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SUMMARY

In contemporary society, we are surrounded by not only physical materials, but also im-
ages of them. We are capable of judging materials and their properties with only visual
information. For instance, if an object looks solid and glossy or soft and fluffy. This
ability is called material perception. As for images, there are various ways of image mak-
ing, such as photography, painting, computer rendering, etc. And a new method has
emerged recently: generative AI. All these image generation methods can produce differ-
ent appearances of the same object or material. In this thesis, we studied human visual
perception of two types of appearances: appearance as material property, appearance
as pictorial style and the interaction between them.

In Chapter 2, we investigated depiction style by zooming in on a single motif, an
apple. By using the fragments instead of the whole painting, we were able to keep the
subject matter relatively constant, and isolate style from composition as well as other
contextual information. We first constructed a perceptual space of style using similarity
judgements from online participants. Then we fitted perceived attributes to this space to
understand its dimensions. The data resulted in a three-dimensional space. Dimension
1 is associated with smoothness and brushstroke coarseness. Dimensions 2 and 3 are
related to hue and chroma. Surprisingly, we also found a rotational relation between
creation year and the first two dimensions, revealing a certain cyclic, repetitive pattern
of style. The results suggest style can already be perceived in fragments of paintings.

In Chapter 3, we studied the influence of medium on appearance. For example,
imagine an oil-painted apple and a pencil-sketched apple: they can have different ap-
pearances. The comparison between different media has rarely been studied. One possi-
ble reason is the difficulty to isolate medium from its confounding factor, subject matter.
We found a solution by comparing oil paintings and their engraved reproductions. The
identical content gave us a perfect opportunity to compare material perception from
two distinct media. We collected 15 pairs, consisting of 88 fragments depicting differ-
ent materials like fabric, skin, wood and metal. We also created three manipulations to
understand the effect of color (a grayscale version) and contrast (equalized histograms
towards both painting and engraving). We collected ratings on five attributes: three-
dimensionality, glossiness, convincingness, smoothness and softness. Paintings showed
a broader perceived range than engravings, with contrast equalization having a greater
impact on perception than color removal. Possibly engravers used local contrast to com-
pensate the absence of color.

In Chapter 4, we analyzed an emerging medium from a non-human creator, gener-
ative AI. In two experiments, we explored human material perception using generative
AI stimuli and compared the perceptual spaces of three generative AI models, as well as
a computer-generated BRDF stimulus set, the MERL dataset. In Experiment 1, we used
text descriptions of 32 materials from MERL (e.g. ‘green fabric’) as prompts for DALL-E 2
and Midjourney v2. Both AI models resulted in a 2D space while MERL resulted in a 1D
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one. The three spaces showed low similarity, suggesting the AI models generated unique
and different images of materials from identical text prompts. In Experiment 2, we ex-
plored another text-to-image model Stable Diffusion v1.5 with an add-on, ControlNet.
ControlNet allowed us to add additional graphical constraints besides text input. In this
way we could inspect more complex shapes. We kept the same 32 descriptions and gen-
erated material blobs in three shapes, from simple to more complex geometry. The three
perceptual spaces from the three shapes showed high similarity, indicating both robust
structure and minor influence of object shape on material perception. Interestingly, the
perceptual spaces from Experiment 2 also shared similar structure as perceptual spaces
from other material studies using real-world photos, computer renderings and depic-
tions. In sum, we investigated visual perception through the lens of art by examining
appearances rendered by painters, engravers and generative AIs.



SAMENVATTING

In de hedendaagse maatschappij worden we niet alleen omringd door fysieke materialen
maar ook door afbeeldingen ervan. We zijn in staat om materialen en hun eigenschap-
pen te beoordelen met behulp van alleen maar visuele informatie. Bijvoorbeeld, of een
object er solide en glanzend uitziet of zacht en pluizig. Dit vermogen wordt materiële
perceptie genoemd. Wat betreft afbeeldingen zijn er verschillende manieren om afbeel-
dingen te maken, zoals fotografie, schilderen, computer rendering, etc. En recent is er
een nieuwe methode bijgekomen: generatieve AI. Al deze methoden voor het genere-
ren van afbeeldingen kunnen verschillende verschijningsvormen van hetzelfde object of
materiaal produceren. In dit proefschrift bestudeerden we de menselijke visuele per-
ceptie van twee verschijningsvormen: niet alleen als materiële eigenschap maar ook als
picturale stijl plus de interactie daar tussen.

In Hoofdstuk 2 onderzochten we de weergavestijl door in te zoomen op een enkel
motief, een appel. Door de fragmenten te gebruiken in plaats van het hele schilderij,
konden we het onderwerp relatief constant houden en stijl isoleren van compositie en
andere contextuele informatie. We construeerden eerst een perceptuele ruimte voor stijl
met behulp van gelijkenisoordelen van online deelnemers. Vervolgens pasten we waar-
genomen kenmerken in deze ruimte om de dimensies te begrijpen. De gegevens resul-
teerden in een driedimensionale ruimte. Dimensie 1 wordt geassocieerd met gladheid
en grofheid van de penseelstreek. Dimensies 2 en 3 zijn gerelateerd aan tint en chroma.
Verrassend genoeg vonden we ook een circulaire relatie tussen het scheppingsjaar en de
eerste twee dimensies, wat een bepaald cyclisch, repetitief patroon van stijl onthulde.
De resultaten suggereren dat stijl al kan worden waargenomen in fragmenten van schil-
derijen.

In Hoofdstuk 3 bestudeerden we de invloed van medium op de verschijningsvorm.
Stel je bijvoorbeeld een met olieverf geschilderde appel voor en een met potlood ge-
schetste appel: ze kunnen er anders uitzien. De vergelijkingen tussen verschillende
media zijn zelden bestudeerd. Een mogelijke reden is de moeilijkheid om medium te
isoleren van het onderwerp zijnde een verstorende factor. We vonden een oplossing
door olieverfschilderijen en hun gegraveerde reproducties te vergelijken. De identieke
inhoud gaf ons een perfecte gelegenheid om de materiële perceptie van twee verschil-
lende media te vergelijken. We verzamelden 15 paren, bestaande uit 88 fragmenten die
verschillende materialen afbeelden, zoals stof, huid, hout en metaal. We hebben ook
drie manipulaties gecreëerd om het effect van kleur (via een grijstintenversie) en con-
trast (via gelijkgemaakte histogrammen voor zowel schilderij als gravure) te begrijpen.
We hebben beoordelingen verzameld voor vijf kenmerken: driedimensionaliteit, glans,
overtuigingskracht, gladheid en zachtheid. Schilderijen lieten een breder waargenomen
bereik zien dan gravures, waarbij het gelijktrekken van contrast een grotere impact had
op de perceptie dan het verwijderen van kleuren. Mogelijk gebruikten graveurs lokaal
contrast om de afwezigheid van kleur te compenseren.
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x SAMENVATTING

In Hoofdstuk 4 hebben we een opkomend medium van een niet-menselijke ma-
ker geanalyseerd, te weten generatieve AI. In twee experimenten hebben we menselijke
materiële perceptie onderzocht met behulp van generatieve AI-stimuli en de perceptu-
ele ruimtes van drie generatieve AI-modellen door ze niet alleen met elkaar te vergelij-
ken maar ook met een door de computer gegenereerde BRDF-stimulusset, de MERL-
dataset. In Experiment 1 hebben we tekstbeschrijvingen van 32 materialen van MERL
(bijv. ‘groene stof’) gebruikt als prompts voor DALL-E 2 en Midjourney v2. Beide AI-
modellen resulteerden in een 2D-ruimte, terwijl MERL resulteerde in een 1D-ruimte. De
drie ruimtes vertoonden weinig gelijkenis, wat suggereert dat de AI-modellen unieke en
verschillende afbeeldingen van materialen genereerden uit identieke tekstprompts. In
Experiment 2 onderzochten we een ander tekst-naar-afbeeldingsmodel, te weten Stable
Diffusion v1.5 met een add-on, ControlNet. Met ControlNet konden we extra grafische
beperkingen toevoegen naast tekstinvoer. Op deze manier konden we complexere vor-
men onderzoeken. We behielden dezelfde 32 beschrijvingen en genereerden per materi-
aal blobs in drie vormen, met de geometrie variërend van eenvoudig tot meer complex.
De drie perceptuele ruimtes van de drie vormen vertoonden veel gelijkenis, wat duidt
op zowel een robuuste structuur als een kleine invloed van de objectvorm op de materi-
ële perceptie. Interessant genoeg deelden de perceptuele ruimtes van Experiment 2 ook
een vergelijkbare structuur met perceptuele ruimtes van andere materiaalstudies ver-
kregen met behulp van echte foto’s, computerweergave en afbeeldingen. Samengevat,
we onderzochten visuele perceptie door de lens van kunst via het nagaan van verschij-
ningsvormen zoals gecreëerd door schilders, graveurs en generatieve AI’s.



1
INTRODUCTION

1.1. MATERIAL PERCEPTION AND DEPICTION
We are constantly surrounded by a variety of materials that make up our environment,
from wood table tops to ceramic coffee mugs. We use our visual sense to understand
and interact with these materials. Without touching, we can already recognize the world
around us and even judge the properties of the materials we encounter. Humans have
the ability to visually recognize materials with high speed and accuracy (Fleming, 2017;
Sharan et al., 2009, 2014). This ability, which can be called material perception, helps
us to interact with the world. For example, it can help us to judge if a fruit is ripe or if
a surface is solid to step onto. In addition to physical materials, as someone who lives
in the modern society, we also encounter enormous amounts of depicted materials. For
example, magazines, photographs, computer rendered movie scenes and images from
generative artificial intelligence (AI) models. Although in the end they are just printed
ink on a piece of paper, or pixels on a screen instead of physical objects, we can still easily
recognize different materials and infer their properties from the images. This underlines
the powerful utility of images for humans.

For physical materials, recognizing them visually and inferring their properties rapidly
is actually a complex task. The information received by the retina are complex light
patterns, shaped directly by the objects’ three-dimensional properties, reflectance, and
transmittance (Anderson, 2011). Recognizing materials from images shares some com-
monalities, but there are also some differences. First, images are produced with vari-
ous techniques. Photographs are rather direct captures of the real world. Instead of the
retina, light is projected onto a film or a digital sensor. Computer-generated imagery
(CGI) also takes a physics based approach. To generate a 2D image with CGI, a physics
based rendering engine would require the 3D model of the object, its surroundings, their
material properties, the light source and sometimes the environmental light map. It cal-
culates how the light interacts with the scene from the corresponding viewpoint. Visual
arts such as drawings and paintings, on the other hand, take a different approach. Usu-
ally created directly on a 2D surface, a painting can be seen as the artist’s subjective in-
terpretation of how objects are perceived. Paintings not necessarily fully obey the rules
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of physics (Cavanagh, 2005), even for those that are intended to be realistic rather than
stylistic. For instance, the shadows of some objects might violate the shadow directions
of the rest of the scene, but viewers might not notice the inconsistency since the human
visual system is insensitive to illumination inconsistencies (Jacobson and Werner, 2004;
Mamassian, 2004; Ostrovsky et al., 2005; Wijntjes and de Ridder, 2014). Or, as Figure 1.1
shows, different objects in the same scene might have inconsistent light sources, even
though, at a glance, nothing seems to be wrong. Throughout history, artists have found
shortcuts to depict convincing scenes without fully following the laws of physics. The
shortcuts work for viewers since the viewers share a similar visual system as the artist.
In other words, art is made from perception and for perception. This makes art a great
material for understanding human’s visual perception. In this thesis, we will study visual
perception through the lens of art.

Figure 1.1: All the human figures appear to be outside. However, the glass bottle in the bottom left corner
(enlarged on the right side) appears to be indoors. Its small highlight indicates a small light source possibly
in the shape of a window. Jan van Scorel, The Lamentation of Christ, 1535. Downloaded from the online
repository of Centraal Museum, Utrecht.

1.2. RATIONALE OF THE THESIS
In visual arts, the same object or material can be rendered in different ways, resulting
in different appearances. For example, flowers depicted by van Gogh have a different
appearance than flowers from de Heem; a painted dress can have a different appearance
than an engraved one; even the latest AI generated images have, what may be called,
an ‘AI look’. In the example of depicting flowers, the two artists made their choices of
how something is depicted, which can be called style. We will investigate visual style in
Chapter 2. The comparison between painting or engraving the same object or material
actually reflects the influence of different media on appearance, which will be discussed
in Chapter 3. And Chapter 4 will dive into AI generated appearances.
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IT STARTED FROM STYLE
The emerging technique of style transfer (Gatys et al., 2016) and the rapid development
of generative AI have brought renewed attention to the topic of visual style. These tools
make it easy nowadays to create desired images in different styles with text descriptions,
prompts (e.g., a flower in the style of watercolor, or a flower in the style of Monet). Style
is not a new topic in art history nor in vision science. Approximately one century ago,
Heinrich Wölfflin used a top-down approach employing pre-defined concepts to differ-
entiate the Renaissance from the Baroque (Wölfflin, 2012). To this end, he came up with
five principles for describing style differences. However, the approach has its limitations
when exploring unknown concepts we are interested in. Here, bottom-up methods such
as multidimensional scaling (MDS) are to be preferred. Often used in perception stud-
ies (Agarwal et al., 2007; Di Cicco et al., 2020; Ferwerda et al., 2001; Graham et al., 2010;
Hebart et al., 2020; Toscani et al., 2020), MDS first collects (dis)similarity judgements
from observers among pairs of stimuli to obtain a measure for the perceptual distances.
Then it constructs a low-dimensional space where the distance between points reflects
as good as possible their perceptual distance (see Mead (1992) for a review). Note that
the term perceptual space is often interchangeable with ‘embedding’ or ‘MDS solution’.
We found style studies using the MDS method, with no (Berlyne and Ogilvie, 1974) or lit-
tle control (O’Hare, 1976; Ruth and Kolehmainen, 1974) on the content (subject matter).
Content and composition were found to be part of the stylistic choices. In the current
project, we are interested more in how something is depicted instead of what. Hence we
will strive for isolating style from confounding factors such as subject matter. For exam-
ple, Figure 1.2 illustrates two oil paintings that are both substantially different in style
and subject matter. It can be challenging, or at least not straightforward to focus on style
differences only.

We are also aware of other style research from different perspectives, such as image
statistics (Rao et al., 1999; Sablatnig et al., 1998) or computational approaches (Elgam-
mal et al., 2018; Graham et al., 2010). In this project we would like to focus on the angle
of human perception, as I argued in section 1.1. In sum, we are interested in studying
how humans perceive an object or material when rendered in different ways.

METHODOLOGY: A PILOT STUDY ON FLOWER STILL-LIFE PAINTINGS

Flower still life paintings first catched my attention. I noticed that they share relatively
uniform content: a collection of flowers placed in a vase, the vase is often on a surface
such as a table. So we conducted the very first experiment with flower still life oil paint-
ings. In the first online experiment, Pilot Experiment 1, we collected pairwise similarity
judgements on ten flower still life paintings from 20 online participants. The selection
of paintings covered three art movements, Baroque, Impressionism and Realism. Their
creation years ranged from early 18th century to late 19th century. We asked for stylis-
tic similarity ratings between each pair of the paintings, without specifying the concept
of style in too much detail, leaving room for participants to have their own interpreta-
tion and criteria. The data analysis resulted in a 2D perceptual space as suggested by
the stress values. The stress value is a key indicator to determine the dimensionality of
an MDS analysis (Kruskal, 1964). The results shown in Figure 1.3A seemed promising.
The four Realism paintings on the right side are clearly separated from the rest. One
assumption might be that this separation is due to a difference in composition. In the
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Figure 1.2: Subject matter can be a confounding factor for judging depiction style. Left: Johannes Vermeer, The
Milkmaid, 1660. Downloaded from the online repository of the Rijksmuseum, Amsterdam. Right: Vincent van
Gogh, Irises, 1890. Downloaded from the online repository of Van Gogh Museum, Amsterdam.

four Realism paintings, the background occupied a larger area than the rest. There was
no clear separation between the Baroque cluster and the Impressionism cluster, possi-
bly because: 1) they share similar composition; 2) they can both be described as colorful
while the Realism paintings present less diversity in color and less saturated colors.

As mentioned above, we would like to study the how rather than the what of style,
so the next step was trying to remove the influence of composition. To achieve that, we
conducted the same experiment, but instead of using the whole paintings as stimuli, we
used cut-outs of flowers from the same selection of paintings. Again we reached a 2D
solution, as shown in Figure 1.3B. However, the structure of that space was obviously dif-
ferent from that in Figure 1.3A, indicating different criteria might have been used by the
participants. More specifically, the Impressionism cluster separated from the Baroque
one, and one of the Realism paintings moved towards the Baroque cluster. We assumed
the brushstroke coarseness might be one of the judging criteria (which was later con-
firmed in Chapter 2).

At the same time, we explored another methodological direction. Two types of tasks
are often used to collect (dis)similarity judgement data for MDS analysis. Both have their
advantages and disadvantages. Pairwise rating, as we used in the first two experiments,
presents two stimuli in each trial and asks participants to rate their (dis)similarity on a
scale, from not similar to very similar. The advantage of pairwise rating is it requires a
relatively small number of trials to collect the full (dis)similarity matrix for MDS analysis:
n(n−1)/2 trials where n is the total number of stimuli. However, it has the disadvantage
of being sensitive to individual differences: for example, scale range can vary consider-
ably between observers and may also depend on preceding trials (Linde, 1975; O’Hare,
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Figure 1.3: A) 2D MDS solution of a pairwise rating task using ten flower still-life oil paintings from three art
periods: Baroque, Impressionism, Realism. B) 2D MDS solution of a pairwise rating task using ten fragments,
one per painting as shown in Figure 1.3A. C) Same as Figure 1.3A, but now based on the results of a triplet
judgement task.
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1976). The alternative choice, a triplet comparison task, presents three stimuli in each
trial and asks participants to choose either the most similar pair out of three possible
pairs or select one stimulus as the odd one out. The advantage is it is more robust and
makes it easier to combine data across participants, since the choice is only ‘which one’
instead of ‘how much’ (Heikinheimo and Ukkonen, 2013; Li et al., 2021; Tamuz et al.,
2011). In principle, this allows us to scale up experiments by having a larger painting
selection and more participants at our disposal. However, the triplet task has one ma-
jor disadvantage: the number of trials increases cubically, n(n − 1)(n − 2)/6 where n is
the number of stimuli. We came up with multiple solutions to reduced the number of
required trials, which will be discussed later in section 1.3.3. But first, we wanted to com-
pare the performance between triplet and pairwise tasks. To this end, we conducted Pilot
Experiment 3. It is a replication of Pilot Experiment 1, except that we replaced the pair-
wise rating task with a triplet comparison task. The similarity between two stimuli was
calculated based on the frequency they were selected as the most similar pair. Again it
led to a 2D MDS solution, as shown in Figure 1.3C. Note that the triplet result has almost
identical structure as the pairwise rating result (Figure 1.3A).

ZOOM IN ON A TIMELESS OBJECT

From the three pilot experiments with flower still life paintings, we learned two major
takeaways: 1) subject matter plays an important role in style judgement; we can control
this by zooming in on fragments of paintings, preferably on a single object; 2) the triplet
task works well; it provides robust and repeatable results while allowing us to scale up the
experiment. With this knowledge, we conducted the first study on style perception. We
tried to investigate the existence and description of style by isolating style from medium
and subject matter. We focused on a single medium, oil painting, and a single object: an
apple. In this way, we hope to exclude the possible influence of subject matter (what),
period cues such as items tightly connected to a certain era (when), and occasionally
signatures of the artists (who), thereby mainly focusing on the how.

Oil painting was chosen because of its long history and wide usage while the ap-
ple was selected since it is a rather ‘timeless’ object. For example, an apple appeared in
Adam’s hand in medieval paintings, in still life paintings from Dutch 17th century, but
also in modern paintings such as The Listening Room by René Magritte from the 20th
century. We collected cut-outs of apples from a wide range of oil paintings covering di-
verse creation times and regions. By zooming in on cut-outs of depicted apples, we not
only isolated the same object, but also removed background information such as cloth-
ing, interiors or exteriors that could indicate the period the painting was created. We
first reached a perceptual style space by collecting human similarity judgements, then
described the dimensions by fitting attributes rating data. This study will be thoroughly
discussed in Chapter 2.

ZOOM OUT TO EXPAND MEDIA COVERAGE

If style can be defined as the way someone does something, then for artists, it also in-
cludes the medium they choose. In fact, artists decide the medium of their choice as
the first step, before any content is created. In other words, medium is a stylistic choice
that can affect the appearance of objects and materials. This can also be seen in the way
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modern content is created via generative AI. For instance, a prompt can be ‘in the style
of Caravaggio’, or ‘in the style of watercolor’. In the first study, we focused on the stylistic
differences within the same medium, oil painting. In the second study, we would love to
expand the media coverage to investigate the influence of medium.

Throughout history, artists experimented with various media, which evolved along-
side technological advancements and cultural shifts, with each medium offering distinct
perceptual characteristics. Fresco, prominent in ancient and classical periods, is char-
acterized by its durability and matte finish, though colors tend to be muted due to the
plaster base. Tempera, widely used in the Middle Ages, produces sharp lines and bright,
opaque colors but lacks the smooth blending found in later media. Engraving, devel-
oped in the 14th century, enabled precise, high-contrast images with intricate detail,
facilitating the reproduction of artwork. Oil painting, emerging in the 15th century, be-
came dominant due to its vivid colors, smooth transitions, and ability to create depth
and texture. Watercolor, popularized in the 16th century, is known for its translucency,
lightness, and fluidity, making it ideal for capturing delicate atmospheres. Lithography,
introduced in the 19th century, allowed for soft gradients and subtle textures, suitable for
mass production of images. Photography, also from the 19th century, revolutionized vi-
sual representation by capturing fine details and natural light with unparalleled realism.
Digital media in the late 20th century enabled precise manipulation of color, form, and
texture, offering endless creative possibilities with virtual tools. Note that some media
refer to the technique while others focus on the material. For example, photography is
about the technique, regardless if the photo is presented on the digital screen or printed
on paper; and oil painting is about the material used.

