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Abstract

Web APIs are being used for increasingly larger and complex use cases. Right now
it can be hard to make sure that what is documented about an API is correct everywhere
and to know if a change will have impact on the users of a web API.

When details are missing in an API specification users of that API need to make
assumptions about how the API works. The creators of the web API also wants to know
what users expect from the API. There are two sides to this problem, enforcing that the
implementation is actually the same as what is specified, and making it possible to define
API specifications as precise as possible.

The type system of a programming language is a useful tool for enforcing the struc-
ture of an implementation. In this thesis we use a dependent type system to enforce an
API specification in the implementation. By using the dependent type system we can de-
fine additional, more specific, constraints on the API. These constraints are more specific
than constraints expressible in possible research.

With this approach we can be sure that the specification and implementation are
actually describing the same API. And with the added flexibility we can create a more
complete description of web APIs.
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Chapter 1

Introduction

Web APIs (Application Programming Interface) are provided by many computer systems to
allow external systems to interact with the service they provide. Examples of this are the
Twitter API, which allows third party applications or bots to post tweets, another example is
the Adyen API which allows applications to initiate payments. Web APIs provide a set of
endpoints that can be used by external systems to request data or perform actions. They are
often publicly available on the internet, allowing any system that is connected to the internet
to interact with these APIs. Usually these APIs communicate in the JSON (JavaScript Object
Notation) format, but there are also other format that are used for communication.

Over the time web APIs have grown larger and more complex. To help with this com-
plexity web API specifications are created, these specifications describe how a web API can
be interacted with. For this it describes expeted input and output for every endpoint in the
API and it describes general information about the API. API specifications are widely used in
modern web APIs[27].

An API specification is in essence a contract between the web API and it’s users. The
users of the API know what they can expect and the developers of the web API know what
they can and cannot change without hurting the user. From this viewpoint it is important that
an API specification is as complete as possible.

The standard way of creating a specification for a web API is using an OpenAPI document.
This is a JSON file containing all the endpoints that are present in a web API, what kind of
values they accept andwhat values they return. These files also containmetadata about theAPI,
such as where it can be found and who is developing the API. The OpenAPI specification[19]
describes how OpenAPI documents are defined.

An API specification document written conforming to the OpenAPI specification can ex-
press the structure of most APIs. It is also used to define which parameters are accepted on a
specific endpoint and what the values of these parameters can be, for example if a parameter
must be a string or a number. There are however sometimes, especially in more complex web
APIs, specific structures or constraints on a specific structure that are not expressible in an
OpenAPI document. For example in Figure 1.1, where a plain text note is added to a field
with additional information about the contents of that field under specific circumstances. This
case, where the OpenAPI specification does not have a way to describe parts of an API, is what
we are investigating in this thesis. Complex constraints which involve multiple parameters in
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1. INTRODUCTION

a request is also called: Inter Parameter Constraints.

Figure 1.1: An example of an inter parameter constraint in the Adyen API

Inter Parameter Constraints are static constraints that can be present in a web API. They
impose constraints on two or more fields of an object inside a web API request. For example a
field that is required when another field has a specific value. For example in the case previously
shown, where an address object with a state field which is required when the country is The
United States or Canada, and is optional in all other cases. Defining these specific details
about the web API gives users of the API more insights in the implementation details of the
API. On the other side it helps the developers of the API implementation with knowing which
implementation details are possibly used by users of the API and cannot be changed without
notifying the users of the API.

Knowing that these constraints exist when implementing an integration with an API or
when updating an API implementation helps in several ways. Being able to validate requests
before sending them to a server reduces the amount of invalid requests. Knowing which con-
straints are communicated with users prevents accidentally removing or adding constraints
without the users’ knowledge. Formally defining constraints makes it possible to automate
validating these constraints. Having these constraints only defined in the documentation and
not in a more formal way makes it impossible, or very hard, to create automatic tooling that
validates these constraints or validates if an implementation is correct.

There already exist possible solutions to this, for example by adding additional expressions
which reason about the structure of an object in an OpenAPI specification file. This is pro-
posed in Martin-Lopez et al. [14] and Oostvogels et al. [20]. In this research the goal is to
communicate more fine grained details about how an API is implemented. In these solutions
there is usually an existing system that has inter parameter constraints. The inter parameter
constraints are extracted from the implementation and formally documented. The work by
Grent et al. [10] automates this approach by automatically analysing documentation and the
control flow of the API implementation.

But there are cases where the domain specific languages in existing research where it is not
possible to express every constraint that we can find in web APIs. For example a constraint
on a list, where a field is dependent on the sum of the values in a list. In this thesis we try to
find a more general solution for this problem. For example when the sum of a list of values
is constrained by some other value. In this case the existing domain specific languages for
expressing inter parameter constraints are not able to express this constraint.

First we encode anOpenAPI document as a type in a programming language. The research
objective for this is the following:

How can we enforce the contract of a web API using the programming language?

2



1.1. Contributions

This means that the specification enforces the structure of the program, this enforcing
is handled by the programming language. If the API implementation conforms to the type,
meaning that all routes defined in the specification must also be present in the implementation
and vice-versa. The input and output values for every route must also be correct. In this thesis
we define a formal structure for this type. When an OpenAPI document is encoded as a type
in a programming language the users of the web API can also make use of this definition.

We implement this formal structure of OpenAPI documents as a type in the dependently
typed programming language Agda. This programming language has a very powerful type
system which is allows us to implement the API specification semantics. The dependent type
system allows us to define the types in much detail. This makes it possible to implement the
formal structure.

We use the typesystem provided by the Agda programming language, which can express
fine-grained types, to create web API specifications which can express constraints in more
detail than existing technologies. We apply the following research objective for this:

How can we make web API contracts more expressible and more complete?

Dependent types allow us to define arbitrary decidable constraints on the structure of the
input and output data, which is embedded in the type system. With this it is possible to have
compile time checks in place which check if there are no wrong assumptions about the con-
straints present in the input or output data.

We use this dependently typed definition to add inter parameter constraints to the Open-
API document type. With dependent types we are able to define arbitrary inter parameter
constraints to a specification. We show how we can express constraints found in previous
research, and also how we can express constraints which are not expressible in previous re-
search. This implementation with dependent types can describe web APIs in a much more
precise way.

1.1 Contributions
• We describe OpenAPI documents as a type in a programming language and use this to
make the semantics of OpenAPI documents explicit. (Chapter 3)

• We create a formal representation of OpenAPI documents in the Agda programming
language. With this formal representation it is possible to construct an OpenAPI docu-
ment as a type in the Agda programming language. (Chapter 4)

• A validator for JSON input on an OpenAPI document is made. This validator checks
if an input is conforming to what is specified in the OpenAPI document. (Chapter 4)

• The formalized implementation of OpenAPI documents is expanded to support any
decidable inter parameter constraints. (Chapter 5)

In Chapter 2 we introduce the domain further by explaining how web APIs we are talking
about work. In Chapter 3 we describe OpenAPI documents as a type and make the semantics
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1. INTRODUCTION

of OpenAPI documents explicit. We then formalize this specification in the Agda program-
ming language (Chapter 4). This formalized specification is then used to formalize OpenAPI
documents with inter parameter constraints in Agda (Chapter 5). We then discuss in what
ways this solution improves the way we look at OpenAPI documents (Chapter 6).
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Chapter 2

Introduction to Web APIs

First we give an overview of the context, what a webAPI is in the context of this thesis and what
technologies are currently used to create web APIs. We also show how web API specifications
are made and what role they play. From this we explain what inter parameter constraints are,
why they are relevant and why research on these inter parameter constraints is interesting.

Web API specifications describe what a valid input for a web API is, anything that is not
valid according to the specification should not be accepted by the API. Any value that is not
rejected by the specification should be processable by the API. Valid input can still be rejected
when an action is impossible to execute, like removing a value that does not exist or if there
is specific logic forbidding a specific combination of values.

These specifications should include as much information as possible, to make the margin
for error as small as possible. Everything that is known without knowing the internal state of
the service should be documented in the specification. One part of the specification that is
still an active research subject is Inter Parameter Constraints (Section 2.3), these are not yet
generally supported by API specifications, but there are already some ideas on how they can
be supported (Section 3.1).

2.1 Web APIs
In this section we briefly describe what a Web API is. We go over how a web API is interacted
with by an end user, and what parts of the web API are usually implemented by the developer
of the API and which parts are part of an existing framework or library.

We focus on web APIs which are created for usage by third parties, the source code for
these web APIs is not generally available. In this case everything a developer who is integrating
with an API knows is based on the following:

• Documentation. Written text, interpreted by a human.

• Specification. Formal definitions of the structure of the API, interpreted by humans and
computers.

• Responses. Data returned from the web API when a request is made.

5



2. INTRODUCTION TO WEB APIS

Figure 2.1: Flow of a web API implementation

• Error messages. Errors returned by the web API when an input is malformed, some
user error occurs or some server error occurs.

When creating an implementation you want to know as much as possible beforehand. This
way you run into less errors when an integration is used in production. To prevent errors in an
integration, it should be possible to check if an implementation is actually correct[2].

In Figure 2.1 a simplified overview of the different steps in a web API is given. The request
is received by a web server, which passes the request to the application code, the application
code executes some steps and the server is used to send a response back to the service that
send the initial request.

What happens between the request and response differs between implementations, the
diagram given gives a high level overview of the process. Usually some parts of the imple-
mentation are automated and handled by a framework. Routing, parsing and serializing are
usually handled by a framework. This means that the main API implementation can be ex-
pressed as a normal function in the programming language.

Routing Routing is usually handled by a framework, the router uses the URL of the request
and maps this to a specific function in the implementation. The router can usually be created
in a declarative way.

Parsing The parser is also usually part of a framework. An incoming request can send
some data to the server, the parsers is responsible for converting the data from a string into a
structured format which can be easily used in the programming language that is used.

Serialization The serializer takes an object in the programming language and converts it
to a string which can be used in the response. The main part of the implementation consists

6



2.2. Web API Specifications

of different blocks, which can be roughly separated in three parts. Validating the request,
business logic and creating a response.

Validation In the validation part of the implementation it is made sure that an incoming
request has the correct structure and that the values in the request are valid. This step can reject
a request if there is any error in the request. What is validated should be clearly documented,
such that applications communicating with the API can make sure that no unexpected errors
occur. Some parts of the validation are based only on the data in the request, we call this static
validation, for these rules it is possible to know before sending the request if the request will
give an error. And sending the request again will always result in an error. Dynamic validation
happens with rules that are based on some external information, like checking user rights or
deducting a balance. This validation is based on some external state, which is not generally
available to the sender of the request.

Business Logic The main business logic of the implementation is responsible for processing
the incoming data and obtaining data which is returned. What happens in this step is usually
hidden away from the end user.

Create Response Using the data obtained in the business logic a response is created. It
should be clearly documented what a response from a specific endpoint looks like.

Wewant to be able to communicate how incoming requests are validated to developers who
are interacting with our APIs. As mentioned previously this communication should happen in
a formal way, so that other tools can reuse the specification we have created. Being able to
communicate exactly what a valid request looks like eliminates any errors related to this.

In the the following section we describe an existing way of communicating the structure
and behaviour of a web API in a formal way.

2.2 Web API Specifications
In the previous section we mentioned creating a specification for a web API. We will look
into OpenAPI Specification (OAS)1 for this project as it is the most widely used and previ-
ous research also focuses on OpenAPI. An OpenAPI document contains all information that
describes the API endpoints. The specification is defined in either JSON or YAML format.

The OpenAPI Specification is created by the OpenAPI Initiative, which is an open source
community which consists of developers from the industry and has the goal to create vendor-
neutral, portable and open specifications for providing technical metadata for APIs. The Open-
API specification is the main focus of the initiative.

OpenAPI documents consist of different parts, a specification at least contains some in-
formation about the API, like a title and a version, and it also contains a list of endpoints.
Each endpoint contains a definition of how a valid request is structured. In Listing 2.1 an
example of a minimal specification is shown, this example defines a single Schema Pet and
an endpoint POST /pet which accepts a Pet and returns a Pet.

1https://spec.openapis.org/oas/v3.1.0
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2. INTRODUCTION TO WEB APIS

Specifications can also contain information about how to authenticate, access control and
which URLs can be used to connect to the server. In Section 3.1 we will zoom in on how valid
request are defined, as most other parts of the specification do not contain any logic.

2.2.1 Use cases for web API specifications
There are different use cases for API specifications. For a single web api implementation one
or more of these use cases can be used.

Documentation The most common use case for OAS is documentation. The specification
is used to communicate what the implementation of the web API is and how it can be used.
For example Swagger UI2 and ReDoc3 use OAS files to generate a documentation website.
This documentation can be used by users of the API to explore the available endpoints, see
examples and also interact with the API.

