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Abstract

As reconfigurable hardware such as FPGA’s become bigger and big-
ger, large and complex systems can be implemented in such devices.
It becomes a challenge for engineers to manually convert an algorithm
in an HDL, considering the pushing time-to-market constraints. High
Level Synthesis tools are developed to make this process less labori-
ous. HLS tools use the original source code and transforms this to
a hardware description. The quality of the original source code is of
great influence for the resulting hardware.

In many data intensive applications, memory accesses form a bot-
tleneck. To improve the performance of the hardware implementation,
the execution behavoir of these accesses must first be optimized in the
software source code. While doing this, an analyzer providing crucial
information about the algorithm itself helps reduce engineering time.

This thesis work presents a framework which is capable of pro-
viding information about memory accesses and operations executed
within an algorithm. The reports containing this information can be
generated on a per function or per loop basis. This enables the engi-
neer to find loop specific information, which can be used to optimize
the algorithm and to provide crucial pipeline information to the HLS
tool. An Optical Flow algorithm is used as case study to demonstrate
the functionality of the framework. A massive speedup of a factor of
13.7 was achieved while the area increased only with a factor of 1.47.
This demonstrates the effectiveness of the presented framework.
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Abstract

As reconfigurable hardware such as FPGA’s become bigger and bigger, large and com-
plex systems can be implemented in such devices. It becomes a challenge for engineers
to manually convert an algorithm in an HDL, considering the pushing time-to-market
constraints. High Level Synthesis tools are developed to make this process less la-
borious. HLS tools use the original source code and transforms this to a hardware
description. The quality of the original source code is of great influence for the result-
ing hardware.

In many data intensive applications, memory accesses form a bottleneck. To im-
prove the performance of the hardware implementation, the execution behavoir of these
accesses must first be optimized in the software source code. While doing this, an ana-
lyzer providing crucial information about the algorithm itself helps reduce engineering
time.

This thesis work presents a framework which is capable of providing information
about memory accesses and operations executed within an algorithm. The reports
containing this information can be generated on a per function or per loop basis. This
enables the engineer to find loop specific information, which can be used to optimize
the algorithm and to provide crucial pipeline information to the HLS tool. An Optical
Flow algorithm is used as case study to demonstrate the functionality of the framework.
A massive speedup of a factor of 13.7 was achieved while the area increased only with
a factor of 1.47. This demonstrates the effectiveness of the presented framework.
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Introduction 1
This thesis work presents a framework which can be used to analyze algorithms that
are to be implemented in hardware using High Level Synthesis.

In the first part of this chapter, a short introduction to High Level Synthesis as well
as the common challenges a designer faces when implementing an algorithm with High
Level Synthesis are given. The need for analyzing algorithms will become clear.

The second part of this chapter presents a short introduction to Optical Flow algo-
rithms. These algorithms are computational intensive and they involve a lot of memory
accesses. Hence, they are good candidates to implement in hardware using High Level
Synthesis. An Optical Flow algorithm has been used as a case study for the presented
framework. In this case study, the framework proved to be very effective. An overall
speedup of 13.7x was achieved, while the used area increased with a factor of only 1.47.

Finally the goals and contributions are presented.

1.1 High Level Synthesis

Hardware can be described in a number of languages e.g. VHDL, Verilog and SystemC.
When describing hardware, all information has to be provided in such a language. For
example, the data path has to be described completely and the operations must be
given. The data path and operations which have to be done on the data are then
combined in a certain schedule. Designing a schedule is a challenging job. The way an
engineer schedules has direct consequences on the maximum clock frequency, latency,
throughput, etc. When designing hardware using these languages, one has to keep
the destination platform in mind constantly. This is exactly where the biggest problem
arises. Not many algorithms are specially designed for hardware implementation. Often
they are programmed in C or Matlab code.

C code can describe an algorithm very well, but it contains no information about
scheduling. This is because most C code is written for use with a sequential processor.
Translating such an algorithm to real hardware is quite challenging and involves a lot
of labor. In most cases, a good start is finding the data path in the algorithm. When
the data path is found, the operations have to be defined. Finally, the operations must
be scheduled in a way in which the resulting hardware meets the requirements the best.

Since a couple of years, experiments with High Level Synthesis (HLS) are published.
The main goal is to be able to describe the behavior of the algorithm and let a syn-
thesis tool do the complex work of determining the data path, operations and finding
a suitable schedule. The algorithms can now be described in plain C code. The HLS
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tool can convert the algorithms to a hardware description language (HDL). Today, a
couple of tools are actually developed to do this. One example is Catapult C from
Mentor Graphics. This tool can translate given C code to a hardware implementation.
Although this sounds as great as the invention of HDL’s themselves, there are some
challenges. The generated solution is only as good as the provided C code. There-
fore, the C code has to be optimized for hardware use, to improve the quality of the
hardware solution.

The biggest bottleneck in many data intensive applications will be memory accesses.
If for instance the C code iterates over an array sequentially, the hardware cannot run
that code concurrently without doing any special optimizations, since the number of
ports to the RAM module is limited and in many cases only one. If the memory has
one port and can provide data at each clock cycle, then for n iterations, the algorithm
needs at least n clock cycles.

Another challenge is the usage of operators. When certain code runs sequentially,
only one operator runs at a time (neglecting coprocessors, such as floating point pro-
cessors as the MIPS architecture has). Therefore, one adder, one multiplier, etc. might
be sufficient. When the algorithm is implemented in hardware, more operators can run
at the same time. The challenge is how to find where these operators are used and
what number of operators are needed to best meet the requirements. Other impor-
tant subjects are data types. In C code one can represent an integer in only a couple
formats. Among them are char, short, int and long consisting in many cases of 8,
16, 32 and 64 bit respectively (depending on the targeted architecture). In hardware,
all number of bits are possible and in fact desirable. Area is saved by only using the
minimal amount of bits needed.

It is clear that finding information about an algorithm is very important when that
algorithm is to be implemented in hardware using High Level Synthesis.

1.2 Optical Flow Used Everywhere

Humans and almost all other living creatures use a form of vision to interpret the
world around them. In most cases this information is used for finding danger, which
for example allows these creatures to prevent them from getting eaten or falling off a
cliff. In the case of humans, vision can be a form of entertainment as well. A lot of
things we do to enjoy ourselves are based on vision, e.g. watching television.

Translating images to a perspective of what happens around us is not as simple as it
might appear. Our brain does an incredible job when it comes to finding movements and
the direction and speed of these movements. We can focus on an object and calculate
this information real time. For computers however, this is not that straight forward.
Detecting movement in a couple of images might not be too hard to implement, but
finding the speed and direction of the motion is. When computers use this kind of
information, it is called Computer Vision. One of the most obvious applications might
be robot eye sight. A lot more applications are using Computer Vision, as will be
discussed in the next section.
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The algorithms which translate information in images to speed and direction of
motions are called Optical Flow algorithms. In many cases the used images are in fact
frames of a video generated with a camera. But other techniques can be used as well,
e.g. radar. The main challenge in Optical Flow algorithms is finding the correlation
between a number of images. In general, Optical Flow algorithms use direct pixel
information to find this correlation. As a result, two main limitations will follow [1].
The first one is the so called lumination constraint. This constraint states that the
lumination in different images should be constant. This is necessary because pixels
in two different images should match each other if they represent the same object in
the image. The second limitation is the speed of the movement. This speed can be
expressed in pixels / frame. Because the search space per pixel to its related pixel in
another image is often limited, the pixel speed should not exceed this search space.
Both of these constraints are further explained in Appendix A.

1.2.1 Example Optical Flow Applications

As mentioned above, Optical Flow is used a lot these days. Some examples of the
everyday use of Optical Flow algorithms are given below.

• Song and Huang [2] proposed an algorithm for their robot guide dog for blind
people. The robot searches for obstacles and gives information to its user about
them. An Optical Flow algorithm is used for finding the obstacles and estimating
depth.

• Another application of optical flow has been developed by Gern et al. of Daimler-
Chrysler [3]. Cars can be equipped with a lane recognition system. This system
can warn the driver of a vehicle in case the vehicle is moving outside the lane it is
in. An even more sophisticated use of this system can be the autonomous driving
of the vehicle. In this case, the vehicle steers itself to keep within the current lane.
Most of these systems use some kind of lane markings recognition. But in severe
weather, the lane markings may not be visible enough. Gern et al. suggest to
make use of horizontal Optical Flow. Doing this, all kind of structures parallel to
the lane (e.g. crash barriers or oil traces) can be used to determine the position
of the vehicle with respect to the lane.

• Monteiro et al. [4] proposed a solution for finding wrong way drivers. They use the
Lucas & Kanade [5] algorithm for detecting the driving direction. The proposed
algorithm first learns the normal (intended) driving direction. When the learning
process is completed, the system is ready for detecting wrong way drivers. If a
moving object is discovered moving in the opposite direction of what was learned
earlier, a validation process is started. When the movement is indeed found to be
a wrong way driving vehicle, action can be taken.

• In a soccer game, group action is a subject of interest to viewers. Kong et al.
[6] proposed a way to determine group action out of video images. The images
captured by one camera are used. This camera may only pan and tilt to focus
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on the ball. The group action is represented by moving players at the field (local
movement). Besides that, the camera is moving as well (global movement). Kong
et al. present a way to extract the global movement from the sequence while the
local movement (i.e. group action) is preserved.

• As the number of security cameras grows in public buildings or in cities, automated
crowd density detection is becoming more wanted. Kim et al. [7] proposed a
system which is able to estimate the crowd density. Kim et al. use an Optical
Flow algorithm (Horn & Schunck [8]) and an edge detection algorithm to estimate
the number of people in a certain scene.

1.3 Combining Optical Flow and HLS

Optical Flow algorithms are complex algorithms. In many cases these algorithms are
already programmed in the C or C++ languages. Because these optical flow algorithms
involve a lot of calculations on a large data stream, powerful systems are required to be
able to provide enough throughput. In this case, throughput will translate to frames
per second (or FPS).

Optical Flow algorithms are divided into a couple of stages. Each stage is doing
certain calculations on the data to prepare it for the next stage. Most stages are doing
certain calculations on all pixels. More about the working of Optical Flow algorithms
and more information about different stages within these algorithms are given in Ap-
pendix A. It might be clear that a lot of parallelism can be implemented. Functional
oriented parallelism can be used to run different stages concurrently, while data oriented
parallelism can be used to run multiple instances of a stage core. An HLS tool like
Catapult C from Mentor Graphics can be used to ’easily’ convert the given C source
code of the algorithm to actual hardware. Of course, the limitations stated in Section
1.1 must be taken into account.

1.4 Goals

The main goal of this thesis work is to provide a framework that allows an HLS designer
to retrieve useful information about an algorithm which has to be implemented into
hardware using HLS. The information presented by the framework should provide the
insight to the algorithm being analyzed. This enables the engineer to improve an
algorithm efficiently. Two sub goals results from this:

• The framework must be able to retrieve memory access and operator usage in-
formation. It must be able to present this information on a per function and per
loop basis.

• To proof the correct functionality and the effectiveness of the framework, it must
be used on a real use case: the Lucas Optical Flow [5] algorithm. This algorithm
is provided and must be optimized using the framework to develop.
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1.5 Contributions

The following contributions were achieved by implementing the framework presented
in this thesis:

• The presented framework can provide essential information about an algorithm
written in C using a GCC PlugIn.

• The framework is able to retrieve memory access and operator usage information.
The user can request this information interactively or by passing commands as
arguments to the analyzer.

• It is possible to easily expand the framework with new types of reports.

• The framework has the ability to retrieve loop information from an algorithm.
Memory access and operator usage reports provide the option to report only
information from a certain loop.

• All access reports provide location information about where the statements exist
that caused a memory access or that used an operator in the original source code.

• Arrays are detected by the framework. This is of great importance, since these
are often mapped to memory in practice.

• The correct working and capabilities of the framework are presented by analyzing
and optimizing the Lucas Optical Flow algorithm. A massive speedup of 13.7x
has been achieved.

1.6 Outline

The rest of this thesis report is organized as follows. Chapter 2 describes the background
of HLS. What optimizations can be done, the related work on HLS optimizations and
how to apply them using Catapult C is covered in this chapter. Chapter 3 discusses how
information about an algorithm can be retrieved and a choice is made on what method
to use for the framework. Chapter 4 describes the design of the framework in great
detail. From original algorithm till the generation of the reports is covered. Chapter 5
uses the Lucas Optical Flow algorithm to demonstrate the usage and capabilities of the
framework. A great performance improvement compared to a previous implementation
of this algorithm is presented. Chapter 6 concludes the work and gives suggestions
about future work.

Appendix A provides background information about Optical Flow. Different meth-
ods of calculating Optical Flow along with different Optical Flow algorithms are pre-
sented. Appendix B defines the format used in the log files. Finally, Appendix C
provides the description of the Analyze Library designed for use with the framework.
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HLS Background and Related

Work 2
High Level Synthesis tools like Catapult C are very complex tools. Most steps to
convert the input C code to an RTL level output are done automatically. In some
cases, the engineer can change parameters to influence the resulting RTL output. An
example of this is the scheduling part of Catapult C. The engineer can tune the schedule
to meet the design goals. Although Catapult C does most of the job automatically,
some input must still be provided by the engineer. Examples are loop unroll factor,
pipeline initiation interval, and word width of variables. In some data intensive parts
of an algorithm, the memory access profile can have a great influence on the overall
performance. Making some changes in the design to help decrease the needed memory
bandwidth can help the scheduler to produce better (faster) results. In this chapter, on
most of the tasks that have to be done manually will be zoomed in to see what others
have done in the past.

2.1 Loop Unrolling

Loop unrolling is one of the most commonly used techniques for loop optimization. An
example of loop unrolling is given in figure 2.1.

for ( int i = 0 ; i < N ; i++)
{

A [ i ] = B [ i ] + C [ i ] ;
}

for ( int i = 0 ; i < N ; i+=2)
{

A [ i ] = B [ i ] + C [ i ] ;
A [ i+1] = B [ i+1] + C [ i+1] ;

}

Figure 2.1: A simple for-loop (left) and its unrolled variant (right)

When using loop unrolling, the body of the loop is replicated u times, where u is
called the unroll factor. When u is not a multiple of the loop bound N , the transformed
code need to include an epilogue that handles the iterations not included in the unrolled
part. If the unroll factor is equal to 1, the resulting loop will be the same as its original
version, i.e. the loop is not unrolled. When the unroll factor is equal to the loop bound,
the loop is known to be fully unrolled. In this case the body of the loop is replicated
as many times as the number of iterations of the loop. Therefore, a loop can only be
fully unrolled if the number of iterations is known at compile time.

Initially, loop unrolling was used to reduce control overhead. But as processing
units get faster, the number of cycles used per operation differs more. Especially
reading from memory or complex arithmetic operations consume a lot of time. This
will result in stalls, i.e. one instruction waits for the previous one to finish because of

7



data dependencies. By unrolling loops, independent instructions can be executed while
other instructions must wait for data to become available. This results in less stalls per
loop compared to the not unrolled variant. This phenomenon is called instruction-level
parallelism (ILP). Because ILP can dramatically affect the overall number of cycles
needed to execute a loop, it often outperforms the performance gained by minimizing
control overhead.

Loop unrolling has been used for decades within software compilers to minimize
loop control overhead and reducing branch penalties. Therefore, most literature on
loop unrolling is focused on software (i.e. using some kind of processor). Cardoso and
Diniz [9] have written a nice book about compiling source code to design reconfigurable
hardware, such as FPGA’s. A lot of optimization techniques are covered, including
loop unrolling.

2.1.1 Unroll Factor

Although loop unrolling was introduced for optimizing software related loops, it can
easily be adopted for hardware. Catapult C offers an unrolling feature for each loop.
The engineer must provide the unroll factor on a per loop basis. Finding the best unroll
factor is not an easy job and depends mainly on three parameters. First of all, loop
unrolling will naturally result in more hardware, since the body of the loop is replicated
u times. Another obstacle is the memory access. In most data oriented algorithms,
memory access will most likely be the bottleneck of the overall performance. Unrolling
a loop will result in doing more in less time, hence more memory accesses occur in
less time. The third parameter to keep in mind is the gained speedup. If unrolling a
loop (further) will not provide much speedup (e.g. all available memory bandwidth is
used), the used area increases at minimal performance increase, which probably results
in unfair costs. Dragomir, Moscu-Panainte, Bertels and Wong [10] have proposed a
methodology to determine the unroll factor given the above three parameters. The
basic idea is to find an unroll factor bound per parameter. By later on combining these
bounds, the optimal unroll factor can be found. The following sections describe the
idea proposed in [10]. Some of the writers of [10] have worked out their work even more
by including loop shifting. More information on that can be found in [11]. Because
the research in finding an optimal unroll factor in this thesis is driven by the need of
providing such a value to Catapult C, loop shifting was not further investigated.

The next couple of sections describe the three constraints involved when unrolling
loops for use in hardware as described in [10].

2.1.1.1 Area Constraint

As mentioned earlier, by unrolling a loop, the consumed area grows. By only taking
into account the area constraint and not the shape of the design, an upper bound can
be found by:

ua =

⌊

Area(available)

Area(K) + Area(interconnect)

⌋

(2.1)
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where Area(available) is the amount of area available for this loop. Area(interconnect) is the
area necessary to connect one kernel to the rest of the design (the assumption has been
made that the overall interconnect area grows linearly with the amount of kernels).
Area(K) is the area initialized by one instance of the kernel, including the storage space
for the values read from the shared memory.

2.1.1.2 Memory Accesses Constraint

Let’s consider Tr, Tw and Tc to be the times necessary to read memory, write memory
and do the computations on hardware for kernel K respectively. The total time used
by K then is Tr + Tw + Tc. The assumption is made that memory reads are performed
at the beginning and memory writes at the end. When considered is that Tw ≤ Tr < Tc

and Tr + Tw > Tc, a new instance of kernel K can only be started after Tr time.
Furthermore, the condition that memory access request from different kernels should
not overlap, sets another bound (um) for the unroll factor:

u · min(Tr, Tw) ≤ min(Tr, Tw) + Tc ⇒ u ≤ um =

⌊

Tc

min(Tr, Tw)

⌋

+ 1 (2.2)

The time needed for running u instances of K is:

TK(hw)(u) =

{

Tc + Tr + Tw + (u − 1) · max(Tr, Tw) if u < um

u · (Tr + Tw) if u ≥ um
(2.3)

Obeying the constraint u < um, the time needed for u instances of K can be derived
from 2.3:

TK(hw)(u) = Tc + min(Tr, Tw) + u · max(Tr, Tw) (2.4)

2.1.1.3 Speedup Constraint

Before the speedup constraint can be discussed, the speedup calculations must be de-
fined. To calculate the time it takes to execute the loop without loop unrolling, the
following formulas can be used:

Tloop(with unrolling)(u) = Tloop(u) = (Tsw+max(Tr, Tw))·N+(Tc+min(Tr, Tw))·N(u) (2.5)

Tloop(without unrolling) = Tloop(1) = (Tsw + Tr + Tc + Tw) · N (2.6)

where Tsw is the time the unparallelizable part of the loop takes to execute, N is the
number of loop iterations and N(u) is the number of loop iterations per kernel K for
the given unroll factor u. As can be seen, equation 2.6 can be derived from equation
2.5 by using unroll factor u = 1. The speedup at loop nest level now is:

Sloop(u) =
Tloop(1)

Tloop(u)
(2.7)
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While still satisfying u < um, Tloop(u) is a monotonic decreasing function. Because
Tloop(1) is a constant, Sloop(u) is a monotonic increasing function. Now a new parameter
is introduced: the calibration factor F , a positive number decided by the application
designer. F determines a limitation of the unroll factor according to the desired trade-
off. This helps prevent the area to increase much more than the speedup would increase.
A new formula can be constructed with this factor:

∆S(u + 1, u) > ∆A(u + 1, u) · F (2.8)

where ∆S(u + 1, u) is the relative speedup increase between the unroll factors u and
u + 1:

∆S(u + 1, u) =
S(u + 1) − S(u)

S(u)
· 100[%] (2.9)

and ∆A(u+1, u) is the area increase. Since all kernels are identical, the consumed area
increases linearly with the number of kernels used. Therefore, ∆A(u+1, u) = Area(K).
This results in a new unroll factor bound:

us = min(u) such that ∆S(u + 1, u) < F · Area(K) (2.10)

Local optimal values for unroll factor u could appear if u is not a divisor of N , but
u+1 is. To avoid this situation, another condition for us is added: ∆S(us +2, us +1) <
F · Area(K).

By using formulas 2.5, 2.6 and 2.7, the total speedup can be calculated by:

Sloop(u) =

Tsw+TK(sw)

max(Tr,Tw)+Tsw

1 + Tc+min(Tr,Tw)
(max(Tr,Tw)+Tsw)·N

· N(u)
(2.11)

Given speedup formula 2.11 and the fact that the maximum unroll factor equals the
number of iterations N (fully unrolled), us can be found in O(log N) time using binary
search.

2.1.1.4 Combining Area, Memory Accesses and Speedup Constraints

Using the three constraints (ua, um and us), the optimal unroll factor can be found by:

uoptimal =

{

min(u) such that us < u ≤ min(ua, um) if us < min(ua, um)
max(u) such that u ≤ min(ua, um) if us ≥ min(ua, um)

(2.12)

The resulting unroll factor can be used when unrolling the loop with an HLS tool like
Catapult C.

2.1.2 Code Style Recommendations

Fingeroff [12] wrote a blue book about High Level Synthesis (and actually called it
like this). This work focuses more on the consequences the original C code has on the
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resulting RTL. When it comes to loops, a lot can be said. It is best to use constant
bounds wherever possible. This means that the initialization of the iterator should be
a constant, the test condition should be against a constant and the iterator should be
incremented with a constant. When doing this, the synthesis tool chain will be able to
find all bounds. When for example the test condition is done against a variable of type
int, the synthesis tool chain will not be able to determine the bounds and therefore
chooses the worst case bounds, which will be the full range of an integer (usually 32
bits). This issue can be coped with by providing the real worst case bound in the test
condition. Then, by using a conditioned break statement, the execution of the loop can
be terminated.

Nested loops can be unrolled as well. Normally, nested loops which are still rolled
and not pipelined have a lot of overhead. This is caused by the condition checks of the
outer loop(s). If for example the outer loop exists of 2 iterations and the inner loop
exists of 4 iterations and assuming that the calculations are only done in the inner loop
and take one cycle, the total number of cycles actually doing the calculations is 8. But
the outer loop needs 2 additional cycles each iteration to increment the iterator and
to check the exit condition. Also 2 additional cycles are needed by the main loop (i.e.
the function itself). A total of 14 cycles are needed for this nested loop to complete
(2 + 2 · (2 + 4 · 1)). In this example 43 % of the cycles are outer loop overhead. It
is recommended to first unroll the inner loop, because this can be done quite easily.
Unrolling the outer loop (and leaving the inner loop rolled) will result in more control
overhead. This is why Fingeroff [12] recommends to work from the inside out. The
performance of nested loops can probably be increased more by unrolling the inner loop
and pipelining the outer loop(s). This will further be explained in section 2.3.

A special case of (nested) loops are window operations which are computationally
intensive and data intensive. These window operations are commonly used in image
processing and digital signal processing. Optical Flow algorithms are a typical example
of image processing and they contain in many cases window operations. Generally, a
window operation is a 1D or 2D loop program. In case of more than 1 dimension, the
loop is in fact a nested loop. In many cases a certain number of inputs are used to
calculate one output value. In case of image processing, a number of pixels are used
for the calculations and the resulting output is one pixel (often in the center of the
selected input pixels). The selected input pixels are called the window. Because this
window slides over the input array, the input pixels are read more than once. If the
window has a size of 5 pixels, an input pixel may be read 5 times within 5 adjacent
iterations. By unrolling such loops, data reuse becomes possible. Dong et al. [13] have
done some research on the consequences of unrolling on area, throughput and clock
frequency, when unrolling either the inner or outer loop of these window based nested
loops. They conclude that unrolling the inner loop increases the controller complexity
and area compared to unrolling the outer loop, while unrolling the outer loop requires
more memory for data reuse compared to unrolling the inner loop.

11



2.2 Memory Access

Memory accesses can be very time consuming, especially on high data rate applications.
Many operators of the same type can easily be scheduled in parallel, while accesses to a
certain memory can often not be executed concurrently. Therefore, it is very important
how the data is mapped to the memory and how it is read from memory. This section
describes how memory accesses are influenced by the way they are passed as argument
to a function. Also different techniques are discussed to reduce memory accesses in
general.

2.2.1 Passing Arguments (IO)

How arguments are passed is very important. A lot of information given in this section
is Catapult C dependent. More can be found in the main source of this section, which
is the Blue Book by Fingeroff [12], who is a technical marketing engineer at Mentor
Graphics.

In general, C has two ways of passing arguments, namely: by reference and by
value. When passing an argument by reference, the address of the data is provided
to the function. Any reads or writes will be done from or to this address. This is
useful if a function must be able to edit the value. When passing data by value, a local
copy will be made on the stack. Only when making this copy, the original data will be
read. When data is written from within the called function, only the local copy will be
updated.

When only concerning sequential implementations (as C applications often are),
the above definition covers all cases. But as different pieces of code run in parallel, the
pass by reference method will become more complex. Because every read from within
the called function reads from the original address, it is possible to change the data
at this address between two reads of the called function. As hardware solutions are
often designed for combinational use, HLS treats the two methods of passing arguments
different as well. Besides that, a passed memory can either be accessed conditionally
or unconditionally. A conditional access to a memory is an access only executed if a
certain condition was met. In HLS tools, this also is of influence to memory accesses
in practice.

2.2.1.1 Unconditional IO

Unconditional IO is considered to be an interface mapped to a ’wire’ type resource.
No handshaking is involved. HLS is free to move the IO to different clock cycles and
into or out of conditions to reduce area. Therefore, it is not known when the memory
accesses will occur before scheduling is completed. This implies that the IO must
be ready to read or write before the function starts and during the execution of the
function. Unconditional IO is often used for control signals (which do not change during
execution) or in designs which are pipelined with II = 1 and where the IO is read or
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written every clock cycle. More about pipelining and the definition of II can be found
in section 2.3.

Pass by reference used with unconditional IO will result in reads and writes
whenever they are scheduled. When iterating over an array, the by the iterator pointed
element of the array will be accessed. When non-array variables are used as well in
these iterations, they will be read every iteration.

Pass by value used with unconditional IO will read all needed data at the beginning
of the function, whether or not they are actually used in the iterations. Note that arrays
are not read at the beginning of the function, because an array is a pointer to the first
element of that array and therefore always passed by reference in languages like C.
The advantages of pass by value on unconditional IO is that the data is read only once
(which saves memory accesses) and the IO does only have to be held stable at the
beginning of the main loop.

2.2.1.2 Conditional IO

Conditional IO is considered to be an interface mapped to a resource that has hardware
handshaking. This can be a ready to send / ready to receive data or a ready / acknowl-
edge behavior. Conditional IO cannot be moved to different clock cycles or conditions
by HLS.

Pass by reference used with conditional IO works a lot like it does on uncondi-
tional IO, except it uses now handshaking to synchronize the data on reads and writes.
In case the IO is only used when certain C conditions are met, the actual memory
access is only started when these conditions did met.

Pass by value used with conditional IO is always read at the beginning of the main
loop. While pass by reference only accesses the data inside a C condition when this
condition is true, pass by value always reads the data, regardless where the condition
evaluates to.

2.2.1.3 Merging IO

When a pipelined loop iterates over an array and the array reads are not conditioned,
Catapult C automatically merges the array. The merged array is now read as a whole.
When the array reads are conditioned (e.g. if (condition) then read array element) the
array will not be merged automatically. This implies that the reads are done during
the execution of the iterations. When the loop was pipelined with II = 1, every clock
cycle a new iteration starts. If the array contains four elements, then four reads from
that array may be initiated at the same time, which is not possible. A solution to this
is making the array reads unconditioned by copying the array to a local array. Let the
local array be read under certain conditions. Now, Catapult C will merge the original
array again and therefore will be able to pipeline the loop successfully.
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2.2.2 Memory Architecture

In streaming data applications, such as Optical Flow applications, a lot of memory
accesses occur. Most memories are so called true single port memories. This means
that the memory has only one port to read and write data. If a memory access can be
completed within one clock cycle, each and every clock cycle can only do one memory
access on a certain memory. This can impact the performance drastically when appli-
cations need to access the memory very often. Different techniques are developed in
the past to improve performance in these situations. Among them are memory inter-
leaving, widening of word widths of memories and caching. In the next three sections,
these techniques are further explained.

2.2.2.1 Memory Interleaving

Memory interleaving is a technique in which a single chunk of memory space is divided
over multiple physical memories. Because the multiple memories can be accessed at
the same time, the memory performance increases. This technique is used for over 40
years. In 1968, SIMD processors including ILLIAC IV [14] already used interleaving for
reading multiple words in one access cycle. Other implementations used interleaving
to be able to access one word per cycle, such as the CDC 6400 [15]. When considering
hardware implementations, memory interleaving can be used to access different memory
locations needed by a certain computation at the same time. To determine how the
memory elements, such as arrays, can best be mapped to the physical memories, the
data access pattern must be investigated.

VanCourt and Herbordt have proposed a technique on planning the memory inter-
leaving on grid computations [16, 17]. Some Optical Flow algorithms make use of grid
computations, e.g. smoothing filters. Grid based computations with respect to image
processing take a number of input pixels, do the computations and save the resulting
output pixel. Because it is known at design time which pixels are used as input for a
certain output pixel, all data reads from memory are known as well. When mapping
the image to memory in such a way that every input pixel is physically stored on a
separate memory, all input pixels can be read in a single clock cycle. The input pixels
usually are positioned around the output pixel. VanCourt et al. [17] proposes to make
use of the LSBs of the array indices to address the memory bank used for a certain
pixel. This works very easy when a rectangle of pixels is used and where the number of
pixels is a power of two. In other cases, the memory address controller becomes more
complex.

Catapult C has an option for automatically interleaving memory, which has to be
turned on first. According to Fingeroff [12] this automatic interleaving can be sufficient,
but especially when interleaving with a factor other than two, better performance
results can be achieved when manual interleaving the memory.
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2.2.2.2 Widening Word Width

Another technique is widening the word width. By combining more data words into
a new data word, more data can be read en written from or to memory in the same
clock cycle. The algorithm must read or write the data sequentially to really improve
performance. Cataput C can automatically widen the word widths, but for non power
of two widening, manually widening might provide better results (if the HLS tool could
do the job anyway). The main bottleneck on widening word widths is the physical
word width of the memories available. When the original word width is already large,
the memories available might not be able to provide double the original word width.

2.2.2.3 Caching

Caching is saving data in a faster (but often smaller) memory to decrease access times.
Back in 1968, the developers of the IBM System/360 Model 85 needed a large main
memory. This main memory was relatively slow compared to the CPU. The solution
was to make use of a memory hierarchy. A cache memory was placed near the CPU.
This memory was not directly addressable, since it cached data from the main memory.
The cache memory was a fast memory compared to main memory, but it was much
smaller. This great invention is published in a journal written by Liptay [18].

