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ABSTRACT

Low field magnetic resonance imaging (MRI) scanners provide a unique low-cost alter-
native to conventional MRI scanners. Nevertheless, low-field scanners come with draw-
backs such as reduced signal-to-noise ratio and resolution, and also distorted images
caused by magnetic field inhomogeneity and non-linear gradient fields. Despite this,
it still provides a more accessible way to provide MRI in resource-limited areas. The
main goal of this thesis is to develop an algorithm that can reconstruct 3D data from the
low-field scanner efficiently and without distortion to the image. To do this, conjugate
phase reconstruction (CPR) is employed, particularly frequency segmented reconstruc-
tion (Noll, 1991) and multifrequency interpolation (Man et al., 1997).
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1
INTRODUCTION

Currently, medical imaging has become an integral part of healthcare. Imaging modal-
ities such as ultrasound, CT and MRI, are now widely used in hospitals throughout the
world and have been useful in the diagnosis and treatment of many types of diseases.
MRI specifically, is most well known for its ability to provide high contrast images of
soft tissue. Most MRI scanners that are currently used have magnetic field strengths that
range from 1.5T to 7T. While they are sometimes indispensable, they are not always avail-
able due to costs associated with acquiring and maintaining the machine. This chapter
will cover a clinical application of MRI, which has lead to the development towards a
low-cost alternative, low-field scanner.

1.1. HYDROCEPHALUS
Normally, cerebrospinal fluid (CSF) circulates through the brain and spine, and is then
reabsorbed through the bloodstream. Hydrocephalus is a condition characterised by a
build up of CSF inside ventricles within the brain. This causes the ventricles to swell
and exert pressure inside the skull. Figure 1.1 shows an image of a brain affected by hy-
drocephalus. This condition occurs most often in children, and can lead to learning,
or physical disabilities, and may eventually prove to be fatal (Hydrocephalus Overview,
n.d.). Therefore, early diagnosis is important, and leads to a lower chance of long-term
complications. In order to treat hydrocephalus, a shunt can be surgically inserted to
divert the excess fluid into either the chest cavity or abdomen where the fluid will be
absorbed (Hydrocephalus Fact Sheet, n.d.). Unfortunately, in developing countries, the
condition is often left untreated. When head swelling becomes prominent, the brain
tissue is undeveloped and surgery becomes rare and difficult (Borden et al., 1918). Hy-
drocephalus can be caused by genetic or environmental factors before birth, and is most
prevalent in low- and middle-income countries (Dewan et al., 2019). It is currently the
most common reason for brain surgery in children, and cases of infant hydrocephalus is
estimated to effect as many as 225,000 children per year in sub-Saharan Africa (Dewan
et al., 2019).
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Figure 1.1: TSE T2 weighted image of a brain affected by hydrocephalus with a build up of fluid in the centre
Dinçer and Özek, 2011.

There are multiple methods of diagnosis. Ultrasound is a low-risk method but is
only effective at 14-16 weeks when the skull is thin (Paladini et al., 2007). CT and MRI
are more expensive alternatives, but provide a clearer image. While CT is often used,
multiple follow-up scans exert a radiation burden towards the patient. MRI does not
use radiation and therefore contains less risks. Nevertheless, it is not always available,
especially due to the high costs associated with acquiring and maintaining the system.

1.2. LOW-FIELD MRI
Current MRI scanners used in hospitals range from 1.5T to 7T, and it is necessary to
house the scanner in an electromagnetically shielded room. This is done to prevent the
scanner from disrupting nearby medical devices, and also to protect the scanner from
outside interference. A shielded room can cost as much as $100,000. Moreover, conven-
tional 1.5T scanners can cost upwards of $800,000 (Wald et al., 2020). Overall, the high
costs of MRI scanners have discouraged the use of this technology especially in low and
lower-middle income countries (WorldHealthOrganization, n.d.). Nevertheless, hydro-
cephalus and other types of brain disorders, create a demand and need for an affordable
alternative. Low-field MRI scanners aims to provide this. Although a lower magnetic
field results in an image with lower resolution, it should still be sufficient for use in the
early diagnosis of brain disorders like hydrocephalus.

Normal MRI scanners use a large superconducting magnet and a cooling system to
continuously generate a strong magnetic field. Currently, a 50mT scanner is being de-
veloped in the Leiden University Medical Center (LUMC) which uses a Halbach array of
permanent magnets (O’Reilly et al., 2021), shown in Figure 1.2. This significantly reduces
the manufacturing and maintenance costs, and also the size of the scanner. Moreover,
the entire setup is placed inside a Faraday cage made of aluminium. This way, a shielded
room is not needed for the operation of the scanner. Nevertheless, low-field scanners
come with drawbacks such as reduced SNR, resolution, and also image distortion.
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Figure 1.2: Low-field MRI scanner currently being developed in LUMC by O’Reilly et al., 2021.

1.3. THESIS OBJECTIVE
Currently, the low-field scanner experiences magnetic field inhomogeneity and a non-
linear gradient field. Normal reconstruction techniques using FFT in the presence of
field disturbances result in a spatial distortion in the resulting images. The main goal
of this thesis is to develop an algorithm that can reconstruct 3D data from the low-field
scanner efficiently and without distortion to the image. To do this, conjugate phase re-
construction is employed, using papers by Koolstra et al., 2021, Man et al., 1997, and
Noll, 1991 as a basis.

Firstly, the MRI signal model will be derived by using the Bloch equation. Then, the
theory behind conjugate phase reconstruction will be explained, followed by subsets
of the method, frequency segmented reconstruction and multifrequency interpolation.
Subsequently, the reconstruction methods will be tested on two Shepp-Logan phan-
toms, the first is distorted by B0 field inhomogeneity, while the second is distorted by
both B0 field inhomogeneity and non-linear gradient fields. The results of each method
will be compared by calculating the residual norm error, and the speed of each method
will be discussed as well. Finally, the chosen reconstruction method will be tested on in
vivo datasets obtained from the low-field scanner.





