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ABSTRACT
Accurate prediction of precipitation is of paramount importance for effective planning of future water resources. In this study, 
we focused on the improvement and evaluation of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-
generation ensemble-based seasonal precipitation prediction product, designated (SEASonal prediction of precipitation (SEAS5)). 
Three selected linear regression methods, namely ordinary least squares (OLS), flexible least squares (FLS) and the quantile-
quantile (Q-Q) methods, were used to develop a correction procedure. The watershed of Lake Urmia was selected as a case study. 
The application of these augmentation methods has yielded encouraging results, demonstrating an improvement in the statis-
tical metrics of SEAS5 precipitation forecasts for the first and second-coming months. However, all linear projection methods 
improve the performance of the SEAS5 products. The Q-Q method has shown the highest efficiency among the methods, playing 
a significant role in improving the accuracy of the hindcast precipitation. A variety of statistics (deterministic, forecast skill 
and uncertainty scores) were used to evaluate the effectiveness of both the raw and enhanced SEAS5 products. These analyses 
provide a comprehensive understanding of the performance of the SEAS5 product in its original form and after augmentation. 
The results highlight the potential of the linear projection method (specifically Q-Q method) to improve the accuracy of hindcast 
precipitation and provide valuable insights for water resource planning in the study area.

1   |   Introduction

Precipitation is of vital importance in the context of water re-
sources management and regional development programmes. 
In addition to temperature, precipitation is a significant hy-
droclimatological factor that is influenced by climate change 
in various geographical regions and countries (Sarojini, 
Stott, and Black  2016). The significance of precipitation is 

particularly evident in semiarid regions with substantial 
agricultural sectors or water-dependent units (Dorward 
et  al.  2019). In such regions, stakeholders may enhance the 
certainty of their decisions through the use of reliable precip-
itation prediction models (Ratri, Whan, and Schmeits 2019). 
Consequently, accurately predicting the spatiotemporal pat-
terns of precipitation for the near future, such as seasonal pre-
dictions, has significant potential for regional water resources 
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planning and management (Gbangou et  al.  2019, 2020). 
Furthermore, the estimation of available and renewable water 
resources based on calibrated water balance models necessi-
tates the availability of accurate precipitation estimates. The 
accuracy of precipitation measurements can be obtained from 
two principal sources including rain gauge records and cali-
brated remotely sensed (RS) datasets.

However, it should be noted that all global and regional cli-
matological datasets (including RS data, general circulation 
models, reanalysis information and predictions) are subject 
to random and systematic biases. It is imperative that these 
biases are addressed to guarantee the dependable utilisation 
of such information in the context of hydrological simulations 
and water resources management (Ehret et al. 2012; Schepen, 
Wang, and Everingham  2016; Worku et  al.  2020). In the ex-
isting literature, a variety of statistical and probabilistic tech-
niques have been employed to reduce the bias and scale of 
predicted and simulated precipitation datasets. These meth-
ods can be grouped into different frameworks, including scale 
factor methods (Fang et al. 2015; Zhang et al. 2020), quantile 
regression and mapping (Gudmundsson et  al.  2012; Ogutu 
et  al.  2016; Berg, Donnelly, and Gustafsson  2018; Grillakis, 
Koutroulis, and Tsanis 2018; Ratri, Whan, and Schmeits 2019; 
Gbangou et al.  2019, 2020), linear projection methods (Fang 
et  al.  2015; Wang et  al.  2019) and other approaches (Wang 
et al. 2019).

The fifth generation of ensemble-based SEASonal prediction 
of precipitation (SEAS5) datasets from the European Centre 
for Medium-Range Weather Forecasts (ECMWF), which 
is widely recognised as a climatological prediction model, 
also contains biases that need to be addressed before it can 
be employed in hydroclimatological applications (Johnson 
et  al.  2019; Ratri, Whan, and Schmeits  2019; Manzanas 
et al. 2019; Schick, Rössler, and Weingartner 2019; Chevuturi 
et  al.  2021; Ratri, Whan, and Schmeits  2021; Golian and 
Murphy  2022; Ratri et  al.  2023). SEAS5 represents an en-
hanced iteration of the ECMWF System 4 seasonal forecasts, 
which were operational in 2011. Extensively studied, evalu-
ated, analysed, augmented, bias-corrected and implemented 
in the literature (Ogutu et  al.  2016; Crochemore et  al.  2017; 
Lucatero et al. 2018; Johnson et al. 2019; Bergman et al. 2019; 
Gbangou et al. 2019, 2020; Mori et al. 2021), this predecessor 
has informed the development of SEAS5.

In this study, we present a systematic framework that employs 
linear approaches for bias reduction and scale-based augmenta-
tion with the objective of calibrating SEAS5 products. The pro-
posed augmentation method is based on the three-month-ahead 
predictions of monthly precipitation from the SEAS5 model. To 
this end, three linear regression methods using ordinary least 
square (OLS), flexible least square (FLS) and quantile-quantile 
(Q-Q) methods, are employed for the purpose of augmenting 
the hindcasted precipitation products. To assess the efficacy 
of these methodologies, the authors selected the Urmia Lake 
Watershed (ULW) as a case study, a region grappling with per-
sistent water scarcity, drought and rising salinity in its central 
lake (Ghajarnia, Liaghat, and Arasteh 2015; Hosseini-Moghari 
et al. 2018; Taheri et al. 2019; Dehghanipour et al. 2019; Nasseri, 
Schoups, and Taheri 2022).