Nowadays caches are used very often in general purpose processors. The perfor-
mance increase depends on the application running on the CPU in combination with
the type of cache used. There exist different kinds of caches. Direct mapped caches
map certain data from main memory to one single location in cache. Often a mod-
ulo operation is used to determine the location in cache for a certain address in main
memory. Direct mapped caches are easy to control and the addresses are easily trans-
formed to cache locations. On the other hand, these caches are not very flexible. If
two addresses are used that are mapped to the same location in cache, the cache is not
working optimal. A more complex type of cache is a fully associative cache. This cache
can use any location for any data. The control logic and power consumption become
worse compared to direct mapped cache, but this cache is more flexible. The third type
of cache is set associative cache. Here n sets (or locations) in cache can be used for a
certain address from main memory. This solution lays between direct mapped and fully
associative cache. Which cache can best be used depends on the design constraints and
the application. More about these commonly used caches can be found in literature,
for example in [19]. Gil et al. [20] have proposed a cache implementation in an FPGA
which can easily be reconfigured. Now different kind of caches can be selected fast.
This solution can be of great use when using embedded processors.

In case of a full hardware design of an application (as this thesis is about), most
memory accesses are known or can be determined at design time. This opens more
possibilities for caching data. When the memory access patterns are known, the de-
signer can decide where to implement a cache and what exactly will be cached. An
example of this is given by Fingeroff [12] and involves image applications where pixels
are read and written row after row and column after column. Many image applications
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use different pixels close to each other to calculate a value. The pixels used as input are
called the window. Often, this window is moved pixel by pixel to calculate each value
needed. Window n and window n− 1 usually differs only in a minor number of pixels,
i.e. many pixels are used again. By caching these pixels, a lot of memory accesses can
be saved. By creating a custom cache design for these applications, the cache efficiency
will by maximal.

2.3 Pipelining

Besides loop unrolling, Catapult C can do pipelining on loops as well. With loop
unrolling, the designer must provide a value. In case of pipelining, this value is called
the Initiation Interval (II). This II value determines how many cycles are taken before
starting the next iteration. An II value of 1 will start a new iteration each clock cycle.
Low values for II will cause more iterations to run at the same time. This can prevent
resource sharing and therefore may result in more area consumption.

Nested loops are interesting to pipeline. Fingeroff [12] clearly explains what hap-
pens when loop pipelining with Catapult C is used. When nested loops are pipelined
together, the loops are flattened into one loop. The initiation interval now is used on
this new loop. Pipelining the outer loops have good results on performance (latency
and throughput), but will result in complex control logic.

2.3.1 Pipelining and Function Arguments

When and how many times arguments passed to a function are read, depends on how
these arguments are passed to the function. This is covered in more detail in Section
2.2. The performance increase resulting from loop pipelining can depend heavily on how
these arguments are passed. As is explained in section 2.2.1, when passing arguments
by value, the data is read at the beginning of the function. If the main loop of this
function is pipelined, more of these reads may be initiated at the same time. Because
the memory interface can often handle only one data transfer per clock cycle (or a
few on multi-port memories), the pipeline needs to stall. This of course influences the
performance in a negative way. Another important consequence of pipelining the main
loop with II = 1 in combination with conditional IO is the ramp-down of the loop. If
all data has been read, the pipeline will be stalled because the conditional IO indicates
that there is no data available for read. This stalling prevents the last iterations to
write the results back. This unwanted behavior can be prevented by only pipelining the
inner loops and leave the main loop unpipelined or by manually flushing the pipeline.
The pipeline can be manually flushed by implementing an acknowledge signal within
C. By using this acknowledge signal as condition on memory reads within the loop,
reads are only done as long as the acknowledge signal is high. When no more data
is available, the acknowledge signal becomes low and no more data requests are done.
Now, the pipeline will not stall, so all data can be flushed.
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2.3.2 Conclusion

This chapter provided different opportunities to improve the performance of an appli-
cation implemented in hardware using High Level Synthesis. All improvement methods
need information about the algorithm in order to be implemented effectively. This em-
phasizes the need of an analyze tool providing such information. Chapter 3 describes
different methods on how information can be extracted from an algorithm.
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Extracting Information from

an Algorithm 3
When implementing an algorithm in hardware, information about memory accesses is
always one of the most important topics. Not only for the use in HLS solutions, but
also for other variants of hardware implementations. An example of this is a System-
on-Chip (SoC) design where multiple processors exist on a single chip, all accessing
memories. Since the applications form the basis of such designs, the need to tune the
underlying architecture for extracting maximal performance from the software code
becomes imperative [21]. As the size of reconfigurable devices, such as FPGA’s, grows,
not only the logic is implemented in these devices, memory can be placed there as well
[22]. This makes sense, because if the memory exists close to the user of this memory,
latency can potentially be minimized. This minimizes the gap between processing and
memory, but the need of analyzing memory accesses is still an inevitable demand.

When implementing an application fully in hardware (and not using any processors),
the amount of operations is very important as well. In case of High Level Synthesis,
most parallelizations can be achieved by pipelining loops. These loops come directly
from the originating source code. Bringing memory accesses and operators into relation
with these loops is essential with HLS. This chapter will focus on retrieving memory
access and operator information from an algorithm.

3.1 Static or Dynamic Analysis

All analysis methods can basically be grouped in two types of analysis, namely: static
analysis and dynamic analysis. The goal of both methods is to find certain information
about an algorithm.

Static analysis analyzes the algorithm at compile time. Therefore, the algorithm
does not have to be completely compiled prior to analysis. The information (e.g.
memory accesses or operator counts) is retrieved by statically reviewing the source
code. There are different methods to do this. The static analysis of a function without
any loops or conditions is clear, since retrieving is not too hard to do. Also loops with
clearly defined bounds can easily be analyzed. Things become more complex when the
bounds of a loop are not so clear at compile time. This can happen for instance if
the loop depends on external data. Another problem arises when parts of the code are
conditionally executed. If the condition cannot be evaluated at compile time, it cannot
be determined if the code within the condition is actually executed. These limitations
are a major disadvantage of static analysis. In the past, some analyzers have been build
using the static analysis approach. An example is the Volta project [23], which is a Java
analyzer. Volta focuses on the Worst Case Execution Time (WCET) of algorithms to
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be used in real-time applications. When using Volta, loop bounds must be provided by
the developer using annotations.

Dynamic analysis does the analysis in a dynamic way. This means that the algorithm
is actually executed and in some way monitored. The drawback is that the algorithm
has to be compiled and that the input data (if applicable) has to be available. This
can be a problem if the algorithm itself is still in development or the input data is not
yet known. The major advantage of dynamic analysis over static analysis is of course
that the algorithm is monitored step by step. This implies that the loop bounds and
conditions are not needed to be known in advance.

3.2 Dynamic Analysis

In order for static analysis to provide the execution order of an algorithm, loop bounds
have to be manually assigned. Beside that, it cannot be determined if conditional
memory accesses are done or not without knowing how the condition will evaluate.
This makes static analysis impractical, not to say impossible, when the exact memory
access order is of interest. Hence, it is clear that a solution has to be searched within
the set of dynamic analysis solutions. Different possibilities were investigated. The
following sections will present these.

3.2.1 Previous Work and Existing Tools

Analyzing algorithms is not new. For many years, engineers are analyzing algorithms
to improve performance, reduce the needed amount of resources or minimizing power
consumption. Most of these analysis tools or frameworks are focusing on software, to
improve the implementation with some kind of processor. A few solutions for hardware
purposes have been proposed.

Tools that are analyzing the run-time behavior of an application in order to improve
the performance of that application are called profilers. A profiler generally analyzes
where an application consumes resources, whether that is processing or memory access.
General profiling tools like gprof [24] can provide function-level execution statistics
to find application hot-spots. Unfortunately, no distinction is made in computational
and memory access time. Therefore, these tools cannot be used for analyzing memory
specific analysis. MemSpy [25] is a tool that can help find memory bottlenecks in
both sequential and parallel programs. This tool focuses mainly on memory accesses
in single or multi processor architectures, not in fully custom hardware designs. Also
operator analysis is not possible. QUAD [26] is a tool designed for memory access and
dependency analysis. This tool analyzes an algorithms by working with the executable
itself. No special compilation is needed. All memory accesses are monitored and used
for the analysis. However, QUAD does not provide information about loops. Hence, no
memory access analysis within certain loops can be done. This is for HLS important,
because HLS tools like Catapult C depend heavily on loops for easy pipelining a design.
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3.2.2 Alternative options

Existing tools are mainly focused on finding bottlenecks in memory accesses. Other
tools do provide a more complete memory access analysis, but lacks the operator usage
analysis. Most tools do not take loops from the source code into account. When code is
executed on a sequential processor, loops are not interesting. The actual accesses to the
memories are of interest then. But High Level Synthesis tools do use loops to implement
an algorithm into hardware. Optimizing an algorithm loop based will improve the final
result of the HLS tool. Loop based memory access and operator analysis is therefore
desirable. To build a tool capable if this, a number of solutions were investigated.

3.2.2.1 Valgrind

One of the first dynamic analysis options a software developer will think of is probably
Valgrind. Valgrind is a powerful tool which is used a lot to find memory leaks and
debugging segmentation faults. Documentation is available online [27].

Valgrind consists of a number of tools [28]. Memory leaks and segmentation faults
are found by using Memcheck. Memcheck intercepts calls to malloc, free, new and
delete. By doing this, Memcheck is able to find memory violations, e.g. invalid reads
or writes. Another tool provided by Valgrind is Cachegrind. Cachegrind can be used to
determine the cache usage on a system. It will provide the number of cache misses and
pinpoints the sources of these misses. A third tool of Valgrind is Callgrind. Callgrind
is an extension to Cachegrind. It will provide the same information as Cachegrind does
and in addition it provides information about different calls within the application
under investigation. The graphical user interface KCacheGrind provides the results
in a very human readable way. The information gathered about calls will result in
profiling information.

Although Valgrind provides a lot of other tools, none of them are stable tools which
can provide the memory access information this thesis is interested in. An option can
be developing our own Valgrind tool. A lot of research on Valgrind would be necessary
for this to be successful. It must be investigated if Valgrind does provide the support
to produce loop based information and operator usage information. A number of tools
available with Valgrind are actually developed by third parties. Important to mention is
that the source code should be compiled with debugging information (often -g option)
in order for Valgrind to provide any information.

3.2.2.2 GDB - GNU Debugger

Another option is to use GNU Debugger or GDB [29]. GDB can be used to debug
applications. Common debug techniques like breakpoints are supported by GDB and
it has been used in some IDE’s. The Eclipse CDT IDE which is a C/C++ development
environment uses GDB as debugger for example [30]. However, normally a developer
places a breakpoint at one or more points of interest within the source code. The point
of interest of this thesis can involve the whole application. Placing a breaking point at
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the start of the main function and then stepping through the whole application can be
done in order to find all information of interest in a dynamic way. There exists however
a major drawback to this method. This will be illustrated in the example below (figure
3.1). In the example, only three different GDB commands were used, namely b 1, r
and s. These commands set a breakpoint at the first line available, start running the
application and steps to the next line in source code, respectively.

void main ( void )
{

int i = 89 ;
i+=7;

i −= 44 + 8 ;
}

Reading symbols from a . out . . . done .
( gdb ) b 1
Breakpoint 1 at 0x804839a : file main . c , line 1 .
( gdb ) r

Starting program : a . out

Breakpoint 1 , main ( ) at main . c : 3
3 int i = 89 ;
( gdb ) s

4 i+=7;
( gdb ) s

6 i −= 44 + 8 ;
( gdb ) s

7 }

Figure 3.1: Example C code (left) with its GDB debug output (right)

The different coding styles (the use of spaces) in the source code (left) is on purpose.
As can be seen in the GDB debugger output, debugging is done line by line. At each
line, the original source code of the current line is provided. This is very helpful when
debugging an application, because it is clear from the debugger output what code was
executed exactly and one can find the same code in the original source easily. However,
for this thesis project, this is not so helpful. Because GDB outputs the exact line of
code, all coding styles and variations have to be supported in the parser that parses
the GDB output. Developing such a parser will be a very time consuming job.

As with Valgrind, GDB needs the application to be compiled with debug information
(often -g option) to be able to provide information.

3.2.2.3 Variable Replacement Using Macros

Another way to investigate memory accesses for instance, is to change the source code
itself. The changes should be able to log everything of interest in order to be able
to analyze later. These changes in source code have to be done with as little human
intervention as possible, because the system should save time for the developer and not
take too much time. The basic idea is to design a custom data type, which is a C++
class. By operator overriding, all kind of operators are supported and monitored. Using
a Macro, the original data types are replaced by the custom data type. An example of
this is given below in figure 3.2 the corresponding output is provided in figure 3.3.

Although the provided example does only include the basic information, i.e. the
type of operation and the size of the variable in bytes, the output looks promising.
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#define char Analyze<char>

#define long Analyze<long>

int main ( void ) {
char a = 60 ;
char b ;
char c ;
long d , e ;

b = 5 ;

c = a + b + 1 ;
d = 8 ;
e = d + 9 ;
return 0 ;

}

template<typename T>

class Analyze {
public :

T value ;

Analyze (T j = 0)
{

value = j ;
cout << "Analyze assignment" << endl ;
cout << "Analyze size = "

<< sizeof ( value ) << endl ;
}

Analyze<T> operator+
( const Analyze<T> &other ) const

{
cout << "Analyze addition" << endl ;
return Analyze ( value + other . value ) ;

}
} ;

//

Figure 3.2: Example C code including the macro (left) and the custom Analyze class (right)

However, there is a major drawback of this system. In practice, a developer is most
likely interested in arrays. This is because arrays are often used in loops and there-
fore are candidates to run in parallel. Furthermore, arrays are typically mapped to
memories. Data dependencies and the order of execution should be clear from the log
file. This is where a major shortcoming of data type replacement comes in. Imagine
for a moment that an array of type char is replaced with an array of the custom class
Analyze<char>. If a data access occurs within the array, the corresponding function
called in the Analyze class is called. However, this class has no information about being
an array element and also array indices are unknown to this function. In fact, from
the point of view of the functions within the Analyze class, all elements of an array are
independent variables. This problem can be solved by overwriting arrays with another
analyze class. If an access to an element in the array is accessed, the value of the index
is known by using the subscript operator (operator[]). Unfortunately, there is no easy
way of replacing arrays with another data type. This would involve manual changes in
the source code, or a sophisticated parser that can parse the source code and replace
all arrays with the custom data type. Hence, one of the major points of interest is not
practically analyzable by this system.

3.2.2.4 Pin

Pin [31] can do analysis to memory accesses and operations by working with the exe-
cutable code of an application. This has two major advantages. The first is that the
language used in the source code does not matter, since Pin uses the executable file
and does not interfere with the source code. The second advantage is that Pin makes
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Analyze assignment

Analyze size = 1
Analyze assignment

Analyze size = 1
Analyze assignment

Analyze size = 1
Analyze assignment

Analyze size = 4
Analyze assignment

Analyze size = 4
Analyze assignment

Analyze size = 1
Analyze assignment

Analyze size = 1
Analyze addition

Analyze assignment

Analyze size = 1
Analyze addition

Analyze assignment

Analyze size = 1
Analyze assignment

Analyze size = 4
Analyze assignment

Analyze size = 4
Analyze addition

Analyze assignment

Analyze size = 4

Figure 3.3: Resulting output of fig. 3.2

the analysis compiler independent. What compiler was used to generate the executable
file is not important. No special compiler options have to be set when the algorithm is
compiled, making the compilation process as transparent as possible. QUAD [26] uses
Pin to dynamically extract information from an algorithm.

Pin is great when the actual memory accesses are of interest. According to [31],
analysis should be able to report on a basic block level. This implies that loops should
be detectable. More information on basic blocks can be found in Section 4.2. The
algorithm should be compiled with debug information to be able to retrieve information
about variable names, line numbers, etc. Compiler optimizations should be turned
off completely to prevent the resulting executable from changing the execution order
of memory accesses and operations. That would cause a difference in the generated
analysis reports compared to the original source code.

3.2.2.5 GCC PlugIns

GCC stands for GNU Compiler Collection [32] and is one of the most commonly used
open source compilers. It is evident that it should be possible to make GCC do static
analysis (changes in source code of GCC might be needed). But is it possible to do
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dynamic analysis using GCC? Let’s first take a look on how dynamic analysis can be
done manually.

Manual Dynamic Analysis

Manual dynamic analysis can be done by calling a function on every point of interest,
e.g. on every memory access, operation, loop, etc. By providing the called function
with important information using arguments, the called function should be able to log
all events. By analyzing this log later on, all kind of information can be provided to the
developer. After inserting all function calls, the new source code has to be compiled
and executed in order to generate the log file. The main advantage of this is that every
event can be logged as long as a function call can be inserted. The enormous manual
labor is of course too much to make this idea reasonable. The question is: is there a
way to automatically insert the correct function calls, to avoid as much manual labor
as possible?

GCC Basic Working

Before we answer the question above, let’s take a brief look on how GCC works
under the hood. More detailed information is provided in Section 4.2. GCC is able
to compile a number of different programming languages, these include but are not
limited by C, C++ and Fortran. Also many architectures are supported, for example
ARM, AVR, MIPS and of course x86. To make the optimizations independent from the
input language (Front End) and the target architecture (Back End), an intermediate
representation (IR) or intermediate language (IL) is used. The Front End translates
the input source code into the IR. The Back End translates the IR into the machine
code for the targeted hardware. Optimizations can be run on the IR. It is possible to
make changes in GCC to make it able to insert function calls into the IR level of the
compiler.

GCC PlugIn

Actually changing the source of GCC would result in a custom GCC version, which
inherits it main source from one particular version of GCC. If GCC releases a new
version, the custom made GCC version is outdated and may be developed once again.
Since the GCC release of version 4.5.0 1, PlugIns are supported. A PlugIn is a custom
made module which can be used by GCC while compiling. The PlugIn is able to make
changes in the code being compiled. If a new version of GCC is released, the PlugIn
still works, provided that the changes in GCC did not affect the used options by the
PlugIn. By using PlugIns, the custom code is less likely to get outdated. However,
there is a major drawback by doing this. The GCC documentation [33] is not always as
clear and complete as one would like. The GCC PlugIn documentation (chapter 23 of
[33]) is very incomplete and only covers the very basics. On top of that, since PlugIns
for GCC are relatively new, not much work has been published on this yet. Therefore
not many examples are available.

1http://gcc.gnu.org/gcc-4.5/changes.html
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3.3 Conclusion

Replacing variables with macros is an easy to implement but incomplete solution, and
therefore not suitable for this thesis. Valgrind, GDB and Pin need the algorithm to be
compiled with debug information enabled and the GCC PlugIn requires the algorithm
to be compiled with the PlugIn enabled. GDB would involve the development of a
parser that is able to parse all C (or C++) style code. Valgrind does not provide a
suitable stable tool which can provide all needed information. A custom tool must be
developed when Valgrind is to be used. Besides that, it is not known if Valgrind will
be able to report all loops, operations and memory accesses and operations within a
certain loop. Because of this, Valgrind was not used to develop the analyzer with.

A GCC PlugIn and Pin can probably provide all necessary information. The GCC
PlugIn will run on the original source code. This causes the analysis reports to accu-
rately match the original source code. The poor documentation and the obligation to
use the GCC compiler (compiler dependent) are drawbacks. Pin is compiler indepen-
dent, but operates on the compiled source code. Changes in execution order caused by
optimizations of the compiler will influence the report results. This is not desirable.

Both options will probably be suitable for analyzing algorithms and providing loop
based information. It was decided to use a GCC PlugIn to retrieve the information
from the source code. Chapter 4 presents the system design using a GCC PlugIn.
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System Design 4
This chapter describes the presented framework system design. First, a basic overview
of the entire system and a more detailed description about GCC are given. Then, both
components (PlugIn and Parser / Analyzer) of the system itself will be discussed in
great detail among with the reports that can be generated.

4.1 Basic Overview of the System

As concluded in the previous chapter, a GCC PlugIn is used to retrieve all information
of interest. By compiling an algorithm with GCC and the developed PlugIn for GCC,
function calls are inserted into the Abstract Syntax Tree (AST) representing the original
source code. On every event, such as a memory access or an operation, a function call
is inserted. The function definitions are provided in a separate file (analyze.cpp and
its header file analyze.h). This file is compiled to an object file, as all other source
files are. The linker finally combines all object files into a single executable file.

By executing this file, a log file will be generated. The size of this log file is heavily
depending on the number of operations and memory accesses within the original source
code. More about the size of the log file is mentioned later on. The log file can be read
by a parser. This parser reads the file and generates a tree in memory from it. We
call this tree a Data Flow Tree, or DFT. When the DFT has been completely built, a
command prompt is provided to the user. The user is now able to generate reports.
These reports are directly generated from the DFT. Reports can be shown on the screen
or saved in a file.

Figure 4.1 provides a schematic representation of the whole system. The definition
of the log file format can be found in Appendix B. The presented framework itself
consists of the GCC PlugIn and the Parser / Analyzer.

Figure 4.1: System overview
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4.2 Basic Working of GCC

To understand how the presented GCC Plugin works, a good understanding of the
basic working of GCC is needed. Figure 4.2 illustrates the basic steps of GCC. The
first step is the Front End. For each supported input language, a Front End is available
(the figure only shows the C language as example). This Front End translates the
source code into en generic representation, called GENERIC [34]. This representation
is further simplified into a GIMPLE [34] representation. The GIMPLE representation
has been heavily influenced by SIMPLE IL [35]. At the other side of the compiler the
Back End is present. The Back End translates the GIMPLE code into the machine
code for the targeted architecture. As can be seen, the design is modular. Adding a
new language to the compiler can be achieved by developing a new Front End. To
support a new target architecture, only a new Back End has to be made.

Figure 4.2: Basic GCC overview

The representation and language used between the Front End and the Back End is
called the Intermediate Representation (IR) and Intermediate Language (IL). The IL
used by GCC is GIMPLE. Between the Front End and the Back End, the Middle End
exists. In this part of GCC, most commonly performed operations are executed, such
as code optimization. To do this, GCC uses passes. Once the GIMPLE representation
is complete, the Pass Manager is started. All passes which are to be executed are
known to this Pass Manager. By developing our own pass, and registering it to the
Pass Manager, we are able to make changes to the Abstract Syntax Tree.

GCC compiles each function separately. This means that each function results in
its own GIMPLE representation. The GIMPLE representation forms the Abstract
Syntax Tree (or AST) of this function. For each function, the Pass Manager executes
all registered passes. The custom pass is therefore executed for each function.

In GIMPLE, all operations are grouped into Basic Blocks. Each function therefore
contains at least one Basic Block. Every Basic Block can contain one condition. This
condition is located at the end of the block and determines what block should be
executed next. A conditional branch will therefore result in a new Basic Block. It
is not possible to jump to code within a Basic Block. A simple for-loop without any
additional branches results in three Basic Blocks. The first block sets the initial value
of the iterator. The second block checks the condition, and the third block contains
the actual code executed within the loop and the incremental operation of the loop
iterator.
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4.3 GCC Plugin

In GCC, all functions will be handled separately and will result in separate AST’s. Not
only the functions provided in the user’s source code, but also system functions. If for
example a call is made to printf(), the printf() function will also be passed to the
Pass Manager. A log file can become quite big. It is important to only analyze the
function(s) of interest. System functions are most likely not important to be analyzed.
With large projects to analyze, the engineer is probably working at optimizing function
after function. This also calls for the need to be able to provide the functions to be
analyzed. By minimizing the number of functions to analyze, compile time is improved,
but more important, the execution of the algorithm is as fast as possible and the
resulting log file(s) are as small as possible. Small files are later on faster to parse by
the parser. As can be seen, it is very attractive to analyze as less functions as possible.

By passing an argument to the plugin, the functions to analyze are provided to
the plugin. The argument to use is -fplugin-arg-plugin-functions={Functions}.
This argument can be entered as any other argument directly after
GCC (e.g. g++ -g -Ipath-to-analyze-h/ -fplugin=path-to/plugin.so

-fplugin-arg-plugin-functions="functions to analyze" -c -o object.o

source.cpp). The plugin itself must also be provided to GCC using the
-fplugin=path-to/plugin.so argument.

The GCC Plugin will insert function calls to the analyze.cpp file. It is therefore
necessary that the header file is included in the source. If all source files point to a
global header file, it is efficient to place the include in this global header file. The header
file must be included before any function definition is given, because the functions to
be inserted are not known otherwise. The following code fragment can be used:

#ifdef ANALYZE
#include <analyze . h>
#endif

Figure 4.3: Include analyze.h file

By passing the argument -DANALYZE to GCC, the analyze.h file will be included.
Do not forget to provide the location of the analyze header file to GCC. To make
sure all functions of the analyze library are loaded correctly, the existence of them will
be checked by the custom pass before a function will be analyzed. If not all analyze
functions are found, an error is returned to GCC and will be shown to the user.

4.3.1 Loading the Analyze Prototypes

By including the header file of the analyze functions (i.e. analyze.h), the prototypes
of these functions are available to the application to compile. The prototypes are saved
in the global namespace.
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The first function of the PlugIn loaded is the plugin init() function. Here, the
custom pass is registered to the Pass Manager and the names of all analyze functions
are set. Later on, when a function is analyzed, it will search for all functions defined
during the initialization phase. An overview of all these functions and their purpose
can be found in Appendix C.

4.3.2 Placement of the Custom Pass

One of the first steps is to determine where the custom pass has to be inserted. Im-
portant is that this pass has to be one of the first passes to be executed. Once the
code has been optimized, the execution order of different statements may have changed.
Also variables within the source code may have been optimized away. This may result
in unexpected logs. One of the first passes is the SSA pass. This pass converts the
GIMPLE representation into an SSA form. In SSA form, a variable may be read as
many times as needed, but may be written only once. If a variable is written more
than once, the SSA pass will insert as many new variables as needed to make sure that
all variables are written once. These new variables can get unexpected (or no) names.
This makes it very hard to generate an accurate log file, which provides information
about all memory writes. It is clear that the new pass has to be inserted before this
SSA pass.

4.3.3 Managing the Log File

To guarantee that the log file has been opened prior to writing new log data to it,
the function call to open the log file is inserted at the top most position of the main
function. The function call to close the log file will be inserted at the very last position
of the main function.

32 bit versions of Linux support files up to 2 GB. To keep the generated log files well
within this file size limit, the size is monitored during the execution of the algorithm.
Every time a Basic Block is opened or closed, the file size will be checked. If the
size exceeds 1 GB, the file is closed and a new log file is created. When analyzing an
algorithm with many executed statements (for example a large nested loop), more log
files can be expected to be generated.

4.3.4 Logging Basic Blocks

GCC assigns a unique number to each Basic Block. By logging this unique number
when a block is entered and left, later on it will be possible to determine the statements
which belong to this Basic Block. Also the number of passes of the Basic Block can be
found which is needed for detecting loops.

A gimple statement iterator is used to iterate over all statements within a Basic
Block. When new function calls to log functions have to be inserted, sometimes they
are inserted before the current statement iterator, and some other times, the function

30



calls are inserted after the current statement iterator. The reason for this is explained
in Section 4.3.5.1. The inserted function calls are new statements which are inserted
into the Basic Block. Unfortunately, in some situations a statement cannot be inserted
after the current statement iterator. This occurs in three situations:

• The Basic Block contains no statements. This occurs when a function is empty.

• The statement iterator points to a RETURN statement. After a return statement,
no other statements can exist, because they can never be executed.

• The statement iterator points to a CONDITION statement. As mentioned earlier, a
Basic Block can only contain one condition, because no branches can exist within
a Basic Block. The condition determines which Basic Block should be executed
next. Therefore, if code is inserted after a CONDITION statement, this code will
never be executed.

To solve this problem, if one of the above situations occurs, a NOP (no-operation) is
inserted at the very top of the Basic Block.

4.3.5 Logging Statements

Only three types of GIMPLE statements will be analyzed:

• ASSIGN Statement: All memory accesses and operations.

• CALL Statement: Function calls.

• COND Statement: Conditional branches.

4.3.5.1 Logging Assign Statements

The most complex statement which can be logged is the ASSIGN statement. Assign
statements read one or more variables, does an operation and saves the result in a
variable. The variable in which the result is saved is the variable on the left hand side
of the operation in most programming languages (e.g. C ). In GCC this variable can be
addressed by the gimple assign lhs() function. The number of input variables can
be either one or two, depending on the kind of operation. The first of these variables
can be found by using the gimple assign rhs1() function. If a second input variable
exists, it can be accessed by the gimple assign rhs2() function. There are three kind
of operations, namely:

• Binary Operation: An operation using two input variables. Examples are the
addition or multiplication operations.

• Unary Operation: An operation using only one input variable. Examples are the
negate or convert operations.
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• Single Operation: An operation using only one input. This type of operation
assigns values to variables or pointers. The difference with unary operations is
that no particular calculation is done.

In the PlugIn, the function processGimpleAssign() determines what kind of op-
eration is being executed and depending on that, calls the appropriate log functions.
These log functions insert the function calls into the AST. When a function call is
inserted, it can be inserted just before of just after the statement it refers to. In case
of variables which are used as input to an operation, the function call is inserted before
the original statement. This is necessary because only then it is guaranteed that the
value of the variable is the same as it was when passed to the operation. The function
calls representing the variables which are used as output of an operation are inserted
after the original statement for similar reasons. The example below illustrates this.

index = index + 2 ;

Figure 4.4: Insert the log function call before or after the statement?

In this example, the value of variable index is different before and after the state-
ment. Function calls to log functions which logs the access of the first input variable
(i.e. the index after the assign operator) has to be inserted before this statement,
otherwise the value is overwritten. For the same reason the output variable has to be
logged after the statement. Hence, the process of inserting function calls is done in the
following order:

1. Log the access(es) to the input variable(s).

2. Log the operation.

3. Log the access to the output variable.

Value or Pointer

When normal variables are used, logging the access is not too hard. But pointers can
also occur in assign statements. Normally, pointers are not desired in algorithms which
are to be transformed into HDL’s. But sometimes, array accesses are implemented as
pointer accesses in the AST. This happens for example when an array is passed as
argument to a function and within this function, the array is accessed. Because passing
an array to a function is basically passing the pointer of the first element of the array
to the function, accesses to this array are always implemented as pointer accesses by
GCC.