2
SIGNAL MODEL

In this chapter, we look at the mathematics behind MRI. This is done by first explaining
the nuclear magnetic resonance (NMR) phenomenon, which MRI relies upon to gener-
ate images. Followed by the Bloch equation, which is fundamental to describing the nu-
clear magnetization as a function of time at each point in the system. The Bloch equation
in this chapter outlines lecture notes given in the course "Advanced Magnetic Resonance
Imaging" in TU Delft (Remis, n.d.).

2.1. NUCLEAR MAGNETIC RESONANCE
Nuclear magnetic resonance is a phenomenon that is fundamental to creating images in
MRI. As the name suggests, this phenomenon consists of three parts. The first part con-
cerns the nuclei of atoms, particularly nuclei that have an odd atomic number or an odd
mass number. These nuclei possesses an angular momentum φ, otherwise known as
spin (Prince and Links, 2015). Due to this spin, they also possess a microscopic magnetic
field. This is represented by µ, which is a vector that describes the magnetic moment of
a spinning nucleus.

µ= γφ (2.1)

where γ is a physical constant called the gyromagnetic ratio, which has a unique value
for each nucleus. Moreover, this value is related to γ which is more widely used with
units Hz per Tesla.

γ= γ

2π
(2.2)

Table. 2.1 shows the gyromagnetic ratios for some of the more prevalent atoms in the
body. MRI only utilises signals from 1H atoms in the body, which are abundant mostly
in the form of water and other organic compounds. Moreover, it also has the largest
gyromagnetic ratio which will result in the largest bulk magnetization M as shown next.
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Table 2.1: Nuclei of atoms prevalent in the body which
are useful for NMR (Zhi-Pei Liang)

Nucleus Gyromagnetic ratio (MHz/T)

1H 42.58
13C 10.71
19F 40.05
31P 11.26

Normally, the magnetic moment of nuclei are all randomly oriented which causes
the net magnetic field to be zero. Therefore, for µ to be detectable, an external magnetic
field B0(r) is used to align all magnetic moments in one direction, in this case iz .

B0(r) = B0iz (2.3)

Consequently, this produces a bulk magnetization M(r, t ) which is proportional to µ

M(r, t ) =
Ns∑

n=1
µn (2.4)

where Ns is the total number of spins.
The last part of NMR is resonance. At this point, the atoms are in equilibrium where

B0(r) and M(r, t ) are parallel to each other. After equilibriun is achieved, a second exter-
nal magnetic field Ba(r, t ) called a radio-frequency field (RF field) is used. This RF field
operates at a frequency ω0(r) called the Larmor frequency.

ω0(r) = γB0(r) (2.5)

The Larmor frequency is otherwise known as the natural frequency of a spin system and
is the basis for nucleus specificity (Liang and Lauterbur, 2000). Following table. 2.1, sup-
pose a body is placed in a background field of B0 = 1T . In this case, 1H and 31P resonate
at 42.58 MHz and 11.26 MHz respectively. This difference in resonance frequency al-
lows signals from the two atoms to be distinguished from each other. Moreover, Ba(r, t )
causes M(r, t ) to be perpendicular to B0(r).

When Ba(r, t ) is turned off, M(r, t ) starts to precess around B0(r) until they are both
parallel again. During this relaxation phase, the atoms emit a radio signal that is de-
tectable by receiver coils in a phenomenon called free induction decay (FID). This signal
is what allows MR images to be produced. Different materials take a different amount
of time to return to equilibrium which consequently, creates contrast between different
parts of the body.

2.2. BLOCH EQUATION
Initially, at t = 0, the system is in equilibrium with a static background field following Eq.
2.3. Moreover, the magnetization M(r,t) of the system is currently:

M(r, t ) = M 0
x ix +M 0

y iy +M 0
z iz (2.6)
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Subsequently, the system also receives an RF field Ba(r, t ). Therefore, the resulting mag-
netic field becomes:

B(r, t ) = B0(r)+Ba(r, t ) (2.7)

The Bloch equation is fundamental to describing the nuclear magnetization M(r, t ) as
a function of time at each point in the system and forms the basis by which a signal is
acquired from the body. The Bloch equation is:

∂M(r, t )

∂t
+γB(r, t )×M(r, t )+ 1

T2(r)
M⊥(r, t )+ 1

T1(r)
M∥(r, t )iz = 1

T1(r)
M eq (r)iz (2.8)

where T1 and T2 describe the longitudinal and transverse relaxation times respectively,
and the magnetization is also separated into its transverse and longitudinal components.

M⊥(r, t ) = Mx (r, t )ix +My (r, t )iy

M∥(r, t ) = Mz (r, t )iz
(2.9)

In addition to this, the equilibrium magnetization M eq is:

M eq (r) = ρ(r)
γ2ħ2

4kT
B0(r) (2.10)

where ρ(r) is the density of spins per unit volume, ħ is Planck’s constant divided by 2π, k
is Boltzmann’s constant, and T is the absolute temperature.

First, we solve the Bloch equation while ignoring relaxation effects. As a result, we
can find the magnetization at each direction:

Mx (t ) = M 0
x cos(ω0(r)t )+M 0

y sin(ω0(r)t )

My (t ) = M 0
y cos(ω0(r)t )−M 0

x sin(ω0(r)t )

Mz (t ) = M 0
z

(2.11)

From this solution, we can conclude that the magnetization is precessing around the
iz direction, or B0(r), in a left-handed manner with an angular frequency equal to the
Larmor frequency ω0(r).