The following is a description of the structure of the article. 
Section 2 outlines the materials and methods employed, includ-
ing the case study, the SEAS5 dataset (from ECMWF) and the 
implemented linear regression techniques (including OLS, FLS 
and Q-Q methods). Section  3 presents the evaluation metrics 
employed, including similarity/dissimilarity values, metrics for 
comparing distributions, indicators for assessing prediction un-
certainty and prediction skills. The modelling procedure, mod-
elling results and conclusions are presented in Sections 4, 5 and 
6, respectively.

2   |   Materials and Methods

2.1   |   The Ground Precipitation Information

The ULW is situated in the northwestern region of Iran and is 
regarded as a significant watershed area, encompassing an es-
timated 51,761 km2, representing 3.2% of Iran's total landmass. 
Furthermore, the basin is the fifth largest in Iran in terms of wa-
tershed area. Figure 1 depicts the location of the ULW and other 
major watersheds in Iran. The ULW is an archetypal endorheic 
watershed, wherein the river network amasses the streamflow 
from the entire watershed and subsequently channels it into the 
central lake, Urmia Lake. The increasing hydrological drought 
and salinity of the lake over the past decade have rendered it a 
prominent case study in international water and environmen-
tal research (Hamidi-Razi et  al.  2019; Habibi, Babaeian, and 
Schöner 2021; Ghazi, Dutt, and Torabi Haghighi 2023).

The ULW is characterised by the presence of distinct climatic 
regions. Figure  1 presents the climatological classes of the 
watershed based on the Köppen-Geiger climate index (Kottek 
et al. 2006; Peel, Finlayson, and McMahon 2007). The principal 
climatic zone within the ULW is classified as Bsk, denoting an 
arid steppe cold arid climate. Additionally, snowy classes (Dfd 
and Dsf) represent significant regions within the watershed. 
Moreover, the central region and areas in proximity to Urmia 
Lake demonstrate a warm steppe, humid and cold climatic 
profile.

The observed precipitation dataset employed in the present 
study is derived from recorded monthly precipitation data col-
lected at 87 rain gauge stations from March 1993 to March 2017 
with a maximum of 20% missed information during the compu-
tational period (total samples: 87 × 288 = 25,056, missed value: 
2637). The location of each station is indicated in Figure  1. 
The accuracy of the recorded data is 0.1 mm, and the network 
is managed by the Iranian Ministry of Power. It is noteworthy 
that the number of measuring stations is relatively high in the 
vicinity of the lake, whereas there is a paucity of stations in the 
eastern part of the ULW.

2.2   |   Seasonal Forecast of ECMWF (SEAS5)

This research employs the SEAS5 product, which represents 
the fifth generation of ensemble-based seasonal precipitation 
prediction. The SEAS5 data are obtained from the Forecasted 
Global Gridded Precipitation values (FGGPs), which were re-
leased by the ECMWF (Copernicus Climate Change Service, 
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Climate Data Store 2018; Johnson et al. 2019). The SEAS5 prod-
uct has a spatial resolution of 1° × 1°. The forecasts are issued on 
the first day of each month and provide predictions for climato-
logical parameters up to 6 months in advance.

In addition to the forward-looking seasonal forecasts, SEAS5 in-
cludes a set of backward-looking seasonal forecasts, which are 
referred to as hindcasts or reforecasts. These utilise historical 
information to assess the effectiveness of the forecast frame-
work. In this study, the SEAS5 dataset comprises 25 ensemble 
members, whereas the operational SEAS5 ensemble comprises 
51 ensemble members (Johnson et  al.  2019; Ratri, Whan, and 
Schmeits 2019). The SEAS5 data have been employed in the pe-
riod between March 1993 and March 2017, which align with the 
selected temporal span of ground information of ULW. For fur-
ther detailed information regarding SEAS5 and its properties, 
readers are encouraged to refer to the supporting documenta-
tion available on the ECMWF website (https://​www.​ecmwf.​int/​
en/​forec​asts/​docum​entat​ion-​and-​support). The SEAS5 precipi-
tation products were in GRIB format, containing various data 
records, including the time of issue, the number of ensembles, 
precipitation values and other relevant information. The dataset 
has been converted from GRIB to a text file using the GDAL 
Python library.

2.3   |   Statistical Augmentation Methods

This section presents the three selected linear regression ap-
proaches, which are employed to augment the SEAS5 seasonal 
monthly precipitation forecast. These methods are employed 
as dynamic calibration approaches with the objective of en-
hancing the forecasted precipitation. This is achieved by 
comparing the results obtained with ground precipitation 
information via the assessment of their time series similarity 
or dissimilarity. These approaches are classified as temporal 
projection techniques and employ two distinct linear meth-
ods and Q-Q projection methods to scale and bias-correct the 
FGGPs values.

2.3.1   |   Linear Regression Using OLS

Calibrated linear regression via OLS is the most prevalent re-
gression method employed in the analysis of correlated climato-
logical predictor(s) and predictand(s), utilising scaling and bias 
correction (slope and offset values) techniques. The aforemen-
tioned vectorised formula is presented in Equation (1):

(1)Yobs = Y
(

= [a mL] ×
[

1 YModel
])

+ �

FIGURE 1    |    Location of Iran's watersheds, climatological classification, rain gauge network and DEM (metre AMSL) pattern of ULW. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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when Yobs,Y, a,mL,YModel and � are in  situ values (observed 
values), calibrated dataset, offset (bias), slope (scale), estimated 
attribute with a model (such as FGGPs) and residual between 
projected and observed information, respectively. The symbol 
(⁻) is corresponded to the vector value. It is important to note 
that the linear regression using OLS was calibrated recursively. 
For each new sample, all previous information was utilised to 
calibrate the model parameters (slope and offset), after which 
the new sample was evaluated using these parameters.