Because of the above, chosen was to fully support pointers in the GCC PlugIn. This
makes the logging process a bit more complex, because an access to a pointer can be
either an access to the value where the pointer points to, or an access to the pointer
itself (i.e. the value of the address the pointer contains). This can be determined by
checking the TREE TYPE of the variable:
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if ( TREE_CODE ( TREE_TYPE ( gimple_assign_rhs1 ( stmt ) ) ) == POINTER_TYPE )
/* save access to the address of the pointer */

else

/* save access value of the pointer or the variable */

Figure 4.5: Determine whether the address or the value is accessed

Casts

A cast is a translation from one data type to another. The value of one variable
is translated to the data type of the other variable and after that, saved in this other
variable. Often, casts are used to change the number of bits (e.g. from char to int),
or to change from an unsigned representation to a signed representation (or the other
way around). Both of these examples are changes of interpretation of the bits or just
adding or removing most significant bits. No change in binary code is actually done.
Of course, this is not always the case. Casting between integers and floating point
numbers will change the bits. In hardware, casts do not always imply the need of a
new variable (or signal). To be able to see the cast relation between variables while
analyzing an algorithm, casts must be logged. GCC uses a unary operation for casts,
namely a NOP operation with the CAST flag set. This can be checked by:

if ( gimple_assign_rhs_code ( stmt ) == NOP_EXPR && gimple_assign_cast_p (
stmt ) )

/* this is a cast operation */

else

/* this is not a cast operation */

Figure 4.6: Detect cast statements

Pointers can also be casted. A pointer cast is a special cast and can be found by
checking the TREE CODE of the lhs and the rhs1 nodes of the assign statement. If
both nodes are of type POINTER TYPE and the cast check above returned true, then the
statement is a pointer cast.

Accessing Pointer Addresses

As mentioned earlier, pointers can have more types of accesses than other variables.
When the operation is of type Single Operation, the address of a pointer may be
accessed. This can be determined by checking the TREE TYPE of the lhs node. If this
TREE TYPE is POINTER TYPE, then the address where the pointer points to is changed.
The new value of this address can be either an expression or the address of another
pointer. In the latter case, the TREE TYPE of the rhs1 node must be POINTER TYPE as
well. If the new address is an address expression, the TREE CODE of the rhs1 node is
of type ADDR EXPR. These checks and simple examples of the two types of setting the
pointer address are given in the code fragment of figure 4.7.

If the value where the pointer points to is accessed, then the node type is of type
INDIRECT REF. Trivially, if the lhs node is of type INDIRECT REF, then the value where
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if ( TREE_CODE ( TREE_TYPE ( gimple_assign_lhs ( stmt ) ) ) == POINTER_TYPE )
{ //Set address of pointer

if ( TREE_CODE ( gimple_assign_rhs1 ( stmt ) ) == ADDR_EXPR )
//address from address expression (&example)

else if ( TREE_CODE ( TREE_TYPE ( gimple_assign_rhs1 ( stmt ) ) ) ==
POINTER_TYPE )

//address from other pointer

else

//unexpected address assignment of pointer

}

Figure 4.7: Determine how the address of a pointer was set

the pointer points to was written. When the rhs1 node is of type INDIRECT REF, the
value where the pointer points to was read.

Special Case: Array Access through Pointer

As mentioned before, an array can be provided in the argument list of the called
function. By providing the array, behind the scenes the address to the first element
of this array is provided. Accesses to the array from within the called function would
therefore not appear as array accesses, but as pointer accesses. The address of the first
element of the array is the same as the in the function argument provided address to
the whole array. Accesses to this first element does therefore appear as accesses to the
provided function argument. Accesses to other elements are more complex. First, the
corresponding address to such an element is calculated. This is done by multiplying
the element index with the size of the data type of the array. Then, the resulting value
is added to the address of the first element. This will be written to a new pointer. To
access the element in question, the newly created pointer is accessed.

Since we are highly interested in array accesses, it is necessary to detect the pro-
cedure above, in order to make it possible to reconstruct the accesses to arrays when
analyzing the arrays later on. Chosen was to keep the PlugIn as simple as possible and
do all intensive work in the analyzer (or parser). Hence, no conversion from pointer
access to array access is done by the PlugIn. Only the creation of a new pointer which
is used to access an array element is detected and logged. These pointers can be found
by checking the statement for three conditions:

1. The TREE TYPE of the rhs1 node is a POINTER TYPE. This is the pointer which
points to the first element of the array.

2. The TREE CODE of the rhs1 node is of type PARM DECL. This stands for parameter
declaration and is the address to the array which was provided by the function
call.

3. The Operator type is pointer-plus.

The name of the array is the name of the rhs1 node. The index of the accessed
element is the value of the rhs2 node. Keep in mind that this value has been multiplied
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by the size of the data type. The resulting address is also logged. This enables the
analyzer to determine which pointer accesses actually belong to array accesses.

Save Node Access

After all checks above have been completed, it is known what kind of access has to
be logged. The actual logging in most situations is done by one function. This is the
saveNodeAccess() function. This function checks what kind of node has to be logged
(i.e. the TREE CODE of the node) and inserts the appropriate function call into the AST.
The following TREE CODEs are implemented:

• PARM DECL : A variable provided as function parameter.

• VAR DECL : A normal variable.

• INTEGER CST : An integer constant.

• ARRAY REF : An array reference

• COMPONENT REF : A struct or class element.

• INDIRECT REF : A pointer access.

If another TREE CODE is found, a warning is printed to the user screen. In case
the found type is ARRAY REF, the index of the array is also saved. If the array is a
multi-dimensional array, all indices are logged.

If a COMPONENT REF is found, the recursive function logComponentRef() is called.
A node of type COMPONENT REF can be a struct or a class. The function
logComponentRef() tries to find all parent variables, until it reaches the top most
level. In C coding style, these elements are separated by a period ’.’ (or arrow ’->’
in case of a pointer). This is a safe solution, because periods are not allowed within
variable names. However, GCC may use periods within variable names. This can occur
if a temporary variable had to be inserted, which is related to a real variable. Normally,
temporary variables do not get any names, but in these cases it might. The name pro-
vided is the original variable name, a period and a unique number (e.g. ’name.1’). This
is the reason that in a log file, the period character may be used for variable names.
The character chosen to separate the different components of a struct or class in the
log file is the hash character ’#’. More on detecting structs from source code can be
found in Section 4.4.3.

Data Types

When an access to a node is logged, the data type and if possible the value of the
variable is also logged. The data type is found by the function getTreeTypeInfo().
This function uses the TREE TYPE of the node in question to determine its data type.
The following TREE TYPEs are supported:

• INTEGER TYPE : All variants of integers, like int, char, unsigned, etc.

• BOOLEAN TYPE : Can either be true of false.
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• RECORD TYPE : A struct or class.

• REFERENCE TYPE or POINTER TYPE : Pointer accesses.

If the type of the node is not supported, a warning is printed on the screen and
the returned type is UNKNOWN. The access will still be logged, but no data type is
provided. The most important data type not supported is the floating point data type
(REAL TYPE). In most HDL solutions, this data type is not desirable. To support this
data type, new log functions have to be added to the analyze.cpp file. This makes
logging more complex. Therefore, the support for floating point data types has been
left as future work.

Besides the name of the data type, a special value is determined and returned to the
caller of the getTreeTypeInfo() function. This special value is called the valueType

and is of type int. The eight least significant bits present the number of precision bits
of the data type found. In the current supported TREE TYPEs, only INTEGER TYPE has
a precision. The precision can be found by using the GCC macro TYPE PRECISION().
The other bits are used as flags. Table 4.1 shows these flags and their meaning.

Hex value of flag Meaning Description

0x100 Signed Set if data type is signed

0x200 Boolean Set if data type is boolean

0x400 No value Set if data type has no integer representable value

Table 4.1: Flags of valueType

Whether a data type is signed can be determined by the GCC macro
TYPE UNSIGNED().

4.3.5.2 Logging Call Statements

In the GCC PlugIn, call statements are handled by the function processGimpleCall().
Besides the name of the called function, the parameters and the return value are logged.
Parameters can be a normal variable, an integer value, an address expression or a
parameter of the calling function. Logging the parameters works much like logging
normal accesses. Using a loop, all parameters are logged. The number of parameters
can be found using the GCC function gimple call num args(). If the called function
returned a value and this value was saved in a variable, than this is logged as well. The
return node can be found using the GCC function gimple assign lhs().

4.3.5.3 Logging Condition Statements

A condition statement is always the last statement of a Basic Block. It determines what
the next Basic Block will be to execute. There are basically six different conditions,
namely:
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• LT EXPR : Less than

• LE EXPR : Less than or equal

• GT EXPR : Greater than

• GE EXPR : Greater than or equal

• EQ EXPR : Equal

• NE EXPR : Not equal

If the condition has to be more complex, the result will first be calculated with
normal operations and saved into a variable. This variable is then used within the
condition statement.

A condition statement contains two nodes, the lhs and rhs nodes. They
are available to the PlugIn by calling GCC functions gimple cond lhs() and
gimple cond rhs(). The type of condition can be found by gimple cond code().

The PlugIn function processGimpleCond() searches for these data and inserts the
corresponding log functions into the AST.

4.3.6 PlugIn Arguments

GCC can pass arguments to the PlugIn. To be able to distinguish arguments
for GCC and arguments for the PlugIn, all PlugIn arguments use the prefix
-fplugin-arg-plugin-. In this prefix, the last part (in this case plugin) is the name
of the plugin used. As can be seen, the name of our PlugIn is plugin.

The PlugIn supports only four arguments. These arguments are explained below.

-fplugin-arg-plugin-help is the commonly used help argument which informs the
user about the other arguments.

-fplugin-arg-plugin-verbose is used to print a short description of the kind of state-
ment or node being processed. In the code fragment below, a short example with the
resulting output is provided.

int a , b ;

a = 3 ;
b = a + 5 ;

Analyzing function ’main’

CONST : 3
VAR : a

VAR : a

CONST : 5
VAR : b

Figure 4.8: Simple example code (left) and the corresponding verbose output (right)

-fplugin-arg-plugin-debug is used to print a longer description of how the AST is
being analyzed. This argument can be combined with the verbose argument. Most
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of this debugging info contains the functions which are called. This argument is in
particular handy when new features are added to the PlugIn. The resulting output
with both debug argument and verbose argument enabled and using the same example
as above, is given in figure 4.9.

Analyzing function ’main ’
==DEBUG== Logging BasicBlock

==DEBUG== Logging BasicBlock −> DONE ! (id=0x40fe8b80 action=s )
==DEBUG== Logging Access

==DEBUG== Logging Node Access

CONST : 3
==DEBUG== Logging Node Access −> Done ! ( name=const )
==DEBUG== Logging Access −> DONE ! ( access=r )
==DEBUG== Logging Access

==DEBUG== Logging Node Access

VAR : a

==DEBUG== Logging Node Access −> Done ! ( name=a )
==DEBUG== Logging Access −> DONE ! ( access=w )
==DEBUG== Logging Access

==DEBUG== Logging Node Access

VAR : a

==DEBUG== Logging Node Access −> Done ! ( name=a )
==DEBUG== Logging Access −> DONE ! ( access=r )
==DEBUG== Logging Access

==DEBUG== Logging Node Access

CONST : 5
==DEBUG== Logging Node Access −> Done ! ( name=const )
==DEBUG== Logging Access −> DONE ! ( access=r )
==DEBUG== Logging Operation

==DEBUG== Logging Operation −> DONE ! ( operation=plus type=2)
==DEBUG== Logging Access

==DEBUG== Logging Node Access

VAR : b

==DEBUG== Logging Node Access −> Done ! ( name=b )
==DEBUG== Logging Access −> DONE ! ( access=w )
==DEBUG== Logging BasicBlock

==DEBUG== Logging BasicBlock −> DONE ! (id=0x40fe8b80 action=e )

Figure 4.9: PlugIn output if both verbose and debug options are enabled

-fplugin-arg-plugin-functions is used to provide the functions to analyze to the
PlugIn. If no functions are provided, a warning message is put on the screen and
compiling continues without analyzing any functions. If more functions have to be
included into the log file, the functions can be put after each other in one string. Thus,
double quotes are needed. If the functions foo() and bar() are to be analyzed, the
complete argument would be: -fplugin-arg-plugin-functions="foo bar".
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4.4 Parser / Analyzer

The second tool needed for analyzing functions is the Parser / Analyzer. This tool
reads the input file(s) and builds a tree from it. Later on, this tree is used to generate
the desired reports. Figure 4.10 shows this process in a schematic way. This section
describes the working of the Parser / Analyzer.

Figure 4.10: Parser / Analyzer overview

4.4.1 Parsing Log Files

The first task of the Parser / Analyzer is parsing the log file or log files (depending on
the size of the data to log). The code to parse these log files was generated by Flex
[36] and Bison [37]. Flex is a lexical analyzer. It uses regular expressions to recognize
all parts of the input stream and convert these matches into tokens. These tokens are
used by Bison. Bison knows the grammar of the log file. It uses the tokens to match
the grammar and with that, it ’understands’ what the log file has to say. The input
data to Flex is defined in file lex.l. This file describes what regular expressions are
to convert to which tokens. Bison uses the grammar.y file to retrieve the grammar of
the log files. This grammar.y file also describes how the DFT is build. The first log file
to parse is temp 0.log. In the user terminal, the progress of parsing is shown. If the
file was completely parsed, the next file is opened. This file has file name temp 1.log.
If the file exists, it is parsed, if the file does not exist, the parser moves on to its next
step. This process repeats itself until all log files are parsed.

4.4.1.1 DFT - Data Flow Tree

The Data Flow Tree (DFT) is a tree containing many lists and other elements. Figure
4.11 presents this graphically.

The DFT itself is a globally defined list. This list contains all functions analyzed.
The definition of the Function data type and that of all other DFT related data types
can be found in the dft.h file. Almost all elements of the DFT are saved with location
information, i.e. the origination source file and source line.

A Function contains one BasicBlocks (BasicBlocks is a data type). In this one
BasicBlocks, all individual BasicBlock-s are saved and in addition all memory ac-
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Figure 4.11: DFT - Data Flow Tree

cesses, array accesses, pointer accesses, operations and function calls are saved here. 1

These are all provided to the BasicBlocks by the BasicBlock-s. After a BasicBlock

has been added to BasicBlocks, all memory accesses, array accesses, pointer ac-
cesses, operations and function calls are merged into BasicBlocks and deleted from
BasicBlock to minimize memory usage. It is very important to merge this data,
because the order in which BasicBlock-s are executed in, is not known yet. To keep
track of the order of accesses to memory for example, the memory accesses are flattened.
While merging the accesses from the newly parsed BasicBlock into BasicBlocks, the
BasicBlock ID is saved to all these accesses, so it can be determined later to which
BasicBlock a certain access belongs to.

One BasicBlock contains zero or more statements and if applicable the exit con-
dition. statements is behind the scenes also of type BasicBlock. The difference in
practice is, that a BasicBlock contains the already parsed statements and adds its
unique identifier and if applicable the exit condition to it, while statements is used to
add individual statements to the statements list.

statements contains all individual statements. If for example a memory access is
found, it is added to this statements list.

The adding and merging in all steps above are in many cases quite complex op-
erations. The reason for this is because sometimes accesses or operations need to be
merged into existing accesses or operations, while in other cases they must be added.
A lot of links exist between different parts of the tree. These links have to be updated
accordingly.

1Please note the difference in used font. There exists a struct named ’BasicBlocks’ and a struct named

’BasicBlock’. If ’BasicBlock’ is used plural, this is represented as ’BasicBlock-s’.
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4.4.1.2 Building the DFT

In the previous section a basic overview of the DFT was given. This section explains
all steps in great detail. Some steps are trivial, while others are very complex. Many
steps have a couple of properties in common. This will be discussed first.

Common Properties

All parts of the DFT actually related to real statements in the original source code,
consist of two parts. The first is a description of the type of access or operation.
Information like the variable name, data type and some counters are saved here. The
second part is the actual access or operation. Here the location information is saved
and if applicable, the value which was read or written. In case of an operation, the
operands and the resulting access is saved via pointers. If more accesses or operations
of the same type exist within a Basic Block, only the second part is saved, because the
first past would hold the same information for all accesses or operations of the same
type. The first part contains a list called access in which all instances of the second
part are saved.

Another important common property is how strings are saved. Almost all elements
of the DFT have to save a at least one string. Examples are the name of the access,
the data type, the type of operation and the source file name. Since it is likely for
strings in the DFT to occur multiple times, they are not saved on an individual basis,
to minimize memory usage. The function getStringPointer() is used when a string
is to be saved. This function makes use of a global list. The list contains all strings
used. If a new string has to be added, the list is searched for the existence of this
string. If the string already exists, the new string is freed and the pointer to the string
in the list is returned. If the string does not already exist, it is added to the list and
its pointer is returned.

Struct elements are parsed centrally for all access types (i.e. memory, array and
pointer accesses). This results in a StructElement containing a name and a pointer to
the next StructElement, if applicable. If the access does not consists of a struct ele-
ment, the StructElement points to NULL and its name is the name of the access. If the
access is a struct element, for example a.b, then the first StructElement contains the
name a and points to the second StructElement. The second StructElement points to
NULL, indicating no deeper levels were used in this access. The second StructElement

also contains the name b. The function getNameFromStructElement() finds the name
of the last StructElement and removes the last StructElement from the chain. The
remaining StructElement chain and the resolved name is returned to the caller. This
works this way because the parser parses the name of the variable always as a linked
list of StructElements.

MemoryA

ess

In the Parser, MemoryAccesses are all variable accesses which are not pointers or
arrays. When a new memory access is parsed, a new MemoryAccess element is created
and returned. This is done in the newMemoryAccess() function. First the name and
correct chain of StructElements is found and saved. Also the read and write counters
are set to zero and new lists for casts and accesses are declared. An access in which the
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source file, source line, direction (r (read) and w (write)) and the value if applicable is
created. This access (or MemoryLog as it is called in the parser) is saved to the access

list.

The newly created MemoryAccess is saved into the statements list. If the
MemoryAccess is the first of the statements list, it is saved and the read or write
counter is set to 1 accordingly. If the MemoryAccess was not the first to be saved, the
list of already saved MemoryAccesses is searched for a MemoryAccess with the same
name. If such an element is found, the MemoryLog of the new MemoryAccess is saved
into the found MemoryAccess. All other information is discarded. The read and write
counters of the found MemoryAccess will be updated accordingly. If no MemoryAccess

with the same name was found, the new MemoryAccess is added to the list as it was if
it was the first element to be added.

ArrayA

ess

Array accesses are saved in the same way as memory accesses are, but with one
addition: the indices of the array are saved in the ArrayLog. An ArrayIndex contains
only two elements, namely the name of the variable used to provide the index value
and the index value itself. If a constant value was used, the name will be const. In
ArrayLog the ArrayIndex is saved in a list. If a multi-dimensional array was accessed,
all instances of ArrayIndex are saved in this list. The function newArrayAccess()

carries out this job.

PointerA

ess

Pointer accesses are also saved much like memory accesses are. The difference here
is that there are two additional counters beside the read and write counters of the
other access types. PointerAccess has also a set and get counter. These counters
keep track of the amount of times the address of the pointer was changed or retrieved,
respectively. The direction saved in PointerLog can have more different values than
in the other access types. Beside the r (read) and w (write) values, g (get), s (set),
p (set from other pointer), e (set from address expression) and c (pointer cast) can
be used. Also the actual address at the time of the access is saved. This is done
by the newPointerAccess() function. When the PointerAccess is saved into the
statements list, an important additional check is done. This check is part of the
array access through pointer detection system. The working of this system is further
explained in Section 4.4.1.3

Cast

Casts are copies of variables essentially holding the same data, but in a different for-
mat. In the DFT this is saved by making a connection between both MemoryAccesses.
In the Parser, the connection itself is the Cast. If a cast is parsed, a new Cast is created
and both MemoryAccesses (the source and the destination) are created. As with the
different accesses above, a Cast contains also two parts. The first part saves a pointer
to both MemoryAccesses and a counter which keeps track of the number of casts from
the source MemoryAccess to the destination MemoryAccess. An access list is saved
containing all cast instances, complete with source file, source line and if applicable the
value. This is the second part.
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When the Cast is saved into the statements list, both source and destination
MemoryAccesses are searched for in the statements list. If they exist, the pointers
in the Cast will be updated. If they do not exist already, they will be added to the
statements list. After this, checked is if the Cast has occurred before. If not, the Cast
is added to the casts to list of the source MemoryAccess. If the Cast did occur before,
the CastLog is saved to the existing Cast. After this all, the cast instance counter is
updated.

Operation

The function newOperation() creates the new Operation instance. This function
saves the name of the operation (e.g. plus, multiply, etc.) and the type of operation.
This can be either Unary or Binary. Also the OperationLog is created and the source
file and source line are saved in it.

When the newly created Operation is added to the statements list, the list is
searched for operations with the same name. If found, the new OperationLog is added
to the existing Operation. If not found, the new Operation is added to the statements
list. OperationLog also saves the input variable(s) and the output variable. The input
variable(s) are parsed just before the new Operation. In the statements list, two
pointers are used to point to the last two parsed variable accesses. These pointers
are now used to set the input variables of OperationLog. Naturally, if the type of
operation was Binary, the last two accesses are saved to OperationLog, while if the
type was Unary, only the last access is saved to OperationLog. The output variable
is not parsed yet, but will be directly after the operation is handled. To be able to
save this output variable to OperationLog, a pointer to OperationLog is saved along
with a flag indicating that an output variable is to be saved to a OperationLog. On all
kind of accesses parsed, this flag is checked. If the flag was found to be set, the output
variable of OperationLog is saved and the flag is cleared.

Fun
tionCall

The last type of element saved to a BasicBlock are FuncionCalls. There exist
a number of variations within function calls. Some function calls have a return value
and the number of parameters can differ. The function called may also be a function
to analyze. If this is the case, the new function will be analyzed before the previous
function was finished. The previous function will continue after the called function
returns. This implies that new functions can be added to the DFT from two places,
either from the top level, or from within another function. If the function already exists
in the DFT, the new instance of this function is saved in the other instances list of
that function, but only if the save duplicate argument was used. More on arguments
can be found in Section 4.4.5.

The number of parameters can be different for each function. This is why they are
saved in a list. If a FunctionCall does not contain any parameters, the parameter list
will be empty.

The new FunctionCall is saved in the statements list. If more function calls to
the same function exist, they are all saved in the statements list separately. If the
function call contained a return value, the corresponding MemoryAccess is saved as it
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would be in case of a stand-alone MemoryAccess. For now, returning pointers is not
supported.

From statements to Basi
Blo
k

The formed collection of statements is already of type BasicBlock. Only the
identifier of the BasicBlock and the condition have to be combined to finish the con-
struction of the BasicBlock. This is done by the function newBasicBlock(). If the
BasicBlock does not contain a condition, the condition pointer will be set to NULL.
Both tokens indicating the start and end of a BasicBlock contain the identifier. If the
identifiers are not equal, something went wrong during parsing. An error message is
provided to the user in such cases.

While parsing the log files, the user will be kept informed about the progress. This
is done by displaying the total file size to parse and the already parsed file size, along
with the percentage expressing both. This data must be updated regularly, but not too
often, since that will slow down the parsing process. Chosen was to do these updates
in the newBasicBlock() function. BasicBlock-s are loaded frequently, but of course
not as frequent as a statement occurs. To minimize the update process even further,
an update is only being written to the screen if the parsed file size in MB actually
changed.

Condition

There exists a great difference in conditions and other elements as discussed above.
A BasicBlock can contain many MemoryAccesses, ArrayAccesses, PointerAccesses,
Operations and FunctionCalls, but it can contain only one Condition. This el-
liminates the need for a ConditionLog type. The condition itself contains both
MemoryAccesses which are to be compared, the name of the condition and the source
file and line.

From Basi
Blo
k to Fun
tion

Each function has an BasicBlocks element. This BasicBlocks contains a list with
all MemoryAccesses, a list with all ArrayAccesses, a list with all PointerAccesses, a
list with all Operations, a list with all FunctionCalls and a list with all BasicBlock-s.
All access types, operations and calls have to be copied from all BasicBlock-s to the
BasicBlocks. By doing this as soon as a complete BasicBlock has been parsed, the
correct access order will be kept in BasicBlocks. The accesses, operations and calls
will be removed from BasicBlock, to safe memory.

While the MemoryAccesses are copied to BasicBlocks, the casts from lists are
filled. After this, reports are able to find where an access casts to or where it was
casted from.

The first BasicBlock can easilly be copied into BasicBlocks. When other
BasicBlock-s need to be added, saving the elements is more complex. In all cases
elements are merged whenever possible. If the new BasicBlock contains a variable
that already exists in the BasicBlocks, the access logs are merged and the coun-
ters are updated. As soon as an element is no longer needed (because of a merge),
that element is freed from memory. These merges are done on all elements, including
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FunctionCalls. Merging PointerAccesses and ArrayAccesses are complex processes
and are further explained in Section 4.4.1.3.

The new BasicBlock itself is also saved to BasicBlocks. If the block was added
before, the passes counter is incremented. To test if a BasicBlock was added before,
the identifier is used. After a whole function was parsed successfully, the passes counters
of each BasicBlock contains the number of times the BasicBlock was executed. Each
BasicBlock has a prevBlocks and a nextBlocks list. In these lists the identifiers of
the BasicBlocks executed before and after the BasicBlock are saved. This information
is needed to be able to detect loops from the execution order and number of passes.
To keep track of the last parsed BasicBlock, the identifier of that block is saved in a
stack. If another BasicBlock is parsed, the value saved in the stack is updated. When
a new function is parsed while another function was still in the process of being parsed
(i.e. a function call to another function being analyzed), a new layer is added to the
stack. After the new function has been processed, this stack layer is removed.

4.4.1.3 Detecting ArrayA

ess from PointerA

ess

Probably the most complex operation done during parsing is differentiating accesses to
arrays from pointer accesses. As was explained halfway Section 4.3.5.1, when passing
an array as an argument to a function, the address of the first element of the array is
passed. Accesses to that array are now complex pointer accesses. If the first element of
the array is accessed, a PointerAccess to that address is logged by the PlugIn. Accesses
to any other element are also logged as PointerAccesses, but this time to new pointer
locations. These locations are calculated by the address offset of the element in question
to the address of the first element of the array. This is detected by the PlugIn and an
ArrayPointer element is logged. This ArrayPointer contains information about the
name of the array, the index used, the name of the pointer created and the address of
this pointer. This ArrayPointer is saved in a list. The list is saved in a stack, for the
same reason as the BasicBlock identifier of the previous section was saved in a stack.

With the information described above being available during parsing,
PointerAccesses to addresses that exist in the list with ArrayPointers can
easily be detected as ArrayAccesses. The name and index used for that ArrayAccess
are saved in the ArrayPointer and can be copied from there. But there is more to
do. If a PointerAccess is recognized as an ArrayAccess and there already exist
PointerAccesses with the same name as the ArrayAccess being detected, then these
PointerAccesses are actually ArrayAccesses to index 0. Because the address of the
first element (with index 0) is always known, it is not calculated by GCC and therefore
not detected as ArrayPointer by the PlugIn. And if a BasicBlock is merged to
BasicBlocks, it can occur that within BasicBlocks PointerAccesses exist with
the same name as the ArrayAccesses detected in the newly to merge BasicBlock.
In all cases the PointerAccess is converted to an ArrayAccess to index 0. If a
PointerAccess is converted to an ArrayAccess, and the PointerAccess was used
with an Operation, the link to the Operation needs to be updated as well.

In the two sections below, the places where PointerAccesses may be detected as
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ArrayAccesses are pointed out.

Save PointerA

ess into Basi
Blo
k

The first step is to determine if the address of the pointer exists in the list of
ArrayPointers. If it does, that would indicate that the PointerAccess is really an
ArrayAccess. Now an ArrayAccess with the same name is searched. If not found,
a new ArrayAccess is added, otherwise the existing ArrayAccess is used. After this,
the list containing the PointerAccesses is searched for pointers with the same name.
If they do exist, they are transformed into ArrayAccesses.

If no ArrayPointer was found with the same address as the new PointerAccess,
the pointer list is searched for a PointerAccess with the same name. If that exists,
the new access is merged with the existing one. If it does not exist, the list with
ArrayAccesses is searched for an array with the same name. If such an access has
been found, the PointerAccess is merged into the found ArrayAccess. If none of
these was found, the PointerAccess is added to the list of PointerAccesses.

If an existing PointerAccess had to be transformed to an ArrayAccess, the
Operations using the old PointerAccess are updated to use the new ArrayAccess.
This is done by function updateOperationLinks().

Merging Accesses from Basi
Blo
k-s

When a BasicBlock is saved into BasicBlocks, all accesses, operations and func-
tion calls are processed one by one. This prevents multiple accesses to be saved into
BasicBlocks with the same name. When an ArrayAccess is being processed, the list
of existing pointers is searched for PointerAccesses with the same name. If found,
these PointerAccesses are transformed into ArrayAccesses to index 0. Of course,
operation links are updated if applicable.

When a PointerAccess if processed, the list of existing ArrayAccesses is searched
for an ArrayAccess with the same name. If found, the PointerAccesses are saved as
ArrayAccesses to index 0.

4.4.2 Detecting Loops

One of the most important properties of the presented analyzer is the ability to keep
track of loops. Almost all reports that can be generated can provide loop specific
information. This comes in very handy when optimizing an algorithm for use with
HLS tools, like Catapult C. Since hardware can do tasks concurrent, loops may be
pipelined to improve throughput. Different examples of this are given in Chapter 5. If
memory accesses occur within a loop, these are likely to be a bottleneck. Besides this,
some operations are expensive. If these operations are used a lot within a loop, they
can form a bottleneck as well. This is why being able to do analysis with loops is very
important for this project.

Unfortunately, loops are not provided to the GCC PlugIn, they have to be detected
by the PlugIn or the Parser. Since the goal was to keep the PlugIn as simple as possible,
most detection is being done by the Parser. As already mentioned before, the Basic
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Blocks are of help. The function findLoops() detects all loops. This section explains
how it does that.

4.4.2.1 Basic Block Observations

Basic Blocks are discussed already a few times. The most important property of a
Basic Block is that it is a collection of statements which are all executed if the Basic
Block is executed. No conditional statements or jumps can occur within a Basic Block.
If a conditional statement exists, it is always the last statement of that Basic Block.
The conditional statement determines what Basic Block is to be executed next.

In practice, this means that al conditional statements, like if .. then .. else

or loops with a conditional exit, will result in multiple Basic Blocks. If a Basic Block
is executed multiple times, that would indicate that the Basic Block is part of a loop.
Unfortunately, loops exist in a lot of varieties. A for-loop and a while-loop have their
conditional check in the beginning, while a do-loop does the check at the end. Ad-
ditionally, loops can contain continue or break statements, which would result in
additional jumps. Also conditional executions (e.g. if-statements) may exist within a
loop, generating more Basic Blocks.

To give a better overview of how Basic Blocks are created within loops or conditions,
some examples are provided below.

Figure 4.12 shows a simple conditional statement with the Basic Block identifiers.
On the far right side, the execution order is given. The debug option of the GCC PlugIn
was used to find the Basic Block identifiers, while the generated log file was used to get
the execution order.