Server generation It is possible to generate parts of a server implementation using an Open-
API specification. After updating the specification an updated implementation can be gener-
ated. At large scale the size of the code generator implementation is often smaller than the
code that is generated. Requiring less code to be maintained, there already exist code gener-
ators for multiple different frameworks and programming languages. With this approach you
can be sure that, if there are no bugs in the generator, the generated implementation conforms
to the specification. With a generated implementation the actual business logic still needs to
be implemented.

SDK or Client generation Similarly to generating a server implementation, a client im-
plementation can be generated using an OAS file. Generators exist for different languages4,
making it possible to offer SDKs or clients for different languages and opening up the possi-
bility to quickly create a client in a new language.

Test generation Contract testing can be done by using an OpenAPI specification to gen-
erate test cases which test if an implementation conforms to the specification[7]. Using the
specification it is possible to generate test cases which are close to valid requests.

Configuration Other applications which interact with web APIs, like API gateways5, auto-
matic security scanners6 and standalone API clients7 can be configured using OpenAPI Speci-

2https://swagger.io/tools/swagger-ui/
3https://github.com/Redocly/redoc
4https://swagger.io/tools/swagger-codegen/
5https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gatew

ay-import-api-update.html
6https://docs.stackhawk.com/hawkscan/configuration/openapi-configurati

on.html
7https://learning.postman.com/docs/integrations/available-integrations/

working-with-openAPI/
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2.2. Web API Specifications

openapi: 3.0.3
info:
title: Sample Pet Store App
version: 1.0.0

paths:
/pet:
post:

description: Add a new pet to the store
responses:

'200':
description: Successful operation
content:

application/json:
schema:
$ref: '#/components/schemas/Pet'

'405':
description: Invalid input

requestBody:
description: Create a new pet in the store
required: true
content:

application/json:
schema:

$ref: '#/components/schemas/Pet'
components:
schemas:
Pet:

required:
- name

properties:
id:

type: integer
format: int64

name:
type: string
minLength: 2

type: object

Listing 2.1: Example OpenAPI specificaiton

9



2. INTRODUCTION TO WEB APIS

fication files. Making it possible to have one specification which can be used for many different
tools.

2.3 Inter Parameter Constraints
In a complex OpenAPI document there can be additional constraints on what is considered
a valid input. When it is important that users of the API know what constraints there are
the current way of documenting this is by adding a note to a field or path in the OpenAPI
document. There is previous research which categorises the different ways kinds of constraints
that are generally found in web APIs and creates a domain specific language to express these
constraints and have a way of automatically checking the constraints.

Inter Parameter Constraints are constraints between different fields in a web API. These
constraints are static, that means they are known beforehand and do not change based on some
external state of the application.

This means that it is possible to document them in a specification. Having these con-
straints formally documented makes it possible to automate the validating these constraints,
for example in an SDK which is automatically generated from the OpenAPI specification.

There are different classes of inter parameter constraints that can exist in web APIs, in this
section we give an overview of the inter parameter constraints that are usually found in web
APIs[20].

• Value Constraints: Constraints on a specific value, examples of this are:

– A number must be non-negative
– A string must look like an email address
– A string must have a specific length

• Group constraints: Given a set of parameters exactly none, exactly one, at least one or
all should be available.

• Dependent constraints: Constraints on a parameter depend on a property of another
parameter.

– Present-Present (PP) dependent constraint: the presence of a parameter depends
on the presence of the base parameter

– Present-Value (PV) dependent constraint: the presence of a parameter depends
on the value of the base parameter

– Value-Value (VV) dependent constraint: the accepted set of values for a parameter
depends on the value of the base parameter.

In some cases these constraints are already documented as we have shown in Chapter 1,
but they can also exist as part of existing business logic. There are different scenarios where a
constraint is implicitly defined.

10



2.4. Inter Parameter Constraints in Web API implementation

Figure 2.2: A group constraint in the Adyen API

Figure 2.3: A Present-Present dependent constraint in the Adyen API

An example of a group constraint is shown in Figure 2.2. In this constraint the request is
valid if either cardNumber or encryptedCardNumber is set.

In Figure 2.3 an example is given of a field that is required under a specific condition, this
field is required when the recurring field contains a value. This is a case of a Present-
Present dependent constraint.

There are two possible results of sending requests which do not conform to the inter pa-
rameter constraints present in that request.

The API returns an error The API can return an error with an error message when some
constraint is not met. This error message informs the end user about missing values under
certain conditions.

The API makes a silent choice The API can also make a choice depending on the input, it
can use a default value or choose to ignore a field if another field is not present.

2.4 Inter Parameter Constraints in Web API implementation
In this section we go over how inter parameter constraints are present in web API implemen-
tations. To gain a better understanding of what inter parameter constraints are.

2.4.1 Implementing Inter Parameter Constraints
Most web API implementations use some imperative logic to validate Inter Parameter Con-
straints. This is caused by the fact that most Inter Parameter Constraints are implicitly defined
in the business logic. Another reason is that programming languages often do not support
describing these inter parameter constraints in a declarative way. In Listing 2.2 we show an
example is shown of validating the IF country=='US' THEN state expression. There are
multiple ways these constraints can be implemented and in existing implementations the vali-
dation code is usually already there and the inter parameter constraints are still implicit.

11



2. INTRODUCTION TO WEB APIS

public void validateAddress(Address address) {
if (address.getCountry().equals("US")) {

if (address.getState() == null) {
throw new ValidationException("State is required for

country \"US\".");↪
}

}
}

Listing 2.2: Example of validating a constraint in Java

public void validateSum(Payment payment) {
int sum = 0;
for (Split split : payment.getSplits()) {

sum += split.getValue();
}

if (sum != payment.getValue()) {
throw new ValidationException("Sum of splits is not equal

to payment value");↪
}

}

Listing 2.3: Example of validating a constraint in Java

In Listing 2.3 we give an example of a constraint which is a bit more complex and requires
a loop to check if the constraint is satisfied. This example cannot be expressed using domain
specific languages in previous research.

In Appendix B we compare what implementing inter parameter constraints in different
contexts is like. This gives us insight in which parts of the implementations are impacted by
inter parameter constraints.

2.4.2 Detecting Inter Parameter Constraints
Most web API implementations contains some inter parameter constraints. Sometimes these
constraints are hidden away in the implementation and might not be very obvious. To find
these constraints in web APIs multiple techniques can be used.

One way of finding inter parameter constraints is by extracting constraints from the web
API documentation[28], this looks at documentation of a field that refers to another field. This
approach can find constraints which are already known, but have no formal definition.

Another way is by analysing the source code of a web API implementation, this approach
can help find inter parameter constraints that are not yet explicitly known. Grent et al. [10]
combines these techniques to find inter parameter constraints in the Adyen APIs.

12



2.4. Inter Parameter Constraints in Web API implementation

type: object
required:
- name
properties:
name:
type: string
pattern: [A-Z][a-z]+

address:
$ref: '#/components/schemas/Address'

age:
type: integer
format: int32
minimum: 0

Listing 2.4: Constraints on primitives in OpenAPI definitions

MyResponseType:
oneOf:
- $ref: '#/components/schemas/Cat'
- $ref: '#/components/schemas/Dog'
- $ref: '#/components/schemas/Lizard'
discriminator:
propertyName: petType

Listing 2.5: Constraints on multiple fields

2.4.3 Expressiveness of OpenAPI
In this section we will explore the expressiveness of OpenAPI Documents. There is a cer-
tain precision with which you can define web APIs using an OpenAPI document. There are
limitations to what is possible to express using an OpenAPI Document. We will focus on the
schema definition part in OpenAPI to see what can be expressed using OpenAPI documents
and what is not possible to express.

The OpenAPI specification uses an extended subset of JSON Schema8 to impose con-
straints on values. With these constraints it is possible to define constraints on primitives, such
as strings and numbers. Listing 2.4 shows how constraints like required, pattern and
minimum are used in an OpenAPI specification.

The JSON Schema part of OpenAPI has more possibilities to describe constraints on the
accepted input of a request. Using a discriminator it is possible to do polymorphism
and make specific fields available based on the value of a specific field. It is also possible to
use composition to create specific combinations of values that are accepted.

There are limitations to what is possible to express using OpenAPI. Besides the

8See https://json-schema.org/
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x-dependencies:
- ZeroOrOne(radius, rankby=='distance');
- IF rankby=='distance' THEN keyword OR name OR type;
- maxprice >= minprice;

Listing 2.6: Example constraints in IDL4OAS

x-constraints:
- and(implic(value(rankby) = 'distance',

not(present(radius)), implic(present(radius),
value(rankby) != 'distance'))

↪
↪
- implic(value(rankby) = 'distance', or(keyword, name,

type))↪
- value(maxprice) >= value(minprice)

Listing 2.7: Example constraints in OAS-IP

discriminator it is not possible to have the value of a field impose constraints on other
fields. Making a field required when some other field is required can be encoded using a
discriminator field, but without this it is not possible. There is also no way of describing
constraints based on arithmetic logic and have mutual exclusive fields.

2.4.4 Expressiveness of OpenAPI with extensions
There are APIs that can be expressed using an OpenAPI specification, but there are also APIs
which cannot be formally described by OpenAPI. When it is not possible to formally describe
an API using an OpenAPI specification, the author of the specification has to resort to leaving
out details or using the description blocks to explain informally what additional requirements
the API has.

It is possible to define extensions for OpenAPI. Examples of extensions for OpenAPI are
extensions which add fields to the documentation, other extensions configure the generation
of code from the specification, for example defining the namespace for the generated code or
adding extra validation steps.

One OpenAPI extension which adds expressiveness of request object definitions to the
specification is IDL4OAS (Inter-parameter Dependency Language for Open API Specifica-
tion). This extension adds the possibility to add additional constraints to object defined in
OpenAPI specifications. Using this extension it is possible to create specifications with more
detail. The fields defined using this extension can be used to generate an implementation with
extra checks, or to validate a given request object. In Listing 2.6 we give an example of some
constraints in IDL4OAS.

Another OpenAPI extension is Oostvogels et al. [20], it proposes an extension to the
OpenAPI Specification by adding an extra field for an endpoint which contains dependent
constraints (Listing 2.7).
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Both solutions can express a similar set of constraints. The constraints expressible by these
domain specific languages is limited, but they can express most constraints found in web APIs
in the wild. In Chapter 5 we show how dependent types can be used to describe any inter
parameter constraints found in web APIs and we compare our solution with these existing
solutions.
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Chapter 3

Types

In this chapter we create a formal semantics of OpenAPI documents, these formal semantics
describe what the meaning of an OpenAPI document is. We use this semantics to show that
in the basis the OpenAPI specification describes a type in a programming language. With this
point of view we will look into what is required to describe OpenAPI documents with inter
parameter constraints as a type in a programming language.

3.1 Comparing OpenAPI specifications to a type system

A web API specification is a contract telling users of an API how an API works and what
values are accepted. This is similar to types in programming languages. Depending on the
expressiveness of the type system in the programming language a specific set of types can be
described. There are programming languages with a dynamic type system where type-safety
is traded for ease of development. In other programming languages the type system is stricter,
making it possible to encode more information about the program before the code is compiled.

There is a limit on how precise an API can be described using an OpenAPI document.
As most fields in the specification are optional a valid OpenAPI document can be incomplete.
For the OpenAPI documents we are looking at we assume that the creator of the document
wants to be as complete as possible in their description of the web API. When this is the goal
there are limitations to what can be described. This is the reason for the previous research on
inter parameter constraints.

There are ways to describe an OpenAPI document as a type in a programming language,
for example using OpenAPI.NET1. In this case the OpenAPI document is a value in the pro-
gram and can be interacted with and information can be extracted about the document. The
solution we propose here goes further than this, in our solution the OpenAPI document itself
is the type in the program and the values are the input and output of the web API.

1https://github.com/Microsoft/OpenAPI.NET

17

https://github.com/Microsoft/OpenAPI.NET


3. TYPES

3.2 Formal OpenAPI Semantics
The semantics of OpenAPI definitions are described in the OpenAPI specification. This doc-
ument outlines what a valid OpenAPI definition looks like and what it’s semantics are. In this
chapter we will express these semantics in a formal way. For this definition we limit the scope
to the part of the specification that defines schemas, here it is possible to describe seman-
tics of validating some JSON in the context of a specific request or response. In Figure 3.1
the semantics of the schema part of an OpenAPI definition is defined. Only the schema and
path definitions of the OpenAPI specification are described here as they are used to validate
requests. Other parts are omitted from this definition as they are purely declaring metadata
about the API.