2.3.2   |   Linear Regression Using FLS

The linear regression approach (typically calibrated using OLS) 
employs fixed coefficients for scale (slope) and bias (intercept) 
based on a specific set of predictors (independent variables) 
and predictands (dependent variables). This means that the 
slope and intercept remain fixed throughout the analysis, re-
gardless of any changes in the data or context after calibration.

In contrast, the FLS method introduces a more adaptable cali-
bration procedure for linear regression. This technique provides 
a dynamic computational framework that allows the regression 
parameters (including slope and intercept values) to vary during 
simulations. Such flexibility is particularly advantageous in sce-
narios where relationships between variables may change over 
time or in response to new data.

The FLS method was first proposed by Kalaba and Tesfatsion 
in a series of studies from 1988 to 1989 (Kalaba and 
Tesfatsion  1988a, 1988b). Their work aimed to extend the 
traditional linear regression framework by permitting the 
linear coefficients (scaling and bias values) to adjust dynam-
ically. This adaptability enables the model to better capture 
the evolving nature of relationships in the data, allowing for 
a more accurate representation of underlying trends as new 
samples are introduced or conditions change. While OLS is a 
method that adjusts constant coefficients in a linear regres-
sion equation (Equation  1), FLS calibrates the linear regres-
sion by concurrently minimising the following equations:

where t is corresponded to time or number of observed sets. One 
of the most important specifications of FLS is its theoretical in-
dependency to residual distribution in Equation (2), and this is 
one of the most important advantages of using FLS for time se-
ries simulation. To calibrate Equations (2) and (3) together, OLS 
has been used as below:

The first and second terms of Equation (4) ensure both the lin-
earity and parametric stability inherent in linear regression 
models. In this context, the parameter μ serves as a scalar value 
that must be defined by the user prior to the minimisation of 

Equation (4). As μ approaches zero, the model grants the slopes 
and offsets a high degree of freedom, allowing their values to 
adapt readily as new samples are incorporated into the analysis. 
Conversely, when μ approaches positive infinity, the results pro-
duced by the FLS method converge toward those obtained from 
the OLS method. This behaviour illustrates the transition from 
a highly flexible model to a more rigid one, akin to traditional 
linear regression.

Kalaba and Tesfatsion (1989a) further contributed to this field by 
proposing two methodologies (batch and sequential approaches) 
to estimate the parameter sets within their proposed linear re-
gression framework. These methods provide practical solutions 
for optimising the regression parameters based on the specific 
characteristics of the data.

In the existing literature, various time series have been sim-
ulated using the FLS framework. Notable examples include 
Rao  (1995), who successfully employed the FLS methodol-
ogy to simulate hydrological time series and assess the meth-
od's effectiveness. Additionally, other studies, such as those 
by Montana, Triantafyllopoulos, and Tsagaris  (2009) and 
Alptekin et  al.  (2018), have also explored this framework in 
different contexts. For a comprehensive understanding of the 
FLS method, readers are encouraged to refer to the founda-
tional works of Kalaba and Tesfatsion  (1989a, 1989b). In ad-
dition, Lucchetti and Valentini  (2024) has compared various 
linear regression methods with variable parameters with the 
FLS method.

2.3.3   |   Linear Regression Using Q-Q Transformation

Matching the distributions of two variables is a widely used 
technique for scaling and reducing bias in hydroclimatologi-
cal datasets (Tareghian and Rasmussen 2013; Fang et al. 2015; 
Hassanzadeh et  al.  2019). Gudmundsson et  al.  (2012) intro-
duced an experimental approach for distribution matching 
that involves creating a transformation through linear re-
gression between the empirical percentiles of observed and 
modelled values. The proposed framework, known as Q-Q 
regression, resembles traditional linear regression; however, 
the input–output pairs Yobs,YModel are matched based on their 
probabilities of occurrence, which are determined using a 
nonparametric empirical distribution method (Gudmundsson 
et al. 2012).

It is crucial to recognise that when a new sample is added to 
the dataset, the slope and offset coefficients computed in the 
Q-Q regression method must be recalibrated. This necessity 
arises because the probability of occurrence for each sample 
will change, consequently altering their ranks within the 
input–output matrix. The linear model parameters (offset and 
slope) have been calibrated recursively as in the linear regres-
sion process.

3   |   Evaluation Metrics

In the current manuscript, we introduce and apply four types 
of evaluation metrics. The first type comprises similarity/

(2)Y
t

obs
−
[

at mLt
]

×

[

1 Y
t

Model

]

≈ �
t

(3)
[

at+1 mLt+1
]

−
[

at mLt
]

≈ �
t

(4)Min =

n
∑

t=1

(

�
t
)2

+ �

n
∑

t=1

(

�
t
)2
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dissimilarity statistics, which assess the correspondence be-
tween two datasets (observed and computed values). The sec-
ond type focuses on evaluating the similarity of the cumulative 
distributions of two random variables, specifically the observed 
values and FGGPs in this study. The third type is used to as-
sess the forecast skill score. Finally, the fourth type of metric 
measures the efficiency of the uncertainty bounds derived from 
the ensemble members of SEAS5 (the hindcast model) in com-
parison to the actual precipitation values. The following section 
provides a brief description of these metrics.