Example code BasicBlock ID Execution order

int main ( void ) {
int a , b=5;

if (b < 3)
a = 8 ;

else

a = 5 ;
}

// id=0x40fe6940

// id=0x40fe6980

// id=0x40fe69c0

// id=0x40fe6a00

0x40fe6940
0x40fe69c0
0x40fe6a00

Figure 4.12: Basic Blocks created with if-statement

More interestingly are loops. The next example is a simple for-loop in which a simple
calculation is done. The initial value of the iterator is set in the BasicBlock before the
loop starts. As expected, the BasicBlock containing the condition is executed four
times, while the body of the loop was executed three times. This is shown in figure
4.13.
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Example code BasicBlock ID Execution order

int main ( void ) {
int a = 8 , i ;

for (i=1;
i<4;
i++)

{
a ∗= i ;

}
}

// id=0x40fe6940

// id=0x40fe69c0

// id=0x40fe6980

// id=0x40fe6a00

0x40fe6940
0x40fe69c0
0x40fe6980
0x40fe69c0
0x40fe6980
0x40fe69c0
0x40fe6980
0x40fe69c0
0x40fe6a00

Figure 4.13: Basic Blocks created with simple for-loop

The structure of a while-loop is much like that of a for-loop. In both cases the initial
value of the iterator is set before the loop starts and before each iteration the condition
is checked. In the example of figure 4.14 only the type of loop has been changed for
comparison. As can be seen, the execution order of both for-loop and while-loop is the
same.

Example code BasicBlock ID Execution order

int main ( void ) {
int a = 8 , i ;

i = 1 ;
while (i < 4)
{

a ∗= i ;
i++;

}
}

// id=0x40fe6900

// id=0x40fe6980

// id=0x40fe6940

// id=0x40fe69c0

0x40fe6900
0x40fe6980
0x40fe6940
0x40fe6980
0x40fe6940
0x40fe6980
0x40fe6940
0x40fe6980
0x40fe69c0

Figure 4.14: Basic Blocks created with simple while-loop

Do-loops check the condition at the end of each iteration. This changes how the
statements are assigned to the Basic Blocks and also changes the execution order of
the Basic Blocks. An example is given in figure 4.15.

In the example of figure 4.16, a more complex loop structure is given. This ex-
ample contains a nested loop and uses a conditional break and conditional continue
statement.

As expected, the code has been split up into Basic Blocks. Every time a conditional
statement is found, a new Basic Block is started. Also the statements where the
conditional statements can jump to, do always initiate a new Basic Block.
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Example code BasicBlock ID Execution order

int main ( void ) {
int a = 8 , i ;

i = 1 ;
do

{
a ∗= i ;
i++;

} while (i <= 4) ;
}

// id=0x40fe6900

// id=0x40fe6940

// id=0x40fe6980

0x40fe6900
0x40fe6940
0x40fe6940
0x40fe6940
0x40fe6940
0x40fe6980

Figure 4.15: Basic Blocks created with simple do-loop

Example code BasicBlock ID Execution order

int main ( void ) {
int a = 8 , i , j ;

for ( i=0;
i<2;
i++)

{
for ( j=0;

j<5;
j++)

{
if (j == 1)

continue ;
if (j == 3)

break ;
a += (i∗5) + j ;

}
}

}

// id=0x40fe6a80

// id=0x40fe6d00

// id=0x40fe6cc0

// id=0x40fe6ac0

// id=0x40fe6c80

// id=0x40fe6c40

// id=0x40fe6b00

// id=0x40fe6b40

// id=0x40fe6b80

// id=0x40fe6bc0

// id=0x40fe6c00

// id=0x40fe6d40

0x40fe6a80
0x40fe6d00
0x40fe6ac0
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6c00
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b40
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6c00
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6bc0
0x40fe6cc0
0x40fe6d00

0x40fe6ac0
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6c00
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b40
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6c00
0x40fe6c40
0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6bc0
0x40fe6cc0
0x40fe6d00
0x40fe6d40

Figure 4.16: Basic Blocks created with more complex nested loops. (The execution order is
presented from top to bottom and from left to right.)

4.4.2.2 Using Basic Block Information to Retrieve Loops

Each loop contains a number of Basic Blocks. The only question is, how to find out
which Basic Block does belong to what loop and how to find the number of loops.
During parsing, the number of passes of each Basic Block is saved. Also the Basic
Blocks before and after a Basic Block are saved. For each Basic Block it is known which
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Blocks may be executed before this Basic Block and which Blocks can be executed after
this Basic Block. This information is used to detect loops. All Basic Blocks and their
information of the example from figure 4.16 is shown in table 4.2.

Basic Block Passes Previous BB Next BB

0x40fe6a80 1 NULL 0x40fe6d00

0x40fe6d00 3 0x40fe6a80
0x40fe6cc0

0x40fe6ac0
0x40fe6d40

0x40fe6ac0 2 0x40fe6d00 0x40fe6c80

0x40fe6c80 8 0x40fe6ac0
0x40fe6c40

0x40fe6b00

0x40fe6b00 8 0x40fe6c80 0x40fe6b80
0x40fe6b40

0x40fe6b80 6 0x40fe6b00 0x40fe6c00
0x40fe6bc0

0x40fe6c00 4 0x40fe6b80 0x40fe6c40

0x40fe6c40 6 0x40fe6c00
0x40fe6b40

0x40fe6c80

0x40fe6b40 2 0x40fe6b00 0x40fe6c40

0x40fe6bc0 2 0x40fe6b80 0x40fe6cc0

0x40fe6cc0 2 0x40fe6bc0 0x40fe6d00

0x40fe6d40 1 0x40fe6d00 NULL

Table 4.2: All Basic Blocks with their previous and next Basic Blocks and the number of
passes from the example of figure 4.16

A number of conclusions can be drawn from the example of figure 4.16 and table
4.2 and with the help of other code fragments where was looked at in the same way:

• The first Basic Block which has more than one pass is part of a loop.

• If a Basic Block is part of a loop, then all its next Basic Blocks are also part of
that loop if:

1. The number of passes of the next Basic Block is not more than the number
of passes of the original Basic Block.

2. The number of passes of the next Basic Block is more than the number of
passes of the level below the original Basic Block.

• If a Basic Block is part of a loop, then a next Basic Block is part of a nested loop
if its number of passes is greater than the number of passes of the original loop.

• If a Basic Block is part of a Loop, then all its previous Basic Blocks are part of
the same loop, if they are not already assigned to another loop.

Let’s take a closer look to these conclusions. The first Basic Block which has more
than one pass is a loop. This is trivial, since a Basic Block is executed only once if it

50



is not part of a loop. If a Basic Block has more passes than its current level, then the
Basic Block is a new loop and the number of passes of this Basic Block is the same as
the number of iterations of the new found loop. This always holds, because the order
in which the Basic Blocks occur in the list of Basic Blocks is the same as the order in
which the Blocks were parsed. And that is the same order in which the Blocks were
executed. The first executed Block of a loop is the conditional check (with for-loops
and while-loops) or the top of the main body of the loop (do-loop). In both cases there
exist no other Basic Blocks within the same loop with more iterations.

Important to notice from the example of figure 4.16 is that Basic Blocks within
a loop can sometimes have very few iterations compared to the loop they exist in.
Two examples of this are the continue and break statement in the inner loop. The
Basic Blocks where these statement belong to are executed only twice, but their loop
is executed eight times. Hence, if the next Basic Block of another Basic Block which is
part of a loop has a number of passes less than or equal to the number of passes of the
level above the current level, it cannot be determined yet to what level this next Basic
Block belongs to. But if the number of passes was greater than the number of passes
of the level above the current level, it is sure that this next Basic Block belongs to the
current level and loop.

If a Basic Block belongs to a loop, then all its previous Basic Blocks belong also to
that level, or they belong to the level above but are used to enter the current level. In
the last case, the previous Basic Block is already assigned to a level (or loop), because
it was this Basic Block which actually found the current Basic Block to be part of a
new (nested) loop. Therefore, all previous Basic Blocks which are not yet assigned to
another loop, are part of the current loop. This is very important, since it enables us
to assign Basic Blocks to a loop which have a fewer of equal number of passes as the
level above the current level.

The conclusions result in the following algorithm:

1. Walk over the Basic Blocks. If a Basic Block has more than one pass and is not
already assigned to a loop, create a new loop for it and go to step 2. If all Basic
Blocks have been seen, the loops are detected.

2. Walk recursively over the next Basic Blocks of the Basic Blocks already assigned
to a loop. If a next Basic Block has more passes than the current Basic Block,
create a new loop. If a next Basic Block has less or equal passes than the current
Basic Block and it has more passes than the level above it, append the Basic
Block to the current loop. If all already assigned Basic Blocks have been checked,
continue to step 3.

3. Walk over all Basic Blocks which are already assigned to a loop. All previous
Basic Blocks of these Blocks not already assigned to a loop belong to the current
loop. Go to step 4.

4. If a Basic Block was assigned to a loop in step 2 or 3, then go to step 2 again. If
no Blocks were appended to any loop, continue with step 1.
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In table 4.3 the loops of the example of figure 4.16 are detected. Step 2 and 3 of
the algorithm above are executed three times. The first two times, Basic Blocks are
assigned to loops. This is presented in step 1 and 2 for the first iteration and in step 3
and 4 for the second iteration.

Loop Loop
Passes

Previous
Level
Passes

Step 1:
next
Blocks

Step 2:
previous
Blocks

Step 3:
next
Blocks

Step 4:
previous
Blocks

Root 1 N/A 0x40fe6a80

Loop 1 3 1 0x40fe6d00
0x40fe6ac0

0x40fe6cc0 0x40fe6bc0

Loop 1 1 8 3 0x40fe6c80
0x40fe6b00
0x40fe6b80
0x40fe6c00
0x40fe6c40

0x40fe6b40

Table 4.3: Detecting loops from Basic Blocks information from the example of figure 4.16

After all loops have been found, the start line and end line of the source code is set
for the loops. This is done by finding the minimal and maximal source line number of
the Basic Blocks of the loop.

One last property of the loop find algorithm to notice is that the number of iterations
of a loop is set to the maximum number of passes within the loop. This is not entirely
correct. For-loops and while-loops do check for a condition before starting an iteration.
If such a loop is not quit using a break statement, the number of conditional checks is
always one more than the number of iterations. This causes the presented framework
to report one iteration to many in these cases.

The function findLoops() starts the algorithm to find all loops from the DFT.
The function findNewLoop() is called when a new loop has been found. The function
walkBBforward() is recursively called on all next Basic Blocks of Basic Blocks already
assigned to a loop. This is done in step 2 of the algorithm and when a new loop has
been detected. Function walkBBreverse() implements step 3 of the algorithm and
tries to add previous Basic Blocks to loops.

4.4.3 Combining Struct Elements

After the parsing process has finished, all accesses (i.e. MemoryAccess, ArrayAccess
and PointerAccess) have a saved name and a saved StructElement. A
StructElement can have its own StructElement. This is saved in some kind of linked
listed. If an access is not a struct, the StructElement setting is set to NULL.
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The function findStructElements() tries to combine different accesses with the
same root level StructElement(s). Each access contains three lists not mentioned
before, namely: element memory, element array and element pointer. These lists
are to be filled by the function findStructElements(). If a struct named a has two
elements a.b and a.c, the saved structure before and after combining these accesses is
as shown in figure 4.17.

a−>name = "a" ;
a−>struct_element = NULL ;

b−>name = "b" ;
b−>struct_element−>name = "a" ;
b−>struct_element−>next = NULL ;

c−>name = "c" ;
c−>struct_element−>name = "a" ;
c−>struct_element−>next = NULL ;

a−>name = "a" ;
a−>struct_element = NULL ;
a−>element_memory [ 0 ] = b ;
a−>element_memory [ 1 ] = c ;

b−>name = "b" ;
b−>struct_element = NULL ;

c−>name = "c" ;
c−>struct_element = NULL ;

Figure 4.17: Fragment of the DFT before (left) and after (right) combining struct elements

The first step is to try to find all accesses which do have a common root
StructElement. In the previous example this would mean that for accesses a.b and
a.c, access a is found and that both elements a.b and a.c are saved into the root access
a. This process is done by function findStructElementsFunction().

The second step is to recursively find nested struct elements. This is done by
function findStructTree(). An example of a nested struct element can be a.b.c and
a.b.d. In this example, the first step combines the common root a, while the second
step combines the common parent a.b.

The difference in handling between MemoryAccesses, ArrayAccesses and
PointerAccesses is minimal during these two steps. To reduce code replication, a
fourth access type has been defined: UniformAccess. UniformAccess contains all
common elements of the original accesses in the same order as the original accesses.
This makes it possible to use a pointer cast to access all types of accesses with the same
code.

4.4.4 Generating Reports

After the DFT has been completely formed and all post-processing has finished, reports
can be generated. All reports come directly from the data within the DFT. Adding a
new report is therefore very easy, as long as the data required by the report is available
in the DFT.
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4.4.4.1 Prompt

When the parser is ready for generating reports, a prompt is presented to the user. By
entering commands to this prompt, the parser is controlled. Besides generating reports,
some commands are available for selecting a function, loops or just to quit the parser.
These commands are described below.

help presents basic help about the available commands. The output of the help

command is shown below.

command> help

== HELP ==

show Shows report on screen.

save filename Saves report to given filename.

save-h filename Same as save, but hides the markup.

Data is seperated by ’\t’.

show-plot name Opens a graph showing the accesses of the

array named ’name’.

save-plot file-name.png name Saves a graph showing the accesses of the

array named ’name’ in file file-name.png.

select function Selects the function named ’function’ to use

select-loop numbers Selects the loop indicated by ’numbers’.

To select ’Loop_1_2’, enter command

’select-loop 1 2’.

To deselect a loop, enter ’select-loop 0’.

exit | bye | quit | q Closes this application.

To get more information about the options of the show,

save and save-h command, type : help show.

exit,bye, quit and q will terminate the parser.

sele
t is used to select a function. Except for one report, all reports show proper-
ties about a function. In order to generate these reports, a function has to be selected
first.

sele
t-loop selects a loop within a function. Some reports can output information
about one loop. An example of such a report is the operation report. When a loop
is selected, only the operations occurring in the selected loop are used to generate the
report. To deselect a loop, enter ’select-loop 0’.

4.4.4.2 Reports

All reports can either be shown on screen or be appended to a text file. To show the
report on screen, the command ’show’ is used. To append a report to a file, use the
’save’ command and provide the file name with it. The special command ’save-h’ also
appends the report output to a file, but does not use any markup. Data is separated
by the tab character (’\t’).
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Different reports can be generated by providing multiple report commands behind
the show, save or save-h command. The command show memory operation will show
all memory accesses and after that all operations.

In this section, all available reports are presented and explained. The examples are
all products of the function of figure 4.18. This function comes from the Lucas [38]
Optical Flow algorithm. More about optical flow algorithms can be found in Appendix
A. In this example, PIC Y is defined as 120 and PIC X as 80.

void compute_ders_3x3 (
int Ix [ PIC_Y∗PIC_X ] ,
int Iy [ PIC_Y∗PIC_X ] ,
int It [ PIC_Y∗PIC_X ] ,
int pic0 [ PIC_Y∗PIC_X ] ,
int pic1 [ PIC_Y∗PIC_X ] ,
int pic2 [ PIC_Y∗PIC_X ] )
{

int x , y , n ;
int p , pp , tmp , tmp2 ;
n = 7 ;

for (x = 7 ; x < PIC_X−n ; x++)
{

for (y = 7 ; y < PIC_Y−n ; y++)
{

It [ PIC_Y∗x+y ] = ( pic2 [ PIC_Y∗x+y ] − pic0 [ PIC_Y∗x+y ] ) ;
Ix [ PIC_Y∗x+y ] = ( pic1 [ PIC_Y ∗(x+1)+y ] − pic1 [ PIC_Y ∗(x−1)+y ] ) ;
Iy [ PIC_Y∗x+y ] = ( pic1 [ PIC_Y∗x+y+1] − pic1 [ PIC_Y∗x+y−1]) ;

}
}

}

Figure 4.18: Example algorithm (part of Lucas [38])

show fun
tions is the only report which does not need a function to be selected
first. The report contains all by the GCC PlugIn logged functions. The source file
and the source line where the function begins, is also reported. Passes indicates the
number of times the function was executed. If another value than 1 is reported, all
other reports contain only the data of the first execution.

command> show functions

Functions | Source file | Line | Passes

==========================================================================

compute_ders_3x3 | top2.cpp | 747 | 1

show memory shows all accesses to variables other then arrays or pointers within
the selected function (or loop). The name, type, number of read accesses from the
variable and the number of write accesses to the variable are reported. If a variable
is a cast, then this is indicated in front of the name of the variable. Also the number
of times the variable was cast is presented. In some occasions, a variable is casted
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from two or more different variables. If this happens, an asterisk is shown. The cast
variable is shown below each original variable. The presented data type is the name
of the struct or class used, or bool for boolean variables or sint x for integers, where s
is ’u’ in case of an unsigned integer and x is the number of bits used to represent the
value. The data type uint 8 is an unsigned integer data type using 8 bits. In C this
would probably be the unsigned char data type. The example below is the shortened
output of this report. This example shows a lot of temporary variables indicated with
the tmp{...} prefix. This is because of the many multi operation statements.

command_(compute_ders_3x3)> show memory

Memory access (excl. arrays) | DataType | Reads | Writes

---------------------------------------------------------------

x | int_32 | 63097 | 67

n | int_32 | 7129 | 1

tmp{106152} | int_32 | 67 | 67

tmp{106153} | bool | 0 | 67

y | int_32 | 77022 | 7062

tmp{106158} | int_32 | 7062 | 7062

tmp{106159} | bool | 0 | 7062

tmp{106161} | int_32 | 6996 | 6996

tmp{106162} | int_32 | 0 | 6996

|->CAST (6996x) tmp{106163} | uint_32 | 6996 | 0

(...)

* = This variable has more than one cast source. If nested casts exist,

these are also printed at each instance of this variable.

show array shows all array accesses of the selected function (or loop). This report
has the same appearance as the memory report.

command_(compute_ders_3x3)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

Iy | int_32 | 0 | 6996

Ix | int_32 | 0 | 6996

pic1 | int_32 | 27984 | 0

It | int_32 | 0 | 6996

pic0 | int_32 | 6996 | 0

pic2 | int_32 | 6996 | 0

show pointer shows all pointer accesses of the selected function (or loop). This
report has two columns more compared to the memory and array reports. These are the
Set Addr and Get Addr columns, representing the number of times the address where
the pointer points to was set or read, respectively. Because the example code does not
contain any pointers, the report below is from another function. (In fact, there are
many pointer accesses in this function. This is because the arrays are provided to the
function using arguments. The parser has successfully translated all pointer accesses
to array accesses. How this works is further explained in Section 4.4.1.3.)
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command_(main)> show pointer

Pointer access | DataType | Reads | Writes | Set Addr | Get Addr

-------------------------------------------------------------------------------------

d | * int_8 | 0 | 1 | 1 | 0

show memory-a

ess x shows all accesses to the memory named x within the
selected function (or loop). The report presents the value which was read or written,
whether the access was a read (indicated with R) or a write (indicated with W ). Also
the source file and line number of the access are reported. The example below is
truncated.

command_(compute_ders_3x3)> show memory-access n

==> Memory n

Value | R/W | Source File | Line No

------------------------------------------------------

7 | W | top2.cpp | 768

7 | R | top2.cpp | 780

7 | R | top2.cpp | 782

7 | R | top2.cpp | 782

(...)

show array-a

ess x shows all accesses to the array named x within the selected
function (or loop). The report also shows the indices of the array. If a multi-dimensional
array is reported, all indices (including their values) are shown. The example below is
again truncated.

command_(compute_ders_3x3)> show array-access Ix

==> Array Ix

Index Variable | Index Value | R/W | Source File | Line No

-------------------------------------------------------------------------------------

[tmp{106182}] | [3388] | W | top2.cpp | 794

[tmp{106182}] | [3392] | W | top2.cpp | 794

[tmp{106182}] | [3396] | W | top2.cpp | 794

[tmp{106182}] | [3400] | W | top2.cpp | 794

(...)

show pointer-a

ess x shows all accesses to the pointer named x within the
selected function (or loop). The access type is indicated with R (read), W (write),
S (set address) or G (get address). The address and value are shown if known. The
example below is of the same function as where the pointer report was generated from.

command_(main)> show pointer-access d

==> Pointer d

Value | Address | R/W/S/G | Source File | Line No

-----------------------------------------------------------------------

0 | 0xbf8d6b9d | S | main.cpp | 374

9 | 0xbf8d6b9d | W | main.cpp | 375

show memory-min-max x shows the minimal and maximal value of the variable
named x within the selected function (or loop). Only boolean and integer type values
are supported.
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command_(compute_ders_3x3)> show memory-min-max x

==> Memory x

MAX value = 73

MIN value = 7

show operation shows all types of operations used within the selected function
(or loop). The number of times the operation was used is given as well. In the example
below, the number of multiplications is twice as many as one would probably expect.
This is because the address of the pointer needed to access the array elements is cal-
culated. This calculation uses a multiplication to get the offset from the first element.
This is further explained in section 4.4.1.3.

command_(compute_ders_3x3)> show operation

Operations | Count

---------------------------------------------------------------

greater-than | 7129

minus | 28117

plus | 98010

mult | 125928

show operator-a

ess x shows all instances in which the operation named x is
used within the selected function (or loop). The operands and the result variable are
reported, along the source file and line. The example below shows the greater-than
operator. This operator is used in the conditional check of both for-loops. In this
specific case, the results are saved in temporary variables of type bool. These variables
are used in the conditional statements of the for-loop. The example below is truncated.

==> Operation greater-than

Operand 1 | Operand 2 | Result | Source File | Line No

--------------------------------------------------------------------------

tmp{106152} | x | tmp{106153} | top2.cpp | 780

tmp{106158} | y | tmp{106159} | top2.cpp | 782

tmp{106158} | y | tmp{106159} | top2.cpp | 782

tmp{106158} | y | tmp{106159} | top2.cpp | 782

tmp{106158} | y | tmp{106159} | top2.cpp | 782

(...)

show 
ondition shows all conditional statements used within the selected function
(or loop). The report looks the same as the operation report.

command_(compute_ders_3x3)> show condition

Conditional Branches | Count

---------------------------------------------------------------

not_equal | 2

show loop shows all loops within the selected function. Each loop has a unique
sequence of numbers. All loops existing in the top most level are numbered as loop x,
where x is a unique sequential number. If a loop contains a nested loop, the name of the
nested loop is the name of its parent loop with as suffix x, where x is again a unique
sequential number. Loop loop 1 1 is the first nested loop of the first loop. Besides
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the loop name, the source file and the line numbers at which the loop starts and ends
are given. These line numbers are found by looking at the Basic Block line numbers,
which are found by looking at the statement line numbers. Therefore, the presented
line numbers are the line numbers of the first and last statement of a loop, and not the
line numbers where the developer placed the curly brackets for example. The number
of nested loops and passes is also provided. As explained in section 4.4.2, the number
of passes (or iterations) can be of by one, because of the additional conditional check of
most loop types. The number of passes of nested loops is the total amount of passes. If
no break statements were used in these loops, the actual number of iterations can be
found by dividing the presented amount of passes by the number of passes of its parent
loop. In the example below, the number of iterations of the nested loop per iteration
of its parent loop is 7062

67−1
− 1 = 106.

command_(compute_ders_3x3)> show loop

Loops | Src File | Start Ln | End Ln | Nested | Passes

----------------------------------------------------------------------------------

loop_1 | top2.cpp | 780 | 800 | 1 | 67

loop_1_1 | top2.cpp | 782 | 800 | 0 | 7062

show 
all shows all function calls within the selected function. The report contains
the function name of the call, the number of parameters, whether the function returned
a value and the number of calls to these functions. Operations performed on classes
are function calls to their definitions (e.g. MyClass::operator+ is the function which
defines the + operation of class MyClass). The example below is from a different part of
the Lucas algorithm (the eigensolve() function), because the example of figure 4.18
does not contain any function calls.

command_(eigensolve)> show call

Function Calls | # Params | RetVal | Calls

-----------------------------------------------------------------------

::ops_with_other_types::operator== | 2 | YES | 1

::ac_fixed::__comp_ctor | 2 | NO | 33

::ops_with_other_types::operator/ | 2 | YES | 2

::ac_fixed::operator- | 2 | YES | 8

::ac_fixed::operator+ | 2 | YES | 10

::sqrt | 2 | NO | 3

::ac_fixed::operator* | 2 | YES | 21

::ops_with_other_types::operator* | 2 | YES | 1

::ac_fixed::operator> | 2 | YES | 2

::div | 3 | NO | 2

show dependen
y shows all dependent accesses within the selected loop. In column
MAP a single character shows the type of dependency. The values can be M (memory),
A (array) or P (pointer). The Depend. column shows the number of times a read access
occurred after a write access within the selected loop. If the variable was written and
then read, the dependency also increases. The Writes column shows the number of
times a variable was written. If the variable is of type array, the presented values
are valid for the most dependent element of the array. If the variable is pointer type,
getting and setting the address can also influence the dependency. Dependencies are
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interesting when considered is to pipeline a loop. Indices and iterators are typically
shown in dependency lists. These are most likely not problematic when using pipelining.
If actual variables or memory places (array elements) are dependent, pipelining can
become a problem. Sometimes a dependency shows optimization opportunities. If an
array element is written multiple times, sometimes the value written can be temporarily
saved in a register. Only the last write is actually needed then. The example below
shows a fraction of the dependency report of the example of figure 4.18.

command_(compute_ders_3x3->Loop_1_1)> show dependency

MAP | Variable Name | Depend. | Writes

------------------------------------------------------------

M | y | 6997 | 6996

M | tmp{106158} | 7062 | 7062

M | tmp{106159} | 0 | 7062

M | tmp{106161} | 6996 | 6996

(...)

4.4.4.3 Plots

One of the most powerful features of the presented framework is generating plots.
At the current version, plots of the index order of arrays can be generated. A nice
addition for the future can be generating plots of the values of memories or arrays.
Plots are generated using gnuplot [39]. The command show-plot x and save-plot

filename.png x are used to show or save a plot, respectively. Here x denotes the
array to plot. If the plot is to be saved, the PNG file format is used. In the example plot
of figure 4.19, array Ix of the example from figure 4.18 is shown. The y-axis represents
the index of the array access. The x -axis represents the access number. Reading the
plot from left to right gives an overview of the order in which the indices were called.
In the shown example, it can clearly be seen that the first access to the array started
around index 4000. Later accesses use higher indices, since the graph is increasing.
By zooming in using the user interface of gnuplot, individual accesses can be seen.
Different examples of this are presented in Chapter 5. If the index used in an access
was 0, a value of -1 is used in the plot. This is done because a value of 0 cannot be seen
in a graph like this. Each access is represented by a vertical bar. An access to index
5 will result in a bar with a height of 5. If index 0 was accessed, the height of the bar
would be 0 (and therefore not visible). By setting the height to -1 in this case, the bar
becomes visible abain.

4.4.5 Parser / Analyser Arguments

As with most applications, the Parser / Analyzer can handle arguments. This section
describes these arguments.

--help prints the common help page on the screen. A short description of the
available arguments is given.
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Figure 4.19: Plot of the access pattern of array Ix

--
ommand commands is used to run commands right after the parsing process
is completed. The prompt is given after the commands provided here are finished.
Multiple commands can be separated using a semicolon. This argument can be very
helpful when using the parser in an automated environment.

--
ommand-file filename is used for executing commands from a file. Multiple
commands can be separated using a semicolon or a new line (’\n’). The prompt is
given after all commands are executed.

-h can be used to hide the title which is normally shown when the Parser / Analyzer
is loading.

-s skips the prompt. This option can be used in combination with the --command

or --command-file arguments to automatically close the Parser / Analyzer if all
commands are executed.

-t shows the detected tokens. This option is useful when debugging the grammar
code.

-d saves duplicate functions. If a function is executed multiple times, only infor-
mation about the first execution is saved. When this option is used, all passes of
the function are saved. At this moment, no reports are making use of the additional
information being saved.
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4.5 Conclusion

The presented framework consists of two parts. The first part is the GCC PlugIn
which inserts function calls to analyze functions into the AST of GCC. By compiling
an algorithm with GCC and the presented GCC PlugIn, the resulting executable file will
generate a log file (or log files, depending on the resulting log file size) when executed.
This log file is parsed by the second part of the presented framework: the Parser /
Analyzer. This part of the framework generates a Data Flow Tree from the log files
and allows the user to generate reports from this DFT interactively.

Chapter 5 uses the Lucas & Kanade [38] Optical Flow algorithm as a case study to
present the effectiveness and capabilities of the presented framework.
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Results: Optimizing the Lucas

Algorithm 5
The Presented framework is put to the test on a real algorithm, namely the Lucas &
Kanade [38] Optical Flow algorithm. This chapter describes the very basics of this
algorithm and how it was analyzed using the framework. The performed optimizations
are discussed and their results are presented. At the end of this chapter, it will be clear
that a dramatic speedup has been achieved compared to a previous implementation.

5.1 The Lucas & Kanade Algorithm

This section describes the basic working of the Lucas & Kanade algorithm and how it
has been implemented before in hardware, and how it can be analyzed by the framework.

5.1.1 Basic Working

The basic working of the Lucas & Kanade algorithm from a designer’s point of view
is presented here. More information about Optical Flow algorithms in general can be
found in Appendix A. More information about the mathematical working of the Lucas
& Kanade algorithm can be found in Section A.2.1.2 and in the official papers of Lucas
[38] and Lucas & Kanade [5].

The Lucas & Kanade implementation used in this chapter is the one presented by
Ren [40], who adopted the implementation of Hurkmans [41].

As shown in figure 5.1, the algorithm contains three basic steps. The first step is
to blur the input images. The second step is to calculate the spatial and temporal
derivatives from the blurred input images. The third step is to calculate the velocities
from the spatial and temporal derivatives.

Figure 5.1: Basic system overview Lucas algorithm
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5.1.1.1 Step 1: Blur the Input

In the used implementation, three input images are needed at a time to calculate the
optical flow. All these input images need to be blurred. Different blurring algorithms
have been used over time. Examples are a Gaussian filter or the StackBlur [42] filter.
In the used implementation, the StackBlur algorithm is used because of the lower
computational intensity. StackBlur blurs the image in horizontal and vertical direction
separately. Each pixel is given the weighted average of the n pixels around it. The
closer a pixel lays to the pixel being blurred, the higher the weight of that pixel. The
value of n has to be an odd number, so the pixel being blurred has as many pixels at
one side of itself as it has on the other side. Higher values for n will result in a more
blurred image. Lower values for n will result in a less blurred image. The beauty of the
StackBlur algorithm is where it got its name from: it uses a stack. The stack is used to
minimize the amount of calculations by keeping tracks of the values of the pixels used
to blur. More on this is explained in the thesis reports of Hurkmans [41] and Ren [40].

