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Abstract

Natural or man-made disasters can have a drastic impact on social, economic and environmental aspects of
an affected population. Specifically, earthquakes are one of the most potent natural hazards, which cause
a disproportionate amount of fatalities, primarily due to a) unexpected building collapses, b) restricted or
limited access to basic amenities and c) potential hazards following earthquakes such as landslides, tsunamis
etc.

It is crucial to have an overview of the infrastructural damage caused following a disaster for search and
rescue services to assess the extent of the damage. For the purpose of this research, Sentinel 1 imagery is used
to map the building damage in an urban area after a disaster. A combination of parameters such as persistent
scatterers, pixel amplitude and phase is used with a timeseries of full-resolution and spatially averaged radar
images. Points that are stable in amplitude over a long timeseries, also known as Persistent Scatterers, are
extracted from a stack of full-resolution images. The amplitudes of persistent scatterers, along with amplitude
and coherence of pixels derived from a stack of spatially-averaged images, are statistically analysed to check
the trends of the parameters pre- and post the disaster. A change detection algorithm is applied to this stack
in order to localise the areas of building damage. The results are superimposed on Google Earth for easy
interpretation using a graded damage scale.

The analysis shows that exploiting the persistent scatterer amplitudes in the manner used in this research
provides a novel way of locating building damage. This technique can be used effectively in urban areas.
Using a combination of pixel amplitudes and coherence along with the persistent scatterers helps correctly
find new and unique points of damage for each parameter used. The results were validated using reference
Grading and crowd-sourced maps. The results illustrate that the proposed approach can be used for detecting
and producing informative maps on infrastructural damage detection in urban areas.
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1
Introduction

Natural and man-made hazards, such as earthquakes or warfare, can cause a potential humanitarian crisis.
According to the World Health Organisation (WHO), natural disasters kill around 90,000 people and affect
around 160 million people worldwide every year [52]. This number is likely to increase with global warming,
due to the risks it brings such as extreme weather. These disasters have an immediate impact on human
lives and cause destruction of biological, physical and socio-environmental aspects of the affected people.
To prevent or minimise the damage to human life, it is necessary to have a method to analyse the situation to
enable planning and response.

Among natural disasters, earthquakes are one of the most potent natural hazards, causing massive de-
struction. Building damage due to such hazards can have a direct or indirect impact on valuable human life
and property. The major factors that contribute to human casualty in cases of natural or man-made haz-
ards are unexpected collapsing of structures, getting stuck under rubble without access to food or water and
’follow-on’ disasters such as landslides, tsunamis caused directly due to the main disaster. Although a healthy
human can survive three to five days under rubble without food or water [29], studies show that structural
collapses are the cause for 75% of deaths in earthquakes [10].

Hence, it is important to provide a method to rapidly map and localise the points of building damage as
soon as possible after disasters, since it is a crucial period to find any survivors. A lack of a clear overview of
the situation caused by inaccessible roadways or damaged communication systems can hinder an efficient
search and rescue operation [2]. This indicates a need for preliminary information on damage localisation in
the form of damage maps.

1.1. Research Motivation
For any search and rescue team to be efficient in their functionality, it is important to provide a preliminary
assessment of the building damage as soon as possible after the disaster. Ground-based gathering of such
evidence is cumbersome and time-consuming. The team is also possibly be affected by a lack of mobility due
to the disaster. Remote sensing methods prove to be a good alternative to this. It provides a clear overview
and an aerial perspective. Although, it poses an additional challenge to produce the damage maps as quickly
as possible after the post-disaster image is made available.

There are various options available for remote-sensing data such as LIDAR (LIght Detection And Rang-
ing of Laser Imaging Detection And Ranging), RADAR (RAdio Detection And Ranging), or optical imagery.
They are also acquired at varying distances from the surface of the earth in the form of airborne and space-
borne satellites. The airborne satellites like drones can be very effective for quick mapping but its availability
depends on the country’s resources. Space-borne satellites can provide the imagery of a very large area peri-
odically and is generally a more readily available source of data. It is also a reliable source which can provide
imagery that is largely unaffected by the weather or time of day.

Synthetic Aperture Radar (SAR) is a promising source of radar data. It is a radar system which generates
high-resolution images by using the flight path of the satellite in order to simulate a very large antenna (or
aperture). Man-made structures have a consistent electromagnetic backscattering signal and any changes in
the structures are likely to cause an inconsistent backscatter compared to the previous pass. This change in
backscatter can be picked up as a change in comparison with the previous image.

1



2 1. Introduction

While SAR radar imagery has been widely used for rapid damage mapping in case of disasters by various
organisations such as the Advanced Rapid Imaging and Analysis (ARIA) group of the Jet Propulsion Labora-
tory (JPL), Copernicus Emergency Management Service (EMS) or the International Charter Space and Dis-
asters, they do not fully utilise the advantages provided by time-series analysis. In order to reliably detect
a change in the post-disaster image, it is useful to have a set of pre-disaster images whose amplitude and
coherence trends can be studied.

The Sentinel-1 mission launched by the European Space Agency consists of a constellation of two satel-
lites (Sentinel-1A and Sentinel-1B) that operate day and night and produce C-band imagery. The constella-
tion is on a near-polar, sun-synchronous orbit. While it has a medium (5 m by 20 m) spatial resolution, it has a
higher temporal resolution than older satellites such as ERS-1/2 and ENVISAT ASAR. It has a repeat cycle of 12
days and at the equator, it has a 6-day repeat cycle due to the two-satellite constellation. Sentinel offers four
types of data products and the Level 1 Single Look Complex (SLC) and Ground Range Detected (GRD) prod-
ucts are made available for specific Near Real-Time (NRT) areas within one hour of acquisition and within 24
hours for all other regions. Due to its open-data policy and high temporal resolution, the Sentinel-1 imagery
is a promising dataset for rapid disaster response.

1.2. Aim of the research
The aim of this research is:

To design a methodology that combines a timeseries of multiple SAR parameters in order to create damage
detection maps in case of a disaster.

This main aim can be divided into research questions as follows:

1. How can the Sentinel 1 archive be used effectively for detecting building damage?
An integral part of the research is to utilize a time-series of Sentinel-1 imagery and determining if it can
be used in an effective manner to localise building damaged due to natural disasters. The algorithm
will use information gathered from the pre-disaster time-series to locate changes in the post-disaster
image.

2. How can the use of amplitude and coherence parameters be combined to produce the damage maps?
According to the literature survey, amplitude and coherence are useful in picking up different intensi-
ties of damage. Hence, it is useful to combine the use of these parameters to produce the final maps for
relief response.

3. Can full resolution Sentinel 1 images be utilised effectively along with spatially averaged (or multi-
looked) images?
The full resolution radar images contain pixels, which in case of Sentinel-1, has a resolution of 5 m
by 20 m. Points that are stable natural reflectors are called Persistent or Permanent Scatterers [18] are
selected from the full resolution image, upon which the change detection method is applied. These
points are thoroughly discussed in Section 3.2.1. Additionally, spatially averaging the images would
cause a blurring of the edges (detrimental to selecting persistent scatterers) but the function also re-
duces speckle noise. Hence, after spatially averaging, we consider the amplitude and coherence values
as input for the change detection algorithm again. It helps detect damaged areas which are missed by
using persistent scatterers. In case similar results are derived from all three parameters, it also helps to
reinforce and validate the results.

4. Are the resulting damage maps sufficiently informative?
It is important that the results of the algorithm produce maps that are easy to understand and provide
preliminary information that describes where the damages are localised.
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Background Information

When hazards strike in highly vulnerable areas with a high population and inappropriately managed risk, it
is called a disaster [28]. This could be a natural disaster such as cyclones, floods, earthquakes, tornadoes
etc. or a man-made disaster such as wars, oil spills, nuclear explosions, fires etc. Both can cause large scale
destruction of valuable human life and property and leave significant economic damage in its wake.

Earthquakes can be particularly destructive since it usually occurs without warning or with little warning.
Between 1998 and 2017, 7.8% of all natural disasters were earthquakes but this resulted in a disproportionate
percentage of deaths, which is 56%, over the same time period [51]. Figure 2.1a shows the number of recorded
earthquakes between 1990 and 2018 while Figure 2.1b shows the disproportionate number of fatalities due to
those earthquakes in the same time period.

(a) Number of recorded earthquakes between 1990 and 2018 [14] (b) Global deaths recorded due to earthquakes between 1990 and 2018 [14]

Figure 2.1: The Figure on the left shows the number of recorded earthquakes between 1990 and 2018 and the Figure to the right shows
the global fatalities between 1990 and 2018 due to earthquakes. Earthquakes are responsible for a disproportionate number of fatalities

when compared to the number of earthquakes that occur over the same time period.

There are various methods in which disasters can be monitored and surveyed. Before remote sensing
technology came to be used commonly, ground-based surveying was done using rescue teams. Since man-
ually gathering information is cumbersome and time-consuming, remote sensing methods are preferred.
Some of the technologies used for this are airborne and spaceborne platforms with sensors like optical and
infrared systems. Optical sensors can provide high-quality images are have been used widely for damage
detection purposes. It depicts the surfaces it images as seen by the human eye, hence making it easy to inter-
pret. However, they require smoke and smog-free conditions and are limited to usage during the availability
of daylight. Unmanned Air Vehicles (UAVs) can be a good source of imagery for monitoring since they can
capture high-resolution data and transmit to the ground station in NRT but its usage usually depends on the
resources of the affected area.

LIDAR, also known as Airborne Laser Scanning (ALS) uses a laser to measure the distance between the
sensor and the point that is sensed. ALS technology usually delivers point clouds and integrates an airborne

3
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laser, a global positioning system (GPS) and inertial measurement technology. It has been used successfully
in the context of emergency relief and management [36, 49, 50]. In LIDAR, short wavelengths of the electro-
magnetic spectrum are used and hence it is highly sensitive to clouds, rain or smog.

Synthetic Aperture Radar (SAR) systems can record both the amplitude and phase characteristics of the
backscatter signal. One of the biggest advantages is that it can be used irrespective of sunlight and weather
conditions. It has been widely used to assess damages after disasters [33, 38]. By analysing the amplitude or
coherence values one can discriminate between damaged or undamaged structures. While SAR images have
been used widely by various organisations such as Copernicus Emergency Management Services (EMS) or
Global Disaster Alert and Coordination System, they do not fully utilise the potential of the Sentinel constel-
lation by not using a long time-series of data.

Since its launch, the Sentinel 1 satellite has provided a steady stream of radar images with a repeat cycle
of 6-12 days depending on the area under consideration. It has a C band synthetic aperture radar (SAR).
Processed Level 1 Single Look Complex (SLC) data is considered for the analysis in this research since it is a
complex image with amplitude and phase information. The various SAR parameters under consideration for
this research are intensity, phase and a combination of intensity and phase.

While most approaches commonly use the amplitude and coherence for change detection purposes in
case of disasters, Persistent Scatterer Interferometry (PSI) has been mostly restricted to improving Digital
Elevation Models (DEMs) and studying minute or slow variation (1mm/year) in the topography. Persistent
Scatterers are points that are found to be stable in amplitude over a long period of time. These points usually
represent man-made reflectors like roads, the side, or the tops of buildings or structures. The outputs of the
PSI approach are the velocity and height of the changed point. The PSI method is discussed, by reviewing the
seminal paper published by Ferretti et al. [18], and some other papers using similar techniques to provide
an overview of the way persistent scatterer points are generally used. Before we dive into what the literature
says, some SAR basics are elucidated.

