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ABSTRACT

Accurate prediction of precipitation is of paramount importance for effective planning of future water resources. In this study,
we focused on the improvement and evaluation of the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth-
generation ensemble-based seasonal precipitation prediction product, designated (SEASonal prediction of precipitation (SEAS5)).
Three selected linear regression methods, namely ordinary least squares (OLS), flexible least squares (FLS) and the quantile-
quantile (Q-Q) methods, were used to develop a correction procedure. The watershed of Lake Urmia was selected as a case study.
The application of these augmentation methods has yielded encouraging results, demonstrating an improvement in the statis-
tical metrics of SEAS5 precipitation forecasts for the first and second-coming months. However, all linear projection methods
improve the performance of the SEAS5 products. The Q-Q method has shown the highest efficiency among the methods, playing
a significant role in improving the accuracy of the hindcast precipitation. A variety of statistics (deterministic, forecast skill
and uncertainty scores) were used to evaluate the effectiveness of both the raw and enhanced SEASS5 products. These analyses
provide a comprehensive understanding of the performance of the SEAS5 product in its original form and after augmentation.
The results highlight the potential of the linear projection method (specifically Q-Q method) to improve the accuracy of hindcast
precipitation and provide valuable insights for water resource planning in the study area.

1 | Introduction

Precipitation is of vital importance in the context of water re-
sources management and regional development programmes.
In addition to temperature, precipitation is a significant hy-
droclimatological factor that is influenced by climate change
in various geographical regions and countries (Sarojini,
Stott, and Black 2016). The significance of precipitation is

© 2025 Royal Meteorological Society

particularly evident in semiarid regions with substantial
agricultural sectors or water-dependent units (Dorward
et al. 2019). In such regions, stakeholders may enhance the
certainty of their decisions through the use of reliable precip-
itation prediction models (Ratri, Whan, and Schmeits 2019).
Consequently, accurately predicting the spatiotemporal pat-
terns of precipitation for the near future, such as seasonal pre-
dictions, has significant potential for regional water resources
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planning and management (Gbangou et al. 2019, 2020).
Furthermore, the estimation of available and renewable water
resources based on calibrated water balance models necessi-
tates the availability of accurate precipitation estimates. The
accuracy of precipitation measurements can be obtained from
two principal sources including rain gauge records and cali-
brated remotely sensed (RS) datasets.

However, it should be noted that all global and regional cli-
matological datasets (including RS data, general circulation
models, reanalysis information and predictions) are subject
to random and systematic biases. It is imperative that these
biases are addressed to guarantee the dependable utilisation
of such information in the context of hydrological simulations
and water resources management (Ehret et al. 2012; Schepen,
Wang, and Everingham 2016; Worku et al. 2020). In the ex-
isting literature, a variety of statistical and probabilistic tech-
niques have been employed to reduce the bias and scale of
predicted and simulated precipitation datasets. These meth-
ods can be grouped into different frameworks, including scale
factor methods (Fang et al. 2015; Zhang et al. 2020), quantile
regression and mapping (Gudmundsson et al. 2012; Ogutu
et al. 2016; Berg, Donnelly, and Gustafsson 2018; Grillakis,
Koutroulis, and Tsanis 2018; Ratri, Whan, and Schmeits 2019;
Gbangou et al. 2019, 2020), linear projection methods (Fang
et al. 2015; Wang et al. 2019) and other approaches (Wang
et al. 2019).

The fifth generation of ensemble-based SEASonal prediction
of precipitation (SEAS5) datasets from the European Centre
for Medium-Range Weather Forecasts (ECMWF), which
is widely recognised as a climatological prediction model,
also contains biases that need to be addressed before it can
be employed in hydroclimatological applications (Johnson
et al. 2019; Ratri, Whan, and Schmeits 2019; Manzanas
et al. 2019; Schick, Rossler, and Weingartner 2019; Chevuturi
et al. 2021; Ratri, Whan, and Schmeits 2021; Golian and
Murphy 2022; Ratri et al. 2023). SEAS5 represents an en-
hanced iteration of the ECMWF System 4 seasonal forecasts,
which were operational in 2011. Extensively studied, evalu-
ated, analysed, augmented, bias-corrected and implemented
in the literature (Ogutu et al. 2016; Crochemore et al. 2017;
Lucatero et al. 2018; Johnson et al. 2019; Bergman et al. 2019;
Gbangou et al. 2019, 2020; Mori et al. 2021), this predecessor
has informed the development of SEAS5.