However, comparisons between different media have rarely been studied, possibly
due to factors similar to those affecting the style studies: the subject matter acts as a
confounding factor, making it difficult to isolate the effects of the medium. And we want
to use real-world art as stimuli instead of producing our own stimulus images (Delanoy
et al., 2021). We found a solution by comparing oil paintings and their engraved repro-
ductions. Before the invention of photography, besides being a standalone form of art,
engraving was used to reproduce paintings. The identical content gave us a perfect op-
portunity to compare material perception from two distinct media.

As can be seen from Figure 1.4, engraving is essentially line art consisting of the white
of the paper and the black of the ink. It is a very different medium from oil painting
where colors are used. In addition, in oil paintings shading can be achieved by a smooth
gradient, while engravers can only play with line weight and patterns. From these pairs
we were able to isolate areas in different materials (as illustrated by the red outlined areas
in Figure 1.4), such as fabric or skin, and compare perception of these selections. This
study will be thoroughly discussed in Chapter 3.

ZOOM OUT TO EXPAND CREATOR COVERAGE

While in the first two studies we dived into different appearances created by human
artists, for the last study, we zoomed out to include non-human creators, that is, gen-
erative AI. Just like the artists in the last two chapters, the generative AI models in this
last study work within 2D planes. Interestingly, the emerging generative AI models can
be seen as a different creator than humans and/or as a new medium (technique) that
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Figure 1.4: Engraving was used to reproduce oil paintings, so that the pair shares identical subject matter. The
red outlines are examples of highlighted area for participants to judge. Left: Anthony van Dyck, Christ healing
the paralytic, 1619. Downloaded from commons.wikimedia.org. Right: Pieter de Jode II, Christ healing the
paralytic, 1641-1670. Downloaded from the online repository of National Galleries of Scotland, Edinburgh.
The engraving is mirrored horizontally to match the original oil painting. Both are slightly cropped to achieve
good alignment.

blends and remixes previous human creation and novelty. In Chapter 4 we asked three
text-to-image AI models (DALL-E 2, Midjourney v2, Stable Diffusion v1.5) to generate
images of various materials. With similarity judgements from human participants, we
could construct a perceptual space for each AI model from these image sets. We com-
pared the perceptual spaces from these AI models with each other as well as with that
from a bidirectional reflectance distribution function (BRDF) material dataset, MERL
(Matusik, 2003). The text prompts for the AI models were labels attached to this last
material data set.

This third study consists of two experiments. In Experiment 1 we tested DALL-E 2
and Midjourney v2 in 2022. Mentioning the year is important as generative AI models
developed rapidly around this time. The only constraint for the AI models is text de-
scriptions (prompts). In Experiment 2 we tested Stable Diffusion v1.5 in combination
with an add-on, ControlNet, which allowed us to have one additional graphical con-
straint, a depth map. With this graphical constraint, we were able to generate materials
in more complex geometries. The prompts for all AI models are the text descriptions of
materials (e.g., blue acrylic) from MERL dataset. These experiments will be thoroughly
discussed in Chapter 4.

1.3. METHODOLOGY

1.3.1. CONTROL OVER SUBJECT MATTER

In all three studies, we isolated specific factors such as style or medium by keeping the
remaining variables as constant as possible. Among these variables, keeping subject
matter as constant as possible proved especially challenging when working with exist-
ing artworks. But we still found the solutions by 1) comparing the originals and their
replicas (Chapter 3) and 2) keeping the objects approximately consistent (Chapter 2 and
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4).
In Chapter 2, we isolated style from subject matter by cropping to a ‘timeless’ ob-

ject, apple, while having a wide coverage of real paintings (instead of generated stimuli).
Chapter 3 faced the similar challenge as Chapter 2. But this time, we took the control
over subject matter one step further, the two versions share the same content, since the
engraving version was made as the reproduction of the painting. The identical content
allowed participants to focus on medium without subject matter as a confounding fac-
tor. In Chapter 4, we controlled the geometry of material blobs by either semantic con-
straint (i.e., a sphere) or graphical constraint (i.e., the same depth map within the same
stimuli set). Figure 1.5 shows the demonstration of subject matter control.

1.3.2. ISOLATING VARIABLE WITH IMAGE MANIPULATION
The cropping we used in the style study can be seen as image manipulation. Besides
cropping, we also used other image manipulations to isolate a single variable of our in-
terest. In Chapter 3, to investigate the influence of color and contrast, we created dif-
ferent versions of stimuli. By comparing the original colored version with the created
grayscale version, we were able to evaluate the influence of color on material percep-
tion. Similarly, creating the histogram matched versions allowed us to delve into the
influence of contrast.

1.3.3. TRIAL REDUCTION
Both Chapter 2 and 4 used a perceptual scaling method to explore unknown perceptual
spaces. As we mentioned earlier, we favor triplet tasks over pairwise rating in order to
scale up the experiment. However, the triplet method also has the disadvantage of a
large number of required trials. We applied multiple solutions to reduce the number of
required trials.

Landmark MDS (LMDS) We used 48 stimuli for Chapter 2, which would have required
17,296 unique trials without trial reduction. We used LMDS to reduce trials. LMDS was
originally designed to reduce computational demand when dealing with large data sets
(Silva and Tenenbaum, 2002). It uses only a portion of the data to reach the MDS solution
without compromising too much on accuracy. LMDS first selects a subset of stimuli as
landmarks, randomly or manually. It requires the full distance matrix for the ‘landmarks’,
runs classical MDS on the landmarks and reaches an MDS space with only landmarks.
Then for the remaining stimuli, the non-landmarks, LMDS uses the distance between a
non-landmark and all landmarks to position it in the established space, without needing
the distance between non-landmarks. In our case, however, we used LMDS in a different
way than its original design. Instead of collecting the full distance matrix data and then
use a portion of them, we decided which portion of the data to collect beforehand. In this
way, we reduced the number of required trials from 17,296 to 4,400. The 75% trial reduc-
tion is achieved by selecting 16 stimuli as landmarks, which represent various periods
and origins. LMDS only requires the full distance matrix to run a classical MDS analy-
sis on landmarks (16×15×14/6 = 560 trials). The dimensionality and the space is first
defined by the landmarks. Then each remaining 32 non-landmarks is then fitted to the
space with its relation to all 16 landmarks (32× (16×15/2) = 3840 trials). The significant
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Figure 1.5: Subject matter control. Chapter 2 left: Henri Fantin-Latour, Still Life, 1866. Downloaded from
the online repository of National Gallery of Art, Washington, D.C.. Chapter 2 right: Hans Memling, Diptych
of Maarten Nieuwenhove, 1487. Downloaded from commons.wikimedia.org. Chapter 3 left: Pompeo Batoni,
La mort de Marc Antoine, 1763. Downloaded from Wikipedia. Chapter 3 right: Johann Georg Wille, La Mort
de Marc Antoine, 1778. Downloaded from the online repository of the Rijksmuseum, Amsterdam. Chapter 4:
both generated by Yuguang Zhao with Stable Diffusion v1.5 and ControlNet.
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reduction of trials allowed us to scale up the experiment while keeping it feasible.

Soft Ordinal Embedding By the time we started the study of Chapter 4 where we were
again interested in the unknown perceptual spaces, a new method for trial reduction was
just released (Haghiri et al., 2020; Künstle et al., 2022). We were one of the early adopters
for the new method, Soft Ordinal Embedding (SOE) (Künstle and von Luxburg, 2024).

Originated from machine learning, SOE takes triplet data as input and finds the per-
ceptual space that maximizes the number of consistent triplets. The minimal numbers
of required trials is only dn log2 n, where d is the estimated number of dimension(s) and
n is the number of stimuli. Compared to LMDS, SOE reduced the number of required
trials even further without compromising on solution accuracy. Further more, since the
space is no longer determined by ‘landmarks’, the triplets are just a random subset of all
possible triplets, which is easy to set up.

1.3.4. ENGAGING INTERFACE
In all three studies we collected human data to understand visual perception via crowd-
sourcing platforms (Amazon MTurk for Chapter 2 and Prolific for Chapter 3 and 4). We
chose the crowdsourcing option over lab experiment so that we could scale up the stud-
ies. Besides, it was the only option during the pandemic, which began a few months after
this PhD project commenced. Gathering high quality data via crowdsourcing platforms
can be a challenge (Cuskley and Sulik, 2022; Keith et al., 2017; Rodd, 2024). Ensuring high
data quality is crucial for the reliability and validity of our findings. To achieve this, we
should first understand our participants. Collecting data online is essentially a collabo-
ration between researchers and participants, researchers should not expect high quality
data to be granted (Cuskley and Sulik, 2022). The motivations for participants to spend
time on online experiments usually fall into one or more of the following categories: fi-
nancial reward, altruism, knowledge seeking and entertainment (Rodd, 2024; Tinati et
al., 2017). Thus, the payment is unlikely to be the only reason for participation (Göritz,
2014). Within these motivations, only financial reward and entertainment are within
our control. Besides reasonable compensation, we tried to provide good user experi-
ence (UX) for our participants. The interaction designs for our experiments might not
fall within the category of gamification, but at least they make the process more playful
and help participants to understand the task better. Both gamification and good UX are
believed to improve participants’ engagement, hence improve the data quality (Carvalho
et al., 2019; Rodd, 2024; Tinati et al., 2017). In addition, prevention methods such as an
attention check can be seen as passive methods that detect inappropriate behaviours,
and might cause long-term harm on the relation between researchers and participants
(Rodd, 2024). Instead, we took a persuasive path to encourage appropriate behaviours.

As someone with experience and passion about UX and interface design, I used my
programming skills to achieve the intuitive and engaging interaction designs. In both
Chapter 3 and 4, we chose the triplet task as mentioned above. Figure 1.6 shows the
online experiment interface of Chapter 4. The task is to select the most similar pair out
of the triplet. The cyclic movement, indicated by the icon at the lower left, allows all three
possible pairs to be displayed within the left rectangle for easy visual comparison. This
keyboard-only operation is user-friendly, requiring only two adjacent keys. As shown by
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the icons below the images, the RIGHT arrow key toggles the order, while the RETURN
key confirms the current selection and proceeds to the next trial.

Figure 1.6: Interface design for Chapter 4. As the first icon indicates, Pressing the RIGHT arrow key would
toggle the order of the three images. All three possible pairs can be selected as similar in terms of material.
They can press RETURN to both confirm the choice and proceed to the next trial.

In Chapter 3 where we compared material perception between two media, oil paint-
ing and engraving, I chose to have a mouse only interaction for easy rating. Figure 1.7
shows the interface design. When a participant moves the cursor to the left image area, a
red outline appears to indicate the target material area for judgement. When the cursor
is moved to the right rating area, its horizontal position controls the rating scale, regard-
less of the vertical position. Clicking confirms the rating and proceeds to the next trial.
The red outline disappears when the cursor is on the right side to avoid influencing ma-
terial perception with its vibrant color. For smooth and fast operation, participants can
keep the cursor on the right side; the red outline will flash twice at the beginning of each
trial, regardless of cursor position.

Additionally, we maintained a reasonable number of trials for each participant, en-
suring the experiment duration stayed under ten minutes. This relatively short time
frame helps prevent data quality degradation due to participant fatigue. The trial count
at the lower left corner is always visible as an progress overview. And the instruction
is always visible at the top to remind participants the task even if they did not read the
instruction page carefully. To gather qualitative feedback, we included a text box at the
end of each experimental session. And participants indeed provided some positive com-
ments:

1. From study 1: “It was interesting to do. I enjoyed it.”
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Figure 1.7: Interface design for Chapter 3. Each time a new stimulus was shown, the red outline flashed twice
to denote the area of interest. As a reminder, participants could move the cursor to the image area to show the
red outline overlay. On the right side, participants moved the cursor along the rating scale to adjust the rating,
and click to confirm and proceed to the next trial. Gerard ter Borch (II), Gallant Conversation (Known as ‘The
Paternal Admonition’), 1654. Downloaded from the online repository of the Rijksmuseum, Amsterdam.

2. From study 2: “The study was extremely well made and well thought. outlines
were amazingly done. All in all, a really interactive and interesting study.”

3. From study 3: “It was an interesting experiment and I really enjoyed doing it.”

The interface designs were achieved with HTML, CSS and JavaScript. An in-depth ar-
ticle with animation demonstrations can be found at https://yuguang-zhao.com/design/online-
experiment-UX.

https://yuguang-zhao.com/design/online-experiment-UX
https://yuguang-zhao.com/design/online-experiment-UX
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2
ZOOMING IN ON STYLE: EXPLORING

STYLE PERCEPTION USING DETAILS

OF PAINTINGS

Most studies on the perception of style have used whole scenes/entire paintings; in our
study we isolated a single motif (an apple) to reduce or even eliminate the influence of
composition, iconography, and other contextual information. In this paper, we empiri-
cally address two fundamental questions of the existence (Experiment 1) and description
(Experiment 2) of style. We chose 48 cut-outs of mostly Western European paintings (15th
to 21st century) that showed apples. In Experiment 1, 415 unique participants completed
online triplet similarity tasks. Multidimensional scaling (MDS) reached a non-random
3D embedding, showing that participants are able to judge stylistic differences in a system-
atic way. We also found a strong correlation between creation year and embedding, both a
linear correlation with Dimension 2, and a rotational correlation in the first two dimen-
sions. To interpret the embedding further, in Experiment 2 we fitted three color statis-
tics and nine attribute ratings (glossiness, three-dimensionality, convincingness, brush
coarseness, etc.) to the 3D perceptual style space. Results showed that Dimension 1 is asso-
ciated with spatial attributes (Smoothness, Brushstroke coarseness) and Convincingness,
Dimension 2 is related to Hue, and Dimension 3 is related to Chroma. The results suggest
that texture and color are two important variables for style perception. By isolating the
motifs, we could exclude higher levels of information such as composition and context.
Interestingly, the results reinforce previous findings using whole scenes, suggesting that
style can already be perceived in -sometimes very small- fragments of paintings.

Published as Zhao, Y., Stumpel, J., de Ridder, H., & Wijntjes, M. W. (2023). Zooming in on style: Exploring style
perception using details of paintings. Journal of vision, 23(6), 2-2. doi:https://doi.org/10.1167/jov.23.6.2
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2. ZOOMING IN ON STYLE: EXPLORING STYLE PERCEPTION USING DETAILS OF

PAINTINGS

2.1. INTRODUCTION
In his book Principles of Art History, Heinrich Wölfflin referred to an anecdote in which
four German painters from the Romantic period tried to paint a particular scenery all
‘firmly resolved not to deviate from nature by a hair’s breadth’ (Wölfflin, 2012). The re-
sulting landscapes, however, differed considerably in style. Wöllflin ascribed this fact
to differences in personality and vision of the artists. He also remarked that in spite of
the differences we would easily see the similarities between them and recognize them
as products of a particular period: the first half of the nineteenth century. For Wölfflin,
such collective differences between the pictorial production of different periods were ul-
timately rooted in differences in artistic vision or perception. To capture the differences
between sixteenth and seventeenth century painters, Wölfflin came up with five visual
principles: (1) linear vs. painterly, (2) closed vs. open form, (3) planar vs. recessional, (4)
multiplicity vs. unity and (5) absolute vs. relative clarity. Despite their widespread use
both within and beyond art history, such as in perception research (Goude and Derefeldt,
1981; O’Hare, 1979) and computer vision (Cetinic et al., 2020; Elgammal et al., 2018), it
can be seen that these principles have their limitations, and are specifically conceived to
model the contrast between Renaissance and Baroque art.

To understand the matter of style we need a broader definition that is both testable
and can generate novel insights. Gombrich (2009) seems to offer this broader definition:

“Style is a distinctive, and therefore recognizable, way in which an act is per-
formed or an artifact made.”

This is clearly a general description but at the same time specifically emphasizes the role
of the beholder (‘recognizable’). If there are no differences to be perceived, there is no
style. This fundamental aspect of style (its existence) precedes descriptions or models
of style such as those of Wölfflin. In this paper, we empirically address these two funda-
mental questions of the existence (Experiment 1) and description (Experiment 2) of style
in the context of visual perception.

STYLE MEASUREMENTS

To empirically investigate the perception of style, one ideally refrains from any explicit
terminology. A disadvantage of a Wölfflinian approach is the top-down usage of terms
describing style differences, instead of a bottom-up approach that does not make use
of such terms. The invention of multidimensional scaling (MDS) methods (see Mead
(1992) for a review) offered such an opportunity: instead of relying on explicit adjectives,
attributes or descriptions the MDS approach only relies on perceived differences (or ‘dis-
tances’), from which a space is constructed. This space is a low dimensional representa-
tion of the theoretical high dimensional space where each element would have its own
dimension. This representation can be concisely referred to as ‘embedding’ and some-
times, when appropriate, as ‘perceptual space’. Indeed, after substantial methodological
progress was made in the 1960’s (e.g. Kruskal, 1964b; Shepard, 1962), this approach be-
came popular in style perception studies. Berlyne and Ogilvie (1974), for example, con-
ducted a series of similarity judgements and attribute rating experiments on 52 paintings
covering 14th to mid-20th (western) art. Observers were instructed “how similar or dif-
ferent the two pictures of each pair were” using a 7-point scale. The authors concluded
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that a three-dimensional (3D) space would be the most reasonable solution to explain
their data, the first dimension being aligned with creation year. Interestingly, the au-
thors had difficulty explaining the second and third dimension and only very tentatively
suggested an influence of line and surface quality. Importantly, they found reasonable
inter-rater reliability, meaning that observers agreed quite well on perceived style. Re-
ferring back to Gombrich’s definition, the study of Berlyne and Ogilvie (1974) showed
enough ‘distinctiveness’ between the painting styles as demonstrated by inter-rater reli-
ability and a style space of three dimensions with reasonable stress value (< 0.2).

In addition to accessing perceptual spaces and interpreting them by means of ex-
plicit attribute ratings, similarity judgements data have also been used for classification
schemes (Graham et al., 2012). Here, the similarity data can be utilized for identifying la-
tent stylistic dimensions in an unsupervised model, or for training classification models
in a supervised manner (Hughes et al., 2011).

Other studies focus more on feature statistics, such as color histogram statistics (Rao
et al., 1999) or pixel information at the level of the brushstroke. Sablatnig et al. (1998),
for example, used a combination of face recognition and brushstroke analysis to clas-
sify paintings into different categories. However, it can often be unclear whether the
algorithms are measuring what is represented (i.e., depicted scenes) or the medium (i.e.,
paint on the canvas). We will come back to this issue in the General discussion.

STYLE DESCRIPTIONS

Various attempts have been made to quantify which visual features describe style. For
example, Berlyne and Ogilvie (1974) asked observers in further experiments to rate the
paintings on various affective, descriptive, artistic and stylistic scales. Especially inter-
esting were the four scales of texture, lines, colors, and shapes. These scales are some-
what related to Wölfflins’ principles. They were mostly significantly describing the style
space. Marković and Radonjić (2008) investigated the role of implicit and explicit fea-
tures in style perception. In their terminology, implicit refers mostly to subjective im-
pressions such as aesthetic and affective judgements while explicit refers to more ‘ob-
jective’ features such as form, color and space. Interestingly, they found that the MDS
configurations of 24 paintings could mostly be explained by explicit features. The gen-
eral approach of using attribute ratings to explain stylistic differences in paintings was
also used in other studies. O’Hare (1976) used a mixture of implicit (e.g. like-dislike,
interesting-uninteresting, peacefulness-disturbed) and explicit (e.g. dark-bright, soft-
sharp, few-many colors) features. He found significant correlations between the first
MDS dimension and ‘realism’ and between the second MDS dimension and ‘clarity’ and
‘symmetry’. These findings were rather robust as a follow-up study confirmed (O’Hare,
1979).

While attribute ratings have been used to explain style embeddings, they have also
been used to predict style categories: Ruth and Kolehmainen (1974) performed a factor
analysis on attributes in relation to existing style labels. This approach thus assumes
a fixed style structure which is different from the bottom-up approach of creating style
embeddings like those using MDS. An interesting different approach to looking for style
features is manipulating hypothesized features of style: Gardner (1974) altered texture
and color by various image manipulations. Masking impaired style recognition, making
it difficult to match artworks from the same artist.
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From another perspective, Wallraven et al. (2009) proposed that humans use three
levels of information for style perception: high-level background information: knowl-
edge about specific historical events, knowledge about artists and art periods in gen-
eral; mid-level content information: specific objects or scenes that are depicted, type of
painting or subject (landscape painting, portrait, etc.); and low-level pictorial informa-
tion: technique, thickness of brush strokes, type of painting material (oil, acrylic, etc.),
color composition of the scene. They conducted three experiments to perform catego-
rizing tasks. The results showed humans definitely need high-level information (old vs.
new, perspective flat vs. open, etc.) to make style categorization judgements, although
mid-level information (content, realistic vs. abstract, etc.) and low-level information
(brush stroke, colors, etc.) were also used by some participants. Siefkes and Arielli (2018)
also suggested that high-level information is important for style perception. It was ar-
gued that humans need knowledge about culture, history or art categories to be able to
perceive stylistic differences.