2.1. Synthetic Aperture Radar
In radar, a high power pulse is transmitted that can be visualised as a modulated waveform embedded in a
carrier [23]. This can be described by the equation:

sT (t ) = aT u(t )+cos(w t +φ(t )), (2.1)

where aT is the constant transmitted amplitude, u(t ) is the pulse envelope, w is the carrier frequency and
φ is the phase modulation. Assuming a stationary target at a certain range r , the received signal consists of
reflection from the object along with some noise. The delay time in receiving the reflected pulse is given by
τ= 2r /c, where c is the speed of light. Hence, the received signal can be described by the equation:

sR (t ) = aR u(t −τ)cos(w(t −τ)+φ(t −τ)+φo)+n(t ), (2.2)

where aR is the received amplitude signal, φo is the unknown phase shift of the received signal, n is the noise
signal and the received signal has a delay of τ. In order to process in phase and quadrature phase signals, we
multiply the received signal by sin and cos and low pass filter it [23]. Then the two (in phase and quadrature)
signals can be given by,

zI (t ) = aR (t )u(t −τ)cos(φo −wτ+φ(t −τ))+nI (t ) (2.3)

zQ (t ) = aR (t )u(t −τ)sin(φo −wτ+φ(t −τ))+nQ (t ) (2.4)

which can be simplified and now the complex signal is,

z(t ) = aR u(t −τ)exp( j (φo −wτ))exp( j (t −τ))+n(t ), (2.5)

= au(t −τ)exp( jφ(t −τ))+n(t ), (2.6)

(2.7)

with a = aR exp( j (φ−wτ)), being the complex amplitude and n is the complex noise.
This is the signal that is received by the receiver in the satellite. The imagery used in this research is

acquired from the Sentinel 1 satellite in Terrain Observation with Progressive Scans SAR (TOPSAR) imaging
technique or mode. This is similar to the ScanSAR mode since the images are acquired in bursts. The images
are acquired in bursts and in each burst, the radar beam is electronically moved from one side to another in
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the azimuth direction [15] as shown in Figure 2.2b. This is done over several ’sub-swaths’ in range. In Figure
2.2a, the general terms associated with SAR are shown in a schematic diagram [5]. The strips acquired side by
side are in the azimuth direction and in this case, is the direction of flight of the satellite. The range direction
is perpendicular to the azimuth.

(a) Figure illustrating SAR acquisition geometry; from [5] (b) Figure illustrating Sentinel 1 TOPSAR mode. The images are acquired
over several bursts in azimuth and over multiple sub-swaths in range; from

[15]

Figure 2.2: Figures showing SAR geometry to the left and the TOPSAR mode used in Sentinel 1, a type of ScanSAR mode

The input files that are used for the research come in the form of SLC images. A complex (I and Q) value
represents each pixel in the SLC and hence contains both amplitude as well as phase information [16]. The
amplitude signal refers to the strength of the radar response or backscatter and intensity refer to the square of
the amplitude. The phase depends primarily on the distance between the target and sensor. The relationship
is given by [8]:

φ=−4π

λ
R +φer r or , (2.8)

where λ is the wavelength of the radar signal, R is the sensor-target distance and φer r or is the phase error
due to delay in the signal. Interferometric SAR uses the phase difference between two complex images of the
same area, acquired from slightly different geometries to extract the distance information.

SAR can be used to locate damaged buildings by using the amplitude and/or the phase pixels in the im-
ages. In the following section, a review of relevant background information is provided. The SAR parameters
used for change detection are discussed along with the PSI algorithm.

2.2. Intensity
The use of intensity for damage detection has produced some consistent results. Matsuoka and Yamazaki
[34] use ERS satellite images to study the damage occurred during the 1995 Kobe earthquake. It was argued
that although the phase approach has a higher degree of sensitivity, using intensity has a requires a low de-
pendence on the conditions mentioned above and hence may be developed as a uniform method to detect
damaged areas.

The effects of pixel window size and speckle noise is also analysed while evaluating damage.The use of the
backscattering coefficient and correlation coefficient of the (four) pre-disaster and (five) post-disaster scenes
were investigated. The first parameter used for damage detection is the correlation coefficient, r , between
two intensity images a and b which is calculated as

r = N
∑N

i=1 I ai I bi −∑N
i=1 I ai

∑N
i=1 I bi√

(N
∑N

i=1 I a2
i − (

∑N
i=1 I ai

2
)) · (N

∑N
i=1 I b2

i − (
∑N

i=1 I bi
2

))
, (2.9)

where i is the pixel number, I ai and I bi are the backscatter values of the two images averaged over a window
containing N pixels. The second parameter used is the backscattering coefficient, d , as shown in the equation



6 2. Background Information

2.10
d = 10 · l og10 Ī ai −10 · log10 Ī bi , (2.10)

where Ī ai and Ī bi are the averaged intensity values over the pixels surrounding pixel number, i , within a 13
× 13 window. From the two parameters, a regression determinant score given by a discriminating line that
differentiates between an area that has a damage ratio of 100% and an area with no damage using two indices,
r and d . Here, damage ratio refers to ratio of number of building classified as damaged and the total number
of buildings in the block. The discriminating line equation is given by,

αd +βr +γ= 0, (2.11)

and a discriminant score, z, is calculated where,

z =αd +βr +γ, (2.12)

which provides a distinction between severely damaged and non damaged areas depending on whether is
it positive or negative. A relative good agreement was found between the results of the research and a field
survey by the Architectural Institute of Japan and the City Planning Institute of Japan. The disadvantage of this
method is that the discriminant score changes based on the area and its urban structure under consideration.

2.3. Phase
Matsuoka and Yamazaki [32] use coherence analysis of SAR data for earthquake damage detection during
the 1995 Kobe earthquake. 5 pre-disaster and one post disaster JERS-1 images are used to calculate the co-
herence, which describes the degree of correlation between the images. It is a sensitive parameter for change
detection. The images were co-registered to form two pre-seismic (two images before the seismic event,
which refers to the earthquake) and two co-seismic (images immediately preceding and following the seis-
mic event) image pairs followed by calculation of the coherence. The complex coherence γ of complex signals
a1 and a2 is defined in the equation 2.13

γ=
∑N

i=1 a1i a∗
2i√∑N

i=1 |a1i |2
√∑N

i=1 |a2i |2
, (2.13)

where N is the number of signal measurements (pixels) and i is the sample number. Matsuoka and Yamazaki
[32] conclude that an increase in building damage caused a decrease in the magnitude of the coherence.

Fielding et al. [20] investigate the use of interferometric correlation measurements from Envisat images
to map the details of the damage caused due to the 2003 Bam, Iran earthquake. The complex correlation
is calculated for the single pre-seismic pair and two the co-seismic pairs as shown in (2.13). They note that
spatial averaging while correlation estimation can be underestimated due to a phase gradient through the av-
eraging window [7]. This phase gradient may be are due to interferometric baselines and topography (which
can be removed before calculations) and co-seismic deformation of the surface (which is more difficult to
remove). To avoid this, the window sizes can be reduced but it leads to an overestimation of the coherence
[25]. An alternative suggested was to use the phase variance σ2

φ to calculate the coherence. This is done using
the phase-sigma correlation [42]. This is done by first removing any local ramp or phase trend (de-ramping)
followed by calculating the variance of the phase in that region using

σφ = 1p
2N

√
1−γ2

γ2 , (2.14)

where N is the number of samples and γ can be isolated to get,

|γ| = 1

2Nσφ
2 +1

. (2.15)

A 5×5 window was used to calculate the coherence using equation 2.14. In order to differentiate between
correlation change between vegetated areas and correlation change due to structural damage of buildings, a
correlation difference map was generated by subtracting the pre-seismic correlation map from the co-seismic
image pair. Hence, negative correlation values indicate damage caused due to the earthquake. A 100% de-
struction of buildings in the old parts of the city resulted in a correlation change from -0.7 to -0.3 on the cor-
relation change map. It is to be noted that the correlation difference method works best with low baselines
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Table 2.1: Damage class categories for coherence change index, ρ, as defined by Hoffmann [26]. This is used to threshold the levels of
coherence change index to correspond to varying levels of damage.

Average coherence index Damage level class

ρ < 1.5 No damage
1.5 ≤ ρ < 2.0 Light damage
2.5 ≤ ρ < 2.5 Significant damage
ρ ≥ 2.5 Severe damage

and a low random noise component since the SNR decreases if the subtracted images have a high random
noise component.

Hoffmann [26] utilises a coherence change index which can be quantitatively interpreted in terms of
the extent of damage during a catastrophic event. This particular study focuses on the Bam earthquake of
2003. They also show that the results are robust when image pairs with varying temporal and perpendicular
baselines are used. One pre-disaster and three co-disaster (images immediately preceding and following
a disaster) image pairs were created and a 4 × 20 window is used to calculate the coherence using (2.13).
The mean coherence level generally decreases for all co-seismic interferograms compared to the pre-seismic
ones. To quantify this change, a coherence change index ρ is computed which is given by

ρ = γr e f

γeq
, (2.16)

where γr e f is the coherence computed for the interferogram before the earthquake and γeq refers to the same
spanning the earthquake. A common bandwidth filter is also used to reduced the effects induced due to long
baselines (spatial correlation) at the cost of reduced range resolution [22]. The average coherence index is
computed as

ρ̄ = 1

N

N∑
i=1

mi n(ρi ,3), (2.17)

where N is the number of image pixels, All the values are thresholded below 3. Damage categories were
assigned for different ranges of the average coherence index as shown in Table 2.3 Close agreement was
found between the regions of highest damage in the coherence index images and severe damage visible from
the IKONOS optical images for all the co-disaster pairs. It is to be noted that common bandwidth filtering
is best used on a relatively flat terrain such as Bam. To avoid incorrect estimation of damage, it is better to
consider a pre-disaster image pair with a short baseline and use it with a co-disaster image pair with a similar
baseline.

Yun et al. [53] use the Italian Space Agency’s COSMO-SkyMed (CSK) SAR (X-band) and the Japan Aerospace
Exploration Agency’s ALOS-2 (L-band) satellite to acquire images over the Gorkha are in Nepal during the
2015 earthquake. With three images from each satellite, two image pairs were formed, one pre-seismic and
one co-seismic. The coherence maps were produced and estimated over a 3 × 3-pixel window size using
(2.13) after topographic phase removal using the 1-arcsec Shuttle Radar Topography Mission (SRTM) digi-
tal elevation model (DEM). The pixel values were adjusted to removed pixel bias [24]. The coherence maps
were registered to each other after calculating dense sub-pixel offsets following which the resampled maps
were ’matched’ using histogram matching such that the statistics are identical to the reference (pre-seismic)
coherence maps. They then take the difference of the coherence maps and apply a colour map to produce
the Damage Proxy Map (DPM). Validation showed that the maps showed good correlations between the CSK
DPM and the National Geospatial Agency’s analysis and the United Nations Operational Satellite Applications
Programme’s damage assessment maps.