In this study, we present a systematic framework that employs
linear approaches for bias reduction and scale-based augmenta-
tion with the objective of calibrating SEASS5 products. The pro-
posed augmentation method is based on the three-month-ahead
predictions of monthly precipitation from the SEAS5 model. To
this end, three linear regression methods using ordinary least
square (OLS), flexible least square (FLS) and quantile-quantile
(Q-Q) methods, are employed for the purpose of augmenting
the hindcasted precipitation products. To assess the efficacy
of these methodologies, the authors selected the Urmia Lake
Watershed (ULW) as a case study, a region grappling with per-
sistent water scarcity, drought and rising salinity in its central
lake (Ghajarnia, Liaghat, and Arasteh 2015; Hosseini-Moghari
et al. 2018; Taheri et al. 2019; Dehghanipour et al. 2019; Nasseri,
Schoups, and Taheri 2022).

The following is a description of the structure of the article.
Section 2 outlines the materials and methods employed, includ-
ing the case study, the SEASS dataset (from ECMWF) and the
implemented linear regression techniques (including OLS, FLS
and Q-Q methods). Section 3 presents the evaluation metrics
employed, including similarity/dissimilarity values, metrics for
comparing distributions, indicators for assessing prediction un-
certainty and prediction skills. The modelling procedure, mod-
elling results and conclusions are presented in Sections 4, 5 and
6, respectively.

2 | Materials and Methods
2.1 | The Ground Precipitation Information

The ULW is situated in the northwestern region of Iran and is
regarded as a significant watershed area, encompassing an es-
timated 51,761 km?, representing 3.2% of Iran's total landmass.
Furthermore, the basin is the fifth largest in Iran in terms of wa-
tershed area. Figure 1 depicts the location of the ULW and other
major watersheds in Iran. The ULW is an archetypal endorheic
watershed, wherein the river network amasses the streamflow
from the entire watershed and subsequently channels it into the
central lake, Urmia Lake. The increasing hydrological drought
and salinity of the lake over the past decade have rendered it a
prominent case study in international water and environmen-
tal research (Hamidi-Razi et al. 2019; Habibi, Babaeian, and
Schoner 2021; Ghazi, Dutt, and Torabi Haghighi 2023).

The ULW is characterised by the presence of distinct climatic
regions. Figure 1 presents the climatological classes of the
watershed based on the Koppen-Geiger climate index (Kottek
et al. 2006; Peel, Finlayson, and McMahon 2007). The principal
climatic zone within the ULW is classified as Bsk, denoting an
arid steppe cold arid climate. Additionally, snowy classes (Dfd
and Dsf) represent significant regions within the watershed.
Moreover, the central region and areas in proximity to Urmia
Lake demonstrate a warm steppe, humid and cold climatic
profile.

The observed precipitation dataset employed in the present
study is derived from recorded monthly precipitation data col-
lected at 87 rain gauge stations from March 1993 to March 2017
with a maximum of 20% missed information during the compu-
tational period (total samples: 87 x 288 =25,056, missed value:
2637). The location of each station is indicated in Figure 1.
The accuracy of the recorded data is 0.1 mm, and the network
is managed by the Iranian Ministry of Power. It is noteworthy
that the number of measuring stations is relatively high in the
vicinity of the lake, whereas there is a paucity of stations in the
eastern part of the ULW.

2.2 | Seasonal Forecast of ECMWF (SEAS5)

This research employs the SEAS5 product, which represents
the fifth generation of ensemble-based seasonal precipitation
prediction. The SEAS5 data are obtained from the Forecasted
Global Gridded Precipitation values (FGGPs), which were re-
leased by the ECMWF (Copernicus Climate Change Service,
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FIGURE 1 | Location of Iran's watersheds, climatological classification, rain gauge network and DEM (metre AMSL) pattern of ULW. [Colour

figure can be viewed at wileyonlinelibrary.com]

Climate Data Store 2018; Johnson et al. 2019). The SEASS5 prod-
uct has a spatial resolution of 1°x 1°. The forecasts are issued on
the first day of each month and provide predictions for climato-
logical parameters up to 6 months in advance.