We use the following methods to define interactions with JSON objects, we use JSON
objects as defined in the ECMA 404:2013 [6] standard.

typeof 𝑗: Obtains the type of a JSON value, this is arr, obj or one of 𝑡.

flds(𝑗): Obtains the set of fields defined in a JSON value, only defined when typeof ≡ obj.

𝑗 ⋅ 𝑥: reads the field 𝑥 from a JSON value 𝑗, is only defined when typeof 𝑗 ≡ obj and 𝑥 ∈
flds(𝑗)

elems 𝑗: Obtains a set of items in 𝑗, only defined when typeof 𝑗 ≡ arr.

The formal semantics of an OpenAPI document starts with the root of the document,
called api in this definition. An API contains a collection of Σ, which is a lookup map of
schema objects by name. and a collection of paths, which defines an accepted input and
output. Each input and output is accompanied by a schema which defines what the accepted
values are.

The schema definition uses a simplified version of the JSON schema specification. A JSON
value is either a list, an object or a value (Equation 3.5). An object (oschema) contains a list
of names combined with schema definitions and a list of required names. An array (aschema)
contains a single type that every value of the list should conform to. A value (tschema) has a
single type (Equation 3.2), either a string or a number.

This definition defines a subset of the OpenAPI specification. Any additional metadata,
which is generally only used for documentation is left out. For the sake of simplicity only one
method for each endpoint is defined, in an actual OpenAPI document it is possible to define
behaviour for multiple different methods and content types. But these definitions follow the
same rules. How the input is defined is also simplified, in the OpenAPI specification there
are parameters and the request object, in this definition there is only the request object. The
request object modelled in our definition is powerful enough to also capture the parameters
defined in the OpenAPI specification.

With these formal semantics we reason about the semantics of OpenAPI and we can use
these semantics to write a type in a programming language. Using this type we can create a
program that conforms to this type and the if there are any mismatches between the imple-
mentation and the specification, the type checker of the programming language will raise an
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𝑥 ∈ {𝑥,…} (3.1)
𝑡 ∶∶= str ∣ number (3.2)

Σ ∶∶= (𝑥,𝑟)∗ (3.3)
𝑟 ∶∶= ref 𝑥 ∣ 𝑠 (3.4)
𝑠 ∶∶= oschema (𝑥,𝑟)∗ 𝑥∗ ∣ aschema 𝑟 ∣ tschema 𝑡 (3.5)
𝑜 ∶∶= api Σ (𝑝,(𝑟,𝑟))∗ (3.6)

⊢𝑜 𝑝 𝑗 𝑗 ∶ 𝑜 (3.7)
Σ ⊢ 𝑗 ∶ 𝑟 (3.8)

typeof 𝑗 ≡ obj
(∀𝑥 ∈ reqs ⋅ 𝑥 ∈ flds(𝑗))

(∀(𝑥,𝑟) ∈ props ⋅ 𝑥 ∈ flds(𝑗) → Σ ⊢ 𝑗 ⋅𝑥 ∶ 𝑟)
Σ ⊢ 𝑗 ∶ oschema props reqs

typeof 𝑗 ≡ arr
∀𝑗′ ∈ elems 𝑗

Σ ⊢ 𝑗′ ∶ 𝑟
Σ ⊢ 𝑗 ∶ aschema 𝑟

typeof 𝑗 ≡ 𝑡
Σ ⊢ 𝑗 ∶ tschema 𝑡

Σ ⊢ 𝑗 ∶ Σ(𝑥)
Σ ⊢ 𝑗 ∶ ref 𝑥

(𝑝,(𝑟𝑖, 𝑟𝑜)) ∈ paths
Σ ⊢ 𝑗𝑖 ∶ 𝑟𝑖
Σ ⊢ 𝑗𝑜 ∶ 𝑟𝑜

⊢𝑜 𝑝 𝑗𝑖 𝑗𝑜 ∶ api Σ paths

Figure 3.1: Semantics of OpenAPI definitions
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error during compile time. In the next chapter we will take the definition from this chapter
and implement it in the Agda programming language.
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Chapter 4

Formalizing OpenAPI Specifications
in Agda

In this chapter we implement the formal semantics of an API in the dependently typed pro-
gramming language Agda. This creates a program in which an OpenAPI document can be
defined as a type in the programming language and the language will be able to validate if a
specific input or output is considered valid. In the next chapter we will add inter parameter
constraints to this implementation.

We first introduce Agda and the advantages Agda has when implementing a system like
this one. We then show how we can encode OpenAPI documents in Agda to leverage the Agda
typesystem.

Dependent types can be used to describe inter parameter constraints in web APIs. In this
chapter we go over what dependent types are and explore using dependent types to express
inter parameter constraints in the dependently typed Agda programming language.

In Section 3.1 we have seen that OpenAPI Specifications andOpenAPI Specifications have
a specific expressibility, as schemas only contain information about which fields are defined
and cannot convey any constraints across multiple fields. For most use cases this expressibility
is sufficient, but in some cases it is desirable to be able to express more fine-grained constraints.

In this chapter we show an API implementation in a dependently typed programming lan-
guage. This implementation is able to express all constraints previously discussed and should
be able to express any constraint[15].

In Appendix C you can find all the Agda code written for this thesis.

4.1 Type Theory and Dependent Types
Type theory is a way of reasoning about the validity of programs. In type theory the type sys-
tem is used to describe what a valid program looks like. In a dynamic language like JavaScript
or Lisp all syntactically valid programs can be executed. A function can have arguments, but
there is no way of knowing what the type of that argument will be. It is possible that dur-
ing runtime an exception will be thrown if a wrong assumption about the types is made in
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the program. This makes it easy to write programs, but also easy to write malfunctioning
programs.

Java or Haskell are typed languages, this means that in a function definition we can limit
what types are accepted and be sure that the compiler will not accept invalid calls to that
specific function. This way a programmer has more knowledge about external factors, such as
third party libraries, while developing a program and has to rely less on the documentation of
those external factors.

All these languages are considered partial languages. This means that any expression of
type T is one of the following:

• the program terminates and returns a value in type T

• the program does not terminate

• the program throws an exception (caused by an incomplete function definition)

Programming languages like Agda and other languages based on type theory are total
languages in this sense. Any expression of type T will always terminate and return a value in
type T. Runtime errors are impossible and non-terminating programs can only be written if
explicitly stated.

4.2 Dependent Types in Agda
Agda is a dependently typed programming language developed by Norell [18]. This program-
ming language uses a dependently typed type system. Dependent types is based on type theory
by Martin-Löf [13]. With dependent types it is possible to create a type indexed by another
type or values of another type. In dependent type theory a Π type is used to define a dependent
pair, where the second part of the pair depends on the type of the first part of the pair. This
allows us to encode very much in the type of an object. In the next section we will look at an
implementation of dependent types.

One example to show the power of dependent types is a head function for a list. If we
have a normal generic list definition in Agda, which is defined as a recursive data type in Agda.

data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : List A) → List A

We can create a head function for a list of this type.

head : ∀ {A : Set} → List A → Maybe A
head [] = nothing
head (x ∷ x₁) = just x

This head type takes a list as it’s argument and returns an optional value. The optional
value is empty when the list has no values. There is no way to be certain that the list has
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at least one value, and programs in Agda are not allowed to return an error. It is of course
possible to create a non-empty list type which does not have a constructor for an empty list.
But this only solves the problem for this specific case, lists with a maximum length are much
harder to implement this way.

When using dependent types it is possible to create types which make use of values. For
example a list type which also contains it’s own length. The Vec data type defined below is
dependent on a natural number which denotes it’s length, it starts at zero for the empty vector
and increases the length for every next item in the vector. Having this number inside the type
opens up the possibility to constrain the value of this number. In this example by requiring the
number to be 1 + n, making it impossible to construct the type with length 0 because n is
a natural number. In this place it is also possible to impose more complex constraints on the
dependent value, like requiring it to be between two numbers or requiring it to be odd.

data Vec (A : Set) : ℕ → Set where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)

We can now define a head function which will always return a value for a given input. We
can do this by requiring the length of the vector to be 1 + n, where n is an arbitrary natural
number. This expression

head : ∀ {n A} → Vec A (1 + n) → A
head (x ∷ xs) = x

Using values in types is where the power of dependent types lies. With this it is possible
to create really fine grained types. This does come with added complexity, because you need
to construct these types. Agda can help developers to construct these types, when there is a
straightforward way to create a type Agda can be instructed to generate the code for that type.

4.3 Agda Standard library
The Agda programming language in itself has quite a small footprint, to account for this there
is a separate standard library. This standard library helps with quickly developing new Agda
programs, because most frequently used proofs are defined in this standard library.

4.4 JSON in Agda
The input and output for a web API is usually JSON. This format has no formal structure so
no assumptions can be made of the types of values in a JSON tree. A value in JSON can
either null, string, float or bool, a value can also be a list of JSON values or another
object containing JSON values. An object is defined as a list of values indexed by strings. The
following data type defines the basic structure of a JSON object in Agda.

23



4. FORMALIZING OPENAPI SPECIFICATIONS IN AGDA

data JSON : Set where
null : JSON
string : String → JSON
float : Float → JSON
bool : Bool → JSON
array : List (JSON) → JSON
object : List (String × JSON) → JSON
number : ℕ → JSON

This definition has an explicit difference between real numbers and integers, because Agda
makes this distinction, JSON itself there is only a number type which contains both kinds of
numbers. This specific representation of JSON is chosen because of it’s simplicity. It does
allow objects with duplicate keys, which is not allowed by JSON. Making sure that keys in
objects are unique is possible with Agda, but it would require extra complexity in the code.

Given the following JSON object.

{
"a": 0.1,
"b": {

"d": "Foo"
},
"c": null

}

Would look like the following when creating an object for it in Agda.

myObject : JSON
myObject = object
( ("a" , float 0.1)
∷ ("b" , object (("d" , string "Foo") ∷ []))
∷ ("c" , null)
∷ [] )

This definition of a JSON object in Agda can be used to model the input and output of a
web API. In the implementation it is assumed that there exists some implementation that takes
a string as input and returns a JSON object. We can also convert JSON to an object inside the
Using the Maybe monad a JSON object can be converted to an object in Agda an example of
this is shown in Listing 4.1, here an object is returned if the JSON is valid.

4.5 Implementing OpenAPI documents in Agda
Tomap the definition of an OpenAPI document to Agda we start with the root of the document
which contains a list of paths, which is a string for the path combined with a schema defining
what is valid input and output JSON.
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jsonToCategory : JSON → Maybe Category
jsonToCategory json = do

id ← json ∙ "id"
nameString ← json ∙ "name"
name ← parseString nameString
just (category id name)

Listing 4.1: Converting JSON to Agda

data OpenAPI : Set where
openapi : List (String × (Schema × Schema)) → OpenAPI

We define a schema as follows, just like in the formal semantics there are three different
schema types. Each schema type has different parameters.

data Schema : Set where
schema : Type → Schema
aschema : Schema → Schema
oschema : (flds : List (String × Schema)) → (reqs : List

String) → Schema↪

We now define what a well typed schema looks like, for this we create a data type which
is dependent on a Schema an JSON value.

data ⊢s : Schema → JSON → Set where

We define what it means for a JSON value to have a specific type.

wt : ∀ { type js } →
JsonHasType js type →
---------------
⊢s (schema type) js

Whenwe expect a JSON array, we check the JSON value is actually an array and that every
value in that array is in itself again a well typed value in the schema given in the definition of
the array schema.

wta : ∀ { s js } →
(∃ λ ls → js ≡ (JSON.array ls) × All (⊢s s) ls) →
---------------
⊢s (aschema s) js

When we expect a JSON object in this value, we check if the JSON value is an object, if
all required fields exist and have a value in the object and if the fields in the schema definition
are also found in the given JSON.
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wto : ∀ { reqs js s2 } →
(∃ λ fields →

js ≡ (JSON.object fields) ×
HasRequireds fields reqs ×
All (λ (f , js) → ∃ λ (o) → (o ∈ s2) × (f ≡ proj₁ o) ×

(⊢s (proj₂ o) js)) fields↪
) →
---------------
⊢s (oschema s2 reqs) js

A well typed route is defined by ⊢t, it can be constructed using an OpenAPI document,
a string for the path and two JSON objects for the request and the response. If the path is in
the OpenAPI document and both the JSON objects are well typed schemas for this path the
route is well typed.

data ⊢t : OpenAPI → String → JSON → JSON → Set where
wt : ∀ { κ πs p ji jo σ₁ σ₂ } →

((p , (σ₁ , σ₂)) ∈ πs) → (⊢s σ₁ ji) → (⊢s σ₂ jo) →
-------------
⊢t (openapi κ πs) p ji jo

We can now create a function which will return if a specific JSON value is conforming to a
specific schema. solveSchema is the signature for this function, given a schema and JSON
value it will return nothing or a well typed schema object for these values, this object can
be used to extract information about the JSON. The implementation of this function is can be
found in Appendix C.

solveSchema : (s : Schema) → (json : JSON) → Maybe (⊢s s json)

4.6 API Implementation in Agda
This section describes an overview of the API implementation written in Agda.

For the API implementation itself we made some assumptions about what is already there
and what is interesting to implement for this proof of concept. In this implementation an
endpoint is a function which accepts a request containing JSON and a context as parameters
and returns a response containing JSON and a new context. The context contains anything that
should be persisted, in this specific case the context is a list of Pet instances.