3.1   |   Similarity/Dissimilarity Metrics

In this study, two dissimilarity metrics, including bias (B) and 
root mean square error (RMSE), have been employed to quan-
tify the differences between the observed and SEAS5 precipi-
tation values. When the observed and forecasted precipitation 
values are closely aligned, these metrics tend to approach zero. 
The formulas for B and RMSE are defined by the following 
relationships,

where Obs(xi), For(xi) and n are observed and forecasted val-
ues at xi and total number of observations, respectively. i states 
the month number of the estimated values. The third metric is 
the Kling–Gupta efficiency (KGE) statistic (Knoben, Freer, and 
Woods  2019). KGE is a multifactorial similarity measure that 
assesses the relationship between observed and forecasted pre-
cipitation values. This indicator incorporates three well-known 
statistics in its formulation, with a range of [−∞, 1]. A perfect 
KGE value of 1 indicates the highest level of compatibility be-
tween the observed and forecasted vectors. The formula for KGE 
is presented as follows:

where R is the correlation coefficient between the two vector 
(e.g., observed and forecasted precipitation) values, and σ and μ 
represent the standard deviation and mean values of the vectors.

3.2   |   Comparison of Distributions

The compatibility of distributions between two random vari-
ables is a pivotal element in statistical comparison. In 1984–
1985, Székely proposed the energy distance (ED) as a metric 
for comparing the distributions of two random vectors. This 
distance-based function quantifies the stochastic dissimilarities 
between the two vectors. Theoretically, two random vectors are 
considered to have the same statistical distribution if and only if 
their ED value is zero. An increase in ED values indicates a di-
vergence in the statistical distributions of the two vectors (Rizzo 

and Székely  2016). The ED is calculated using the following 
equation:

where F and G are the cumulative distribution of observed and 
forecasted precipitation values. For more details of its compu-
tational procedure, the readers are addressed to Rizzo and 
Székely (2016).

3.3   |   Forecast Skill Scores

In this section, seven commonly used metrics for weather fore-
cast systems have been selected and applied for the purpose of 
assessing the SEAS5 dataset over the watershed. These metrics 
are based on the information provided in Table 1, which pres-
ents a 2 × 2 contingency matrix used to calculate the efficiency 
metrics of the forecast (Roebber 2009). In the table, the variables 
H, F, M and Z represent the number of correct alarms, false 
alarms, missed alarms and correct negatives, respectively. The 
efficiency metrics calculated from this table include Probability 
of Detection (POD), False Alarm Ratio (FAR), Frequency Bias 
Index (FBI), Critical Success Index (CSI), Bias Indicator (BI) and 
Heidke Skill Score (HSS) (Roebber  2009; Ghajarnia, Liaghat, 
and Arasteh 2015; Zeng et al. 2018). Based on Table 1, it is neces-
sary to set a threshold (ε) to differentiate between months with 
and without precipitation. In the present study, the threshold 
was set to 0.1 mm. The following section presents the mathemat-
ical forms of the aforementioned metrics:

(5)B =

∑n
i=1 For

�

xi
�

−
∑n

i=1 Obs
�

xi
�

n

(6)RMSE =

�

∑n
i=1

�

Obs
�

xi
�

−For
�

xi
��2

n

(7)KGE = 1 −

√

(R−1)2 +

(

�For

�Obs

−1

)2

+

(

�For

�Obs

−1

)2

(8)ED2 = 2 ∫
+∞

−∞

(F(x)−G(x))2dx

(9)POD =
H

H +M

(10)FAR =
F

H +M

(11)FBI =
H + F

H +M

(12)CSI =
H

H + F +M

(13)BI =
POD

1 − FAR

(14)HSS =
2 × (HZ −MF)

(H +M)(M + Z) + (H + F)(F + Z)

TABLE 1    |    Contingency matrix based on dichotomous forecasts.

Forecast

Observed

Observed > 𝝐 Observed < 𝝐

Forecast > 𝜖 H F

Forecast < 𝜖 M Z

Note: H, hits (event forecast to occur, but did); F, false alarm (event forecast to 
occur, but did not); M, misses (event forecast not to occur, but did); Z, correct 
negative (event forecast not to occur, but did not).
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The POD metric describes the fraction of correct forecasts, with 
a range of [0, 1] and the optimal value equal to 1. The FAR indi-
cates the fraction of false alarms in the predictions, with a range 
of [0, 1] and the optimal value equal to 0. The CSI represents 
the fraction of positive forecasts relative to the observed events, 
with a range of [0, 1] and the best value equal to 1. The BI has 
a range of [0, ∞], with the best value equal to 1. The HSS mea-
sures the accuracy of the forecast in comparison to that of ran-
dom chance. The range is [−1, 1], with the optimal value equal 
to 1 and the no-skill value equal to 0. Readers interested in a 
more detailed examination of these forecast efficiency metrics 
and contingency statistics are encouraged to visit the webpage 
(https://​www.​cawcr.​gov.​au/​proje​cts/​verif​icati​on/#​BSS).

3.4   |   Uncertainty Metrics

This subsection presents the metrics for evaluating the 
uncertainty-based assessment of variables. The initial metric is 
the Plevel, which quantifies the proportion of observed precipi-
tation values that fall within the uncertainty bounds of the fore-
casted precipitation (Xiong et  al.  2009; Ahmadi, Nasseri, and 
Solomatine 2019; Ahmadi and Nasseri 2020).

where y+
i
 and y−

i
 are the upper and lower uncertainty bounds of a 

CL, respectively, inferred from 25 ensemble members of SEAS5 
model in the ith time step of the time series, and Yobsi  is the ob-
served precipitation values in that time step. N is the total num-
ber of observed values.