In addition to the forward-looking seasonal forecasts, SEASS5 in-
cludes a set of backward-looking seasonal forecasts, which are
referred to as hindcasts or reforecasts. These utilise historical
information to assess the effectiveness of the forecast frame-
work. In this study, the SEAS5 dataset comprises 25 ensemble
members, whereas the operational SEAS5 ensemble comprises
51 ensemble members (Johnson et al. 2019; Ratri, Whan, and
Schmeits 2019). The SEAS5 data have been employed in the pe-
riod between March 1993 and March 2017, which align with the
selected temporal span of ground information of ULW. For fur-
ther detailed information regarding SEAS5 and its properties,
readers are encouraged to refer to the supporting documenta-
tion available on the ECMWF website (https://www.ecmwf.int/
en/forecasts/documentation-and-support). The SEAS5 precipi-
tation products were in GRIB format, containing various data
records, including the time of issue, the number of ensembles,
precipitation values and other relevant information. The dataset
has been converted from GRIB to a text file using the GDAL
Python library.

2.3 | Statistical Augmentation Methods

This section presents the three selected linear regression ap-
proaches, which are employed to augment the SEASS5 seasonal
monthly precipitation forecast. These methods are employed
as dynamic calibration approaches with the objective of en-
hancing the forecasted precipitation. This is achieved by
comparing the results obtained with ground precipitation
information via the assessment of their time series similarity
or dissimilarity. These approaches are classified as temporal
projection techniques and employ two distinct linear meth-
ods and Q-Q projection methods to scale and bias-correct the
FGGPs values.

2.3.1 | Linear Regression Using OLS

Calibrated linear regression via OLS is the most prevalent re-
gression method employed in the analysis of correlated climato-
logical predictor(s) and predictand(s), utilising scaling and bias
correction (slope and offset values) techniques. The aforemen-
tioned vectorised formula is presented in Equation (1):

Yos =Y(=[a mLIX[1 Yypuu]) +E D
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when Y, Y,a,mL, Yy,4q and £ are in situ values (observed
values), calibrated dataset, offset (bias), slope (scale), estimated
attribute with a model (such as FGGPs) and residual between
projected and observed information, respectively. The symbol
(7) is corresponded to the vector value. It is important to note
that the linear regression using OLS was calibrated recursively.
For each new sample, all previous information was utilised to
calibrate the model parameters (slope and offset), after which
the new sample was evaluated using these parameters.

2.3.2 | Linear Regression Using FLS

The linear regression approach (typically calibrated using OLS)
employs fixed coefficients for scale (slope) and bias (intercept)
based on a specific set of predictors (independent variables)
and predictands (dependent variables). This means that the
slope and intercept remain fixed throughout the analysis, re-
gardless of any changes in the data or context after calibration.

In contrast, the FLS method introduces a more adaptable cali-
bration procedure for linear regression. This technique provides
a dynamic computational framework that allows the regression
parameters (including slope and intercept values) to vary during
simulations. Such flexibility is particularly advantageous in sce-
narios where relationships between variables may change over
time or in response to new data.

The FLS method was first proposed by Kalaba and Tesfatsion
in a series of studies from 1988 to 1989 (Kalaba and
Tesfatsion 1988a, 1988b). Their work aimed to extend the
traditional linear regression framework by permitting the
linear coefficients (scaling and bias values) to adjust dynam-
ically. This adaptability enables the model to better capture
the evolving nature of relationships in the data, allowing for
a more accurate representation of underlying trends as new
samples are introduced or conditions change. While OLS is a
method that adjusts constant coefficients in a linear regres-
sion equation (Equation 1), FLS calibrates the linear regres-
sion by concurrently minimising the following equations:

Y - [a' mL’]x[I Y,

obs Madel] r gt (2)
[a[+1 mLH—l] _ [a[ mLt] zEl (3)

where t is corresponded to time or number of observed sets. One
of the most important specifications of FLS is its theoretical in-
dependency to residual distribution in Equation (2), and this is
one of the most important advantages of using FLS for time se-
ries simulation. To calibrate Equations (2) and (3) together, OLS
has been used as below:

n n

Min= Y (&) +u Y (@)’ @

t=1 t=1

The first and second terms of Equation (4) ensure both the lin-
earity and parametric stability inherent in linear regression
models. In this context, the parameter u serves as a scalar value
that must be defined by the user prior to the minimisation of

Equation (4). As u approaches zero, the model grants the slopes
and offsets a high degree of freedom, allowing their values to
adapt readily as new samples are incorporated into the analysis.
Conversely, when p approaches positive infinity, the results pro-
duced by the FLS method converge toward those obtained from
the OLS method. This behaviour illustrates the transition from
a highly flexible model to a more rigid one, akin to traditional
linear regression.

Kalaba and Tesfatsion (1989a) further contributed to this field by
proposing two methodologies (batch and sequential approaches)
to estimate the parameter sets within their proposed linear re-
gression framework. These methods provide practical solutions
for optimising the regression parameters based on the specific
characteristics of the data.