Handling HTTP requests is not implemented in this version, as we did not consider this
relevant at this stage.

Below we use an OpenAPI definition combined with the name of an endpoint and some
incoming JSON.We can only construct this type if the endpoint is found in the list of endpoints
defined in the OpenAPI definition and if the schema matches the JSON.

data ⊢tin : OpenAPI → String → JSON → Set where
wtin : ∀ { κ πs p ji σ₁ σ₂ } →
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((p , (σ₁ , σ₂)) ∈ πs) → (⊢s σ₁ ji) →
-------------
⊢tin (openapi κ πs) p ji

A function can now require this ⊢tin type as a parameter, this allows the implementation
of the function to re-use the assertions made within the specification. Below we give an ex-
ample of a basic function that has a properly formed request as input and returns a json object
that is part of a valid response from the same endpoint.

api : ∀ {json p} → (wf : ⊢tin openApi p json) → ∃ λ jsout →
(⊢tout openApi p jsout)↪

api (wtin (here refl) (wto (hrs []) x₁)) = JSON.number 1 ,
wtout (here refl) (wt (jht refl))↪
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Chapter 5

Formalizing OpenApi Specifications
with Inter Parameter Constraints in

Agda

In the previous chapter we implemented the OpenAPI specification in Agda, in this chapter we
will expand this implementation by adding support for arbitrary inter parameter constraints.
With this we can express inter parameter constraints in web API using dependent types.

5.1 Inter parameter constraints in Agda
Constraints in web API specifications are about describing constraints which are part of spe-
cific objects, in traditional languages validating these constraints means writing validation
logic. In a programming language with dependent types it is possible to define objects with
fields that have a type which depends on the value of some other field. This allows embed-
ding constraints in a type, making it impossible to create instances of that type which do not
satisfy the constraints. We give an example of a program which defines a data type, which
is dependent on two values f1 and f2. The constructor ex is the only constructor for this
datatype, this constructor requires us to show that f1 < f2.

data Example : ℕ → ℕ → Set where
ex : ∀ {f1 f2} →
f1 < f2 →
Example f1 f2

We can create an instance of this data type when we know the values for f1 and f2 and
we know that these values are valid. For example for f1 = 3 and f2 = 4, the value 3<4
contains a proof of this requirement. Agda can help us here by generating parts of the proof.

3<4 : 3 < 4
3<4 = s≤s (s≤s (s≤s (s≤s z≤n)))
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Decidable Optional
true + proof true + proof
false + proof false

Table 5.1: Comparing decidable to optional proofs.

Using this proof we can create an instance of Example, the example value now contains
a proof that both the parameters of the instance conform to the constraints defined in the data
type.

example1 : Example 3 4
example1 = ex 3<4

We can also make a function which will return an instance of Examplewhen it is possible
or an empty value when it is not possible. This allows us to ask this function to create an
instance for us when we don’t know the exact values of the parameters.

-- Create from arbitrary natural numbers
createExample? : (f1 : ℕ) → (f2 : ℕ) → Dec (Example f1 f2)
createExample? f1 f2 with f1 <? f2
... | yes w = yes (ex w)
... | no ¬w = no λ {(ex x) → ¬w x}

Here we use Agda’s decidable logic1 to create a function that decides if there is an instance
of the type based on some input. A decidable statement can be proven true or false. In Agda an
instance of a decidable statement consists of two parts: A boolean value whether the statement
is true or false. The boolean value is accompanied by a proof, proving the statement true or
false respectively. We can use the resulting proof later in the program to extract the relation
between the two fields again.

In Table 5.1 we compare the differences between Decidable and Optional proofs. De-
cidable statements always contain a proof, whether the statement is true or false. Optional
statements only contain a proof when the statement is true, this means that it is possible for
a statement to be true, but for the function to return false. In further parts we will use the
Optional based logic, because it allows for faster development.

We use this approach to create more complex constraints, to support the inter parameter
constraints described in [14].

The constraints which are expressible in this way surpass what is possible to express in OAS
and in IDL4OAS, as described in Section 3.1. For example when we have a value containing
a list and a value which is the sum of the values in the list.

data Amount : Set where
amount : (value : ℕ) → Amount

1https://plfa.github.io/Decidable/
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dep ∶∶= JSON → 𝑆𝑒𝑡 (5.1)
𝑠 ∶∶= oschema (𝑥,𝑟)∗ 𝑥∗ dep∗ ∣ … (5.2)

Figure 5.1: New rules for formal semantics

The request has two fields, a list of Amount and a natural number. There is a constraint
which requires the sum of the amounts to be the same as the natural numbers.

data Request : (List Amount) → ℕ → Set where
req : ∀ {amounts total} →
total ≡ (sum (map (λ {(amount value) → value}) amounts)) →
Request amounts total

When creating an instance of Request we now need to provide a proof that the sum
of amounts is the same as the given natural number. When the values are know this proof is
trivial.

amounts : List Amount
amounts = (amount 13) ∷ (amount 12) ∷ (amount 8) ∷ []

val : Request amounts 33
val = req refl

5.2 Extending the Formal Semantics
We extend the formal semantics defined in Chapter 3 to support adding an arbitrary dependent
type to the definition of an object in the formal semantics. We extend the previously defined
formal semantics with the rules defined in Figure 5.1. The rule in Equation 5.2 replaces the
oschema case in Equation 3.5.

The JSON → 𝑆𝑒𝑡 type in Equation 5.1 defines a class of dependent types which are de-
pendent on some JSON value and exists if some the JSON value can satisfy the constraints in
the constructor of the type.

We do not create an additional dependently typed domain specific language here, because
there already exist dependently typed languages which provide us with the ability to express
the constraints we want.

5.3 Describing inter parameter constraints in the dependently
typed implementation

We can add inter parameter constraints to our implementation by adding an additional field to
the definition of a schema describing a JSON object. We define a Dep datatype which contains
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a constraint on JSON, and a function that returns for a given JSON value if it is conforming
to the defined constraint.

data Dep : Set where
dep : (D : (JSON → Set)) → (∀ (json : JSON) → Maybe (D

json)) → Dep↪

In this thesis we are only interested in the positive case, where the JSON actually satisfies
the constraints. This allows us to focus only on the valid cases and postpone complex issues
that might potentially arise when also looking at proving the invalid cases. In a complete
version we can use decidable logic, also discussed in Section 5.1, then the negative case is
also proven. This can be used to find out why a specific JSON object was not considered
valid. With decidable logic you can also be sure that the validation is complete, because it is
required to either prove that a value either satisfies the requirements or prove that the value
does not satisfy the requirements. This means that an implementation with decidable logic
will be guaranteed to cover all cases, the weaker optional logic we use here it is possible that
a valid case is dismissed. This is a trade-off we make to simplify the implementation.

We place this Dep datatype inside the schema definition, and when creating a new schema
we can now also add this validation object to the type. This forces the implementation to verify
if the constraints are satisfied when validating a schema. We make the following change to the
Schema data type defined in the previous chapter.

wto : ∀ { dep reqs s2 fields } →
HasRequireds fields reqs →
All (λ (f , json) → ∃ λ (o) → (o ∈ s2) × (f ≡ proj₁ o) ×

(⊢s (proj₂ o) json)) fields →↪
ValidDep dep (JSON.object fields) →
---------------
⊢s (oschema s2 reqs dep) (JSON.object fields)

The following constraint requires a JSON object which either has a field age, which must
be defined and contain a number when the field name is ”Foo”. We begin by defining a data
type which is dependent on some JSON value.

data ValidJs : JSON → Set where

The first constructor for this data type requires the JSON value to be an object that contains
both a name and age field, it requires the name field to contain the string "Foo" and the age
field to by of type number.

validNameHasVal : ∀ {flds json name age jsage} →
json ≡ JSON.object flds →
("name" , name) ∈ flds →
("age" , age) ∈ flds →
age ≡ (JSON.number jsage) →
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name ≡ (JSON.string "Foo") →
ValidJs json

The second constructor requires the JSON value to also be an object, but requires the name
field to be not equal to "Foo".

validNameHasNoVal : ∀ {flds json name} →
json ≡ JSON.object flds →
("name" , name) ∈ flds →
name ≢ (JSON.string "Foo") →
ValidJs json

We can define and implement a decision method which tells returns an instance of the
constraint datatype if it is possible. This function is used by the implementation to create
instances of this specific constraint.

validJsCheck : (json : JSON) → Maybe (ValidJs json)
validJsCheck json = do
(flds , flds☑) ← jsonObj? json
((_ , flap) , flap☑ , refl) ← containsField? "name" flds
(flapStr , refl) ← jsonStr? flap
yes refl ← just (flapStr String.≟ "Flap")

where no ¬a → just (validNameHasNoVal flds☑ flap☑ λ
{refl → ¬a refl})↪

((_ , age) , age☑ , refl) ← containsField? "age" flds
(ageNum , refl) ← jsonNum? age
just (validNameHasVal flds☑ flap☑ age☑ refl refl)

We now define an instance of the Dep type. This instance of Dep contains the previously
created constraint and a proof implementation for this constraint that can be used later to
validate if a specific JSON value is actually conforming to this constraints. This value returns
a proof that the constraint holds or an empty value if it does not hold.

deps : Dep
deps = dep ValidJs validJsCheck

5.4 Expressing Inter Parameter Constraints in Agda Records
We can also embed inter parameter constraints explicitly in Agda. This approach is shows
how inter parameter constraints can be used when programming in a dependently typed pro-
gramming language.

We begin by creating a new record with some fields; a partial Address record.
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record Address : Set where
constructor address
field

country : String
stateOrProvince : Maybe String

We add two additional fields to this record, they both require a proof that the given state-
ment is true. These fields can be automatically generated by Agda if the value for the field can
be automatically inferred.

{isStateCA} : True (if country ≟ "CA" then (is-present
stateOrProvince))↪

{isStateUS} : True (if country ≟ "US" then (is-present
stateOrProvince))↪

We can create new instances of this record by using known values. In this case we do not
need to provide a proof, because Agda can infer it for us.

myAddress : Address
myAddress = address "US" (just "New York")

myAddress2 : Address
myAddress2 = address "NL" nothing

We can also convert a JSONobject to an optional Address, if the JSONhas a valid structure
this function will return an Address value, in the other case it will return nothing. In this case
we do need to provide a proof to construct the record.

jsonToAddress : JSON → Maybe Address
jsonToAddress json = do
country ← json ∙ "country"
let stateOrProvince = json ∙ "stateOrProvince"
isStateCA ← decToMaybe (if country ≟ "CA" then (is-present

stateOrProvince))↪
isStateUS ← decToMaybe (if country ≟ "US" then (is-present

stateOrProvince))↪
just record

{ country = country
; stateOrProvince = stateOrProvince
; isStateCA = fromWitness isStateCA
; isStateUS = fromWitness isStateUS
}
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IDL4OAS[14] OAS-IP[20] Agda
Dependent constraints

Present-Present
Present-Value
Value-Value

Group constraints
All or none
Exactly one
Zero or one

Logical constraints
Or

And
Arithmetic constraints

+ ∣ − ∣ ∗ ∣ ÷
Other properties

Nested values
Constraints on lists

= Not expressible, = Requires encoding, = Expressible
Table 5.2: Comparing Inter Parameter Constraint solutions.

5.5 Comparing Agda Inter Parameter Constraints with
Previous Work

In Table 5.2 we compare our implementation with IDL4OAS and OAS-IP. We notice that
IDL4OAS and OAS-IP can express a very similar set of constraints, but OAS-IP is a smaller
language, somore encoding is needed. OAS-IP has the possibility to create functions to encode
more complex constraints, but lacks constructs to express arithmetic constraints.

The Agda approach also requires some encoding for some of the constraints. But it is
can leverage the existing language to create functions which simplify the construction of con-
straints. Agda also has ways to represent nested obects and lists, something which is not
possible in the other approaches.

