size, but these
adjustments always results in trade-offs. In the example of a larger MLA one can choose to
improve the plenoptic sensitivity, by keeping the aperture planes between the sensors equal.
This was done for P4F 2, but resulted in a dynamic range inferior to that of SH 2.
On the other hand one can increase the plenoptic dynamic range by keeping the size of the
objective lens fixed and adding more lenslets to the microlens array. This was done for P4F
3 and significantly improved the dynamic range. The resulting trade-off is that the section
of the Kolmogorov screen imaged by P4F 3 is smaller than for SH 2. This trade-off leads to
larger differences between the image phases of SH 2 and P4F 3, making a comparison less
meaningful.
As a final statement, it can be concluded that the performance of the plenoptic sensor de-
pends on both the microlens array design freedom and aberration strengths. It is clear that
the stronger Kolmogorov screens, associated with r0 = 5 · 10−5 [m] and 2 · 10−5 [m] respec-
tively, highlight the limited dynamic range of the SH sensor. The plenoptic WFS is able to
reconstruct these strong aberrations better. On the other hand, the SH sensor will outperform
the P4F WFS for weaker aberrations, for example shown in Figure 5-59 and Figure 5-60.
The last simulations performed with the toolbox are the reconstructions of anisoplanatic
aberrations. Without considering the plenoptic Ray Tracing algorithm, anisoplanatic phase
screen retrievals depend on the quality of the isoplanatic reconstructions. As such, the aniso-
planatic simulations should show how the screens are retrieved and which method of retrieval
performs best. The conclusions drawn on the anisoplanatic reconstructions are focussed on
the different retrieval methods, not on differences between the SH and P4F reconstruction.

5-6 Anisoplanatic Simulation Results

Simulating anisoplanatic aberrations is interpreted by the simulation toolbox in shifting the
phase screen between the object and pupil planes. The governing parameter is the distance
ratio RL, which is equal to 1 for isoplanatic aberrations and a phase screen inside the pupil
plane. For any value RL ∈ 〈0, 1] the phase screen is placed at a distance (1−RL) from the
WFS pupil plane.
The results presented in this section are focussed on the phase retrieval algorithm presented
in Section 5-2-8, in order to answer the second research question posed in Chapter 1. As
such WFS sensor images and pupil plane reconstructions will not be presented, but only the
simulated phase screen and retrieved results.
The need for an anisoplanatic model, as elaborated in Section 4-2, arises from atmospheric
turbulence introduced outside the pupil plane. In reality one cannot isolate one point source
from the imaging process and multiple aberrations are defined in the pupil plane, as long as
emitted light is considered to be incoherent. Additionally, performing anisoplanatic recon-
struction for a single source does not illustrate the full functionality of the derived algorithm.
Throughout these simulations it is assumed that each point source emits incoherent light.
As a final remark, the phase screen in these simulations is generated using Zernike modes.
From the isoplanatic imaging of multiple Kolmogorov screens, shown in Section 5-4-3 and Sec-
tion 5-5, it is clear that higher-order oscillations scatter pixels in each sub-image. If multiple
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sources are imaged the sensor image contains the superposition of these dispersions, one for
each point source. This will be impossible to process for the MPI gradient retrieval algorithms
elaborated in Section 5-2-6, resulting in bad reconstructions.

As explained in Section 5-2-8 the phase screen is retrieved by either back-propagation of the
pupil plane reconstructions and estimation of the hidden piston modes, or back-propagation
of the phase gradients and a local reconstruction of the phase. Throughout the anisoplanatic
results these methods are referred to as ’Retrieval 1’ and ’Retrieval 2’, respectively. The object
plane contains 5 simulated point sources located at angular coordinates (±0.01,±0.01) [rad]
and (0, 0) [rad]. This means one source lies on the optical axis and the others in the corners
of the object plane. To observe the algorithm performance both methods are compared for
a flat phase screen of φscreen = 0 with RL = 0.9, shown in Figure 5-69. The retrieved phase
screens for both the SH and P4F sensor are shown in Figure 5-70 and Figure 5-71, where the
local reconstruction of ’Retrieval 2’ is performed by the zonal algorithm.

Figure 5-69: The simulated phase screen (left) and the selected phase screen cut-outs (right).
Each red dot is the centre of a phase screen cut-out, the area of said cut-out outlined in the same
colour. The width of each cut-out is approximately 3/5 of the phase screen width. The simulated
point sources are placed at angular coordinates (±0.01,±0.01) [rad] and (0, 0) [rad].

Figure 5-70: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.9
for the SH sensor. The phase screen is a piston aberration and the phase screen cut-outs are shown
in Figure 5-69. The screen is retrieved using either back-propagation of reconstructed phases or
local phase screen reconstruction, referred to as ’Retrieval 1’ and ’Retrieval 2’ respectively.
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Figure 5-71: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.9
for the P4F sensor. The phase screen is a piston aberration and the phase screen cut-outs are
shown in Figure 5-69. The screen is retrieved either by back-propagation of reconstructed phases
or local phase screen reconstruction, referred to as ’Retrieval 1’ and ’Retrieval 2’ respectively.

The zonal algorithm is chosen for ’Retrieval 2’, as more phase gradients are available in
the phase screen compared to the pupil plane, thus increasing the performance of the zonal
reconstruction. The objects have been chosen such that the central part of the phase screen
is illuminated by multiple sources, providing more overlapping measurements. It should be
noted that each imaged pupil plane phase consists of the projected phase screen plus object-
based tilt phase, such that the angular position of the source shows up in the image. This
OBT is removed from the pupil plane reconstruction before back-propagation.

From Figure 5-70 and Figure 5-71 one could conclude that ’Retrieval 1’ is better than a local
phase screen reconstruction. In this example the back-propagated phases are purely OBT
tilt aberrations that are removed before the phase screen retrieval. From Section 5-4 it was
clear that isoplanatic phase reconstruction could not fully correct for phase aberrations. In
the example of Figure 5-70 and Figure 5-71 this means that there is a difference between the
original object-based tilt added to each pupil plane - in getpupil.m - and reconstructed OBT
that is removed before back-propagation. This is reflected in the images of ’Retrieval 1’ by
tilt-blocks in the retrieved phase screen, where the phase screen cut-outs are placed.

The same problem is present in ’Retrieval 2, where phase gradients are propagated back to
the phase screen, averaged at overlapping pixels and used to locally reconstruct the phase
screen. The only reason why ’Retrieval 1’ performs better is due to the reconstruction error
present in the data. This error in the reconstructed pupil planes is in the order of 10. In the
back-propagated phase gradients this error is in the order 105, since the gradients themselves
are in the order of 106. This means that ’Retrieval 2’ is more sensitive to errors present in
the data.

In the next experiment a defocus aberration is generated in the phase screen with magnitude
6 · 10−6 [m] for RL = 0.6. This means that the phase screen is placed further from the pupil
plane and the point sources should be placed closer to the optical axis, to ensure sufficient
cut-out overlap. The sources are now located at angular coordinates (±0.004,±0.004) [rad]
and (0, 0) [rad]. The results of these new simulation parameters are shown below.
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Figure 5-72: The simulated phase screen (left) and the selected phase screen cut-outs (right).
Each red dot is the centre of a phase screen cut-out, the area of said cut-out outlined in the same
colour. The width of each cut-out is approximately 3/5 of the phase screen width. The simulated
point sources are placed at angular coordinates (±0.004,±0.004) [rad] and (0, 0) [rad].

Figure 5-73: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.6
for the SH sensor. A Zernike Z0

2 aberration with magnitude 6 · 10−6 [m] is generated in the
phase screen. The phase screen cut-outs are shown in Figure 5-72. The screen is retrieved either
by back-propagation of reconstructed phases or local phase screen reconstruction, referred to as
’Retrieval 1’ and ’Retrieval 2’ respectively.

Figure 5-74: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.6
for the P4F sensor. A Zernike Z0

2 aberration with magnitude 6 · 10−6 [m] is generated in the
phase screen. The phase screen cut-outs are shown in Figure 5-72. The screen is retrieved either
by back-propagation of reconstructed phases or local phase screen reconstruction, referred to as
’Retrieval 1’ and ’Retrieval 2’ respectively.

With the addition of the defocus aberration ’Retrieval 2’ performs significantly better. It is
able to reconstruct the screen as a much smoother surface and offers an improved correction
over ’Retrieval 1’. It should be noted that it does not perfectly correct for the phase screen. In
the back-propagated gradients the aberration reconstruction errors are present, as well as the
insufficient estimation of the OBT terms. This means that the reconstruction error returns
in the phase screen retrieval twofold. Nevertheless, it performs better than ’Retrieval 1’.

A final experiment is conducted for a different phase screen, while keeping the point source
coordinates and distance ratio RL the same. The phase screen is generated by a superposition
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of Zernike modes Z2
2 , Z0

2 and Z−3
3 with magnitudes

[
3 1 2

]
· 10−6 [m] respectively. The

results of both retrieved phase screens are shown below, in Figure 5-75 for the SH sensor and
in Figure 5-76 for the P4F sensor.

Figure 5-75: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.6
for the SH sensor. The phase screen is generated with a superposition of Zernike modes Z2

2 , Z0
2

and Z−3
3 , with magnitudes 3 · 10−6, 1 · 10−6 and 2 · 10−6 respectively, all expressed in [m]. The

phase screen cut-outs are the same as shown in Figure 5-72, albeit for a different phase screen.
The screen is retrieved either by back-propagation of reconstructed phases or local phase screen
reconstruction, referred to as ’Retrieval 1’ and ’Retrieval 2’ respectively.

Figure 5-76: Phase screen retrieval using anisoplanatic aberration reconstruction with RL = 0.6
for the P4F sensor. The phase screen is generated with a superposition of Zernike modes Z2

2 , Z0
2

and Z−3
3 , with magnitudes 3 · 10−6, 1 · 10−6 and 2 · 10−6 respectively, all expressed in [m]. The

phase screen cut-outs are the same as shown in Figure 5-72, albeit for a different phase screen.
The screen is retrieved either by back-propagation of reconstructed phases or local phase screen
reconstruction, referred to as ’Retrieval 1’ and ’Retrieval 2’ respectively.