5.1.1.2 Step 2: Compute Derivatives

There are a number of ways to calculate the derivatives. Hurkmans [41] did test a couple
of options and found his three-point central differencing filter implementation to be the
best tradeoff between accuracy and computational effort. This filter does a subtraction
of the two adjacent pixel values in x, y or t direction to find the derivatives. To find
all three derivatives (Ix, Iy and It), the values of six pixels are loaded and subtracted.

5.1.1.3 Step 3: Compute Velocities

The velocities are calculated by the Least-squares method. Again, Hurkmans [41] found
a tradeoff. This time it is to use a 3x3 neighborhood size for the LS computation. Nine
values of Ix, Iy and It are loaded and different calculations are performed on them.

5.1.1.4 Connecting all Computing Blocks

The input of the algorithm exists of three memories containing the three input images.
In the original source code these memories are called f1i, f2i and f3i for the first,
second and third image of a sequence, respectively. The input images are connected to
the input of the StackBlur computing block.

The connection between the StackBlur and the Derivatives computing block is done
using the three memories f1o, f2o and f3o for the blurred versions of the first, second
and third input image, respectively.

The connection from the Derivative and the Velocity computation block is done
by the three memories Ix, Iy and It for the spatial derivative in the x direction, the
spatial derivative in the y direction and the temporal derivative (i.e. in t direction),
respectively.
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The output of the Velocity computation block is also the output of the algorithm.
The output memories are full vels x, full vels y, norm vels1 x and norm vels1 y

for the full velocities in x and y direction and the normal velocities in x and y direction,
respectively. More information about and the definitions of full and normal velocities
can be found in Section A.2.1.

5.1.2 Previous Hardware Implementations

Within the Circuits and Systems group where this thesis work has been performed, the
Lucas algorithm has been implemented in hardware at least two times before. The first
time, Hurkmans [41] manually transformed the algorithm into a VHDL description and
was able to successfully run simulations. More recently, Ren [40] made adjustments to
the existing C code, to make it compatible with the Catapult C HLS tool. The C code
of Ren was used in this chapter to find optimization opportunities.

5.1.3 Prepare for Analysis

A couple of small changes were done on the given source code before the presented
framework was put to the test. The first change was adding a header file to the code.
The original source code contained two source files, namely a file containing the Lucas
algorithm and a file containing the test bench. By adding a header file for the original
Lucas source file, a single file is used to refer to from both source files. This comes in
handy when the include to the analyze library is done as discussed in Section 4.3. The
code fragment where the include is done, is shown in figure 5.2.

The second change was to place the definition of the image size at a central location.
In the original code, each function had its own size definition. Although the sizes
throughout the whole algorithm were defined the same, it was not possible to adjust the
size efficiently. The original image size is 316 x 252. When analyzing the algorithm,
this size can proof to be very big. Chosen was to lower the image size if the algorithm
is analyzed and use the original size in any other situation. The lower resolution used
when analyzing the algorithm will improve the analyze speed. The lower size is defined
to be 120 x 80. The code fragment of figure 5.2 shows how this is done. If ANALYZE is
defined, the analyze library is loaded and the image size is reduced.

#ifdef ANALYZE
#include <analyze . h>
#define PIC X 80 //smaller image to test with

#define PIC Y 120
#else

#define PIC X 252
#define PIC Y 316
#endif

Figure 5.2: Include analyze.h and defining the image size (code fragment from: top2.h)
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5.2 Optimizing Hardware Implementation

In the following sections, the original algorithm as provided by Ren [40] is optimized.
Different reports can be generated to find optimization opportunities. Only reports
and plots leading to an optimization are showed below.

First, all three parts of the algorithm are optimized. After this, the pipelines are
adjusted to better match the optimized algorithm. During the optimization process,
the same goal as Ren had was used for fair comparison. This goal is speed, regardless
of resource usage. Although in some situation it occurred that the increase in resources
was considered completely off balance and therefore not implemented. In cases where
the design decision was made in favor of resource usage over speed, this is explicitly
mentioned.

5.2.1 Optimizing Step 1: StackBlur

The StackBlur computational block reads three images, performs some calculations on
them and writes the results to three memories. A good start can be opening the array
accesses report. The output is shown below.

command_(stackblur)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

datain3 | uint_8 | 19200 | 9600

datain2 | uint_8 | 19200 | 9600

datain1 | uint_8 | 19200 | 9600

stackx3 | int_32 | 28800 | 10440

stackx2 | int_32 | 28800 | 10440

stackx | int_32 | 28800 | 10440

stacky3 | int_32 | 28800 | 10160

stacky2 | int_32 | 28800 | 10160

stacky | int_32 | 28800 | 10160

dataout3 | int_32 | 0 | 9600

dataout2 | int_32 | 0 | 9600

dataout1 | int_32 | 0 | 9600

The datainx arrays are the image input memories and the dataoutx arrays are the
blurred image output memories. All stack arrays are small arrays and are implemented
in registers by Catapult C.

A few things stand out. Since the image size was defined to be 120 x 80, the number
of accesses to the input and output memories are expected to be 9600. But, the input
memories are read twice as often and are also written. Another thing to notice is that
the data type of the output memory is wider than one would expect. The StackBlur
algorithm calculates a new weighted average for each pixel. The new value of a pixel
lays therefore always somewhere between the maximal and minimal value of the pixels
where the average was taken about. If all input pixels could be represented in a data
type of 8 bits, the output pixels should be representable in the same 8 bit data type.
Therefore, the output data type was changed to an 8 bit representation, minimizing

66



memory usage. At this moment, no reports exist viewing the minimal or maximal value
of an array, but there is a report showing the minimal and maximal value of a variable.
Since the values to write to the output array are first saved in a variable, the min-max
report of this variable was generated and shown below. As can be seen, the values stay
well between the bounds of the 8 bit unsigned data type (0 - 255).

command_(stackblur)> show memory-min-max value

==> Memory value

MAX value = 154

MIN value = 52

Let’s take a look at the many accesses to the input memories. The StackBlur
algorithm has two major loops. In one loop the rows are blurred, while in the other
loop the columns are blurred. The dependency report of the first loop is given below.

command_(stackblur->Loop_1)> show dependency

MAP | Variable Name | Depend. | Writes

------------------------------------------------------------

(...)

A | datain3 | 1 | 1

A | datain2 | 1 | 1

A | datain1 | 1 | 1

A | stackx3 | 1440 | 1560

A | stackx2 | 1440 | 1560

A | stackx | 1440 | 1560

All normal variables have been removed from this report to save space. These
variables are mostly temporal variables and the loop iterators. The shown stack arrays
are used as variables as well. More interestingly are the input memories. There is a
dependency in the first loop in the input memories. The report shown below presents
the array dependencies of the second loop.

command_(stackblur->Loop_2)> show dependency

MAP | Variable Name | Depend. | Writes

------------------------------------------------------------

(...)

A | stacky3 | 1440 | 1520

A | stacky2 | 1440 | 1520

A | stacky | 1440 | 1520

Here, the input memories do not occur in the dependency list. Hence, the unex-
pected write accesses occur in the first loop. Figure 5.3 shows the access pattern plot of
datain1. It can clearly be seen that the first 67% of the accesses are reads and writes
and the last 33% contains reads only. The second part comes from the second loop,
while the first part comes from the first loop. Two magnifications are shown in the
figure. Clear is that all elements are first read and a few accesses later been written.

After locating the accesses of the datain1 array in the source code, it becomes clear
that this memory is used as input memory and as buffer between the two stages of the
StackBlur algorithm (i.e. the two loops). Using the input memories to write to is not
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Figure 5.3: Array access pattern of datain1 before optimizations are done
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the best looking solution here. Besides that, next iterations are again reading three
images. Two of these images are read before by the iteration before. By reading a partly
blurred image as if it is the original image will of course cause over blurred images. A
good optimization might be reusing the two already blurred images, although this is
not implemented for now. More on this is explained in Section 5.4.1.

Using another memory to buffer the images between the two stages is desirable.
A few options exists. The first option is using the StackBlur output memories. This
option has the disadvantage of causing a new dependency in the second loop, because
the output memories are first read and then written from within the same loop. Another
option is to introduce three new memories to buffer the data. This will increase the total
memory usage dramatically and is not considered to be desirable. The third option is to
use the memories that exist between the Derivative and Velocity computational blocks
(Ix, Iy and It). These memories are not used yet and can safely be used here. The
disadvantage here is that if the design must be pipelined over the three main stages,
the memories are used by two blocks at the same time, which will cause failure. Since
pipelining the whole design is not done for now, this third option was chosen.

After this optimization was implemented, the source code was manually analyzed
further. A couple more optimizations where found during this quick overview. The
first is the assignment of the addr variable. This variable is used to point to the pixel
of interest in both input and output memories. The value of addr is in almost all cases
trivial: one more than the previous iteration. Although the address could be calculated
with a simple addition, it was calculated with a multiplication and an addition. This
was changed in the code. An example of this can be found in figure 5.4. A second
optimization was performed in one of the nested loops. The loop is shown in figure 5.4.

The value of rxy is defined as 3. If the resulting values of sumx and sum inx

are taken into account, it can be seen that this loop can be reformed, eliminating all
multipliers while the final result is not affected.

Another optimization done to the StackBlur computational block is shown in figure
5.5. Here the values of sumx and sum outx are calculated by a lot of operations. This
can easily be simplified as shown.
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for (i = 1 ; i <= rxy ; i++)
{

if (i <= wm )
src_pix_index_x =

src_pix_index_x + 1 ;

addr = PIC_Y ∗ ( src_pix_index_x ) +
src_pix_index_y ;

pix = datain1 [ addr ] ;
pix2 = datain2 [ addr ] ;
pix3 = datain3 [ addr ] ;

stackx [ i + rxy ] = pix ;
stackx2 [ i + rxy ] = pix2 ;
stackx3 [ i + rxy ] = pix3 ;
sum = sum + pix ∗ ( rxy + 1 − i ) ;
sum2 = sum2 + pix2 ∗ ( rxy + 1 − i ) ;
sum3 = sum3 + pix3 ∗ ( rxy + 1 − i ) ;
sum_in = sum_in + pix ;
sum_in2 = sum_in2 + pix2 ;
sum_in3 = sum_in3 + pix3 ;

}

for (i = 1 ; i <= rxy ; i++)
{

int irxy = i + rxy ;

addr = addr + PIC_Y ;

pix1 = datain1 [ addr ] ;
pix2 = datain2 [ addr ] ;
pix3 = datain3 [ addr ] ;

stackx1 [ irxy ] = pix1 ;
stackx2 [ irxy ] = pix2 ;
stackx3 [ irxy ] = pix3 ;
sum_in1 = sum_in1 + pix1 ;
sum_in2 = sum_in2 + pix2 ;
sum_in3 = sum_in3 + pix3 ;
sum1 = sum1 + sum_in1 ;
sum2 = sum2 + sum_in2 ;
sum3 = sum3 + sum_in3 ;

}

Figure 5.4: Inner loop of StackBlur before optimization (left) and after optimization (right)

pix = datain1 [ addr ] ;
pix2 = datain2 [ addr ] ;
pix3 = datain3 [ addr ] ;

for (i = 0 ; i <= rxy ; i++)
{

stackx [ i ] = pix ;
stackx2 [ i ] = pix2 ;
stackx3 [ i ] = pix3 ;
sum = sum + pix ∗ (i + 1) ;
sum2 = sum2 + pix2 ∗ (i + 1) ;
sum3 = sum3 + pix3 ∗ (i + 1) ;
sum_out = sum_out + pix ;
sum_out2 = sum_out2 + pix2 ;
sum_out3 = sum_out3 + pix3 ;

}

pix1 = datain1 [ addr ] ;
pix2 = datain2 [ addr ] ;
pix3 = datain3 [ addr ] ;

sum_out1 = ( unsigned ) pix1 << 2 ;
sum_out2 = ( unsigned ) pix2 << 2 ;
sum_out3 = ( unsigned ) pix3 << 2 ;
sum1 = sum1 + pix1 ∗ 10 ;
sum2 = sum2 + pix2 ∗ 10 ;
sum3 = sum3 + pix3 ∗ 10 ;

for (i = 0 ; i <= rxy ; i++)
{

stackx1 [ i ] = pix1 ;
stackx2 [ i ] = pix2 ;
stackx3 [ i ] = pix3 ;

}

Figure 5.5: Inner loop of StackBlur before optimization (left) and after optimization (right)

One last optimization done on the StackBlur computational block is a strange look-
ing operation which is located in the inner loop of this block. This is shown in figure
5.6. First, a value is multiplied by 512 and then shifted 13 positions to the right. Mul-
tiplying by 512 is the same as shifting 9 positions to the left. And shifting 9 positions
to the left and then shifting 13 positions to the right is the same as shifting 4 positions
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to the right. A very simple, though effective optimization.

The operation report of the original StackBlur implementation is shown below.

command_(stackblur)> show operation

Operations | Count

---------------------------------------------------------------

less-than-or-equal | 21402

plus | 303800

mult | 129000

minus | 204960

convert | 28800

rshift | 57600

mul_sum_x = mul_sum_y = 512 ;
shr_sum_x = shr_sum_y = 13 ;
value = ( sum ∗ mul_sum_x ) >> shr_sum_x ;
value2 = ( sum2 ∗ mul_sum_x ) >> shr_sum_x ;
value3 = ( sum3 ∗ mul_sum_x ) >> shr_sum_x ;

value1 = sum1 >> 4 ;
value2 = sum2 >> 4 ;
value3 = sum3 >> 4 ;

Figure 5.6: Source code fragment of strange operations before optimization (left) and after
optimization (right)

5.2.1.1 New Report Results

After the optimizations are implemented, the results shown by the used reports are
changed. This section shows the same reports and (basic) plots as before, but now the
optimized algorithm is used as input.

First the new array access report is shown. It can be seen that the accesses to
both input and output memories are as expected 9600. The memory accesses to the
buffer memories (Ix, Iy and It) are 9600 writes and 9600 reads. The plot (without
the magnifications) of array datain1 is shown in figure 5.7.

command_(stackblur)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

stackx3 | int_32 | 28800 | 10440

stackx2 | int_32 | 28800 | 10440

stackx1 | int_32 | 28800 | 10440

datain3 | uint_8 | 9600 | 0

datain2 | uint_8 | 9600 | 0

datain1 | uint_8 | 9600 | 0

It | int_32 | 9600 | 9600

Iy | int_32 | 9600 | 9600

Ix | int_32 | 9600 | 9600

stacky3 | int_32 | 28800 | 10160

stacky2 | int_32 | 28800 | 10160

stacky1 | int_32 | 28800 | 10160
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dataout3 | uint_8 | 0 | 9600

dataout2 | uint_8 | 0 | 9600

dataout1 | uint_8 | 0 | 9600

Figure 5.7: Array access pattern of datain1 after optimizations are done

The new operation report shows a great decrease of multiplications. A new operation
is added to the list. This is the lshift operation used in figure 5.5.

command_(stackblur)> show operation

Operations | Count

---------------------------------------------------------------

less-than-or-equal | 21402

plus | 293360

mult | 58320

lshift | 600

minus | 203160

convert | 86400

rshift | 57600

5.2.2 Optimizing Step 2: Compute Derivatives

The Derivative computational block again reads three input memories, does some cal-
culations, and writes the result to three output memories. The input memories contain
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the blurred images produced by the StackBlur computational block. These memories
are called pic0, pic1 and pic2. The output memories are the three derivatives and
are called Ix, Iy and It. The first step would be to generate the array access report.

command_(compute_ders_3x3)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

Iy | int_32 | 0 | 6996

Ix | int_32 | 0 | 6996

pic1 | int_32 | 27984 | 0

It | int_32 | 0 | 6996

pic0 | int_32 | 6996 | 0

pic2 | int_32 | 6996 | 0

The array report shows that all outputs and two of the inputs are accessed 6996
times, which is the number of pixels of the images minus an offset. Only the second
input memory (pic1) is accessed more often. Figure 5.8 shows the access profile of
this array. Some magnifications are shown to give a better idea of how the array was
accessed.

The sudden changes in index are caused by the change of one image line to the
next. At the beginning and the end of an image line, an offset exists, which causes the
sudden change in index. Concluded from the two magnifications in the bottom right
corner of the figure can be that there are four sequential accesses repeating themselves.
The repetitions are the iterations of a loop. One access can be found in the lower half
of the figure, two in the middle and one in the upper half of the figure. Each index is
accessed four times, of which two accesses exists only two iterations from each other.
A trivial optimization is buffering some values of the pic1 image to reduce the number
of memory accesses to this memory. Ultimately, the number of accesses to the same
index can be reduced to one, but that would require to buffer two complete image lines.
These image lines need to be saved in two additional memories. Chosen was to add only
three additional registers and combine the two accesses in the middle. This solution
involves minimal resource increase, while reducing the original number of accesses to
pic1 by 25%. The source code before and after this optimization are shown in figure
5.9.

Another optimization that was done in the code fragment shown in figure 5.9 was
the reduction of multiplications and additions. By caching the basic multiplication
(i.e. PIC Y * x), the total number of operations decreases. The operation report of
the original implementation is shown below.

command_(compute_ders_3x3->Loop_1)> show operation

Operations | Count

---------------------------------------------------------------

greater-than | 7129

minus | 28117

plus | 98010

mult | 125928
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Figure 5.8: Array access pattern of pic1 before optimizations are done
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for (x = 7 ; x < PIC_X−n ; x++)
{

for (y = 7 ; y < PIC_Y−n ; y++)
{

It [ PIC_Y ∗ x + y ] = ( pic2 [ PIC_Y ∗ x + y ] − pic0 [ PIC_Y ∗ x + y ] ) ;
Ix [ PIC_Y ∗ x + y ] = ( pic1 [ PIC_Y ∗(x+1) + y ] − pic1 [ PIC_Y ∗(x−1) + y ] ) ;
Iy [ PIC_Y ∗ x + y ] = ( pic1 [ PIC_Y ∗ x + y+1] − pic1 [ PIC_Y ∗ x + y−1]) ;

}
}

pic_y_x = PIC_Y ∗ (n−1) ;
for (x = n ; x < pic_x_n ; x++)
{

pic_y_x += PIC_Y ;
pic1_1 = pic1 [ pic_y_x + n ] ;
pic1_2 = pic1 [ pic_y_x + n − 1 ] ;

for (y = n ; y < pic_y_n ; y++)
{

pic_y_x_y = pic_y_x + y ;
It [ pic_y_x_y ] = ( pic2 [ pic_y_x_y ] − pic0 [ pic_y_x_y ] ) ;
Ix [ pic_y_x_y ] = ( pic1 [ pic_y_x_y + PIC_Y ] − pic1 [ pic_y_x_y − PIC_Y ] ) ;
pic1_3 = pic1_2 ;
pic1_2 = pic1_1 ;
pic1_1 = pic1 [ pic_y_x_y + 1 ] ;
Iy [ pic_y_x_y ] = ( pic1_1 − pic1_3 ) ;

}
}

Figure 5.9: Source code of the derivative block before optimization (top) and after optimiza-
tion (bottom)

5.2.2.1 New Report Results

After the optimizations are done, the new reports show the improvements. The array
access report below shows a clear reduction of accesses to array pic1. As expected,
the array access pattern of array pic1 shown in figure 5.10, shows three accesses per
iteration, instead of the four it used to be.

command_(compute_ders_3x3)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

pic1 | uint_8 | 21120 | 0

Iy | int_32 | 0 | 6996

Ix | int_32 | 0 | 6996

It | int_32 | 0 | 6996

pic0 | uint_8 | 6996 | 0

pic2 | uint_8 | 6996 | 0

Also the number of operations has decreased considerably. The reported number of
multiplications has been reduced by 83%. The multiplications reported are (except for
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Figure 5.10: Array access pattern of pic1 after optimizations are done
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one) all the result of the calculations done by GCC to find the addresses of the array
elements.

command_(compute_ders_3x3)> show operation

Operations | Count

---------------------------------------------------------------

mult | 20989

plus | 35311

minus | 20990

less-than | 7129

5.2.3 Optimizing Step 3: Compute Velocities

The largest (and most complicated) computational block is the Velocity block. This
block uses the Ix, Iy and It memories written by the Derivatives block as inputs.
The resulting outputs are the full and normal velocities. These velocities also form the
output of the entire system.

Again, the first steps are to generate the array access report and the operation
report. Both are shown below.

command_(compute_vels)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

norm_vels1_x | ac_fixed | 0 | 13357

norm_vels1_y | ac_fixed | 9600 | 13357

full_vels_x | ac_fixed | 0 | 10618

full_vels_y | ac_fixed | 9600 | 10618

MI | ac_fixed | 4784 | 4784

It | int_32 | 43056 | 0

Iy | int_32 | 43056 | 0

Ix | int_32 | 43056 | 0

B2 | ac_fixed | 0 | 9568

M2 | ac_fixed | 4784 | 23920

B | ac_fixed | 0 | 19136

M | ac_fixed | 4784 | 38272

v | ac_fixed | 0 | 7514

command_(compute_vels)> show operation

Operations | Count

---------------------------------------------------------------

not-equal | 32

minus | 4913

pointer-plus | 24

less-than-or-equal | 9601

plus | 172290

mult | 669916

greater-than | 4889
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The M, MI, M2, B, B2 and v arrays are small arrays mapped to registers by Catapult
C. These arrays are all instances of the C++ class ac fixed. Because of the partial
support for C++ classes, not all read accesses are shown in the reports.

The total number of output values per output array is 9600 (i.e. 120 x 80 pixels). As
can be seen in the array report, all output arrays are written more times than there are
elements. This might be an optimization opportunity. Also two of the outputs are read
9600 times. This is not desirable. The input memories (Ix, Iy and It) are read almost
4.5 times more often than the number of elements they have. Another remarkable result
from the operation reports is the enormous amount of multiplications done. This is
also worth checking out.

As always, let’s start with the memory accesses. The first array to generate the
access pattern plots for is the Ix array. The plot is shown in figure 5.11.

Plots for the other inputs look similar. As can be seen, three sequential accesses are
done in the lower index numbers. After that, three sequential accesses are done with
some higher indices. Finally, three sequential accesses are done at higher indices again.
This process of nine accesses repeats itself and forms the iterations of the inner loop
of the Velocity computational block. The three jumps in index numbers are jumps to
the next line within the image. When considering the offset of 14 used to access the
input memories, a total of (120− (2 ∗ 14)) ∗ (80− (2 ∗ 14)) = 4784 elements need to be
read from all input memories. From figure 5.11 follows that nine accesses are done each
iteration. And 9 ∗ 4784 = 43056, which is the reported amount of memory accesses.
The conclusion is that each iteration accesses nine elements from each input memory,
of which eight are read before and only one element has never been read before. When
considering the working of the Velocity computational block, this makes perfect sense,
since this block uses a 3x3 window of input derivative values. When walking from the
top left corner of the image to the bottom right, only the bottom right value of the
window is completely new. As done with the Derivative computational block, some
registers can be used to buffer the last three accesses. By doing this three times (for
each level of indices once), the number of accesses per iteration can be reduced from 9
to 3. But when looking at the source code, an interesting observation can be done. A
fragment of the source code is shown in figure 5.12.

This code fragment clears up some question marks about the enormous amount of
multiplications discussed earlier. Keep in mind that this code fragment exists in the
inner loop, hence, it is executed very often. The three columns of code are the three
levels of indices accessed and therefore are the three lines of the image being read. A
very important observation can be made when studying the code: three accesses to all
three input memories are done, and at each group of accesses, the same operations are
done. These operations are Ex*Ex, Ey*Ey, Ex*Ey, Ex*Et and Ey*Et. Also the outcome
of these multiplications for all three pixels per group are added.

There are a number of possibilities to optimize the code. The option which uses the
least amount of additional area, is probably adding a couple of registers, to buffer the
values of the input memories which are also used in the next two iterations. Or even
better, save the results of the calculations performed on these input memories. This also
minimizes the amount of multipliers and adders to be used. When doing this, the total
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Figure 5.11: Array access pattern of Ix before optimizations are done
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l = i − 1 ;
Ex = Ix [ PIC_Y∗l+m1 ] ;
Ey = Iy [ PIC_Y∗l+m1 ] ;
Et = It [ PIC_Y∗l+m1 ] ;

Ex1 = Ix [ PIC_Y∗l+j ] ;
Ey1 = Iy [ PIC_Y∗l+j ] ;
Et1 = It [ PIC_Y∗l+j ] ;

Ex2 = Ix [ PIC_Y∗l+m2 ] ;
Ey2 = Iy [ PIC_Y∗l+m2 ] ;
Et2 = It [ PIC_Y∗l+m2 ] ;

M2 [ 0 ] += (Ex ∗ Ex ) ;
M2 [ 3 ] += (Ey ∗ Ey ) ;
M2 [ 1 ] += (Ex ∗ Ey ) ;

B2 [ 0 ] += (Ex ∗ Et ) ;
B2 [ 1 ] += (Ey ∗ Et ) ;

M2 [ 0 ] += ( Ex1 ∗ Ex1 ) ∗2 ;
M2 [ 3 ] += ( Ey1 ∗ Ey1 ) ∗2 ;
M2 [ 1 ] += ( Ex1 ∗ Ey1 ) ∗2 ;

B2 [ 0 ] += ( Ex1 ∗ Et1 ) ∗2 ;
B2 [ 1 ] += ( Ey1 ∗ Et1 ) ∗2 ;

M2 [ 0 ] += ( Ex2 ∗ Ex2 ) ;
M2 [ 3 ] += ( Ey2 ∗ Ey2 ) ;
M2 [ 1 ] += ( Ex2 ∗ Ey2 ) ;

B2 [ 0 ] += ( Ex2 ∗ Et2 ) ;
B2 [ 1 ] += ( Ey2 ∗ Et2 ) ;

l = i ;
Ex = Ix [ PIC_Y∗l+m1 ] ;
Ey = Iy [ PIC_Y∗l+m1 ] ;
Et = It [ PIC_Y∗l+m1 ] ;

Ex1 = Ix [ PIC_Y∗l+j ] ;
Ey1 = Iy [ PIC_Y∗l+j ] ;
Et1 = It [ PIC_Y∗l+j ] ;

Ex2 = Ix [ PIC_Y∗l+m2 ] ;
Ey2 = Iy [ PIC_Y∗l+m2 ] ;
Et2 = It [ PIC_Y∗l+m2 ] ;

M2 [ 0 ] += (Ex ∗ Ex ) ∗2 ;
M2 [ 3 ] += (Ey ∗ Ey ) ∗2 ;
M2 [ 1 ] += (Ex ∗ Ey ) ∗2 ;

B2 [ 0 ] += (Ex ∗ Et ) ∗2 ;
B2 [ 1 ] += (Ey ∗ Et ) ∗2 ;

M2 [ 0 ] += ( Ex1 ∗ Ex1 ) ∗4 ;
M2 [ 3 ] += ( Ey1 ∗ Ey1 ) ∗4 ;
M2 [ 1 ] += ( Ex1 ∗ Ey1 ) ∗4 ;

B2 [ 0 ] += ( Ex1 ∗ Et1 ) ∗4 ;
B2 [ 1 ] += ( Ey1 ∗ Et1 ) ∗4 ;

M2 [ 0 ] += ( Ex2 ∗ Ex2 ) ∗2 ;
M2 [ 3 ] += ( Ey2 ∗ Ey2 ) ∗2 ;
M2 [ 1 ] += ( Ex2 ∗ Ey2 ) ∗2 ;

B2 [ 0 ] += ( Ex2 ∗ Et2 ) ∗2 ;
B2 [ 1 ] += ( Ey2 ∗ Et2 ) ∗2 ;

l = i + 1 ;
Ex = Ix [ PIC_Y∗l+m1 ] ;
Ey = Iy [ PIC_Y∗l+m1 ] ;
Et = It [ PIC_Y∗l+m1 ] ;

Ex1 = Ix [ PIC_Y∗l+j ] ;
Ey1 = Iy [ PIC_Y∗l+j ] ;
Et1 = It [ PIC_Y∗l+j ] ;

Ex2 = Ix [ PIC_Y∗l+m2 ] ;
Ey2 = Iy [ PIC_Y∗l+m2 ] ;
Et2 = It [ PIC_Y∗l+m2 ] ;

M2 [ 0 ] += (Ex ∗ Ex ) ;
M2 [ 3 ] += (Ey ∗ Ey ) ;
M2 [ 1 ] += (Ex ∗ Ey ) ;

B2 [ 0 ] += (Ex ∗ Et ) ;
B2 [ 1 ] += (Ey ∗ Et ) ;

M2 [ 0 ] += ( Ex1 ∗ Ex1 ) ∗2 ;
M2 [ 3 ] += ( Ey1 ∗ Ey1 ) ∗2 ;
M2 [ 1 ] += ( Ex1 ∗ Ey1 ) ∗2 ;

B2 [ 0 ] += ( Ex1 ∗ Et1 ) ∗2 ;
B2 [ 1 ] += ( Ey1 ∗ Et1 ) ∗2 ;

M2 [ 0 ] += ( Ex2 ∗ Ex2 ) ;
M2 [ 3 ] += ( Ey2 ∗ Ey2 ) ;
M2 [ 1 ] += ( Ex2 ∗ Ey2 ) ;

B2 [ 0 ] += ( Ex2 ∗ Et2 ) ;
B2 [ 1 ] += ( Ey2 ∗ Et2 ) ;

Figure 5.12: Source code fragment of the Velocity block before optimization

area needed might be even less. Another option is to add some additional memories
to save all eight values read from each input memory which are used in upcoming
iterations. Or even better, save the outcome of the calculations. This will reduce the
number of multipliers and adders immensely. Of course, this last option needs the most
memory to buffer all data that will be reused. Because of the significant decrease of
memory accesses and multiplications, this last option was considered to be the best.

Each of the values has a factor where they will be multiplied with before being
added to one of the elements of M2 or B2. The middle pixel has a factor of 4. The
pixels right next to it have a factor of 2. The other pixels (i.e. the four pixels in the
corners) have a factor of 1. Hence, both in row and column direction, the middle value
of the three has twice the weight of its two neighbors. This property is being used while
optimizing the algorithm. To clarify this, the equation below expresses the formula for
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M2[0] in a modular way.

sum1 = 1 ∗ (Ex2
11) + 2 ∗ (Ex2

12) + 1 ∗ (Ex2
13)

sum2 = 1 ∗ (Ex2
21) + 2 ∗ (Ex2

22) + 1 ∗ (Ex2
23)

sum3 = 1 ∗ (Ex2
31) + 2 ∗ (Ex2

32) + 1 ∗ (Ex2
33)

M2[0] = 1 ∗ sum1 + 2 ∗ sum2 + 1 ∗ sum3

(5.1)

In the iteration one image line below, the values of sum2 and sum3 can be reused as
values of sum1 and sum2, respectively. Two memories are needed to save these values.
The number of elements within these memories need to be the same as there are pixels
in an image line. In each iteration, the value of sum3 needs to be calculated. This is
done by buffering the values of Ex2

32 and Ex2
33, since they will be Ex2

31 and Ex2
32 in the

next iteration. After the calculation is done, the value of sum3 is saved in one of the
memories.