In the existing literature, various time series have been sim-
ulated using the FLS framework. Notable examples include
Rao (1995), who successfully employed the FLS methodol-
ogy to simulate hydrological time series and assess the meth-
od's effectiveness. Additionally, other studies, such as those
by Montana, Triantafyllopoulos, and Tsagaris (2009) and
Alptekin et al. (2018), have also explored this framework in
different contexts. For a comprehensive understanding of the
FLS method, readers are encouraged to refer to the founda-
tional works of Kalaba and Tesfatsion (1989a, 1989b). In ad-
dition, Lucchetti and Valentini (2024) has compared various
linear regression methods with variable parameters with the
FLS method.

2.3.3 | Linear Regression Using Q-Q Transformation

Matching the distributions of two variables is a widely used
technique for scaling and reducing bias in hydroclimatologi-
cal datasets (Tareghian and Rasmussen 2013; Fang et al. 2015;
Hassanzadeh et al. 2019). Gudmundsson et al. (2012) intro-
duced an experimental approach for distribution matching
that involves creating a transformation through linear re-
gression between the empirical percentiles of observed and
modelled values. The proposed framework, known as Q-Q
regression, resembles traditional linear regression; however,
the input-output pairs Yobs’?Model are matched based on their
probabilities of occurrence, which are determined using a
nonparametric empirical distribution method (Gudmundsson
et al. 2012).

It is crucial to recognise that when a new sample is added to
the dataset, the slope and offset coefficients computed in the
Q-Q regression method must be recalibrated. This necessity
arises because the probability of occurrence for each sample
will change, consequently altering their ranks within the
input-output matrix. The linear model parameters (offset and
slope) have been calibrated recursively as in the linear regres-
sion process.

3 | Evaluation Metrics

In the current manuscript, we introduce and apply four types
of evaluation metrics. The first type comprises similarity/
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dissimilarity statistics, which assess the correspondence be-
tween two datasets (observed and computed values). The sec-
ond type focuses on evaluating the similarity of the cumulative
distributions of two random variables, specifically the observed
values and FGGPs in this study. The third type is used to as-
sess the forecast skill score. Finally, the fourth type of metric
measures the efficiency of the uncertainty bounds derived from
the ensemble members of SEAS5 (the hindcast model) in com-
parison to the actual precipitation values. The following section
provides a brief description of these metrics.

3.1 | Similarity/Dissimilarity Metrics

In this study, two dissimilarity metrics, including bias (B) and
root mean square error (RMSE), have been employed to quan-
tify the differences between the observed and SEASS precipi-
tation values. When the observed and forecasted precipitation
values are closely aligned, these metrics tend to approach zero.
The formulas for B and RMSE are defined by the following
relationships,

Y, For(x;) — X7, Obs(x;)
n

B= (5)

RMSE — \/ > (Obs(x;) —For(x,))” ©)

n

where Obs(x,), For(x,) and n are observed and forecasted val-
ues at x; and total number of observations, respectively. i states
the month number of the estimated values. The third metric is
the Kling-Gupta efficiency (KGE) statistic (Knoben, Freer, and
Woods 2019). KGE is a multifactorial similarity measure that
assesses the relationship between observed and forecasted pre-
cipitation values. This indicator incorporates three well-known
statistics in its formulation, with a range of [—oo, 1]. A perfect
KGE value of 1 indicates the highest level of compatibility be-
tween the observed and forecasted vectors. The formula for KGE
is presented as follows:

2 2
KGE:l—\/(R—1)2+<m—1) +<@—1) ™
O 0bs Hobs

where R is the correlation coefficient between the two vector
(e.g., observed and forecasted precipitation) values, and o and u
represent the standard deviation and mean values of the vectors.

3.2 | Comparison of Distributions

The compatibility of distributions between two random vari-
ables is a pivotal element in statistical comparison. In 1984-
1985, Székely proposed the energy distance (ED) as a metric
for comparing the distributions of two random vectors. This
distance-based function quantifies the stochastic dissimilarities
between the two vectors. Theoretically, two random vectors are
considered to have the same statistical distribution if and only if
their ED value is zero. An increase in ED values indicates a di-
vergence in the statistical distributions of the two vectors (Rizzo

and Székely 2016). The ED is calculated using the following
equation:

+00
ED? = 2[ (F(x) — G(x))*dx ®)

—0c0

where F and G are the cumulative distribution of observed and
forecasted precipitation values. For more details of its compu-
tational procedure, the readers are addressed to Rizzo and
Székely (2016).