These phase screen retrievals confirm previous results, where ’Retrieval 1’ performs best when
the phase screen consists of piston and tilt phases. When aberrations are added to the phase
screen ’Retrieval 2’ shows better results.
It should be noted that the defined phase screen aberrations should be weaker than the
object-based tilt terms enforced by the angular coordinates of the sources. This weakness in
the toolbox is noted in Section 5-2-6 as well, where phase gradients are incorrectly assigned
to imaged point sources if the aberrations are too strong. In the multi-point source imaging
algorithms, pixels in the sub-images are assigned to their corresponding object based on the
expected pattern. This pattern is determined by the aberration-free image of each point
source, which is related to the OBT phase terms. The algorithm attempts to fit the pixels
in the sub-image to this expected pattern. When the best fit is determined the pixels are
assigned to the closest expected location and corresponding point source.
If the defined phase aberrations are stronger than the object-based tilts, the recorded sub-
image may differ significantly from the expected pattern. In an attempt to find the best fit,
pixels may be assigned incorrectly to point sources, resulting gradients being mixed between
simulated objects. Without further possibility to correctly separate the phase gradients an
ill-conditioned phase reconstruction is the only result.
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Conclusion on Anisoplanatic Aberrations Which approach of phase screen retrieval is best
depends on two conditions: 1) the illumination of the phase screen and 2) the dominant
aberrations in the phase screen. In most realistic scenarios it can be assumed that the phase
screen is consists of modes other than piston and tilt. If this assumption holds true the
retrieval performance rests on the phase screen illumination.

If the number of simulated objects is scarce, or the phase screen cut-outs only fill a small region
of the screen, one should choose ’Retrieval 1’. This approach propagates the reconstructed
pupil plane phases back to the phase screen and finds the optimal piston correction minimizing
the variance between overlapping pixels. The benefit of this method is that it only considers
known pixels, which are pixels in the phase screen whose phase- or gradient-value is known.
The drawback of this approach is that the retrieved phase screen is discontinuous.

If the phase screen is sufficiently illuminated, most of the phase- and gradient-values in the
pixel are determined. In this case it is beneficial to average the gradients at overlapping pixels
and reconstruct the phase screen using a zonal or modal algorithm. The unknown pixels are
filled with zeroes, but they do not influence the reconstruction result significantly, since they
are outnumbered by the known gradients. This approach results in a much smoother retrieval
of the screen and is preferred in most cases.

When comparing the SH and P4F sensors, there is little difference in retrieval performances
between them. It should be repeated that the retrieval algorithm is sensitive to measurement
noise, as it is returned twofold in the reconstructions. Reconstruction errors inherent in the
isoplanatic algorithms are carried over to the retrieved phase screen, as well as mismatches in
removing the object-based tilt phases. In general it can be concluded that a large gradients
sample count is beneficial to the retrieval process.

With all simulation aspects performed and all reconstruction results concluded on, the final
conclusions of this thesis are presented in Chapter 6.
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Chapter 6

Conclusion

This chapter collects important results obtained in previous chapters and forms final conclu-
sions for this thesis. These conclusions are followed by future recommendations and possible
improvements for the author’s work. Chapter 1 introduced the two research questions that
determined the direction of this thesis. The conclusion presented in this chapter is aimed at
answering both questions.

This thesis is separated into five parts. Chapter 1 and Chapter 2 introduce the problem tackled
in this thesis and establish the basic notions in Adaptive Optics (AO). Chapter 3 presents the
literature study focussed at the working principles of the Shack-Hartmann (SH) and plenoptic
sensors. The second part of the literature study, that concentrates on atmospheric turbulence
and anisoplanatic aberrations, is detailed in Chapter 4. The major contribution of the author
is presented in Chapter 5, which is the development of the simulation toolbox . The final part
is the conclusion of this thesis, presented in this chapter.

The conclusions drawn in Chapter 3 allows one to answer the first research question, which
will be repeated here:

How does the plenoptic sensor improve modern wavefront sensing and will
it provide a better alternative to the Shack-Hartmann sensor?

Both sensors are subject to a comparative investigation, which was conducted on theoretical
performance metrics, as well as practical studies done by other authors.

From these comparisons it was concluded that the plenoptic sensor cannot outperform the
SH sensor for a shared microlens array (MLA), based on the maximum and minimum de-
tectable wavefront slopes. The corresponding performance metrics are dynamic range and
sensitivity. On the other hand, the plenoptic design facilitates straightforward improvement
of these metrics. For example, one can effortlessly increase the dynamic range by adding more
lenslets to the MLA. By decreasing the individual lenslet size, one decreases the minimum
detectable slope and thus improves the plenoptic sensitivity. This improvement does decrease
the dynamic range, presenting a trade-off for the plenoptic sensor between dynamic range and
sensitivity. The sensitivity of the plenoptic sensor can be improved by modulating the beam

Master of Science Thesis S. A. Stouten



114 Conclusion

focussed by the objective lens. It was shown that this modulation significantly enhanced the
plenoptic sensitivity, up to the point that was roughly the same as the SH sensor.

In turn, the SH’s sensitivity is effortlessly improved by increasing the resolution of the image
sensor. If larger lenslets are considered in the MLA the dynamic range is improved, as well
as the average slope error. Again, one is presented with a trade-off, now between dynamic
range and slope error.

The conclusion presented in Chapter 3 states that the design freedom of the MLA determines
how the plenoptic sensor can outperform the SH sensor. If large arrays with small lenslets
are available it becomes significantly easier to improve the plenoptic dynamic range and
sensitivity. To guide this statement the performance metrics of both sensors are compared to
obtain the following inequalities (3-24):

M ≥ L

fmla
+ 1,

dpix
2fmla

≥ dmla
L

,

dmla
dpix

≥ 2M√
π
,

where the MLA consists ofM×M lenslets, each with pitch dmla and focal distance fmla. The
size of the image sensor pixels is given by dpix. The separation between objective lens and
MLA in the plenoptic sensor is given by L. Inequalities (3-24) are determined by comparing
the dynamic ranges, sensitivities and gradient sample sizes respectively. Satisfaction of each
inequality makes the plenoptic sensor outperform the SH sensor on the corresponding metric.

Beyond performance metrics, the design of the plenoptic sensor allows one to reconstruct the
4D light field. This reconstruction considers much more information than the standard meth-
ods described for the SH sensor, that are only able to retrieve 2D phase information on the
aperture plane. The Ray Tracing model detailed in Section 3-3 reads the recorded plenoptic
image and converts each illuminated pixel into a pencil of rays. Using geometrical optics
these pencils are propagated back to the phase screen, such that direct phase reconstruction
of this screen can be performed.

The second research question is answered by the second part of the literature study, conducted
in Chapter 4. In this chapter, emphasis is placed on the nature of atmospheric turbulence
and how to represent it by a mathematical model. The corresponding research question is
repeated for clarity:

How can anisoplanatic phase reconstruction be conducted in a single frame?

Multiple representations have been investigated, leading to the conclusion that the phase
screen model with the Propagation method is best suited for implementation in this the-
sis. This model describes turbulent three-dimensional volumes as a set of dominant two-
dimensional layers. The wavefront sensor (WFS) input aberrations are generated by pro-
jecting each illuminated phase screen onto the pupil plane. By reversing the direction of
projection a backwards model is described, that enables the reconstruction of the original
phase screens, using WFS outputs.

S. A. Stouten Master of Science Thesis



6-1 Recommendations for Future Research 115

The reconstruction of the phase screen can be performed by two methods. The first method
places the WFS phase reconstructions back in the phase screen, whereas the second method
places the obtained gradients in the phase screen and performs a local phase reconstruction.

The theoretical answers to both research questions are supported by experiments, conducted
with the developed simulation toolbox. This toolbox is elaborated in Chapter 5 and presents
the author’s main contribution to this thesis. The simulations can be separated into three
parts. The first part, detailed in Section 5-4 tests the toolbox functionality for isoplanatic
aberrations under different experimental conditions and concludes on the best reconstruction
methods. It was found that modal phase reconstruction outperforms the zonal algorithm.
Additionally, the results of the single-step reconstructions and corrections were improved
significantly when an iterative algorithm was used.

The second part, discussed in Section 5-5, conducts a more thorough comparison of the Shack-
Hartman and plenoptic 4F sensor. To highlight the benefits of each sensor, isoplanatic single-
step reconstruction is performed on Kolmogorov screens of varying strengths. The size of the
WFS aperture plane is in the order of mm and as such, the Fried parameters r0 are chosen
in the order 10−4 and 10−5 [m]. In this comparison two microlens arrays are selected, one
containing 11×11 lenslets and the other 33×33. The results obtained from this comparative
study confirmed the theoretical answer of the first research question: Using the same shared
MLA, the SH sensor outperforms the plenoptic 4F (P4F) sensor in terms of performance
metrics. The phase correction itself is also dependent on the aberration strength. In general,
stronger aberrations are reconstructed better by the P4F sensor. Weaker aberrations are best
corrected for using the SH WFS.

The final and third set of experiments test the anisoplanatic phase screen retrieval of the
toolbox. The goal of these experiments is to choose the best retrieval method of the two
available. Less emphasis is placed on a comparison between the SH and P4F sensor. The
conclusions of these simulations depend on the illumination of the phase screen. If the phase
screen is well-illuminated and sufficient measurements are available, the best retrieval algo-
rithm is the back-propagation of phase gradients and performing a local reconstruction of the
phase screen. This method uses all the pixels of the screen for reconstruction, filling in the
unknowns with zero.

If the screen is not sufficiently illuminated and many pixels are unknown, it is best to retrieve
the screen by back-propagating the WFS phase reconstructions. This results in a piece-wise
discontinuous phase screen, which is smoothed as much as possible by estimating hidden
piston terms. This retrieval method performs best when many screen pixels are unknown, as
it only reconstructs over the known pixels.

6-1 Recommendations for Future Research

The results obtained from the simulation toolbox and drawn conclusions are based on the
isoplanatic phase reconstructions. The performance of these reconstructions are carried over
in the comparison of the sensors, as well as the anisoplanatic model. As such, the most
important recommendation is the improvement of the simulation toolbox. The isoplanatic
reconstruction error is attributed to three factors, as explained in Section 5-4-3.

Master of Science Thesis S. A. Stouten



116 Conclusion

The first contribution is measurement noise contained in the pixels of the SH and P4F sensor
images. The second contribution is caused by the discrete Fourier transform during the
imaging process, where propagated fields are not placed on the correct pixels. Instead, a shift
of one or two pixels can occur, resulting in faulty gradient retrievals. This error is observed
in the retrieval of phase screens, where the object-based tilt phases are not fully corrected
for. The final contribution is the collection of multiple truncation errors that result from the
approximation of continuous-space entities by discretely-sampled grids, or a finite number of
Zernike modes. Improvements to these contributions will lead to better phase reconstruction
results, enhancing the simulation toolbox.

Throughout this thesis reconstruction results are presented by the residual phases and root-
mean-square (RMSE). If randomly-generated Kolmogorov screens are defined as input aber-
rations, it is interesting to observe the average reconstruction errors and their variations for
k simulations. Such a study is not conducted in this work, but performing Monte Carlo
Simulations on both SH and P4F sensors may offer an interesting comparison.