COMPUTATIONAL STUDIES

Besides behavioural research where the emphasis is on the human ability to perceive
stylistic similarities of artworks, other studies have taken a computational approach.
Graham et al. (2010), for example, related feature statistics to the axes of the MDS spaces
reached from similarity judgements. Evidently, there has been major breakthroughs in
so-called style transfer that started with Gatys et al. (2016), but this class of algorithms is
not used to predict style differences and categories. Elgammal et al. (2018) used 20 style
labels to train three deep convolutional neural networks (CNNs) on the WikiArt dataset.
These CNNs achieved sub-spaces with fewer than 10 dimensions that explained 95% of
the variance using Principle Component Analysis (PCA) (Jolliffe, 2002), with the first two
dimensions cumulatively explaining between 60% and 74%. Without having creation
years or artists as input training data, the 2D embeddings clearly showed a smooth tem-
poral transition between styles, in a clock-wise U-shape structure. The angular coordi-
nates have a Pearson correlation coefficient of 0.69 with time, again suggesting creation
year can be related to the style space. Furthermore, for 1000 paintings they collected art
historians’ ratings of the Wölfflin principles and found correlations within the first 5 PCA
dimensions. These ratings were then used by Cetinic et al. (2020) to do the reverse: train
a network estimating the five principles, applying this to the original WikiArt dataset and
look for patterns. They found an ascending trend of all five principles between 15th and
17th century, corresponding to style change from Renaissance to Baroque.

OUR CONTRIBUTIONS

The variety of paintings used in previous studies was often rather large. For example, the
selection in Berlyne and Ogilvie (1974) contained still-lifes, portraits, biblical scenes and
abstract paintings. This makes it clear that style can refer to different levels (Wallraven
et al., 2009), but that high-level background and mid-level content information were
perhaps too dominant in their study, thus overruling potential low-level information. We
hypothesize that the essence of style as defined by Gombrich will emerge more clearly
when the subject matter is held constant, as in Wölfflin’s anecdote.

In an attempt to limit the influence of subject matter, O’Hare (1976) conducted an
experiment with twelve landscape paintings. A two-dimensional (2D) space was found
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where the realistic-unrealistic scale was connected to the first dimension and the clear-
indefinite scale was connected to both first and second dimensions. Besides, we can
observe an increase of creation year along the first dimension. Another attempt by Ruth
and Kolehmainen (1974) used only paintings with similar content, ‘people surrounded
by nature in each painting’. Yet in both artwork selections, the variety of subject matter
is still rather large: people and landscapes can both vary tremendously in comparison
to having artists depict exactly the same scene. Also, other elements in the scene (e.g.
means of transport or dress) can provide time-related information, which correspond to
mid-level information proposed by Wallraven et al. (2009).

It is impossible to find a selection of paintings of the exact same subject matter, but
we can isolate painting cut-outs of objects that are repeatedly depicted throughout art
history. Ideally, the chosen motif does not undergo stylistic changes itself, which ex-
cludes human made objects such as clothing. The ideal motif is therefore something
natural. A particular natural motif that is omnipresent throughout art history is an ap-
ple. Despite some texture and color differences, apples are relatively similar, especially
concerning their shape and size. Isolating apples from their context from a wide vari-
ety of paintings and periods allows for an unprecedented control for subject matter and
thus offers a unique window on the perception of style.

Secondly, attributes used to explain or create style embeddings often refer to the pic-
torial plane (e.g. brushstroke) and/or implicit features (e.g. aesthetic preference) usually
ignoring features of pictorial representation. This may be due to the variation of sub-
ject matter, but it is undeniable that ways of depicting space and material are important
aspects of style. Using square cut-outs of single objects will allow us to ask questions
about object-specific properties (e.g. smoothness of depicted apple skin), regardless of
the composition of the whole painting.

In most of the studies discussed above (e.g. Berlyne and Ogilvie, 1974; Elgammal
et al., 2018; O’Hare, 1976), creation year could be identified in the measurements on
style differences and even related to the perceived realism of the painted scenes (O’Hare,
1976). But at the same time, it could be concluded that this is confined to paintings of
whole scenes only. So, as a third contribution, we looked into the question whether the
time a painting was created can also be revealed in observers’ style perceptions when
both high-level background information and mid-level content information have been
removed as much as possible.

Our fourth contribution is methodological. Many studies based on human judge-
ments used pairwise similarity ratings. Both O’Hare (1976) and Linde (1975) have noted
that pairwise similarity rating can be sensitive to individual differences: scale range can
vary considerably between observers and also depends on the preceding trials. Instead,
we used triplet comparison to quantify style similarities. This has various potential ad-
vantages, one of them is making it possible to scale up the experiment across various
participants. This would also allow for human judgements being used in computational
scenarios. The computational style studies reviewed above are all based on existing style
labels (e.g. from WikiArt) and not on perceived style differences. Although the num-
ber of paintings we investigated in the present study is still relatively small compared
to computational studies, a methodological advancement is needed that could use hu-
man intelligence to form a lens through which artistic style is quantified, instead of the
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often-used computational lens.
In the present study, we address the issues outlined above. In the first experiment, we

choose 48 apples cut-outs from paintings covering 1487 to 2017, reducing variability in
content matter (contributions 1 and 3). We used triplet judgements in combination with
the method of Landmark MDS (De Silva and Tenenbaum, 2004) where a subset of cut-
outs (the so-called landmarks) is first used to create the initial MDS embedding and then
used to fit the remaining non-landmark cut-outs into this space. By doing so, we reduced
number of trials dramatically (contribution 4). In the second experiment, we performed
multiple linear regression on a number of attributes, including some object related fea-
tures as opposed to the features about pictorial plane or implicit features (contribution
2).

2.2. EXPERIMENT 1 - SIMILARITY TRIPLET RANKING

2.2.1. METHOD

PARTICIPANTS

The online experiments were conducted through Amazon Mechanical Turk (AMT), a
crowd-sourcing website for Requesters (researchers in our case) to publish Human Intel-
ligence Tasks (HITs) online and hire crowd-workers (participants) to perform these HITs.
415 unique participants completed Experiment 1 (98.8% were from North America, ran-
dom sample).

All participants agreed with the informed consent before the actual experiment started,
and received compensation via AMT. The experiment was conducted in agreement with
the Declaration of Helsinki and approved by the Human Research Ethics Committee of
the Delft University of Technology. All data were collected anonymously.

STIMULI

48 digital images of apple painting cut-outs were used as stimuli. All cut-outs were
square cut-outs of high-resolution digital images retrieved from ‘Materials in Painting
Database’ (Van Zuijlen et al., 2021) or online museum repositories. The far majority of
them were oil paintings except for one or two that could have been painted in acrylic.
Figure 2.1 shows an example of an original painting (on the right), and the square cut-
out of an apple (on the left).

The creation years of the original paintings varied from 1487 to 2019. The selection
covered artists from northern European countries (i.e., Netherlands, Germany) to south-
ern European countries (i.e., Spain, Italy), and also paintings from France and North-
America.

Most square cut-outs digital images have resolution no less than 400 by 400 pixels,
and were set at 400 by 400 pixels in the online experiments. All images were embedded
with an sRGB ICC color profile, so that browsers could display colors properly (Ashe,
2014).

TRIPLET COMPARISON

To create a multidimensional embedding for a large set of images while distributing
the judgments among many participants, we opted for a triplet comparison task over
the pairwise similarity rating task. Apart from the before-mentioned advantages of this
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Figure 2.1: An example of a square cut-out of apple from oil painting. Jean Siméon Chardin’s Still Life with a
White Mug (1764), downloaded from the online repository of National Gallery of Art (nga.gov)

method, the disadvantage of using triplets instead of pairs is that the number of trials to
create a (dis)similarity matrix increases enormously. For n stimuli, a pairwise method re-
quires n(n−1)/2 trials while a triplet method requires n(n−1)(n−2)/6 trials. In our case,
with 48 stimuli, it would be 1128 unique trials for the pairwise method versus 17,296
unique trials for the triplet method. To reduce the number of triplets to be evaluated, we
used the method of Landmark MDS (LMDS).

LANDMARK MDS (LMDS)
The original purpose of LMDS (De Silva and Tenenbaum, 2004) was to reduce computing
power, by using only a portion of the data to reach a final MDS solution without losing
accuracy. In the current study, we used the method to reduce the number of trials. With
LMDS, the first step is to select a subset of l stimuli as landmarks, either randomly or
manually, and collect data and run a classical MDS analysis on those landmarks, i.e. all
l (l − 1)(l − 2)/6 triplets are being involved. The next step is to fit the remaining data
points (n non-landmarks) into the MDS space of landmarks, using distances between
non-landmarks and landmarks. For the first step, the lower half of an l × l full distance
matrix is required to run the MDS analysis. For the second step, only distances between
non-landmarks and landmarks are required. Thus, conventional MDS would require an
(l +n)× (l +n) matrix, while for LMDS only an (l +n)× l matrix is required to reach the
final solution.

In the current study, 16 apple paintings were carefully chosen as landmarks, so that
they represent various periods, and systematically distributed from north to south Eu-
rope (as shown in Figure 2.2, upper part with light orange background). We deliberately
included two identical stimuli to verify this method. Paul Cézanne’s Apples (1778-1879)
was used both as landmark and as non-landmark. There were 16 landmarks (L) and 32
non-landmarks (NL). To generate the MDS space with the Ls, 16×15×14/6 = 560 triplets
were needed. To fit the NLs in this space, each of the 32 NLs had to be paired with all
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unique pairs of Ls, i.e. 32×(16×15/2) = 3840 triplets. In total, we presented 4400 unique
triplets, compared to 17,296 triplets without LMDS, a reduction of about 75%. We split
trials into 40 experimental blocks, consisting of 110 trials with an average of 10 repeti-
tions. At least 8 unique participants completed each of 40 sub-groups (11 max, average
= 10.38).

PROCEDURE

Before the actual experiment, each participant would first read the consent form and
instructions for the experiment. They could only proceed if they gave their consent by
clicking ‘continue’ after reading the consent form. Then they were presented the follow-
ing instructions:

STYLE: is the way things are done. People can have different driving styles,
dancing styles etc. We are interested in painting styles. The aim of this experi-
ment is to measure how humans perceive style differences. In paintings, style
can show itself in various ways: the use of colors, shadows, lines, brushwork,
light, shading, ordering, etc. But we preferably do not specify this exactly. In
every trial, you will be shown three images of apples taken from larger paint-
ings. You have to select the two that are most similar in style.

Then they went through five practice trials, to familiarize our interface and opera-
tion. In each trial, three stimuli were presented side by side (as shown in Figure 2.3).
Participants were asked to place the most stylistically similar two stimuli in the rectangle
box on the left. They could use the Right arrow key on their keyboards to toggle the posi-
tion of the three cut-outs, until the most similar pair was in the left rectangle box. They
could press the Enter key to confirm their choice and go to the next trial.

DATA ANALYSIS

Before data analysis, we validated the data of individual participants on the basis of two
criteria. We measured how much their answer deviated from the initial random setting
(criterion at >15% change). Secondly, we used a minimum medium trial time of 1 sec-
ond, a threshold used in a similar study one of the authors conducted before (Van Zuijlen
et al., 2020). About 20% of the participants did not meet the selection criteria, hence their
data were removed for analysis, although these participants were reimbursed irrespec-
tive of this selection.

The data analysis consisted of two steps: firstly, a non-metric MDS on the landmark
stimuli was performed, secondly, we fitted the other data to the LMDS configuration.

MDS on landmarks
The raw output of each participant consisted of 110 triplets. For landmark-only

triplets, an output triplet [from left to right (see Figure 2.3): A, B, C] meant the partic-
ipant indicated the pair of image A and image B was the most similar pair. We created
the (dis)similarity matrix using a frequency based method. For a pair A-B, the similarity
score was calculated as follows (this is across the results from all participants encounter-
ing the pairs A-B): s/t , where s = amount of triplets where A and B were grouped together
(the first two elements were AB or BA) and t = amount of triplets containing both A and
B. The corresponding dissimilarity score was 1− s/t .
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1487 

Hans Memling

1507 

Albrecht Dürer

1520 - 1529 

Lucas Cranach the Elder

1590 

Giuseppe Arcimboldo

1599 

Caravaggio

1615 

Floris van Dijck

1650 

Pedro de Medina Valbuena

1716 

Jan van Huysum

1764 

Jean Siméon Chardin

1771 

Luis Egidio Meléndez

1878 - 1879 

Paul Cézanne

1887 - 1888 

Vincent van Gogh

1916 

Henri Matisse

1945 

Pyke Koch

1960 

René Magri�e

2005 

Jan Beutener

1600 

Fede Galizia

1602 

Juan Sánchez Cotán

1610 

Clara Peeters

1610 

Clara Peeters

1613 

Floris van Dyck

1620 

Georg Flegel

1630 

Sebastian Stoskopff

1630 

Luca Forte

1640 

Juan de Zurbarán

1640 

Juan de Espinosa

1645 

Pedro de Medina Valbuena

1650 

Juan de Espinosa

1700 

Giovanni Paolo Spadino

1759 

Luis Egidio Meléndez

1771 

Luis Egidio Meléndez

1822 

Raphaelle Peale

1866 

Henri Fantin-Latour

1869 

Claude Monet

1869 

Claude Monet

1872 

Camille Pissarro

1874 

Henri Fantin-Latour

1878 - 1879 

Paul Cézanne

1878 - 1879 

Paul Cézanne

1885 

Joseph Decker

1890 - 1894 

Paul Cézanne

1890 

Paul Cézanne

1943 

Jan Bor

1944 - 1946 

Pyke Koch

1952 

René Magri�e

2019 

Antonio Fuertes

2015 

Angeles M Pomata

1860 

Hannah Brown Skeele

Figure 2.2: All 48 stimuli. The 16 landmarks are located in the upper part with light orange background, sorted
by creation year. 32 non-landmarks are located in the lower part with white background, also sorted by creation
year.
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Figure 2.3: Interface for Experiment 1. In each trial, participants were presented with three square cut-outs
of apples. Participants could use the RIGHT arrow key to toggle the order of the 3 cut-outs (as the left icon
indicated), until the most similar pair in their opinion were in the rectangle box frame on the left. Then they
could press ENTER to confirm and proceed to the next trial. On the bottom-left, participants could see how
many trials they still had to finish.

With a dissimilarity matrix of 16 landmarks, non-metric multidimensional scaling
(NMDS) analysis was then performed with metaMDS function from vegan package (v2.5-
6) in R (Oksanen et al., 2019). NMDS represents similarity data into a new configuration
with the lowest possible dimensions. The best fit is achieved while the distances of land-
marks are maintained as closely as possible. Compared to metric MDS, NMDS handles
perceptual data better, since it arranges points to maximize rank-order correlation be-
tween real-world distance and ordination space distance (Shepard, 1962).

Non-landmarks into LMDS configuration
We fitted non-landmarks into the MDS space from the previous step using a brute-

force procedure. The domain of the search extended twice the size spanned by the MDS
locations and was split up in 60 evenly spaced sample points in each dimension. At
each of these sampling points, fiducial triplet answers were generated on the basis of
the MDS data and were compared to the participants’ triplets. Simulated triplets were
thus compared with real triplets from participants’ answers. The cost function simply
consisted of counting congruent triplets. To increase robustness, we took the average of
the top 0.1 % of this congruency score (227 in the current study).

2.2.2. RESULTS

First, we determine the dimensionality of the landmark space by calculating the stress
value as defined by Kruskal (1964a). The stress for one-dimensional to six-dimensional
configurations is shown in Figure 2.4A. There is no obvious “elbow” shape, a commonly
used criterion to determine dimensionality. Another common criterion is to choose the
dimensions where the stress value is below 0.2 (Kruskal, 1964a). The first dimension
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Figure 2.4: A) Scree plot of MDS configuration of landmarks. B) 3D configuration of only landmarks (gray
dashed cubes are non-landmarks fitted in the space later).

that has a stress value below 0.2 is two. However, as the landmark set is only a subset
of the image set, we decided to continue the analysis with three dimensions, as to not
discard any potentially interesting patterns. As will be shown later, subsequent analyzes
supported this choice.

Next, the 32 non-landmark samples were fitted to the MDS space (Figure 2.4B, gray
cubes). The cost function is the congruency between the actual answers and the answers
constructed from the (to be fitted) configuration. We followed this brute force fitting
procedure for both the 2D and 3D configuration. The congruency values for both 2D and
3D solutions were well above chance level. There was a small but significant increase in
congruency for the 3D embedding: (t (31) = −5.32, p < 0.001) reflecting an increase in
congruency for 27 out of the 32 non-landmark points. This supported the choice for
using the 3D embedding for further analysis.

Figure 2.5 shows the overall 3D embedding. As can be seen, the distribution is rel-
atively homogeneous except for Dimension 2 where the distribution seems denser in
the lower part. The two same stimuli for verification purpose locate very close to each
other in the embedding, confirming the reliability of the landmark method. In addition,
it seems that modern apples are on top of the space (along Dimension 2), while older ap-
ples are located lower. To further investigate this “historical dimension”, we performed
a multiple linear regression for the creation year. With the set of coordinates and cre-
ation year for each stimulus as independent and dependent variable, respectively, the
orientation of the vector indicates the direction that yielded the best regression, while
the length indicates strength of the regression (R2). The red arrow in figure 2.5 indicates
this property vector.

Statistical analysis revealed a significant overall fit (R2
ad j usted = 0.47, F (3,44) = 15.05,

p < 0.001). Dimension 2 received most weight distribution of the fit, and is the only sig-
nificantly associated dimension with creation year. Figure 2.6A shows the positive rela-
tion between creation year and Dimension 2 (r = 0.69, p < 0.001). To further explore the
temporal aspect of the embedding we plotted creation years in the first two dimensions
in Figure 2.6B. This plot seems to suggest a rather clustered pattern with potentially a ro-
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Figure 2.5: 3D space of style perception with 48 apple stimuli. 48 boxes represented 48 stimuli. Each 6 faces
of a box show the same apple image, so that it is visible from any viewing angle. The red arrow represents the
vector of creation year fitted in the space.
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Figure 2.6: A) Correlation between creation year and Dimension 2 in MDS space. B) The first 2 dimensions with
color coded creation year and indication of a potential rotational correlation. C) Correlation between creation
year and rotation angle phi.

tational correlation. Coincidentally, the data is distributed such that directly calculating
the angle between the data points and the positive x-axis (Dim 1) seemed to capture this
trend (i.e. large negative angle and old creation year in lower left quadrant, intermediate
angles and creation years in right quadrants and large positive angle with new creation
year in the upper left quadrant). This was confirmed by calculating the correlation be-
tween angle φ and creation year (r = 0.70, p < 0.001).

What can further be tentatively observed is that apples with coarse and visible brush-
stroke are on the right side (along Dimension 1), while apples with fine and even invisible
brushstroke are on the left side. In addition, the greenish apples seem to be at the top of
the distribution (along Dimension 2) with the reddish/yellowish ones at the bottom.

2.2.3. DISCUSSION
We found a non-random style embedding of a stimulus set where we held subject matter
constant while using the landmark-MDS approach. This suggests that even when high-
level background information and mid-level content information have been removed by
presenting a single object (apple) only, participants can still consistently perceive style
differences. Apparently, there are object properties that make these judgments possible.
This will be investigated further in Experiment 2 by assessing object-related attributes
like smoothness and glossiness.

The dimensionality of the MDS analysis was based on 16 landmarks. As we men-
tioned in Section 2.2.2, it showed relatively low stress values for dimensions higher than
2 and there was no obvious elbow shape. So, additional criteria were needed. One of
these criteria came from the fit of the non-landmarks in the style space. For the majority
of the non-landmarks (27 out of 32), the data fitted better in the 3D embedding, which
made us decide to continue our analysis with the 3D embedding although stress levels
suggested the 2D embedding to be already sufficient.

We fitted the creation year to the 3D embedding, and Dimension 2 resulted in a sub-
stantial correlation, r = 0.69 (Figure 2.6A). In addition, looking at the positions of the
48 cut-outs in Figure 2.5, the Dim1–Dim2 plane, a rotational pattern can be discerned
as demonstrated in Figure 2.6B. This rotational component can also be associated with
creation year and yielded a somewhat higher correlation, r = 0.70 (Figure 2.6C). Interest-
ingly, the half hidden red circle in the third quadrant in Figure 2.6B represents a modern
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painting from 2019 amidst a set of much older paintings. If we consider this painting as
a continuation of the modern cluster from the second quadrant, in other words, if we
add 360 degrees to the same data point in Figure 2.6C (the single point in the top left
corner), the rotational correlation will even increase to r = 0.78. This rotational pattern
is particularly interesting because a similar pattern was found by Elgammal et al. (2018),
even though their embedding resulted from computational methods and very different
experimental parameters. They used paintings of varying subject matter analyzed by a
PCA on a CNN layer resulting from training on style labels, while we reached the embed-
ding using human similarity judgement data. As our study and Elgammal et al. (2018)
are so different, our finding strengthens the possibility that a cyclical pattern is present
in the history of European art during the last six centuries.

Looking at the embedding, some other observations can be made. Along Dimension
1, there appears to be a transition of brushstroke coarseness, from fine brushstroke on
the left to coarse brushstroke on the right side. Brushstroke coarseness can be one of
the possible features describing the embedding. As Figure 2.6B suggests, the least coarse
brushstrokes belong to the modern paintings, while the coarsest ones belong to the im-
pressionists’ paintings from the 19th century. This trend in brushstroke coarseness can
be one of the possible features describing the embedding and could have been used by
participants as a way to differentiate styles. Another observation is a color gradient in the
Dim1-Dim2 plane, from green apples on the top left, to yellow and red apples at the bot-
tom. This gradient suggests that color could also have been used to differentiate styles.
These two suggestions will be investigated in Experiment 2.