The total amount of memories needed for this system is ten. That is two for each
of the five sub values.

A code fragment of the solution is given in figure 5.13.

The output memories are a point of interest as well. The plot of the access pattern
is provided in figure 5.15. It can be seen that first all indices are written and read from
the beginning to the end. Later on, some values are written again. The first writes and
reads can be found at the top of the Velocity block source code. Here a default value to
all elements is written. This is done as shown in figure 5.14. The reads come from the
double assignment used. (First the value is written to norm vels1 y, then the value of
norm vels1 y is read and written into norm vels1 x.) This can be solved by simply
assigning the variables one-by-one.

More interestingly is the fact that all elements are written with a default value,
regardless of the calculations done by the algorithm. This keeps the algorithm easy to
understand, but not very efficient. The default values are needed in case no value could
be calculated for the element. Also the offset is filled with default values, since they
will never get assigned otherwise.

The optimization performed is to only write the values within the offset area at the
beginning of the algorithm. The middle values are assigned when the calculations of an
element are finished. If no value could be found, the default value will be written. This
eliminates the need of writing data multiple times to the same element. This holds for
all four output memories. The new code fragment that fills only the values covered by
the offset is shown in figure 5.16.
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index0 = PIC_Y ∗ (i+1) + j + 1 ;
int jmask0 = j & 0x1 ;
int jmask1 = (j − 1) & 0x1 ;

Ex3 = Ix [ index0 ] ;
Ey3 = Iy [ index0 ] ;
Et3 = It [ index0 ] ;

Exx = Ex3 ∗ Ex3 ;
sum_xx = sum_tmp_xx [ jmask1 ] << 1 ;
sum_xx += Exx ;
sum_xx += sum_tmp_xx [ jmask0 ] ;
sum_tmp_xx [ jmask0 ] = Exx ;

Eyy = Ey3 ∗ Ey3 ;
sum_yy = sum_tmp_yy [ jmask1 ] << 1 ;
sum_yy += Eyy ;
sum_yy += sum_tmp_yy [ jmask0 ] ;
sum_tmp_yy [ jmask0 ] = Eyy ;

Exy = Ex3 ∗ Ey3 ;
sum_xy = sum_tmp_xy [ jmask1 ] << 1 ;
sum_xy += Exy ;
sum_xy += sum_tmp_xy [ jmask0 ] ;
sum_tmp_xy [ jmask0 ] = Exy ;

Ext = Ex3 ∗ Et3 ;
sum_xt = sum_tmp_xt [ jmask1 ] << 1 ;
sum_xt += Ext ;
sum_xt += sum_tmp_xt [ jmask0 ] ;
sum_tmp_xt [ jmask0 ] = Ext ;

Eyt = Ey3 ∗ Et3 ;
sum_yt = sum_tmp_yt [ jmask1 ] << 1 ;
sum_yt += Eyt ;
sum_yt += sum_tmp_yt [ jmask0 ] ;
sum_tmp_yt [ jmask0 ] = Eyt ;

if ( ( i & 0x1 ) == 0x1 )
{

M2 [ 0 ] = sum_xx + sum_buf1_xx [ j ] +
( sum_buf2_xx [ j ] << 1) ;

M2 [ 3 ] = sum_yy + sum_buf1_yy [ j ] +
( sum_buf2_yy [ j ] << 1) ;

M2 [ 1 ] = sum_xy + sum_buf1_xy [ j ] +
( sum_buf2_xy [ j ] << 1) ;

B2 [ 0 ] = sum_xt + sum_buf1_xt [ j ] +
( sum_buf2_xt [ j ] << 1) ;

B2 [ 1 ] = sum_yt + sum_buf1_yt [ j ] +
( sum_buf2_yt [ j ] << 1) ;

sum_buf1_xx [ j ] = sum_xx ;
sum_buf1_yy [ j ] = sum_yy ;
sum_buf1_xy [ j ] = sum_xy ;
sum_buf1_xt [ j ] = sum_xt ;
sum_buf1_yt [ j ] = sum_yt ;

}
else

{
M2 [ 0 ] = sum_xx + sum_buf2_xx [ j ] +

( sum_buf1_xx [ j ] << 1) ;
M2 [ 3 ] = sum_yy + sum_buf2_yy [ j ] +

( sum_buf1_yy [ j ] << 1) ;
M2 [ 1 ] = sum_xy + sum_buf2_xy [ j ] +

( sum_buf1_xy [ j ] << 1) ;
B2 [ 0 ] = sum_xt + sum_buf2_xt [ j ] +

( sum_buf1_xt [ j ] << 1) ;
B2 [ 1 ] = sum_yt + sum_buf2_yt [ j ] +

( sum_buf1_yt [ j ] << 1) ;
sum_buf2_xx [ j ] = sum_xx ;
sum_buf2_yy [ j ] = sum_yy ;
sum_buf2_xy [ j ] = sum_xy ;
sum_buf2_xt [ j ] = sum_xt ;
sum_buf2_yt [ j ] = sum_yt ;

}

Figure 5.13: Source code fragment of the Velocity block after optimization

for ( iv1=0;iv1<PIC_Y∗PIC_X ; iv1++)
{

full_vels_x [ iv1 ] = full_vels_y [ iv1 ] = 100 . 0 ;
norm_vels1_x [ iv1 ] = norm_vels1_y [ iv1 ] = 100 . 0 ;

}

Figure 5.14: Source code fragment of the initialization phase of the output values before
optimization
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Figure 5.15: Array access pattern of norm vels1 y before optimizations are done
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index = 0 ;
for (i = 0 ; i < n ; i++)
{

for (j = 0 ; j < PIC_Y ; j++)
{

int index1 = index + j ;
full_vels_x [ index1 ] = 100 . 0 ;
full_vels_y [ index1 ] = 100 . 0 ;
norm_vels1_x [ index1 ] = 100 . 0 ;
norm_vels1_y [ index1 ] = 100 . 0 ;

}
index += PIC_Y ;

}

index = PIC_Y ∗ ( PIC_X − n ) ;
for (i = PIC_X − n ; i < PIC_X ; i++)
{

for (j = 0 ; j < PIC_Y ; j++)
{

int index1 = index + j ;
full_vels_x [ index1 ] = 100 . 0 ;
full_vels_y [ index1 ] = 100 . 0 ;
norm_vels1_x [ index1 ] = 100 . 0 ;
norm_vels1_y [ index1 ] = 100 . 0 ;

}
index += PIC_Y ;

}

index = PIC_Y ∗ n ;
for (i = n ; i < ( PIC_X − n ) ; i++)
{

for (j = 0 ; j < n ; j++)
{

int index1 = index + j ;
full_vels_x [ index1 ] = 100 . 0 ;
full_vels_y [ index1 ] = 100 . 0 ;
norm_vels1_x [ index1 ] = 100 . 0 ;
norm_vels1_y [ index1 ] = 100 . 0 ;

}
for (j = PIC_Y − n ; j < PIC_Y ; j++)
{

int index1 = index + j ;
full_vels_x [ index1 ] = 100 . 0 ;
full_vels_y [ index1 ] = 100 . 0 ;
norm_vels1_x [ index1 ] = 100 . 0 ;
norm_vels1_y [ index1 ] = 100 . 0 ;

}
index += PIC_Y ;

}

Figure 5.16: Source code fragment of the initialization phase of the output values after opti-
mization
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5.2.3.1 New Report Results

To compare the results before and after the optimizations described above, the gener-
ated reports which were shown before are regenerated on the new code shown in this
section. The first report to look at is the array access report.

command_(compute_vels)> show array

Array access | DataType | Reads | Writes

---------------------------------------------------------------

norm_vels1_y | ac_fixed | 0 | 9600

norm_vels1_x | ac_fixed | 0 | 9600

full_vels_y | ac_fixed | 0 | 9600

full_vels_x | ac_fixed | 0 | 9600

sum_tmp_yt | int_32 | 9936 | 5076

sum_tmp_xt | int_32 | 9936 | 5076

sum_tmp_xy | int_32 | 9936 | 5076

sum_tmp_yy | int_32 | 9936 | 5076

sum_tmp_xx | int_32 | 9936 | 5076

It | int_32 | 5076 | 0

Iy | int_32 | 5076 | 0

Ix | int_32 | 5076 | 0

sum_buf2_yt | int_32 | 4784 | 2484

sum_buf2_xt | int_32 | 4784 | 2484

sum_buf2_xy | int_32 | 4784 | 2484

sum_buf2_yy | int_32 | 4784 | 2484

sum_buf2_xx | int_32 | 4784 | 2484

sum_buf1_yt | int_32 | 4784 | 2484

sum_buf1_xt | int_32 | 4784 | 2484

sum_buf1_xy | int_32 | 4784 | 2484

sum_buf1_yy | int_32 | 4784 | 2484

sum_buf1_xx | int_32 | 4784 | 2484

B2 | ac_fixed | 0 | 9568

M2 | ac_fixed | 4784 | 19136

MI | ac_fixed | 4784 | 4784

B | ac_fixed | 0 | 9568

M | ac_fixed | 4784 | 19136

v | ac_fixed | 0 | 7440

As can be seen, a lot of buffer arrays are added to the design. Also the output
arrays are all written 9600 times and never read. No redundant work is done there
anymore. Also the amount of read accesses to the inputs has decreased considerable.
In the figures 5.17 and 5.18, the access patterns of both input and output are presented.
The input Ix is as expected a nice increasing line. No more redundant accesses are
done to the input memories. The output memory accesses result in a complex looking
plot. In the first half of the plot, the default values for offset locations are written.
The output field is surrounded by an offset field. First the pixels above the real output
field are written, then the pixels below the real output field and finally the pixels left
and right from the real output field. The last half of the plot are the writes to the real
output field. If no value could be calculated, the default value is written here as well.
This is why this part of the plot increases more evenly than the original plot of figure
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5.15. The magnification shows how the indices are written while the system outputs
the default values. No index is written more than once.

The operation report is shown below. Especially the number of multiplications has
decreased enormously. The original implementation used as many as 669916 multipli-
cation operations, while the optimized version only uses 88816 multiplications. This is
a reduction of 87%. Most multiplications shown are now used to calculate the addresses
of the array elements.

command_(compute_vels)> show operation

Operations | Count

---------------------------------------------------------------

less-than | 798

less-than-or-equal | 4183

mult | 88816

plus | 137154

minus | 120051

greater-than | 5128

bit-and | 15012

lshift | 48760

not-equal | 153088

pointer-plus | 114816
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Figure 5.17: Array access pattern of Ix after optimizations are done
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Figure 5.18: Array access pattern of norm vels1 y after optimizations are done
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5.3 Pipelining the Design

When a system is pipelined, different parts of the system run simultaneously. In case of
the algorithm discussed in this chapter, there are two ways of pipelining the algorithm.
The first way is letting Catapult C pipeline loops of the algorithm. The second way is
pipelining the different stages of the algorithm. Both are discussed in this section.

5.3.1 Pipelining Loops

Loops can be pipelined very easily by providing an Initiation Interval (or II) to Catapult
C as described in Section 2.3. The original version of the source code written by Ren
[40] also used pipelining of loops to increase the speed of computational parts of the
algorithm. In many cases, memory accesses form a bottleneck for further increasing the
number of instances of the loop running simultaneously. Because the number of memory
accesses has been decreased by optimizing the source code, more room for pipelining can
be expected. The same three blocks of the algorithm as were optimized in the previous
section, are pipelined in this section. Results and settings of the implementation by
Ren and the optimized implementation are compared to each other. To retrieve all data
from the implementation from Ren, his source code was used with the settings provided
in the report [40]. In the Velocity computational block, some values are different from
the report by Ren. The cause of this is unknown. All reported area values are taken
from reports of Catapult C and are included for comparison purposes.

5.3.1.1 Pipelining Loops Step 1: StackBlur

Ren had pipelined both inner loops of the StackBlur computational block with an II
value of 3. In the original implementation, the first inner loop contained one read and
one write to the input memories. Because all memories are single port memories, only
one memory access can be executed per clock cycle. The maximum number of II for
the first inner loop is 2 in the original implementation. The second inner loop does
only access all memories once per iteration. This means that no memory access will
cause problems when pipelining this loop to the maximum, which is an II of 1.

In the new design, both loops do not access any memory more than once. Therefore,
both inner loops can be pipelined with an II of 1. In table 5.1 the settings for the
StackBlur computational block and the throughput time and area usage of the whole
system are given.

5.3.1.2 Pipelining Loops Step 2: Compute Derivatives

Ren had pipelined the inner loops of the Derivative computational block with an II
value of 4. His implementation contains four accesses to memory pic1. Therefore, the
lowest II value possible was 4. All other memory accesses were read only once. The
memory access to pic1 forms the bottleneck of this entire block.
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Implementation
By Ren [40]

Optimized
Implementation

Loops

ROW Not pipelined or unrolled Not pipelined or unrolled

ROW:for Fully unrolled Fully unrolled

ROW:for#1 Fully unrolled Fully unrolled

ROW:for#2 Pipelined II=3 Pipelined II=1

COLUMN Not pipelined or unrolled Not pipelined or unrolled

COLUMN:for Fully unrolled Fully unrolled

COLUMN:for#1 Fully unrolled Fully unrolled

COLUMN:for#2 Pipelined II=3 Pipelined II=1

Results

ROW: Throughput time [us] 4820 1640

COLUMN: Throughput time [us] 4810 1630

Overall used area 46432.79 46646.24

Overall throughput time [ms] 112.07 105.71

Overall FPS 8.92 9.46

Overall efficiency
(area / FPS)

5203.72 4930.97

Table 5.1: Catapult C optimization settings and results (StackBlur)

In the optimized solution, the number of accesses to the pic1 memory has decreased
to three. Hence, the minimal number for II will also be 3, which has also been chosen
as the new value. As can be seen, the pic1 memory still forms the bottleneck for this
part of the system. In table 5.2 the settings for the Derivative computational block and
the throughput time and area usage of the whole system are given.

Implementation
By Ren [40]

Optimized
Implementation

Loops

compute ders 3x3:for Not pipelined or unrolled Not pipelined or unrolled

compute ders 3x3:for:for Pipelined II=4 Pipelined II=3

Results

Throughput time [us] 5750 4340

Overall used area 46432.79 46238.51

Overall throughput time [ms] 112.07 110.66

Overall FPS 8.92 9.04

Overall efficiency
(area / FPS)

5203.72 5116.8

Table 5.2: Catapult C optimization settings and results (Compute Derivatives)
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5.3.1.3 Pipelining Loops Step 3: Compute Velocities

In the original implementation by Ren, the Velocity computational block contained two
main loops. The first loop writes the default value to all output elements, while the
second loop is a big loop containing all velocity calculations. This loop calls a number
of different functions, for example a division function, square root function and the
eigensolve() function which solves eigenvalues and eigenvectors.

Only the first (small) loop was pipelined by Ren with an II value of 4. In the
optimized design, this one loop has changed to three loops. The first and second loop
set the default value for the top and bottom elements. Both loops contain one nested
loop. The third loop sets the default values for the left and right elements. Two nested
loops are used for this (one for the left side and one for the right). All nested loops
never accesses a memory more than once per iteration. The smallest II value possible
is therefore 1. This value has been used for all four inner loops. The outer loops were
not pipelined.

All called functions from the second loop were fully unrolled by Ren, but no pipeline
was used. As will be discussed later, this loop is the most time consuming part of the
whole algorithm. Pipelining this loop will probably increase the overall throughput and
used area dramatically. Chosen was to determine the II value of this loop by calculating
the results for some values of II and choose the most appropriate value tested. In the
optimized implementation, two buffers have to be filled before the second loop can be
executed. The filling of the buffer is done in a new nested loop. The inner loop was
pipelined with an II value of 1, since no memory is read more than once per iteration.

To improve readability, all loops in this block are named in the optimized imple-
mentation. The DEF VAL loops correspond to the first loop of the implementation by
Ren, which sets the default values. The CALC loops corresponds to the second loop
of the implementation by Ren, which calculates the actual velocities.

In table 5.3, the used settings and the results of both implementation by Ren and
the optimized implementation are provided. The second loop is not pipelined for now.

5.3.2 Pipelining the Overall System

A trivial optimization is pipelining the three stages of the algorithm. This is one of the
future work notes of Ren [40]. At this time, only one of the three main computational
blocks is active at a time. This means that if one block is active, the other two are idle,
which is not very efficient. Although pipelining the three main blocks may be a great
opportunity to improve the throughput, it does not come for free. When no pipeline is
used, Catapult C may schedule resources in such a way that it reuses them in multiple
blocks. When the design is fully pipelined, the resource sharing possibilities are less.
Hence, the number of resources necessary will probably increase. Also buffer memories
are needed. If for example the Derivative computational block calculates the derivative
values of the next iteration, the Velocity computational block still needs the derivative
values of the iteration before. Thus, a buffer is needed. The Derivative memories are
now also used as buffer in the StackBlur block. This can no longer be done when
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Implementation
By Ren [40]

Optimized
Implementation

Loops

compute vels:for Pipelined II=4 N/A

compute vels:DEF VAL 1 N/A Not pipelined or unrolled

compute vels:DEF VAL 1:for N/A Pipelined II=1

compute vels:DEF VAL 2 N/A Not pipelined or unrolled

compute vels:DEF VAL 2:for N/A Pipelined II=1

compute vels:DEF VAL 3 N/A Not pipelined or unrolled

compute vels:DEF VAL 3:for N/A Pipelined II=1

compute vels:DEF VAL 3:for#1 N/A Pipelined II=1

compute vels:for#1 Not pipelined or unrolled N/A

compute vels:for#1:for Not pipelined or unrolled N/A

CALC N/A Not pipelined or unrolled

CALC:for N/A Not pipelined or unrolled

Results

DEF VAL: Throughput time [us] 6370 1638

CALC: Throughput time [us] 114840 69690

Overall used area 46432.79 50042.87

Overall throughput time [ms] 112.07 86.70

Overall FPS 8.92 11.53

Overall efficiency
(area / FPS)

5203.72 4338.72

Table 5.3: Catapult C optimization settings and results (Compute Velocities). DEF VAL

are the loops which are setting the default values and CALC are the loops calculating the
velocities.

the design is fully pipelined. Also some loops are fully pipelined, as described in the
previous sections. Memories may be accessed every clock cycle during execution of a
block. If another block also needs to access these same memories, there is no time for
these accesses as long as the first block is not finished. Again, memory will probably
be the bottleneck.

Another important note would be that the execution time of a pipeline stage will
be as fast as the slowest block in the pipeline. It is therefore desirable that all blocks
consume about the same amount of time, to prevent the faster blocks being idle for
too long. In the implementation by Ren, a huge difference in execution time exists
between the blocks. This is shown in table 5.4. Given these numbers, pipelining the
whole system would not improve the overall speed too much. Although the optimized
implementation has much better comparable execution times, no pipeline is added yet.
The execution times of the optimized implementation presented in table 5.4 are of the
final implementation of Section 5.4.4.
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Main Block Execution Time [ms]
By Ren [40]

Execution Time [ms]
Opt. Impl.

StackBlur 9.63 1.64

Derivative 5.75 2.17

Velocity 121.21 6.19

Table 5.4: Execution time of the three main blocks in the implementation by Ren [40] and
the optimized implementation

5.4 Results

This section shows the overall results of the optimized implementation. First a word
on calculating the number of Frames Per Second (FPS) is given.

5.4.1 Calculating Frames Per Second

The number of frames per second can be calculated by dividing the number of frames
calculated per iteration by the total throughput time of that iteration. The throughput
time can be read from the Catapult C results (i.e. the cycle report). The number of
frames per iteration is one.

In the report of Ren [40], the number of frames per iteration was set to three. This
is incorrect. To complete the calculation of one frame, three input images (or input
frames) are needed. All three images must be blurred, before they can be used. To
calculate the next frame, again three images are needed. All three images must be
blurred. Two of the three images were read and blurred in the iteration before. Only
one image is new and must be blurred. Hurkmans [41] used a simple pipeline to do
this. Each system iteration, only one image is read and blurred. The other two blurred
images are used from the previous iteration. Ren [40] did not use such a pipeline. He
decided to read and blur all three images at once. Therefore, each system iteration,
three images are read and blurred, but still only one output frame is calculated. The
next iteration, two of the already blurred images must be read and blurred again.
The correct number of frames calculated per iteration is therefore one. The optimized
implementation did not implement the reuse of the already blurred images. This is left
as future work.

Ren reported to be able to process 22.47 FPS. This number is incorrect and should
be 7.49 FPS according to the data provided in the report of Ren [40]. When running
Catapult C with the source code and settings provided by Ren, the number of FPS is
a little higher: 8.92 FPS.

5.4.2 Run-time on a PC

Although this work is not about improving the sequential execution time, it did. This is
because many calculations (especially multiplications) were optimized away. Changes
in memory organization are probably not of any effect in sequential execution. The
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reported times below are found by measuring the execution time on a machine with
an Intel Centrino Duo T7200 processor and a sufficient amount of memory (2 GB). No
additional compiler optimizations were selected. Table 5.5 shows the results.

Main Block Execution time [ms]
Implementation
By Ren [40]

Execution time [ms]
Optimized
Implementation

StackBlur 13.071 11.032

Derivative 2.183 1.291

Velocity 17920.256 17656.626

Overall System 17935.510 17668.949

Table 5.5: Run-time on a PC with an Intel Centrino Duo T7200 processor and 2 GB of RAM

5.4.3 Determine Clock Frequency and Velocity Pipeline

A number of clock frequencies have been tested. Figure 5.19 shows a graph representing
the outcome of these tests. The test values are also presented in table 5.6. All tests are
run with an Assignment Overhead of 20% (one of the contraints within Catapult C ).
This forces Catapult C to safe some space per clock cycle, which is necessary to provide
headroom for the extraction process of Catapult C, so negative slack is omitted. The
Velocity calculation block is not yet pipelined.

Figure 5.19: Results for different frequencies

As can be seen, 50, 70, 80 and 90 MHz are no winners. They use all more area for
less performance, compared to 100 MHz. The least area is used by the 60 MHz solution,
while the best performance can be expected with the 100 MHz solution. Because the
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Frequency Throughput Time [ms] FPS Used Area Slack

50 MHz 64.73 15.45 62326.02 +2.18

60 MHz 61.48 16.27 56201.67 +1.86

70 MHz 61.93 16.15 58159.65 +0.91

80 MHz 64.67 15.46 75975.88 +0.63

90 MHz 62.49 16.00 94238.79 +1.37

100 MHz 58.84 17.00 57581.75 +0.70

Table 5.6: Results for different frequencies

increase in area between these two solutions is not significant compared to the gained
speed, the 100 MHz solution was selected to be used.

The same tests were done on the algorithm with different II values for the velocity
calculation loop. The used clock frequency is set to the same initial frequency as it was
for the tests above, i.e. 50 MHz. Figure 5.20 shows the test outcome in a graphical
way, while table 5.7 show the list of results.

Figure 5.20: Results for different II values of the velocity calculation loop

As can be seen, the performance increases significantly when the most computational
intensive part of the algorithm is pipelined. The II values of 32 and 16 are not the best
to choose, because they use more area for less FPS. The II value of 4 results in negative
slack and is therefore rejected. An II value of 2 gives a very fast solution, but needs a
lot more area to realize that. An II value of 8 seems to be the best compromise and is
therefore chosen.

Now the chosen II value and frequency are combined. Also an II value of 6 was
tested as well with the chosen frequency. This value may result in a faster solution,
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II value Execution Time
CALC loop [ms]

Throughput Time
(Overall) [ms]

FPS Used Area Slack

Not Pipelined 54.21 64.73 15.45 62326.02 +2.18

32 41.40 51.93 19.26 66177.08 +2.87

16 20.79 31.31 31.94 61351.18 +1.97

8 10.58 21.11 47.37 61187.26 +2.71

4 5.35 15.87 63.01 61977.11 -0.34

2 2.81 13.33 75.02 74825.90 +1.41

Table 5.7: Results for different II values of the velocity calculation loop

which does not need too much additional area and still has a positive slack. Catapult C
can be set to put high effort in optimizing the area. This is also tested with a frequency
of 100 MHz and an II value of 8. All results are shown in table 5.8.

II value Throughput
Time [ms]

FPS Used Area Slack Time needed by
Catapult C [h:m:s]

8 (normal effort) 10.00 100.0 64477.6 +0.70 3:50:18

6 (normal effort) 8.71 114.8 69708.6 +0.77 4:42:16

8 (high effort) 10.00 100.0 64475.2 +0.70 5:39:15

Table 5.8: Final performance tests at 100 MHz

An II value of 6 produces a very fast solution: 114.8 FPS. But, it also needs a
considerable amount of additional area. Therefore, the solution running at 100 MHz
and using an II value of 8 for the velocity calculation loop is chosen. The high effort
setting of Catapult C needed almost 2 more hours to come up with the results, but
was not able to decrease the amount of area noticeable. These results were created on
a machine with an Intel i7 920 processor and 6 GB of memory.

5.4.4 Final Results

The existing HLS implementation of the Lucas & Kanade [38] Optical Flow algorithm
implemented by Ren [40] has been optimized using the presented framework. The
presented new implementation of the Lucas & Kanade algorithm is capable of processing
100 frames per second at a relative small increase of used resources (area). This solution
is generated with Catapult C and has a positive slack.

The optimized and heavily pipelined solution of this chapter can be compared with
the previous implementations using Catapult C by Ren [40] and the hand written VHDL
solution by Hurkmans [41]. All solutions are designed for use with a Xilinx Virtex 5
FPGA and an input image size of 316 * 252 pixels. The results are shown in table 5.9.

If the new solution is compared with the solution by Ren with a positive slack (i.e.
the 50 MHz implementation), concluded can be that the performance has increased by a
factor 13.7, while the area has increased by a factor of 1.47. The increase in performance
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is found by comparing the number of frames per second both implementations can
process. These values are indicated with a grey cell color.

Hand Written
By Hurkmans [41]

Catapult C
50 MHz
By Ren [40]

Catapult C
100 MHz
By Ren [40]

Catapult C
New
Solution

Clock Frequency 30.884 MHz 50 MHz 100 MHz 100 MHz

FPS 5.33 7.32 7.49 100.0

Reports by Catapult C

Area N/A 43759.89 42855.66 64477.6

Slack N/A +0.82 -0.24 +0.70

Table 5.9: Comparison between the presented implementation and the different previous
implementations
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Conclusion and Future Work 6
Now that the framework is finished and its working has been demonstrated with a case
study, conclusions about both the framework and the used case study can be made.

This chapter first gives a short summary of the presented framework, then the
conclusion concerning the framework is presented and some future work notes are given.
This chapter ends with some future notes on the case study.

6.1 Summary

The presented framework is capable of analyzing memory accesses and operation usage
on a per function and per loop basis. Providing analysis on a per loop basis is of great
help to an High Level Synthesis designer, since loops are very important structures in
HLS development.

Investigated was which optimizations can be set in the HLS tool (in this case Cata-
pult C ) and how optimizations in the software source code are of great importance to
the performance of the hardware implementation. The conclusion from this research
is that HLS tools use loops from the original software description to set loop unrolling
and pipelining in the resulting hardware. This emphasizes the need of being able to
analyze an algorithm on a per loop basis.

Different options for implementing such an analysis tool were investigated. The
chosen solution was to use a relatively new feature of the GNU Compiler Collection,
namely the GCC PlugIn feature.

The presented framework exists of two main parts. The first part is the GCC PlugIn
and the second part is the Parser / Analyzer. The PlugIn is able to analyze the Abstract
Syntax Tree of each function and inserts function calls into this AST to log functions
in the developed analyze library. By executing the resulting executable file, a log file is
created containing many log lines. Each log line describes a memory access, operator
use, function call, etc. The Parser / Analyzer parses the generated log file. A Data
Flow Tree is generated in memory by parsing the log file. After the DFT is generated,
post processing does some modifications to this DFT and detects the loops. Now all
information is available, reports can interactively be generated by the user. Included
are reports that provide information about memory accesses and operator usage. Other
reports present the loop structure of the algorithm and shows dependencies within these
loops. Detailed information about each and every access to a variable can be reported.
Array accesses are presented with the used indices, even when the array was passed
as an argument to a function. Finally, plots can be generated presenting information
about the access order of the elements within an array. These plots can be used to find
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optimization opportunities and to provide an instant understanding about the access
pattern of an array, without having to fully review the source code first.

Since the complete framework consist of three different stages (i.e. generate the log
file, convert the log file into the DFT and generate reports from the DFT), adding new
reports to the framework is quite easy. In many cases, the information that must be
provided in the new report is already available in the DFT. In these cases, only a new
report has to be added in the third stage. If information is needed which is not yet
logged into the log file, then the GCC PlugIn has to be extended. Since the PlugIn
is designed hierarchically, existing GIMPLE node processing functions can easily be
located and extended or new functions can be added to the PlugIn.

6.2 Conclusion

The main goal of the framework is to provide algorithm specific information about
memory accesses and operator usage. Both memory accesses and used operators have
to be reported on a per loop basis and a per function basis. This is necessary because
HLS tools provide a loop unroll and loop pipelining feature. In order to set the settings
in HLS tools effectively, information about the loops to unroll or pipeline is essential.

The presented framework is capable of analyzing both memory accesses and operator
usage. Furthermore, the framework provides information about function calls, loop
structures and the value bounds of variables.

Designers can use their normal design flow. By enabling the presented PlugIn by
default, only the functions to analyze have to be provided as argument to the GCC
compiler. This involves minimal changes to the command which starts the compilation
process. Examples of this are provided in the source code package of the presented
framework. In order to be able to analyze an algorithm, minimal changes are needed
to the original source code. In many cases, just a single #include statement has to be
added.

Arrays are often mapped to memories and are therefore of great importance to an
HLS engineer. Arrays are detected and accesses to them are logged, regardless of how
the array was declared. Either a local array or an array that was passed as parameter
to a function will be analyzed.

The design of the framework is modular. New report types can be added efficiently
to the Parser / Analyzer. In many cases, the information needed for a report is already
provided by the log file and therefore available in the Data Flow Tree. In case the data
needed for the report is not already available in the DTF, the GCC PlugIn has to be
extended. The PlugIn itself has a hierarchical design to improve code readability and
to make maintenance efficient.

Once the DFT has been build, reports can interactively be generated by the user.
Commands can also be provided as argument to the Parser / Analyzer, which allows a
designer to generate reports in an automated way.
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The presented case study used the presented framework to optimize an existing
implementation of the Lucas & Kanande Optical Flow algorithm. Many reports were
generated to provide a good insight to the memory accesses and operator usage of
each part of the system. The ability to generate plots concerning array access patterns
proved to be one of the most powerful features of the framework. These plots can be
generated very quickly and provide all access information about an array in great detail
at both loop and function level.

By using all information provided by the framework, the designer was able to opti-
mize the entire design. Many pipeline opportunities can now be used more efficiently,
increasing the overall system performance tremendously. An increase in speed by a
factor of 13.7 was achieved, while the used area increased only by a factor of 1.47. This
improves the overall efficiency enormously.