2.3. ROTATING FRAME OF REFERENCE
Since the magnetization is constantly precessing around B0(r), it is easier to use a rotat-
ing frame of reference instead of a static one to solve the Bloch equation While ix , iy , and
iz is used for the static frame, the apostrophe will be used to indicate the rotating frame.
i′x , i′y , and i′z are the directional vectors in the rotating frame.ix

iy

iz

=
 cos(ω0(r)t ) si n(ω0(r)t ) 0
−si n(ω0(r)t ) cos(ω0(r)t ) 0

0 0 1

i′x
i′y
i′z

 (2.12)
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Therefore, it can be seen that the rotating frame of reference is R:

R =
 cos(ω0(r)t ) si n(ω0(r)t ) 0
−si n(ω0(r)t ) cos(ω0(r)t ) 0

0 0 1

 (2.13)

Meanwhile, the magnetization can be shown in a matrix

m = [Mx , My , Mz ]T and m′ = [M ′
x , M ′

y , M ′
z ]T

where
m = Rm′ and m′ = RT m

Moreover, it is important to note that R−1 = RT .
Now we come back to the Bloch equation Firstly, the Bloch equation is separated into its
vector counterparts:

∂Mx

∂t
−ω0(r)My + 1

T2
Mx = 0 (2.14)

∂My

∂t
+ω0(r)Mx + 1

T2
My = 0 (2.15)

∂Mz

∂t
+ 1

T1
Mz = 1

T1
M eq (2.16)

This can also be seen in matrix form as:

∂m

∂t
+ω0(r)

0 −1 0
1 0 0
0 0 0

m +


1

T2
0 0

0 1
T2

0

0 0 1
T1

m =
 0

0
1

T1
M eq

 (2.17)

Substituting m = Rm′ results in:

(R
∂m′

∂t
+ ∂R

∂t
m′)+ω0(r)

0 −1 0
1 0 0
0 0 0

Rm′+


1

T2
0 0

0 1
T2

0

0 0 1
T1

Rm′ =
 0

0
1

T1
M eq

 (2.18)

To simplify this equation, we notice the following relation:

∂R

∂t
+ω0(r)

0 −1 0
1 0 0
0 0 0

R = 0 (2.19)

As a result, Eq. 2.18 becomes:

R
∂m′

∂t
+


1

T2
0 0

0 1
T2

0

0 0 1
T1

Rm′ =
 0

0
1

T1
M eq

 (2.20)
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And subsequently, multiplying by RT results in:

∂m′

∂t
+


1

T2
0 0

0 1
T2

0

0 0 1
T1

m′ =
 0

0
1

T1
M eq

 (2.21)

Taken out of the matrix and separated into its vector counterparts results in:

∂M ′
x

∂t
+ 1

T2
M ′

x = 0 (2.22)

∂M ′
y

∂t
+ 1

T2
M ′

y = 0 (2.23)

∂M ′
z

∂t
+ 1

T1
M ′

z =
1

T1
M eq (2.24)

Then we solve the first-order partial differential equation for each of the directions to
get:

M ′
x = M 0

x e(−t/T2) (2.25)

M ′
y = M 0

y e(−t/T2) (2.26)

M ′
z = M 0

z e(−t/T1) + (1−e(−t/T1))M eq (2.27)

And finally, by using Eq. 2.11 and the relation that m′ = RT m, the magnetization is:

Mx (t ) = e(−t/T2)[M 0
x cos(ω0(r)t )+M 0

y si n(ω0(r)t )]

My (t ) = e(−t/T2)[M 0
y cos(ω0(r)t )−M 0

x si n(ω0(r)t )]

Mz (t ) = M 0
z e(−t/T1) + (1−e(−t/T1))M eq

(2.28)

2.4. FREE INDUCTION DECAY
Having solved the magnetization from the Bloch equation in the last section, we can now
find the resulting voltage V (t ) in a receiver coil. This signal is called the free induction
decay signal, as described in the section explaining NMR.

V (t ) =−
∫
∂M(r, t )

∂t
·Br (r)dr

V (t ) =−
∫

(
∂Mx

∂t
Br,x +

∂My

∂t
Br,y + ∂Mz

∂t
Br,z )dr

(2.29)

where Br (r) is the so-called receiver coil sensitivity.
Following Eq. 2.28, the derivative of Mx is:

∂Mx

∂t
=ω0(r)e(−t/T2)[−M 0

x si n(ω0(r)t )+M 0
y cos(ω0(r)t )]

− 1

T2
e(−t/T2)[M 0

x cos(ω0(r)t )+M 0
y si n(ω0(r)t )]

(2.30)
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Typically, ω0(r) ≫ 1
T2

which results in:

∂Mx

∂t
≈ω0(r)e(−t/T2)[−M 0

x si n(ω0(r)t )+M 0
y cos(ω0(r)t )] (2.31)

and similarly, the derivative of My becomes:

∂My

∂t
≈−ω0(r)e(−t/T2)[M 0

y si n(ω0(r)t )+M 0
x cos(ω0(r)t )] (2.32)

Moreover, usually ω0(r) ≫ 1
T1

,and therefore the derivative of Mz can be seen as negligi-
ble. This results in:

V (t ) ≈−
∫

−ω0(r)e(−t/T2){[M 0
x si n(ω0(r))t )−M 0

y cos(ω0(r))t )]Br,x

+ [M 0
x cos(ω0(r))t )+M 0

y si n(ω0(r))t )]Br,y }dr
(2.33)

Introducing the complex field quantities

M±
0 = M 0

x ± j M 0
y and B±

r,x y = Bx ± j By

V (t ) can be written as:

V (t ) ≈ j

2

∫
ω0(r)e(−t/T2)(e− jω0(r))t M+

0 B−
r,x y −e jω0(r))t M−

0 B+
r,x y )dr (2.34)

The signal is then amplified, and demodulated with a demodulation frequency ωmod .

Vdemod (t ) = 2Aeωmod j t V (t ) (2.35)

Subsequently, the signal is passed through a low-pass filter resulting in the following
signal model:

S(t ) = j A
∫
ω0(r)e(−t/T2)e−△ω0(r) j t M+

0 B−
r,x y dr (2.36)

where △ω0(r) =ω0(r)−ωmod . Here, the scaling constant j Aω0(r) can be omitted. More-
over, the receiver coils are assumed to have uniform sensitivity, and the transverse relax-
ation effects can be ignored for simplicity (Liang and Lauterbur, 2000). Doing this omits
B−

r,x y and e(−t/T2) respectively, resulting in the following signal expression:

S(t ) =
∫

e−△ω0(r) j t M+
0 dr (2.37)

A spin density map ρ(r) can be used to describe the transverse magnetization M+
0 , which

results in the received signal model:

S(t ) =
∫
ρ(r)e−△ω0(r) j t dr (2.38)

Lastly, a change in the main magnetic field B0 can cause a spatial variation in the Larmor
frequency, and this can be expressed using an off-resonance map △B0(r) (measured in
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Hz, so γ can be omitted), which describes a change in the B0 field from the resonance
frequency.