The Normalised Uncertainty Efficiency (NUE) is a metric 
employed for the assessment of uncertainty bounds (Nasseri 

et  al.  2013; Nasseri, Ansari, and Zahraie  2014). The NUE in-
corporates two metrics including the Plevel and the Average 
Relative Interval Length (ARIL). The formulations of the statis-
tics are as follows,

where N, y+
i
, y−

i
 and Yobsi  are the same as the prior equation, and 

w is the scale factor of Plevel versus ARIL, and it is considered to 
be equal to 1 in this study.

4   |   Modelling Procedure

This article aimed to present a novel dynamic calibration method 
with the objective of enhancing the precision of the SEAS5 fore-
cast model in predicting seasonal monthly precipitation. In this 
section, the authors present the stepwise modelling procedure, 
which is depicted in Figure 2. This figure illustrates the flow-
chart of the modelling process.

•	 Step 1: Statistical combination. In the first step, the aver-
age, median and three confidence intervals (CIs) values 
have been extracted for each month throughout the simu-
lation period. Given that SEAS5 utilises 25 ensemble mem-
bers, a total of 25 values are available for each month and 
rain gauge station. Experimental cumulative distributions 
have been employed to calculate three CIs including [2.5%–
97.5%], [5%–95%] and [25%–75%].

•	 Step 2: Statistical evaluation. In the second step, statisti-
cal metrics will be calculated between the observed and 
forecasted precipitation values obtained in the preceding 
step. These metrics encompass four types of evaluation 

(15)Plevel=100×

(

1

N

N
∑

i=1

�i

)

, �i=

{

1 if y−i ≤Yobsi ≤ y+
i

0 otherwise

(16)ARIL =
1

N
×

(

N
∑

i=1

y+
i
− y−

i

Yobsi

)

(17)NUE =
Plevel

w × ARIL

FIGURE 2    |    Schematic flowchart of modelling procedure.

Ensemble Models Step 1: Statistical Combination

Step 2: Statistical
Evaluation

Step 3: Linear Projection

Step 4: Statistical
Evaluation

Model 1

Model 2

Model 3

Model 25

...

Con�dence Levels: [2.5
97.5]%, 

[ 5 95]%, [25 75]%,

Average and Median

Similarity and dissimilarity 
metrics (KGE, Bias and RMSE)

Evaluation of HRPRSs’
distributions (ED)

Calculating prediction skills
(FBI, POD, FAR, CSI, BI, HSS)

Calculating uncertainty metrics
(Poc, ARIL, NUE)

Step 3-1: using different  [2.5 97.5], [ 5 95]
and [25 75] as inputs,

Step 3-2: using average and medians as
inputs,

Similarity and dissimilarity 
metrics (KGE, Bias and RMSE)

Evaluation of HRPRSs’
distributions (ED)

Calculating prediction skills
(FBI, POD, FAR, CSI, BI, HSS)

Reporting Correcting 
projection parameters

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.8723 by T
u D

elft, W
iley O

nline L
ibrary on [28/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.cawcr.gov.au/projects/verification/#BSS


7 of 17

indicators including similarity/dissimilarity, distribution 
compatibility, forecast skill scores and uncertainty metrics 
(see Section 3 for further details). The initial three types of 
statistics facilitate the selection of either the median or the 

mean of the ensemble values for the subsequent step (Step 
3). Conversely, the uncertainty metrics facilitate the infer-
ence of the uncertainty behaviour exhibited by the SEAS5 
ensemble members.

FIGURE 3    |    Schematic procedure of the proposed augmentation approach. [Colour figure can be viewed at wileyonlinelibrary.com]

Month: 1 2 3 4 5 … t-2 t-1 t t+1 t+2 
Observation: O1 O2 O3 O4 O5 … Ot-2 Ot-1 Ot - - 

Prediction: - - … 

 Linear Regression

Coef�cients: … 

a
t-2 ,m

L
t-2

a
t-1 , m

L
t-1

a
t , m

L
t

Corrected: … 

Observations 
up to month t

FIGURE 4    |    Distributions of three statistical metrics based on 87 stations (a) bias (mm), (b) KGE and (c) RMSE (mm) between SEAS5 and observed 
precipitation values. [Colour figure can be viewed at wileyonlinelibrary.com]
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•	 Step 3: Linear projection. In the current stage, the dynamic 
evaluation of linear relationships calibrated using OLS, FLS 
and Q-Q regression methods will be conducted for each 
station. The calibration procedure for these methods is il-
lustrated in Figure 3. The warmup time has been set to 12 
(sample) month to initialised the regressions' parameters. In 
the figure, Ot represents observed monthly precipitation at 
the station of interest and Pt−2t  addressed precipitation fore-
casted at month t−2 to calculate for month t.

By means of the both observed and forecasted precipita-
tion values available up to month t, their offsets and slopes 
(at, mLt) could be calculated using the above mentioned 
regression methods. Using the variables (at, mLt), updated 
precipitations for month t + 1 and t + 2 would be estimated, 
recursively. Increasing time indicator to t + 1, the both 
slopes and offsets must be calculated because of new added 
observed samples to the information pool. However, the up-
dating sequence may be set more than one-by-one month, 
but in the current research it set to 1 month.

•	 Step 4: Statistical evaluation. Following the completion of 
the augmentation procedure, three selected statistical met-
rics (KGE, RMSE and B values) have been calculated for 
each station individually.

•	 Step 5: Selection of the most effective method. The last step, 
the most effective linear correction procedure based on the 
reported statistics (in Step 4) will be selected.