2.4. Phase and Intensity
The general idea used here is that the interferometric coherence in general reduces, and there is a decorrela-
tion of data between two images before and after a natural disaster. This is used in combination with intensity
changes, on the basis of different backscattering behaviour due to geometric changes in the structures scat-
tering the waves.

Matsuoka and Yamazaki [33] proposed to use multiple parameters to study the 1999 Kocaeli, Turkey
earthquake using ERS-1 and ERS-2 data. They use three pre-disaster and one post-disaster acquisition. All
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Table 2.2: Feature sets in terms of n-dimensional vectors as defined by Stramondo et al. [44]. Different feature vector types and sizes are
used to classify regions into different levels of damage.

Type Vector size Components

COHER 3D vector pre-, post- and co-seismic coherence
CORREL 3D vector pre-, post and co-seismic correlation

SAR 8D vector
vector COHER, vector CORREL, pre-

and post-seismic SAR intensity image
OPT 2D vector pre- and post seismic IRS image
OPT + SAR 10D vector vector SAR and vector OPT
OPT + COHER 5D vector vector COHER and vector OPT

the images were registered to the master image using the nearest neighbour method at the position with the
highest correlation between two single look amplitude image. The master image refers to the reference image
on top of which other ’slave’ images are overlapped or ’co-registered’ upon. The parameters used for change
detection are coherence (2.13), amplitude correlation ( 2.9) and amplitude difference (2.10).

Figure 2.3: Procedure for Damage Detection as used by Matsuoka and Yamazki [33]. A layered approach is taken wherein different
parameters like coherence, amplitude difference and intensity correlation are used to ascertain the level of damage.

Matsuoka and Yamazaki [33] use a layered approach and assign thresholds for each parameter. It was
found that intensity difference can describe large surface changes, intensity correlation can detect a wide
array of earth surface changes and coherence is sensitive to small surface changes. Therefore, they use coher-
ence to differentiate damaged areas from non-damaged areas, amplitude difference to detect slight damage
and correlation to detect moderate or heavy damage depending on whether it is above or below the threshold.
The results show relatively good agreement with various damage survey reports.

Stramondo et al. [44] explores the use of SAR data along with optical satellite data in the areas of Bam,
Iran (2003 earthquake) and Izmit, Turkey (1999 earthquake). SAR images are first coregistered, followed by
image intensity I calculation. To reduce speckle noise, the images are multi-looked using the Goldstein filter
[31]. The complex coherence is calculated as in 2.13 and the intensity correlation is calculated using 2.9. The
classification of regions into different levels of damage is done using different combinations of n-dimensional
feature vectors. The vectors are used to understand which parameters contribute to discriminate change.
They conclude that using OPT vector along with the COHER vector give the highest overall accuracy, that is,
using the complex coherence combined with optical images results in higher classification accuracy.

Arciniegas et al. [3] studied the area of Bam, Iran during the 2003 earthquake using ENVISAT radar im-
ages. The complex coherence is calculated using (2.13) over a 25 × 5 moving window. Change in amplitude
is also used as a factor to evaluate the damage. They conclude that earthquake damage caused both an in-
crease and decrease in amplitude, therefore only the absolute value was taken into consideration and that
using both parameters lead to higher accuracy than using them individually. They note that using coherence
individually produced better results than using absolute amplitude changes, although with limited accuracy.

Gamba et al. [21] use a combination of intensity and phase features for damage classification. Ancillary
data in the form of GIS layers are also used to improve the accuracy of the maps. The change detection
algorithm itself is based on a neural-network classifier or a Markovian Random Field (MRF). They also note
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that the best results were obtained by using the intensity values alone, contrary to Arciniegas et al. [3].
Trianni and Gamba [45] exploit multi-temporal SAR data and ancillary information for defining urban

damage. These approaches are applied to the areas of Bam (Iran), Boumerdes (Algeria) and Pisco (Peru).
Two approaches are proposed, one, a fast and low precision analysis, an unsupervised statistical analysis of
variables that represent backscatter intensity or coherence values for the area under analysis. The second
approach is a supervised method involving a multi-temporal classifier, performed using a Markov Random
Field (MRF) or a neural network classifier.

In the unsupervised approach, statistically significant parameters are extracted from the SAR images. The
urban area is divided into blocks level and a statistical analysis characterises these blocks. A lognormal or
Weibull distribution is used for the characterisation was proved to be reliable by Stramondo et al. [43]. In
the analysis of radar images, a Weibull distribution is preferred when the main parameter in consideration
is backscatter intensity while a lognormal distribution is preferred over urban areas since it adapts better to
abrupt changes in intensity due to strong backscatter commonplace in urban areas.

From the statistical analysis of block-level histograms of the damaged areas, they observe a reduction
of mean amplitude and decrease in the variance values. They conclude that the variance V is an important
parameter for change detection. Suitable thresholds are set - in this case, a variance change of more than 10%
is assumed to be an indicator of damage. This approach, however, is imprecise especially when the damage
level is relatively low.

2.5. Persistent Scatterer Interferometry
Ferretti et al. [18] present a process of the identification and exploitation of stable, natural reflectors, also
known as Persistent Scatterers (PSs). Using this approach, a millimetre level motion detection can be achieved.
PSs are coherent over long time intervals and can be utilised very effectively for multi-temporal analysis. The
final product of such an analysis would be elevation and line of sight velocity of the PSs in the form of a
deformation map. In order to achieve millimetre level of precision, atmospheric artefacts that create an At-
mospheric Phase Screen (APS) are estimated and removed.

LetΦ indicate a [K × H] matrix of interferometric phases of H pixels considered as PS candidates and K+1
is the number of SAR images. Then,Φ is given by,

Φ= a1T +pξξ
T +pηη

T +B qT +T vT +E , (2.18)

where a [K × 1] has constant phase values, pξ [K × 1] and pη [K × 1] are the slopes of phase components along

azimuth (ξ) [H × 1] and slant range (η) [H × 1] because of atmospheric phase contributions. B [K × 1] has
perpendicular baseline values, q [H × 1] contains the elevation of each PS multiplied by 4π/(λR sinα). Here,
R is the radar sensor to target distance, α is the local incidence angle with respect to the reference ellipsoid
(geodetic system) and λ is the SAR wavelength. T [K × 1] has the time interval between K slave images and
the master. v [H × 1] has the slant range velocities of the PS’s and E [K × H] has the residual atmospheric
effects, phase noise etc. This is a non-linear system of equations since the phase values are wrapped modulo
2π. Thus, Φ describes a wrapped observation. It is to be solved by an iterative algorithm initialised using an
available DEM. The estimated geometric phase component is subtracted from the interferometric phase Φ
to get zero baseline steered interferometric phases,

∆Φ= a1T +pξξ
T +pηη

T +B∆qT +T vT +E , (2.19)

where pξ and pη take into account APS and orbital indeterminations. With Sentinel 1, this is not required

because the orbits are very controlled and follow nearly the same orbit each pass. The system 2.19 can be
solved and the unknowns a, pη, pξ,∆1and vT can be estimated if the SNR is high enough, a constant velocity

model is applicable to the targets and the APS can be approximated as a phase ramp.
To identify PSs, coherence maps associated with the interferograms are exploited. The amplitude values

of each pixel of the time series are analysed. The phase dispersion is estimated fromthe amplitude disper-
sion because the amplitude is unaffected by certain factors such as APS, orbital in-determinations, terrain
deformation or DEM errors. The phase dispersion, σv is estimated from the amplitude dispersion (D A),

σv u
σA

mA
,D A , (2.20)

where mA and σA are the mean and standard deviation of the amplitude values. The dispersion index D A is
a measure of phase stability. Small values of D A are found to be good estimates of phase dispersion. After the
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PSCs are selected, 2.19 is solved using an iterative algorithm. Following this, APS is estimated and removed,
DEM errors ∆q and target velocity v are estimated pixel by pixel by maximising the phase coherence of each
pixel. While this has a high level of accuracy, in the order of millimetres, not all buildings can be monitored
this way. This approach was applied to the area of Merche in Central Italy, an area known for its instability.
Comparing the velocity fields with the ground truth data confirms the reliability of the results. This method
has also been applied by Bakon et al. [4] to the area of Bratislava, Slovakia with successful results.

Several other methods have been proposed based on PSs post this paper. Berardino et al. [6] suggested
using data pairs with small orbital separation in order to lower the spatial decorrelation phenomena. Then,
Singular Value Decomposition (SVD) is applied in order to "connect" SAR acquisitions with a large baseline
so as to increase the observation temporal sampling rate. Atmospheric Phase artefacts are identified and
filtered out due to the availability of spatial and temporal information.

Since most of the previous methods related to PSs were vastly effective only in urban areas, Ferretti et al.
[19] proposed SqueeSAR, which overcomes the limitations of PSInSAR. They provide an algorithm to jointly
process PSs and Distributed Scatterers (DSs). DSs refer to areas of moderate coherence in some interfero-
metric pairs. These pixels usually correspond to a single large object such as desert areas, debris areas etc.

They spatially average the data of statistically homogeneous regions or pixels (SHP) using the Kolmogorov-
Smirnov test. This is known as DespecKS algorithm. After this, a coherence matrix is estimated after which
a phase triangulation algorithm (PTA) is applied to these coherence matrices corresponding to each DS. The
DSs are finalised using a threshold according to the values of γPT A which is similar to the ensemble coherence
for PSs. Then the original SAR phase values are replaced with the optimised phase values. after which point
regular PSInSAR processing is carried out as explained in Ferretti et al. [18].

Review The studies discussed above show the different ways in which damage due to disasters can be
detected using SAR technology. Table 2.5 shows a summary of these methods for a simpler overview. We
find that building damage can be detected by using amplitude, coherence or a combination of both. This is
because amplitude and coherence are sensitive to different backscattering behaviour. We have also seen that
coherence is a better parameter to detect small variations and amplitude is very useful in detecting large scale
changes. Hence, there is great value in using a combination of both, by making use of complex SLC images.

Most of these images require some form of averaging or filtering which comes at the cost of spatial res-
olution. This affects the possibility of detecting individual building damage. It would be useful to use full
resolution images in addition to using spatially averaged images for amplitude and coherence analysis. Addi-
tionally, the concept of adaptive spatial averaging (also refered to as adaptive multiloooking) is also explored
wherein similar pixels are grouped with other similar pixels since it will be useful to differentiate the highly
heterogeneous urban areas and possibly provide better results. This is done by checking the statistics of
neighbouring pixels and evaluating their similarity by checking the distribution they follow. Here, ’multilook-
ing’ refers to spatially averaging, that is, a sample mean of the values of pixels within a window is taken. For
the report, the terms multilooking and spatial averaging and used interchangeably.

Along with this, an exploration of the general ways in which PSs are used for detecting minute changes
is done. For this research, PSs are detected from full-resolution images which serve as stable points, that
is, points with a consistent backscatter over a long period of time. These stable points can be used to see
changes in a timeseries that can be attributed to the disaster. This is a largely overlooked method that can be
very useful in possibly detecting building-level damage.

There is no single method that is considered the best. The methods used for damage detection usually
depend on the availability of data, the area under consideration and the type of change that is required to be
tracked. On the other hand, the most commonly used damage maps are distributed by the National Aeronau-
tics and Space Administration - Jet Propulsion Lab’s (NASA JPL) Advanced Rapid Imaging and Analysis (ARIA)
team, Copernicus Emergency Management Services (EMS) and Global Disaster Alert and Coordination Sys-
tem. The ARIA team, in fact, produces the Damage Proxy Maps (DPMs) operationally, that is, as soon as the
disaster occurs and the images are available.