In summary, while the results clearly show a robust style space, we have yet to ana-
lyze it further. As we tentatively concluded, there appears to be a trend in Dimension 1
that relates to brushstroke coarseness, and a trend in Dimension 2 related to hue, which
might imply that Dimension 3 could be associated with color saturation and/or bright-
ness. To quantify these latent trends, we conducted a second experiment where we used
both perceptual attribute ratings and color measurements.

2.3. EXPERIMENT 2 - EXPLAINING THE EMBEDDING
Marković and Radonjić (2008) made a distinction between explicit and implicit features.
Implicit features refer to subjective impressions (such as how pleasant a painting ap-
pears) while explicit features describe “physical properties” of the painting (such as form,
color). We choose to define a number of explicit features that potentially contribute to
style perception of the apple cut-outs from Experiment 1. Besides subjective rating data,
we measured color statistics to account for the possible contribution of color.

2.3.1. METHOD

PERCEPTUAL ATTRIBUTES

The nine visual attributes that we used were Glossiness, Smoothness, Three-dimensionality,
Convincingness, Shadow contrast, Colorfulness, Brightness, Brushstroke coarseness, and
Contrast between apple and background. Glossiness and Smoothness are typical object-
specific features of apples while the other features refer more to how the apple has been
depicted. Some of these have been used previously by for example Marković and Radon-
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jić (2008) who used semantic differentials: Three-dimensionality as voluminosity-flat,
Convincingness as realistic–abstract, Colorfulness as multicolored–unicolored, Bright-
ness as light–dark, Brushstroke coarseness as strong brush strokes–soft brush strokes.
In addition, Convincingness (or realism in different terms) was used in several previ-
ous studies (Berlyne and Ogilvie, 1974; Chatterjee et al., 2010; O’Hare and Gordon, 1977;
Ruth and Kolehmainen, 1974); Brushstroke coarseness (or clear-indefinite in different
terms) was also used in several previous studies (Berlyne and Ogilvie, 1974; Chatterjee
et al., 2010; Hasenfus et al., 1983; O’Hare, 1976; Skager et al., 1966). As contrast was
concluded to be connected with perceived glossiness (Di Cicco et al., 2019; Marlow and
Anderson, 2013), we also included Shadow contrast and Contrast between apple and
background in our study.

In the online experiment, each attribute scale was defined by two contrasting con-
cepts, listed in Table 3.2 as left and right labels at either end of the continuous rating
scale. No additional information was provided about the attributes to be assessed.

Table 2.1: Keywords of rating scales for attributes rating

Attributes Left label Right label

Glossiness matte glossy
Smoothness rough smooth
Three-dimensionality flat three-dimensional
Convincingness unrealistic realistic
Shadow contrast low high
Colorfulness monochrome colorful
Brightness dark bright
Brushstroke coarseness fine coarse
Contrast between apple and background low high

PARTICIPANTS

224 unique participants recruited from AMT completed Experiment 2 (95.1% were from
North America). Each of the nine attributes was rated by 30 unique participants, 270
responses in total. 40 participants rated more than one attribute.

STIMULI AND PROCEDURE

The same 48 stimuli as in Experiment 1 were used in Experiment 2 (as shown in Figure
2.2). Before the actual experiment started, each participant would first read the consent
form and instructions for the experiment. They could only proceed if they gave their
consent by clicking ‘continue’ after reading the consent form. Then they went through
15 practice trials, to familiarize with the interface and operation. One stimulus was dis-
played in each trial (as shown in Figure 2.7). Participants were asked to rate a certain
attribute on a continuous scale with 6 markers and numerical feedback ranging between
0% and 100%. Each stimulus rating was repeated three times in a fully randomized set,
resulting in 144 trials for each HIT.
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Figure 2.7: Experiment 2 interface for Glossiness. In each trial, participants were presented with a single cut-
out. They could move the mouse horizontally to adjust the rating slider from matte to glossy. With a mouse
click they proceeded to the next trial.

COLOR MEASUREMENTS

In addition to the subjective ratings we also computed color data from the apple images.
To do so, we masked each apple image with a circular mask with a width of 75% of the
image. In this way, colors almost certainly came from the apple and not from its sur-
rounding. Colors were converted to CIELCh color space using the polar coordinates C*
(chroma or relative saturation), Hue (hue angle) and L* (lightness). Chroma was defined
as

p
a∗2 +b∗2 and thus related to saturation, while Hue was defined by the hue angle, i.e.

tan−1(b/a), values normalized between 0 and 1.

2.3.2. RESULTS

RATING AGREEMENT

For each attribute, we first performed validity checks based on average trial time and
correlation with other participants. Data from participants who spent on average less
than one second per trial were omitted (but were financially compensated). This thresh-
old was based on similar experiments one of the authors conducted before (Van Zuijlen
et al., 2020) and inspection of the time distribution in the current experiment. After the
exclusion of the participants that spent less than 1 second, between 19 to 23 participants
remained per attribute. After initial inspection we found that a number of these par-
ticipants seemed to misinterpret the polarity of the rating, i.e. had large but negative
correlations with the group mean. Because the number of these cases could vary per
attribute and thus result in unequal group sizes if we would use ‘negative correlation’ as
a criterion, we decided to choose the top 15 participants.
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As recommended by Martinez et al. (2020), we first performed an intra-participant
reliability analysis before determining the inter-participant agreement. Figure 2.8A shows
mean values and standard errors of correlations within 3 repeated measurements for
each attribute.

Figure 2.8: A) Mean values and standard errors of correlations within 3 repetition measurements for 15 par-
ticipants of each attribute. B) Mean values and standard errors of correlation with mean for 15 participants of
each attribute.

As for inter-participant agreement, we first calculated the median rating over the
three repetitions. We then correlated all the individual median ratings with the group
mean (excluding the individual). Figure 2.8B shows mean values and standard errors of
correlation with the mean for the participants of each attribute.

We found varying degrees of inter-participant agreement which can be interpreted
as perceptual ambiguities (high correlation, low ambiguity and vice versa). The inter-
participant agreement varied between 0.85 and 0.59, with the highest scores for Smooth-
ness, Brightness, Brushstroke and Convincingness. The lowest score was for Colorful-
ness, with the others in between. The relatively constant high intra-rater reliability cor-
relations (all above 0.8) in Figure 2.8A suggest that differences between observers for the
various attributes are truly due to inter-observer ambiguities.

MULTIPLE LINEAR REGRESSION OF PERCEPTUAL ATTRIBUTES

Figure 2.9 presents the results of the multiple linear regressions within the MDS embed-
ding from Experiment 1, using the three dimensions as independent variables and the
attributes as dependent variables. The orientation of the vector indicates the direction
that yielded the best regression, while the length indicates strength of the regression (R2).
Table 2.2 denotes corresponding adjusted r square values, overall p-value and weights
(beta coefficients) plus p-values for each dimension of the fit per attribute. The following
attributes have a high overall fit within the MDS embedding: Smoothness, Brushstroke
coarseness, Convincingness, Shadow contrast. The remaining attributes are moderately
(Three-dimensionality, Colorfulness, Contrast between apple and background) or only
weakly correlated (Glossiness, Brightness).

As Table 2.2 shows, all attributes except Colorfulness can be significantly associated
with Dimension 1 from the Experiment 1 embedding, with Glossiness and Brightness
only weakly associated. Dimension 2 has only weak associations with Colorfulness and
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Figure 2.9: 3D MDS configuration embedded with 9 attribute vectors and creation year vector.

Glossiness. Finally, Dimension 3 has a unique high association with Colorfulness and a
moderate one with Brightness.

FITTING OF COLOR DATA

Table 2.3 shows per color coordinate (Hue, Chroma, Lightness) the adjusted R2 values,
overall p-value and weights plus p-values for each dimension of the MDS embedding
from Experiment 1. Hue and Chroma both have significant overall fittings, while Light-
ness is not significantly associated with the 3D perceptual style space. Hue is primarily
associated with Dimension 2 but also has some weight on Dimension 1. The only signif-
icant weight for Chroma is on Dimension 3. We also provide a correlation matrix of the
nine attributes and three color measurements in the supplementary material.

To illustrate the relation between image color coordinates Hue and Chroma and Di-
mensions 2 and 3 of the embedding, we plotted the Dim2-Dim3 projection of the em-
bedding next to the Hue-Chroma plot. The result can be seen in Figure 2.10. A visual
comparison between the style space and the color space underscores the strong asso-
ciation of Hue and Chroma with Dim2 and Dim3, respectively. It should be noted that
although Hue has its primary weight on Dimension 2, the positive correlation between
Hue and creation year (both highly correlated with Dimension 2) is low (r = 0.35), the
two vectors of creation year and Hue having a substantial angle of 40.54 degrees because
of the negative correlation between Hue and Dimension 1. In addition, the relation be-
tween creation year and Dim2 was explored further by calculating the partial correlation
while controlling for Hue (r = 0.66; p < 0.001). The resulting correlation shows a small
drop with respect to the original correlation (r = 0.69).
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Table 2.3: Multiple linear regression of color measurements.

adjusted overall
r square p-value dim1 p-value dim2 p-value dim3 p-value

Hue 0.55 0.000*** -0.05 0.008** 0.16 0.000*** -0.05 0.103NS

Chroma 0.55 0.000*** 0.02 0.528NS -0.01 0.802NS 0.53 0.000***

Lightness 0.04 0.186NS -0.07 0.194NS 0.11 0.115NS 0.09 0.401NS

Note:

* p < 0.05;
** p < 0.01;
*** p < 0.001;
NS means not significant (p > 0.05).

Style space Color space

Figure 2.10: Comparison between Dim2 - Dim3 plane of the MDS embedding (on the left) and 2D plane of Hue
and Chroma measurements (on the right).
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2.3.3. DISCUSSION

All visual attributes (highly to weakly) correlate significantly with the 3D embedding,
as can be seen by the general adjusted R2 values in Table 2.2. The most prominent at-
tributes are Smoothness, Brushstroke and Convincingness and the least contributing at-
tributes are Brightness and Glossiness. For the color measurements, Hue and Chroma
have significant overall correlations with the 3D embedding. Lightness has no significant
correlation with the embedding, which is in line with the low contribution of Brightness
to the perceptual attributes analysis. Finally, the best fitting attributes are about spatial
aspects of the paintings to which Convincingness is firmly associated, where Convinc-
ingness in its turn can be associated with realism according to O’Hare (1976).

Although all attributes (apart from Colorfulness and, to a lesser extent, Brightness)
correlated significantly with Dimension 1, Brushstroke coarseness and Smoothness were
the strongest ones. Similar findings were reported in previous studies (Berlyne, 1973;
Gardner, 1974; Klein, 1968; O’Hare, 1976; O’Hare and Gordon, 1977; Skager et al., 1966),
with similarly defined attribute names (e.g. clarity, texture). For instance, O’Hare (1976)
reported in his study that the second dimension in his findings could be interpreted as
clarity or clear definition of detail, from sharp outlines to diffuse and indefinite outlines.
Gardner (1974) also reported that texture (brushstroke shapes, lightness gradients, etc.)
makes a significant contribution to an artist’s style. Elgammal et al. (2018) reported a cor-
relation between their second dimension and Wölfflin’s principle of linear vs. painterly,
which is connected to clarity of outline (brushstroke).

Dimension 2 corresponded strongly with creation year as shown in Experiment 1. In-
terestingly, none of the attributes correlated with this dimension, except relatively weak
negative correlations for Colorfulness and Glossiness. From Experiment 1 it was already
visible that Hue could possibly also be related to Dimension 2. Indeed, the color statis-
tics for Hue show a high coefficient of determination (R2 = 0.55) which originates from
a direction mostly in the positive Dimension 2 direction (the significant weight of 0.16
in Table 2.3) and to a lesser degree in the negative Dimension 1 direction (the significant
weight of −0.05 in Table 2.3). This becomes visually clear when again looking at Figure
2.5 where a clear transition from red to green is visible in Dimension 2 and one may also
see more yellow/greenish apples on the left side than on the right side in Dimension 1.
Although the trend is clearly visible, the interpretation is less straightforward and we will
continue this in the General Discussion.

Dimension 3 is related to Colorfulness, another suggestion that participants might
have used color information for the similarity judgements in our study. In addition, fit-
ting the results from the color measurements suggested Dimension 3 was connected to
Chroma only. It should be noted that the rating scale of Colorfulness was defined by
monochrome to colorful, hence it was expected that participants interpreted the term
“colorfulness" as hue diversity, however, the results suggest that they interpreted the
term more as saturation. In other words, semantic reasons might have caused differ-
ent interpretations, which is also suggested by the lowest inter-participant correlation
for Colorfulness (see Figure 2.8B, low correlation, high ambiguity).

In the attribute rating experiment, relatively high inter-participant correlations were
found (Figure 2.8B), which is in line with the significant inter-subject consistency re-
ported by Berlyne and Ogilvie (1974). Next to Brightness, the lowest agreement has
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been found for Shadow contrast, Contrast between apple and background and Glossi-
ness. While this could partially be semantic, it may also be visual. Especially Glossi-
ness is a term that is generally unambiguous, the relatively low agreement score could
therefore indicate that there is not much variation in Glossiness within the 48 apples.
Three-dimensionality scored higher, followed by Smoothness, Brushstroke coarseness
and Brightness.

2.4. GENERAL DISCUSSION
We have measured the perception of style using a supposedly constant motif, the apple,
by using square cut-outs of paintings. Gombrich (2009)’s description of style (“Style is a
distinctive, and therefore recognizable, ...") was operationalized in two experiments: the
first quantifying distinction by performing a landmark MDS experiment, the second de-
scribing the resulting embedding, which can be related to recognizing style. The results
reveal an interesting, non-random multidimensional embedding of 48 apple depictions
that are related through various visual features. The embedding is even more interesting
considering only low-level information was left in the square cut-outs. Previous stud-
ies (Siefkes and Arielli, 2018; Wallraven et al., 2009) believed humans need high-level
information to perceive different styles, which was removed as much as possible in our
study. It suggests that low-level information might be sufficient for participants to per-
ceive style differences.

In Experiment 1 we also found a strong correlation between creation year and our
perceptual space, with both a linear fit along Dimension 2 (r = 0.69) and a circular fit
in Dim1-Dim2 plane (r = 0.70). These correlations were surprising, considering all the
high-level and mid-level information, in other words, all the time-related items and sur-
roundings (e.g. clothes, house interior) that can provide information about creation
time, were removed. Indeed, connections between the perceptual space and paintings’
creation year has been reported in other studies, but all with the whole paintings as stim-
uli. Berlyne and Ogilvie (1974) found a high multiple correlation (>0.8) between their
3D perceptual space and artists’ year of birth, which roughly scales with the creation
year of the paintings. And Berlyne and Ogilvie (1974) interpreted the first dimension in
their perceptual space as old vs. modern. Elgammal et al. (2018) also found a temporal
pattern while using computational methods instead of human judgements. Their em-
bedding was achieved by training neural networks on WikiArt style labels. Thus, similar
findings from both human judgement and computer algorithm indicate a relatively ro-
bust correlation between style and time. And if we consider the circular fit, the creation
year changes in a cycle of both texture and Hue.

In Experiment 2 we described the 3D perceptual style space with multiple linear re-
gressions of nine attributes and color measurements. The first dimension of the style
embedding clearly related to many of the attributes, most prominently Smoothness and
Brushstroke coarseness, but also others like Convincingness, Shadow contrast, and Three-
dimensionality. Except Convincingness being a higher-level attribute, all other men-
tioned attributes are related to spatial properties. As shown in Figure 2.9 and Table 2.2,
Smoothness, Shadow contrast, Three-dimensionality and Convincingness all point in
the same direction, which indicates that increasing Smoothness, Shadow Contrast and
Three-dimensionality could enhance Convincingness. Similar positive correlations be-
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tween Contrast, Three-dimensionality and Convincingness was reported in a previous
study (Di Cicco et al., 2019). Smoothness and Brushstroke coarseness have opposite
directions in the 3D embedding, implying they have an almost perfect negative corre-
lation, which appears logical as they indeed seem semantic opposites. But it should be
noted that the instructions for the Smoothness rating experiment explicitly mentioned
the apple skin with the intention that Smoothness should relate to what is represented
(the apple) while Brushstroke coarseness clearly relates to the medium. However, our
results pointed at a transfer between these two modes, perhaps because apples painted
in a rough manner cannot easily be judged as being smooth. Such phenomenon can
be further tested in controlled experiments where motif and medium are systematically
varied.

The remaining two dimensions are associated with color. The second dimension is
associated with Hue and the third dimension with Chroma as well as the attribute Col-
orfulness. It seems there is some connection between Hue and creation year since they
are both positively correlated to Dimension 2. Indeed, from the beginning of the Nine-
teenth century the production of new synthetic pigments exploded, leading to a variety
of colors, unheard of in earlier centuries (Ball, 2003; Wilson-Bareau, 1991). Artists such
as Rembrandt had to make do with about a dozen pigments, while Monet or Van Gogh
could literally choose hundreds of different pigments. This has led to an increase of sat-
uration of violets and greens for example. Another possibility is that it shows the history
of the painted objects, in our case apples. In spite of their seemingly independence of
historical developments in fashion or the development of technology, it is quite possible
that European cultivated apples have a history of their own, in which there has been a
gradual increase in saturated green varieties over the last century or so. However, even if
we only consider the linear fit of the creation year with Dimension 2, this time dimension
still cannot be fully explained by Hue change, given the creation year and Dimension 2
have a high correlation (r = 0.69), while the creation year and Hue have a low correlation
(r = 0.35), and the two vectors of the creation year and Hue have a substantial angle of
40.54 degrees between them. This conclusion is convincingly supported by the fact that
the partial correlation between Dimension 2 and creation year, controlling for Hue, has
a value of 0.66, being close to the original correlation.

Although color measurements couldn’t explain the time dimension, the contribu-
tion of color in style perception was robust and also reported in early studies. Gardner
(1974), for example, concluded that both color and texture played a significant role in
style detection. Interestingly, Dimension 1 in our study is mainly associated with spa-
tial attributes, such as brushstroke coarseness, smoothness, shadow contrast and three-
dimensionality, which can also be interpreted as texture. Hence, we reached the same
conclusion as Gardner (1974) that texture and color are two important variables for pic-
torial style perception.

In this study, we showed that in judging matters of style, participants in our two ex-
periments demonstrated high inter-subjective agreement, in line with earlier studies on
the perception of style in art. We also found that participants by and large followed the
historical time line when performing their matching tasks. In our case this concerned
only small details of sometimes much larger paintings (our apple stimuli), thus remov-
ing such important aspects as composition, mood, or general intention of the work of
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art as a whole. With regard to paintings, people are apparently quite capable of looking
at the ‘how’ of a painted subject. They show a definite sense of style.

Experiment 2 showed some of the perceptual ingredients on which this sense of style
may rely, but there did not seem to be a single, one-dimensional perceptual factor ex-
plaining the results. Perhaps our sense of pictorial style is just one member of a much
larger family of human sensitivities for the ‘how’ of something made or done by other
humans: e.g. handwriting styles, dialects, speech habit, dancing styles (Hasenfus et al.,
1983). In all such activities people detect various components simultaneously, like if it
were Gestalts. Further research on recurring motifs in the history of art (e.g. hands, tex-
tile folds) may get us closer to discovering the various roots of this important sense of
style in humans.
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3
MATERIAL PERCEPTION ACROSS

DIFFERENT MEDIA-COMPARING

PERCEIVED ATTRIBUTES IN OIL

PAINTINGS AND ENGRAVINGS

We investigated the influence of medium on the perception of depicted objects and mate-
rials. Oil paintings and their reproductions in engravings were chosen because they are
vastly distinctive media while having completely identical content.

A total of 15 pairs were collected, consisting of 88 fragments depicting different materials,
including fabric, skin, wood and metal. Besides the original condition, we created three
manipulations to understand the effect of color (a grayscale version) and contrast (equal-
ized histograms towards both painting and engraving). We performed rating experiments
on five attributes: three-dimensionality, glossiness, convincingness, smoothness and soft-
ness. An average of 25 participants finished each of the 20 online experimental sessions
(five attributes X four conditions).

Besides clear correlations between the two media, the differences mainly show in their
means (different levels of perceived attributes) and standard deviations (perceived range).
In most sessions, paintings depict a wider range than engravings. In addition, it was
the histogram equalization (global contrast) that made the most impact on perceived at-
tributes, rather than color removal. This suggests that engravers compensated the lack of
color by exploiting the possibilities of local contrast.

Published as Zhao, Y., Stumpel, J., de Ridder, H., & Wijntjes, M. W. (2024). Material perception across
different media—comparing perceived attributes in oil paintings and engravings. I-Perception, 15(4).
https://doi.org/10.1177/20416695241261140
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3.1. INTRODUCTION
Around the time that in Italy linear perspective was discovered (Alberti, 1966), a material
rendering innovation was taking place in Northern Europe mediated by the invention of
oil paint. Although he may not have been the inventor, van Eyck was certainly the artist
discovering the huge potential of oil paint for the convincing rendering of materials. The
deeper colors and the slow drying, which enabled smooth transition and easy alteration,
offered artists possibilities that did not exist for tempera paint (Bol, 2023). While the in-
vention of linear perspective was related to the mathematics of projection, the material
rendering revolution was related to a specific medium: that of oil paint. The perceptual
influence of media is a relatively understudied topic and we made that the topic of the
current chapter. However, instead of comparing oil and tempera, we choose two me-
dia that are more distant from each other: oil paintings and engravings. In the context
of this research, the term ‘engraving’ specifically refers to monochrome engravings, and
explicitly excludes any painted or color printed engravings.