5   |   Modelling Results

In line with the modelling approach depicted in Figure 2, the 
initial stage involved calculating three CL values of the ensem-
ble members for each station. Following this, statistical metrics 
were computed to assess the original three-month ahead hind-
cast of the SEAS5 datasets. Applying linear regression tech-
niques, their statistical effectiveness was evaluated to enable a 
comparison with the observed precipitation values. The subse-
quent sections will present the results of the analyses. It should 
be noted that the number of observed values is 22,419 (the total 
number of missed values in the sample is 2637).

5.1   |   Statistical and Probabilistic Assessment 
of SEAS5 Forecast

5.1.1   |   Similarities and Dissimilarities

Figure 4 illustrates the distributions of similarity and dissimi-
larity statistics between the SEAS5 hindcast and observed val-
ues for the median and average of the ensemble members using 
B, KGE and RMSE metrics as detailed in Section 3.1. Notably, 
there is no significant variation in the metrics between the aver-
age and median ensemble values compared to the observations. 
However, it is important to highlight that the median results 
tend to align more closely with the recorded precipitation values 
than the average results.

Figure 4a shows the distributions of bias values across the sta-
tions. It is clear that the maximum value of the ensemble median 

is lower than that of the ensemble average. Figure 4b presents 
the distributions of KGE values, where the median values not 
only surpass the average values but also display a narrower 
range compared to the ensemble average. Figure 4c illustrates 
the distributions of RMSE, indicating that the ensemble median 
values demonstrate greater efficiency than the ensemble average 
values.

5.1.2   |   Evaluation of Distributions

Figure 5 presents two boxplots, each depicting the ED values for 
the average and median of the SEAS5 ensemble members. As 
illustrated in the figure, the median values of the seasonal fore-
cast from SEAS5 display distributions that are more compatible 
with the observed values than the average values.

5.1.3   |   Forecast Skill Score

Figure 6 illustrates the distributions of six forecast skill scores 
(including FBI, FAR, CSI, POD, BI and HSS) for both the me-
dian and average values. It is evident that the distributions of the 
FBI, FAR, CSI, POD and BI statistics are highly similar between 
the median and average ensembles. However, the distribution 
of the HSS statistic for the median ensembles shows a greater 
range than that of the average ensembles. The POD values in the 
median and average scenarios are close to 1 (its perfect value), 
which means that the SEAS5 hindcast has a near perfect per-
formance in predicting monthly precipitation. While the perfect 
value for HSS is 1, it appears that the median ensembles outper-
form the averages, as indicated by the broader range of values.

5.1.4   |   Uncertainty Assessment

To evaluate the probabilistic efficacy of the 25 ensembles in-
cluded in SEAS5, three CIs are presented in Figure 7. The CIs 
shown in the figure consist of the following ranges: [2.5%, 

FIGURE 5    |    Distributions of the energy distance (ED) between 
SEAS5 and observed precipitation values based on 87 stations. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6    |    Distributions of the forecast skill scores based on 87 stations (FBI, POD, FAR, CSI, Bi, HSS) for (a) average and (b) median of the en-
semble members. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7    |    Distributions of the three uncertainty metrics based on 87 stations (a): ARIL, (b) Plevel (%) and (c) NUE between the observed and 
various CIs of SEAS5 ensembles. [Colour figure can be viewed at wileyonlinelibrary.com]
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97.5%], [5%, 95%] and [25%, 75%], representing the first, second 
and third CLs, respectively. A reduction in the width of the eval-
uated CIs corresponds to a decrease in the bounds and values of 
the ARIL, as illustrated in Figure 7a.

Furthermore, lowering the CL from 95% to 50% results in a de-
cline in the median values of the Plevels' distributions, which 
range from 81% to 37%. This reduction in CL also enhances the 
efficiency metrics, with the median values of the NUE distribu-
tions increasing from 15.45 to 20.36. These metrics are valuable 
when analysing different CIs of the original SEAS5 ensemble 
members, as they provide insights into the efficiency of proba-
bilistic forecasts.

5.2   |   Statistical Evaluation of the Linear Methods

This section presents the results of the calibration and validation 
of the standard linear regression methods with dynamics and 
fixed linear parameters (FLS and OLS) for enhancing SEAS5 
forecasts. As previously stated (Section 2.3.2), the variability of 
slope and offset values in the linear regression calibrated using 

the FLS approach is significantly influenced by the calibration 
scalar parameter (μ).

Figure  8 illustrates the distributions of the three statistical 
metrics (B, KGE and RMSE) for varying scaler parameters 
(0.1, 10 and 1000) alongside the linear regression calibrated 
via Ordinary Least Squares (LROLS) method. The results may 
be regarded as a sensitivity analysis of the scaler parameters 
(μ) on the calibration procedure. The boxplots of the models 
with median inputs are observed to be wider than those with 
average inputs. An increase in the scaler parameter value 
(from Models 1 to 3) results in a notable dissimilarity between 
the calibrated SEAS5 and observed precipitation values. As 
previously stated in Section 2.3.2, the scaler parameter deter-
mines the variability of the slope and offset values of the dy-
namic model. Furthermore, within the FLS framework, there 
is no established methodology for identifying the optimal 
parameter value. The next step will entail the augmentation 
of the SEAS5 with the calibrated offsets and slopes from the 
current stage for the scaler parameter 0.1, with the objective 
of demonstrating the effect of the most allowed variability of 
slope and offset values.