A final recommendation can be composed for the anisoplanatic aberration model. From the
results presented in Section 5-6 it is clear that the phase screen retrievals are not as expected.
Large errors dominate the retrieval processes, such that a comparison between the SH and P4F
sensors on anisoplanatic aberrations is inconclusive. Future improvements can be focussed on
the implementation of the anisoplanatic model, such as adding better optimization-routines
that result in better reconstructions.
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Appendix A

Background Information

This chapter details background information to Adaptive Optics (AO) and optical imaging
which has proven useful throughout this thesis. The two different representations of light,
geometrical and wave optics, are elaborated in Appendix A-1. The point-spread function
(PSF) of a lens and diffraction-limited resolution described in Appendix A-3, followed by the
mathematical framework of Zernike polynomials in Appendix A-4. The linear least squares
problem and the minimum-variance unbiased estimate (MVUE) as solution is elaborated and
proven in Appendix A-7.

A-1 Geometrical versus Wave Optics

The two common representations of light are geometrical optics and wave optics [16]. Geo-
metrical optics treats light as a bundle of light rays or a light-field [4] as it travels through
an optical system. It offers fast and simple reconstruction of the position and direction of
each individual light ray using ray tracing. Wave optics on the other hand models light as
a complex wave where diffraction effects and the phase govern the physics of the wave. As
indicated by [16] geometrical optics is an approximation of wave optics, most prominently
that individual light rays propagate in straight lines in homogenous media and effects such
as diffraction and interference are not taken into account. Geometrical optics cannot reveal
the true diffraction patterns and sensor images as wave optics can, but its simple and fast
tool to predict how light should travel through optical systems. Additionally the geometric
model allows one to show the three-dimensional propagation of light much more intuitively
than wave optics.

A-1-1 Geometrical Optics

At each point throughout an optical system one can represent a light ray by its Cartesian
position (x, y) and angular direction (α, β). It is assumed that these rays travel through free
space unhindered unless an optical element is introduced that affects their directions, such
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as a thin lens. The geometrical model itself is governed by the thin lens equation (A-1), as
stated by [16, 47]. This equation describes image formation by a thin lens and can be used
to derive geometrical light propagation through such a lens. As stated in [16], a thin lens is
defined as an optical element where rays enter and exit at approximately the same Cartesian
location, meaning that it purely introduces a phase delay onto the incoming light. The thin
lens equation is written as:

1
b

+ 1
v

= 1
f
, (A-1)

where b is the image distance (stems from "beeld", the Dutch word for image), v is the object
distance (stems from "voorwerp", the Dutch word for object) and f is the focal length of the
thin lens considered, all in [m]. These quantities are also shown in Figure A-1a that illustrates
how an object is imaged by a thin lens.

f f

v b

Object

Image

(a)

α1

f f

v b

Object

Image

h
α2

y

z

(b)

Figure A-1: 2D schematic of a thin lens showing geometrical optical quantities: a) Illustration
of the thin lens equation and b)Illustration of light refraction through a thin lens

To describe the geometrical propagation, first assume a two-dimensional system such as shown
in Figure A-1b. Each light ray can be fully represented by (y, z, α), where y is the distance of
the light ray from the optical axis, often the z-axis, and z is the propagation distance along
the optical axis. The direction of the ray is defined by α, the angle in the yz-plane with
respect to the optical axis. For example, a light ray travelling in positive y-direction away
from the optical axis has a positive angle α. The effect of a thin lens on light rays is seen only
by the change in angle α while keeping distance y the same. This light refraction is shown
in Figure A-1b. The change in angle α can be found by combining the thin lens equation
with the paraxial approximation. This approximation is valid for light rays with small angles
that are close to the optical axis, such that the relative error between tan(θ) and θ is less
than 1%. Then one can write the basic trigonometric functions as:

sin (θ) ≈ θ, cos (θ) ≈ 1, tan (θ) ≈ θ. (A-2)

This approximation allows one to reduce the expression of angle α1 in Figure A-1b to
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tan
(
h
v

)
≈ h

v , such that the angle difference ∆α can be simplified greatly:

α2 − α1 = −h
b
− h

v
,

= −
(
h

b
+ h

v

)
,

∆α = −h
f
, (A-3)

where h is the height of the ray incident on the lens, positive in upward direction and expressed
in [m]. The angle change induced by the thin lens is given by ∆α. Both ∆α and α2 are
negative because the light ray is pushed towards to optical axis. Focal length f is introduced
by invoking (A-1), directly showing how the lens strength affects the ray propagation. Using
the above information a simple mathematical model can be derived to propagate a bundle of
rays from start to finish, given the paraxial approximation (A-2) holds:

α2 = α1 (free space),

α2 = α1 −
y1
f

(thin lens),

y2 = y1 + (z2 − z1)α2,

(A-4)

where the propagation from point 1, at distance along the optical axis z1 and height y1, to
point 2 at distance z2 and height y2 is considered. All distances and heights are expressed
in [m]. If the ray travels through a thin lens with focal distance f the incident height on
the lens is y1. If the ray travels through free space its angles remain unchanged and only
height y changes linearly with propagation distance z2 − z1. Two special cases of (A-4) can
be identified for the focal planes of a thin lens

Front focal plane If a ray passes through the front focal plane of a thin lens, located a
distance f in front of the lens, it will exit the lens collimated. The propagation is considered
from the front focal point (point 1) to the lens itself (point 2), meaning z2 − z1 = f . The ray
enters the lens at height y1:

α1 = y1
f
,

α2 = α1 −
y1
f

= 0,

y2 = y1,

showing that for every y1 within the physical dimensions of the lens the ray exits the lens
parallel to the optical axis.

Back focal plane Conversely, if a ray enters the lens collimated it will pass through the
back focal point of the lens, often simply the lens focal point, at a distance f behind the lens.
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The ray enters the lens (point 1) at height y1 and converges to the focal point (point 2):

α1 = 0,

α2 = −y1
f
,

y2 = y1 − f
y1
f

= 0,

meaning that the ray ends up on the optical axis at a distance f behind the lens, exactly
where the lens focal point is located.

A-1-2 Wave Optics

Instead of modelling each ray of light separately wave optics represents light as a complex
wave or field U = Aejφ with magnitude A, phase φ and imaginary unit j. Within this field
one can define surfaces of equal phase, referred to as wavefronts, for example the blue and
orange planes shown in Figure A-2a. In the wave model one can define light rays as any vector
perpendicular to such wavefronts that travel in the direction of propagation. An example of
such a ray is shown in Figure A-2a by the black vector. In Figure A-2b one can see light
emitted by a lit candle that is assumed to be a point source. Light can travel uniformly in all
directions, which means that the wavefronts are described by spherical surfaces. Light rays
travel away from this point source while remaining perpendicular to the spherical wavefronts,
such as the blue vectors in Figure A-2b.

(a) A plane wave travelling through free space [50]. At
each point along the optical axis, in direction of ~k, one
can measure a plane wave of a certain phase φ that is
periodic with wavelength λ. Each plane wave represents
a wavefront, all vectors perpendicular to this wavefront
in the direction of propagation are light rays, such as ~v.

(b) A lit candle as a point source [19]. Light is emitted
from all directions, such that the wavefront is spherical
and the light rays are moving away from the source. The
radius of curvature equal to the distance between ob-
served wavefront and its source

At a certain distance z one can represent the wavefront by a two-dimensional function w(x, y)
of transverse Cartesian coordinates x and y, where w(x, y), x and y are all expressed in
[m]. The angles of light rays perpendicular to this wavefront are described by the wavefront
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gradients:

αx = ∂w(x, y)
∂x

,

αy = ∂w(x, y)
∂y

,

(A-5)

where αx and αy are the ray angles between optical z axis and x- and y-axis respectively.
These angles, the gradients of the wavefront, are sometimes also referred to as wavefront tilts.
Depending on the type of application one can define ideal wavefront shapes. In the applica-
tion of telescopes the objects to be imaged are stars separated by tremendous distances. This
means they can be approximated by point sources located at optical infinity. As shown in Fig-
ure A-2b these stars emit spherical wavefronts but as the distance of propagation increases
these wavefronts become progressively flatter. For telescopic purposes one refers to flat plane
waves as ideal wavefront shapes, deviations from these ideals are referred to as aberrations.
In Appendix A-1-1 the propagation of light was modelled by ray tracing individual light rays.
Wave optics deals with complex fields instead of bundles of rays and the propagation is gov-
erned by diffraction effects. In a similar fashion to wavefronts w(x, y) at distance z, one can
represent light by complex field U(x, y) = A(x.y)ejφ(x,y) with magnitude A(x, y) and phase
φ(x, y), as a function of transverse coordinates x and y. Phase and wavefront at the same
distance z can be related through the following approximation:

φ(x, y) = 2π
λ
w(x, y), (A-6)

where λ is the wavelength of light in [m] and w(x, y) is the wavefront surface. Combining (A-5)
and (A-6) the gradients of the phase can be related to the angles of individual light rays:

αx = λ

2π
∂φ(x, y)
∂x

,

αy = λ

2π
∂φ(x, y)
∂y

.

(A-7)

If at some distance z light is represented by complex field U (x, y) = A (x, y) ejφ(x,y) the
intensity I((x, y) of this field is given by the squared magnitude [16]:

I (x, y) = |U (x, y)|2 = |A (x, y)|2 (A-8)

The propagation of wave U(x, y) through free space follows a rectilinear behaviour as long as
no objects or interferences cross the optical path - this is in congruence with the geometrical
model. When the propagation passes an opaque screen or a diffractive object the propagation
of wave U(x, y) is dominated by diffraction theory. The history of this theory and wave
propagation is extensively discussed in [16]. For brevity this thesis is restricted to scalar
monochromatic diffraction theory, which means that the optical elements are large compared
to the wavelength of light λ. The propagation model discussed below represents a summary
of the elaborations in [16]. Without further ado, one can describe the propagation of a
complex field U(x, y) from one plane defined by coordinates (ξ, η, z = z1) to another defined
by (x, y, z = z2) through the following integral:

U2(x, y) = A

jλ

∫∫
Σ
U1(ξ, η)e

jkr01

r2
01

cos(θ)dξdη, (A-9)
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where it is assumed that the input plane contains the diffractive element. The imaginary unit
is represented by j, k = 2π

λ is the wave number, r01 is the length of the vector connecting the
origins of both planes and θ the angles this vector makes with the optical axis. The distance
r01 is given by:

r01 =
√
z2 + (x− ξ)2 + (y − η)2). (A-10)

Integral (A-9) can be simplified by using approximations. The most common approximations
are the Fresnel and Fraunhofer integrals, that implement a binomial expansion of (A-10) and
retaining only the first two terms. This expansion leads to the famous Fresnel integral.