△B0(r) = B0(r)−B0,center (2.39)

Therefore, the resulting signal model becomes

S(t ) =
∫
ρ(r)e−2π△B0(r) j t dr (2.40)

2.5. SPATIAL ENCODING
Although a signal has been obtained, the location where the signal originated is still not
known. To spatially encode the signal, gradient coils are used to produce a linearly vary-
ing field G(r) along each direction (measured in Hz):

G(r) =Gx ix +Gy iy +Gz iz (2.41)

This results in the following vectorized spatially encoded signal

S(t ,τ,υ) =
∫
ρ(r)e−2π△B0(r) j t e−2πGx (r) j t e−2πGy (r) jτe−2πGz (r) jυdr (2.42)

where t is the duration of each frequency encoding step, while τ and v are the duration
of each phase encoding step along the y- and z-axes.

2.6. APPROXIMATE INVERSE SIGNAL MODEL
At the end of spatial encoding, the signal in k-space notation can be seen as:

S(t ,τ,υ) =
∫
ρ(r)e−2π j (△B0(r)t+k(t )r) dr (2.43)

where k(t ) is the sum of its directional components:

kx =Gx t

ky =Gyτ

kz = Gzυ

(2.44)

Eq. 2.43 shows that signal S(t ,τ,υ) is the Fourier transform of the spin density map along
the trajectory k(t ) with a phase shift △B0(r) (Börnert et al., 1999). Therefore our inverse
signal model can be approximated as:

ρ(r) ≈
∫ ∫ ∫

S(t ,τ,υ)e2π△B0(r) j t e2πGx (r) j t e2πGy (r) jτe2πGz (r) jυd t dτ dυ (2.45)

The signal model and the approximate inverse signal model that have been derived will
be used in the next chapter for reconstruction.
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RECONSTRUCTION

Now that the signal model is derived, the image can be reconstructed. Normally, a fast
Fourier transform (FFT) based reconstruction is sufficient to transform the signal into
the spatial domain and obtain an image. Unfortunately, this is not the case when inho-
mogeneities in the magnetic fields are present, as this would lead to a distorted image.
Therefore, other image reconstruction techniques need to be used.

There are several image distortion correction techniques available, such as the model-
based reconstruction (de Leeuw den Bouter et al., 2019) and conjugate phase recon-
struction (CPR) (Maeda et al., 1988). While model-based reconstruction have been shown
to be more effective for stronger inhomogeneities, CPR is able to correct an image faster
because it incorporates FFT in its implementation (Koolstra et al., 2021). Therefore, for
moderate inhomogeneities where CPR provides a sufficiently accurate reconstruction,
CPR is more practical to use.

This section will first focus on how the B0 and gradient field maps are processed,
followed by how a distorted phantom is created for the simulation. And lastly, CPR will
be explained.

3.1. ESTIMATED △B0 FIELD MAP
The low-field scanner that is being developed by O’Reilly et al. (2021) currently suffers
from magnetic field inhomogeneity, particularly B0 field inhomogeneity and gradient
field non-linearity. Therefore, this needs to be taken into account in the signal model.

CPR requires the △B0(r) field map prior to reconstruction, therefore a method to
estimate the resulting field map is needed. One way to do this is by obtaining two images
of the same object with a time-shift (Noll, 1991). This results in two phase maps, φ1(r) at
echo time T E1 and φ2(r) at echo time T E2. Then the △B0(r) field map is

△B0(r) = φ2(r)−φ1(r)

T E2 −T E1
(3.1)

A mask of the object is then made and fitted on top of the estimated field map, and in this
way noise in the background is ignored. The low-field scanner has a lower magnetic field
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strength than conventional MRI scanners, and this cause images from the scanner to
have low SNR. While this method can quickly obtain the △B0(r) field map, it can lead to
an inaccurate field map when the image has noise. To reduce noise, a sine-bell squared
filter is used which removes high-frequency components from the k-space data.

3.1.1. SPHERICAL HARMONICS
The estimated field map is in the shape of the image (or in the case of the simulations,
the △B0(r) field map is in the shape of the bore). Reconstruction by FFT and CPR require
the field map to cover the whole FOV, therefore, a method is needed to expand the field
map. One way to do this is by fitting the obtained or estimated field map through a
basis of second-order spherical harmonics. The theory behind spherical harmonics is
not covered in this thesis. MATLAB code developed in LUMC by Tom O’Reilly was used
as a basis for the spherical harmonics used in this paper. More information on spherical
harmonics can be found in (Koolstra et al., 2021).

3.2. CONJUGATE PHASE RECONSTRUCTION
Conjugate phase reconstruction (CPR) is a method for correcting the accumulation of
phase errors caused by magnetic field inhomogeneity. To do this, the phase error parts
of the field maps need to be separated. For the B0 field map, this can be done according
to Equation 2.39.

Let us first take a look at CPR for B0 inhomogeneity, where the effective phase error
we f f (r) =△B0(r), and △B0(r) is the estimated, or given, field map with a known matrix
dimension of m ×n × l . Then, the inverse signal model can be seen as

ρ(r) ≈
∫

S(t )e2πwe f f (r) j t d t (3.2)

Now, let w(i ) be we f f flattened out along one axis and sorted by order of magnitude,
where i represents an index with a range of 1 to m ×n × l .

w(i ) = we f f ,mi n → we f f ,max (3.3)

By using w(i ), a set of images Ii (r) can be reconstructed

Ii (r) ≈
∫

S(t )e2πw(i ) j t d t (3.4)