Nearly all of the methods that use amplitude and/or coherence as the primary parameters have bi- or
tri-temporal change detection algorithms. For this research, a long timeseries is required to find the PSs.
Hence, a long time-series of images is used to study data trends from three different parameters (amplitude,
coherence, PSs) using the full resolution and multilooked images and a change detection method is used
according to these requirements.
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3
Methodology

This chapter describes the steps taken to process the Sentinel-1 imagery. The software Radar Interferometric
Parallel Processing Lab (RIPPL) which was developed in the Department of Geosciences and Remote Sensing
(GRS) of the Civil Engineering Faculty of TU Delft, is used to process the data. Currently, it is still in the
development stage and has not been released publicly as of 8 August 2019. It is used for pre-processing the
data set and facilitates further processing in Python by making the metadata available in convenient data
formats. The data set is acquired from the Sentinel-1 satellite and made available by an open data policy
by ESA. The process that leads to a damage map is three-pronged. The three parameters considered are
Persistent Scatterers, spatially-averaged amplitudes and spatially averaged coherence.

It is important to use a reasonably long time series of images so that a statistical analysis can be done and
more information about the pixels can be learnt from the stack. This is called multi-temporal analysis. A set
of (≥ 30 images) spanning the pre-disaster period is considered, which contains variations due to seasonal
changes or noise. This is compared with the post-disaster image immediately after the date of the disaster for
any changes that can be attributed to the event.

3.1. The Algorithm

This section describes the steps taken to process the data. This includes pre-processing and calibration 3.1.1,
Scaling and Outlier removal 3.1.2, Change detection 3.1.3 and Validation 3.1.4.

3.1.1. Pre-processing and Calibration

The dataset is downloaded from the Sentinel-1 database and pre-processed using RIPPL. This involves cre-
ating the stack of images, reading and storing the meta-data and geo-coding the images. The radar data are
Single Look Complex (SLC) images which means that each image pixel is represented by a complex (I and Q)
magnitude value and therefore contains both amplitude and phase information.

Firstly, the images need to be calibrated radiometrically, which is used to relate pixel values directly to
radar backscatter of the scene [17]. A de-noising step or noise calibration is also applied along with the cali-
bration. Look-up tables (LUT) are provided by ESA for this purpose. An illustration of the different backscatter
scalings is shown in Figure 3.1. In this figure, βo is the signal returned from distributed scatterers in the slant
range coordinates. γo is the radar return or backscatter per unit area of the incident wavefront. Finally, σo is
the radar return per unit area on the ground.

13



14 3. Methodology

Figure 3.1: Schematic illustration of the various backscatter scalings: βo , σo and γo . θi represents the local incidence angle; from
R.K.Raney [39]

The radiometric calibration can be applied by the following equation.

value(i) = |DNi |2
Ai

2 , (3.1)

where value(i) can be βo , σo or γo , and Ai is a calibration scaling factor for one of the desired outputs. DN i

refers to the digital number for a pixel i. Here, digital number refers the actual pixel values. There is a geo-
metric impact on the backscatter signal due to the fact that pixels in the slant range cover different areas on
the ground.

Similarly, a noise calibration is also done as follows:

noise(i) = ηi

Ai
2 , (3.2)

where ηi is a value from the noise LUT and noise(i) is defined similarly as value(i), and Ai is a scaling factor.
Bilinear interpolation should be used for any pixels that fall between points in the LUT. Unfortunately, this
step could not be applied due to time and memory constraints. Using calibrated data might provide slightly
better results.

Since the radiometric calibration could not be applied, a version of it was implemented. The idea is that
if there is any phase ramp or phase trends shown across the images, it will be removed. This is done as

Calibrated amplitude = Ap
I

(3.3)

where A and I are amplitude and mean intensity values respectively for a single image.

3.1.2. Scaling and Outlier Removal
The images are then scaled in order to observe the general trends of the PSs over all the acquisitions. This is
done by dividing the selected PSs by the mean of its values over all the acquisitions/days in the timeseries [40].
This helps the observations to be scaled consistently and helps to focus on the relationships between points
over time. Additionally, any outliers are also removed. This is done by removing PSs from consideration that
show abnormally large variations over the pre-disaster time-series.

3.1.3. Change Detection Algorithm
Surveying the literature provided various methods of change detection that rely of thresholding depending
on the area under consideration [33], back-scattering coefficient [34], correlation coefficient [34] and gra-
dient method [47]. For this particular application, the thresholding method and the gradient method were
applied because these are particularly useful for a long multi-temporal application. The results of the gradi-
ent method are presented as it resulted in more accurate outputs.
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The gradient method involves dividing the change in amplitude between co-disaster images by the max-
imum change between adjacent pre-disaster images for each pixel.

gradient = ∆σco−di saster

max(∆σpr e−di saster )
(3.4)

where ∆σ represents the change in amplitude and co-disaster implies the images just before and just after
the date of the disaster. If this gradient is greater than a threshold, then the point is considered to be changed
due to the event. This threshold varies for different levels of spatial averaging. These ’changed’ points are
assumed to be damaged due to the disaster and overlayed on a map. The most widely available map that can
be used by everyone considering the simplicity of its visualisations is Google Earth and hence it is chosen.

3.1.4. Validation
For verifying the correctness of the results obtained, it is usually compared to a ground truth survey. This
usually has a list of all infrastructure and the extent of its damage in the area of interest. Ideally, this is verified
with a ground survey after the disaster. An example of the reference map used is depicted below in Figure 3.3.
This is provided by Copernicus Emergency Management System (EMS) [11]. It shows roads and buildings that
have been classified as destroyed (red), highly damaged (dark orange), moderately damaged (light orange)
and negligible to slight damage (yellow).

The entire methodology is illustrated by the flowchart in 3.2.

Sentinel 1 data download

Pre-processing using RIPPL

Full resolution image Multilooked image

Boxcar Multilooking Adaptive Multilooking

Persistent Scatterers Amplitude Coherence Amplitude

Scaling and Outlier Removal

Change Detection Algorithm

Type of Image

Type of
Multilooking

Parameter under
consideration

Calibration

Overlay on Google Earth

Figure 3.2: Block Diagram of flow of control for the methodology described in this chapter. After pre-processing and calibration using
RIPPL, full resolution and multilooked images are used to study PSs, amplitude and coherence parameters. The final results are added

to a .csv file which can be imported to Google Earth.
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3.2. SAR Parameters
From the literature review, we learnt that there is tremendous value in using coherence and multilooked
amplitude together since these signals react differently to different kinds of changes. It is also interesting
to consider PSs in a context of sudden change detection for damage mapping since it comes with an added
validity of a ’stable point’. So far, it has been largely overlooked for the purpose of building damage detection.
The following subsections elaborate on each of these signals and the reasons for using them, the data models
they tend to follow and they are manipulated for damage mapping.

3.2.1. Persistent Scatterers
PSs are points that are stable in phase, and by extension over certain conditions, stable in amplitude over a
long period of time. They are usually corner reflectors and can be used very effectively to detect a change
in urban areas. The PSs are chosen according to the method presented by Ferretti et al. [18]. To find sta-
ble points, one can consider the coherence as a parameter. The higher the coherence is over a large period
of time, the greater the stability of the point. This process can get complicated since the phase has to be
compensated for topography, atmospheric phase, terrain deformation, orbital indetermination, etc. Hence,
another strategy is to consider the absolute backscatter (amplitudes) of the pixels which are largely unaffected
by topography, atmospheric phase etc. under certain conditions. Ferretti et al. find that the amplitude dis-
persion index (D A) is a good indicator of the phase dispersion in case of high SNR. The amplitude dispersion
is defined as

D A = σA

mA
(3.5)

whereσA is the standard deviation of the amplitude values and mA is the mean of the amplitudes. The Figure
3.4 shows how well the amplitude dispersion substitutes for phase dispersion for varying levels of noise.

Figure 3.4: Amplitude dispersion index compared to the phase dispersion for varying levels of noise, from Ferretti et al. [18]. This shows
the appropriate value of amplitude dispersion that can be chosen. 0.25 is an ideal value such that the amplitude dispersion is a good

substitute for phase dispersion.

Thus, low amplitude dispersion values represent more stable scatterers. Generally, an amplitude disper-
sion value of around 0.25 is considered.

Data analysis was done to check the temporal distribution of the PSs and the consistency of assumptions.
According to Ferretti [18], the distribution of amplitude values is given by a Rice distribution, which implies
the presence of one dominant point scatterer in a background with several minor-subscatterers. The Rice
distribution of amplitude values is given by the PDF

f A(a) = a

σ2
n

Io(
ag

σ2
n

)e−(a2+g 2)/2σ2
n , a > 0 (3.6)

where Io is the modified Bessel function, g is the complex reflectivity, n is the circular Gaussian noise, with
a power of σ2. The shape of the Rice distribution depends on the signal to noise ratio (SNR), which is the
ratio of g/σn . For lower SNR, the Rice PDF tends to a Rayleigh PDF and for high SNR, the Rice pdf tends to a
Gaussian distribution.

Consider a data array d = [d1,d2...dn] where n is the number of images in the stack excluding the post-
disaster image. The data stacks d in the area of interest are checked against a Gaussian, Rice and Rayleigh
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distribution using the Anderson Darling test. For instance, in the first test, the null hypothesis is that the
temporal data follows a Gaussian distribution and the alternate hypothesis is that the data does not follow
a Gaussian distribution. The Anderson Darling test calculates a test statistic, which is the distance between
the empirical ‘cumulative cumulative distribution (CDF) functions of the sample (temporal data) and the
reference (a Gaussian distribution) distributions. This distance is given by equation 3.2.2. If this test statistic
is lower than a certain critical value at a significance level (chosen to be 1%), then the null hypothesis cannot
be rejected. The critical values are distribution-specific and these values are provided in tables for some the
most common distributions (normal, exponential, Weibull and some others).

The test showed that the null hypothesis cannot be rejected for nearly 84% for the temporal distributions
in the area of interest, which means the data is Gaussian-like. The Rice and Rayleigh null hypotheses were
rejected by the test. While the temporal distribution could be useful to formulate a change detection method
which depends on the type of distribution, for the sake of uniformity in terms of applicability to different
areas (where the distributions might not be Gaussian), such an approach has not been considered.

3.2.2. Spatially Averaged Images
Once the results from the full-resolution images are obtained, the amplitude images are then spatially aver-
aged by a window of 2x6. This improves the SNR, helps in speckle-noise removal and considers points that
are not PSs for possible damage. The marginal PDF of the amplitude values in a SAR resolution cell can be
expressed as

f A(a) =
{

a
2πσ2 exp(−a2

2σ2 ), a ≥ 0

0, otherwise
(3.7)

This represents the Rayleigh distribution. Since the intensity is the square of the amplitude, the intensity is
described by an exponential function.

Several empirical distributions have been used to characterise the statistics of SAR amplitude or intensity
data such as Weibull, Fisher or log-normal PDFs. The empirical distributions come from the experience of
analysing real data. To analyse the temporal distribution of the multilooked SAR amplitudes, the Anderson
Darling test was used and the results, again showed that the temporal pixel data sets were Gaussian-like.