The artistic handling of a medium is related to the topic of style. Within a certain
medium, like oil paint, there are obviously many different styles as art history has shown.
We previously found a relation between differently depicted apples and their material
properties (Zhao et al., 2023). Van Zuijlen et al. (2020) took a different approach by col-
lecting a large variety of annotated material segments from historical oil paintings. They
collected material attribute ratings for 15 different material classes and compared them
to a study of similar nature that used photographs (Fleming et al., 2013). Interestingly,
the material ‘signatures’ (perceptual characterization of 10 material attribute ratings) are
very similar between paintings and photographs, suggesting material perception might
be independent of medium. Instead of comparing paintings and photographs, in a more
controlled fashion Delanoy et al. (2021) compared realistic material computer render-
ings with their painting replicas by an artist. They reached the conclusion that material
properties in paintings and renderings were perceived very similarly and were linked to
the same image features. While these studies suggest that material perception might
be independent from media, Bousseau et al. (2013) found differences between realistic
renderings and painterly renderings of the same scenes. Their results showed that in
painterly renderings, the range of distinguishable gloss levels reduces under increased
brush size of opaque strokes, use of semitransparent strokes, or when texture of brush
strokes and varnish were introduced.

The different conclusions from previous studies left the question unanswered whether
medium has influence on material perception. In the current study, we wanted to answer
this question using the same variety of depictions as Van Zuijlen et al. (2020) while com-
paring different media. At the same time, we also desired that the subject matter could
be kept constant as was achieved by Bousseau et al. (2013) and Delanoy et al. (2021).
The requirement of identical subject matter was difficult to meet, since artists generally
compose original pictures which do not share a perfect subject matter resemblance.

We found a solution by comparing paintings and their reproductions in print media,
particularly engravings. Engraving has been a form of art on its own, but also as a method
to reproduce paintings from the seventeenth century onwards, before various printing
techniques that made direct use of photographic images, from rotogravure, to off set and
beyond. The identical pictorial content in oil paintings and their engraved reproductions
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provides a perfect opportunity to compare the portrayal of materials such as fabric and
skin across the two media without the confounding factor of different subject matter.
Maintaining constant subject matter would be much more difficult, if not impossible, if
we were to compare oil and tempera paint. Furthermore, the two media are drastically
different, which makes it a critical case study for the influence of media on perception.

Seemingly originating from goldsmithing, engraving emerged in the late fifteenth
century in Germany and Italy. As an intaglio process, engravings are created with a burin,
a wedge-shaped metal tool, to carve into the base plate usually made of copper. The
plate, consisting of grooves created by burin, could hold ink. Ink would then transfer
onto a damp sheet of paper under high pressure to complete a print. The early Ger-
man master Martin Schongauer raised engraving from a minor craft to a major art form
with compelling works, followed by Albrecht Dürer, and many other masters (Thomp-
son, 2000). The process of engraving differs from etching. In etching, the metal plate
is covered by a layer of wax or soft varnish. The artist can draw effortlessly by remov-
ing parts of this layer with a needle, upon which a chemical process with acid creates
the grooves. However, in engraving the grooves are made directly by the handling of the
burin which requires great skill and craftsmanship, based on years of training.

Engraving is a challenging medium not only because of the difficulty in craftsman-
ship, but also because it is a medium restricted by monochromatic lines and dots. Oil
paintings have colored fluid brush strokes and could easily achieve smooth color transi-
tions and color contrast. Engravings, on the other hand, are categorically different, with
only ‘black’ and ‘white’ (color of the ink and the paper). Luminance contrast is achieved
by the distribution of lines. Within these boundary conditions, engravers were still able
to create form, texture, shading and highlights. Engravers had their own idiosyncratic
approach to create engraving lines, some preferred to use lines that followed the con-
tours, some preferred cross hatching to create shading and three-dimensional (3D) vol-
ume (Thompson, 2000).

To quantify the perceptual differences between paintings and engravings, we focused
on measuring five perceptual attributes of various depicted objects. We investigated the
depiction of materials by letting observers rate the smoothness, glossiness and softness.
Furthermore, we let observers rate three-dimensionality to assess the depiction of shape.
In addition to investigating the formal elements of material and shape, we were also in-
terested in the overall quality of the depictions of objects. Therefore, we asked observers
to rate the ‘convincingness’. We will shortly elaborate on these five attributes.

Since many old masters in both painting and engraving pursued realistic and con-
vincing depiction, we compared convincingness of these two media. As an overall judge-
ment, convincingness (or realism in different terms) has been widely studied in the field
of visual perception (Berlyne and Ogilvie, 1974; Chatterjee et al., 2010; Di Cicco, 2022; Di
Cicco et al., 2018; O’Hare and Gordon, 1977) and is often considered an important per-
ceptual measurement. It should be noted that convincingness seems to play a role both
in historical pictorial revolutions such as the invention of linear perspective and oil paint
as discussed above, but also in contemporary pictorial revolutions. The recent success
of AI mediated synthetic image algorithms such as Midjourney is largely attributable to
their impressive convincingness (Göring et al., 2023).

Gloss is the most widely studied attribute that is important for material perception
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(Marlow and Anderson, 2013; Pellacini et al., 2000), including real and photographed
objects (van Assen et al., 2016; Zhang et al., 2019), computer rendered images (Wendt
et al., 2008), and also for paintings (Bousseau et al., 2013; Delanoy et al., 2021; Di Cicco
et al., 2019). Previous studies concluded that gloss perception is mostly determined by
contrast, sharpness and coverage of the highlights (Di Cicco et al., 2019; Marlow et al.,
2012). Contrast, which is manifested distinctively in oil paintings and engravings, plays
a pivotal role as one of the key features and predictors of gloss perception (Di Cicco et al.,
2019).

Smoothness plays an important role in perceived realism (Rademacher et al., 2001).
Sometimes it has been measured as its opposite, roughness (Delanoy et al., 2021; Di
Cicco et al., 2021; Zhang et al., 2019). What is furthermore interesting about smooth-
ness is that it can refer to the smoothness of the depicted object (the motif) but also to
the depiction (the medium). This could theoretically also be the case for gloss, but the
glossiness of the medium (e.g. caused by the varnish) is often made invisible by the way
of visual documentation: a glossy reflection in a photo copy of a painting is rather un-
desirable. However, the roughness of brushstrokes or hatching is difficult to ignore. In-
terestingly, Zhao et al. (2023) found a potential transfer of smoothness between medium
(smooth brushstroke) and motif (depicted apples) in a study on style perception. In the
current study, we were interested whether the visible engraving lines in the medium (see
Figure 3.6) may influence the perceived smoothness of the depicted materials.

The third material attribute that we decided to investigate is softness. It is particu-
larly related to materials such as fabric and skin, which make up the larger part of our
stimulus set. Previously, it has been found that softness is not correlated to roughness
in a study on depicted fabric perception (Di Cicco et al., 2021). Furthermore, softness
could be seen as a more mechanical property as opposed to the optical property of gloss.
Hence, softness complements the other two material attributes rather well.

A related attribute, though not a material attribute but rather a shape attribute, is
three-dimensionality. There is a strong perceptual connection between gloss and three
dimensional shape (Fleming et al., 2004; Norman et al., 2004; Todd and Mingolla, 1983).
Contrast is also used as an effective depth cue for 3D shape perception (O’Shea et al.,
1994). Since engraving has different approaches than oil painting to achieve 3D render-
ing, we will investigate the performance of the medium in expressing three-dimensionality.

There are a number of a priori differences between paintings and engravings that
could lead to perceptual differences. Color and contrast are the most prominent dif-
ferences. Being denied access to colors, engravers likely compensated by deploying all
available efforts towards the luminance channel. While we empirically investigated the
‘original’ (albeit digitized) pictures, we additionally included image manipulations to
better understand the respective roles of color and contrast.

The first image manipulation served to understand the role of color and consisted of
taking gray scale versions of both stimuli. This was established by converting the colors
into luminance values. To understand the role of luminance contrast we equalized the
respective luminance histograms. However, because the luminance histogram of an en-
graving theoretically consists of two single peaks at the white of the paper and the black
of the ink, we first blurred the engraving such that hatchings became smooth gradients.
To counterbalance the blurring manipulations on the engravings, we applied the same
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procedure on the paintings. In sum, we added two manipulation conditions to the orig-
inal condition: gray scale and equalized luminance histogram. As the latter condition
can be applied both from the engraving to the painting and vice versa, this condition
consisted of two versions. Thus, a total of 4 conditions (original, grayscale and two his-
togram equalizations) were measured in the following experiment.

3.2. METHOD

3.2.1. STIMULI

We collected 15 pairs of digital copies of color oil paintings and their engraving repro-
ductions. Identical content gave us the opportunity to take medium as a controlled
variable and minimize the influence of content, or ‘subject matter’. Most oil paintings
are portraits or scenes of daily life to ensure the diversity of materials. Both original oil
paintings and their engraving reproductions covered a wide range of creation years. The
creation year of the original oil paintings varied from 16th to 18th century, while the cre-
ation year of engravings ranged from 17th to 19th century. Figure 3.1 shows an overview
of all stimuli.

Before further processing, we first endeavoured to align all the pairs and crop them
into the same framing. Since engravings are not photo copies, their framing and aspect
ratio can differ slightly from the original oil paintings. Better aligned content can further
reduce the influence of subject matter. A few images were mirrored for the alignment.
Besides, some engravings have text below the figures, which is different from oil paint-
ings. Removing text reduced the possibility for participants to easily infer the media. All
the aligned and cropped high resolution images were then rescaled in Adobe Photoshop
(Adobe Inc., 2021). Since they have different aspect ratios, we set the longer edge to be
1500 pixels.

Then we created two manipulations to understand the effect of color and contrast.
Firstly, we removed chromatic information by creating a grayscale version. The conver-
sion was performed in Mathematica (Wolfram Research Inc., 2020), the formula from
sRGB to grayscale is Gr ay scal e = 0.299R +0.587G +0.114B . Secondly, we removed the
difference in global luminance contrast by equalizing histograms (towards both paint-
ing and engraving, hence 2 versions). The histogram matching was performed with the
‘HistogramTransform’ function in Mathematica (Wolfram Research Inc., 2020). Before
the histogram equalization we removed high frequency information by blurring the im-
ages. This was necessary as a ‘sharp’ engraving is essentially a bitmap: black when there
is a line, white in background, without intermediate grayscale values which only emerge
when viewed from a distance, i.e. blurred. The Gaussian blur radius for each stimu-
lus was determined per picture individually so that engraving lines became invisible. It
should be noted that the purpose of the blurring was to facilitate histogram matching,
and not a purpose on its own, hence we only have two image manipulation conditions:
grayscale and histogram equalization. That we end with 4 experimental conditions (in-
cluding the ‘original’ condition) is due to histogram equalized images had two versions
with either the painting or the engraving functioning as source.

After the manipulations, all stimulus images were converted in Photoshop (Adobe
Inc., 2021) to PNG format, and embedded with an sRGB ICC color profile, for browsers
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Figure 3.1: An overview of 15 pairs of stimuli, sorted by creation year of oil paintings. In some cases, where
there is no precise creation year information available, we presented the estimated range of creation year, or
the lifespan of the artist.
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Table 3.1: Number of selections for each material category

3D/Gloss/Convincingness/Smoothness Softness

Fabric 54 54
Skin 18 18
Lace 4 4
Fur 2 2
Metal 3 na
Wood 6 na
Ceramic 1 na

Table 3.2: Keywords of rating scales for attributes rating

Attributes Left label Right label

Three-dimensionality flat three-dimensional
Glossiness matte glossy
Smoothness rough fine
Softness hard soft
Convincingness unrealistic realistic

to display colors properly (Ashe, 2014).

Lastly, from each picture pair we selected multiple objects, including fabric, skin,
lace, wood, metal and ceramic, marked with a red outline in the experiment interface
(see Figure 3.3). In total, we selected 88 objects from these 15 pairs. Table 3.1 shows
numbers of selections in detail. A preview of all 88 selections can be found in the sup-
plementary material.

3.2.2. EXPERIMENTAL DESIGN

The study consisted of 20 online experimental sessions. In each session, a unique group
of participants judged one of five attributes for the two media (oil paintings and en-
gravings) in one of four conditions: original (ori), grayscale (bw), histogram of painting
matched to that of engraving (hmp), histogram of engraving matched to that of painting
(hme) (see Figure 3.2). Per attribute, this resulted in a two by four mixed design, with
medium as a within-subject and condition (manipulations) as a between-subject vari-
able. The five attributes to be judged were: three-dimensionality, glossiness, smooth-
ness, softness and convincingness. Each attribute scale was defined by two contrasting
terms, listed in Table 3.2 as left and right labels at either end of the continuous rating
scale. No additional information was provided about the attributes to be assessed.

All attributes have 88 material selections in total except softness that has 78, since
metal, wood or ceramic are not relevant for softness. As a result, three-dimensionality,
glossiness, smoothness and convincingness had (88 times two) 176 trials and softness
had (78 times two) 156 trials for each session.
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Figure 3.2: Four conditions: original, grayscale, histogram of painting matched to that of engraving (hmp),
histogram of engraving matched to that of painting (hme). For hmp and hme conditions, we first applied the
same Gaussian blur to both engravings and paintings before histogram matching so that the engravings have
smooth histograms and no visible engraving lines. After histogram matching, they have the same overall lumi-
nance distribution. Note that blurred oil paintings usually have higher contrast than blurred engravings. The
oil painting: Pompeo Batoni, La mort de Marc Antoine, 1763. Downloaded from Wikipedia. The engraving:
Johann Georg Wille, La Mort de Marc Antoine, 1778. Downloaded from the online repository of the Rijksmu-
seum, Amsterdam. Both images were cropped to the same framing.

3.2.3. PARTICIPANTS
600 unique participants were recruited for our experiment, 30 participants for each ex-
perimental session. However, we lost some responses due to server issues which resulted
in an average of 25 participants for each session. All participants were recruited from
Prolific (www.prolific.co) from all available countries. The experiment was conducted in
agreement with the Declaration of Helsinki and approved by the Human Research Ethics
Committee of the Delft University of Technology. All data were collected anonymously.

3.2.4. PROCEDURE
Each participant would first read instructions and the consent form before the actual
experiment. Then they would perform ten practice trials to get familiar with both the
interface and the variety of stimuli. Their task was to rate one of the five attributes re-
garding the selection marked by a red outline (see Figure 3.3). Each participant just rated
one attribute (e.g. softness) in one condition (e.g. original), in two different media (en-
graving and painting). The order of trials was randomized across participants.

The interface was designed to minimize the influence of the red outlines: they would
first flash twice when the trial started. Then the participant could receive a reminder by
moving the cursor to the image. When participants moved the cursor to the right side,
the red outlines disappeared and the cursor controlled the rating scale automatically.
They could click to rate and proceed to the next trial. Clicking on the image was disabled
to avoid accidental ratings.

3.2.5. DATA ANALYSIS
We first performed validity checks for the raw data. We excluded participants who spent
less than 1 second on average for each trial. This threshold was based on previous expe-
rience (Van Zuijlen et al., 2020) in our group. It is very likely that too short answering time
means clicking without paying attention, which can result in noisy data. After filtering,
each session had on average of 24.4 participants. Then we performed z-score normaliza-
tion on the rating data per participant, so that we can later combine data from different
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Figure 3.3: Experiment interface of original condition regarding three-dimensionality. Each time a new stim-
ulus was shown, the red outline flashed twice to denote the area of interest. As a reminder, participants could
move the cursor to the image area to show the red outline overlay. On the right side, participants moved the
cursor along the rating scale to adjust the rating, and click to confirm and proceed to the next trial. Gerard
ter Borch (II), Gallant Conversation (Known as ‘The Paternal Admonition’), 1654. Downloaded from the online
repository of the Rijksmuseum, Amsterdam. Cropped to the same framing as the engraving reproduction.

participants with different internal scales, and reduce noise. For further analysis, we
always used the mean score across all the participants for each material selection.

3.3. RESULTS
The overall results are summarized in Figure 3.4. Each subplot presents the results of one
experimental session with each data point denoting the mean ratings (z-score) of a given
material selection. The x-coordinates denote painting ratings, the y-coordinates denote
engraving ratings. These scatter plots allow for various qualitative inferences that can be
made by the eye, but do require some prior intuitions that we will try to provide before
discussing the data in more detail. A visual explanation is also given at the bottom of
Figure 3.4.

The scatter data is summarized by covariance ellipses. The gray ellipse denotes all
data, the red and blue ellipse denote the subsets of skin and fabric, respectively. The po-
sition of the ellipse with respect to the diagonal denotes a perceptual bias: A point above
the diagonal line implies that engravings were rated higher than oil paintings and vice
versa. An example where this is robustly present is the smoothness data in the original
condition: almost all data points are clearly below the diagonal indicating that partici-
pants judged materials in paintings to be smoother than in engravings.

A second characteristic, besides position denoting the perceptual bias, is the corre-
lation itself. For example, it can easily be seen that the correlation between painting and
engraving is higher for softness than for convincingness. High correlations suggest that
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Figure 3.4: Results overview. Each subplot is an experimental session. Row one to row four represent original,
grayscale and two histogram matched conditions, respectively. Each data point in these scatter plots repre-
sents the mean rating of engravings as a function of the mean rating of oil paintings of the same material
selection. Each data point is color coded with respect to material category, as indicated in the legend on the
top left corner. The ellipses are confidence ellipses from bivariate normal distributions kept constant at 1.96
standard deviation. The gray ellipses are based on all data, the blue and red ellipses denote fabric and skin,
the two largest material categories. The legend on the bottom with the blue background illustrates a few pos-
sible scenarios. Purple asterisks on the top left corner in a given subplot indicates that the mean ratings for oil
paintings and engravings were significantly different for that session. Black asterisks on the bottom right cor-
ner in a given subplot indicates that the standard deviations for oil paintings and engravings were significantly
different from each other for that session.
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the individual ratings judgements are preserved across medium change: something soft
in a painting is also perceived soft in the engraving, which is less so for convincingness.
Therefore, this correlation points to a perceptual constancy with respect to medium.

A third quality of the ellipses is the slope, which indicates whether the range of judge-
ments is different for the two media. If the slope is smaller than one, the perceptual range
in the paintings is larger than that for the engravings, which can for example be observed
for three-dimensionality judgements in the original (top) condition.

In the following section we will statistically verify the qualitative observations that
we just made. The section after that is devoted to differences between the materials skin
and fabric.

3.3.1. OIL PAINTINGS VERSUS ENGRAVINGS

Looking at the overall data in Figure 3.4, it can be seen that the major axis of the fitted
ellipses always points in the positive direction. This is in line with the finding that all
correlations are positive and significant (p < 0.001) ranging from 0.45 to 0.90 (with a
mean of 0.71). The correlation coefficients are shown in Table 3.3.

The ratio of the standard deviation of engravings and that of oil painting varies be-
tween 0.69 and 1.14 (with a mean of 0.71). The ratio is smaller than 1 for 17 out of 20
ratios, suggesting that in most cases, the standard deviation for the oil paintings is larger
than that for engravings. Levene’s test shows that only 5 ratios are significant with ratios
varying between 0.69 and 0.79: original 3D (p < 0.001), original gloss (p < 0.05), orig-
inal convincingness (p < 0.01), grayscale 3D (p < 0.01) and hmp 3D (p < 0.05). In the
above significant cases, oil paintings have a broader range of perceived attributes than
engravings. These sessions are marked with black asterisks on the bottom right corner
of the corresponding plots in Figure 3.4. Note that there is a tendency for this ratio to
increase towards one from the first row (original condition) to the last row (hmp). This is
particularly visible in the 3D column.

The means of the oil painting and engraving ratings determine the centroid of the
ellipses. In Figure 3.4, the black plus signs indicate the position of the centroids of gray
ellipses (all data). The corresponding values can be found in Table 3.3. To test for sig-
nificance, we performed 20 paired t-tests for unequal variances. To compensate the in-
creased chance of Type I error from multiple t-tests, we applied Bonferroni correction,
and set the critical α value at 0.05/20 = 0.0025. For the original condition (the first row
in Figure 3.4), there was no significant difference between paintings and engravings for
three-dimensionality and softness. However, oil paintings were rated significantly higher
for glossiness, smoothness and convincingness (all with p < 0.001).

In Figure 3.5, the mean ratings are shown for all conditions, which essentially presents
the streamlined information of Figure 3.4, with less distraction from other statistical
properties. On the y-axis only the engraving ratings are shown as the painting ratings
are the opposite due to the z-transformation. It can thus be viewed as a relative dif-
ference. Even more in this representation, it can be seen that gloss, smoothness and
convincingness are all judged significantly higher in paintings than engravings.

After removing the colors resulting in the grayscale condition (second row in figure
3.4, gray data in Figure 3.5), there was no significant change from the original condi-
tion for three out of five attributes: three-dimensionality, smoothness and softness. For
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glossiness, engravings were rated significantly higher after removing colors; for convinc-
ingness, engravings were rated significantly lower, both are marked with light gray aster-
isk signs in Figure 3.5.

When we applied blurring and luminance histogram matching, the differences be-
tween paintings and engravings changed rather substantially. Three-dimensionality was
larger for engravings than paintings, while in the original and grayscale versions there
was no significant difference between the two media. Glossiness was also larger for en-
gravings than paintings while the reverse was true for the original condition. The dif-
ferences in smoothness vanished, which also holds for softness although in the original
condition there already was no difference. Lastly, the convincingness was significantly
higher for engravings than paintings in one condition (hmp), and non significant in the
other histogram matched condition (hme), while in the original and grayscale condition
the paintings were judged as more convincing.