Now, we have created m ×n × l images, one for each off-resonance frequency and the
CPR corrected image can be reconstructed pixel by pixel. This is done by taking a pixel
Ii (ri ) from each off-resonance image, where position ri corresponds to the same po-
sition where w(i ) = we f f (ri ). As a result, each pixel of the CPR corrected image has a
magnitude which is consistent with the off-resonance frequency at that location. This is
further illustrated in Figure 3.1. Nevertheless, creating m ×n × l images is a costly oper-
ation that can take a long time. To speed up the process, frequency segmented recon-
struction (FSR) (Noll, 1991) and multifrequency interpolation (MFI) (Man et al., 1997) is
explored.
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Figure 3.1: The inverse Fourier transform of the signal S(t) along the trajectory w(i ) creates a set of images
Ii (r), where each pixel ri from image Ii (r) becomes a pixel in ρ(r) at position ri

3.2.1. FREQUENCY SEGMENTED RECONSTRUCTION
Looking back at Equation 3.2, it can be seen that an image ρ(r) is the result of a signal S(t )
multiplied by a phase of 2πwe f f t , where we f f represents the off-resonance frequencies,
and t is the readout time with a range of 0 → T . Therefore, the maximum phase error that
can be achieved is at 2πwe f f ,max T . In FSR, the range of off-resonance frequencies w(i )
is discretized into L +1 equally spaced segments, such that the accumulation of phase
error in each segment is sufficiently small so that the resulting images Ii (r) will still be a
good approximation

2
2πwe f f ,max T

L
< π

2
(3.5)

A factor two is added since off-resonance frequencies range from negative to positive
frequencies. As a result, w(i ) is divided into LF SR +1 segments

LF SR > 4
(2π△wmax )T

π
(3.6)

In other words, w(i ) is still the same as Equation 3.3 but now i represents an index with
a range of 1 to LF SR +1.

3.2.2. MULTIFREQUENCY INTERPOLATION
MFI is a similar CPR technique to FSR. It aims to reduce computation time by reducing
the number of images Ii (r) that have to be produced. To make up for this, coefficients
ci (△w) have to be computed. In the end, the CPR corrected image Icp is computed as

Icp (r) ≈
LMF I∑
i=0

ci (△w(r))Ii (r) (3.7)

The coefficients ci (△w) can be chosen such that the following equation holds approxi-
mately

e2π△w j t ≈
LMF I∑
i=0

ci (△w)e2πw(i ) j t (3.8)
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where △w is the full range of off-resonance frequencies and w(i ) is the range of off-
resonance frequencies discretized into less segments than in FSR. While FSR gives a
threshold of π

2 for the accumulation of phase error in a segment, MFI takes advantage
of the periodic nature of the signal and sets the threshold to 2π instead.

2
2πwe f f ,max T

L
< 2π (3.9)

Therefore, the off-resonance frequencies are divided into LMF I +1 segments, a decrease
by a factor of 4 compared to FSR.

LMF I > (2π△wmax )T

π
(3.10)

The coefficients ci (△w) can be approximated by least squares, for which many algo-
rithms exist. To do this, Equation 3.8 can be seen to fit the least squares equation Ax = b,
where

A = e2πw(i ) j t

x = ci (△w)

b = e2π△w j t

(3.11)

3.2.3. ADDITIONAL GRADIENT NON-LINEARITY CORRECTION
The above methods can also be extended to correct for gradient non-linearity. The gra-
dient field maps consist of a linear and non-linear part. Therefore, the non-linear part
can be obtained by taking the difference between the gradient field map and it’s perfectly
linear version.

Gr,nonli near =Gr −Gr,l i near (3.12)

Consequently, this results in the inverse signal model below

ρ(r) ≈
∫ ∫ ∫

S(t )e2π(△B0(r)+Gx,nonli near (r)) j t )e2πGx,l i near (r) j t

e2πGy,nonli near (r) jτe2πGy,l i near (r) jτ

e2πGz,nonli near (r) jυe2πGz,l i near (r) jυd t dτdυ

(3.13)

The reconstruction can be divided into three parts concerning each of the gradient field
directions. As a result, the effective phase error we f f for each direction is

we f f ,1(r) =△B0(r)+Gx,nonli near (r)

we f f ,2(r) =Gy,nonli near (r)

we f f ,3(r) =Gz,nonli near (r)

(3.14)

Each we f f is corrected for one by one. Similarly, we f f is flattened out and sorted by
order of magnitude into w(i ). And, depending on the method, the index i will range
from 1 to m ×n × l for full CPR, or 1 → LF SR +1 or 1 → LMF I +1.



4
SIMULATION

To test the application of the reconstruction algorithms, two simulations are done. The
first simulation covers B0 field inhomogeneity, and the second simulation covers both
B0 field inhomogeneity and gradient field non-linearity.

4.1. DISTORTED PHANTOM
The Shepp-Logan phantom is a standard test image that is modelled to provide similar
contrast to in vivo images of a human head, therefore it is a good starting point to test
the effectiveness of an image reconstruction algorithm. The currently used phantom
(Schabel, 2006) has a dimension of 128× 128× 30 voxels (this dimension is also used
subsequently in the creation of the △B0 and non-linear gradient field maps).

Figure 4.1: Original Shepp-Logan phantom used in simulations (Schabel, 2006).

17
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4.1.1. △B0 FIELD MAP
The main magnetic field of the low-field scanner was measured with a resolution of
5× 5× 5 mm3 and field of view (FOV) of 225 x 225 x 300 mm3 which is then truncated
to an FOV of 200×200×200 mm3 to match the FOV of the gradient field maps. It was
obtained by using a gaussmeter (Lake Shore Cryotronics, Westerville, OH) connected
to a 3D positioning robot, and is subsequently converted to Hz (Koolstra et al., 2021).
Then, the centre frequency was subtracted from the field map to create the △B0 field
map shown in Figure 4.2a. A field map spanning the whole FOV is required for recon-
struction. Therefore, the △B0 field map is fitted to a basis of second-order spherical
harmonics resulting in the △B0 field map used for the simulation shown in Figure 4.2b.