FIGURE 8    |    Distributions of the statistical metrics based on 87 stations (a) bias (mm), (b), KGE and (c) RMSE (mm) between the observed and 
calibrated SEAS5 precipitation values using LROLS and different � (1000, 10, 0.1) of LRFLS methods, respectively (model 1, model 2 and model 3 
correspond to 0.1, 1 and 1000). [Colour figure can be viewed at wileyonlinelibrary.com]
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5.3   |   Augmenting SEAS5 Products via Linear 
Regression Methods

As illustrated in Figure 3, the slope and offset values estimated 
at each time step, incorporating all preceding observed precip-
itation data, are employed to enhance the SEAS5 hindcasted 
values. The updated slope (mL) and offset (a) values obtained 
from the selected linear regression methods (LROLS, linear re-
gression with quantile-quantile (LRQQ) and linear regression 
with dynamic parameters using FLSs (LRFLS)) are employed 
in the recalculation of the linear regression parameters, a and 
mL, at a specific time (t). These parameters are then applied to 
augment the forthcoming hindcasted precipitation issued up to 
time t (P̃

t−1

t+1 and P̃
t

t+2).

In Figure 9, the distributions of the selected statistics (B, KGE 
and RMSE) are presented for the augmented average and me-
dian ensemble members using the regression methods includ-
ing LROLS, LRQQ and LRFLS methods. These metrics assess 
the agreement between the first-coming hindcasted precipita-
tion (P̃

t−1

t+1) and observed values across the watershed's stations. 

Furthermore, the statistical assessment encompasses the unpro-
cessed SEAS5 models for comparison. The LRFLS method em-
ployed a scaler parameter (μ) with a value of 0.1.

As illustrated in Figure  9a, all augmentation linear methods 
demonstrate a notable reduction in bias values in comparison to 
the bias observed in the raw SEAS5 values. The LRFLS method 
demonstrates the narrowest distribution of bias values among 
the methods under consideration. Figure 9b presents the KGE 
values between observed and augmented precipitation, as well 
as the SEAS5 methods. The LRQQ method demonstrates the 
highest KGE values and the narrowest distributions. The precip-
itation hindcast for the first month ahead, generated using the 
LROLS method and the original SEAS5 dataset, ranks second 
and third, respectively. The results of the LRFLS method are the 
least favourable. With regard to the RMSE statistics illustrated 
in Figure 9c, it can be observed that LRFLS (with a scaler value 
of 0.1) exhibits the highest RMSE values and the widest distri-
butions for both the average and median values of the SEAS5 
ensemble members. The distributions of LRQQ and LROLS are 
comparable, with SEAS5 results ranking third before LRFLS. It 

FIGURE 9    |    Distributions of the statistical metrics based on 87 stations (a) bias (mm), (b) KGE and (c) RMSE (mm) between the observed and orig-
inal and augmented SEAS5 at the first-coming monthly hindcasted values (μ = 0.1 for LRFLS). [Colour figure can be viewed at wileyonlinelibrary.
com]
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can thus be concluded that LRQQ and LROLS are the optimal 
models, respectively.

To evaluate the efficacy of the selected augmentation techniques, 
four scatter plots are presented in Figure 10. As the distribution 
around the first bisector line increases from the raw SEAS5 data 
to the augmented data obtained via the LRQQ method, the num-
ber of outlier augmented values decreases from the LROLS data 
to the LRQQ data. In light of the findings, it can be concluded 
that LRFLS (with a scaler value of 0.1) outperforms LROLS (or 
LRFLS with a scaler value of ∞).

In Figure  11, the distributions of the selected statistics re-
lated to the second-coming monthly hindcasted values are 
presented. As shown in Figure 11a, all calculated bias values 
for the augmented methods and their distributions are smaller 
than those of SEAS5 and its distributions. The boxplots of the 
KGE values in Figure  11b indicate that LRFLS exhibits the 

worst performance, while LRQQ performs the best. Excluding 
outliers, the KGE values for the LROLS method are compa-
rable to the raw SEAS5 values, and LRQQ outperforms the 
raw SEAS5 values. Similarly, the RMSE values also reveal that 
LRFLS has the poorest performance, with the distribution of 
RMSE values for LRQQ being lower than that of the original 
hindcasted values.

Figure 12 illustrates the scatter plot of the augmented SEAS5 
precipitation values (for the second-coming month) versus 
the observed precipitation. In Figure 12c, the LRFLS method 
shows the lowest performance due to its outlying values, while 
the LRQQ method demonstrates the best performance, as in-
dicated by the distribution of scatter plot points around the 
bisector line.

Considering the selected statistical metrics, LRQQ outperforms 
LROLS in augmenting SEAS5-hindcasted values. Its statistical 

FIGURE 10    |    Scatter plots of the raw and augmented SEAS5 at the first-coming monthly hindcasted values (a) raw SEAS5 and augmented with 
(b), LROLS, (c) LRFLS (μ = 0.1) and (d) LRQQ methods for the first-coming lead time (average ensembles) based on 22,419 monthly samples. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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efficiency is notable for enhancing the first-coming monthly 
precipitation and also improves the statistical efficiency of the 
second-coming monthly hindcasted precipitation. The FLS 
framework demonstrates significant competency in linear re-
gression. It appears that LRFLS, with a small scaling parameter, 
has too much flexibility in capturing the mainstream behaviour 
of linear parameters during the augmentation process, poten-
tially leading to overfitting.