6.3 Future Work

This section describes some suggested future work notes, which will further improve
the compatibility and capability of the framework.

• Fully support 64 bit systems. Systems which use the 64 bit architecture also use
64 bit addresses instead of 32 bit addresses. This is not fully supported by the
framework at this moment.

• Improve struct handling. When memory accesses are added to the list of accesses,
they are merged to already saved accesses with the same name. In the search
for other accesses with the same name, the stuct element value is not taken into
account yet.

• Extend the operation-access report to show the values of the used memories. This
would require a link between the different memory access logs and the operation
access logs.

• Provide support for multi-dimensional arrays when generating an array access pat-
tern plot. At this moment, multi-dimensional arrays are fully supported, except
when generating a plot.

• Provide the option to combine all accesses of a multiple called function into one
report (i.e. If a function is called multiple times, only the first call is fully logged
and will be included into the reports. In some cases it can be of interest what
other accesses were involved in other instances of the called function.).

• Provide logging of the values of array accesses (if data type is int or boolean).
Normally, a node representing a value can be passed as argument to the logging
function. This is unfortunately not possible with an array node. Therefore, the
values of the array node are not logged at this moment.
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• Extend the support for C++ language. By fully supporting C++, algorithms
which are making use of Catapult C classes like ac int<> and ac fixed<> can
be analyzed more precisely. This would also enable SystemC source code to be
analyzed by the framework, which opens a whole lot of possibilities.

• Replace some of the used lists in the DFT by hash tables. This would improve
the parsing speed. Many lists (e.g. all access lists) are regularly searched for the
names of the accesses it’s holding. If these lists are converted to hash tables with
a hash function on the name of the access, these searches would be faster.

• Extend the use of the information logged about function arguments. If a variable
(e.g. an array) is passed by reference to a function, a link to the memory accesses
within this function can be made. This would provide a more global representa-
tion of the memory accesses to that variable. The framework already supports
narrowing down the search space for memory accesses and operator usage by using
loop information, but this suggested feature would also enable the framework to
widen the search space of memory accesses to a global level.

• Implement support for floating point values.

6.4 Future Work on Case Study: The Lucas Algorithm

In a case study, the Lucas Optical Flow algorithm was used. This is covered in Chapter
5. An existing HLS implementation of the Lucas algorithm was used. Using the
presented framework, optimization opportunities were found and implemented. After
the optimizations were performed, Catapult C was used to generate the VHDL code.
The resulting output uses 1.47 times more hardware than the original implementation,
but the gained speedup has a factor of 13.7.

Besides this great result, a couple of future work notes on the Lucas HLS imple-
mentation can be made:

• Since the execution time of all blocks now lay very close to each other compared to
the original HLS implementation, pipelining the three basic computational blocks
of the algorithm will probably improve the performance and efficiency of the used
resources.

• Reuse the blurred images which are already blurred in the previous two itera-
tions. This minimizes the resource usage of the StackBlur computational block
considerable.
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Optical Flow Background A
Optical flow applications are applications which calculate the direction and speed of
movement in a sequence of images. This sequence is captured by a camera in most
cases, but other techniques are possible as well. This chapter gives the constraints to
any optical flow algorithm and will discuss the working of the optical flow algorithms
used (or referred to) the most in literature.

A.1 Limitations and Constraints of Optical Flow

In order to retrieve an image sequence from real world velocities, the real world 3D ve-
locities are projected to a 2D motion field. This implies immediately the first limitation.
A fast moving object far away and a slow moving object nearby might cause the same
motion velocities to be calculated by the optical flow algorithm. Another limitation
caused by the lack of the third dimension is the detection of an object moving towards
the camera. From the 2D motion field, the object seems to grow, while in reality the
object has a certain velocity in the direction to the camera. These limitations can be
overcome by introducing a 3D capture device (e.g. multiple cameras to detect depth
or a special camera with build in depth measurements).

Another limitation is the well known aperture problem. The image is taken from
a window or aperture of the real world. Objects moving outside the window will not
be visible on the image. But more interesting are objects partly outside the window.
Figure A.1 illustrates this. The dark blue bar represents an object on the first image of
a sequence. The light blue bar illustrates the same object on the second image of the
same sequence. As can be seen, the bar has been moved. On the left a small aperture
is given in which not all edges of the bar can be detected. On the right image, the
same bar is shown, but now the aperture is larger and all edges of the bar can be seen.
In the left image, the motion is ambiguous. It looks like the motion goes to the right.
Because all edges are known at the right image, the exact motion of the bar can be
determined, which is to the bottom-right. The fact that the motion (and with that the
velocity) of the bar cannot be determined in the left image, is known as the aperture
problem.

Motion between different images are often detected by intensity changes of the pixels
within the image. To detect the correct motion, it is important that the intensity of
all objects in the image and of the image background is constant. Otherwise, a pixel
in image n cannot be matched to the corresponding pixel in image n + 1. An obvious
problem concerning this is noise. Noise is causing the intensity to change randomly.
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Figure A.1: Aperture problem

This causes errors in the calculated motions. The constant intensity constraint is often
referred to as the gradient constraint.

A.2 Optical Flow Techniques

Different optical flow techniques are reported over the years. In this section the main
classes of these techniques are discussed and the different algorithms proposed using
the discussed techniques are given. One of the most referred works on the optical
flow research topic is the paper of Barron et al. [43] and its renewed and extended
version [1]. This paper gives a very nice overview of the commonly used techniques
and algorithms. Besides that, all discussed algorithms (nine in total) are tested on
accuracy. It is highly recommended to read the work of Barron et al. [1] for readers
without any specific experience on optical flow. This section used a lot of information
from this paper.

In general, four different techniques have been used with optical flow algorithms:

• Differential technique

• Region-based technique

• Energy-based technique

• Phase-based techniques

This chapter only discusses the first two techniques, because the last two are considered
too computational intensive for fast practical use [43].

A.2.1 Differential Techniques

Optical flow algorithms using the differential technique compute velocity from spa-
tiotemporal derivatives of (filtered versions of) the image. Often the filter used is some
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kind of blurring or smoothing filter to minimize the influence of noise and other in-
tensity changes. Horn & Schunck [8] were the first to use this technique. They used
first-order derivatives based on image translations:

I(x′, y′, t) = I(x − ut, y − vt, 0) (A.1)

This equation is for 2D images. Intensity I(x′, y′, t) is the intensity of pixel (x′, y′) at
time t and got there through a displacement (u, v) of pixel (x, y) at time 0. In literature
the generalized form of this equation is used a lot. The spatial information (in this case
(x, y)) is placed in vector ~x and the displacement information (in this case (u, v)) is
placed in vector ~v. The generalized formula then becomes:

I(~x′, t) = I(~x − ~vt, 0) (A.2)

Equation A.1 can be rewritten to:

I(x, y, t) = I(x + δx, y + δy, t + δt) (A.3)

When expending this formula with Taylor series and neglecting higher order terms, this
will result in:

I(x, y, t) = I(x, y, t) +
δI

δx
δx +

δI

δy
δy +

δI

δt
δt (A.4)

This formula can be rewritten using the chain rule. I(x, y, t) is subtracted from both
sides.

0 =
δI

δx

δx

δt
+

δI

δy

δy

δt
+

δI

δt

0 = Ixu + Iyv + It

0 = ∇I(~x, t) · ~v + It(~x, t)

(A.5)

where Ix denotes the partial derivative of I over x, Iy the partial derivative of I over
y, It and It(~x, t) the partial derivative of I over t and ∇I(~x, t) = (Ix, Iy)

T . All three
forms are used in literature and are called the gradient constraint equation. A motion
constraint line can be drawn from this equation:

Figure A.2: The Motion Constraint Line

The correct velocity (full velocity) is a point on the constraint line. The minimal
velocity is called the normal velocity ( ~vn). The gradient constraint equation can provide
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the normal speed s and normal direction ~n:

~vn = s~n

s =
−It(~x, t)

||∇I(~x, t)||

~n =
∇I(~x, t)

||∇I(~x, t)||

(A.6)

The gradient constraint equation (A.5) contains two unknown components of ~v, con-
strained by only one linear equation, as graphically presented in figure A.2. An addi-
tional constraint is therefore necessary to be able to solve both components of ~v.

In image sequences, not every pixel will move independently. All pixels representing
a moving object are moving at similar velocities. By making use of this property, an
additional constraint is found to be able to solve the equation. This new constraint
is called the smoothness constraint. Discontinuities in flow can be expected if one
object moves over another. This implies that algorithms which are making use of the
smoothness constraint are likely to generate poor results at the edges of moving objects.
Basically two implementations of this constraint are proposed in literature. The first
implementation is called the global smoothness constraint. This technique assumes
smoothness of the flow over the whole image. Algorithms using this constraint prefer
solutions which show more smoothness. The other implementation of the smoothness
constraint is called the local smoothness constraint. This constraint uses pixels in the
neighborhood to estimate the flow of the current pixel.

Another way to constrain equation A.5 further is by using second-order derivatives:
[

Ixx(~x, t) Ixy(~x, t)
Iyx(~x, t) Iyy(~x, t)

] (

v1

v2

)

+

(

Itx(~x, t)
Ity(~x, t)

)

=

(

0
0

)

(A.7)

Because this second-order derivative implies that the first-order partial derivatives must

be conserved (d∇I(~x,t)
dt

= 0), an additional constraint was introduced. First order defor-
mations like rotation and dilation should not be present in the image [1]. This limits
the use of algorithms which are making use of second-order derivatives. To measure
image velocities A.7 can be combined with A.5 to yield an over-determined system of
linear equations. If the aperture problem prevails in a local neighborhood, then the
second-order derivatives can usually not be measured accurately enough to determine
the tangential component of ~v, because of the sensitivity of numerical differentiation
[1]. This is why second-order differential methods are often assumed to be sparser and
less accurate than estimates from first-order differential methods.

Another constraint to differential techniques is that I(~x, t) must be differentiable.
This implies that aliasing has to be avoided. Smoothing filters at the input are used
to do this. Another thing to keep in mind is that movements can only be detected if
the movement between two successive frames is not too much, i.e. it has to stay within
the search window. If aliasing cannot be avoided, then using differential techniques
in a coarse-fine manner can be used. These techniques first estimate the coarse scales
form where aliasing is less severe. The calculated estimates are later on used as initial
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guesses for the finer scales. Among others, Johannesson and Gökstorp [44] have used
this technique successfully.

A.2.1.1 Horn & Schunck (Global first order)

Horn & Schunck [8] combined the gradient constraint A.5 with a global smoothness
term as a constraint for the velocity flow field:

∫ ∫

(∇I · ~v + It)
2 + α2(||∇u||2 + ||∇v||2)dxdy (A.8)

where α is the regulation factor which determines the amount of smoothness in the
image. By minimizing the formula above, the values of u and v can be estimated. To
do this, iterative equations are used:

un+1 = ūn −
Ix[Ixū

n + Iyv̄
n + It]

α2 + I2
x + I2

y

vn+1 = v̄n −
Iy[Ixū

n + Iyv̄
n + It]

α2 + I2
x + I2

y

(A.9)

where n is the iteration number, u0 and v0 are the initial velocity estimates which are
set to zero and ūn and v̄n are the averages of the neighborhood of un and vn.

The original paper used first-order differences to estimate intensity derivatives:

Ix =
1

4
{Ix,y+1,t − Ix,y,t + Ix+1,y+1,t − Ix+1,y,t + Ix,y+1,t+1 − Ix,y,t+1 + Ix+1,y+1,t+1 − Ix+1,y,t+1}

Iy =
1

4
{Ix+1,y,t − Ix,y,t + Ix+1,y+1,t − Ix,y+1,t + Ix+1,y,t+1 − Ix,y,t+1 + Ix+1,y+1,t+1 − Ix,y+1,t+1}

It =
1

4
{Ix,y,t+1 − Ix,y,t + Ix+1,y,t+1 − Ix+1,y,t + Ix,y+1,t+1 − Ix,y+1,t + Ix+1,y+1,t+1 − Ix+1,y+1,t}

(A.10)

Barron et al. [1] suggested to use 4-point central differences to estimate the derivatives,
because they find it relatively crude to use the original method. The mask coefficients
used for the 4-point central differences are 1

12
(−1, 8, 0,−8, 1). This results in:

Ix = −
1

12
Ix−2,y,t +

8

12
Ix−1,y,t −

8

12
Ix+1,y,t +

1

12
Ix+2,y,t

Iy = −
1

12
Ix,y−2,t +

8

12
Ix,y−1,t −

8

12
Ix,y+1,t +

1

12
Ix,y+2,t

It = −
1

12
Ix,y,t−2 +

8

12
Ix,y,t−1 −

8

12
Ix,y,t+1 +

1

12
Ix,y,t+2

(A.11)

The local averages ūn and v̄n are found by calculating a weighted sum of the adjacent
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pixels:

ūx,y,t =
1

6
{ux−1,y,t + ux1,y+1,t + ux+1,y,t + ux,y−1,t}

+
1

12
{ux−1,y−1,t + ux−1,y+1,t + ux+1,y+,t + ux+1,y−1,t}

v̄x,y,t =
1

6
{vx−1,y,t + vx1,y+1,t + vx+1,y,t + vx,y−1,t}

+
1

12
{vx−1,y−1,t + vx−1,y+1,t + vx+1,y+,t + vx+1,y−1,t}

(A.12)

If the brightness gradient is zero in parts of the image, the assigned velocity to that
part will be the average of the neighboring velocity estimates. This way, the velocity
field has a density of 100%. This is a typical property of optical flow techniques using
the global smoothness constraint. However, the main problem of these global smooth-
ness constraint is noise. When the brightness gradient becomes less, the influence of
the smoothness constraint becomes more. Thus if the brightness gradient is large, the
smoothness constraint has less influence. Because noise causes larger brightness gradi-
ents, the influence of the smoothing is limited. The resulting flow field therefore still
contains noise.

The number of iterations n has to be at least the size of the largest area to be
filled in. Barron et al. [1] have used values up to 100. Except for the derivative
estimates, Barron at el. changed the smoothness filter as well. As can be seen in the
formulas above, Horn & Schunck used only a spatial smoothing filter. The smoothing
regularization factor α of formulas A.8 and A.9 has an original suggested factor of 100.
Barron et al. [1] added a spatiotemporal Gaussian pre-filter and lowered the value of α
to 0.5. The spatiotemporal pre-filter is defined with a standard deviation of 1.5 pixels
in space and 1.5 frames in time (1.5 pixels-frames). The advantage of pre-filtering the
input is that noise is reduced before starting the actual optical flow algorithm.

A.2.1.2 Lucas & Kanade (Local first order)

Lucas & Kanade [38, 5] have proposed probably the most famous optical flow algorithm.
A lot of optical flow applications are making use of the Lucas & Kanade algorithm itself
or a variation of it. Lucas & Kanade have assumed that the velocity of neighboring
pixels is constant. This idea is based on the fact that the pixels representing an object
have similar velocities. A trivial problem exist on pixels representing the edge of moving
objects. This assumption is used together with the gradient constraint (formula A.5).
By taking at least two neighboring pixels, the normal velocities of these pixels yields
the full velocity. When using more than two pixels, the system is over determined. The
full velocity can be found using the (weighted) least squares approach.

When taking n pixels from neighborhood Ω, using gradient constraint A.5 the linear
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system of this neighborhood becomes:









Ix( ~x1) Iy( ~x1)
Ix( ~x2) Iy( ~x2)

...
...

Ix( ~xN) Iy( ~xn)









[

u
v

]

= −









It( ~x1)
It( ~x2)

...
It( ~xn)









(A.13)

where Ix, Iy and It are the partial derivatives as before and u and v form the displace-
ment vector. The solution to u and v can be found by minimizing the error defined by
the sum:

S =
∑

~x∈Ω

W 2(~x)[∇I(~x, t) · ~v + It(~x, t)]2 (A.14)

where W (~x) denotes the weight of the selected pixel in order to give center pixels of
the neighborhood more influence. The solution to this function can be found by:

AT W 2A~v = AT W 2~b (A.15)

where for n pixels ~xi ∈ Ω,

A = [∇I( ~x1, t), . . . ,∇I( ~xn, t)]T ,

W = diag[W ( ~x1), . . . ,W ( ~xn)],

b = −[It( ~x1), . . . , It( ~xn)]T

The solution to (A.15) is ~v = [AT W 2A]−1AT W 2~b. When writing AT W 2A and AT W 2~b
further out, the following solutions to these are found:

AT W 2A =

[
∑

W 2(~x)I2
x(~x)

∑

W 2(~x)Ix(~x)Iy(~x)
∑

W 2(~x)Iy(~x)Ix(~x)
∑

W 2(~x)I2
y (~x)

]

AT W 2~b =

[
∑

W 2(~x)Ix(~x)It(~x)
∑

W 2(~x)Iy(~x)It(~x)

] (A.16)

where all sums are taken over pixels in the neighborhood Ω. Note that there exist only
a solution to ~v if AT W 2A is invertible.

Barron et al. [1] published a measuring method to determine the probability of the
correctness of the velocities. They used the eigenvalues of AT W 2A, λ1 ≥ λ2, and a
predefined threshold value τ . If both eigenvalues λ1 and λ2 are greater than threshold
τ , then the full velocity estimate of formula (A.15) is used to calculate ~v. If λ1 ≥ τ
and λ2 < τ then the normal velocity estimate is computed. If both eigenvalues λ1 and
λ2 are less than threshold τ , then no velocity is calculated at all. The by Barron et al.
[1] used value for τ is 1.

As with the Horn & Schunck algorithm, Barron et al. [1] used a spatiotemporal
Gaussian filter as pre-smoothing filter. The standard deviation used is 1.5 pixels-
frames. Also the same derivative method was used, which is the 4-point central dif-
ferences method with coefficients 1

12
(−1, 8, 0,−8, 1). The spatial neighborhoods are

5 x 5 pixels and the window function W 2 is isotropic with the effective 1D weights
(0.0625, 0.25, 0.375, 0.25, 0.0625).
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The advantage of this method over Horn & Schunck is that this method is relatively
insensitive to noise, because of the pre-smoothing filter and the local approach. The
disadvantage is that the generated flow field is not very dense. This is a side effect of
the local approach. If a large uniform part of the image is moving, no motion can be
detected inside this part of the image. Because these pixels have the same intensity, no
displacement can be detected.

A.2.1.3 Bruhn, Weickert and Schnörr (Hybrid first order)

As shown above, the main advantage of using the global smoothness constraint is that
the resulting flow field has a density of 100%, but its disadvantage is that these al-
gorithms are relatively sensitive to noise. Algorithms based on the local smoothness
constraint are not very sensitive to noise and therefore produce better results. Unfor-
tunately, these algorithms are not very dense.

Bruhn et al. [45] have observed this same difference in smoothness constraints as
well. In order to combine the best of both worlds, they proposed a method of combining
the Lucas & Kanade algorithm with the Horn & Schunck algorithm. Now a relatively
noise insensitive solution was found giving good optical flow results and has a density
of 100%.

Both Lucas & Kanade and Horn & Schunck find the solution to ~v by minimizing a
formula (A.8 and A.14). When these formula’s are compared, some similarities can be
found:

HS :

∫ ∫

(∇I · ~v + It)
2 + α2(||∇u||2 + ||∇v||2)dxdy

LK :
∑

~x∈Ω

W 2(~x)[∇I · ~v + It]
2

The basic idea is to merge both formulas into one new formula which has to be mini-
mized to find the values for ~v:

∫ ∫

W 2(~x)[∇I · ~v + It]
2 + α2(||∇u||2 + ||∇v||2)dxdy (A.17)

A.2.1.4 Nagel (Global second order)

Nagel [46, 47] has used second order derivatives to measure optical flow and used a
global smoothness constraint like Horn & Schunck [8]. Besides that, Nagel has worked
on a solution to the poor quality velocity estimates generated by Horn & Schunck on
edges of objects. As mentioned earlier, Horn & Schunck used a global smoothness
constraint, which results in a smooth velocity flow across the image. Naturally, the
velocity flow is not smooth at the edge of a moving object. Nagel has proposed a
new constraint: the oriented-smoothness constraint. This constraint does not impose
smoothness at steep intensity gradients (edges). The resulting solution can be found
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by minimizing the functional:
∫ ∫

(∇IT~v + It)
2 +

α2

||∇I||22 + 2δ

[

(uxIy − uyIx)
2 + (vxIy − vyIx)

2 + δ(u2
x + u2

y + v2
x + v2

y)
]

dxdy

(A.18)

The solution of the functional above can be found in a similar way as the solution of
Horn & Schunck can be found. This solution is presented below and taken from Barron
et al. [1].

By making use of Gauss-Seidel iterations, the solution can be found by:

un+1 = ξ(un) −
Ix(Ixξ(un) + Iyξ(v

n) + It)

I2
x + I2

y + α2

vn+1 = ξ(vn) −
Iy(Ixξ(un) + Iyξ(v

n) + It)

I2
x + I2

y + α2

(A.19)

where n is the iteration number and ξ(un) and ξ(vn) are given by

ξ(un) = ūn − 2IxIyuxy − ~qT (∇un)

ξ(vn) = v̄n − 2IxIyvxy − ~qT (∇vn)
(A.20)

where uxy and vxy are the estimated partial derivatives of ~v, ūn and v̄n are the neigh-
borhood averages of un and vn and ~q is defined as

~q =
1

I2
x + I2

y + dδ
∇IT

[(

Iyy −Ixy

−Ixy Ixx

)

+ 2

(

Ixx Ixy

Ixy Iyy

)

W

]

(A.21)

where W is defined as

~q =
1

I2
x + I2

y + dδ

(

I2
y + δ −IxIy

−IxIy I2
x + δ

)

(A.22)

Barron et al. [1] suggest to use the same pre-smoothing filter as for Horn & Schunck
and for Lucas & Kanade. The intensity derivatives are also estimated using 4-point
central differences and are cascaded in different directions to obtain the second order
derivatives. The velocity derivatives are found by using 2-point central-difference ker-
nels, 1

2
(1, 0,−1). The second order velocity derivatives were computed as cascades of

the first order derivatives. Barron et al. used 100 iterations (n = 100).

A.2.1.5 Uras, Girosi, Verri and Torre (Local second order)

Uras et al. [48] used the second order derivatives formula (A.7) to solve the optical
flow field. Formula A.7 can be rewritten as:

H~v = −∇It (A.23)

where H is the Hessian of the image brightness pattern (with respect to the spatial
components) and ∇It = (Itx, Ity)

T is the temporal derivative.
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Using this formula, the initial estimates for ~v can be found as long as the determinant
of the Hessian H is not zero. After this, the velocity field is divided into square parts of
size n x n. The best n velocity estimates are then taken from this square. To determine
the quality of the velocity estimates, the following formula is used:

∆ =
||MT∇I||

||∇It||
(A.24)

where

M =

[

ux uy

vx vy

]

When writing this further down, ∆ can be found by:

∆ =

√

(Ixux + Iyvx)2 + (Ixuy + Iyvy)2

√

I2
tx + I2

ty

(A.25)

The lower the value of ∆, the better the velocity estimate. From the n resulting
estimates, the best one is selected to represent the velocity of the entire n x n block.
This is done by choosing the velocity estimate with the smallest conditional number
κ(H) of Hessian H.

Theoretically, if no velocity estimate can be found (i.e. if all det(H) = 0) within a
certain block, that block will not get a velocity assigned. According to Uras et al. [48],
this is not likely to happen in real applications.

Before the velocity estimates are calculated, the image is smoothed by using a
Gaussian filter. Barron et al. [1] have investigated this algorithm as well and proposed
a standard deviation of 3 pixels in space and 1.5 frames in time, where the original
paper [48] used 5 pixels in space and 1 frame in time. Barron et al. calculated all
derivatives using 4-point central differences. Second order derivatives are estimated
using a cascaded version of this.

Uras et al. used κ(H) as confidence measure for the velocity estimates. Barron et
al. [1] suggest that using det(H) is more reliable. This confidence measure can also
be used to threshold the velocity field. When doing this, the accuracy increases, but
the density decreases. A threshold of det(H) ≥ 1.0 can result in good quality velocity
estimates [1].

Uras et al. have proposed another method of processing the initial velocity estimates
(i.e. the velocities resulting from (A.23)). This second method is by smoothing the
velocity field by using a Gaussian filter with a standard deviation of 8 pixels.

A.2.2 Region-Based Techniques

Another technique to determine optical flow is region-based. Here the velocity ~v is

defined as the displacement ~d(dx, dy) that matches the transition of a region between
two images the best. A region is a square selection of pixels. Region-based techniques
tries to match an entire region of pixels of one image to a region of pixels on a second

112



image. To determine which match is the best, the similarity between the two regions
has to be determined. The best similarity can be found using the following sum-of-
squared-differences (SSD):

SSD1,2(~x; ~d) =
n

∑

j=−n

n
∑

i=−n

W (i, j)[I1(~x + (i, j)) − I2(~x + ~d + (i, j))]2 (A.26)

where W is a discrete 2D window function and displacement ~d is integer only.

Region-based techniques produce one displacement vector per region. This will
result in a sparse flow field. Some algorithms based on this technique use this in
combination with a pyramid coarse-to-fine manner (e.g. Anandan, as described in
next section). A great advantage of region-based techniques is that the regions are
normally not overlapping. This makes this kind of algorithms good candidates for
large parallelization as all regions undergoes the same treatment.

A.2.2.1 Anandan

Anandan [49, 50] proposed an algorithm which uses this region-based technique to
estimate optical flow. Anandan observed the fact that large scale displacements can be
detected using low resolution versions of the image. Small displacements can only be
detected using full (or at least higher) resolutions. The resulting approach was to first
make an estimate of displacement at low resolution, resulting in a coarse estimate of the
displacement. The next step is increasing the resolution and with that the accuracy.
The displacement estimates of the previous level are used to estimate the displacement
of the current level. This is repeated until the full resolution displacement vector is
found. This method is also known as the pyramid method.

A confidence measure is needed to determine the certainty of the displacement
estimate. If for example the displacement was estimated of a homogeneous area of the
image, no component of displacement can be reliably determined.

To end up with a dense flow field, Anandan assumed the flow field to be smooth.
This assumption was also made by Horn & Schunck [8], as discussed earlier. The
confidence measure is used at each level to determine the amount of filling in necessary.

Obviously, the first step is to build the pyramid. This is done by applying a 5 x
5 Gaussian convolution to the current layer and then sub-sampling that layer into the
new layer. Every layer is smoothed this way before the next layer is formed. At the
coarsest level, the maximum displacement is 1 pixel. Hence, the search area in the
second image is a 3 x 3 pixel area centered around the corresponding pixel in the first
image. The next level inherits the initial displacement of the coarser level. The search
area here is a 3 x 3 pixel area in the second image centered around this. The best
match can be found by minimizing the SSD measure over the search area.

The displacement estimated at a coarse level is projected at the four pixels below
(at one level finer). However, if the estimated displacement is incorrect, the search
space of the four pixels below does not contain its correct counterpart. If such incorrect
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displacements have been made at a very coarse level, a lot of pixels are infected later on.
To help reduce this from happening, Anandan used the overlapped pyramid projection
scheme. This scheme projects the displacement result to a 4 x 4 pixel area as illustrated
in figure A.3. This way, each pixel at a finer level receives four estimates from the coarser
level. The search space for the finer level now becomes 4 x 3 x 3 pixels.

Figure A.3: Overlapped Pyramid Projection Scheme

Since the best match is determined by the minimal SSD, some observations can be
done about the confidence of the measure. If a lot of candidates produce small SSD’s,
all these candidates are good. It is not sure which one reflects the actual displacement.
Another problem may arise if none of the candidates result in small SSD’s. No good
match could be found. Anandan introduced confidence measures cmin and cmax and
derives these from the principle curvatures Cmin and Cmax of the SSD surface at the
minimum:

cmax =
Cmax

k1 + k2Smin + k3Cmax

, cmin =
Cmin

k1 + k2Smin + k3Cmin

(A.27)

where k1, k2 and k3 are normalization parameters and Smin is the SSD value corre-
sponding to the best match. Anandan uses the following values [49]: k1 = 150, k2 = 1
and k3 = 0.

Anandan implemented the smoothness constraint of the velocity estimates by using
the confidence measures:
∫ ∫

(u2
x + u2

y + v2
x + v2

y) + cmax(~v ·~emax −~v0 ·~emax)
2 + cmin(~v ·~emin −~v0 ·~emin)2 (A.28)

where ~emax and ~emin are the directions of maximum and minimum curvature of the SSD
surface (at the minimum) and ~v0 propagates the displacement from the higher level.
As did Horn & Schunck [8], Anandan used Gauss-Seidel iterations to find the solution:

~vn+1 = v̄k +
cmax

cmax + 1
[(~v0 − v̄k) · ~emax]~emax +

cmin

cmin + 1
[(~v0 − v̄k) · ~emin]~emin (A.29)

where v̄k is the average of the neighborhood of ~vk, computed using the mask:

1

4





0 1 0
1 0 1
0 1 0




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A.2.2.2 Singh

Singh [51] has used the region-based technique as well. The method of Singh consists
of two steps. The first step is called the conservation information step. In this step the
initial displacement estimates are computed using the assumption that some image-
property does not change over time. Singh used the Laplacian of intensity. The second
step is called the neighborhood information step. This step uses knowledge of the
velocity distribution in a small spatial neighborhood. At the end, the results from both
steps are combined to end up with the final estimate.

The conservation information step uses three filtered images of the sequences, I−1,
I0 and I+1. The filter is a band-pass filter with impulse response δ(~x) − G(~x), where
δ(~x) is a Dirca delta function and G(~x) is an isotropic Gaussian with standard deviation
1.0 [1]. The three filtered images are now used to compute SSD values:

SSD0(~x, ~d) = SSD0,1(~x, ~d) + SSD0,−1(~x,−~d) (A.30)

where SSDi,j is formula A.26. Singh now uses these SSD values to obtain the response-
distribution:

Rc(~d) = e−kSSD0 (A.31)

where k = −ln(0.95)/min(SSD0). If the minimal value of SSD0 is zero, the smallest
non-zero value of SSD0 is used. An estimate of the sub-pixel true-velocity ~vc = (uc, vc)
can be found by:

uc =

∑

Rc(~d)dx
∑

Rc(~d)
, vc =

∑

Rc(~d)dy
∑

Rc(~d)
(A.32)

Singh suggests to use the eigenvalues of the inverse covariance matrix as measures of
confidence. The covariance matrix is given by:

Sc =
1

∑

Rc(~d)

[
∑

Rc(~d)(dx − uc)
2

∑

Rc(~d)(dx − uc)(dy − vc)
∑

Rc(~d)(dx − uc)(dy − vc)
∑

Rc(~d)(dy − vc)
2

]

(A.33)

All summations in the formulas above are carried out over −N ≤ dx, dy ≤ +N , where
N is the maximum displacement which can be detected by the algorithm. Values of N
up to 4 are used by Barron et al. [1]. To be able to detect large velocities (i.e. large
displacements between images), Singh suggests to use a pyramid approach, as Anandan
[49, 50] did.