The steps of pre-processing and calibrating (3.1.1), scaling, outlier removal (3.1.2) and change detection
(3.1.3) are applied to amplitude values of all the pixels over all images to find which areas are changed/damaged.
These damaged pixels are then overlayed on a Google Earth as well.

Adaptive Spatial Averaging/Multilooking

Normal boxcar filtering is the most common method of filtering, which reduces the speckle noise at the
expense of spatial resolution. However, for an urban area, it is counter-intuitive to use a boxcar filter consid-
ering the heterogeneity of the area. In this case, it is better to use an adaptive filter that averages similar pixels
with other similar pixels, as in, averaging buildings with buildings, and trees with other trees.

Some adaptive approaches have been suggested in recent years. NL-InSAR [13] is an efficient method of
adaptive multilooking but can only be applied to two images. Among the multitemporal approaches, Ferretti
[19], in the paper where he introduces the SqueeSAR algorithm, suggested using the Kolmogorov-Smirnov
test, a non-parametric statistical similarity test, to identify statistically homogenous pixels (SHPs) within a
certain estimation window centred on the pixel under analysis in. Here, non-parametric means that no as-
sumptions of the distribution of data vectors are made. Other similarity tests have been discussed where only
the amplitude information is utilised [37]. Parizzi and Brcic [37] study three non-parametric and one para-
metric test and conclude that for a medium-sized stack, the Anderson Darling test was the most powerful
non-parametric test, in comparison to Kullback-Leibler Divergence test and the Kolmogorov-Smirnov test.
The Generalized Likelihood Ratio Test (GLRT) is a parametric test which can be very powerful for smaller
stacks whose distribution is known.

The Anderson-Darling test has been used to check the similarity of pixels in the area of interest which
are then averaged according to their similarity. Again, let us consider a data array D = [d1,d2...dn] where n is
the number of images in the stack excluding the post-disaster image. Within a sliding window, the temporal
distributions of the data arrays for each pixel are checked against that of the central pixel in the window. As
mentioned before, the Anderson-Darling test measures the distance between the empirical CDFs of the two
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(a) Comparison of central pixel with other
pixels in sliding window

(b) Check for similarity of distributions using
Anderson Darling test

(c) Average similar pixels

Figure 3.5: The Adaptive Multilooking process is illustrated here. Each pixel within a multilooking window is compared to the central
pixel to check for statistical similarity fof temporal distributions 3.5a. If a majority of the pixels are determined to be similar using the

Anderson Darling test 3.5b, they are averaged together 3.5c. The ones dissimilar to the central pixel are ignored. This ensures that only
similar looking topographic features are grouped together.

data arrays under consideration. The Anderson-Darling (1954) test is based on the distance

A2 = n
∫ ∞

−∞
(Dc (x)−Di (x))2

Di (x)(1−Di (x))
dDi (x) (3.8)

where n is the total number of images excluding the post-disaster image, Di is the distribution of the pixel
under consideration and Dc is the centre pixel of the sliding window against which all other pixels in the
window are compared to.

Let us assume that H0 represents the hypothesis that the distributions of the pixels under comparison are
similar, and H1 is the hypothesis that the two are different. If a majority of the pixels in the sliding window
are similar to the centre pixel, the similar pixels are averaged and the dissimilar pixels are discarded. These
averaged pixels become one pixel in the new grid. If a majority of the pixels in the window are dissimilar to
the centre pixel, all the pixels in the window are averaged. In this case, it is at least as good as the boxcar
multilooking method without losing any data. The sliding window is chosen to be 2x6 as before. Figure 3.5
illustrates the explanation.

This has been implemented in addition to the boxcar multilooking of amplitude values for comparison.

3.2.3. Coherence
Coherence is a measure of correlation between two SAR images. The complex coherence is defined as

γ= E {y1, y∗
2 }√

E {|y2
1 |}.E {|y2

2 |}
, (3.9)

where y1 and y2 are two zero mean circular Gaussian variables, E{} is the expectation or ensemble average
and * denotes conjugation. The complex coherence γ(M ,S) is calculated between the complex (single) master
image M and complex slave image S. It is a function of both amplitude and phase.

For calculating coherence, multilooking (spatially averaging) is done using a sliding window of 2x6 over a
non-multilooked image. Other multilook windows were also used for the calculation. Considering the size of
the area of interest (AOI), windows of larger size meant that the AOI was reduced to too few pixels for effective
localisation of damaged points. A smaller window size did not contain enough pixels for a reliable estimation
of coherence values. Coherence values range between 0 to 1 and indicate how coherent or incoherent the
co-registered images are. A sudden decrease in coherence is a good indicator of a change or damage in the
area.

Once all the coherence were calculated for all master-slave pairs in the time-series, the change detection
method explained in Section 3.1.3. Here, it is interesting to note that we would be considering the double
difference in coherence to localise damaged buildings. the points detected as damaged are then overlayed on
Google Earth.
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(a) Temporal distribution of PSs simulated as a Rice distribution along with
a Rice fit for the purpose of finding expected behaviour of the system

(b) Boxplot of the simulated timeseries with part of the distribution
manipulated in the end to represent a ’change’

Figure 3.6: Plots showing simulated temporal distribution of PS amplitudes. Figure 3.6a shows the histogram of simulated Rice
distributed values while Figure 3.6b depicts the variation in PS amplitudes over all the dates of the timeseries

3.3. Analysis Under Ideal Conditions
We have seen in the previous sections the damage mapping algorithm and the signals that are used for that
purpose. In this section, basic analysis is done on how these signals behave under simulated ideal conditions
to find the expected behaviour of the system under consideration.

3.3.1. With simulated change and simulated datasets
We saw that each of the parameters under consideration have their own temporal distributions. Let us con-
sider the PSs first. According to Ferretti [18], PSs have a Rice distribution. For this little experiment, N points
are simulated, which represent points on a map that may or may not be affected due to a disaster. Since we
are working with timeseries, the points are actually vectors or an array of values that span a certain number
of imaginary radar passes or epochs, say M , which is ideally 30 or more. Here, the M ’th value represents the
values of the post-disaster pixels. We end up with a two-dimensional array which is M-by-N , with the vector
M simulated to be Rice distributed. This sets up our simulated radar dataset of PSs. The Rice distributed
data points are shown in Figure 3.6a along with a Rice distributed fit. Each group of bars represents the N
simulated points.

Now we try to simulate a ’change’ in some of these points. Unfortunately, the way a natural or man-made
disaster affects buildings is very complicated to describe purely in terms of a statistical model and is out of
the scope of this research. We try to simulate a building being damaged by changing the M ’th value of some
of the N vectors in terms of the standard deviation of their preceding values.

Hence, some of the post-disaster pixel values are changed in increments of the temporally distributed
data vector’s standard deviation. For instance, a post-disaster pixel value is subject to ’damage’ by changing
it to 3 × standard deviation of vector M . This is tested with higher products of the standard deviation. The
boxplots of all the simulated amplitudes along with their simulated changes in the last date are shown in
Figure 3.6b. A boxplot consists of rectangular boxes with lines or ’whiskers’ extending on each side. The
rectangular box represents the interquartile range (IQR), which is the 25th to 75th percentile, of the values
under consideration usually with a line in the middle to show the median of all values. The bottom whiskers
represent the lowest data within 1.5 IQR of the lower quartile while the top whisker shows the highest data
within 1.5 IQR of the upper quartile. Any data that is not part of this range is plotted as an outlier, represented
by small circles above and/or below the whiskers.

When the algorithm described above is applied to this simulated dataset, there is no guarantee that the
algorithm detects a ’change’ if it is, say, 4 × standard deviation of vector m. The difference between the pre-
disaster and post-disaster pixel must be higher than any other consecutive pixel difference in the rest of the
time-series. A visual representation of the tests is shown in Figure 3.7. In Figures 3.7a and 3.7b, random Rice
variables along with incorporated changes were generated over 5 different runs. Each of the bar groups rep-
resents the number of runs. We see that an increase in the product of standard deviation (n) generally causes
a greater detection of change but there are cases when there is no detection as represented by values lower
than a gradient of 1. For example, in Figure 3.7b there is an instance with an undetected change although that
is not usually the case. We find that the point has to be a global outlier, that is, it has to deviate significantly
from the rest of the data set. Figure 3.7c represents another test done with greater products of standard devi-
ation and 50 runs. We see that at n=8, there is no point that goes undetected as changed. At this point though,
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(a) Bar graphs of 5 runs of randomly generated Rice distributions with
varying levels of changes.

(b) Bar graphs of 5 more runs of randomly generated Rice distributions with
varying levels of changes.

(c) Boxplots depicting expected behaviour of change detection algorithm by
varying the extent of change in terms of products of standard deviation over

50 runs.

Figure 3.7: Plots describing the extent of change required for the algorithm to detect the change.
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(a) Boxplot showing PS amplitudes over the timeseries. (b) Boxplots showing PS amplitudes over a subset of all of the pixels in all
images.

Figure 3.8: Boxplots showing amplitudes PSs when no known change has occurred in Mexico City

8 × standard deviation is already a global outlier. This also means that the change detection method is inor-
dinately dependent on whether the pre-disaster image follows the general trends of the whole time-series so
as to not skew the results.

On the flip-side, for the points that followed the same temporal Rice distribution for the whole timeseries,
or in other words had no simulated change, the algorithm did not detect any damage and hence avoided false
alarms. This, however, might not always be the case with real data. This is tested in the next subsection.

A similar procedure is done for the multilooked amplitudes that ideally follows a log-normal distribution
and, for the sake of convenience, a Gaussian distributed coherence signal is considered. Both of these confirm
the previous findings from the PSs. It also shows that the algorithm seems to be independent of the type of
distribution of the dataset of each parameter.

3.3.2. With no change and real datasets
In the previous subsection, we have seen how the algorithm behaves with on a simulated dataset with simu-
lated changes in the post-disaster image. Here, the actual Sentinel-1 dataset is used to see how the algorithm
behaves under no change or damage. This is done to see how many false positives are produced, that is,
there is no real change, but the algorithm detects a change. Ideally, the number of false positives is very low
or negligible. But we also do not want to set our thresholds so low that the algorithm behaves very conser-
vatively and produces true negatives (a real change that is not detected by the algorithm). In this particular
application, the presence of a low number of false alarms is, in a sense, forgivable. So the thresholds must be
a balance between the lowering false positives and eliminating true negatives.

For this, a set of images are chosen with no known change or disaster occurring over the entire timespan.
Mexico City is an area of interest in the following Chapter where the algorithm is tested during the 2017
Puebla earthquake. The same area is used in this sub-section, but with a dataset that precedes the date of the
earthquake.

The algorithm is applied as described in section 3.1. The same thresholds are also used that have been
used for finding the actual points of damage in the results section for Mexico City. For the case of the PSs,
Figure 3.8 shows the boxplots of amplitudes of PSs when no known change has occurred. In Figure 3.8a,
we see the general trends of the amplitude values after scaling and outlier detection, over all the days of the
timeseries. Here, each box represents the range of amplitude values acquired over a single date. We see that
these are largely even and are around the same range of values. Figure 3.8b shows the amplitudes of PSs over
a subset of all the pixels. Each rectangular box represents the range of PS amplitudes of a single pixel for all
of the dates. The red dots represent the values from the last date, which has no change. In case of a drastic
change, these red points are expected to be among the outliers in the boxplots but that is not the case. In the
end, no points of change are detected, which is accurate since no known damage occurred. The multilooked
amplitudes show a similar result. The plots showing the general trends of multilooked amplitudes over the
timeseries are given in Figure 3.9.