The following snippet implements an all or none constraint in Agda for an arbitrary length
of values.

data AllOrNoneReq : JSON → Set where
allornone : ∀ {json flds grp} →
json ≡ JSON.object flds →
(All (λ name → (name ∈ (List.map proj₁ flds))) grp) ⊎

(All (λ name → (name ∉ (List.map proj₁ flds))) grp) →↪
AllOrNoneReq json
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allOrNoneCheck : (List String) → (json : JSON) → Maybe
(AllOrNoneReq json)↪

allOrNoneCheck = λ allflds → λ json → do
(flds , fldscheck) ← jsonObj? json
just all☑ ← just (all? (λ y → in? y (List.map proj₁ flds))

allflds)↪
where nothing → do

none☑ ← all? (λ y → notin? y (List.map proj₁ flds))
allflds↪

just (allornone fldscheck (inj₂ none☑))
just (allornone fldscheck (inj₁ all☑))

allOrNoneDep : List String → Dep
allOrNoneDep = λ allflds → (someDep AllOrNoneReq

(allOrNoneCheck allflds))↪

In IDL4OAS an all or none constraint is part of the domain specific language and can
just be written as 𝐴𝑙𝑙𝑂𝑟𝑁𝑜𝑛𝑒(𝑃1, ...,𝑃𝑛). In OAS-IP this constraint can be constructed by
composing the primitives defined in that language. This language is less flexible when it comes
to accepting a dynamic amount of parameters to a constraint.

group(f1, f2, f3) := iff(present(f1), iff(present(f2),
present(f3)))↪

The other constraints have a similar way of encoding, where the full circles in the table
denote that no special extra encoding is needed to express these constraints.

5.6 An API implementation in Agda using OpenAPI
In this section we use the formal definition of OpenAPI to create an API implementation. This
implementation will only accept a specific JSON object for an endpoint if the JSON is well
formed. We use this to show that we can use Agda to implement this validation and to show
what adding dependent types to this validation would add.

Below we show what the signature of an API function would look like. This function
takes a well-formed request as input and returns JSON and the proof that this is a well-formed
response.

api : ∀ {json p} → (wf : ⊢tin openApi p json) → ∃ λ jsonout →
(⊢tout openApi p jsonout)↪

We also need to have a mechanism in place that validates requests and checks that an
incoming request conforms to a specific specification. Below we show a function definition for
a validator.
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validate : (openApi : OpenAPI) → (p : String) → (json : JSON)
→ Maybe (⊢tin openApi p json)↪

This function creates an instance of a well formed request. A general implementation of
this function can be created.

There is still a lot of manual work to do in this setup. In a complete solution there are
constructs that introspect the type of the specification and use this to generate a validator.
Having this the only implementation a developer has to do is to execute additional business
logic and interact with external services.

This shows that we can express an OpenAPI specification as a type in Agda, and that we
can use dependent types to include arbitrary constraints in schema definitions. Having this we
can express OpenAPI with dependent constraints as a type, making it possible to share the
type of the API, allowing other developers to implement a connection to the API.
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Chapter 6

Discussion

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and draw some conclusions. Finally, some ideas for future work will be
discussed.

6.1 Conclusion
For the first research objective we have shown that an OpenAPI document can be seen as a type
in a programming language. We have also shown that this type can be used when implementing
a web API. This solution enforces the contract of the web API by using the type system of the
programming language, making it impossible to compile programs which are not conforming
to the API specification.

Our solution is different from a system where an OpenAPI document is generated from
annotations in code or a system where code is generated from an OpenAPI document. The
proposed solution uses the type system in Agda to embed an OpenAPI document as a type in
the programming language. This type lives alongside the implementation and is used by the
compiler to check if the implementation is actually valid.

For the second research objective we have shown that when using a dependently typed
programming language this can even be extended to express any decidable constraints in the
web API at the level of the API specification. This moves closer to a system where most
constraints are present in every layer of the implementation. Leaving as little room as possible
for uncertainty about the structure of requests in a web API. With this solution the users of an
API can know in advance if the code they have written will pass static validation on the web
server.

6.1.1 Steps before reality
We acknowledge that this solution still requires technology that is not yet ready for general
use. Dependent types are slowly becoming part of mainstream programming languages, but it
will take some time before they can be generally used. Going back from the dependent types
in the Agda implementation to an existing OpenAPI document is also another challenge that
needs to be tackled.
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To allow formally communicating the inter parameter constraints in the dependently typed
program there needs to be some domain specific language that can be embedded in an Open-
API document and that can be read and interpreted by other tools.

To actually use the knowledge provided by the dependently typed inter parameter con-
straints the language that is used to implement both the API itself and the API client need
to have some notion of dependent types to enforce inter parameter constraints on a language
level, something which is not generally possible at the moment.

Dependent types are still quite complex to work with and require an extensive knowledge
of functional programming language paradigms. With more language adopting ideas from
dependent types this problem is expected to become smaller. But describing inter parameter
constraints inside a value in a programming language still requires a different way of thinking
than is currently the case in traditional programming languages.

6.2 Discussion/Reflection
Using dependent types to create types with embedded inter parameter constraints is feasible,
but bringing them to a more general public is still a challenge.

An implementation with dependent types moves the responsibility of showing that inter
parameter constraints hold further away. Whereas in for example a Java implementation the
constraints are validated inside business logic, in a dependently typed implementation all static
constraints can be checked by the deserialization layer. This puts more responsibility on the
deserialization layer. We also notice this when implementing web APIs in different program-
ming languages in Appendix B.

Implementing a web API in a dependently typed programming language does require a
different mindset when programming. This can be a challenge for programmers who are not
used to functional programming languages.

The Agda code can still be improved, it might be possible that certain parts can be written
in a more concise way by a more experienced Agda programmer. The system would also need
to be expanded to accept decidable logic instead of the current optional logic. This requires
at least twice as much work to express the constraints, because there now also needs to be a
proof for values that do not pass the constraint. Decidable proofs will make the system more
robust as it is then required to prove everything about the values.

We have seen that a type in a dependently typed programming language can express any
decidable inter parameter constraint. There are also other domain specific languages which
are created to express inter parameter constraints, in this thesis we have shown that using
dependent types has a slight advantage in expressibility and can also leverage existing research
on the topic. On the other hand, there are also advantages to having a small domain specific
language for describing inter parameter constraints.

6.3 Related Work
Inter parameter constraints in Web APIs and dependent types are both well explored domains
in computer science. Dependent types has been around since the work of Martin-Löf [13] and
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is still seeing a lot of research. It is also being incorporated in existing programming languages.
Inter parameter constraints is a domain that has been around for a shorter time and is more
specific. Research on inter parameter constraints started with trying to detect these constraints
[28] to show that these constraints are present in existing web APIs. Later research was on
being able to describe these constraints.

In this section we will go over related work.

6.3.1 Validation of Web APIs
There are other solutions to validate if a web API is implemented according to the specification
and to check if complex constraints are properly implemented. One way to do this is by using
contract testing[11, 8]. This technique uses the specification of a web API to generate test
cases. These tests validate if the implementation of a web API conforms to the specification.
This process can be automated, such that there is no specific code testing if the API imple-
mentation is the same as what is communicated with users of the API. There are currently no
frameworks that can generate tests for web APIs with inter parameter constraints, it is also
impossible to create a general solution for testing if all defined inter parameter constraints are
present, as this is inherent to the testing approach[17].

6.3.2 Inter parameter constraints in programming languages
Being able to express constraints between values in programming languages is the underlying
theme of this thesis. This is an idea which is still explored in programming languages research.
We have seen that dependent types are powerful enough to express these constraints. There
are also other solutions to this problem.

There is some research on adding some way of describing inter parameter constraints to
a programming language. In Oostvogels et al. [21] an additional constraint block is added
to TypeScript interfaces allowing the description of constraints of a specific interface. This
research is based on earlier research on inter parameter constraints in web APIs and proposes
a way of describing these constraints in the TypeScript programming language.

Statically checking API consumers is another related topic, Burnay et al. [3] uses static
analysis in an extension to JavaScript to validate code that makes REST calls. This paper
introduces a specification language which is able to describe all inter parameter constraints
and another language which can be used to implement API calls, static analysis is able to
verify if the API calls would satisfy all static constraints.

6.3.3 Refinement types
Another research topic which goes into creating more detailed types in programming lan-
guages is refinement types. Introduced by Freeman and Pfenning [9] it can be used to define
types which are more specific than the types provided by the programming language. It refines
types by adding additional preconditions to the type. It allows for example to create a type for
a lowercase string. Refinement types are built up from smaller parts, this allows conversion
between different refined types. A refined type of integers larger than five can for example be
converted to a refined type of integers larger than three. Refinement types solve a problem is
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similar to the dependent types use-case discussed in this thesis. They are however usually lim-
ited to single values and do are not defined for relations between different values in a program
or different parts of a nested object. There are (experimental) implementations of refinement
types in Haskell[24], TypeScript[25] and Scala[23].

6.3.4 Dependent types in programming languages
There are languages which are able to express inter parameter constraints, such as Agda and
to some extend Scala and Haskell. These languages can leverage their type system to represent
the different constraints in the types.

Haskell supports dependent types to a certain extend[26], but it might already be possible
to implement inter parameter constraints using Haskell.

Scala supports path dependent types[1] and implicits which can be used to assert if the
type of an object has a specific trait. This is a less powerful version of dependent types and
can be used to describe some inter parameter constraints, this also requires encoding the inter
parameter constraints to conform to this structure.

6.4 Future work
This thesis is a first effort in combining the field of web APIs and programming languages in
this way. From here there are multiple different paths ahead.

Continuing with the Agda implementation it would be interesting to create a framework
for defining OpenAPI definitions in Agda. This framework could be used as a middleware to
validate if incoming request conform to the given specification. It could also give insight in
why a request is not accepted.

Using dependent types to describe inter parameter constraints is also something that could
be made more approachable, we now know that we can use dependent types to express inter
parameter constraints, but this still requires knowledge of dependent types, functional pro-
gramming and Agda to implement. I could be possible to extract the definition of constraints
to a smaller constraints language, similar to what previous research has done, but using de-
pendent types in this constraint language.

We know that there are inter parameter constraints in complex web APIs. Being able to
communicate them effectively seems to have clear benefits. What the impact is of being able
to communicate these inter parameter constraints is something that is still an open question.
Currently adding definitions for inter parameter constraints causes significant overhead, this is
something that could be addressed.

In Web APIs the input from the request is just one possible input. There are other sources
where input can come from, for instance from a database, the values from these sources can
also contain constraints with respect to the request. Being able to model this can give an even
more precise definition.

Generalizing the problem to describing complex types with constraints between fields in
the type system of a programming language is also an interesting problem. Using dependent
types is a way to do this, but there might also be more lightweight solutions to this, like exten-
sions of refinement types. Being able to express these constraints in computer programs does
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not only help in the web APIs domain, but can help computer programmers in general to write
more robust computer programs.
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Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

API: Application Programming Interface, an interface where other applications can commu-
nicate with

REST: Representational state transfer, a web API style. REST APIs are generally decoupled
from a specific consumer and can be used by many different applications. There is also
no server state, such as sessions specific to a caller, any required state is sent along in
the request.

API Consumer: An application which is the user of an API, also known as the client

JSON: JavaScript Object Notation, a light-weight data format, defined in ECMA 404:2013
[6].

XML: Extensible Markup Language, a structured data format.

YAML: YAMLAin’t Markup Language™, a configuration language with capabilities similar
to JSON.

OpenAPI Initiative: An organisation overlooking the standardization of API specifications

OpenAPI Specification: Describes a vendor neutral way of describing web APIs. Files writ-
ten based on this specification are called OpenAPI Documents. Updated by the Open-
API Initiative[19].

OpenAPI document: A document describing the specification of a web API, this document
uses and conforms to the OpenAPI Specification. OpenAPI documents are written in
either JSON or YAML.

API specification: A general name for an OpenAPI document.

SDK: Software Development Kit, a set of tools that help interacting with a specific library,
service or other piece of software. In the context of web APIs an SDK is usually a
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library which helps setting up a connection with the web API servers and provides a set
of functions that delegate API calls to the server and make sure that the input and output
of the calls conform to the specification.
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OpenAPI Implementation
Benchmark

In order to evaluate the impact of changes to the programming language on an API imple-
mentation there needs to be a way to evaluate how an implementation performs. How well an
implementation performs can be measured using qualitative and quantitative measurements.
In this chapter an overview is given of the different metrics used to evaluate the implementation
of an API. This evaluation is done on an implementation of a given specification and is only
measured between implementations of the same specification using different programming
languages or frameworks.