(a) Original △B0 field map (b) △B0 field map fitted to spherical harmonics

Figure 4.2: a The measured △B0 field map of the low-field scanner b The △B0 field map expanded to span the
whole FOV by fitting the △B0 field map to a basis of second-order spherical harmonics

4.1.2. GRADIENT FIELD MAPS
Shown in Figure 4.3 and 4.4, are non-linear gradient fields obtained by using the magne-
tostatic solver in CST Studio Suite (Darmstadt, Germany) to simulate the resulting field
maps from the gradient coils. The field map has a resolution of 5× 5× 5 mm3 and an
FOV of 200×200×200 mm3. The reconstruction algorithm requires the non-linear part
of the gradients to be separated from the obtained gradient field maps. To do this, a
perfectly linear gradient field map with the same FOV and resolution is simulated. This
is then subtracted from the obtained gradient field maps which results in the separated
gradient non-linearity.

Figure 4.3: Simulated gradient field maps from CST Studio Suite (Darmstadt, Germany).
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Figure 4.4: Middle slice of simulated gradient field maps.

4.1.3. DISTORTED PHANTOM
With the △B0 and non-linear gradient field maps, a distorted phantom can be simu-
lated. Two distorted phantoms are made. The first one exhibits distortions only due to
B0 inhomogeneity, shown in Figure 4.5a, and the second one exhibits distortions due to
both B0 inhomogeneity and gradient field non-linearity, shown in Figure 4.5b.

4.2. CONJUGATE PHASE RECONSTRUCTION
As previously described, CPR discretizes the range of off-resonance frequencies into L+1
equally-spaced segments. Then, L+1 images are reconstructed using inverse FFT. A voxel
is taken from each resulting image which corresponds to a voxel of approximately the
same reconstruction frequency in the field map. This is done until all voxels are acquired
which results in the CPR corrected image.

This section shows the results of three CPR methods, each one with less frequency
segments. The first method is full CPR, which takes the frequency of each voxel in the
field map and uses it to create an image. This results in a very long reconstruction time,
but nevertheless, shows the limits of the CPR technique. The second method is FSR
where the range of off-resonance frequencies is divided into LF SR +1 segments.

LF SR > 4
(2π△wmax )T

π
(4.1)

And the third method is MFI, which divides the range of off-resonance frequencies into
LMF I +1 segments and requires coefficients ci (△w) to be computed to make up for the
reduced number of frequency segments.

LMF I > (2π△wmax )T

π
(4.2)

The resulting corrected images of each method give visually similar images. To compare
them better, the following image is made

||Full C PR|− |Cor r ected i mag e||
|Full C PR| (4.3)

and the resulting images are shown in Figure 4.6 for the B0 field distorted phantom, and
in Figure 4.7 for the B0 and gradient field distorted phantom.
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(a) Distorted phantom from △B0 inhomogeneity.

(b) Distorted phantom from both △B0 inhomogeneity and gradient field non-linearity.

Figure 4.5: Simulated distorted phantoms.
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(a) (b) (c)

(d) (e)

Figure 4.6: △B0 field corrected phantom. a, b, c shows visually similar results for the three CPR methods. c
and d show the FSR and MFI method compared to full CPR method respectively using Equation 4.3

(a) (b) (c)

(d) (e)

Figure 4.7: △B0 and non-linear gradient field corrected phantom. a, b, c shows visually similar results for the
three CPR methods. c and d show the FSR and MFI method compared to full CPR method respectively using
Equation 4.3

Looking at Figures. 4.6d and 4.6e one can see that the MFI method produces a more
accurate image than the FSR method. The FSR method shows more blurring in the out-
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lines of the phantom. This can be seen more prominently in Figures. 4.7d and 4.7e where
on top of blurring of the outline, there is also a lot of noise seen inside the phantom. On
the other hand, the MFI method exhibit ringing artifacts which can be interpreted as
the effect of taking fewer frequency segments than FSR, as well as the added gradient
non-linearity, but fortunately this is not visible in the final image.

4.3. PERFORMANCE
The basis by which the best method is chosen relies on the image quality, as ideally the
reconstruction algorithm should correct all distortion. Nevertheless, another important
criteria is speed, because a reconstruction method is not viable if it takes too long. Based
on these two criteria, the best CPR method is chosen to be used for in vivo images.

4.3.1. RESIDUAL ERROR
A quantitative approach can also be used to differentiate between the methods. Al-
though it is not possible to obtain the original not distorted image for in vivo, one advan-
tage of doing simulations is that the original not distorted image is available. Therefore,
this can be used to compare the resulting corrected images. One method to calculate
the residual error is by using an alternate form of the Frobenius norm which takes into
account the third dimension. This is given by

||A||F =
√√√√ m∑

i=0

n∑
j=0

l∑
k=0

|ai , j ,k |2 (4.4)

where A is the norm of a data set with dimensions m×n×l . The resulting residual norm
error can then be described as

ϵ= ||or i g i nal − cor r ected ||F
||or i g i nal ||F

(4.5)

Table. 4.1 shows the resulting residual norm error of each reconstruction method while
excluding the background.

Method Residual norm error
Distorted phantom 0.566
Full CPR 0.389
FSR 0.389
MFI 0.389

(a) △B0

Method Residual norm error
Distorted phantom 0.874
Full CPR 0.430
FSR 0.432
MFI 0.430

(b) △B0 + gradient

Table 4.1: Residual norm error of each reconstruction method

Looking at Table. 4.1a, the residual norm error of each reconstruction method stays
consistent, meaning that both FSR and MFI provide reconstruction as good as full CPR.
On the other hand, Table. 4.1b shows an increase of 0.002 for FSR when non-linear gra-
dient fields are involved, while MFI still stays consistent with full CPR. This shows the
efficacy of the coefficients used in MFI.
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4.3.2. SPEED

The reconstruction was done with a computer that has an Intel Core i7-4710MQ @2.5
GHz and 16 GB of internal memory, and the speed of each reconstruction method is
shown below