3.3 | Forecast Skill Scores

In this section, seven commonly used metrics for weather fore-
cast systems have been selected and applied for the purpose of
assessing the SEASS5 dataset over the watershed. These metrics
are based on the information provided in Table 1, which pres-
ents a 2X2 contingency matrix used to calculate the efficiency
metrics of the forecast (Roebber 2009). In the table, the variables
H, F, M and Z represent the number of correct alarms, false
alarms, missed alarms and correct negatives, respectively. The
efficiency metrics calculated from this table include Probability
of Detection (POD), False Alarm Ratio (FAR), Frequency Bias
Index (FBI), Critical Success Index (CSI), Bias Indicator (BI) and
Heidke Skill Score (HSS) (Roebber 2009; Ghajarnia, Liaghat,
and Arasteh 2015; Zeng et al. 2018). Based on Table 1, it is neces-
sary to set a threshold (¢) to differentiate between months with
and without precipitation. In the present study, the threshold
was set to 0.1 mm. The following section presents the mathemat-
ical forms of the aforementioned metrics:

POD = f — ©)

FAR = — f — (10)

FBI = Ilj : ; 1)

csl = ﬁ 12)

Bl = % 13)

HSS =3 M)(Ii[i(g)i_(ﬁl/[ ?F)(F ) a4

TABLE1 | Contingency matrix based on dichotomous forecasts.

Observed
Forecast Observed > € Observed < €
Forecast > ¢ H F
Forecast < ¢ M VA

Note: H, hits (event forecast to occur, but did); F, false alarm (event forecast to
occur, but did not); M, misses (event forecast not to occur, but did); Z, correct
negative (event forecast not to occur, but did not).
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The POD metric describes the fraction of correct forecasts, with
arange of [0, 1] and the optimal value equal to 1. The FAR indi-
cates the fraction of false alarms in the predictions, with a range
of [0, 1] and the optimal value equal to 0. The CSI represents
the fraction of positive forecasts relative to the observed events,
with a range of [0, 1] and the best value equal to 1. The BI has
a range of [0, oo], with the best value equal to 1. The HSS mea-
sures the accuracy of the forecast in comparison to that of ran-
dom chance. The range is [-1, 1], with the optimal value equal
to 1 and the no-skill value equal to 0. Readers interested in a
more detailed examination of these forecast efficiency metrics
and contingency statistics are encouraged to visit the webpage
(https://www.cawcr.gov.au/projects/verification/#BSS).

3.4 | Uncertainty Metrics

This subsection presents the metrics for evaluating the
uncertainty-based assessment of variables. The initial metric is
the Plevel, which quantifies the proportion of observed precipi-
tation values that fall within the uncertainty bounds of the fore-
casted precipitation (Xiong et al. 2009; Ahmadi, Nasseri, and
Solomatine 2019; Ahmadi and Nasseri 2020).

N sp— bs +
1 1ify; <Y7* <y;
Plevel =100 % <IT/' Z 5i), 6;= { ' ' 15)

im1 0 otherwise

where y/ and y; are the upper and lower uncertainty bounds of a
CL, respectively, inferred from 25 ensemble members of SEAS5
model in the ith time step of the time series, and Y:?bs is the ob-
served precipitation values in that time step. N is the total num-
ber of observed values.

The Normalised Uncertainty Efficiency (NUE) is a metric
employed for the assessment of uncertainty bounds (Nasseri

Ensemble Models Or——————

Model 1

Confidence Levels: [2.5
97.51%,
[ 595]%. [25 751%,
Model 2
Model 3

Model 25

o < @

Step 1: Statistical Combination

Average and Median E inputs,

et al. 2013; Nasseri, Ansari, and Zahraie 2014). The NUE in-
corporates two metrics including the Plevel and the Average
Relative Interval Length (ARIL). The formulations of the statis-
tics are as follows,

N + —
1 yi _yi
ARIL = = X 16
N < 2 ) o
Plevel
NUE= ———
w X ARIL a7

where N, yf, y7 and Y;?bs are the same as the prior equation, and
w is the scale factor of Plevel versus ARIL, and it is considered to
be equal to 1 in this study.

4 | Modelling Procedure

This article aimed to present a novel dynamic calibration method
with the objective of enhancing the precision of the SEASS5 fore-
cast model in predicting seasonal monthly precipitation. In this
section, the authors present the stepwise modelling procedure,
which is depicted in Figure 2. This figure illustrates the flow-
chart of the modelling process.