To evaluate the performance of the proposed augmentation 
methods, eight time series, including observed values versus 
original SEAS5 (average and median of the ensembles) and their 
augmented hindcasted values, are depicted in Figure 13. These 
figures pertain to the Sezhab station (ID number: 31-001), lo-
cated in the eastern part of the watershed. The average ensem-
ble of SEAS5 exhibits more bias than its median counterparts. 
Considering the RMSE values (between raw or projected fore-
cast time series and observations), all augmentation methods 
improve the behaviour of the hindcast precipitation time series. 
The LROLS method (considering both median and average sig-
nals) outperforms the LRFLS (with μ = 0.1) and LRQQ methods, 
with LRQQ ranking second.

5.4   |   Spatial Patterns of Augmentation Efficiencies

Figure  14 shows the spatial distribution of the bias values for 
the second hindcast for the median and mean of the ensemble 
members. From the figures (SEAS5 column), it can be seen that 
stations located in the central part of the ULW (near the lake) 
have the highest bias values, while those located in the west and 
southwest of the ULW have the lowest bias values. Most of the 
stations scattered in the western part of the ULW show under-
estimation and stations with overestimation conditions are lo-
cated in the central and eastern parts of the ULW. In addition, it 
appears that stations at lower altitudes tend to have higher and 
overestimated values, while SEAS5 hindcast values in the high-
lands are lower and underestimated.

In contrast, the extended patterns shown in the figures show 
that stations with positive bias values are mainly concentrated 
to the north and northeast of the ULW. This pattern is generally 
observed when looking at the median of the ensembles across 
the catchment. Based on the figure, the southern and northern 
stations have negative and positive bias values using the LRFLS 
projection method with average and median datasets. Also, the 

FIGURE 11    |    Distributions of the statistical metrics based on 87 stations (a) bias (mm), (b) KGE and (c) RMSE (mm) between the observed, raw 
and augmented SEAS5 values at the second-coming monthly hindcasted values (μ = 0.1 for LRFLS). [Colour figure can be viewed at wileyonlineli-
brary.com]
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bias values of the LRQQ projection method are semirandom pat-
terns over the watershed.

6   |   Conclusion

Researchers have emphasised the importance of calibrating bias 
values to effectively utilise SEAS5 hindcasted precipitation in 
hydroclimatological research and studies. In this article, the au-
thors conducted a linear projection of the hindcast model using 
three regression methods including LROLS, LRFLS and LRQQ 
methods. These methods incorporated dynamic updates to ob-
tain appropriate slope and offset values at each time step.

The ULW has been selected as a case study to assess the per-
formance of the proposed linear projection methods. This is an 
endorheic watershed with semicomplex orographic conditions. 
The results presented in the previous sections indicate that these 

augmentation procedures, particularly LRQQ, significantly im-
prove the statistical efficiency of the SEAS5 hindcast precipita-
tion for both the first- and second-coming months.

However, while increasing the degrees of freedom for variabil-
ity in the linear regression model parameters through the use of 
FLS improved certain statistical metrics, it did not necessarily 
translate into improved performance of the regression models 
in the augmentation mode. The findings suggest that overfit-
ting may occur when the LRFLS method is allowed to adjust 
its model parameters at each time step. Interestingly, LROLS, 
which is a specific version of LRFLS, outperformed LRFLS 
with a lower scaling parameter in improving the accuracy of the 
hindcasted precipitation.

Among the various methods evaluated, LRQQ demonstrated the 
highest efficiency and played a considerable role in augmenting 
hindcasted precipitation. By employing the LRQQ method, the 

FIGURE 12    |    Scatter plots of the original and augmented SEAS5 at the second-coming monthly hindcasted values (a) original SEAS5 and pro-
jected with (b), LROLS, (c) LRFLS (μ = 0.1) and (d) LRQQ methods for the second-coming lead time (average ensembles) based on 22,419 monthly 
samples. [Colour figure can be viewed at wileyonlinelibrary.com]
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proposed augmentation procedure effectively correlated the 
statistical distributions of ensemble SEAS5 precipitation with 
observed values, leading to improved forecast accuracy.

Additionally, both the average and median of the ensemble mem-
bers were assessed in their raw and augmented states. While 
the statistical efficiencies, forecast skill scores and uncertainty 
metrics varied between the average and median ensembles, no 
distinct patterns emerged from the results. Furthermore, the ef-
fects of LROLS, LRQQ and LRFLS on the median and average 

of the ensemble members differed without revealing any notable 
or unique trends.

The augmentation approaches discussed are primarily based on 
linear methods. The proposed methodology is case-independent 
and applicable in any study area, and the performance of linear 
projection methods needs to be evaluated. Future research should 
explore distribution-free linear methods, such as generalised 
linear models (GLM) and support vector machines (SVMs), as 
well as nonlinear methods such as generalised regression neural 

FIGURE 13    |    Times series of the observed monthly precipitation (grey bars) at Sehzab station (with ID number: 31-001) versus first-coming 
monthly hindcasted SEAS5 values (a) average ensemble, (b) median ensemble, projected with (c) LROLS (average), (d) LROLS (median), (e) LRFLS 
(μ = 0.1) (average), (f) LRFLS (μ = 0.1) (median), (g) LRQQ (average) and (h) LRQQ (median) with their RMSE values.

FIGURE 14    |    Spatial distributions of bias values (mm) between monthly observations and raw SEAS5, augmented using LROLS, LRFLS (μ = 0.1) 
and LRQQ methods for the second-coming hindcasted (average and median ensembles). [Colour figure can be viewed at wileyonlinelibrary.com]
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networks (GRNNs). Given the recursive and dynamic nature 
of these augmentation techniques, the adoption of parametric 
assimilation methods, such as the Kalman filter, is also recom-
mended to enhance model performance and adaptability.
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