Method Duration
Full CPR 9h 49m 29.8s
FSR 34.9s
MFI 2m 56.2s

(a) △B0

Method Duration
Full CPR 18h 54m 10.8s
FSR 1m 9.3s
MFI 3m 6.7s

(b) △B0 + gradient

Table 4.2: Duration of each reconstruction method

Full CPR does not divide the available range of off-resonance frequencies and there-
fore needs to produce the most number of images, which results in the full CPR method
requiring the longest amount of time to run. As opposed to full CPR, FSR requires sig-
nificantly less images. This is reflected in the amount of time it takes to complete FSR.
Meanwhile, although MFI requires the least amount of images between the three meth-
ods, it also requires the calculation of compensating coefficients through least-squares
which results in a slower implementation. Originally, the least-squares function from
Numpy was used numpy.l i nal g .l st sq and this resulted in computation times of 2h
37m for correcting the △B0 and gradient field distorted phantom. The conjugate gra-
dient least squares function from Scipy, sci py.spar se.l i nal g .cg s, significantly reduces
the computation time to 9m 30s while maintaining the same image and residual error.
Further optimisation can be done by looking at Equation 3.8. While △w calls for the full
range of off-resonance frequencies, rounding the frequencies to 1 decimal place results
in more overlap in frequencies of different pixels, for example, instead of creating 2 im-
ages for 2 pixels of the field map, 1 image can be made when the frequency of the 2 pixels
are the same. Doing this reduces the duration of MFI to 3m 6.7s while having a negligible
increase in the resulting residual norm error.

Table. 4.3 shows the duration of each step for FSR and MFI. Looking at the duration
of correcting for we f f ,2 and we f f ,3 shows how the speed of reconstruction depends on
the magnitude of inhomogeneity. Nevertheless, despite we f f ,1 having a smaller magni-
tude of off-resonance than we f f ,2, we f f ,1 takes longer due to accounting for △B0 as well,
which shows that the speed of reconstruction also depends on the severity of inhomo-
geneity.

we f f |we f f ,max | FSR MFI
we f f ,1 △B0 +Gx,nonli near 12,724 Hz 49.1s 1m 59.4s
we f f ,2 Gy,nonli near 15,189 Hz 15.6s 56.6s
we f f ,3 Gz,nonli near 2,608 Hz 4.6s 10.7s

Table 4.3: Duration of each step for △B0 + gradient distorted phantom



4

24 4. SIMULATION

4.3.3. FREQUENCY SEGMENTS VS RESIDUAL ERROR
While comparing the three reconstruction methods, one can also see the effect of re-
ducing the number of frequency segments on the resulting residual norm error of the
corrected image as shown in Figure 4.8. The plot shows that as the number of frequency
segments increase, the residual norm error decreases until it starts to plateau, staying
stable at ϵ = 0.389. Moreover, CPR with LF SR has the same residual norm error as full
CPR despite using significantly less frequency segments. On the other hand, CPR with
LMF I is at a position where the residual norm error is starting to increase, which makes
the calculation of the coefficients ci (△w) necessary to maintain the same residual norm
error as the plateau. Moreover, Figure 4.8 also shows the residual norm error of MFI as
the green dotted line. It can be seen that MFI plateaus earlier than CPR, and also how
the calculated LMF I is able to predict when the plateau has occurred. Using the MFI co-
efficients effectively reduces the residual norm error at LMF I from ϵ= 0.394, to ϵ= 0.389
which is the same as full CPR.

Figure 4.8: The effect of the number of frequency segments L on the residual norm error of the corrected image.
CPR was done on a △B0 field distorted phantom.
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LOW-FIELD MRI DATA

While MFI returned better images in Figures. 4.6e and 4.7e, the resulting residual norm
error of FSR and MFI is the same for△B0 correction and they both deliver visually similar
images. On the other hand, FSR is able to correct images faster than MFI. Therefore, this
chapter will illustrate the use of FSR on images taken from the low-field scanner. To this
end, three datasets will be used; a tube phantom, and two brain scans where one has
stronger △B0 inhomogeneity than the other. Unfortunately, the current datasets only
cover B0 inhomogeneity, therefore the correction of gradient non-linearity is not shown.

5.1. TUBE PHANTOM
The tube phantom consists of a set of 45 equally-spaced tubes in a rectangular grid filled
with sunflower oil, shown in Figure 5.1. It was taken with an FOV of 224×224×200 mm3

and time shift of 150µs. As explained in Section. 3.1, two scans are done on the phantom
with varying echo times, and is subsequently passed through a 3D sine bell squared filter
to reduce noise in the data. The image is then reconstructed using FFT and is shown in
Figure 5.2a.

Figure 5.1: Top view of tube phantom showing 45 equally-spaced tubes in a rectangular grid filled with sun-
flower oil
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Subsequently, the phase difference between the two images is used to estimate the
△B0 field map using Equation 3.1. Then, it is fitted to a basis of second-order spherical
harmonics. These are shown in Figure 5.2b and 5.2c respectively.

(a) Tube phantom distorted due to △B0 inhomogeneity.

(b) Estimated field map

(c) Estimated field map with spherical harmonics

Figure 5.2: a Initial distorted tube phantom after the 3D sine bell squared filter. b Estimated field map of the
image. c Estimated field map fitted to a basis of second-order spherical harmonics to span the whole FOV.
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Finally, FSR is used with the △B0 field map to obtain a corrected image as shown in
Figure 5.3. The FSR step takes 11.4s.

Figure 5.3: Resulting FSR corrected images of the tube phantom.

5.2. BRAIN SCAN

Two in vivo brain datasets were obtained with an FOV of 224×224×200 mm3 and a time
shift of 150µs. The B0 field inhomogeneity is stronger in the second dataset, resulting in
a more distorted image. This was done by attaching an external magnet to the Faraday
cage (Koolstra et al., 2021).

Similar to the last section, each dataset contains two sets of images taken with a time
shift. This allows the estimated field map to be obtained, and subsequently, spherical
harmonics was used so that the field map spans the whole FOV. Then, FSR was used to
correct the images, as shown in Figure 5.4 and 5.5 where the original image is recon-
tructed using FFT and shown for comparison. It took 14.3s to correct for the dataset with
weak B0 inhomogeneity, and 37s for the dataset with strong B0 inhomogeneity.