3.3.2. COMPARISON BETWEEN MATERIAL CATEGORIES

To investigate possible differences between materials, we compared the results for fabric
and skin. These materials were best represented with 54 and 18 elements, respectively.
We mainly focus on qualitative observations about the bivariate normal distributions,
denoted in figure 3.4 by the red and blue confidence ellipses for skin and fabric, respec-
tively. Looking at the red (skin) and blue (fabric) ellipsoids, we observe various configu-
rations: overlapping (some position and size), enclosing (one smaller and withing area of
other) or complementary (inhibiting different areas). Note that these three possibilities
also hold for a uni-dimensional representation of the data, i.e. on one of the axes. The
first row of figure 3.4 shows the data for the ‘original’ condition and illustrates the three
qualitative configurations well: three-dimensionality and (to a lesser extent) convincing-
ness show overlapping data, glossiness and softness show encapsulating configurations
and smoothness shows a complementary configuration with the ellipse for skin system-
atically above that for fabric. The interpretation is relatively straightforward and will be
presented in the discussion section.

3.4. DISCUSSION
As Figure 3.4 and Table 3.3 show, all conditions and attributes show positive correlations,
indicating that oil painting and engraving media elicit similar perceptions for these five
attributes. In other words, engravers did an excellent job to replicate the oil paintings
and provoke similar perceptions for the five attributes we tested, although engraving is
a challenging medium with only monochromatic lines and dots. This finding is in line
with the conclusions from Delanoy et al. (2021) and Van Zuijlen et al. (2020) that different
media provoked similar material perception. This ‘perceptual constancy over medium’
for both our study and Van Zuijlen et al. (2020) could be partially driven by semantic in-
formation, as Fleming et al. (2013) has shown: relatively similar perceptual spaces were
found for mere material classes defined by their word as by their photographic represen-
tations. Yet, the role of semantics vanishes when trying to explain the variance within
material categories, such as fabric or skin.

The differences between oil paintings and engravings are mainly found in their means
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Figure 3.5: Mean ratings and standard error of means of engravings. It can be seen as a streamlined visual-
ization of Figure 3.4, showing the overall trend for the engravings. Positive values indicate engravings were
rated higher, negative values indicate oil paintings were rated higher. Since we used z-score data, the means of
oil paintings always equal to the negative means of engravings, as shown in Table 3.3, hence we only plotted
engravings. The lines for oil paintings and engravings would be symmetrical about the x-axis. The light gray
asterisk signs indicate significance of differences between conditions: ** p < 0.01; *** p < 0.001. For clarity,
only the significance between original and grayscale is indicated, as well as the significance between grayscale
and the two histogram matched ones (hmp and hme).
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and standard deviations. Different means indicate different levels of perceived attributes.
Different standard deviations indicate different perceived range of certain attributes. In
the original condition the oil paintings always show a broader range of perceived at-
tributes, regardless of the significance of variance differences. To be precise, in almost
all sessions (17 out of 20) oil paintings have broader perceptual gamut than engrav-
ings. Bousseau et al. (2013) found that the range of perceived gloss in painterly ren-
derings is narrower than that in realistic renderings. Our current study shows that the
perceived ranges of three-dimensionality, gloss and convincingness in engravings are
significantly narrower than those in oil paint. For the original pictures, three out of five
attributes showed a smaller range for engravings, but after removing chromatic infor-
mation (color), only three-dimensionality showed this difference between painting and
engraving, and differences vanish completely in one of the two histogram matched con-
ditions. It should furthermore be noted that, although not significant, for Gloss the per-
ceptual range of engravings seems to trump that of paintings in the case of histogram
matching.

3.4.1. COMPARISONS IN THE ORIGINAL CONDITION

The first row in Figure 3.4 shows the comparison between oil paintings and engravings
for the original condition. For glossiness, smoothness and convincingness, representa-
tions in oil paintings were rated significantly higher, meaning materials in oil paintings
were perceived as glossier, smoother and more convincing. The difference in convinc-
ingness is to be expected: the combination of colorlessness and the visibility of hatching
lines likely lack the convincingness found in oil paintings. Less expected is that convinc-
ingness showed a larger perceptual range in paintings. This finding is less straightfor-
ward to explain than the larger perceptual range for three-dimensionality and gloss (dis-
cussed in more detail in the next paragraphs). As gloss and three-dimensionality vary
in reality, it makes sense to depict these variations and the painting medium apparently
affords depiction of a larger variety of the pictorial attributes than engraving. However,
convincingness is not an attribute of a pictorial object but rather an overall quality of the
depiction itself. Convincingness does not vary in reality, as reality itself is an ultimate
aim achieved through convincingness. There does not seem a need or motivation for a
larger convincingness range in paintings than in engravings. Therefore, this range differ-
ence may reflect that differences in style may be larger within paintings than engravings,
which would be an interesting observation. This would imply that in copying a painting
into an engraving, idiosyncratic style elements are lost and depictions converge towards
a more homogeneous ‘engraving style’. It seems feasible to investigate this conjecture
empirically, although it is beyond the scope of the current study.

The difference in mean ratings for smoothness is rather large. One possible expla-
nation is that in the original condition, the brushstrokes in oil paintings were fine and
not very visible, while engravings have visible engraving lines (see an example in Figure
3.6). As discussed in the introduction, we previously found an interaction between the
smoothness of the medium (visible brushstrokes) and pictorial smoothness (of the mo-
tif) in a study on apple depictions (Zhao et al., 2023). Although we specifically instructed
the participants to rate the smoothness of the depicted material, it could be a similar
case of observers unable to discount for the smoothness of the medium while judging
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Figure 3.6: A zoomed in look at details. The engraving on the right shows visible engraving lines. Oil painting
on the left: Anthony van Dyck, Christ healing the paralytic, 1619. Engraving on the right: Pieter de Jode (II),
Christ healing the paralytic, 1628 - 1670.

the smoothness of the motif.
The difference in perceived gloss is more challenging to explain. Indeed, the painter

possesses more control over the gloss parameters, especially being able to vary the amount
of blur at the edge of highlights. That would not explain an overall higher gloss ratings for
paintings, but it could contribute to the larger perceptual range as found by comparing
the variances (indicated by the black asterisk in Figure 3.4). If we observe the material
specific categories (blue ellipse for fabric, red ellipse for skin), we observe that skin dom-
inates the gloss bias. Apparently, painted skin appears more glossy than engraved skin.
A look at the skin fragments in Figure 3.7 may suggest a possible explanation. While
both engraving and painting make use of tonal differences to articulate shape and mate-
rial, it seems easier to disentangle the specular reflections from the shading patterns in
paintings than in the engravings.

As for three-dimensionality and softness, we did not find differences in mean ratings
between paintings and engravings. However, we did find a larger perceptual range for
three-dimensionality in paintings. To understand the three-dimensionality range dif-
ference we show some stimuli that seem responsible for this effect in Figure 3.8. The
stimuli that elicited low three-dimensionality ratings for paintings in comparison to en-
gravings (left rectangle in the figure) all seem to show objects that were painted without
contrast, rather homogeneous without much shading detail in comparison to their en-
graved counterparts. The stimuli in the right rectangle should show the opposite effect,
i.e. very three-dimensional in paintings and less so for engravings. Indeed, the paint-
ings show well articulated shading patterns, especially in comparison to the paintings
with low three-dimensionality. However, the engravings for this second group of stim-
uli look quite similar to the paintings; they also show shading articulation. If anything,
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Figure 3.7: Examples of skin fragments from paintings (on the left) and engravings (on the right).
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the paintings seem to include both shading and (cast) shadowing while engravings seem
mostly involved with shading patterns. In sum, when looking at individual stimuli we
can indeed see a relatively large range in three-dimensionality for paintings and a much
shallower range (more similar) for engravings.

Figure 3.8: Some examples from the three-dimensionality ratings in the ‘original’ condition that illustrate a
potential cause for the difference in perceptual range between paintings and engravings. From the left rect-
angle: some objects in paintings with low three-dimensionality ratings hardly show tonal contrast while their
engraved equivalents do. From the right rectangle: some objects that show similar level of shading and detail.

3.4.2. EFFECT OF COLOR REMOVAL & HISTOGRAM EQUALIZATION
We manipulated the images to reduce the two most prominent differences between paint-
ings and engravings: chromatic information and the luminance histogram. The color
manipulation was performed for the obvious reason that engravings lack color infor-
mation. The rationale behind the luminance histogram equalization was to reduce the
difference in global luminance statistics (for the whole image) such as mean luminance,
contrast (as quantified by the variance) and skewness.

By only removing colors, the evoked perceptions of the two media did not change
much compared to the original condition (the second and first rows in Figure 3.4, or the
gray and orange points in Figure 3.5). This suggests that color did not affect perception
much. It was the blurring and histogram equalization that had a more substantial overall
impact. We will now discuss the results in more detail.

A somewhat surprising result is that the difference between paintings and engravings
in convincingness was enhanced instead of mitigated when removing chromatic infor-
mation. Many facets can underlie the perception of convincingness. In the computer
science literature, the closest equivalent to ‘convincingness’ is ‘realism’ and Rademacher
et al. (2001) found that shadow sharpness and surface texture visibility contribute sig-
nificantly towards the perception of realism, both in photos and renderings. Although
there is interesting literature comparing realism across various art styles, Hagen (1986)
mainly focuses on the depiction of pictorial space and various types of perspective. An
extension towards computer rendering (Ferwerda, 2003) offers three varieties of real-
ism: physical, photo(metric) and functional realism. While broadening the scope to-
wards other formal elements than pictorial space, the categorisation seems too coarse
to offer an explanation for our finding. One plausible speculation could be that in the
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original condition, the styles are so far apart that each is judged on its own merit but as
differences become smaller, the two media are more directly compared by the observers.
Again, this is mere speculation in need of further empirical evidence. What is certain is
that when we removed differences in luminance histograms, convincingness differences
vanished and for half of the data even reversed: when histograms were matched to the
painting the engravings were judged to be more convincing. Initially, this manipulation
aimed at histogram matching to equalize the luminance characteristics, such as mean,
variance (i.e., contrast), and skewness. However, a side effect was the necessity to blur
the engravings in order to compute a continuous histogram. In hindsight, the blurring
alone would have merited an independent manipulation as in the case of convincing-
ness the effect may well have depended on the visibility of engraved lines.

For three-dimensionality, the color removal did not cause much difference: the larger
perceptual range persists for paintings and the mean three-dimensionality ratings are
again not significantly different between paintings and engravings. However, when ap-
plying the luminance histogram equalization, we see that the perceptual range differ-
ence vanishes for half of the data (the histograms matched to the engravings). This could
potentially be due to contrast equalization. As we showed in Figure 3.8, this seemed a
potential difference between paintings and engravings. Moreover, we found a signifi-
cant difference in mean three-dimensionality ratings. Given that chromatic information
and the (global) luminance distributions are similar between the paintings and engrav-
ings, these rather robust findings are likely due to local contrast, i.e. the detailed shading
contrast on certain objects seems to be stronger in engravings than paintings.

A similar shift in mean ratings was found for gloss perception. While in the original
condition glossiness ratings were higher in paintings than engravings, removing color
caused this difference to vanish and luminance histogram equalization even reversed
the effect: engravings are perceived to be more glossy. In the original condition we con-
jectured that the bias towards paintings could be attributed to skin, as illustrated in Fig-
ure 3.7. The removal of color did not seem to change much about the position of the red
ellipse (denoting the skin samples) with respect to the diagonal although the position
itself shifted downwards. Yet, the vanishing of the mean gloss difference in the grayscale
condition seems to be due to fabrics samples (engravings show higher gloss) counterbal-
ancing the skin samples (paintings show higher gloss). With the removal of luminance
histogram differences the engravings robustly received higher ratings. We believe that
this bias is also due to local contrast, as shown in Figure 3.9. The effect seems similar
to the three-dimensionality data, although the underlying mechanism differs: for gloss
the contrast between highlight and background is an important cue (Marlow and Ander-
son, 2013) while for three-dimensionality contrast in general likely plays a role. While
a change in contrast can theoretically be attributed to either a change in light direction
or to a change in depth (Belhumeur et al., 1999), it has been shown that participants of-
ten attribute it to shape: Ho et al. (2006) tested surface roughness with a rather coarse
texture stimulus and found that increasing contrast by lowering the light direction was
attributed to the roughness, i.e. depth variation as the texture was rather coarse.

For smoothness, in both original and grayscale conditions, oil paintings received
higher ratings. After blurring and histogram matching, the performance of these two
media became very similar. One possible explanation is that in both original and grayscale
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Figure 3.9: A zoomed in look at details on blurred oil painting and blurred engraving with histogram matched to
oil painting. The engraving on the right shows higher local contrast than oil paintings, although they share the
same histogram. Oil painting on the left: Christian Wilhelm Ernst Dietrich, The Wandering Musicians, 1745,
from The National Gallery, London. Engraving on the right: Johann Georg Wille, The Wandering Musicians,
1764, from Rijksmuseum, Amsterdam.

conditions, the visible lines led to less perceived smoothness for engravings. After blur-
ring, the engraving lines became invisible, resulting in similar smoothness ratings be-
tween these two media. As mentioned earlier, in a previous study about style perception
(Zhao et al., 2023), we found a potential transfer between the smoothness of depicted
apple skin and brushstroke coarseness of the medium. Although we cannot dissociate
whether smoothness perception similarity relies on blurring or histogram equalization,
we hypothesis that it is indeed due to the vanishing engraving lines. This would imply
that again we found a transfer of smoothness/roughness from medium to depicted ob-
jects/materials.

Softness was the only attribute in the original condition that neither showed a signif-
icant difference between the means nor the variances of paintings and engravings. This
changed when we removed color information: objects were perceived softer in paintings
than engravings. It is tempting to believe that smoothness and softness are correlated
and that the solution of the softness bias towards paintings finds it origin in the smooth-
ness discussion from the previous paragraph. Yet it can be readily inferred that smooth-
ness and softness are judged differently by observers: for smoothness the skin and fabric
samples are clearly segregated while for softness there is much overlap. This leaves us
with the open question of why painted objects are perceived softer than engraved ob-
jects when color is removed. The second manipulation (histogram equalization) let the
softness bias disappear again, which could either mean that global contrast or hatching
visibility contributed to the bias we found in the achromatic condition. What is further-
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more interesting to note is that for softness the correlations were all rather high: in the
original condition about 0.8 and in all manipulated conditions about 0.9, as can be read
in table 3.3 and also observed in Figure 3.4. These values are all substantially higher than
for the other attributes. This implies that the softness of materials is the most medium-
invariant attribute.

3.4.3. COMPARISON BETWEEN MATERIAL CATEGORIES

As we showed in Section 3.3.2, the two material categories of skin and fabric have dif-
ferent configurations. For three-dimensionality and convincingness, they have an over-
lapping configuration, indicating similar perceptual ranges. For gloss and softness, they
show an enclosing configuration. Skin has a lower glossiness and softness range than
fabric. A possible explanation is that fabric is a more diverse material category than skin.
It can vary from matte cotton to glossy satin, or from heavy stiff damask to soft silk. Skin,
on the other hand is much more consistent. For smoothness, skin has overall higher val-
ues than fabric. The possible explanation is that skin is in general smooth, while fabric
is in general less smooth than skin, and can vary in terms of smoothness.

Additionally, for each attribute the configurations of these two material categories
demonstrate similar trends across the manipulations. This suggests fabric and skin have
similarly been affected by the color and luminance manipulations.

3.4.4. CONCLUSION

We investigated the perceptual influence of media by measuring judgements about ma-
terials, shape and the pictorial quality (convincingness). We choose to compare engrav-
ings and paintings as they are both famous art media and because of the engraved copies
of paintings we could study a similar pictorial scene differently depicted in the respective
media. Furthermore, paintings and engravings span an important historical style axis as
defined by Heinrich Wölfling who in his “Principles of Art History" (Wölfflin, 2012) de-
fined the first dimension of style and form that between ‘linear’ and ‘painterly’.

Our overarching interest is how engravers handled the limited boundary conditions
of their medium. How to cope with the lack of color and the binary nature of tonal vari-
ations? Indeed, when directly compared to paintings, engravings lack convincingness.
But this difference vanishes when the boundary conditions are equalized for the media.
Moreover, gloss and three-dimensionality judgements are higher for engravings than for
paintings in the equalized conditions, and for softness and smoothness perceptual dif-
ferences vanish. We have hypothesized that engravers show a stronger local articulation
of the shading details, which likely compensated, or was meant as compensation, for
the lack of color and smooth transitions afforded by oil paint. A more detailed study on
what types of pictorial ingredients engravers use to convey material properties would
be highly desirable. Our study has generated a number of other interesting follow up
questions. First, we found more evidence for the interaction between medium and mo-
tif, in our case for smoothness perception. Second, as three-dimensionality relies on
both shading and shadowing, the clear visibility of these two is necessary for an opti-
mal three-dimensionality percept. For engravings, however, the discernibility between
shading and shadowing seems to be limited. Thirdly, a difference in the depiction of
skin became apparent where there again seemed to be dissociation difficulties for en-
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gravings, this time between shading and highlight. Fourthly, although this may be more
art-historically interesting: what is the role of paint degradation when comparing en-
gravings and paintings, particularly the local shading patterns. It seemed that some parts
of the paintings were rather dully shaded while their engraved counterparts were highly
articulated. Was this the engraving compensating as just discussed, or was the original
painting equally articulated? A future study could investigate whether some of our paint-
ings did in fact degrade over time, although this may require some technical art history
effort.

In conclusion, engravings can render materials and shapes well and elicit similar per-
ceptions as oil paintings. Nevertheless, there were some differences in performance for
portraying certain attributes, as well as differences in perceptual range, which has re-
sulted in interesting new research leads. In addition, we showed the role of color and lu-
minance distribution via manipulations of color removal, blurring and histogram equal-
ization. The manipulations close the gap between them. In some case, engravings even
show advantages over oil paintings.
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4
PROMPTS AND APPEARANCES:

COMPARING PHYSICALLY BASED

RENDERINGS AND GENERATIVE AI
IMAGES THROUGH MATERIAL

PERCEPTION

Generative Artificial Intelligence (AI) models unlock new ways to create images, which are
distinct from physically based rendering engines creating 2D images from 3D environ-
ments. In two experiments, we chose human material perception to compare the per-
ceptual similarity embeddings of three generative AI models with that of a computer-
generated BRDF stimulus set.

In Experiment 1, we used the text descriptions of 32 materials (e.g., blue acrylic) from
MERL, a BRDF dataset, as prompts for DALL-E 2 and Midjouryney v2, two text-to-image
models, to generate 32 images of spheres with comparable materials. We collected hu-
man similarity judgements for each data set and then constructed perceptual spaces for
all three sets via Soft Ordinal Embedding. Both AI models resulted in a 2D space while
the MERL set was confined to 1D, probably due to lack of surface texture. The perceptual
spaces were found to be unrelated, suggesting that the AI models generated unique and
different images of materials from identical text prompts.

In Experiment 2, the open-source text-to-image AI model Stable Diffusion v1.5 was com-
bined with ControlNet allowing the additional constraints of depth maps. We kept the
same 32 material descriptions from MERL and generated three sets using three different
shapes as depth maps. The three perceptual spaces from Experiment 2 are all 2D and
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exhibit high similarity, indicating a robust and non-random structure. They also show
a similar structure as the MERL embedding and perceptual spaces from other material
studies using real-world photos, computer renderings and depictions.

4.1. INTRODUCTION
We are surrounded by a large variety of materials signaling various properties, for exam-
ple, physical properties such as hardness, roughness or viscosity (Fleming, 2017). While
the ‘natural’ environment already contains a large variety of materials, the contempo-
rary (build) environment also includes an increasing number of manufactured materi-
als. This apparent material complexity is an interesting topic for the study of visual per-
ception as humans likely reduce this complexity by grouping materials into categories,
enabling them to estimate properties such as mentioned above over a large variety of
materials (Fleming, 2017; Schmidt, 2019). Moreover, we encounter an ever-increasing
number of images of materials, such as a photo of a glass building facade on a phone
screen, a computer-rendered rock in a game on a laptop, or a painting depicting ocean
water.

There are various approaches to understand human material perception. Most stud-
ies use images of materials instead of the actual physical objects. Having control over
physical characterizations of materials has been the norm in material perception studies
over the past decades, either using photos in combination with physical measurements
or using physics-informed computer renderings. Images may have different proper-
ties, characters or styles, both among themselves, and compared to material perception
in actual environments. Therefore, it may be important to probe possible differences
between different varieties of generated images of materials. Over the past decades,
computer-generated imagery (CGI) has become a dominant technique in the movie and
gaming industry and rendering innovations have been developed in tandem with in-
sights from perception research (Khan et al., 2006; Thompson et al., 2011; Vangorp,
2009). When studying specific material properties, the complex relationship between
visual cues and material perception often requires restricting the study to a single mate-
rial category, or sometimes even maintaining a constant object shape. For example, to
understand gloss, Wills et al. (2009) used computer rendered bunnies with different bidi-
rectional reflectance distribution functions (BRDFs), while Ferwerda et al. (2001) used
rendered spheres as stimuli. These studies used computer renderings as they afford pre-
cise control over the various distal (or ‘world’) parameters that define materials, such as
reflectance characteristics.

At the same time, it appears possible to investigate cue-perception relations in un-
controlled stimuli as shown in the glossiness study by Di Cicco et al. (2019). They inves-
tigated painterly practice and defined cue intensities by measuring various image prop-
erties such as contrast and blur. Using art images instead of renderings has the added
value that a certain pictorial approach of the maker is automatically incorporated which
may reveal additional insights into mechanisms of material perception. Furthermore,
paintings are made on surfaces such as canvas, not in a physics rendering engine. As a
result, painters are not limited by the rigidity of physically based rendering algorithms
(Cavanagh, 2005).