This evaluation focuses on the implementation of the API back-end. Because with a given
specification the implemented APIs should be the same. The focus will also lie on measuring
the code of the implementation and less on the performance of resulting application as this is
mostly influenced by the underlying platform. Any performance issues which are inherent to
a solution are reported.

This evaluation serves as an exercise to see what is different when implementing web APIs
in different environments. This helps giving the ideas in this thesis a bit more context.

B.1 Implementations

The benchmark specification is implemented in three different frameworks. Each implemen-
tation is made to be as close to the benchmark specification as possible. In this section we
introduce the different implementations.

We compare an implementation using Spring framework with an implementation in a
more traditional framework used at Adyen and the Dependently typed language Agda. These
environments are vastly different, for this evaluation we look at the differences of specific
parts of the implementation. We do this to see in what way these different parts influence how
web APIs are implemented.
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B.1.1 Spring Framework
The Spring1 framework is widely used to implement web APIs. The implementation of the
benchmark using Spring is used as a baseline to compare the other implementations to.

This implementation is based on Spring Boot, which is an opinionated part of the Spring
framework. This provides a starting point for implementing web APIs.

B.1.2 Adyen Framework
At Adyen a framework is built to implement web APIs. This framework tailors to Adyen’s
needs when building a complex web API. The framework used at Adyen has support for man-
aging multiple versions of an API and creating complex workflows in an API endpoint.

The framework was initially a SOAP2 and RPC framework and was later updated to also
allow creating REST APIs. This legacy has made the framework very extensive, supporting
much more than just REST APIs.

B.1.3 Agda
In Chapter 4 we gave a description of Agda and dependent types. This implementation builds
on top of that. This implementation does not account for the implementation of the http layer,
there is currently no Agda implementation for this. The implementation uses a model of what
an implementation of the http layer might look like.

This implementation moves all validation to a very early point of the request, without
causing other parts of the implementation to lose this information. This is done by embedding
all information about the constraints in the corresponding types.

B.2 API implementation benchmark
To create a benchmark for an API implementation, there needs to be some reference specifi-
cation that can be used to create the same API using different languages or frameworks. For
usage in this research the benchmark API would need to have some interesting inter parameter
constraint to show how these are implemented.

B.2.1 Constraints
The pet store API specification 3 is a starting point for this. It contains some basic endpoints to
mutate data. Some more additions need to be made to add some inter parameter constraints,
these additions cannot be expressed using the standard open API specification, but are defined
below.

Present-Value constraint In Address, add the field country, if country is US or CA,
then the state field is required.

1https://spring.io
2https://www.w3.org/TR/soap/
3https://github.com/swagger-api/swagger-petstore
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B.3. Quantitative Measures

Present-Present constraint In User, if firstName is set, then lastNamemust also be
set. But setting only lastName is also valid.

Value-Value constraint Order: if complete is true, then status is delivered.

Value constraints In User: email must look like an email address (/.+@.+/). In Cat-
egory, name must be between 2 and 10 characters long. In Pet, name must be at least two
characters long.

Group constraint In Pet, the fields category and status are either both empty or both
set. In User, at least phone or email must be set.

These constraints must throw an error when the validation fails.
Implementations with all these constraints are compared with each other using different

metrics.

B.3 Quantitative Measures
Quantitative measures are a way of looking at the source code to extract metrics. In this section
we will go over some quantitative metrics. Due to the small scale of this benchmark the actual
values behind the measures was not deemed relevant. A short explanation of the impact of
these variables is given for each metric.

B.3.1 LoC
Lines of code can give an indication of how verbose an implementation is. This metric should
be combined with other metrics to give actual insight in the meaning of the lines of code.

Spring Creating a web API with Spring boot requires some boilerplate code. To configure
the application, much of this can be generated by the OpenAPI generator.

Creating a new endpoint in Spring boot does not require many new lines of code. Spring
can use annotations to define new endpoints. After registering a controller a new endpoint can
be added by adding a function is annotated with the url of the endpoint.

Adyen The Adyen web API framework is similar to Spring in many senses, as it is also based
on Java and borrows many ideas.

The only way to configure the Adyen web API framework is with XML, this is more ver-
bose than using annotations. The framework also supports complex actions based on multiple
tasks which are called in sequence, this also requires more lines of code, but can greatly im-
prove readability and re-usability for very complex tasks.
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Agda The Agda implementation does not integrate with a larger system, so it cannot be
compared to other frameworks in this sense.

The Agda implementation does require more verbose types to describe requests and re-
sponses. This results in requiring more lines of code.

B.3.2 Cyclomatic Complexity
McCabe [16] is a metric to measure how complex a piece of code is. If the validation code
itself has many branches or if the actual complexity can be handled by a framework or solver.
This is a way to measure how complex an implementation is.

Spring and Adyen Both the Spring and Adyen frameworks behave very similar in terms of
cyclomatic complexity. Most of the business logic code in both implementations is the same.

Agda In Agda the complexity is hidden away as most types use a declarative notation. This
does not mean that there is no complexity. There are ways to calculate complexity of a func-
tional program[5], but this is not a general solution.

B.3.3 Class Coupling
Class coupling[4] measures how many classes depend on each other. How tight classes in the
implementation are coupled and if re-using of classes is encouraged or discouraged.

Spring and Adyen Both Spring and the Adyen framework are based on Java, they have
similar ways of implementing business logic.

Agda In a functional programming language such as Agda the notion of class coupling has
no meaning. There are other ways code can be coupled in a language such as Agda, but it is
still mostly based on other components present in the implementation the same way as in the
other implementations.

B.4 Qualitative Measures
B.4.1 Testability
How are different parts of the implementation testable? Is it possible to write tests on the
validation side? Can controller methods be unit tested?

Testability is partly up to what a framework provides.

Spring Extensive testing tools for Spring exist.

Adyen In the Adyen framework there are there exist mostly integration and unit tests.
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B.4. Qualitative Measures

Spring Adyen Agda
Testability

Maintainability
Versionability
Automation

Understandability
Debugging

Code Generation

Table B.1: Qualitative measures

Agda In Agda there isn’t a testing framework available, it is possible to create tests by writing
assertions on types. If the contract changes you first need to fix these tests before the program
will compile again.

B.4.2 Maintainability
How easy is it to add new validation logic or fields to a request. How many different files need
to be changed when a field is added.

Spring Spring has a lot of tooling available, helping with maintainability.

Adyen The Adyen framework is a very specific solution and build in-house. This means that
tooling is limited compared to other frameworks.

Agda An Agda implementation will fail to build until the implementation and the speci-
fication are both in sync, this makes it hard to miss when a field is removed but still used
somewhere or when an assumption about an input is not valid anymore.

B.4.3 Versionability
Is there some way of maintaining versions supported by the framework? If there is, how
flexible is it?

Maintaining different versions of the same web API can be a requirement for complex
web APIs[22]. One way of maintaining multiple versions is to run multiple versions of the
same api in different versions. Another way is to let the implementation handle the version
information and return specific fields or values based on the requested version, this allows for
continuous support of multiple versions, but does increase the chance that previous versions
are updated by accident.

Maintaining multiple versions is something that is implemented by the framework.

Spring Spring has some support for implementing different versions. It is not supported out
of the box.
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Adyen The Adyen framework has extensive support for versioning, allowing an implemen-
tation to support multiple versions at once, going beyond what is possible with OpenAPI spec-
ifications.

Agda TheAgda implementation does not support versioning, but this is something that could
be added in a future version.

B.4.4 Automation
How much of the implementation can be handled by the framework? Specifically how much
of the validation logic is handled by the framework. How expressive is defining validation
logic?

Web API frameworks are responsible for automating parts of the implementation of a web
api. Parts which are usually automated include serialization and de-serialization of requests
and responses, which also includes the first validation steps to check if a request is actually
well-formed. Routing of requests is also often handled by the framework.

Spring Spring can handle

B.4.5 Understandability
How much effort is it to find your way around in the implementation? Given that you know
the programming language, but not the framework.

Spring There are many resources for learning how to work with the Spring framework and
common issues that can be ran into.

Adyen As expected from an internal framework, the

Agda

B.4.6 Debugging
How easy is it to debug faults in the definitions or implementation? Does the language or
framework provide a way to inspect what is going on, by stepping through the code for example.

Spring The Spring framework has extensive tooling to aid with debugging, different IDEs
come with debuggers that are tailored to debugging a Spring framework application.

Adyen The Adyen framework can be debugged with the Java debugger, but there are parts
of the process that are hard to follow with a debugger.

Agda The Agda code itself does not execute, so if there is an error in the specification for
example, there are no ways to use a debugger to find these problems.
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B.4.7 Code Generation
How much can be automatically generated? Are there large parts that strictly follow the spec-
ification such that an implementation can be easily generated.

Spring For the Spring framework there are already tools that can generate the scaffolding
for a web API implementation. After generating the developer only needs to add the actual
implementation for each endpoint.

Adyen The Adyen framework has not embraced code generation and is implemented in such
a way that the implementation is the source of truth where a specification is generated from.

Agda There are currently no generators which generate code from anOpenAPI specification,
but we show in Chapter 4 that an OpenAPI specification can map one to one to an Agda
implementation.

B.5 Results
We have compared implementing a basic web API with inter parameter constraints in different
environments. We found that while different environments share similarities, they are also very
different on other parts. And changing the programming languages causes a developer to have
an entirely different way of programming[12].

The programming language has the biggest impact on how a web API is implemented,
web API implementations have parts which are not handled by the framework. These parts is
often where the complexity of the implementation lies. The implementations here cannot be
generalized to a framework and must be implemented without much help from the framework.

Somework still needs to be done before we can create a complete webAPI implementation
in Agda.
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Appendix C

Agda Code

{-# OPTIONS --type-in-type #-}

open import Data.Product hiding (map)
open import Data.Sum using (_⊎_ ; inj₁ ; inj₂)
open import Data.List as List
open import Data.String as String
open import Data.Maybe hiding (fromMaybe)
open import Data.Empty
open import Data.Unit
open import Level
open import Function
open import Data.Bool as Bool
open import Data.Nat

open import Data.Unit using (tt)

open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Reflects using (invert)
open import Relation.Unary hiding (_∈_ ; _∉_ ; Decidable)

import Data.Maybe.Relation.Unary.Any as MaybeAny

open import Data.List.Membership.Propositional

open import MaybeRel

module OpenAPI where

59



C. AGDA CODE

open import FRP.JS.JSON as JSON using (JSON ; _∙_ ; _∈∙_ ;
dlookup ; JsonObj ; getObject) renaming (lookup to
jsonLookup)

↪
↪

open import OpenAPI.Type as Type renaming (_≟_ to _t≟_)
open import OpenAPI.Schema

decNoToMaybe : ∀ {a} {A : Set a} → Dec A → Maybe (¬ A)
decNoToMaybe (yes x) = nothing
decNoToMaybe (no x) = just x

data Dep : Set where
someDep : (D : (JSON → Set)) → (∀ (json : JSON) → Maybe (D

json)) → Dep↪
noDep : Dep

containsField? : ∀ {B : Set} (f : String) → (s2 : List
(String × B)) → Maybe (∃ λ o → o ∈ s2 × f ≡ proj₁ o)↪

containsField? f s2 = do
a ← any? (λ x → decToMaybe (f String.≟ proj₁ x)) s2
just (find a)

data Component : Set where
component : List (String × Schema Dep) → Component

data OpenAPI : Set where
openapi : Component → List (String × (Schema Dep × Schema

Dep)) → OpenAPI↪

data HasRequired : List (String × JSON) → String → Set where
hr : ∀ { name flds } →

(∃ λ val → val ∈ flds × proj₁ val ≡ name × proj₂ val ≢
JSON.null) →↪

HasRequired flds name

data HasRequireds : List (String × JSON) → List String → Set
where↪

hrs : ∀ { flds req } →
All (HasRequired flds) req →
HasRequireds flds req

notNull? : (json : JSON) → Maybe (json ≢ JSON.null)
notNull? JSON.null = nothing
notNull? (JSON.string x) = just (λ ())