Visually, FSR is able to correct both datasets, although it is hard to gauge how well it
was corrected. Supposing that the weak B0 field distorted dataset was corrected better
than the strong B0 field distorted dataset, comparing the two results in a residual norm
error of 0.325. Which means that the strong B0 field distorted dataset was not corrected
as well as its weaker counterpart. Moreover, in both datasets, slice 17 onwards show an
indentation and a bright spot in the bottom right of the image that cannot be corrected,
this artefact is likely caused by non-linear gradient fields in the scanner, and therefore,
could not be accounted for due to a lack of data.
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(a) Estimated field map. (b) Estimated field map with spherical harmonics.

(c) Original in vivo brain images with weak B0 field inhomogeneity

(d) FSR corrected in vivo brain images with weak B0 field inhomogeneity

Figure 5.4: Weak B0 inhomogeneity a. Estimated field map taken from two scans with a time shift b. Estimated
field map fitted to a basis of second-order spherical harmonics, creating a △B0 field map that spans the whole
FOV. c. Original distorted images of in vivo brain images with weak B0 field inhomogeneity d. FSR corrected
images
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(a) Estimated field map. (b) Estimated field map with spherical harmonics.

(c) Original in vivo brain images with strong B0 field inhomogeneity

(d) FSR corrected in vivo brain images with strong B0 field inhomogeneity

Figure 5.5: Strong B0 inhomogeneity a. Estimated field map taken from two scans with a time shift b. Estimated
field map fitted to a basis of second-order spherical harmonics, creating a △B0 field map that spans the whole
FOV. c. Original distorted images of in vivo brain images with strong B0 field inhomogeneity showing more
severe distortion. d. FSR corrected images
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DISCUSSION & CONCLUSION

Firstly, two simulations were done on a 128×128×30 voxels Shepp-Logan phantom. The
first simulation distorts the phantom with B0 field inhomogeneity, while the second sim-
ulation distorts the phantom with both B0 field inhomogeneity and non-linear gradient
fields. To fix the distorted image, three reconstruction techniques were used, full CPR,
FSR, and MFI.

The full CPR method acts as a benchmark and shows the limits of the CPR method.
As expected, this method takes the longest amount of time, but nevertheless, it gives
the best residual norm error that is used as a point of reference for the other methods.
FSR was the first optimisation of CPR, and this was done by dividing the range of off-
resonance frequencies into segments that limit the accumulation of phase error in each
segment to π

2 . By doing this, significantly less images need to be reconstructed to create
the corrected image, thereby reducing the duration of reconstruction. The third method
used was MFI, which uses even less frequency segments than FSR. To make up for this,
coefficients needed to be calculated by using least squares.

Overall, all three methods result in visually similar images of a corrected Shepp-
Logan phantom. Looking at the residual norm error of each method shows FSR and MFI
staying consistent with full CPR for the B0 field distorted phantom. When looking at the
B0 and gradient field distorted phantom however, FSR results in a residual norm error
increase of 0.002 compared to full CPR and MFI. This shows the efficacy of using the MFI
coefficients which is able to stay consistent with full CPR, but nevertheless, no significant
improvement was seen when using a higher number of frequency segments combined
with the MFI coefficients, and the error stays the same at 0.430. On the other hand, it-
erative CPR was also tried. To do this, a new field map is estimated subsequently after
each iteration of CPR, and this field map is used in the following iteration. But, subse-
quent iterations result in an increase in error in the estimated field map, likely due to the
sensitivity of the estimated field map to noise. Therefore, consecutive iterations result
in more distortion instead. Although this was the case in this implementation, Koolstra
et al., 2021 shows that iterative CPR is able to improve △B0 error by using Tikhonov reg-
ularisation in the estimated field map. This can be implemented in a future iteration of
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the project.
In regards to speed, MFI was expected to be the fastest method due to using the least

amount of frequency segments. Nevertheless, this was not the case, because calculating
the MFI coefficients using least squares unfortunately add to the duration of the method.
Using the conjugate gradient least-squares function from Scipy reduces the reconstruc-
tion from 2 hours, for correcting the △B0 and gradient field distorted phantom, to 9
minutes while maintaining the same image and residual error. Further optimisation by
rounding △w to 1 decimal place is able to reduce the duration of the method to around
3 minutes without an increase in the residual norm error. Nevertheless, this is still longer
than FSR, and calculating the MFI coefficients using least squares takes around 90% of
the duration of reconstruction. Another method suggested by Man et al., 1997 is to cal-
culate the MFI coefficients by DFT approximation instead of least-squares, this is a pos-
sible route to improve the speed of the MFI method and will most likely outperform FSR
in both △B0 and △B0 + gradient non-linearity correction.

The in vivo dataset presented contain only B0 field inhomogeneity, and therefore
FSR was used as it provides the fastest reconstruction and has the same residual norm
error as the other methods. As explained in Section. 3.1, two scans of each dataset was
performed with varying echo times. This was done so that the △B0 field map can be
estimated and subsequently expanded to cover the whole FOV using spherical harmon-
ics. Looking at the results of the tube phantom, FSR was able to correct the images suffi-
ciently. Meanwhile, the in vivo brain images show that FSR behaves less favourably when
dealt with stronger B0 field inhomogeneity.

While full CPR takes a very long time, both FSR and MFI result in almost identical
corrected images while significantly reducing the amount of time it takes, from hours
to minutes. Looking at the correction of △B0 inhomogeneity distortion, FSR and MFI
provides similar results with both having the same residual norm error as full CPR, and
takes 34.9s and 2m 56.2s respectively. On the other hand, FSR shows an increase in error
of 0.002 when correcting for both △B0 inhomogeneity and gradient non-linearity distor-
tion. Therefore, in this case, MFI would be the preferred method because it still gives the
same residual norm error as full CPR despite the 62% increase in duration when com-
pared to FSR. Although MFI is slower than FSR at the moment, it is still only a fraction of
the time required when compared to full CPR and provides the most consistently accu-
rate correction. Therefore, MFI is recommended for use in future work. In conclusion,
both FSR and MFI provide a fast and effective method in correcting for field map inho-
mogenity, although MFI provide higher accuracy when gradient non-linearity is present.
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