Fresnel diffraction In the regions of near field propagation integral (A-9) can be approx-
imated by the Fresnel integral as explained above. By retaining the first two terms of a
binomial approximation to r01 the Fresnel integral reveals itself:

U2(x, y) = ejkz

jλz
· ej

k
2z (x2+y2)

∫∫ +∞

−∞

[
U1(ξ, η)ej

k
2z (ξ2+η2)

]
e−j

2π
λz

(xξ+yη)dξdη. (A-11)

The validity of the Fresnel approximation relies on the contribution of higher order terms in
the binomial expansion of (A-10). If the first two terms sufficiently approximate r01 (A-10)
and higher order terms are negligible the Fresnel approximation can accurately represent
wave propagation. This condition is expanded in [16] by limiting oneself to small angles and
upholding the paraxial approximation (A-2). Alternatively one can check the condition with
the dimensionless Fresnel number:

F = a2

λL
, (A-12)

where a is the characteristic length of the lens aperture and L is the propagation distance
from lens to image plane, both in [m]. As explained in [47] the Fresnel integral (A-11) and
thus (A-14) is valid when F >> 2. Division of the output coordinates (x, y) by (λz) enables
the rewriting of the Fresnel integral into a much more tractable two-dimensional Fourier
transform. The coordinate transform can be written as:

x′ = x

λz
, y′ = y

λz
,

x = x′λz, y = y′λz
(A-13)

and the Fresnel integral becomes:

U2(x′λz, y′λz) = ejkz

jλz
· ej

k
2z (x2+y2)

∫∫ +∞

−∞

[
U1(ξ, η)ej

k
2z (ξ2+η2)

]
e−2jπ(x′ξ+y′η)dξdη

= ρ(x, y, z)F{U1(ξ, η)ej
k

2z (ξ2+η2)}, (A-14)

where F{} represents the Fourier transform operation. The preceding terms are collected by
function ρ(x, y, z) which can retain the original coordinates (x, y) since it can be computed
and used outside the Fourier transform operation:

ρ(x, y, z) = ejkz

jλz
· ej

k
2z (x2+y2). (A-15)
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Fraunhofer diffraction If the conditions for near field propagation cannot be met one can
divert to the far field approximation, the Fraunhofer integral. The validity of this approxi-
mation can be checked by:

z >>
k(ξ2 + η2)max

2 . (A-16)

It has been reported by [16] that satisfying this condition results in severe parameters, such
as a tremendously far away image plane. Thus an alternative approach is used, referred to as
the antenna designer’s formula:

z >
2a2

λ
, (A-17)

Which may prove valid for some special cases. When (A-17) can be upheld the propagation
of complex field U from one plane to the other is described by:

U2(x, y) = ejkze
jk
2z (x2+y2)

jλz

∫∫ +∞

−∞
U1(ξ, η)e−j

2π
λz

(xξ+yη)dξdη,

U2(x′λz, y′λz) = ρ(x, y, z)F{U1(ξ, η)}. (A-18)

Focal plane propagation Under special conditions one can simplify the Fresnel integral fur-
ther. When the propagation is considered from the front to the back focal plane of an optical
element, many terms of (A-14) drop out. Any optical element introduces a transformation
onto the incident field. For thin lenses one can describe this transformation as a pure phase
delay that, if the paraxial approximation (A-2) holds, can be written as:

tl(ξ, η) = e
−j k2f (ξ2+η2), (A-19)

where f is the lens focal distance in [m]. Additionally, the lens has finite physical dimensions
that it enforces on the field, which is done by multiplying the field with the lens pupil function
Pl:

Pl(x, y) =
{

1 if
(
x2 + y2) ≤ r2

0 otherwise
(Circular lens),

Pl(x, y) =
{

1 if |x| ≤ r AND |y| ≤ r
0 otherwise

(Square lens),
(A-20)

where r is the radius or half-width of the lens. When input field U1 is placed at the front
focal plane of this lens the prior term ρ(x′, y′, z) in (A-14) is greatly reduced, as well as the
term within the Fourier transform. The output field U2 is then proportional to the Fourier
transform of the pupil-limited input field U1:

U2(λfx′, λfy′) = 1
jλf
F{Pl(ξ, η)U1(ξ, η)e−j

k
2f (ξ2+η2)ej

k
2f (ξ2+η2)}

= 1
jλf
F{Pl(ξ, η)U1(ξ, η)}. (A-21)

A more detailed elaboration of (A-21) is described by Goodman [16]. The Fraunhofer integral
can be modified in similar manner, by including the lens pupil function Pl inside the Fourier
transform of (A-18).
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A-1-3 Free Space Propagation

The propagation of free space is a special case of light propagation, as light often travels
enormous distances through near-vacuum which can be considered aberration-free. These
distances will influence the Fresnel or Fraunhofer integrals significantly through parameter z.
Additionally, diffraction effects will be to a minimum in near-vacuum, which means that one
can resort to other models to describe free space propagation.

One of such methods is the Projection model. In the absence of atmospheric turbulence
wavefronts emitted by distant stars arrive at an optical system as approximately plane waves.
This means that wavefronts can be represented by two-dimensional tilted planes, where the
tilt is determined solely by the stars location with respect to the optical system. Atmospheric
turbulence can be added by phase screens, located between object and optical system, as
implemented by [46] and illustrated in Figure A-3. The free space propagation is then ap-
proximated by projecting the phase screen onto the entry of the optical system, the pupil or
aperture plane. As illustrated by Figure A-3, an arbitrary aberration profile is defined in the
phase plane and two point sources are defined in the object plane. Each point source emits
light that passes through a part of the phase plane, its phase screen cut-out. This cut-out is
then projected onto the pupil plane, as shown by the blue and green dashed lines. If light is
emitted incoherently, the pupil plane consists of as many distinct phase projections as there
are simulated point sources in the object plane. Since no real propagation os performed but
the phase screen cut-outs are simply placed in the pupil plane, this method provides a good
approximation as long as weak aberrations are considered.

Figure A-3: Wave propagation using projection, where atmospheric turbulence is represented by
a single phase screen [46]. Two objects, blue and green in the ’Object Plane’, ’see’ different parts
of the phase screen and project this on the ’Pupil Plane’.

Another method is a straightforward extension of the geometrical optics model, where light
rays travel rectilinearly from simulated object to the optical system. The influence of aberra-
tions, such as atmospheric turbulence, can be included as well by considering phase profiles
at certain points of the optical path. Using the phase gradient one can find the angular
change of light rays passing through the aberration with (A-7). In the absence of diffracting
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elements such as physical masks or gratings, this model provides a straightforward and good
approximation for free space propagation. The grid size of light rays arriving at the optical
system cannot be guaranteed in this approximation, as light rays are discarded when they
move beyond the ranges of the optical system, as explained in the Ray Tracing algorithm of
Wu, Ko and Davis [52]. This means that very dense light ray beams must be simulated at
the objects, in order to achieve sufficient grid size at the optical system. In this work this
free space model will carry the name of Ray Tracing model, as the free space propagation
described in [52] does exactly this.
Compared to the Ray Tracing model, the Projection model does guarantee a grid size density
as no information is discarded. If the pupil plane is to be represented by an N×N discretely-
sampled grid and one knows the locations of objects, the size of phase screen cut-outs and
thus the minimum grid size density of the phase screen can be determined. This advantage
of the Project model may compensate its drawback of being valid for weak aberrations.

A-2 The Discrete Fourier Transform

The Fourier transform in the wave propagation equations (A-14), (A-18) and (A-21) is per-
formed in discrete-space by the Fast Fourier Transform (FFT) algorithm in MATLAB. The
behaviour of the FFT is explained by [25], stating that it behaves just as the continuous-time
Fourier transform but the number of represented spatial frequencies is severely limited by
the grid size. To quantify this, one defines a one-dimensional function g(xn), sampled at
N equidistant points separated by ∆x. The FFT of g(xn) results in function G(un) that is
sampled at N equidistant points as well, separated by ∆u. For clarity the sequences xn and
un are referred to as the spatial coordinates and spatial frequencies, respectively. The spatial
frequency step size ∆u is equal to the spatial range rx = max(xn)−min(xn):

∆u = 1
rx
. (A-22)

The FFT is performed in MATLAB by combining the fft- and fftshift-functions, which results
in spatial frequencies with the zero frequency in the middle. The minimum and maximum
frequencies are then found by:

umin = −∆uN2 , umax = ∆uN2 (N is even),

umin = −∆uN−1
2 , umax = ∆uN−1

2 (N is uneven)
(A-23)

and the sequence of spatial frequencies can be written as:

un = umin + n∆u, n = 0, . . . , N. (A-24)

Input and Output Ranges With these definitions the frequency range ru = max(un) −
min(un) can be defined:

ru = umax − umin

=
{
N
rx

(N is even)
N−1
rx

(N is uneven)
. (A-25)
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Definition (A-25) describes how the ranges of input and output coordinates are related in the
one-dimensional case. This result is readily generalized to multiple dimensions.

In (A-14) coordinate change (A-13) was introduced to rewrite the integral as a Fourier trans-
form. By performing a dimensional analysis on these transformed coordinates, shown below
only for coordinate x as an example, reveals that these transformed coordinates are actually
spatial frequencies:

dim x′ = dim
(
x

λf

)
= m

m ·m
= m−1.

This means that by propagating a discretely-sampled input field U1 (ξ, η) ∈ RN×N through
a lens with (A-21) results in an output field U2 (x′, y′) ∈ RN×N , where ξ, η, x and y are
the spatial coordinates. To obtain the output field at the its spatial coordinates x and y
instead of its spatial frequencies, one must transform coordinates (x′, y′) back to their spatial
counterparts by inversely applying (A-13). Such a coordinate transform does not alter the
discretely-sampled matrix U2 but scales the plane this matrix is represented on. The physical
size of this plane, the output spatial plane, is found by combining (A-25) and (A-13):

x = λfx′ −→ rx = λfrx′ = λfN

rξ
.

where λ is the wavelength of light and f the lens focal distance, both expressed in [m]. If
grid size N is uneven one can substitute (N − 1) for N such that the bottom range definition
of (A-25) is used instead.