As anyone living in the time of our study must have noticed, a new medium has
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become available: generative AI. Although synthetic textures have already existed for
several decades (Efros & Leung, 1999; Heeger & Bergen, 1995; Portilla & Simoncelli,
2000), deep neural networks revolutionized the production of images with the invention
of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). Instead of being
trained to only recognize and classify depicted objects such as in AlexNet (Krizhevsky
et al., 2012), this new type of network made it possible to expand the kinds of classifi-
cations, for example, classifying whether an image is a photo or not. This architecture
resulted in rather photorealistic images albeit with a certain uncanniness. Interestingly,
this type of ‘bug’ is often regarded by artists such as Mario Klingeman and Helene Sarin
as a positive ‘feature’ to help creating aesthetically pleasing images (Hertzmann, 2020;
Wang et al., 2020). Combining text and images became the next significant innovation,
for example by using the CLIP model (Radford et al., 2021). This resulted in various gen-
erative image synthesizers based on so-called ’prompts’, text describing what (and how)
the image should depict. Around 2022, various platforms started their online services
of text-based image generation (e.g. DALL-E and Midjourney) or released their model
(Stable Diffusion).

Generative AI pictures conceptually resemble paintings as the generation takes place
in the picture plane, i.e. the RGB matrix and canvas, respectively. In contrast, for com-
puter rendering and photography there is always a 3D source of which the image is the
projection. Generative AI depictions do not originate from distal scene properties and,
consequently, cannot be directly linked to physical parameters. However, it is likely that
there are latent space correlates for various visual phenomena. (Goetschalckx et al.,
2019; Liao et al., 2023). The absence of a direct link to physical parameters also means
that generative AI depictions are not limited by the laws of physics, just like paintings,
drawings, etc. This is important as the human visual system is also not bound to the
laws of physics but rather uses its own ‘alternative physics’ (Cavanagh, 2005) to model
the outside world.

In this study we want to explore the use of generative AI depictions for material per-
ception. We were particularly interested in the perceptual dimensions that generative
AI depictions span. Quantifying perceptual spaces can be used to explore core dimen-
sions in material perception (Schmidt et al., 2022) but also in style perception (Zhao et
al., 2023) and in many other fields where an a priori structure is lacking. The traditional
method to create a perceptual space is Multidimensional Scaling (MDS) (Mead, 1992)
where observers are asked to rate the difference between each pair of stimuli and the
resulting scores are transformed into distances in a multidimensional space. To avoid
individual scaling differences, various other methods have been developed, for exam-
ple, the ones that make use of triplets where the observer is asked to select the two most
similar stimuli per trial. This ordinal information can then be processed with, for exam-
ple, (landmark) MDS (De Silva & Tenenbaum, 2004; Zhao et al., 2023) or specific neural
networks (Hebart et al., 2020). These two methods address the challenge of the quickly
increasing number of possible triplets—scaling cubically with the number of stimuli—by
applying various techniques to reduce the required minimum number of triplets. A rel-
atively new and promising method that seems to require the least data for generating
robust perceptual space reconstructions is Soft Ordinal Embedding (SOE). Originated
from machine learning, the goal of SOE is to find an embedding (perceptual space) that
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maximizes the number of consistent triplets (Haghiri et al., 2020; Künstle & von Luxburg,
2024; Künstle et al., 2022; Terada & Luxburg, 2014).

We wanted to compare the new type of text-to-image generated visual stimulus with
that from an already established technique of stimulus generation. We choose computer
rendering and specifically choose the stimuli by Lagunas et al. (2019) who in turn used
the data driven BRDFs of the Mitsubishi Electric Research Laboratories (MERL) dataset
(Matusik, 2003) to generate a large dataset. Lagunas et al. (2019) first collected human
similarity judgements for a subset of the stimuli and then used these data to train a deep
learning model that can measure (predict) the appearance similarity between different
materials. One of the shapes they used was a sphere, being one of the very few geomet-
ric shapes that is unambiguously captured by text (which is the input for our stimulus
generation). A cube would also be possible, but objects of tessellated structure can fail
to evoke correct reflectance properties (Vangorp et al., 2007). In our second experiment,
however, we explored an alternative technique for generating similar shapes using Con-
trolNet. (Zhang et al., 2023).

4.2. EXPERIMENT 1 - INFLUENCE OF GENERATIVE AI MODEL
Experiment 1, conducted in 2022, investigated two popular text-to-image generative AI
models, DALL-E 2 (Ramesh et al., 2022) and Midjourney v2 (https://www.midjourney.com/).
We compared images generated from these two models with a computer graphics ren-
dering dataset by Lagunas et al. (2019) who rendered spheres with various BRDFs from
the MERL dataset (Matusik, 2003) under various light probes (Debevec, 2008). For the
generative AI models, the only constraint of the output images is the text description (in
contrast to the image constraints we used in Experiment 2).

4.2.1. METHOD

STIMULI

We used three sets of images, each containing 32 comparable materials, an overview is
shown in Figure 4.1. The first set, MERL, is a BRDF dataset based on real-world measure-
ments. We chose to include images with different environment maps to ensure diversity
and anticipate on a variety of ‘lighting’ settings in the generative AI stimuli. Six envi-
ronment maps were used, Uffizi, Grace, Pisa, Ennis, Glacier and Doge (Debevec, 2008),
for 10 images, 7 images, 7 images, 4 images, 3 images, and a single image, respectively.
Each material comes with a text description (e.g., ‘blue acrylic’) as specified by the BRDF
name in the original MERL dataset. The other two sets were generated with generative
AI models, DALL-E 2 and Midjourney v2. Each set contains 32 comparable materials,
as we used the BRDF names as prompts to generate the images. To control the shape,
we added the word ‘sphere’ in the text prompt. Examples of prompts are ‘a blue acrylic
sphere’ and ’a chrome sphere’. Note that participants only saw the images of materials,
not the text description.

PROCEDURE

Since we are interested in the perceptual spaces from these three image sets, we chose
a similarity judgement task. We conducted three online experimental sessions, one for
the MERL, one for the DALL-E 2 and one for the Midjourney v2 image sets. Each session
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Figure 4.1: An overview of all stimuli used in Experiment 1. The word(s) below each group of images are the
text descriptions from the MERL dataset. We used the same descriptions as prompts for the AI models but
added the word ‘sphere’. (i.e. ‘aluminium’ becomes ‘an aluminium sphere’)

contained 96 trials after 15 practice trials for participants to get familiar with the concept
and operation. In each trial, participants were presented with a triplet of images, both
the selection and order were randomized. The center stimulus was set as target, the
task was to select either the left one or the right one as the one most alike the center
target1 in terms of material. Figure 4.2 shows the experiment interface. Participants
could use the left and right arrow keys to indicate their choice, then use the ‘return’ key
to both confirm and proceed to the next trial. One benefit of the triplet judgement task
(over similarity rating) is the ability to scale up the experiment by combining data across
multiple participants, without the issue of different internal scales (Linde, 1975; O’Hare,
1976). This advantage makes triplet method better suited for crowd-sourcing studies
(Heikinheimo & Ukkonen, 2013; Li et al., 2021; Tamuz et al., 2011).

PARTICIPANTS

150 unique participants were recruited for Experiment 1, 50 participants for each ses-
sion. A server issue caused some data loss. Eventually, we recorded 45 (for MERL), 34
(for DALL-E 2) and 39 participants (for Midjourney v2) for three sessions. All partici-
pants received compensation regardless of their data being recorded. All participants
were recruited from Prolific (www.prolific.com). The following prescreen criteria were
used: 1) approval rate 95% - 100%, 2) number of previous submissions 100 - 1000, 3)
highest education level completed higher than high school, 4) fluent in English, 5) from
the USA or UK, 6) exclude participants from our previous studies. Note that criteria 3 to 5
were used to make sure participants could understand the instructions properly without
language barrier. The experiment was conducted in agreement with the Declaration of
Helsinki and approved by the Human Research Ethics Committee of the Delft University
of Technology. All data were collected anonymously.

1We initially were under the impression that the embedding algorithm would only be able to process compar-
isons with the middle target, instead of choosing the more intuitive ’odd one out’. Later we learned that Soft
Ordinal Embedding was able to process this type of data, which we then used in Experiment 2
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Figure 4.2: Experiment interface of Experiment 1, showing images from Midjourney v2. Participants were
shown three images of different materials, where both the selection and order were randomized. Their task
was to select either the left image or the right image that is most alike the center one (target). Participants
could use the LEFT and RIGHT arrow keys to select their choice by sliding the window, then press RETURN to
confirm and proceed to the next trial.
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Figure 4.3: The dimensionality of MERL, DALL-E 2 and Midjourney v2 embeddings. The blue cross-validation
curves show the overall performance of the fit. The peak of the cross-validation accuracy curve, indicated
by the blue arrows, stands for its optimal dimensionality. Error bars are not included because the variance
between folds is very small.

DATA ANALYSIS

We used Soft Ordinal Embedding (Haghiri et al., 2020; Künstle et al., 2022) to convert the
triplet data into perceptual embeddings. This method does not necessitate the data of all
possible triplets, but rather requires only 2dn log2 n, where d is the estimated number of
dimension(s) and n is the number of stimuli. Based on previous research, we expected at
least a 2D solution. To anticipate a possible 5D or 6D solution (1920 triplets), we aimed
for 50 participants (50 x 96 trials = 4800 triplets). Having more triplets also improves the
accuracy of the results.

After getting the embeddings from the Soft Ordinal Embedding algorithm (Künstle
& von Luxburg, 2024), we first conducted Procrustes analysis for embeddings with the
same dimensionality, where scaling, rotation, translation and reflection were applied
separately to the DALL-E 2 and Midjourney v2 embeddings so that both embeddings
were optimally aligned with the MERL embedding. Then we calculated the canonical
correlations between the three embeddings, quantifying the similarities between them.
Besides the overall correlation coefficient and its significance, the calculation also yields
weights on the dimensions, indicating the importance of each dimension, thus helping
us to interpret the canonical correlations.

4.2.2. RESULTS

First, we determined the dimensionality by looking at the cross-validation accuracies
as shown in Figure 4.3. The blue curves denoting the 10-fold cross-validation accuracy
measured the percentage of triplet data that can be correctly predicted by the embed-
ding. To this end, the data were split multiple times into training and validation data
to exhaustively utilize the entire dataset for both training and validation in a systematic
manner. A higher value indicated a better fit. The peak of a cross-validation curve indi-
cated its optimal dimensionality. In theory, this method would prevent both underfitting
and overfitting, since decreasing or increasing the number of dimensions will not pro-
vide any accuracy gain. Our data suggested a 1D solution for MERL materials, a 2D or
6D solution for DALL-E 2 materials and a 2D solution for Midjourney v2 materials. For
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MERL DALL-E 2 Midjourney v2

Figure 4.4: The 2D embeddings of MERL, DALL-E 2 and Midjourney v2. Both DALL-E 2 and Midjourney v2
embeddings are aligned with MERL after Procrustes analysis. The Y-axis of the MERL embedding is positively
associated with the 1D solution for MERL.

direct comparison, we plotted the 2D embeddings for all three spaces. Figure 4.4 shows
the three 2D embeddings after Procrustes analysis with the DALL-E 2 and Midjourney v2
embeddings aligned with MERL embedding. From observation, they show low similarity
even after the Procrustes alignment. Since the MERL materials embedding is in fact one
dimensional, we fitted the 1D solution into the 2D MERL space by means of multiple
linear regression. This resulted in a positive correlation with the Y-axis of the 2D space
(r = 0.99; p < 0.001).

Secondly, we applied canonical correlation analysis to quantify possible similarities
between these embeddings. Table 4.1 shows the results of this analysis. The canonical
weights indicated how much each dimension contributes to the overall correlation. The
three correlation coefficients appeared to be relatively low, suggesting hardly any rela-
tion between these three embeddings. This underscores the visual inspection of Figure
4.4. The only case that yielded a significant correlation was between the MERL and Mid-
journey v2 embeddings, with a relatively low correlation coefficient (r = 0.550, p < 0.05).
As for the weights, the y-axis (0.691) from the MERL embedding contributed slightly
more than the x-axis (-0.584), where the x-axis (0.907) from the Midjourney v2 embed-
ding contributed much more than the y-axis (0.437) to the overall correlation. This may
be attributed to the corresponding presence of metallic, glossy stimuli in the lower half
of the MERL embedding and the lower left quarter of the Midjourney v2 embedding.

4.2.3. DISCUSSION

Looking at the dimensionality plot from Figure 4.3, MERL and the two AI models yielded
different dimensionalities. Both DALL-E 2 and Midjourney v2 have higher dimensions
than MERL, i.e. need more dimensions to explain the perceptual differences between
the stimuli. A possible explanation is the difference in surface texture: being a BRDF
material dataset, MERL has no surface texture, where both DALL-E 2 and Midjourney
v2 have texture on the surface. The additional information of surface texture increases
stimulus complexity which may cause an increase in dimensionality.

Both the different number of dimensions and low correlations as shown in Table 4.1
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Table 4.1: Canonical correlation results for Experiment 1

space1-space2
correlation
coefficient

p-value
canonical weights

space1-X space1-Y space2-X space2-Y

MERL-Dalle 0.283 0.616 -0.071 0.968 -0.513 0.898
MERL-Midj 0.550 0.017 -0.584 0.691 0.907 0.437
Dalle-Midj 0.073 0.997 -0.996 -0.005 -0.705 -0.722

The canonical weights indicate how much each dimension contribute to the overall
correlation.

suggest low similarity among these perceptual spaces. Besides difference in surface tex-
ture, another explanation for this low similarity might be related to semantics. The MERL
dataset comes from measurements of real-world materials, with text descriptions. For AI
generated images, however, the text prompts are the starting point. The output images
are the interpretation of the described material by the AI models. In some cases, the
interpretation from the AI models is rather literal. For example, the three datasets have
very different appearances of the material ‘cherry’ as shown in Figure 4.1. Both DALL-E 2
and Midjourney v2 depicted the object cherry instead of the cherry wood material. Sim-
ilar for Ipswich pine. In MERL, it stands for a type of wood, but in Midjourney v2 this text
prompt is interpreted, very creatively, as a sphere in front of a pine forest. At the same
time, other materials show rather consistent appearances among the three datasets, for
instance black soft plastic and orange paint. Generative models are also known to be
more strongly triggered by specific words that were frequently represented in the train-
ing set. As a result, visual differences in the images created by these models may simply
be due to a higher familiarity with certain words, which can vary across MERL keywords.

Another interesting observation that can be made from Figure 4.3 is overall differ-
ences in training and cross-validation accuracies, indicating how coherent triplet judge-
ments contribute to the embedding (Künstle et al., 2022). The Midjourney v2 embedding
yielded a substantially lower training and cross-validation accuracy than the other two
embeddings, indicating a higher noise level. In the context of the current study, noise
suggests lapses, imprecision or disagreement between participants. One possible ex-
planation is the Midjourney v2 created unique materials that are different from existing
material datasets. The various unique and interesting patterns within the sphere shape
might introduce ambiguity, which leads to a higher noise level. As shown in Figure 4.1,
compared with MERL and DALL-E 2, Midjourney v2 has more textures or patterns within
the material spheres, as well as more diverse backgrounds. The overall visual style can
be described as fantasy-like. Note that DALL-E 2, the other generative AI, produced less
ambiguity than Midjourney v2. One possible reason is the visual style of DALL-E 2 is
truer to life. This diversity between Midjourney v2 and DALL-E 2 has also been observed
by Göring et al. (2023) who concluded that the former has a more artistic style and the
latter a more realistic one.

In summary, in Experiment 1, we used two AI models to generate material images
according to text description from a classic BRDF material dataset, MERL. The resulting
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materials from AI are unique and different, not so comparable with those from MERL.
Probably the AI models have quite some freedom in the interpretation and generation.
Later in early 2023, we learned a tool that can provide more control over image gener-
ation. This allowed us the explore more complex shapes than the spheres from Experi-
ment 1, as we did in Experiment 2.

4.3. EXPERIMENT 2 - INFLUENCE OF SHAPE

The generative AI text-to-image model Stable Diffusion (Rombach et al., 2022) is regu-
larly being used by artists to generate images. Unfortunately, this model faces the same
limitation as DALL-E 2 and Midjourney v2, where the text prompt is the only means
of controlling the spatial composition of the output images, which can be insufficient.
However, in late February 2023, a new add-on for Stable Diffusion was released: Con-
trolNet (Zhang et al., 2023). This add-on provides various ways of precisely controlling
the spatial condition of the output images, such as desired human posture, depth map,
Canny edge, etc.

As stated above, before the introduction of ControlNet, one major limitation for AI
image generation was that the stimulus shape could be controlled through text prompts
only. For example, shapes more complex than a sphere are difficult to describe using
only text. However, in addition to text, ControlNet can achieve control over the spatial
conditions of the output as we show later in Figure 4.5 and Figure 4.6. This option af-
forded us to further explore AI generated materials using more complex shapes than the
spheres we used in Experiment 1. Moreover, it provided the means to investigate the
potential influence of shape on material perception in the domain of generative AI.

4.3.1. METHOD

STIMULI

Compared to Experiment 1 where the image output from AI models is controlled by text
prompts only, in Experiment 2 image generation by combining Stable Diffusion v1.5 with
ControlNet has one more constraint: the precise control of the shape by using depth
maps. Figure 4.5 presents three examples of different depth maps combined with a sin-
gle text prompt. ControlNet is a neural network architecture that adds spatial condi-
tioning by locking parameters (layers) within a large text-to-image diffusion model such
as Stable Diffusion. The weight of the control can be adjusted to vary the degree in re-
laxation of locking parameters (Zhang et al., 2023). It should be noted that there is no
ground truth 3D shape, ControlNet merely converges to solutions that visually resemble
the specific 3D shape used as input. We used the same 32 materials from Experiment 1,
with depth maps we generated to control the shape of the material blobs. The weight for
ControlNet 1.0 was set to one (i.e., halfway) for all images. For Experiment 2, we changed
the text prompts from ‘sphere’ to ‘object’ (e.g., ‘1 gray plastic object’). Figure 4.6 shows
an overview of all 32 x 3 stimuli of Experiment 2. We choose three different shapes, two
‘globular’ shapes of high (Shape 1) and low (Shape 2) complexity, and a topologically
different, more regular shape of a torus (Shape 3).
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Figure 4.5: Image generation for Experiment 2, using ControlNet with depth maps and Stable Diffusion v1.5
with text prompts. The upper row presents the depth maps of three different shapes, input for ControlNet. The
lower row are the final images.
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Figure 4.6: An overview of all 32 x 3 stimuli used in three separate sessions in Experiment 2.
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Figure 4.7: Interface for online Experiment 2. As the icon on the left-hand side indicates, Pressing the RIGHT
arrow key would toggle the order of the three images. All three possible pairs can be selected as being similar
in terms of material. The participants can press RETURN to both confirm their choice and proceed to the next
trial.

PROCEDURE

We used the same approach as in Experiment 1: in three sessions, one per unique shape,
we instructed participants to judge the similarity in materials where each session con-
sisted of 96 trials. The only difference is that, instead of having one fixed target image,
participants were now free to choose any pair from the triplet. See Figure 4.7 for the new
interface. We changed the task to reduce noise in the data. We noticed from Experiment
1 that a fixed target sometimes makes the choice more difficult when the fixed target is
the odd one. Without a target, participants could freely choose from all three possible
pairs. In all other respects the data analysis was the same as in Experiment 1.

PARTICIPANTS

60 unique participants were recruited for Experiment 2, 20 participants for each session.
We recruited all participants from Prolific with the same prescreen criteria as in Exper-
iment 1. The number of recruited participants was less than in Experiment 1 since we
anticipated that the new task would produce slightly less noise. The same server issues
caused some data loss. Eventually, we recorded 18, 18 and 13 participants for shape 1 to
3. Yet, the number of triplets we got was well beyond the minimal requirement.
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Figure 4.8: The dimensionality of embeddings of shape 1 to 3. The peaks of the blue cross-validation curves
indicate the optimal dimensionality. All three embeddings yielded a 2D solution.
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Figure 4.9: The 2D embeddings of shape 1 to 3 after Procrustes analysis, the embeddings for shape 2 and 3
being aligned with that of shape 1.

4.3.2. RESULTS

Figure 4.8 shows the dimensionality plots for Experiment 2. All three embeddings sug-
gest a 2D solution. Note that the peaks for cross-validation accuracy were all around
70% and more pronounced than in Experiment 1, indicating a reduction in data noise
(Künstle et al., 2022).

Figure 4.9 shows the three 2D embeddings after Procrustes analysis, the embeddings
for shapes 2 and 3 being aligned with that of shape 1. Similarities can already be noticed
by observation. To strengthen this observed similarity, we classified the 32 text descrip-
tions from the MERL dataset into the material categories from (Fleming et al., 2013). In
doing so, about the same clustering can be seen in the three embeddings: three wood
materials are positioned in the top left corner and glossy metallic materials in the bot-
tom right side, while matte fabric-like materials show up mainly on the left side.

We also found statistical support for the observed similarity from canonical correla-
tion analysis results, as denoted by Table 4.2. Each pair of the three embeddings shows
high correlations (r = 0.815, 0.836, 0.764) which all are significant (p < 0.001).