In the case of the coherence signal, specifically, 24 image pairs were used between the dates of 21 March
2017 and 6 August 2017. There were 12 points that were shown to be changed, which is a relatively few number
of false positives as shown in Figure 3.10. Let the subset of false positives be represented by DF P . We could
also speculate that there could have been construction work that was happening in points depicted by DF P .
Also, none of these points were the same points detected as damaged during the actual disaster. Let these
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(a) Boxplot showing multilooked amplitudes over the timeseries. (b) Boxplots showing multilooked amplitudes over a subset of all of the
pixels in all images.

Figure 3.9: Boxplots showing the behaviour of multilooked amplitudes when no known change has occurred in Mexico City

points be represented by DT P . This means that those points, DT P , can be attributed solely to the disaster.

Figure 3.10: Results of applying algorithm to coherence signal acquired from Mexico City with no known change occurring during the
timeseries.

The real test of the algorithm is given by how many true positives it produces with the real dataset, that
is, it should detect if not all, most of the damaged areas attributed to the disaster. Additionally, it should have
a low number of true negatives. This is tested in the next Chapter by applying the algorithm to the two main
areas of interest - the town of Amatrice in Italy and the city of Mexico, both of which were heavily impacted
by powerful earthquakes.
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Results

In this chapter, the results of the algorithm explained in the previous chapter, will be described for multiple
areas of interest. Specifically, it is applied to two areas that were struck by earthquakes. The methodology is
analysed on its ability to determine the damaged points correctly and the interpretability of the resultant map.
This is done by keeping track of the number of points correctly determined as damaged (true positives) and
false positives. The percentage of unique points correctly determined to be destroyed by each parameter is
analysed. This gives us information about the usefulness of using the different parameters and the advantages
and disadvantages of each. The percentage of points correctly classified as damaged by multiple parameters
are also analysed. This provides an added validation that the area is damaged.

Usually, the accuracy of damage maps is evaluated by comparison to the ground truth data. Unfor-
tunately, this information was not available readily. However, Grading Maps are provided by Copernicus
Emergency Management Services (EMS) - Mapping which consists of mapping services funded by the Euro-
pean Commission. They manually compare high-resolution optical pre and post-disaster images to check for
building damage.

The methodology was applied in two areas of interest - Amatrice, Italy during the 6.2 magnitude Central
Italian earthquake in 2016 and Mexico City, Mexico, during the 7.1 magnitude Central Mexico earthquake in
2017. The following section details the results found for Amatrice, Italy.

4.1. Amatrice, Italy
An earthquake of magnitude 6.2 occurred in the hilltop town of Amatrice in Italy 4.1. The earthquake struck
on the 24th of August, 2016 at 03:36:32 CEST with no warning or weaker foreshocks. The epicentre was located
45 km north of L’Aquila, the capital of the Abruzzo region. The earthquake resulted in the fatality of 299
people, 234 of which were in Amatrice.

The dataset selected for processing spanned 30 images over 06 June 2015 to 21 August 2016, with the
post-disaster acquisition on 2 September 2016. The interval between two consecutive images is 12 days.

The satellite image from Google Earth of Amatrice (to the right) and the nearby lake, Lago di Scandarello,
is shown in Figure 4.1. The radar image of the same area is shown in Figure 4.2. The image is upturned due to
the viewing angle of the satellite (descending). The images are pre-processed in RIPPL and then the PSs are
selected. These PSs are obtained once the amplitude dispersion threshold is set to 0.26 as shown in Figure
4.3. This particular value is chosen since Amatrice is not a densely built area and to get enough number of

Table 4.1: Overview of the parameters of the satellite imagery used for analysing the 2016 Central-Italy earthquake.

Pre-Disaster Acquisition Span 06 June 2015 to 21 August 2016
Disaster Date 24 August 2016
Post-Disaster Acquisition 02 September 2016
Repeat Cycle 12 days
Orbit Number 22 (Descending)
Pre-disaster stack size 30

25
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Figure 4.1: Google Earth Image of The central-Italian town of Amatrice along with the lake Lago di Scandarello to the west.

PSs to represent built structures of the town appropriately. A total of 309 PS points are obtained, mostly in the
north-west part of the city, where the bulk of the buildings are situated. The points almost always follow the
outline of buildings with a slight shift in certain cases due to the height of the building.

The PS points are scaled and the outliers removed as explained in section 3.1.2. Figures 4.4a shows the
boxplot of the scaled amplitudes of all pixels over the pre-disaster time series. Figure 4.4b shows the boxplot
of the scaled amplitudes of all pre-disaster images for a subset of all the PS points. Figure 4.4b is basically
the transpose of Figure 4.4a. This plot depicts the general characteristics and trends of the amplitude values
just before the disaster occurs. On 21st August, 11th February and 18th January 2016, we notice that there is
a drop in the amplitude. However, most of the amplitude values are centred around 0.75 and 1.25.

The amplitude values after outlier removal are shown in Figure 4.5a and 4.5b. There is a marked reduction
in the number of outliers. In Figure 4.5a, the largest variation in amplitude values are on 02nd September
2016, which represents the post-disaster acquisition. In 4.5b, the red points represent the values of pixels
from the post-disaster image. These points make up most of the outliers in the individual box plots. This is
in line with the idea that most of the amplitude variations occur after a drastic change and in this case, the
change can be attributed to the earthquake.

Once the scaling and outlier removal is done, the change detection method is applied so as to find the
damaged points. This is done using the change detection method described in 3.1.3. The gradient output is
normalised to a range between 0 to 1 and colour coded over a gradient from yellow to red representing low
damage to highly damaged, pictured by coloured circular dots overlayed on Google Earth. Since the output
is in the form of a .csv file containing information about the damage level, latitude and longitude, it can be
easily imported to Google Earth or QGIS for visualisation.

The results from the algorithm need to be validated using some reference map. This is provided by Coper-
nicus Emergency Management System (EMS) [11]. The grading map shown in Figure 3.3 is produced by com-
paring high-resolution optical pre- and post-disaster imagery manually and checked for changes in urban
structures and areas of rubble. The EMS map generated 7 days after the earthquake and shows roads and
buildings that have been categorised as destroyed (red), highly damaged (dark orange), moderately damaged
(light orange) and negligible to slight damage (yellow).

The results of the methodology applied to PSs obtained from full-resolution images is shown in Figure 4.6.
Most of the damage is localised over the north-west part of the town according to the reference map. Most
of the points classified as damaged according to the PSs parameter are concentrated here as well. Although
not every damaged building in the north-west part of the city is recognised as damaged, the current results
match well with the grading map. It does well in identifying clusters of areas that are damaged. One should
also consider that the backscattering effect depends on the viewing angle of the satellite and which parts of
the building have been battered. It is possible that some buildings that were damaged were not picked up



4.1. Amatrice, Italy 27

Figure 4.2: The radar image showing amplitude backscatter of Amatrice along with the lake, acquired on 2nd September 2016

Figure 4.3: PSs in Amatrice with D A = 0.26. The green dots represent the PSs and the grey blocks represent buildings. The PSs roughly
follow the outlines of the buildings with a slight shift in some cases due to the height of the building.
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(a) PSs Amplitudes over pre-disaster timeseries after scaling (b) PSs Amplitudes over subset of PSs after scaling in pre-disaster timeseries

Figure 4.4: The images show boxplots that describe the general trends of the scaled amplitudes of PS over the pre-disaster time period
for the region of Amatrice.

(a) PSs Amplitudes over whole timeseries after scaling and outlier removal (b) PSs Amplitudes over subset of PSs after scaling and outlier removal in
whole timeseries.

Figure 4.5: The images show boxplots of PS amplitudes after outlier removal and describes how the post-disaster image shows marked
variations from the pre-disaster timeline for the region of Amatrice.

due to the viewing angle of the satellite.
A total of twenty-two points are identified as damaged by the PS parameter, which is a little over 7% of the

total number of PSs that were identified initially. There are four points that are unaccounted for, and show up
as false positives, mostly in the middle eastern section of the town. That means that 81% of all the identified
points were correct.

Once the initial run using the full resolution images are processed, the images are spatially averaged using
a 2x6 multilooking window and the processes are implemented as described in Section 3.2.2. The results of
the methodology applied to spatially averaged images are as shown in Figure 4.7.

We notice that in general, this method classifies a lot more points, specifically seventy-six points after
vegetation masking, as damaged. This approach does not catch some of the points that using PSs does,
especially in the western part of the city but it particularly identifies areas that the PS parameter misses, such
as the setting up of relief tents (represented by blue cones) towards the south and south-eastern part of the
town as shown in 4.7. There are several outliers present outside of the city in vegetated areas, which can be
removed by a vegetation mask. After the vegetation mask is applied, there are around eight points that are
unaccounted for. There is also a curious cluster of points in the eastern end of the city which is not classified
as damaged in the EMS maps. A closer investigation in the Google Earth historical images reveals that it
was probably used as a car park soon after the disaster occurred. This comparison is shown in Figure 4.8.
Therefore this particular parameter has an accuracy of 89.4% when applied to Amatrice region.

Although the normal boxcar multilooking method gives pretty accurate results, there are a lot of outliers
in the areas with vegetation. These have been removed using a mask. In comparison, the adaptively mul-
tilooked amplitude values perform much better in terms of reducing false positives in the vegetated areas.
The adaptively multilooked values also did not need the calibration step. The results using adaptively multi-
looked amplitudes match the general pattern of the boxcar multilooked results but it does not identify all of
the points that boxcar multilooking does. Out of a total of forty points determined to be damaged, there are
five false positives that are unaccounted for, resulting in an accuracy of 87.5%. The results of the adaptively
multilooked images are shown in Figure 4.9.

Next, we find the coherence of all consecutive image pairs in the stack. Figures 4.10a and 4.10b illustrate
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Figure 4.6: Results of the methodology applied to PSs obtained from full-resolution images for the city of Amatrice after the M6.2 2016
Central-Italy earthquake

Figure 4.7: Results of the methodology applied to pixels in boxcar multilooked (2x6) images for the city of Amatrice after the M6.2 2016
Central-Italy earthquake. To the top-left, the western part of the town which sustained the most destruction is zoomed in. To the top

right, a magnified image of the central part of Amatrice is shown. This is where most of the temporary relief tents were set up, which is
represented by blue cones. These appearance of the tent post the earthquake has been captures by the change detection algorithm.
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(a) Eastern part of Amatrice before the earthquake on 22 August 2016 (b) Eastern part of Amatrice after the earthquake on 25 August 2016

Figure 4.8: Eastern end of Amatrice which was used as a car parking area after the earthquake as observed from Google Earth historical
images. This change is also picked up by the methodology used with boxcar multilooked (2x6) images.