Minimum Grid Size for Lenses Not only does grid size N affect the physical plane sizes
in the discrete Fourier transform (DFT), also the frequency representation of the Fourier
transformed field is affected. Common pitfalls of the FFT algorithm are discussed in [15],
one of which is aliasing. In discrete signal processing aliasing occurs when high frequency
components of a spatial or temporal signal are translated into low frequencies if the sample
rate is too low. This is due to the cyclic nature of the DFT, where frequencies that fall
outside of the sampling range are assumed to be lower frequencies of a different cycle. This
means that these higher frequencies are ’folded back’ to lower frequencies, resulting in an
incorrect representation. The effects of aliasing can be reduced by including more frequencies
in the frequency coordinates, defined in (A-22)-(A-25). This is done by increasing the ratio
N/rx in (A-25). By increasing grid size N one increases the range of detectable frequencies. If
spatial coordinate range rx is decreased one obtains a courser sampled grid of frequencies. It is
clear from [15] that exact requirements to grid size and spatial range depend on the processed
signal, in this case the complex wave U and especially phase φ. In practice information on the
type of phase aberration is not know a priori, but one does have information on the lenses in
the wavefront sensor (WFS). In continuous-space one can describe the complex field directly
behind a this lens, resulting from focussing field U(x, y) = A(x, y)ejφ(x,y), by:

Ul(x, y) = P (x, y)A(x, y)ej(φ(x,y)−φl(x,y)), (A-26)

where P (x, y) is the lens pupil function as defined by (A-20), φ(x, y) the unknown to-be-sensed
aberration and φl(x, y) the phase delay induced by the lens as defined by (A-19):

φl = − k

2f
(
x2 + y2

)
,
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with wave number k = 2π/λ. The goal is to correctly sample the complex field that ends up
on the sensor, but without knowledge on aberration φ the problem is ill-posed. Instead one
can assume that the lens phase delay is significantly stronger than the unknown aberration,
such that the field directly behind the lens can be approximated by:

Ul(x, y) ≈ P (x, y)A(x, y)e−
jk
2f (x2+y2). (A-27)

This approximation allows one to formulate requirements to correctly sample lens propaga-
tion, assuming the lens phase delay is stronger than the aberrations. Correct sampling can
be defined with the Nyquist-Shannon sampling theorem [15, 39, 45], which requires the maxi-
mum frequency in the Fourier transformed field to be less than or equal to half of the sampling
period. The Fourier transform samples at instances of 2π and the represented frequencies are
dependent on the phase differential, meaning that the following condition can be derived for
the lens phase differential:

|δφl| < π. (A-28)
In the case of a circular symmetric lens with radial coordinate ρ2 = x2 + y2 and radius R,
this differential can be written as a function of the radial differential δρ:

φl (ρ) = − 2π
2λf ρ

2

δφl (ρ) = − 4π
2λf ρδρ

|δρl (ρ)| = 2π
λf
ρδρ < π.

The field directly behind the lens is pupil limited by P (x, y) such that the phase outside this
pupil function is undefined and thus not considered. The lens phase φl valid inside the pupil
function has its maximum value and phase gradient at the outer edge, where ρ = R:

π >
2πR
λf

δρ −→ δρ <
λf

2R.

If the radial coordinate, defined from−R to +R, is represented by anN×N discretely-sampled
grid then differential δρ becomes the fixed radial step size ∆ρ = 2R/ (N − 1). Combining this
step size with the above inequality results in a minimum grid size, to ensure correct sampling
of the lens phase delay:

2R
N − 1 <

λf

2R −→ N >
4R2

λf
+ 1. (A-29)

Condition (A-29) should be checked for each lens in the optical system to compute the mini-
mum grid size or densities required for propagation.

Minimum Grid Size Image Plane Result (A-29) presents the minimum grid size inside a
lens ensuring large enough frequency ranges in the Fourier transform. Instead of increasing
the grid size one can change the spatial range of input coordinates, as shown in (A-25). This
is convenient when a fixed pixel size is required. Assume the one-dimensional case where the
input spatial coordinate is ξ, sampled at N equidistant points. The range of output spatial
coordinates, resulting from discretized propagation (A-21), rx is given by:

rx = λfN

rξ
. (A-30)
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If the spatial output coordinates are sampled atM equidistant points separated by fixed pixel
size p, one can substitute rx = Mp into (A-30) to obtain:

M = λfN

rξp
. (A-31)

The DFT preserves grid sizes, which means that the input coordinates ξ must be sampled
with grid sizeM as well. To retain the same range in the output plane rx sample density N/rξ
should be kept constant. This means that the input range and grid size are scaled linearly
such that coordinate x is sampled at M equidistant points with range:

hin = M

N
rξ (A-32)

where hin is the new spatial range of input coordinate ξ. Physical signals that are sampled as
a function of these coordinates, the increase in spatial range is filled by padding the physical
signal with zeroes. This is demonstrated in Figure A-4, for the same one-dimensional case.
In the front focal plane of a lens phase φ ∈ RN is initially sampled on spatial grid ξ ∈ RN .
The pupil mask of the lens is represented by the same coordinates, where the spatial range
of ξ is equal to the lens diameter D. In order to fix pixel size p a grid size of M is required
for ξ, which results in padding both φ and the pupil mask with zeros to obtain spatial range
hin. The two-dimensional pupil mask of the circular lens is shown on the right of Figure A-4,
showing the dashed outline of the pupil function, the initial N×N mask and the zero-padded
M ×M mask. The spatial size of the image p ·M is not necessarily equal to hin.

hin D

p

N

M

Pupil Mask of Lens

Figure A-4: Illustration of numerically simulating a lens with fixed pixel size. The leftmost
illustration shows the one-dimensional case where aberration φ ∈ RN and pupil mask are padded
with zeros to obtain a grid size of M and ensure pixel size p. The rightmost illustration shows
how a two-dimensional pupil mask of the circular lens is padded. The dashed outline traces the
circular pupil function, which is initially represented by the N ×N mask and padded with zeros
to obtain the required M ×M mask.
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A-3 The Point-Spread Function

Following the explanation in [46], any lens focusses incoming light into a spot in the focal
point, but due to finite lens sizes and aberrations this spot will never be a single infinitesimal
point. The image of a point source in the back focal plane is called the point-spread function
and can be found by taking the Fourier transform of the pupil-limited field in the front
focal plane, as explained in Appendix A-1-2. Under aberration-free situations the incoming
wavefront will be a plane wave and the PSF reduces to the Fourier transform of the pupil
function. The resulting image is the Airy pattern shown in Figure A-5. Even for a perfect
lens and absence of aberrations remains a blob accompanied by circular lobes, instead of
a single pixel. This pattern is caused by diffraction effects of the finite pupil size and will
always be present in the image. Imaging under aberration-free conditions is thus referred to
as diffraction-limited imaging. The resolution of a diffraction-limited image is quantified by
the Rayleigh resolution criterion [17]:

sin(θ) ≈ 1.22λ
d
, (A-33)

where λ is the wavelength of light, d is the aperture diameter in [m] and θ in [rad] is the angular
distance from the centre of the Airy pattern to its first dark ring. This resolution is based on
the resolving power of two independent point sources that result in two Airy patterns on the
image. Both Airy patterns can be distinguished as long as the angular distance between their
centres is larger than (A-33). If this distance is smaller the centre of one of the Airy spots is
within the first dark ring of the other and they will be imaged as one spot rather than two.

Figure A-5: An example of an Airy pattern

Using the paraxial approximation (A-2) one can simplify the sine in (A-33) to obtain an
expression of absolute the image plane distance y:

sin(θ) = sin
(
y

f

)
≈ y

f
,

where f is the distance from lens to imaging plane which is equal to the lens focal distance
due to back focal plane imaging. This approximation enables one to write (A-33) in terms of
distance y instead of angle θ:

y ≈ 1.22λf
d
. (A-34)
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If aberrations are present the PSF will change its shape and location depending on the
aberration profile. For example one can find the PSFs of the first 15 Zernike polynomials
in Figure A-7.

A-4 Zernike Polynomials

Zernike polynomials are defined by polar coordinates ρ and θ, but specified by their two
indices m and n. These indices are both non-negative for which the following must hold:

m,n ∈ Z≥0, n ≥ m, n−m ∈ 2Z, (A-35)

meaning that non-negative integers m and n have the same parity, both are either even or
odd and n is always equal or largen than m. The polynomials themselves are determined by
these integers:

Z±mn (ρ, θ) = Rmn (ρ)


cos(mθ) ±m > 0
sin(mθ) ±m < 0
1 m = 0

, (A-36)

with Rmn (ρ) is the radial polynomial defined by:

Rmn (ρ) =
n−m

2∑
s=0

(−1)s(n− s)!
s!(n+m

2 − s)!(n−m2 − s)!
ρn−2s. (A-37)

For presentation purposes these Zernike polynomials are arranged in the Zernike pyramid,
shown in Figure A-6 for a number of these polynomials. An more straightforward single index
numbering was introduced by Noll [31] that resulted in modified Zernike polynomials with a
different normalisation, shown for the first 15 modes in Figure A-7. Noll’s ordering has been
used throughout this thesis to generate Zernike polynomials.

Figure A-6: The Zernike modes arranged in a pyramid for the first 14 modes, excluding the first
mode which is the constant piston [3].
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Figure A-7: The Zernike modes arranged according to the Noll ordering with a single index,
shown for the first 15 modes [49].
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A-5 Basic Modal Reconstruction

The modal approach, as explained in [21, 23, 31], represents the incoming wavefronts as an
infinite sum of basis functions:

w(x, y) =
+∞∑
j=1

ajZj(x, y), (A-38)

where w(x, y) ∈ RN×N is the two-dimensional wavefront, Zj(x, y) ∈ RN×N the basis function
of the j-th mode and aj ∈ R its corresponding magnitude or coefficient. There are many
bases to choose from, such as Zernike polynomials, Karhoene-Loève functions or Lukosz-Braat
functions but the orthogonality of the selected basis is crucial, as noted by [21, 23, 24, 42].
Most importantly, orthogonality enables the reconstruction to be represented by independent
functions and that the reconstructed coefficients are uncorrelated. Additionally the error
propagation and computational complexity is significantly reduced with orthogonal bases.

For this work the Zernike polynomials, that are orthogonally defined over the unit circle,
have been chosen because of their straightforward description, clear mathematical definition,
tractability and correspondence to common optometric aberrations [5, 21]. The infinite sum
in (A-38) is not tractable in reality so a finite sum up to a number ofM modes is used instead.
Furthermore, the summation can be written as a matrix-vector multiplication resulting in:

w ≈ ZA, (A-39)

where w ∈ RN2×1 is the vectorized wavefront, Z ∈ RN2×M contains the Zernike polynomials
in its M columns and A ∈ RM×1 contains the M coefficients. In reconstructing the first
M Zernike modes the first mode is often left out [7, 23]. This polynomial represents the
global piston, a constant mean phase value that does not affect the phase differences between
phase points and cannot be detected by a sloped-based WFS [5, 43]. Fortunately it does not
affect the slope measurements and can thus be safely ignored from reconstruction [7, 43]. For
more details on the mathematical description of Zernike polynomials the reader is referred
to Appendix A-4.

The goal of the modal algorithm is to estimate the coefficients A that represent the weighing
of the individual basis functions. It is not possible to solve (A-39) using a gradient-based
WFS such as the Shack-Hartmann (SH) or plenoptic sensor, since neither w or A is known.
Instead, one obtains a set of slopes (∆x,∆y) that are related to the gradients of Z:

(∆x,∆y) ∝
(
∂Z

∂x
,
∂Z

∂y

)
A+ ε, (A-40)

where ε represent the noise contributions, such as a truncation error that arises by approx-
imating the wavefront by a finite sum. The system of equations (A-40) can be rewritten
as an matrix-vector multiplication (MVM) by appropriate stacking of the slopes and gradi-
ent matrices. Throughout this thesis this stacking is done by alternating between x- and
y-components as shown in (A-41). The stacking for modal reconstruction is arbitrary, but
is chosen to be consistent with the zonal reconstruction method Appendix A-6. Slopes ∆x

and ∆y are collected by matrix S ∈ RN2×M , whereas the gradients of each Zernike mode are
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collected by matrix G ∈ R2N2×M . For each j-th mode the gradients in x and y-direction are
represented by Gjx and Gjy respectively. The stacking is then defined by:

S =


∆x,1
∆y,1
...