At the second step (neighborhood information) the objective is to propagate velocity
by neighborhood information. It is assumed that the velocity of neighboring pixels of
a certain pixel gives information about the velocity of the pixel under consideration.
Singh determines this velocity ~vn = (un, vn) by:

un =

∑

i Rn(~vi)ui
∑

i Rn(~vi)
, vn =

∑

i Rn(~vi)vi
∑

i Rn(~vi)
(A.34)

where ~vi = (ui, vi) are the velocities of the neighborhood pixels and Rn(~vi) is a Gaussian
function of the distance between the neighborhood pixel and the central pixel. The

115



neighborhood has a size of (2w + 1) x (2w + 1). Singh used w = 1, while Barron et al.
[1] found w = 2 to produce better estimates. The corresponding covariance matrix is:

Sn =
1

∑

i Rn(~vi)

[
∑

i Rn(~vi)(ui − un)2
∑

i Rn(~vi)(ui − un)(vi − vn)
∑

i Rn(~vi)(ui − un)(vi − vn)
∑

i Rn(~vi)(vi − vn)2

]

(A.35)

Both estimates can be fused together by minimizing the errors of both. This can
be expressed in the following formula:

∫ ∫

(~v − ~vn)T S−1
n (~v − ~vn) + (~v − ~vc)

T S−1
c (~v − ~vc)dxdy (A.36)

Because ~vn and Sn require to know the velocity of the neighboring pixels, Singh derives
iterative equations to find the estimates (Gauss-Seidel relaxation):

~v0
n = ~vc

~vk+1
n =

[

S−1
c + (Sk

n)−1
]−1 [

S−1
c ~vc + (Sk

n)−1~vk
n

]

(A.37)

where k is the iteration number. Barron et al. [1] used at most 25 iterations.

The covariant matrices Sc and Sn are combined to obtain a new covariant matrix
of the entire system. This matrix is defined as: [S−1

c + S−1
n ]

−1
. The eigenvalues of this

matrix λ1 and λ2 function as the confidence measure of the final estimates. A threshold
τ can be used to ignore estimates with low confidence measures.
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Log File Format Description B
This appendix describes the format of the log file generated by executing an application
which was compiled with GCC and the presented PlugIn.

A log file consists of log lines. Each line refers to a statement or an event in the
original source code. Each line is ended with a semicolon and a new line character, i.e.
’;\n’. Different elements within a line are separated by a comma.

B.1 Log Function

A function is logged whenever a new function which was selected to get analyzed
is started. The first statement of the function will be the statement responsible for
creating this log line to the log file.

Example function log:
F,foo,main.cpp,5;

Element Description

F Indicates a function log line

foo The name of the function recorded

main.
pp The source file where the function exists

5 The line within the source file where the first statement exists

Table B.1: Element description of function log line
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B.2 Log Basic Block

A basic block log line is written to the log file whenever a basic block is entered or
left. The statements for logging this are inserted as first and last statement of the basic
block for the start and end log line respectively. If the last original statement of the
basic block is a RETURN or CONDITIONAL statement, the statement recording the end of
the basic block is inserted as the second to last statement in that basic block.

Example basic block log:
B,s,0x12345678,main.cpp,5;

Element Description

B Indicates a basic block log line

s Indicates whether the basic block did start (’s’) or end (’e’)

0x12345678 The unique basic block identifier

main.
pp The source file where the basic block exists

5 The line within the source file where the first statement exists if the block
was just started or the last statement exists if the block has ended

Table B.2: Element description of basic block log line

B.3 Log Memory Access

A memory access is logged whenever an access to a variable other than array or pointer
is recorded. Constants are also logged here. When the recorded access involved a
read from memory, the statement recording the log is inserted above the statement it
indicates. If a write was recorded, the statement recording the access is inserted below
the actual memory access.

Example memory access log:
M,r,name,uint 32,35,main.cpp,5;

Element Description

M Indicates a memory access log line

r Indicates whether the access was a read (’r’) or write (’w’)

name The name of the variable

uint 32 The type of the variable

35 The value of the variable if type is integer or boolean (’false’ and ’true’)

main.
pp The source file where the memory access exists

5 The line within the source file where the access exists

Table B.3: Element description of memory access log line
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B.4 Log Array Access

An array access is logged whenever the access is recorded. When the recorded access
involved a read from memory, the statement recording the log is inserted above the
statement it indicates. If a write was recorded, the statement recording the access is
inserted below the actual array access.

Example array access log:
A,r,name[index1=0][index2=2],uint 32,35,main.cpp,5;

Element Description

A Indicates an array access log line

r Indicates whether the access was a read (’r’) or write (’w’)

name The name of the array

[index1=0℄ The index and its value that was used to point to the array element (if
a multi-dimensional array was accessed, all indices are located after each
other)

uint 32 The type of the array

35 The value of the array if type is integer or boolean (’false’ and ’true’) (This
field is not yet implemented with array accesses)

main.
pp The source file where the access exists

5 The line within the source file where the access exists

Table B.4: Element description of array log line
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B.5 Log Pointer Access

A pointer access is logged whenever the access is recorded. When the recorded access
involved a read from memory or the pointer address was read, the statement recording
the log is inserted above the statement it indicates. If a write or address set was
recorded, the statement recording the access is inserted below the actual pointer access.

Example pointer access log:
P,r,name,0x12345678,*uint 32,35,main.cpp,5;

Element Description

P Indicates a pointer access log line

r Indicates whether the access was a read (’r’), write (’w’), get address (’g’)
or set address (’s’)

name The name of the pointer

0x12345678 The address of the pointer

*uint 32 The type of the pointer

35 The value of the pointer if type is integer or boolean (’false’ and ’true’)

main.
pp The source file where the access exists

5 The line within the source file where the access exists

Table B.5: Element description of pointer log line

B.6 Log Pointer Set Address from Expression

A pointer set address from expression is logged whenever the access occurs. The state-
ment logging the access is inserted below the actual pointer set address from expression
statement.

Example pointer set address from expression log:
PSE,dest,src,0x12345678,main.cpp,5;

Element Description

PSE Indicates a pointer set address from expression log line

dest The name of the pointer for which the address was set

sr
 The name of the expression holding the address

0x12345678 The new address of the pointer

main.
pp The source file where the address was set

5 The line within the source file where the address was set

Table B.6: Element description of pointer set address from expression log line
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B.7 Log Pointer Set Address from Pointer

A pointer set address from pointer is logged whenever the access occurs. The state-
ment logging the access is inserted below the actual pointer set address from pointer
statement.

Example pointer set address from pointer log:
PSP,dest,src,0x12345678,main.cpp,5;

Element Description

PSP Indicates a pointer set address from pointer log line

dest The name of the pointer for which the address was set

sr
 The name of the pointer from which the address was used

0x12345678 The new address of the pointer

main.
pp The source file where the address was set

5 The line within the source file where the address was set

Table B.7: Element description of pointer set address from pointer log line

B.8 Log Cast

A cast is logged whenever it occurs. The statement logging the cast is inserted below
the actual cast statement.

Example cast log:
C,srcName,int 32,destName,int 8,35,main.cpp,5;

Element Description

C Indicates a cast log line

sr
Name The name of the source variable

int 32 The data type of the source variable

destName The name of the destination variable

int 8 The data type of the destination variable

35 The value of the cast if type is integer or boolean (’false’ and ’true’)

main.
pp The source file where the cast exists

5 The line within the source file where the cast exists

Table B.8: Element description of cast log line
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B.9 Log Pointer Cast

A pointer cast is logged whenever it occurs. The statement logging the pointer cast is
inserted below the actual pointer cast statement.

Example pointer cast log:
CP,src,dest,0x12345678,main.cpp,5;

Element Description

CP Indicates a pointer cast log line

sr
 The name of the source pointer

dest The name of the destination pointer

0x12345678 The address which was used in the pointer cast

main.
pp The source file where the pointer cast exists

5 The line within the source file where the pointer cast exists

Table B.9: Element description of pointer cast log line

B.10 Log Operation

An operation is logged whenever it occurs. The statement logging the operation is
inserted below the actual operation statement.

Example operation log:
O2,plus,main.cpp,5;

Element Description

O2 Indicates an operation log line (binary operations are indicated with ’O2’;
unary operations are indicated with ’O1’)

plus The description of the operation

main.
pp The source file where the operation exists

5 The line within the source file where the operation exists

Table B.10: Element description of operation log line
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B.11 Log Condition

A condition is logged whenever it occurs. The statement logging the condition is
inserted above the actual condition statement.

Example condition log:
CO,var1Name,int 32,35,equal,var2Name,int 8,45,main.cpp,5;

Element Description

CO Indicates a condition log line

var1Name The name of the first variable which is used to check the condition

int 32 The type of the first variable

35 The value of the first variable if type is integer or boolean (’false’ and ’true’)

equal The type of condition check

var2Name The name of the second variable which is used to check the condition

int 8 The type of the second variable

45 The value of the second variable if type is integer or boolean (’false’ and
’true’)

main.
pp The source file where the condition exists

5 The line within the source file where the condition exists

Table B.11: Element description of condition log line

B.12 Log Array Set Pointer

An array set pointer is logged whenever the creation of a pointer to an element in an
array is detected. The statement logging this event is inserted below the statement
creating the pointer. This log line begins with an ’A’, as an array access does. The
difference is the second character, which is always an ’s’ here.

Example array access log:
A,s,arrayName[index=0],0x12345678,ptrName;

Element Description

A Indicates an array access log line

s Indicates that a pointer was set to an array element

arrayName The name of the array

[index=0℄ The index and its value that was used to point to the array element

0x12345678 The address of the created pointer

ptrName The name of the created pointer

Table B.12: Element description of array set pointer log line

123



B.13 Log Function Call

A function call is logged whenever it occurs. A function log contains two log lines. The
first indicates the start of the function call, the second indicates the end. The start of
the function call is inserted before the call itself. The end of the function call is inserted
after the call itself. The actual function call exists between the two log lines. If the
function to be called is also analyzed, all log lines of that function are placed between
the start and end log lines.

Example function call log:
CAS,function(parm1=35,parm2=0),main.cpp,5;

CAE,retName,int 32,48,main.cpp,5;

Element Description

CAS Indicates the start of a function call

fun
tion The name of the function to be called

parm1 The name of the first parameter (if any)

35 The value of the first parameter (if any parameter and type is integer or
boolean)

parm2 The name of the second parameter (if any; all parameters are logged, sep-
arated by commas)

0 The value of the second parameter (if any parameter and type is integer or
boolean)

main.
pp The source file where the function call exists

5 The line within the source file where the function call exists

CAE Indicates the end of a function call

retName The name of the variable in which the return value of the called function
is saved (if no value is returned, this field is empty)

int 32 The data type of the return value of the function to be called (if no value
is returned, this field is empty)

48 The value of the return value of the function to be called (if type is integer
or boolean) (if no value is returned, this field is empty)

main.
pp The source file where the function call exists

5 The line within the source file where the function call exists

Table B.13: Element description of function call log line

124



Analyze Library Description C
The presented PlugIn inserts function calls into the AST which will generate the log
file as described in Appendix B. The inserted function calls are defined in the analyze
library (analyze.cpp). The linker stage of the compilation process combines the library
object file with the object files of the algorithm which is to be analyzed. The result is
one executable file.

This appendix describes the functions defined in the analyze library.

C.1 castInt

This function returns the integer value based on the value passed as argument and the
valueType as described in Section 4.3.5.1.

Name Type Description

Return

int The value corresponding to the input arguments

Arguments

value int The value of the access to log

valueType int The valueType of the access to log

Table C.1: Return value and arguments of castInt function

C.2 print

Prints a string to the screen when running the executable.

Name Type Description

Return

N/A

Arguments

text const char* The string to print

Table C.2: Return value and arguments of print function
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C.3 writeToFile

Writes a string to the log file.

Name Type Description

Return

N/A

Arguments

text const char* The string to print to the file

Table C.3: Return value and arguments of writeToFile function

C.4 logFunction

Logs the start of a function.

Name Type Description

Return

N/A

Arguments

function const char* The function name

sourcefile const char* The source file of the function

sourceline const int The source line where the function starts

Table C.4: Return value and arguments of logFunction function
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C.5 logVarAccessInt

Logs all memory accesses to variables other than array or pointer.

Name Type Description

Return

N/A

Arguments

access const char Indicates a read (’r’) or write (’w’)

variable const char* The name of the variable

type const char* The data type of the variable

value const int The value of the variable (if type is integer or
boolean)

valueType const int The valueType of the variable

sourcefile const char* The source file of the variable

sourceline const int The source line of the variable

Table C.5: Return value and arguments of logVarAccessInt function

C.6 logPtrAccessInt

Logs all pointer accesses.

Name Type Description

Return

N/A

Arguments

access const char Indicates a read (’r’), write (’w’), get address (’g’)
or set address (’s’)

pointer const char* The name of the pointer

type const char* The data type of the pointer

value const int* The address of the pointer

valueType const int The valueType of the pointer

sourcefile const char* The source file of the pointer

sourceline const int The source line of the pointer

Table C.6: Return value and arguments of logPtrAccessInt function
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C.7 logPtrSetExpr

Logs pointer set address from expression.

Name Type Description

Return

N/A

Arguments

nameDest const char* The name of the pointer

nameSrc const char* The name of the expression

pointer const int* The address of the pointer

sourcefile const char* The source file of the pointer

sourceline const int The source line of the pointer

Table C.7: Return value and arguments of logPtrSetExpr function

C.8 logPtrSetPtr

Logs pointer set address from other pointer.

Name Type Description

Return

N/A

Arguments

nameDest const char* The name of the pointer of which the address was
set

nameSrc const char* The name of the pointer of which the address was
read

pointer const int* The address of the pointer

sourcefile const char* The source file of the pointer

sourceline const int The source line of the pointer

Table C.8: Return value and arguments of logPtrSetPtr function
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C.9 logOperation

Logs all operations.

Name Type Description

Return

N/A

Arguments

operation const char* The name of the operation

sourcefile const char* The source file of the operation

sourceline const int The source line of the operation

type const char The type of operation: unary (’1’) or binary (’2’)

Table C.9: Return value and arguments of logOperation function

C.10 logCastInt

Logs all casts between variable, except for pointer casts.

Name Type Description

Return

N/A

Arguments

srcVar const char* The name of the source variable

srcType const char* The data type of the source variable

destVar const char* The name of the destination variable

destType const char* The data type of the destination variable

value const int The value of the variable (if type is integer or
boolean)

valueType const int The valueType of the variable

sourcefile const char* The source file of the cast

sourceline const int The source line of the cast

Table C.10: Return value and arguments of logCastInt function
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C.11 logPtrCast

Logs all pointer casts.

Name Type Description

Return

N/A

Arguments

srcVar const char* The name of the source pointer

destVar const char* The name of the destination pointer

value const int* The address of the pointer

sourcefile const char* The source file of the pointer cast

sourceline const int The source line of the pointer cast

Table C.11: Return value and arguments of logPtrCast function

C.12 logCond

Logs all conditional branches.

Name Type Description

Return

N/A

Arguments

var1Name const char* The name of the first variable

var1Type const char* The data type of the first variable

var1Value const int The value of the first variable (if type is integer or
boolean)

var1ValueType const int The valueType of the first variable

name const char* The type of condition

var2Name const char* The name of the second variable

var2Type const char* The data type of the second variable

var2Value const int The value of the second variable (if type is integer
or boolean)

var2ValueType const int The valueType of the second variable

sourcefile const char* The source file of the condition

sourceline const int The source line of the condition

Table C.12: Return value and arguments of logCond function
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C.13 logBasicBlock

Logs all starts and ends of basic blocks. This function also keeps track of the file size
of the log file. If the size exceeds 1 GB, a new log file is started.

Name Type Description

Return

N/A

Arguments

action const char Indicates a start (’s’) or end (’e’)

bb const long The unique identifier of the basic block

sourcefile const char* The source file of the basic block

sourceline const int The source line of the where the basic block starts
or ends

Table C.13: Return value and arguments of logBasicBlock function

C.14 logArrayIndex

Logs a single array index.

Name Type Description

Return

N/A

Arguments

name const char* The name of the variable used to index the array

value const int The value of the index

valueType const int The valueType of the index

Table C.14: Return value and arguments of logArrayIndex function
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C.15 logArrayAccessIntStart

Logs every character of an array access log before the array index (or indices) is printed.
This function is also used if a pointer is found which points to an array element.

Name Type Description

Return

N/A

Arguments

access const char Indicates a read (’r’), write (’w’) or set array pointer
(’s’)

variable const char* The name of the array

Table C.15: Return value and arguments of logArrayAccessIntStart function

C.16 logArrayAccessIntEnd

Logs every character of an array access log after the array index (or indices) is printed.

Name Type Description

Return

N/A

Arguments

type const char* The data type of the array

value const int The value of the array element (not yet imple-
mented)

valueType const int The valueType of the array element

sourcefile const char* The source file of the array access

sourceline const int The source line of the array index

Table C.16: Return value and arguments of logArrayAccessIntEnd function
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C.17 logArrayAccessIntSetPtr

Logs every character of a pointer detected to point to an array element log after the
array index (or indices) is printed.

Name Type Description

Return

N/A

Arguments

value const void* The address of the pointer (and array element)

newVarName const char* The name of the pointer pointing to the array ele-
ment

Table C.17: Return value and arguments of logArrayAccessIntSetPtr function

C.18 logCallStart

Logs every character of a function call log before the parameter(s) are printed.

Name Type Description

Return

N/A

Arguments

function const char* The name of the called function

Table C.18: Return value and arguments of logCallStart function
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C.19 logCallPar

Logs a single function parameter.

Name Type Description

Return

N/A

Arguments

parName const char* The name of the variable used as parameter

parValue const int The value of parameter (if type is integer or
boolean)

parValueType const int The valueType of the parameter

last int Indicates if this was the last parameter to log (this
determines if a comma has to be printed or not)

Table C.19: Return value and arguments of logCallPar function

C.20 logCallEnd

Logs every character of a function call log after the parameter(s) are printed.

Name Type Description

Return

N/A

Arguments

sourcefile const char* The source file of the function call

sourceline const int The source line of the function call

Table C.20: Return value and arguments of logCallEnd function
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C.21 logCallReturn

Logs the return of a function call. The values for retName and retType may be empty
(i.e. "") if no return value was saved (or exists).

Name Type Description

Return

N/A

Arguments

retName const char* The name of the variable in which the return value
was saved

retType const char* The type of return value

retValue const int The value of the return value (if type is integer or
boolean)

retValueType const int The valueType of the return value

sourcefile const char* The source file of the function call

sourceline const int The source line of the function call

Table C.21: Return value and arguments of logCallReturn function

C.22 openLogFile

Opens a new log file. A function call to this function is inserted as first statement in
the main function of the algorithm to analyze.

Name Type Description

Return

N/A

Arguments

filename const char* The filename of the file to create (without the 0.log
extension)

Table C.22: Return value and arguments of openLogFile function
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C.23 closeLogFile

Closes the new log file. A function call to this function is inserted as last statement in
the main function of the algorithm to analyze.

Name Type Description

Return

N/A

Arguments

N/A

Table C.23: Return value and arguments of closeLogFile function

C.24 createNewLogFile

Creates a new log file. The index number of the log file is incremented here. This
function is called by the logBasicBlock() function if the current log file exceeds 1 GB
in file size.

Name Type Description

Return

N/A

Arguments

N/A

Table C.24: Return value and arguments of closeLogFile function

136



Bibliography

[1] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow
techniques,” vol. 12, pp. 43 – 77, Feb. 1994.

[2] K.-T. Song and J.-H. Huang, “Fast optical flow estimation and its application
to real-time obstacle avoidance,” in Robotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, vol. 3, pp. 2891 – 2896, 2001.

[3] A. Gern, R. Moebus, and U. Franke, “Vision-based lane recognition under adverse
weather conditions using optical flow,” in Intelligent Vehicle Symposium, 2002.
IEEE, vol. 2, pp. 652 – 657, Jun. 2002.

[4] G. Monteiro, M. Ribeiro, J. Marcos, and J. Batista, “Wrongway drivers detection
based on optical flow,” in Image Processing, 2007. ICIP 2007. IEEE International
Conference on, vol. 5, pp. 141 – 144, Oct. 2007.

[5] B. D. Lucas and T. Kanade, “An iterative image registration technique with
an application to stereo vision,” PhD Dissertation, Dept. of Computer Science,
Carnegie-Mellon University, 1981.

[6] Y. Kong, X. Zhang, Q. Wei, W. Hu, and Y. Jia, “Group action recognition in soccer
videos,” in Pattern Recognition, 2008. ICPR 2008. 19th International Conference
on, pp. 1 – 4, Dec. 2008.

[7] G.-J. Kim, K.-Y. Eom, M.-H. Kim, J.-Y. Jung, and T.-K. Ahn, “Automated mea-
surement of crowd density based on edge detection and optical flow,” in Industrial
Mechatronics and Automation (ICIMA), 2010 2nd International Conference on,
vol. 2, pp. 553 – 556, May 2010.

[8] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” 1981.

[9] J. M. Cardoso and P. C. Diniz, “Compilation techniques for reconfigurable archi-
tectures,” Apr. 2008.

[10] O. S. Dragomir, E. Moscu-Panainte, K. Bertels, and S. Wong, “Optimal unroll
factor for reconfigurable architectures,” 2008.

[11] O. Dragomir, T. Stefanov, and K. Bertels, “Loop unrolling and shifting for re-
configurable architectures,” in Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, pp. 167 – 172, Sept. 2008.

[12] M. Fingeroff, “High-level synthesis blue book,” Jan. 2010.

[13] Y. Dong, J. Zhou, Y. Dou, L. Deng, and J. Zhao, “Impact of loop unrolling on area,
throughput and clock frequency for window operations based on a data schedule
method,” in Image and Signal Processing, 2008. CISP ’08. Congress on, vol. 1,
pp. 641 – 645, May 2008.

137



[14] G. Barnes, R. Brown, M. Kato, D. Kuck, D. Slotnick, and R. Stokes, “The illiac
iv computer,” Computers, IEEE Transactions on, vol. C-17, pp. 746 – 757, Aug.
1968.

[15] Control Data Corporation, “Control data 6400/6500/6600 computer systems ref-
erence manual,” 1969.

[16] T. VanCourt and M. Herbordt, “Application-specific memory interleaving enables
high performance in fpga-based grid computations,” in Field-Programmable Cus-
tom Computing Machines, 2006. FCCM ’06. 14th Annual IEEE Symposium on,
pp. 305 – 306, Apr. 2006.

[17] T. VanCourt and M. Herbordt, “Application-specific memory interleaving for fpga-
based grid computations: A general design technique,” in Field Programmable
Logic and Applications, 2006. FPL ’06. International Conference on, pp. 1 – 7,
Aug. 2006.

[18] J. S. Liptay, “Structural aspects of the system/360 model 85, ii: The cache,” IBM
Systems Journal, vol. 7, no. 1, pp. 15 – 21, 1968.

[19] D. A. Patterson and J. L. Hennessy, “Computer organisation and design,” 2007.

[20] A. Gil, J. Benitez, M. Calvi ando, and E. Go andmez, “Reconfigurable cache
implemented on an fpga,” in Reconfigurable Computing and FPGAs (ReConFig),
2010 International Conference on, pp. 250 – 255, Dec. 2010.

[21] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr, “A sw
performance estimation framework for early system-level-design using ne-grained
instrumentation,” 2006.

[22] R. Yan and S. C. Goldstein, “Mobile memory: Improving memory locality in very
large recongurable fabrics,” Apr. 2002.

[23] T. Harmon, “Volta,” 2007. Online available: http://volta.sourceforge.net/.

[24] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph execution
proler,” Apr. 2004.

[25] M. Martonosi, A. Gupta, and T. Anderson, “Memspy: Analyzing memory system
bottlenecks in programs,” in In Proc. ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, pp. 1 – 12, 1992.

[26] S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “QUAD - a memory
access pattern analyser,” Mar. 2010.

[27] Valrind Developers, “Valgrind documentation,” 2011. Online available:
http://valgrind.org/docs/manual/index.html.

[28] “Valgrind tools,” 2011. Online available: http://valgrind.org/info/tools.html.

138

http://volta.sourceforge.net/
http://valgrind.org/docs/manual/index.html
http://valgrind.org/info/tools.html


[29] Free Software Foundation, “GDB: The GNU project debugger,” Jul. 2011. Online
available: http://www.gnu.org/s/gdb/.

[30] IBM, “Debugging with the eclipse platform,” May 2007. Online available:
http://www.ibm.com/developerworks/library/os-ecbug.

[31] C. keung Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa, and R. K. Hazelwood, “Pin: building customized program analysis
tools with dynamic instrumentation,” in In PLDI 05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementation,
pp. 190 – 200, ACM Press, 2005.

[32] Free Software Foundation, “GCC, the GNU compiler collection,” Aug. 2011. On-
line available: http://gcc.gnu.org/.

[33] Free Software Foundation, “Documentation of the internals of the GNU compilers,”
2010. Online available: http://gcc.gnu.org/onlinedocs/gccint/index.html.

[34] J. Merrill, “GENERIC and GIMPLE: A new tree representation for entire func-
tions.”

[35] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan, “Design-
ing the mccat compiler based on a family of structured intermediate representa-
tions,” 1992.

[36] The Flex Project, “Flex: The fast lexical analyzer,” Feb. 2008. Online available:
http://flex.sourceforge.net/.

[37] Free Software Foundation, “Bison: GNU parser generator,” May 2011. Online
available: http://www.gnu.org/software/bison/.

[38] B. D. Lucas, “Generalized image matching by the method of differences,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, pp. 280 – 287, 1984.

[39] T. Williams and C. Kelley, “Gnuplot,” Mar. 2011. Online available:
http://www.gnuplot.info/.

[40] X. Ren, “Rtl implementation of an optical flow algorithm (lucas) using the catapult
c high-level synthesis tool,” Aug. 2011.

[41] T. Hurkmans, “System performance analysis and fixed-point architecture of a
gradient-based optical flow algorithm,” Dec. 2009.

[42] M. Klingemann, “StackBlur.” Online available:
http://incubator.quasimondo.com/processing/fast_blur_deluxe.php.

[43] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, “Performance of optical
flow techniques,” in Computer Vision and Pattern Recognition, 1992. Proceed-
ings CVPR ’92., 1992 IEEE Computer Society Conference on, pp. 236 – 242, Jun.
1992.

139

http://www.gnu.org/s/gdb/
http://www.ibm.com/developerworks/library/os-ecbug
http://gcc.gnu.org/
http://gcc.gnu.org/onlinedocs/gccint/index.html
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.gnuplot.info/
http://incubator.quasimondo.com/processing/fast_blur_deluxe.php


[44] M. Johannesson and M. Gökstorp, “Video-rate pyramid optical flow computation
on the linear simd array ivip,” in Computer Architectures for Machine Perception,
1995. Proceedings. CAMP ’95, pp. 280 – 287, Sept. 1995.

[45] A. Bruhn, J. Weickert, and C. Schnrr, “Lucas/kanade meets horn/schunck: Com-
bining local and global optic flow methods,” International Journal of Computer
Vision, vol. 61, pp. 211 – 231, 2005.

[46] H. H. Nagel, “Displacement vectors from second-order intensity variations in image
sequences,” CGIP 21, pp. 85 – 117, Mar. 1982.

[47] H.-H. Nagel and W. Enkelmann, “An investigation of smoothness constraints for
the estimation of displacement vector fields from image sequences,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-8, pp. 565 – 593,
Sept. 1986.

[48] S. Uras, F. Girosi, A. Verri, and V. Torre, “A computational approach to motion
perception,” Biological Cybernetics, vol. 60, pp. 79 – 87, 1988.

[49] P. Anandan, “Measuring visual motion from image sequences,” PhD thesis,
COINS. Dept., Univ. Massachusetts, Amhers, 1987.

[50] P. Anandan, “A computational framework and an algorithm for the measurement
of visual motion,” International Journal of Computer Vision, vol. 2, pp. 283 – 310,
1989.

[51] A. Singh, “An estimation-theoretic framework for image-flow computation,” in
Computer Vision, 1990. Proceedings, Third International Conference on, pp. 168
– 177, Dec. 1990.

140


	Abstract
	Acknowledgments
	Introduction
	High Level Synthesis
	Optical Flow Used Everywhere
	Example Optical Flow Applications

	Combining Optical Flow and HLS
	Goals
	Contributions
	Outline

	HLS Background and Related Work
	Loop Unrolling
	Unroll Factor
	Code Style Recommendations

	Memory Access
	Passing Arguments (IO)
	Memory Architecture

	Pipelining
	Pipelining and Function Arguments
	Conclusion


	Extracting Information from an Algorithm
	Static or Dynamic Analysis
	Dynamic Analysis
	Previous Work and Existing Tools
	Alternative options

	Conclusion

	System Design
	Basic Overview of the System
	Basic Working of GCC
	GCC Plugin
	Loading the Analyze Prototypes
	Placement of the Custom Pass
	Managing the Log File
	Logging Basic Blocks
	Logging Statements
	PlugIn Arguments

	Parser / Analyzer
	Parsing Log Files
	Detecting Loops
	Combining Struct Elements
	Generating Reports
	Parser / Analyser Arguments

	Conclusion

	Results: Optimizing the Lucas Algorithm
	The Lucas & Kanade Algorithm
	Basic Working
	Previous Hardware Implementations
	Prepare for Analysis

	Optimizing Hardware Implementation
	Optimizing Step 1: StackBlur
	Optimizing Step 2: Compute Derivatives
	Optimizing Step 3: Compute Velocities

	Pipelining the Design
	Pipelining Loops
	Pipelining the Overall System

	Results
	Calculating Frames Per Second
	Run-time on a PC
	Determine Clock Frequency and Velocity Pipeline
	Final Results


	Conclusion and Future Work
	Summary
	Conclusion
	Future Work
	Future Work on Case Study: The Lucas Algorithm

	Optical Flow Background
	Limitations and Constraints of Optical Flow
	Optical Flow Techniques
	Differential Techniques
	Region-Based Techniques


	Log File Format Description
	Log Function
	Log Basic Block
	Log Memory Access
	Log Array Access
	Log Pointer Access
	Log Pointer Set Address from Expression
	Log Pointer Set Address from Pointer
	Log Cast
	Log Pointer Cast
	Log Operation
	Log Condition
	Log Array Set Pointer
	Log Function Call

	Analyze Library Description
	castInt
	print
	writeToFile
	logFunction
	logVarAccessInt
	logPtrAccessInt
	logPtrSetExpr
	logPtrSetPtr
	logOperation
	logCastInt
	logPtrCast
	logCond
	logBasicBlock
	logArrayIndex
	logArrayAccessIntStart
	logArrayAccessIntEnd
	logArrayAccessIntSetPtr
	logCallStart
	logCallPar
	logCallEnd
	logCallReturn
	openLogFile
	closeLogFile
	createNewLogFile