60



notNull? (JSON.float x) = just (λ ())
notNull? (JSON.bool x) = just (λ ())
notNull? (JSON.array x) = just (λ ())
notNull? (JSON.object x) = just (λ ())
notNull? (JSON.number x) = just (λ ())

hasRequired? : (flds : List (String × JSON)) → (req : String)
→ Maybe (HasRequired flds req)↪

hasRequired? flds req = do
(req′ , json) , req☑ , refl ← containsField? req flds
null☑ ← notNull? json
just (hr ((req′ , json) , req☑ , refl , null☑))

hasRequireds? : (flds : List (String × JSON)) → (rs : List
String) → Maybe (HasRequireds flds rs)↪

hasRequireds? flds rs = do
hasreq ← all? (hasRequired? flds) rs
just (hrs (hasreq))

mapJsonType : JSON → Type
mapJsonType JSON.null = Type.null
mapJsonType (JSON.string _) = string
mapJsonType (JSON.float _) = float
mapJsonType (JSON.bool _) = bool
mapJsonType (JSON.array _) = array
mapJsonType (JSON.object _) = object
mapJsonType (JSON.number _) = number

jsonType : JSON → Type → Bool
jsonType json t with json | t
... | JSON.null | _ = true
... | JSON.string _ | string = true
... | JSON.float _ | float = true
... | JSON.bool _ | bool = true
... | JSON.array _ | array = true
... | JSON.object _ | object = true
... | JSON.number _ | number = true
... | _ | _ = false

data JsonHasType : JSON → Type → Set where
jht : ∀ { json type } →
(mapJsonType json) ≡ type →
JsonHasType json type
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data ListHasType : Schema Dep → JSON → (Schema Dep → JSON →
Set) → Set where↪

lht : ∀ { s json ⊢ } →
All (⊢ s) ((List.concat ∘ fromMaybe ∘ JSON.getArray) json

) →↪
ListHasType s json ⊢

data ObjectHasType : List (String × Schema Dep) → JSON →
(Schema Dep → JSON → Set) → Set where↪

oht : ∀ { properties json ⊢ } →
All (λ (f , s) → All (λ j → ⊢ s j) (fromMaybe (json ∙

f))) properties →↪
ObjectHasType properties json ⊢

data FieldHasType : String → JSON → List (String × Schema
Dep) → (Schema Dep → JSON → Set) → Set where↪

fht : ∀ {⊢ f json o s2} →
(f , o) ∈ s2 →
⊢ o json →
FieldHasType f json s2 ⊢

jsonHasType? : (type : Type) → (json : JSON) → Maybe
(JsonHasType json type)↪

jsonHasType? type json = do
type☑ ← decToMaybe ((mapJsonType json) t≟ type)
just (jht type☑)

data ValidDep : Dep → JSON → Set where
validNoDep : ∀ {json} → ValidDep noDep json
validSomeDep : ∀ { D d2 json } →

(D json) →
ValidDep (someDep D d2) json

data ⊢s : Schema Dep → JSON → Set where
wt : ∀ { type json } →

JsonHasType json type →
---------------
⊢s (schema type) json

wta : ∀ { s json } →
(∃ λ ls → json ≡ (JSON.array ls) × All (⊢s s) ls) →
---------------
⊢s (aschema s) json

wto : ∀ { dep reqs s2 fields } →
HasRequireds fields reqs →
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All (λ (f , json) → ∃ λ (o) → (o ∈ s2) × (f ≡ proj₁ o) ×
(⊢s (proj₂ o) json)) fields →↪

ValidDep dep (JSON.object fields) →
---------------
⊢s (oschema s2 reqs dep) (JSON.object fields)

data ⊢tout : OpenAPI → String → JSON → Set where
wtout : ∀ { κ πs p jo σ₁ σ₂ } →

((p , (σ₁ , σ₂)) ∈ πs) → (⊢s σ₂ jo) →
-------------
⊢tout (openapi κ πs) p jo

data ⊢tin : OpenAPI → String → JSON → Set where
wtin : ∀ { κ πs p ji σ₁ σ₂ } →

((p , (σ₁ , σ₂)) ∈ πs) → (⊢s σ₁ ji) →
-------------
⊢tin (openapi κ πs) p ji

data ⊢t : OpenAPI → String → JSON → JSON → Set where
wt : ∀ { κ πs p ji jo σ₁ σ₂ } →

((p , (σ₁ , σ₂)) ∈ πs) → (⊢s σ₁ ji) → (⊢s σ₂ jo) →
-------------
⊢t (openapi κ πs) p ji jo

{-# TERMINATING #-}
solveSchema : (s : Schema Dep) → (json : JSON) → Maybe (⊢s s

json)↪

validateDep? : (c : Dep) → (json : JSON) → Maybe (ValidDep c
json)↪

validateDep? noDep json = just validNoDep
validateDep? (someDep dep check) json = do

dep☑ ← check (json)
just (validSomeDep dep☑)

fieldHasType? : (s2 : List (String × Schema Dep)) → (fld :
String × JSON) → Maybe (∃ λ o → (o ∈ s2) × (proj₁ fld ≡
proj₁ o) × (⊢s (proj₂ o) (proj₂ fld)))

↪
↪
fieldHasType? s (f , json) = do
(f′ , σ) , ∈☑ , f☑ ← containsField? f s
σ☑ ← solveSchema σ json
just ((f′ , σ) , ∈☑ , f☑ , σ☑)
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jsonObj? : (json : JSON) → Maybe (∃ λ flds → json ≡
JSON.object flds)↪

jsonObj? (JSON.object flds) = just (flds , refl)
jsonObj? _ = nothing

jsonArr? : (json : JSON) → Maybe (∃ λ b → json ≡ JSON.array b)
jsonArr? (JSON.array x) = just (x , refl)
jsonArr? _ = nothing

jsonStr? : (json : JSON) → Maybe (∃ λ b → json ≡ JSON.string
b)↪

jsonStr? (JSON.string x) = just (x , refl)
jsonStr? _ = nothing

jsonNum? : (json : JSON) → Maybe (∃ λ b → json ≡ JSON.number
b)↪

jsonNum? (JSON.number x) = just (x , refl)
jsonNum? _ = nothing

solveSchema (schema type) json = do
type☑ ← jsonHasType? type json
just (wt type☑)

solveSchema (aschema σ) json = do
(arr , arr☑) ← jsonArr? json
σ☑ ← all? (solveSchema σ) arr
just (wta (arr , arr☑ , σ☑))

solveSchema (oschema fields reqs deps) (JSON.object obj) = do
reqs☑ ← hasRequireds? obj reqs
fields☑ ← all? (fieldHasType? fields) obj
deps☑ ← validateDep? deps (JSON.object obj)
just (wto reqs☑ fields☑ deps☑)

solveSchema ($ref x) json = nothing -- TODO Implement $ref
solveSchema _ _ = nothing

solve : (s : OpenAPI) → (p : String) → (json↓ : JSON) →
(json↑ : JSON) → Maybe (⊢t s p json↓ json↑)↪

solve (openapi _ πs) p json↓ json↑ = do
((p′ , σ₁ , σ₂) , ∈☑ , refl) ← containsField? p πs
σ₁☑ ← solveSchema σ₁ json↓
σ₂☑ ← solveSchema σ₂ json↑
just (wt ∈☑ σ₁☑ σ₂☑)

module Example where
petSchema : Schema Dep
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petSchema = aschema (schema string)

outSchema : Schema Dep
outSchema = schema string

openApi : OpenAPI
openApi = openapi (component []) (("/pets" , petSchema ,

petSchema) ∷ ("/pet" , petSchema , outSchema) ∷ [])↪

inJSON : JSON
inJSON = JSON.array (JSON.string "a" ∷ JSON.string "b" ∷

[])↪

outJSON : JSON
outJSON = JSON.string "bye"

solved : ⊢t openApi "/pet" inJSON outJSON
solved = from-just (solve openApi "/pet" inJSON outJSON)

module ExampleObj where
data ValidJson : JSON → Set where
hasnameandage : ∀ {flds json name age jsonage} →

json ≡ JSON.object flds →
("name" , name) ∈ flds →
("age" , age) ∈ flds →
age ≡ (JSON.number jsonage) →
name ≡ (JSON.string "Flap") →
jsonage Data.Nat.< 3 →
ValidJson json

validateValidJson : (json : JSON) → Maybe (ValidJson json)
validateValidJson json = do
(flds , flds☑) ← jsonObj? json
((_ , flap) , flap☑ , refl) ← containsField? "name" flds
((_ , age) , age☑ , refl) ← containsField? "age" flds
(flapStr , refl) ← jsonStr? flap
(ageNum , refl) ← jsonNum? age
refl ← decToMaybe (flapStr String.≟ "Flap")
lesAge ← decToMaybe (ageNum Data.Nat.<? 3)
just (hasnameandage flds☑ flap☑ age☑ refl refl lesAge)

deps : Dep
deps = someDep ValidJson validateValidJson
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petSchema : Schema Dep
petSchema = oschema (("name" , schema string) ∷ ("age" ,

schema number) ∷ []) [] deps↪

openApi : OpenAPI
openApi = openapi (component []) (("/pets" , petSchema ,

schema number) ∷ [])↪

inJSON : JSON
inJSON = JSON.object (("name" , JSON.string "Flap") ∷

("age" , JSON.number 2) ∷ [])↪

outJSON : JSON
outJSON = JSON.number 1

solvedS : ⊢s petSchema inJSON
solvedS = from-just (solveSchema petSchema inJSON)

-- dep : Dep
-- dep = someDep (λ js → maybe (λ y → y == "asdf") false

(js ∙ "stuff"))↪

api : ∀ {json p} → (wf : ⊢tin openApi p json) → ∃ λ jsout →
(⊢tout openApi p jsout)↪

api (wtin (here refl) (wto (hrs []) x₁ (validSomeDep
(hasnameandage x x₂ x₃ x₄ x₅ x₆)))) = JSON.number 1 ,
wtout (here refl) (wt (jht refl))

↪
↪

module ExampleInter where
data ValidJs : JSON → Set where

validNameHasVal : ∀ {flds json name age jsage} →
json ≡ JSON.object flds →
("name" , name) ∈ flds →
("age" , age) ∈ flds →
age ≡ (JSON.number jsage) →
name ≡ (JSON.string "Flap") →
ValidJs json

validNameHasNoVal : ∀ {flds json name} →
json ≡ JSON.object flds →
("name" , name) ∈ flds →
name ≢ (JSON.string "Flap") →
ValidJs json

validJsCheck : (json : JSON) → Maybe (ValidJs json)
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validJsCheck json = do
(flds , flds☑) ← jsonObj? json
((_ , flap) , flap☑ , refl) ← containsField? "name" flds
(flapStr , refl) ← jsonStr? flap
yes refl ← just (flapStr String.≟ "Flap")

where no ¬a → just (validNameHasNoVal flds☑ flap☑ λ
{refl → ¬a refl})↪

((_ , age) , age☑ , refl) ← containsField? "age" flds
(ageNum , refl) ← jsonNum? age
just (validNameHasVal flds☑ flap☑ age☑ refl refl)

deps : Dep
deps = someDep ValidJs validJsCheck

petSchema : Schema Dep
petSchema = oschema (("name" , schema string) ∷ ("age" ,

schema number) ∷ []) ("name" ∷ []) deps↪

openApi : OpenAPI
openApi = openapi (component []) (("/pets" , petSchema ,

schema number) ∷ [])↪

inJSON : JSON
inJSON = JSON.object (("name" , JSON.string "Flapas") ∷

[])↪

outJSON : JSON
outJSON = JSON.number 1

solved : ⊢t openApi "/pets" inJSON outJSON
solved = from-just (solve openApi "/pets" inJSON outJSON)

inJSON2 : JSON
inJSON2 = JSON.object (("name" , JSON.string "Flap") ∷

("age2" , JSON.number 5) ∷ [])↪

-- solved2 : �t openApi "/pets" inJSON2 outJSON
-- solved2 = from-just (solve openApi "/pets" inJSON2

outJSON)↪

api : ∀ {json p} → (wf : ⊢tin openApi p json) → ∃ λ jsout →
(⊢tout openApi p jsout)↪
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api {.(JSON.object _)} {."/pets"} (wtin (here refl) (wto x
x₁ x₂)) = JSON.number (1) , wtout (here refl) (wt (jht
refl))

↪
↪

module Example2 where
openApi : OpenAPI
openApi = openapi (component []) (("/pets" , schema string

, schema number) ∷ [])↪

json : JSON
json = JSON.object (("stuff" , JSON.string "asdf") ∷

("stuff2" , JSON.string "fdsa") ∷ [])↪

c : Schema Dep
c = oschema (("stuff" , schema string) ∷ ("stuff2" , schema

string) ∷ []) [] noDep↪

proofSchem : Is-just (solveSchema c json)
proofSchem = MaybeAny.just tt

-- solvedSchem : �s c json
-- solvedSchem with proofSchem
-- ... | just {a} tt = a

str : Schema Dep
str = schema string

data AndReq : JSON -> Set where
and_req : ∀ {json flds a av b bv}

→ json ≡ JSON.object flds
→ (a , av) ∈ flds
→ (b , bv) ∈ flds
→ AndReq json

andDep : String → String → Dep
andDep = λ a → λ b → (someDep AndReq λ json → do

(flds , flds☑) ← jsonObj? json
((_ , flap) , a☑ , refl) ← containsField? a flds
(astring , refl) ← jsonStr? flap
((_ , bval) , b☑ , refl) ← containsField? b flds
(bstring , refl) ← jsonStr? flap
just (and_req {json} flds☑ a☑ b☑))

inverseDec : ∀ {A : Set} → Dec (A) → Dec (¬ A)