∆x,N2

∆y,N2

 , G =



G1
x,1 . . . GMx,1

G1
y,1 . . . GMy,1
... . . . ...

G1
x,N2 . . . GMx,N2

G1
y,N2 . . . GMy,N2

 , (A-41)

where the subscript in the entries of S and G indicate the measurement point on the N ×N
grid. The stacked are used to describe the slope data equation.

S = GA+ ε, (A-42)

The data equation (A-42) can be solved through least-squares minimization [12, 17, 21, 48],
elaborated in Appendix A-7. As stated by [21] this estimation is unique if M < 2N2 or
in other words, the number of modes considered should be always smaller than the total
number of measurement points available. The same condition could be set for (A-39), since
the phase should be represented by an independent set of modes. This results in the condition
M < N2. In practice this means that the grid size N of the sensor must be large, in order to
accurately represent that phase by a large collection of polynomials. At each time-step k one
can estimate the coefficients and reconstruct the wavefront by invoking (A-39):

w̃(k) = ZÃ(k), (A-43)

with w̃(k) ∈ RN2×1 the estimated vectorized wavefront at time-step k, Z ∈ RN2×M the
polynomial matrix as defined above and Ã(k) ∈ RM×1 the estimated coefficients of the con-
sidered modes at time-step k. By taking approximation (A-6) into account one can obtain
the reconstructed phase from (A-43).

A-5-1 Implementation with Square Sub-images

This thesis considers square microlens array (MLA) lenslets, which means that the obtained
slopes are represented by a square grid and the orthogonality of the chosen Zernike basis
will be lost. The same problem has been described by [23] and solved by generating two
orthonormal sets of polynomials. These sets have been produced such that each column has
unit length and is orthogonal to the other columns. The obtained sensor slopes ∆x and ∆y

are both represented on the same N × N grid as each mode in Z (A-39). They are stacked
according to (A-41) and collected in matrix S ∈ R2N2×M .

The first set is obtained by generating Zernike polynomials on a unit square and performing
orthonormalization using the Gram-Schmidt algorithm. This set is represented by matrix
Z⊥ ∈ RN2×M . The second set is obtained by computing the gradients of the original Zernike
polynomials and performing orthonormalization on these x- and y-gradients as a whole. This
second set is represented by matrix G⊥ ∈ R2N2×M and is stacked according to (A-41). The
result is an orthonormal set of Zernike polynomials to describe the phases in a linearly inde-
pendent manner and an orthonormal set of gradients to estimate magnitudes A.
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Matrices Z⊥ and G⊥ are obtained using the Gram-Schmidt method, implemented by the
MATLAB code obtained from Chen [8]. The orthonormalized matrices are related to their
originals through conversion matrices β:

Z = Z⊥βZ ,

G = G⊥βG.
(A-44)

The orthonormal results retain the dimensions of the original matrices such that {Z,Z⊥} ⊂
RN2×M , {G,G⊥} ⊂ R2N2×M and {βZ , βG} ⊂ RM×M . The phase and gradients are then
represented by their orthonormal sets resulting in the following data equations:

φ = 2π
λ
Z⊥α,

S = 2π
λ
G⊥γ + n,

(A-45)

where (A-6) is invoked to approximate the phase and its gradients from the wavefront. Both
α and γ are the magnitudes of the orthonormal Zernike modes and orthonormal gradients,
respectively. It should be noted that these coefficients are not equal, in contrast to represen-
tations (A-39) and (A-40) where orthonormalization was not employed.
The noise contributions in (A-45) have been contained to the slope measurement data equation
since these slopes contain the majority of noise, such as detector noise. Additionally, the actual
reconstruction in the modal algorithm is finding γ using S, adding the modal truncation error
introduced in (A-40) to the reconstruction of γ. The noise contributions in the phase data
equations are thus implicitly included through α and do not need to be added explicitly.
In order to find α from reconstructed coefficients γ one must apply (A-44) with the knowledge
that βZ and βG are both square full-rank matrices and thus invertible - This will be illustrated
below. The goal of the phase reconstruction is reduced to finding an expression for α, the
magnitudes of the orthonormal Zernike modes, using the slope measurements:

S = 2π
λ
G⊥γ + n

= 2π
λ
Gβ−1

G γ + n

= 2π
λ
GA+ n,

where A is a vector containing the magnitudes of the original gradients G, which is equal to
the magnitudes of original modes Z:

φ = 2π
λ
Z⊥α+ n

= 2π
λ
Zβ−1

Z α+ n

= 2π
λ
ZA+ n

and thus the orthonormalized coefficients can be related through:

β−1
G γ = A = β−1

Z α,

α = βZβ
−1
G γ. (A-46)
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The γ coefficients are estimated using the minimum-variance unbiased (MVU) estimate γ̃:

γ̃ = CγG
T
⊥

(
G⊥CγG

T
⊥ + Cε

)−1
S, (A-47)

where Cγ ∈ RM×M and Cn ∈ R2N2×2N2 are the coefficient and noise covariance matrices and
G⊥ ∈ R2N2×M the set of orthonormal Zernike gradients. More information on the elaboration
and proof of the MVUE is found in Appendix A-7. Combining (A-46) and (A-47) enables
one find an expression for the estimate of orthonormal magnitudes α:

α̃ = βZβ
−1
G CγG

T
⊥

(
G⊥CγG

T
⊥ + Cε

)−1
S. (A-48)

Finally one can reconstruct the phase by invoking the previously stated relationships:

φ̃ = 2π
λ
Z⊥α̃. (A-49)

Up to this point no limitation to the number of modes is taken into account. Lane and Tallon
posed in [21] that the number of modes M should always be smaller than the number of
measurements N2 or 2N2 for either wavefront (A-39) or slope representation (A-42). This
condition was presented under circular sub-images without additionally orthonormalization of
the matrices. The next paragraph sheds some light on how the orthonormality of the matrices
changes with increasing number of modes M .

The number of modes is upper-limited by M < N2, such that ill-conditioning is prevented in
both phase reconstruction (A-42) and representation (A-39).

A-6 Basic Zonal Reconstruction

Instead of basis functions, zonal reconstruction describes the wavefront by spatial sampling
and considering local deformations, as explained by [17]. The obtained slope measurements
are related to wavefront gradients through sensor geometry:

∆x = κx
∂w(x, y)
∂x

+ ηx,

∆y = κy
∂w(x, y)
∂y

+ ηy,

(A-50)

where κx and κy are determined through sensor geometry and ηx and ηy are noise attributions.
With an approximation method, such as Finite Differences, the wavefront can be expressed
by its gradients, such that (A-50) is rewritten into a direct relation between obtained slopes
and the phase. In a similar fashion to the modal approach, this equation can be solved by
the MVUE from Appendix A-7.

The Finite Difference approximation is one of the most well-known zonal reconstruction meth-
ods, as put by [12] and supported by [7, 17, 34, 42, 43]. These reports identified the three
most common geometry models as the Fried, Hudgins and Southwell geometries, which define
the exact approximation between phase and its gradients. In this thesis the Finite Difference
model is used for zonal reconstruction. Its straightforward application and the three common
geometry models will be elaborated below.
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Fried geometry Fried geometry places the phase in the corners of each cell, where the phase
is approximated by summation of these corners, as shown in Figure A-8 and Figure A-9 on
the left. If the coordinate system chosen has the vertical coordinate positive upwards and the
horizontal component positive rightwards, the gradient is approximated by:

∂φ1
∂x
≈ φ4 + φ2 − φ3 − φ1

2D + ηx,1,

∂φ1
∂y
≈ φ4 + φ3 − φ2 − φ1

2D + ηy,1,
(A-51)

with D being the size of the cells and η is a noise term containing for instance approximation
errors, measurement noise and higher order aberrations effects.

Hudgins geometry Hudgins geometry places the phase in the centers of each cell and the
gradients in between phase points. The gradient in each direction is approximated by the
phase in the current and adjacent cell. Taking the same coordinate system as defined in the
Fried case, the Hudgins approximation is formulated in (A-52) and illustrated by Figure A-8
and Figure A-9, both in the middle.:

∂φ1
∂x
≈ φ2 − φ1

D
+ ηx,1,

∂φ1
∂y
≈ φ3 − φ1

D
+ ηy,1.

(A-52)

Southwell geometry Southwell geometry places the phase pointsjust as the Hudgins model
does, with gradients in the cell centres, similar to the Fried model. This results in an ap-
proximation (A-53) that uses both the adjacent phase points, as well as the adjacent phase
gradients and is illustrated by Figure A-8 and Figure A-9, both on the right.

1
2

(
∂φ1
∂x

+ ∂φ2
∂x

)
≈ φ2 − φ1

D
+ ηx,1,

1
2

(
∂φ1
∂y

+ ∂φ3
∂y

)
≈ φ3 − φ1

D
+ ηy,1

(A-53)

and

Figure A-8: Representation of the three approximation geometries for a single phase gradient,
showing how each model places the phase and gradients across the grid and which ones are needed
to find phase gradients ∂φ1

∂x and ∂φ1
∂y . Each square block represents an individual cell.
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Figure A-9: Representation of the three approximation geometries. Each grid represents the
image plane subdivided into cells. The phase gradients sensed by the sensor are represented by
the arrows , whereas the points of the reconstructed phase φ are indicated by the black dots.
The Fried model approximates the gradient in each block by using all four phase samples on
each corner, the Hudgins model only uses two adjacent phase points in each direction and the
Southwell model approximates the average of two gradients using two adjacent phase samples.

In order to obtain solvable systems of equations one needs to stack the slope measurements
appropriately, analogous to the modal approach. Considering that the zonal approach rep-
resent the phase by its local deformations instead of an orthogonal basis, one does not need
to enforce orthogonality in the stacking process. Assume that the wavefront is represented
on a discretely sampled square N × N grid, as well as its gradients. By stacking the phase
gradients, alternating between x- and y-gradients and vectorizing the phase points φi the
geometry equations (A-51)-(A-53) can be written for all available data points:

∂φ1
∂x
∂φ1
∂y
...

∂φN
∂x
∂φN
∂y


= G ·


φ1
φ2
...

φM−1
φM

 , (A-54)

with geometry matrix G ∈ R2N2×M . The number of phase point obtained depends on the
geometry model used, for example M = (N + 1)2 using Fried geometry and M = N2 using
Southwell geometry. Stacking (A-50) in an analogous fashion leads to:


∆x1
∆y1
...

∆xN
∆yN

 = κ ·



∂w1
∂x
∂w1
∂y
...

∂wN
∂x
∂wN
∂y


+ n = κ

λ

2π ·



∂φ1
∂x
∂φ1
∂y
...