Figure 4.9: Results of the methodology applied to pixels in adaptive multilooked (2x6) images for the city of Amatrice after the M6.2
2016 Central-Italy earthquake. An enlarged image of the historical, western part of Amatrice is shown on the top left along with the

relief tents area which is magnified on the top right side of the image.
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(a) Coherence of pre-seismic image pair (b) Coherence of co-seismic image pair

Figure 4.10: Coherence comparison betweeen pre- and co-seismic image pairs. The average coherence drastically reduces in the
co-seismic image pair due to the earthquake.

the coherence of a pre-disaster image pair and the co-disaster image pair over the town of Amatrice. There
is a drastic difference between the coherence of the two image pairs. The brightest part of the Figure 4.10a
is the town of Amatrice. The change detection method is applied to these image pairs to find the damaged
areas. The results of this are shown in Figure 4.11.

We see that although there are not many pixels classified as damaged, it provides correct, unique damaged
points that were previously classified as not damaged using the other parameters as shown in Figure 4.11. Out
of a total of 11 points identified as damaged, most of the pixels are correctly classified, with the exception of a
few (two) points that are unaccounted for. A mask is applied to the results to ignore points in vegetated lands.
Therefore, this method shows an accuracy of 81%.

Considering the results from all parameters collectively, we see that the resultant map identifies most of
the damage to the city as shown in Figure 4.12. This figure zones in on the most damaged part of the town to
represent the points identified by using each parameter. Considering the correctly classified points, the PSs
and multilooked coherence in addition to the multilooked amplitudes provides no repetitions except one,
that is, nearly all the points classified as damaged by each method are unique. The one repetition occurs in the
parking lot towards the eastern end of the city, with both multilooked amplitude and coherence identifying
the area as changed. This implies that each parameter has been useful in picking up varying levels of damage.
In the case of Amatrice, all the parameters performed equally well with a total true positives of about 87% after
vegetation masking. Table 4.1 shows the accuracy of the results of the methodology when the parameters are
used individually as well as the combined accuracy of all three parameters used together.

Table 4.2: Table showing the accuracy of the results of the methodology used for Amatrice in Italy, which includes the number of points
detected a damaged and the percentage of those correctly determined to be damaged (True Positives)for parameters used, individually

and combined

PS Amplitude Coherence Overall

No. of points detected 22 76 11 109
True Positives 81.81% 89.47% 81.81% 87.15%
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Figure 4.11: Results of the methodology applied to coherence values in boxcar multilooked (2x6) images for the city of Amatrice after
the M6.2 2016 Central-Italy earthquake. To the top left, an enlarged image of the eastern part of town is shown along with a zoomed-in
picture of the central-eastern part of town. Although the coherence parameter characterises a lot fewer points as damaged, it identifies

new, unique points that other parameters don’t.
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4.2. Mexico City, Mexico
On 19th September 2017 at 13:14 CDT, Mexico City and the nearby state of Puebla were struck by a Mw 7.1
magnitude earthquake, widely known as the 2017 Puebla earthquake. Coincidentally, it happened on the
32nd anniversary of the 1985 Mexico City earthquake, which killed around 10,000 people. The Puebla earth-
quake caused most of its damages in Puebla and the Greater Mexico City area. According to reports, 44 build-
ings collapsed [46]. A total of 370 fatalities were caused directly by the earthquake and related building col-
lapses, including 228 in Mexico City [9] with more than 6,000 others injured [1].

Table 4.3: Overview of parameter of the dataset used for the 2017 Puebla earthquake

Pre-disaster acquisition span 21st March 2017 to 17th September 2017
Disaster Date 19 September 2017
Post-Disaster Acquisition 23 September 2017
Repeat Cycle 6 days
Orbit Number 143 (Descending)
Pre-disaster stack size 30

The dataset is downloaded from the Sentinel 1 open-access database. The time series consists of 30 pre-
disaster images from 21st March 2017 to 17th September 2017, with the post-disaster image acquired on 23rd
September 2017, four days after the earthquake struck. Each image is spaced 6 days apart from the preceding
and succeeding image. The radar image of Mexico City is shown in Figure 4.14 along with the Google Earth
coloured satellite image in Figure 4.13. The radar image is inverted since the viewing angle is descending.

Figure 4.13: Google Earth Image of Mexico City

First, we pre-process the dataset in RIPPL followed by finding the PSs by setting an amplitude dispersion
threshold of 0.25. This value is chosen since Mexico City is densely populated with buildings constructed
very close to each other. A total of 193213 PSs were found in the area of interest as shown in Figure 4.15. The
PSs also act as a vegetation and water-body mask, since it clearly demarcates the lakes and parks from the
buildings.

The scaled amplitude for all of the PSs over the pre-disaster time-series of imagery is shown in Figure
4.16a. The transpose, which represents the amplitudes of images for a subset of all the pixels, is shown in
Figure 4.16b. These boxplots are constructed to show the general trends of the PSs and images before the
earthquake occurred. The amplitude trends observed are largely even except in the image immediately before
the disaster (17th September 2017), as in Figure 4.16a. The cause for this perturbation is not confirmed.
Inclement weather conditions can sometimes cause disturbances in the radar signal but the 23 September
2017 checked out to be sunny and relatively cloudless for Mexico City. It also is not a processing error since



4.2. Mexico City, Mexico 35

Figure 4.14: Radar Image showing amplitude backscatter of Mexico City

Figure 4.15: PSs found using amplitude dispersion of 0.25. The brown dots represent the PSs across the area of interest. Mexico City is
very densely built which explains the closely spaced PSs. It clearly demarcates the parks and water bodies from the build infrastructure.
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(a) Scaled PS amplitudes over the whole time series (b) Scaled Amplitudes of all images over subset of PSCs

Figure 4.16: The images show boxplots that describe the general trends of the scaled amplitudes of PS over the pre-disaster time period
for Mexico City.

(a) PS amplitudes over the whole time series after outlier removal (b) Amplitudes of all images over subset of PSCs after outlier removal

Figure 4.17: The images show boxplots of PS amplitudes after outlier removal and describes how the post-disaster image shows marked
variations from the pre-disaster timeline for Mexico City

the coherence of the image pairs immediately preceding the earthquake is also low compared to the average
coherence of the rest of the pre-disaster image pairs. It could be due to some instrument error but this is
speculation.

After the outliers are removed as explained in section 3.1.2, amplitude trends are as shown in Figures 4.17a
and 4.17b. Most of the values are centred between 0.5 and 1.5. The largest variations are seen in the post-
disaster image, as expected. The red points in Figure 4.17b represent the amplitude values of the post-disaster
image. Most of these values are expected to be part of the outliers of the boxplot but we see that that is not
the case. This could be due to a loss in amplitude signal caused by multiple bounces from small, densely built
infrastructure [30].

Subsequently, the change detection method is applied to the final set of PSs as described in 3.1.3. The
output is normalised between the values of 0 and 1, colour coded over a gradient ranging from yellow to red
representing slight damage to highly damaged, and the points overlayed on Google Earth. This output is in
the form of csv files so it can easily be imported into Google Earth or QGIS for viewing or analysis.

Unfortunately, there is no damaged grading map available from EMS. Therefore, a crowdsourced map is
used [12], which is also used by the ARIA team from NASA JPL for producing a damage proxy map of the Mex-
ico City earthquake. This is shown in Figure 4.18. The damage level is graded from yellow to red, ranging from
low damage to highly damaged. The purple pointers represent areas with gas leaks and grey represents no
data. We assume the damaged points here to be correct, though it is not thoroughly verified and investigated
across the entire city.

The results of the methodology applied to the PSs are shown in Figure 4.19. The results are not a very
good match. A lot of points are found towards the eastern part of the city that do not coincide with the
crowdsourced details. It might be due to some other reasons such as construction but this is just speculation.
The points found in the centre of the city are more accurate. Overall, 27 pixels were found to be damaged out
of which around 7 matches with the reference map. This indicates a true positive rate of 25% for Mexico City.

The full-resolution images are then spatially averaged (or multilooked) by a factor of 4x12. This value is
chosen because Mexico city is a large area which is very densely packed and we would not be losing much
information with a bigger multilooking vector. The results of this method give slightly better results than that
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Figure 4.18: Crowd sourced map depicting collapsed and damaged Building after the M 7.1 19th September Puebla Earthquake. The
damage level is graded from yellow to red, ranging from low damage to highly damaged. The purple pointers represent areas with gas

leaks and grey represents no data. This map has not been verified in-situ.

Figure 4.19: Results of the methodology applied to PS amplitudes derived from full-resolution images of Mexico City after the M7.1 2017
Puebla earthquake. To the left is the full-scale image showing the entire region under consideration. To the right, the magnified image

of the most affected part of the city is pictured. The PSs do not provide an accurate representation of the damage sans a few areas.
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Figure 4.20: Results of the methodology applied to multilooked (4x12) amplitudes of Mexico City after the M7.1 2017 Puebla
earthquake. To the left is the full-scale results for the area under consideration and to the right is the zoomed-in image of the most

damaged part of the city. This performs slightly better than the PSs but it does not identify a lot of the points characterised as damaged
in the crowdsourced map.

of the PSs towards the mid-western part of the city where most of the damage is concentrated. However, there
are a significant number of points that are unaccounted for mostly towards the eastern part of the city. Out
of a total of 65 points detected as damaged, about 11 of them match with the reference map. This gives us a
true positive rate of about 17%.

When the image is adaptively multilooked as explained in 3.2.2, with a multilooking vector of 4x12, the
results derived are as shown in 4.21. This gives a very similar result to the boxcar averaging method. Overall,
the amplitude values have not been reliable in terms of providing accurate results when compared to the
available reference map.

Finally, the coherence values are investigated. Figure 4.22 shows the coherence of a pre-disaster pair and
the co-disaster pair. There is a big degradation in the coherence of the image pairs after the occurrence of
the earthquake. Figure 4.23 illustrates the output of the algorithm. Immediately, we see that the coherence
parameter performs much better in terms of identifying damaged areas. In the mid-western part of the city,
where most of the damaged points are indicated in the reference map, a cluster of points are correctly identi-
fied by the algorithm. A zoomed-in image of this are is shown in Figure 4.24. Out of the 125 points classified
as damaged, around 45 of them are correct according to the reference map used. This results in a true positive
rate of 36%.

While collectively looking at all of the results from each parameter, it is obvious that the coherence has
performed much better than the other two. Among the correctly categorised points, none of the methods
provides repeat values, that is, all the correctly classified points are unique. Although there are a few points
(around 5) scattered across the city which do not match with the crowdsourced reference map that repeatedly
shows up as damaged using multiple methods. One can speculate about the nature of the changes but there
is currently no other way to verify it. For Mexico City, the total number of true positives stands at around 30%,
with the coherence giving more accurate results.

Table 4.4: Table showing the accuracy of the results of the methodology used for Mexico City, which includes the number of points
detected as damaged and the percentage of those correctly determined to be damaged (True Positives) for parameters used,

individually and combined

PS Amplitude Coherence Overall

No. of points detected 27 65 125 217
True Positives 25.9% 16.92% 36.0% 29.03%



4.2. Mexico City, Mexico 39

Figure 4.21: Results of the methodology applied to adaptively multilooked (4x12) amplitudes of Mexico City after the M7.1 2017 Puebla
earthquake. The results are largely similar to the results of boxcar multilooking.

(a) Coherence of Mexico City area between image pairs 18 August 2017 and
24 August 2017

(b) Coherence of Mexico City area between image pairs 17 September 2017
and 23 September 2017

Figure 4.22: The images represent the change in coherence over the time-series. The image to the left show the pre-disaster coherence
which is high and the image on the right show the co-disaster or co-seismic coherence which is very low implying there was a temporal

decorrelation.