68



inverseDec (yes a) = no λ z → z a
inverseDec (no ¬a) = yes ¬a

notin? : (x : String) → (y : List String) → Maybe (x ∉ y)
notin? fld flds = none? (λ x → decToMaybe (inverseDec (fld

String.≟ x))) flds↪

in? : (x : String) → (y : List String) → Maybe (x ∈ y)
in? fld flds = any? (λ x → decToMaybe (fld String.≟ x)) flds

data AllOrNoneReq : JSON → Set where
allornone_all : ∀ {json flds grp} →

json ≡ JSON.object flds →
(All (λ name → (name ∈ (List.map proj₁ flds))) grp) ⊎

(All (λ name → (name ∉ (List.map proj₁ flds))) grp)
→

↪
↪
AllOrNoneReq json

allOrNoneCheck : (List String) → (json : JSON) → Maybe
(AllOrNoneReq json)↪

allOrNoneCheck = λ allflds → λ json → do
(flds , fldscheck) ← jsonObj? json
just all☑ ← just (all? (λ y → in? y (List.map proj₁

flds)) allflds)↪
where nothing → do

none☑ ← all? (λ y → notin? y (List.map proj₁ flds))
allflds↪

just (allornone_all fldscheck (inj₂ none☑))
just (allornone_all fldscheck (inj₁ all☑))

allOrNoneDep : List String → Dep
allOrNoneDep = λ allflds → (someDep AllOrNoneReq

(allOrNoneCheck allflds))↪

d : Schema Dep
d = oschema (("a" , schema string) ∷ ("b" , schema string)

∷ []) [] (andDep "a" "b")↪

module Validator where
{-# TERMINATING #-}
validator : (openApi : OpenAPI) → (p : String) → (json :

JSON) → Maybe (⊢tin openApi p json)↪
validator (openapi x []) p json = nothing -- empty

specification↪

69



C. AGDA CODE

validator (openapi x ((fst , snd , snd₁) ∷ x₂)) p json with
(fst String.≟ p)↪

... | yes refl = do
valid ← solveSchema snd json
just (wtin (here refl) valid)

... | no ¬a = do
(wtin a b) ← validator (openapi x x₂) p json
just (wtin (there a) b)

Listing C.1: OpenAPI.agda

{-# OPTIONS --allow-unsolved-metas #-}
open import Data.String
open import Data.List as List using (List)
open import Data.Bool

open import Data.Product
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Data.List

open import Function
open import Level

open import MyAny

open import OpenAPI.Type renaming (_≟_ to _t≟_)
open import FRP.JS.JSON.Base

module OpenAPI.Schema where

data Schema : Set where
schema : Type → Schema
aschema : Schema → Schema
oschema : (flds : List (String × Schema)) → (reqs : List

String) → Schema↪
$ref : String → Schema

infix 5 _==?_

lMaybeEqual : ∀ {A : Set} (x : ((c d : A) → Maybe (c ≡ d)))
(a b : List A) → Maybe (a ≡ b)↪

lMaybeEqual x [] [] = just refl
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lMaybeEqual x [] (x₁ ∷ b) = nothing
lMaybeEqual x (x₁ ∷ a) [] = nothing
lMaybeEqual x (x₁ ∷ a) (x₂ ∷ b) with x x₁ x₂
... | just refl = maybe (λ { refl → just refl}) nothing

(lMaybeEqual x a b)↪
... | nothing = nothing

oSchemaEqual : (a b : (String × Schema)) → (x : ((x₁ x₂ :
String) → Maybe (x₁ ≡ x₂))) → (y : ((y₁ y₂ : Schema) →
Maybe (y₁ ≡ y₂))) → Maybe (a ≡ b)

↪
↪
oSchemaEqual (fst , snd) (fst₁ , snd₁) x y with x fst fst₁ |

y snd snd₁↪
... | just refl | just refl = just refl
... | _ | _ = nothing

_s==?_ : (a b : String) → Maybe (a ≡ b)
a s==? b = decToMaybe (a Data.String.≟ b)

{-# TERMINATING #-}
_==?_ : (a : Schema) → (b : Schema) → Maybe (a ≡ b)
schema x ==? schema x₁ with x t≟ x₁
... | yes refl = just refl
... | no ¬p = nothing
schema x ==? aschema x₁ = nothing
schema x ==? oschema flds reqs = nothing
schema x ==? $ref x₁ = nothing
aschema x ==? schema x₁ = nothing
aschema x ==? aschema x₁ with x ==? x₁
... | just refl = just refl
... | nothing = nothing
aschema x ==? oschema flds reqs = nothing
aschema x ==? $ref x₁ = nothing
oschema flds reqs ==? schema x = nothing
oschema flds reqs ==? aschema x₁ = nothing
oschema [] [] ==? oschema [] [] = just refl
oschema _ [] ==? oschema _ _ = nothing
oschema [] _ ==? oschema _ _ = nothing
oschema _ _ ==? oschema [] _ = nothing
oschema _ _ ==? oschema _ [] = nothing
oschema ((a , a₁) ∷ axs) (x ∷ xs) ==? oschema ((b , b₁) ∷

bxs) (x₁ ∷ xs₁) with x s==? x₁ | a s==? b | a₁ ==? b₁↪
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... | just refl | just refl | just refl = maybe′ (λ {refl →
just refl}) nothing (oschema axs xs ==? oschema bxs xs₁)↪

... | _ | _ | _ = nothing
oschema flds reqs ==? $ref x = nothing
$ref x ==? schema x₁ = nothing
$ref x ==? aschema x₁ = nothing
$ref x ==? oschema flds reqs = nothing
$ref x ==? $ref x₁ with x s==? x₁
... | just refl = just refl
... | _ = nothing

Listing C.2: OpenAPI/Schema.agda

open import Function.Base
open import Level

import Data.Nat.Base as ℕ
import Data.Nat.Properties as ℕp

open import Relation.Nullary
open import Relation.Nullary.Decidable using (map′; isYes)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq

using (_≡_; _≢_; refl; cong; sym; trans; subst)↪

module OpenAPI.Type where

data Type : Set where
null string object float bool array number : Type

toℕ : Type → ℕ.ℕ
toℕ null = 0
toℕ string = 1
toℕ object = 2
toℕ float = 3
toℕ bool = 4
toℕ array = 5
toℕ number = 6

toℕ-injective : ∀ {i j : Type} → toℕ i ≡ toℕ j → i ≡ j
toℕ-injective {null} {null} _ = refl
toℕ-injective {string} {string} _ = refl
toℕ-injective {object} {object} _ = refl
toℕ-injective {float} {float} _ = refl
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toℕ-injective {bool} {bool} _ = refl
toℕ-injective {array} {array} _ = refl
toℕ-injective {number} {number} _ = refl

infix 4 _≈_
_≈_ : Rel Type 0ℓ
_≈_ = _≡_ on toℕ

≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ = toℕ-injective

≈-reflexive : _≡_ ⇒ _≈_
≈-reflexive = cong toℕ

infix 4 _≟_
_≟_ : Decidable {A = Type} _≡_
x ≟ y = map′ ≈⇒≡ ≈-reflexive (toℕ x ℕp.≟ toℕ y)

Listing C.3: OpenAPI/Type.agda

------------------------------------------------------------
------------↪

-- The Agda standard library
--
-- Machine words: basic type and conversion functions
------------------------------------------------------------

------------↪

module FRP.JS.JSON.Base where

open import Level using (zero)
import Data.Nat.Base as ℕ
open import Function
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
open import Data.String using (String)
open import Data.Bool using (Bool)
open import Data.Float using (Float)
open import Data.List using (List)
open import Data.Product using (_×_)
open import Data.Maybe.Base

------------------------------------------------------------
------------↪
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-- Re-export built-ins publicly

data JSON : Set where
null : JSON
string : String → JSON
float : Float → JSON
bool : Bool → JSON
array : List (JSON) → JSON
object : List (String × JSON) → JSON
number : ℕ.ℕ → JSON

Listing C.4: FRP/JS/JSON/Base.agda

open import Data.Bool as Bool using ( Bool ; true ; false ;
not ; _∧_)↪

open import Data.String as String using ( String ) renaming (
_==_ to _==s_ )↪

import Data.String.Properties as Sp
open import Data.Float as Float using ( Float ) renaming (

_≡b_ to _==n_ )↪
open import Data.Maybe using ( Maybe ; just ; nothing ; _>>=_

; decToMaybe ; maybe)↪
open import Data.Nat as Nat using ( ℕ )

open import Data.List as List using ( List ; [] ; _∷_ ; map )
open import Data.List.Properties using (≡-dec ; ∷-dec)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Unit using (tt)
open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Product.Properties as P using ()
open import Data.Empty

open import Function

import Data.List.Relation.Unary.Any as lAny

open import Level using (0ℓ)

open import Relation.Nullary using (Dec ; yes ; no)
open import Relation.Nullary.Decidable using (map′ ; isYes)

open import Relation.Binary using (Decidable ;
DecidableEquality)↪
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open import Relation.Binary.PropositionalEquality using (_≡_
; refl)↪

open import FRP.JS.Array using ( ) renaming ( lookup? to
alookup? ; _≟[_]_ to _≟a[_]_ )↪

module FRP.JS.JSON where

open import FRP.JS.JSON.Base public

private
variable
b : Bool
B : Set

_==b_ : Bool → Bool → Bool
true ==b a = a
false ==b a = not a

postulate
show : JSON → String
parse : String → Maybe JSON

Key : Bool → Set
Key true = String
Key false = ℕ

lookup? : Maybe (JSON) → ∀ {b} → Key b → Maybe (JSON)
lookup? (just (object js)) {true} k = maybe (just ∘ proj₂)

nothing (List.head (List.filter (λ x → proj₁ x String.≟
k) js))

↪
↪
lookup? (just (array js)) {false} i = alookup? js i
lookup? _ _ = nothing

lookup : JSON → ∀ {b} → Key b → Maybe (JSON)
lookup json key = lookup? (just json) key

getString? : Maybe (JSON) → Maybe String
getString? (just (string s)) = just s
getString? _ = nothing

getℕ? : Maybe (JSON) → Maybe ℕ
getℕ? (just (number n)) = just n
getℕ? _ = nothing
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getObject : JSON → Maybe (List (String × JSON))
getObject (object a) = just a
getObject _ = nothing

getArray : JSON → Maybe (List (JSON))
getArray (array a) = just a
getArray _ = nothing

getArray? : Maybe (JSON) → Maybe (List (JSON))
getArray? (just (array a)) = just a
getArray? _ = nothing

getBool? : Maybe (JSON) → Maybe Bool
getBool? (just (bool a)) = just a
getBool? _ = nothing

record LookupJson (B : Set) : Set where
field

theJson : ∀ {b} → JSON → Key b → Maybe B
open LookupJson

infix 100 _∙_
_∙_ : {{_ : LookupJson B}} → JSON → Key b → Maybe B
_∙_ {{bl}} = bl .theJson

instance
lookupBoolean : LookupJson Bool
theJson lookupBoolean x k = getBool? (lookup x k)

lookupString : LookupJson String
theJson lookupString x k = getString? (lookup x k)

lookupℕ : LookupJson ℕ
theJson lookupℕ x k = getℕ? (lookup x k)

lookupJSON : LookupJson JSON
theJson lookupJSON x k = lookup x k

lookupList : LookupJson (List JSON)
theJson lookupList x k = getArray? (lookup x k)
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postulate
_js==?_ : (a b : JSON) → Maybe (a ≡ b)

data JsonObj : JSON → Set where
jsIsObj : ∀ {js flds}
→ js ≡ (object flds)
→ JsonObj js

data _∈∙_ : String → List (String × JSON) → Set where
objhas : ∀ {a flds}
→ a ∈ (map proj₁ flds) -- a is in the fields
→ a ∈∙ flds

getJsonObj : (js : JSON) → (isobj : JsonObj js) → List
(String × JSON)↪

getJsonObj js (jsIsObj {js₁} {flds} x) = flds

dlookup : (a : String) → (flds : List (String × JSON)) → Dec
(a ∈∙ flds)↪

dlookup a js with lAny.any? (Sp._≟_ a) (map proj₁ js)

... | yes inobj = yes (objhas inobj)

... | no ¬inobj = no λ {(objhas inobj) → ¬inobj inobj}

Listing C.5: FRP/JS/JSON.agda
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