∂φN
∂x
∂φN
∂y


+ n = κG

λ

2π ·


φ1
φ2
...

φM−1
φM

+ n, (A-55)

where (A-6) is invoked to rewrite wavefront into phase, the geometry is assumed symmetric
such that κx = κy = κ and all noise contributions are collected in vector n ∈ R2N2 . For
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readability one can define S = [∆x1, ∆y1, . . . ,∆xN , ∆yN ]T , φ = [φ1, . . . , φN ]T and G =
κG λ

2π , reducing (A-55) to:
S = Gφ+ n, (A-56)

which reveals clear similarities with (A-42) and thus can be solved with the MVU least squares
estimation [12, 17, 21, 48], elaborated in Appendix A-7. This leads to the estimated phase φ̃.

A-6-1 Implementation with Southwell Geometry

Of the three geometries listed above the Fried and Hudgin models are known to be common
and successful in phase reconstruction [12, 17, 34, 42], but it has been proposed that the
Southwell geometry outperforms both [12, 42]. The nullspace of each geometry has been
investigated in [12], concluding that the Southwell and Hudgin geometries have a nullspace of
dimension 1 and the Fried geometry a nullspace of dimension 2. This has the physical meaning
that the Fried geometry can detect one mode less than the Southwell and Hudgin models.
The remaining nullmode represents piston mode, a mode that no gradient-based WFS can
sense [7, 43]. Southwell also proposed in [42] that the Southwell geometry has a smaller error
propagation compared to both Fried and Hudgins geometries. Additionally, Southwell posed
that the Hudgin model neglects boundary effects since the gradients are placed between phase
points. This notion is also observed from illustration Figure A-9. With these arguments in
mind the Southwell geometry is chosen to implement the Finite Difference approach.

Assuming one has obtained WFS slope measurements ∆x and ∆y, one can rewrite (A-53) as
an MVM, by stacking measurements as done in (A-55). If the slopes are represented on an
N × N discretely-sampled grid this stacking results in slope vector S ∈ R2N2×1 and phase
vector φ ∈ RN2×1. Due to the Southwell geometry the number of phase points is equal to the
number of slope measurements. The Southwell data equation can then be written as:

1
2GgradS = λ

2πDGSφ+ n (A-57)

where matrices Ggrad ∈ R2N2×2N2 and GS ∈ R2N2×N2 implement the geometric relationships
on the left-hand and right-hand sides of (A-53). The size of the cells, which is equal to the
distance between phase points, is defined by D.

The structure of matrices Ggrad and GS depends completely on how directions are defined
on the grid. For example, if the x- and y- coordinates are defined positive in direction of the
vectors shown in Figure A-9, the matrices are structured as shown in Figure A-10. Before
Southwell geometry can be applied one must define the boundary conditions. In Figure A-9
one can identify problems around the borders of the grid, where geometry equation (A-53)
refers to the current and a neighbouring phase point, while this neighbour does not exist.
One example of this is in the slope in y-direction for the upper-left cell, which relates the
current phase point to the one in the cell above that does not exist. The non-existent slope
and phase are reflected in Ggrad and GS by rows that contain a single entry, as can be seen
by the topmost red rectangle in Figure A-10. The rectangle below refers to the same issue of
the cell next to the first, since the grid is stacked column-wise. The lowest rectangle refers to
the cells in the last column of the grid, that experience the same boundary problem with the
gradients in x-direction. These boundary problems are considered to be a disadvantage to a
successful reconstruction so rows with a single entry are removed from Ggrad and GS . In each

S. A. Stouten Master of Science Thesis



A-6 Basic Zonal Reconstruction 139

cell on the upper and rightmost border one of such boundary problems arise, meaning that for
2N2 slope measurements one discards 2N of these. The number of phase points reconstructed
does not change,but they are estimated with only 80% or 2N (N − 1) measurements. The
trimmed matrices are shown in Figure A-11.

Figure A-10: The structure of the Southwell geometry matrices, shown for a 5× 5 grid of phase
points. The leftmost figure shows the averaging of neighbouring slopes, performed by Ggrad
in (A-57). The rightmost figure shows the structure of matrix GS in (A-57) for neighbouring
phase points. The red boxes indicate incomplete approximations, where the algorithm refers to
non-existent measurements and phase points.

Figure A-11: The structure of the trimmed Southwell geometry matrices, shown for a 5×5 grid of
phase points. The leftmost figure shows the averaging of neighbouring slopes, performed by Ggrad
in (A-57). The rightmost figure shows the structure of matrix GS in (A-57) for neighbouring
phase points. All entries that refer to incomplete approximations have been removed, using the
remaining 80% of slope measurements.

To verify that this reduction leads to a better result both original and trimmed matrices are
used to reconstruct a number of Zernike modes. Using a grid size of N = 15 Zernike modes
Z−2

2 and Z1
3 are individually simulated and reconstructed. The modes are generated on a

square aperture, consistent with how phase screens are generated in this thesis. In order
to eliminate detector noise and only test the performance of the matrices, the slopes are

Master of Science Thesis S. A. Stouten



140 Background Information

obtained by taking the partial derivatives of the wavefronts, instead of sensing them with the
SH or P4F sensor. Results of this verification are shown in Figure A-12 and Figure A-13.
The reconstruction using the complete Southwell matrices from Figure A-10 is referred to as
the ’Full Reconstruction’, whereas the process using trimmed matrices from Figure A-11 is
referred to as the ’Reduced Reconstruction’. From left to right one can identify: The ground
truth simulated wavefront, the fully reconstructed wavefront, the corresponding full residual
wavefront, the reduced reconstruction and finally the reduced residual wavefront.

Figure A-12: Reconstruction of the Zernike mode Z−2
2 with magnitude 1 on a 15× 15 sampled

grid.

Figure A-13: Reconstruction of the Zernike mode Z1
3 with magnitude 1 on a 15 × 15 sampled

grid.

These results clearly show that the trimmed matrices result in a better reconstruction and a
significantly lower residual wavefront. For example, the ’Full Reconstruction’ of Z−2

2 results
in a ∼ 50% residual wavefront, whereas the trimmed matrices result in a ∼ 0.02% residual.
For the Z1

3 reconstruction the result is a ∼ 60% residual wavefront versus a ∼ 2% residual.
The same hypothesis is tested for an increased grid size of N = 50. The two wavefronts
simulated are Z−3

3 with a magnitude of 3 and a superposition of modes Z−2
2 , Z0

2 and Z3
3 with

magnitudes 0.5, 0.5 and 1, respectively. The results shown in Figure A-14 and Figure A-15
indicate that even for a larger grid size and mode superposition the ’Reduced Reconstruction’
method significantly improves the performance of the Southwell zonal algorithm.

Figure A-14: Reconstruction of the Zernike mode Z−3
3 with magnitude 3 on a 50× 50 sampled

grid.
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Figure A-15: Reconstruction of the superposition of Zernike modes Z−2
2 , Z0

2 and Z3
3 with

magnitudes 0.5, 0.5 and 1, respectively. The wavefronts and gradients are represented on a
50× 50 sampled grid.

Now that the structure of the geometry matricesGgrad ∈ R2N(N−1)×2N2 andGS ∈ R2N(N−1)×N2

is clearly defined (A-57) can be simplified by introducing Sa = 1
2GgradS and G = λf

2πDGS :

Sa = Gφ+ n (A-58)

where ST ∈ R2N2×1 contains all averaged and stacked slope measurements and G ∈ R2N2×N2

contains the summations of the phase points multiplied with the geometric factors. The sim-
plified systems of equations (A-58) can be solved through a linear least squares minimization,
leading to the estimated vectorized phase φ̃ ∈ RN2×1:

φ̃ = CφG
T
(
GCφG

T + Cn
)−1

ST (A-59)

where Cφ ∈ RM×M is the phase covariance matrix, G ∈ R2N2×M is the geometry matrix,
Cn ∈ R2N2×2N2 the noise covariance matrix and finally ST ∈ R2N2×1 contains the stacked
slope measurements. The covariance matrices Cφ and Cn impose the stochastic nature of
phase φ and noise n and must be known before (A-59) can be solved. This a priori knowledge
can be found by clearly defining the random nature of the phase to be reconstructed, such
as Kolmogorov statistics. For more details on linear least squares minimization, the solution
and its proof the reader is referred to Appendix A-7.

A-7 The Minimum-Variance Unbiased Least Squares Estimator

Many systems of equations can be reduced to a MVM such as (A-60), where stacked mea-
surements S ∈ RN×1 are related to unknown quantity φ ∈ RM×1:

S = Gφ+ n, (A-60)

with G ∈ RN×M the geometry matrix and n ∈ M×1 possible, though often unknown noise.
With both φ and n unknown it is impossible to obtain an exact solution for φ. A common
approach is finding the estimate of φ, indicated by φ̂. Considering that additive noise n is
unknown and unwanted its effects should be minimized over all measurements. This can
be described by minimizing the two-norm of noise n, rewriting (A-60) into a least squares
problem:

min
φ
nTn, subject to: S = Gφ+ n. (A-61)
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The precise process and elaboration is carefully explained in [48]. If noise n is Gaussian
white noise, meaning it is zero-mean and identity variance, unknown φ is zero-mean then the
minimum-variance unbiased estimator is found to be:

φ̃ =
(
GTG

)−1
GTS = G+S, (A-62)

where G+ is the Moore-Penrose pseudo-inverse of G, as GTG is often singular [48]. Note
that is the estimator in (A-62) is written as φ̃ instead of the usual estimator notation φ̂.
This is done to distinguish between ordinary estimators φ̂ and the MVUE estimator φ̃. This
estimator has the following properties, as put by and proven in [48]:

• Unbiased: The mean value of the estimate equals the mean value of the quantity to be
estimated, meaning E[φ̃] =E[φ] = φ̄.

• Minimum-Variance: When compared to other unbiased estimators, the MVUE has the
smallest possible variance. This is done by minizing the covariance between estimator
and unknown: min E[(φ̃− φ)(φ̃− φ)T ].

It cannot always be guaranteed that additive noise is Gaussian white noise and its variance
may be different from the identity matrix. This is circumvented by the weighted least squares
problem, that rewrites the noise as a product of a weight matrix and Gaussian white noise:

n = Lnε, ε ∼ (0, I) , (A-63)
where the noise covariance is written as Cn = LnL

T
n . The weighted least squares problem is

then formulated as:
min
φ
nTn, subject to: S = Gφ+ Lnε. (A-64)

The solution to the weighted least squares problem starts by formulating linear estimator φ̂
in its most general form, as explained in [48]:

φ̂ = MS +Nφ̄, (A-65)
where unknown signal φ is assumed to have mean value φ̄. By solving both unbiased and
minimum-variance properties for M and N , one can obtain the MVUE from this general
estimator, detailed below.