Figure 4.23: Results of the methodology applied to coherence values from multilooked (4x12) images of Mexico City after the M7.1 2017
Puebla earthquake. A full-scale image of the entire area under consideration is depicted to the left. On the right, a magnified image of

the part of the city which was most affected is shown. While not all damaged buildings are identified, a lot of clusters of damaged
buildings are identified. Coherence performs the best compared to the other two amplitude dependent parameters.
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5
Discussion and Conclusion

In this chapter, a discussion of the main results is presented according to the thesis objectives formulated at
the beginning of the research. The sub-questions being:

SQ1 How can the Sentinel 1 archive be used effectively for detecting building damage?

The Sentinel mission makes radar images available freely with its open access policy. The large scale open
and free access policy maximises the beneficial utilisation of the dataset for a wide range of applications in-
cluding building damage detection. The Level 1 products are made available within 24 hours of observation.
The satellite has a short temporal resolution, with a repeat cycle of 6-12 days which makes it very suitable for
using the images in a time-series analysis.

Each image acquired has a spatial resolution of 5 m by 20 m so the research benefits from the medium
resolution data. These are in the form of Single Look Complex (SLC) images which consist of both amplitude
and phase information.

The time-series is analysed by considering the three main parameters - PSs, multilooked amplitude and
multilooked coherence. This is applied to the areas of Amatrice in Italy and Mexico City in Mexico, both of
which sustained devastating earthquakes. A time-series of 31 images is used in consideration of 1) informa-
tion that can be learnt from using a long time series, 2) time required to download and process the data and 3)
selecting a reliable number of PS candidates. Most of the organisations that produce damage maps for emer-
gencies still use bi- or tri- temporal analysis, possibly due to time constraints or unavailability of Sentinel
data at the time. The time-series analysis performed in this research takes less than 8 hours, most of which is
downloading and pre-processing time. The time taken to execute the processes after RIPPL’s pre-processing
takes an hour.

The primary limitation of this is the time taken to download and preprocess the data but one can specu-
late, knowing how fast technology has improved over the years, processing power will only increase in future.
The results of the methodology have also been largely very accurate for the region of Amatrice as shown in
Chapter 4.

Therefore the Sentinel 1 archive is used to perform time-series analysis and the results of it are described
in Chapter 4.

SQ2 How can the use of amplitude and coherence parameters be combined to produce damage maps?

The amplitude and the phase parameters can be used complementary to each other since the two param-
eters are sensitive to different backscattering. In their paper, Matsuoka and Yamazaki [33] found that while
the amplitude can find large surface changes, the coherence is sensitive to small changes. Hence, a similar
approach is followed for this research where complex SLCs are used to identify changes in amplitude and
phase.

In addition to using multilooked amplitude and phase as in [33, 44], PSs, derived from full resolution (un-
multilooked) images are also used. PSs are points that are stable in amplitude over a long period of time.
These also act as an incredible proxy to built structures and actively ’mask’ vegetation and water bodies as
shown in Figures 4.15 and 4.3.

41
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From the two case studies, we also see a difference in the functionality of the parameter and what it senses.
In Amatrice, a hilltop town which was devastated in the earthquake sustained massive building damage.
Over half the buildings were destroyed including almost the entire historic town, despite many buildings
being reinforced since they were built in the 16th, 17th and 18th centuries. In total, 293 historic buildings
were damaged or destroyed [27]. This heavy damage was captured very well by the amplitude parameters, as
expected, as well by coherence.

Although Mexico was struck by a larger earthquake, the most common building material used is rein-
forced concrete (Murakami [1996] [35]). Using this material generally increases the survival rate up to a time
period of 6 days. The buildings that did collapse were primarily unreinforced concrete and brick masonry.
The devastation was spread throughout Mexico’s capital wherein 38 buildings completely collapsed and more
than 5000 other building suffered varying levels of damage [41]. From the damage maps of Mexico City, the
most accurate of the three parameters is coherence, which is known for identifying small changes. It is pos-
sible that due to the complex scattering mechanism of the closely built structures, the amplitude backscatter
was not very useful in detecting changes but this speculation. In situations where the three maps are not com-
plementary, it might be more useful to use the results of the coherence map since it identifies small changes
and is not affected by the multiple bounce phenomenon like the amplitudes.

SQ3 Can full resolution Sentinel 1 images be utilised effectively along with spatially averaged images?

Spatially averaged or multilooked images are commonly used in order to reduce the effect of speckle-
noise at the cost of spatial resolution. The multilooked images are then analysed in terms of amplitude and
coherence to find changed points. In addition, full-resolution images are used for the possibility of detecting
individual building damage using PSs.

In Amatrice, each parameter produced unique, non-overlapping points, except for once instance. The
overlapping output helps validate the results further since it is verified by two separate signals. In the case of
the non-overlapping results, it clearly shows the advantages of using full-resolution and multilooked images
by detecting new and unique points.

In the case of Mexico, among the correctly categorised points, none of the methods provides repeat or
overlapping results, that is, all the correctly classified points are unique. This again goes to show that there
is value in using different levels of multilooking for images. However, there are a few points scattered across
the city which do not match with the crowdsourced reference map that shows up as damaged using multiple
methods. One can speculate about the nature of the changes but there is currently no other source to verify
it.

Therefore, using different resolutions of images has its advantages in terms of identifying new, unique
points which are correctly classified as damaged and in terms of validating points that are determined as
damaged using multiple parameters.

SQ4 Are the resulting damage maps sufficiently informative?

Care has been taken to represent the maps in the most straightforward way possible. The damaged values
are normalised within the range 0 to 1 for each of the parameters for uniformity. The outputs are initially
generated in .csv files which can be imported into QGIS for further analysis or to Google Earth directly. It
consists of the damage level, the latitude and longitude of the changed point.

The accuracy of the results varies for the two areas - Amatrice and Mexico City, considered for testing the
algorithm. In the case of Amatrice, all the parameters performed equally well with a total true positives of
83% after vegetation masking. For Mexico City, this value stands at around 30%, with the coherence giving
the most accurate results. Here true positives refer to points that are damaged and are identified as damaged
by the algorithm.

In the business of damage detection, it is important to avoid true negatives, which is points that are ac-
tually damaged but are not detected by the algorithm. Ideally, this rate should be low. While the damage
detection is not at a building level, there is definitely a good detection rate at a cluster level.

While the methodology described can be processed quickly, the data latency on ESAs part in terms of
revisit time is the biggest limitation. Apart from this, it takes around 5.5 hours for ESA to process the raw
data and make the Level 1 SLC format available. The downloading and preprocessing step takes another 6-7
hours. The software used, RIPPL, is still under development but once it is released, is an entirely pythonic
implementation which allows easy manipulation of data and would be accessible by everyone.



5.1. Recommendations for Future Work 43

Throughout this work, the focus was on developing an efficient methodology to help with locating dam-
aged structures in case of a disaster. It is meant to help rapid response teams assess the situation and can be
used for further planning according to the severity of the damage as shown in the maps. The methodology
proposed does a good job of detecting damaged clusters of buildings.

More specifically, each of the methods helps in identifying different levels of damage. We learn through
this research that there is certainly an added value in using PSs in the way that it has been - stable natural
reflectors which can be used for large scale damage detection. We also learn that the results are improved by
using full resolution images along with multilooked images. Therefore, combining the three parameters - PS,
multilooked amplitude and multilooked coherence improves the overall efficiency of damage maps.

Overall, the Sentinel 1 imagery can be used to detect damage in case of rapid response situations.

5.1. Recommendations for Future Work
One of the things that will help in faster response times is by automating the whole process. Specifically,
in this research, the amplitude dispersion threshold is still decided manually but it can be estimated based
on the built density of a location. The final threshold, which decides if a point is damaged or not, is always
greater than 1, but its exact value is also decided manually. It could be useful to devise an automatic method
that decides these thresholds.

It could also be very useful to trigger the damage detection algorithm immediately once an earthquake
is sensed by a region’s seismic networks and if it is above a certain magnitude, as soon as the post-disaster
image is available.

The algorithm, in theory, should be applicable to any situation which involves building damage such as
situations of air strikes, building damage due to floods, cyclones etc. This has to be tested and validated
further.

According to Voigt [48], in the aftermath of the 2019 Haiti earthquake, the global coordination of the satel-
lite mapping response turned out to be chaotic and challenging. While there is a multitude of damage maps
being produced and researched, it would be more efficient to hand over the algorithmic process to a cen-
tralised body that can distribute the maps operationally to search and rescue forces that can easily access
them using an open data policy.

Another approach that can be considered is to improve the revisit time of the concerned satellite to less
than the current 6-12 days in case of the Sentinel mission. But perhaps the most effective thing to do would be
for earthquake-prone regions to adopt earthquake-resistant building practises. In Japan, building regulations
were set in 1981, wherein all new structures have to comply with earthquake-proof standards set by law. This
standard focuses not only on preventing the collapse of buildings during earthquakes but also on how to
secure the safety of the people inside them. More regulations and amendments were introduced later to
make the building even more strong.
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A
Damage Detection Maps

A.1. Case Study 1: Amatrice, M6.2 2016 Central Italy Earthquake

Figure A.1: Enlarged results of the methodology applied to all the parameters during the M6.2 Central Italy earthquake in 2016. The
damaged points derived from the methodology are indicated by coloured circles ranging from red to yellow representing heavily

damaged to slightly damaged areas. The image represents the north-western part of Amatrice where most of the historical buildings
were situated. This require suffered the most infrastructural damage in the town.
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Figure A.2: Enlarged results of the methodology applied to all the parameters during the M6.2 Central Italy earthquake in 2016. The
damaged points derived from the methodology are indicated by coloured circles ranging from red to yellow representing heavily

damaged to slightly damaged areas. The image shows the central part of Amatrice where some relief camps were set up soon after the
disaster, which is indicated by the blue cones (from Grading map) and this is captured by the pixel amplitude and coherence

parameters. A few outliers are also seen.
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Figure A.3: Enlarged results of the methodology applied to all the parameters during the M6.2 Central Italy earthquake in 2016. The
damaged points derived from the methodology are indicated by coloured circles ranging from red to yellow representing heavily

damaged to slightly damaged areas. This image shows the south-eastern part fo Amatrice where some relief camps were set up as
represented by the blue cones to the left. A cluster of points is seen the right which turns out to be an area that was used as a parking lot

soon after the disaster. This is shown separately in the following image.

(a) Eastern part of Amatrice before the earthquake on 22 August 2016 (b) Eastern part of Amatrice after the earthquake on 25 August 2016

Figure A.4: Eastern end of Amatrice which was used as a car parking area after the earthquake as observed from Google Earth historical
images. This change is also picked up by the methodology used with boxcar multilooked (2x6) images and coherence.
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A.2. Case Study 2: Mexico City, M7.8 2017 Puebla Earthquake

Figure A.5: Enlarged results of the methodology applied to Mexico City during the M6.2 Central Italy earthquake in 2016. The damaged
points derived from the methodology are indicated by coloured circles ranging from red to yellow representing heavily damaged to

slightly damaged areas. The images shows the most heavily damaged part of the city.
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