To compare all perceptual embeddings representing the various generative models
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Table 4.2: Canonical correlation results for Experiment 2

space1-space2
correlation
coefficient

p-value
canonical weights

space1-X space1-Y space2-X space2-Y

Shape1-Shape2 0.815 0.000 -0.411 0.815 -0.482 0.793
Shape1-Shape3 0.836 0.000 -0.547 0.712 -0.621 0.750
Shape2-Shape3 0.764 0.000 0.572 -0.722 0.548 -0.807

p-value 0.000 means p<0.001.
The canonical weights indicate how much each dimension contributes to the overall
correlation.

and the BRDF stimulus set, we combined the results from our two experiments as fol-
lows. First, we correlated the 2D embeddings of MERL, DALL-E 2 and Midjourney v2
from Experiment 1 with the three embeddings from Experiment 2. This led to nine extra
correlations, where correlations between MERL and the three shape embeddings were
all significant (shape 1: r = 0.567, p = 0.019; shape 2: r = 0.619, p = 0.004; shape 3:
r = 0.727, p < 0.001). Similarly, all correlations for DALL-E 2 were significant (shape 1:
r = 0.701, p < 0.001; shape 2: r = 0.781, p < 0.001; shape 3: r = 0.567, p = 0.024). In
contradiction, all correlations for Midjourney v2 were not significant (shape 1: r = 0.311,
p = 0.245; shape 2: r = 0.136, p = 0.969; shape 3: r = 0.204, p = 0.807). Second, we com-
bined these nine correlations with the values from Table 4.1 and 4.2 into one correla-
tion matrix on which we performed an MDS analysis using the correlations as similarity
measures. The outcome of the MDS analysis can be found in Figure 4.10 with the small-
est/largest distance between two embeddings representing highest/lowest correlation.

4.3.3. DISCUSSION

All three embeddings from Experiment 2 yielded a clear 2D solution with relatively high
correlations among each other. The canonical weights as shown in Table 4.2, imply that
both dimensions contribute about equally to the correlations. Both consistent dimen-
sionality and high similarity among the three embeddings suggest that the results are
non-random and reasonably robust. This also suggests that semisystematic variations
in the combination of predefined geometry with uncontrolled illumination have only
minor influence on material appearance and perception. Olkkonen and Brainard (2011)
investigated the joint effects of illumination and object geometry on material perception
and found strong interactions between them. Since the illumination in the current study
was not controlled due to the nature of generative AI models, the variation in illumina-
tion might have interfered with the influence of object geometry. In addition, Vangorp
et al. (2007) considered the blob shape (with a gently changing smooth surface) to be
one of the best choices for material discrimination. All three shapes used in the current
study have relatively smooth surfaces, but none of them has a flat surface, which could
also explain the limited influence of object geometry.

Recently, Göring et al. (2023) evaluated the perceived realism and image appeal of
135 AI-generated images created by several text-to-image models, including DALL-E 2,



4.4. GENERAL DISCUSSION

4

85

Stable Diffusion

Figure 4.10: The MDS solution for all six embeddings. The canonical correlation coefficients were used to build
the distance matrix.

Midjourney and Stable Diffusion. They found that DALL-E 2 and Midjourney were as-
sessed to generate the most and least realistic images, respectively, with Stable Diffusion
in between. The Midjourney images were described as “...more artistic similar to a paint-
ing...”. With respect to image appeal, the images from both DALL-E 2 and Midjourney
were judged to be about the same but more appealing than the ones created by Stable
Diffusion. The MDS solution as shown in Figure 4.10 suggests that MidJourney v2 can-
not be associated with any of the other embeddings, that MERL and DALL-E 2 come up
with different solutions, and that shape 3 seems closest to MERL and shapes 1 and 2 to
DALL-E 2. Interestingly, the order of the three AI models on the first dimension appears
to be compatible with the realism evaluation from Göring et al. (2023) study with DALL-E
2 and Midjourney being the most and least realistic and both Stable Diffusion and MERL
in between. Looking at the second dimension, the order seems consistent with the ap-
peal judgements from Göring et al. (2023) study in that both DALL-E 2 and Midjourney
v2 have the highest values and Stable Diffusion v1.5 (shape 3) the lowest, together with
MERL.

4.4. GENERAL DISCUSSION
In two experiments, we explored human material perception using generative AI stimuli
and compared the perceptual embeddings between three different generative AI mod-
els (DALL-E 2, Midjourney v2, Stable Diffusion v1.5) and one computer rendered BRDF
stimulus set (MERL). Unlike the computer rendered material stimuli, the generative AI
stimuli are not accompanied by their distal characterization (i.e. reflectance parameters
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and illumination information) and solely rely on the so-called prompt. This limits the
range of psychophysical paradigms available to quantify the perceptual appearances of
these artificial objects. We chose to explore perceptual embeddings using Soft Ordinal
Embedding (Künstle et al., 2022) and found that in all generative AI experiments, the em-
bedding turned out to be 2-dimensional. In contrast, the embedding of the BRDF dataset
from which the prompts for the AI models were taken, was 1-dimensional. The differ-
ence in dimensions may be attributed to varying levels of stimulus complexity. While
no distal parameters were involved, the generative AI images appeared to contain rich
texture information. Some even displayed translucency, a feature absent in the BRDF
rendered stimuli due to their exclusion of subsurface scattering.

One difference between Experiment 1 and 2 is the numbers of constraints for gen-
erative AI models. In Experiment 1, text description from MERL dataset was the only
constraint for the generative AI models, while in Experiment 2, we also introduced a
depth map as the second visual constraint in addition to the semantic one. The text de-
scriptions for materials could cause semantic ambiguity for AI models. As we mentioned
in the discussion of Experiment 1, Both DALL-E 2 and Midjourney v2 could have their
own interpretations of the descriptions. Some interpretations were literal, not necessar-
ily correct or wrong. For example, cherry can be both interpreted as wood or fruit. In
addition, AI can generate images beyond reality, for example, a single cherry with stem
from DALL-E 2 and a bunch of cherries pressed within one sphere from Midjourney v2.

Although the 2-dimensional optimum occurred robustly for every generative AI stim-
ulus set (except the possible 6D solution for DALL-E 2), independent of shape (Experi-
ment 2) or generative model (Experiment 1 and 2), the dimensionality is relatively low
in comparison to other material perception studies based on triplet data. For example,
Filip et al. (2024) studied the perceptual dimensions of wood, which is only one category
in our experiment, and found the optimal number of dimensions to be between five and
nine. Next to using a different algorithm, i.e., the VICE model by Muttenthaler et al.
(2022), they also computed the optimal embedding dimensionality by means of Künstle
et al. (2022)’s Soft Ordinal Embedding method and found an optimum at six dimensions.
A related study that used a wide variety of photos from the STUFF dataset (Schmidt et al.,
2022)) revealed that 36 dimensions were needed to describe similarities between mate-
rial photos. Hebart et al. (2020) using ‘THINGS’ dataset instead of ‘STUFF’ dataset, came
up with 49 dimensions. Different dimensionalities may arise from focusing on either a
single material category or a diverse range of materials. Each approach can lead to dis-
tinct criteria, resulting in unique perceptual spaces with varying dimensions.

While the dimensionalities vary widely between these studies and ours, it is inter-
esting to see that the accuracies are rather similar. Accuracy means the percentage of
raw triplet data being the same to the triplet data predictions that arise from a model or
directly from the embedding itself. The lowest accuracy was found in a study with the
largest diversity in pictures, i.e. the THINGS database Hebart et al. (2020) reporting ap-
proximately 65% accuracy. Although this appears low, it is high when compared to their
upper limit of approximately 67%, which was computed on the bases of repeated trials
by different observers. The STUFF database (Schmidt et al., 2022) yielded an accuracy
of 71.86% with an upper limit of 73.84% while the study on wood (Filip et al., 2024) re-
sulted in an accuracy of approximately 76% with an upper limit of 82%. This accuracy
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is comparable to the 68-72% cross-validation accuracy we found in Experiment 2. Note
that we did not measure repeated trials and can therefore not compute an upper limit.
Experiment 1 yielded a somewhat different picture with 71% cross-validation accuracy
for MERL, 70% for DALL-E 2 and 61% for Midjourney v2. Mind that all these accuracies
were calculated at the optimal number of dimensions (i.e., two in all our cases except
MERL). In summary, while it is challenging to make direct comparisons between studies
due to differences in dimensionality and methodology, the perceptual embeddings from
our synthetic generative AI stimuli have accuracy levels comparable to those of previous
studies using photos. Lastly, it should be noted that Lagunas et al. (2019) also applied a
triplet similarity task to their stimulus. Yet they did not explore the perceptual embed-
ding as a (potentially) interpretable global space.

We are not the first using AI generated stimuli for research into material perception,
being aware of studies using prompt-based diffusion models. These studies used a varia-
tional auto-encoder (VAE) on the perception of glossiness (Storrs et al., 2021) and a Gen-
erative Adversarial Network (GAN) on the perception of translucency (Liao et al., 2023).
In both studies, the architectures were specifically trained on predefined image datasets
(albeit unsupervised) and with different research scopes from ours. Storrs et al. (2021)
found that VAEs clustered glossy and matte objects in a manner similar to humans and
proposed that the unsupervised model (as opposed to a supervised model) could well
predict human gloss perception. Liao et al. (2023) found that distinct layers in their gen-
erative model corresponded to different perceptual attributes, where the middle layers
corresponded to translucency while higher layers corresponded to body color. Finding
paths in latent space that correspond to the intensity of material attributes brings gen-
erative AI images closer to traditional CGI in which, for example reflectance parameters
can be manipulated. Altering material appearance via latent space was also explored by
Delanoy et al. (2022) using GANs and by Sharma et al. (2024) using a diffusion model
(Stable Diffusion v1.5). While Delanoy et al. (2022) used the same MERL dataset (Lagu-
nas et al., 2019) as we used, in their study the images were the starting point to generate
novel stimuli, while in our study BRDF labels were the starting point. Hence, our study
complements other studies using generative AI for material perception as we used text-
based images and explored their perceptual embeddings.

AI generated imagery forms a new ‘medium’ to explore material perception. Using
this new medium we find that our results correspond with studies using real-world pho-
tos (Fleming et al., 2013), CGI renderings (Zhang et al., 2019) and paintings (Van Zuijlen
et al., 2020). This is illustrated in Figure 4.11 where Figure 4.11A presents the percep-
tual material space as found by Fleming et al. (2013), and Figure 4.11B summarizes the
three embeddings from Experiment 2 in the form of the five centroids of five material
categories. The perceptual space on the left has wood and stone at the top, and from
left to right, fabric, plastic and metal in the middle. The space from Experiment 2 on
the right side has a similar structure, only the position of plastic seems to be shifted up-
wards. Both Zhang et al. (2019) and Van Zuijlen et al. (2020) found similarly structured
perceptual spaces as Fleming et al. (2013). Yet it should be noted that we did not have a
complete and evenly distributed material category set, as our stimuli were confined to
the names of the MERL dataset.

Finally, the word medium can be used to describe not only what the image is made
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Experiment 2Fleming et al. (2013)
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Figure 4.11: A) Perceptual material space adapted from Fleming et al. (2013). B) Perceptual space from Exper-
iment 2 with the centroids of five material categories for three shapes.

of (e.g., oil paint on canvas, pixels on a screen, drawing on paper) but also the tech-
nique with which the image has been made (e.g. painting, animating, sketching, pho-
tographing). The few studies that directly compared different media yield a mixed pic-
ture. Delanoy et al. (2021) compared paintings and renderings and found comparable
material perceptions across these two media, while Zhao et al. (2024) compared paint-
ings with engravings and did find differences that could be attributed mainly to contrast.
In the latter study, the lack of color seemed to have been (over)compensated through
additional local contrast applied by engravers. Generative AI is clearly not a traditional
medium and does not depend as much on the interaction between artist and material
in the same way as rendering, painting and engraving. Although it appears a funda-
mentally distinct medium, it does have similarities. The role of the artist or creator is
conceptually similar, but the practice of handling the brush is transitioned into handling
the prompt. Another similarity with other media is that it has limitations, and that these
limitations may lead to specific creativity. One of the limitations of generative AI is its
stochastic nature: the relation between prompt and image is rather undeterministic and
it is impossible to control every pixel of the image. So the unexpected findings might
invite serendipity, probably more so than the traditional act of image making.

To summarize, we evaluated the visual output of AI Generative models using identi-
cal material prompts taken from MERL, a BRDF dataset. To this end, we compared their
perceptual spaces derived from triplet similarity judgments. In the first experiment, the
perceptual spaces of DALL-E 2 and Midjourney v2 turned out to be unrelated, suggesting
that these models have different styles in realistically visualizing materials, in line with
earlier observations on perceived realism and appeal of AI Generative models (Göring
et al., 2023). So, like painters choosing the medium (oil paint, pencil, charcoal, etc.) to
visualize materials, it seems wise to do the same when selecting the most appropriate
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AI Generative model. The results of the second experiment indicating minor influence
of shape on material representation suggest that this choice does not depend critically
on the object’s shape. In this experiment, the shape was controlled by combining the
open-source text-to-image AI model Stable Diffusion v1.5 with ControlNet allowing the
additional constraints of depth maps. The resulting perceptual space showed not only a
similar structure as the MERL embedding but was also like perceptual spaces from other
material studies using real-world photos, computer renderings and depictions. So, Gen-
erative AI models have unlocked new methods to generate images. Our comparative
study has made clear that they may indeed provide a rich and valuable source for the
production of visual stimuli in order to study material perception.
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5
CONCLUSION

The thesis investigated human visual perception through the lens of art. No matter how
the art is created, on canvas, or copper plate and damp paper, or from the black box of
AI models, they are illusions from which we perceive various materials. From another
aspect, the thesis studied appearance from different angles. Chapter 2 explored the ap-
pearance of the same object under the paint brushes of various artists throughout his-
tory. We tried our best to isolate style from subject matter by zooming in onto the same
single motif from fragments of paintings. Chapter 3 zoomed out to examine appearance
differences between two distinct media. We controlled subject matter by comparing oil
paintings and their engraved reproductions. Beyond human creation abilities, Chapter
4 analyzed the potential of an emerging tool, generative AI. Both human artists and gen-
erative AI models brought us interesting insights on visual perception.

5.1. IMPLICATIONS OF THE THESIS
In Chapter 2 we measured and described the perception of depiction style, using frag-
ments of paintings. One interesting finding I would like to highlight is the circular tem-
poral pattern we find from the style perceptual space. It is intriguing that the time di-
mension emerges, even though we only used fragments of the paintings and only asked
laymen for similarity judgements. The cut-outs removed all the time-related cues, such
as fabric or room interior. And we assume the majority of the participants we recruited
from AMT have no art background. A similar relation between creation time and art
perception has been reported before. Berlyne and Ogilvie (1974) reported a linear cor-
relation between their three-dimensional perceptual space of paintings and the artist’s
year of birth. Note that they used full paintings to construct the space, which might con-
tain more time-related cues. Elgammal et al. (2018) found a similar circular temporal
pattern using computational method instead of human judgement. Moreover, the at-
tributes that formed the basis of their embedding were the formal elements described
by Wöllflin (Wölfflin, 2012). Similar findings from a distinct method can indicate the ro-
bustness of the phenomenon. It is possible that the circular pattern of time is in line with
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some universal patterns, similar as fashion, even as history, that everything evolves in a
‘spiral’ pattern, repetitive but not the same (Dalio, 2021).

By the time we conducted the style study, we were aware of style transfer neural net-
works, but it was two years before the generative AI rise in 2022. Interestingly, in the
last AI study we found that different AI models have their own visual styles. And most
images from generative AI have the general ‘AI look’, at least by the time I write the cur-
rent chapter in 2024. To some extent, AI is like a black box, as we usually give input and
receive output without knowing all details. In some cases we do know the architecture
and training data but we are ignorant of the inner workings. In other cases, like con-
temporary services like DALL-E and Midjourney, even the training data and architecture
are unknown because they are proprietary. Similarly, we can also argue that an artist is a
‘perceptual black box’. Without knowing the internal mechanism, we only see depictions
as the final output. Depictions can be the results of information extraction and interpre-
tation of the world we live in. Artists encoded the information in the form of depictions,
and viewers decode the information with possibly the same visual perception system. In
most cases, we do not even know the input of the depictions. But we can still perceive
the rendered materials. For example, it is unknown whether the girl with a pearl earring
(painted by Vermeer) ever existed, or whether the fruits from van Dyck are imaginary.
On the contrary, some engraved replicas are the rare cases where we still have access to
the original paintings they refer to (if the original paintings survived history). Arguably,
both human artists and generative AI models generated appearances based on their own
understanding of materials, or more generally, the world around us.

Both the engraving and the AI studies suggest that the perceptual space of mate-
rial is medium independent (as shown in Figure 4.11 from Chapter 4 on page 88). The
comparison between engravings and oil paintings did reveal different characters of the
two media. Yet all 20 experimental sessions yield significant positive correlations be-
tween the two distinct media, regardless of the manipulations. With the manipulations,
we investigated the effects of color and contrast in a controlled fashion. Still, a piece of
fabric depicted in colorful oil paint and black engraving lines are perceived as similarly
glossy. It suggests that material perception is rather universal, even with different ap-
pearances from distinct media. Generative AI, being a new method of image making,
produced images that lead to similar perceptual space of materials as reported by other
studies, regardless of the stimuli being photographs (Fleming et al., 2013; Zhang et al.,
2019), CGI renderings (Zhang et al., 2019), paintings (Van Zuijlen et al., 2020) or AI gener-
ated images. It suggests that the way of image making might have very minor influence
on material perception, and people have the ability to see through the appearance and
somehow capture the essence of materials.

Interestingly, words of materials also point to the same material space (Fleming et al.,
2013), indicating human’s interpretation of materials can be tightly connected to seman-
tics. And semantic input is the starting point for text-to-image generative AI models. It
is an attempt to connect the two modalities of language and image. We notice the in-
equality between these two modalities. When describing some image features, language
has its limitation, for example, for spatial information. When generating images using
text-to-image models, complex geometries can get difficult to describe. If we try to de-
scribe using only language, it leaves room for different interpretations and imaginations.
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In other words, it introduces ambiguity. Another example, when announcing the exact
location or entrance of a conference, text description is often paired with a map or pho-
tograph. Liao et al. (2024) has also reported the limitation of verbal description of ma-
terials that the verbal descriptions are unable to convey the visual nuances of material
appearances, although they could capture material qualities on the coarse level. More-
over, Muttenthaler et al. (2024) suggest that human perceptual judgement data can be
used to improve the representation of visual-semantic models.

5.2. LIMITATIONS AND FUTURE WORKS
Of course no research is perfect, in this section we would like to discuss the limitations
of our work and some thoughts on future work. In the style study, we concentrated on a
single medium, oil painting, and a single motif, the apple. While this focused approach
revealed insights on style perception, a broader exploration covering various media and
motifs might bring additional insights into the field. Besides, to explain the perceptual
space of style, we fitted a limited number of attributes, most of which were subjective
perceptual judgments. Future studies might benefit from exploring the relationship be-
tween these subjective judgments and objective image statistics, potentially enhancing
our understanding of style perception.

Similar suggestions can also be applied to the media comparison study. Collecting
pairs of oil painting and their engraved reproductions was no easy task. However, we
would love to expand the selection coverage. When examining the stimulus images, we
noticed different engravers have their personal styles. A wider coverage could further
rule out the potential influence of personal styles. As for the phenomenon that engrav-
ings usually have higher local contrast and more details than oil paintings, it is difficult
to argue whether engravers compensate for the lack of color with contrast and details,
or if oil paintings have lost contrast and details due to degradation of the paint chemi-
cals. A multidisciplinary approach involving chemical analysis and X-ray imaging could
shed light on this issue by revealing the material composition and any degradation pro-
cesses affecting the artworks. Additionally, insights from art history could provide con-
text regarding the techniques and intentions of the artists. These combined perspectives
suggest promising directions for future studies to explore and better understand the dif-
ferences between media.

The next limitation is related to the difference between viewing real artworks in mu-
seum or gallery environments and viewing digital images of art on computer monitors.
First, the original art have various sizes. And when viewing the original art in a gallery or
a museum, a viewer can freely change their viewing distance. In the online experiment
setup, on the other hand, all the images of art have the same fixed size on the screen,
and the viewing distance remains approximately constant. However, we are not partic-
ularly concerned about this because the visual angles remain rather constant. Carbon
(2017) reported a strong correlation (r 2 = 0.929) between canvas size and viewing dis-
tance by observing visitors in a museum environment. The second difference between
viewing art in museums and via screens is viewing time. The same study by Carbon
(2017) reported a much longer viewing time (average 33.9s) in the museum than that in
experiment context (often between 1 and 3s). The significant time difference might be
attributed to the purpose of the viewers. The visitors in the museum might have more in-
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terest in art so that they spend more time to appreciate the artworks, while participants
mainly aim for completing the perceptual tasks. The third difference specifically pertains
to oil paintings. Created by brushstrokes and layered paint application, the original oil
paintings have the microscopic three-dimensional surface structure, which is absent in
digital images. The difference in surface texture might affect the perception of color and
gloss (Elkhuizen et al., 2019). While the differences on viewing distance, viewing time
and surface structure might be less relevant for style perception and material percep-
tion, future research could investigate further.

Another related limitation concerns the crowd sourcing method we used, as they
have advantages and disadvantages. On the one hand, it allowed us to scale up the study,
involving much more participants compared to lab experiments. We were able to easily
recruit participants across different countries, with our own prescreen criteria. Further-
more, it allowed us to keep gathering perceptual data during Covid time. On the other
hand, online studies also have their limitations. One significant drawback of conducting
online experiments for visual perception is the lack of control over participants’ view-
ing conditions. Variables such as screen size, pixel density, screen brightness, and color
calibration can vary widely between devices, potentially affecting how visual stimuli are
perceived. However, some researchers suggest that these factors have a minimal influ-
ence on visual perception in the context of online experiments (Hoßfeld et al., 2020).
Since each participant views all stimuli under the same viewing conditions, any incon-
sistencies tend to cancel out within the individual across multiple images. This consis-
tency allows for reliable comparisons within participants, even if absolute measures of
perception might vary between different users. Researchers should be mindful of these
limitations and consider them when designing and interpreting online vision studies.

Nonetheless, we made effort to provide participants intuitive and playful interac-
tions for the online experiments and received positive feedback from them. To sum up,
we investigated visual perception through the lens of art, revealed insights to visual per-
ception of different appearances, further approved the value of art in scientific research.
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