Unbiased Linear Estimator The unbiased property dictates that the expected value of the
estimator φ̂ should equal the estimated value of the unknown signal. This can be rewritten
as:

E[φ− φ̂] = 0
= E[φ−M (Gφ+ Lnε)−Nφ̄]
= (I −MG−N) φ̄+ E[−MLnε]
= (I −MG−N) φ̄ = 0,

where E[φ] = φ̄ and E[ε] = 0 since the noise is assumed to be zero mean. In order for estimator
φ̂ to be unbiased M and N should be related by:

MG+N = I, (A-66)
where G was the geometry matrix and I is the identity matrix. Before elaborating the
minimum-variance property the Schur complement is explained as it will prove a useful tool.
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Schur Complement The Schur complement allows decomposition of matrices to simplify
matrix-vector multiplications. If a matrix M can be partitioned as follows:

M =
[
A B
C D

]
, (A-67)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. MatrixM can then it be decomposed
into: [

A B
C D

]
=
[
In BD−1

0 Im

] [
A−BD−1C 0

0 D

] [
In 0

D−1C Im

]
, (A-68)

where In and Im are an n × n and m ×m matrices with ones on the diagonal. Decomposi-
tion (A-68) is valid as long as matrix D is invertible or in other words full rank. If this is not
the case but matrix A is invertible, another decomposition is possible:[

A B
C D

]
=
[

In 0
CA−1 Im

] [
A 0
0 D − CA−1B

] [
In A−1B
0 Im

]
. (A-69)

Minimum-Variance Unbiased Estimator For brevity the estimation error between φ and its
unbiased estimator can be rewritten as:

φ− φ̂ = (I −MG)φ−Nφ̄−MLnε

= (I −MG) (φ− φ̄)−MLnε,

where N = I −MG (A-66) is invoked. In order to minimize the variance of this estimation
error the covariance matrix of the error is to be computed. For brevity matrix Cφ = E[(φ−
φ̄)(φ − φ̄)T ] refers to the covariance matrix of φ. It is assumed that this matrix is positive
definite. The estimation error covariance matrix is written as:

E[(φ− φ̂)(φ− φ̂)T ] = E[(I −MG) (φ− φ̄)(φ− φ̄)T (I −MG)T +MLn(εεT )LTnMT ]
= (I −MG)Cφ (I −MG)T +MCnM

T ,

where E[εεT ] = I and it is assumed that noise ε and signal φ are uncorrelated, meaning any
term involving E[φεT ] or E[εφT ] is equal to zero. By completion of squares it is possible to
separate terms dependent and independent of M :

E[(φ− φ̂)(φ− φ̂)T ] =
[
In −M

] [ Cφ CφG
T

GCφ GCφG
T + Cn

] [
In
−MT

]
. (A-70)

The noise covariance matrix Cn = LnL
T
n is positive definite so square matrix GCφGT + Cn

is positive definite as well. This means that the Schur complement (A-68) can be used to
decompose the central matrix. To keep the elaboration clear the Schur decomposition of the
central matrix is written in its partitions:[

Cφ CφG
T

GCφ GCφG
T + Cn

]
=
[
A B
C D

]
=
[
In BD−1

0 Im

] [
A−BD−1C 0

0 D

] [
In 0

D−1C Im

]
.

(A-71)
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The estimate error covariance matrix can then be rewritten as:

E[(φ− φ̂)(φ− φ̂)T ] =
[
In −M

] [In BD−1

0 Im

] [
A−BD−1C 0

0 D

] [
In 0

D−1C Im

] [
In
−MT

]

=
[
In BD−1 −M

] [A−BD−1C 0
0 D

] [
In

D−1C −MT

]

=
[
A−BD−1C

(
BD−1 −M

)
D
] [ In
D−1C −MT

]
= A−BD−1C +

(
BD−1 −M

)
D
(
D−1C −MT

)
.

Compared to (A-70) the above elaboration does not look any simpler or clearer, but the
contrary is true. The goal was to minimize the variance as a function of M and N , meaning
that the term A−BD−1C is not affecting the minimization. The goal is thus reduced to:

min
M,N

E[(φ− φ̂)(φ− φ̂)T ] = min
M

(
BD−1 −M

)
D
(
D−1C −MT

)
. (A-72)

Considering that term D = GCφG
T + Cn is positive definite, the value of (A-72) will be

positive definite as well and thus minimization is accomplished by setting (A-72) to zero.
One possible solution is M = BD−1. In terms of the original problem (A-70) this leads to:

M = CφG
T
(
GCφG

T + Cn
)−1

. (A-73)

Invoking the unbiased relation (A-66) one can find the solution for matrix N :

N = I −MG = I − CφGT
(
GCφG

T + Cn
)−1

G. (A-74)

The results forM and N lead to the MVU estimator φ̃ for the weighted least squares problem,
based on the general estimator φ̂ (A-65). One final simplification can be done by assuming
unknown signal φ to be zero mean. Then the weighted least squares MVUE reduces to:

φ̃ = CφG
T
(
GCφG

T + Cn
)−1

S. (A-75)

The assumption φ̄ = 0 can be physically supported in the framework of wavefront recon-
struction. As mentioned in Section A-6-1 and in [5, 43] the mean value of the phase to be
reconstructed can be attributed to the Zernike piston mode. This mode cannot be sensed
by gradient-based wavefront sensors, such as the SH and plenoptic sensors and is thus left
out of any modal reconstruction scheme [7, 43]. For the same reasons it is left out of zonal
reconstruction schemes, as it simply cannot be sensed and thus impossible to reconstruct.
This also means that the reconstructed phase φ̃ is zero-mean.

Estimation of Covariance from Data The MVUE is defined using covariance matrices for
phase aberration phi and noise contribution n, but these matrices are generally not known.
The default values used in this thesis, implemented in getphase.m, are set the Cφ = I and
Cn = 0.001·I, where I is the identity matrix. Naturally, this default value is not optimal so one
can attempt to optimize these default values. Chapter 4 detailed how the structure function
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of Kolmogorov turbulence can lead to an expression for the phase covariance matrix. By
determining the Kolmogorov power spectral density (PSD), which was presented in multiple
forms by Schmidt in [39], the phase covariance matrix can be found through an inverse Fourier
transform.

This leaves the determination of noise covariance Cn, which depends on the imaging con-
ditions, hardware used and reconstruction algorithms. The following method is written to
determine all necessary covariance matrices, to provide an alternative to inverse Fourier trans-
forms of the Kolmogorov PSD. The most straightforward method is obtaining open-loop data,
either experimentally or through simulations, and approximate the covariance matrices by:

Cφ ≈
φφT

M
, (A-76)

where φ ∈ RN2×M contains M independent measurements of each phase, that is represented
on an N × N discretely sampled grid and subsequently vectorized to an N2 × 1 vector. In
order to obtain an expression of the covariance matrices an analysis of the modal and zonal
data equations is performed. Without considering noise these equations can be written as:

S = G⊥γ (modal reconstruction),
S = Gφ (zonal reconstruction),

(A-77)

which can be solved by the ordinary least squares estimator (A-62). The simulation framework
discussed in this chapter does not include any additional noise so one can assume that any
noise originates from the obtained slope measurements coined as detector noise. It can be
included in (A-77) by expanding S = S0+ε, where S0 is the true slope and ε captured detector
noise. Through noise in the slopes the phase reconstruction will contain additive noise as well:

S0 + ε = G⊥ (γ + n) (modal reconstruction),
S0 + ε = G (φ+ n) (zonal reconstruction),

(A-78)

where γ and φ represent the true and noiseless reconstruction results. For the purpose of
these simulations one can interpret noise ε to consist of two elements: (1) a truncation error
due to representing the phase gradient by a discretely sampled grid and (2) a mismatch error
due to the discrete Fourier transform, where the images are shifted by a pixel or two. Despite
equal notation and quantification, the reconstruction noises n in both equations of (A-78) are
not equal. One can isolate both noise contributions in (A-78) following the reasoning of error
propagation discussed in [21, 23]. Considering that true slope measurements S0 lead to true
reconstructions γ and φ it follows from linearity that ε leads to error n:

εmodal = G⊥n.

εzonal = Gn,
(A-79)

and the reconstruction errors n can be found by the ordinary least squares estimator (A-62):

ñmodal =
(
GT⊥G⊥

)−1
GT⊥εmodal = G+

⊥εmodal,

ñzonal =
(
GTG

)−1
GT εzonal = G+εzonal,

(A-80)
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where G+
⊥ is the pseudo-inverse of the orthonormal Zernike gradient matrix (A-44) and G+ the

pseudo-inverse of the zonal geometry matrix. Using (A-76) the estimate for the reconstruction
noise covariance can be expressed as a function of the detector error covariance Cε:

Cmodaln ≈ 1
K
ñmodalñ

T
modal = G+

⊥C
modal
ε

(
G+
⊥

)T
,

Czonaln ≈ 1
K
ñzonalñ

T
zonal = G+Czonalε

(
G+
)T

,
(A-81)

where K is the number of independent measurements, such that ñ ∈ RN2×K . Covariance
matrix Cε can be found using open-loop data, comparing the slopes of the reference phase to
the detected slopes. Expression (A-81) solves the first half of the covariance estimations. For
the zonal reconstruction model the second half is simply found by computing the covariance
matrix of the open-loop reference phases using (A-76). The modal reconstruction requires
knowledge of Cγ instead of Cφ, so an additional step is required that starts with the phase
data equation from (A-45):

φ = 2π
λ
Z⊥α+ n

= 2π
λ
Z⊥βZβ

−1
G γ + n,

where φ ∈ RN2×K . By invoking (A-76) one can express the phase covariance matrix as a
function of the coefficient covariance Cγ . By recognising ZT⊥Z⊥ = I and rewriting β = βZβ

−1
G ,

such that β−T = βTG

(
βTZ

)−1
, one can isolate Cγ :

Cφ ≈
1
K
φφT = 1

K

(2π
λ

)2
Z⊥βZβ

−1
G γγT

(
Z⊥βZβ

−1
G

)T
,

Cγ = Kλ2

4π2 Z
T
⊥β
−1Cφβ

−TZ⊥. (A-82)
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List of Acronyms

AO Adaptive Optics
DFT discrete Fourier transform
DM deformable mirror
FFT Fast Fourier Transform
FOV field of view
FPGA Field Programmable Gates Array
GPU Graphics Processing Unit
MCAO Multi-Conjugate Adaptive Optics
MLA microlens array
MMSE minimum mean square error
MVM matrix-vector multiplication
MPI multiple point source imaging
MVU minimum-variance unbiased
MVUE minimum-variance unbiased estimate
OBT object-based tilt
OTF optical transfer function
P3F plenoptic 3F
P4F plenoptic 4F
P4FSH Plenoptic 4F Shack-Hartmann hybrid
PSD power spectral density
PSF point-spread function
PWZM piece-wise zero-mean
RMS root mean square
RMSE root-mean-square
SH Shack-Hartmann
SNR signal-to-noise ratio
WFS wavefront sensor
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