« Step 1: Statistical combination. In the first step, the aver-
age, median and three confidence intervals (CIs) values
have been extracted for each month throughout the simu-
lation period. Given that SEASS utilises 25 ensemble mem-
bers, a total of 25 values are available for each month and
rain gauge station. Experimental cumulative distributions
have been employed to calculate three CIs including [2.5%-
97.5%], [5%-95%] and [25%-75%).

« Step 2: Statistical evaluation. In the second step, statisti-
cal metrics will be calculated between the observed and
forecasted precipitation values obtained in the preceding
step. These metrics encompass four types of evaluation

Step 3: Linear Projection

Step 3-1: using different [2.597.5], [ 5 95]
and [25 73] as inputs,

A\ 4

Reporting Correcting
projection parameters

Step 3-2: using average and medians as

€

!

Step 2: Statistical
Evaluation

@) Evaluation

}

Step 4: Statistical On

Similarity and dissimilarity
metrics (KGE, Bias and RMSE)

Evaluation of HRPRSs”
distributions (ED)

Calculating prediction skills
(FBIL, POD, FAR, CSI, BI, HSS)

Calculating uncertainty metrics

(Poc, ARIL, NUE)

e J

FIGURE2 | Schematic flowchart of modelling procedure.

Similarity and dissimilarity
metrics (KGE, Bias and RMSE)

Evaluation of HRPRSs”
distributions (ED)

Calculating prediction skills
(FBI, POD, FAR, CSI, BI, HSS)
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indicators including similarity/dissimilarity, distribution
compatibility, forecast skill scores and uncertainty metrics
(see Section 3 for further details). The initial three types of
statistics facilitate the selection of either the median or the

mean of the ensemble values for the subsequent step (Step
3). Conversely, the uncertainty metrics facilitate the infer-
ence of the uncertainty behaviour exhibited by the SEAS5
ensemble members.
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« Step 3: Linear projection. In the current stage, the dynamic
evaluation of linear relationships calibrated using OLS, FLS
and Q-Q regression methods will be conducted for each
station. The calibration procedure for these methods is il-
lustrated in Figure 3. The warmup time has been set to 12
(sample) month to initialised the regressions’ parameters. In
the figure, O, represents observed monthly precipitation at
the station of interest and P;’z addressed precipitation fore-
casted at month -2 to calculate for month ¢.

By means of the both observed and forecasted precipita-
tion values available up to month ¢, their offsets and slopes
(a,, mL,) could be calculated using the above mentioned
regression methods. Using the variables (a,, mL,), updated
precipitations for month ¢+ 1 and ¢+ 2 would be estimated,
recursively. Increasing time indicator to t+1, the both
slopes and offsets must be calculated because of new added
observed samples to the information pool. However, the up-
dating sequence may be set more than one-by-one month,
but in the current research it set to 1 month.

«+ Step 4: Statistical evaluation. Following the completion of
the augmentation procedure, three selected statistical met-
rics (KGE, RMSE and B values) have been calculated for
each station individually.

« Step 5: Selection of the most effective method. The last step,
the most effective linear correction procedure based on the
reported statistics (in Step 4) will be selected.

5 | Modelling Results

In line with the modelling approach depicted in Figure 2, the
initial stage involved calculating three CL values of the ensem-
ble members for each station. Following this, statistical metrics
were computed to assess the original three-month ahead hind-
cast of the SEAS5 datasets. Applying linear regression tech-
niques, their statistical effectiveness was evaluated to enable a
comparison with the observed precipitation values. The subse-
quent sections will present the results of the analyses. It should
be noted that the number of observed values is 22,419 (the total
number of missed values in the sample is 2637).

5.1 | Statistical and Probabilistic Assessment
of SEASS5 Forecast

5.1.1 | Similarities and Dissimilarities

Figure 4 illustrates the distributions of similarity and dissimi-
larity statistics between the SEASS5 hindcast and observed val-
ues for the median and average of the ensemble members using
B, KGE and RMSE metrics as detailed in Section 3.1. Notably,
there is no significant variation in the metrics between the aver-
age and median ensemble values compared to the observations.
However, it is important to highlight that the median results
tend to align more closely with the recorded precipitation values
than the average results.

Figure 4a shows the distributions of bias values across the sta-
tions. Itis clear that the maximum value of the ensemble median

is lower than that of the ensemble average. Figure 4b presents
the distributions of KGE values, where the median values not
only surpass the average values but also display a narrower
range compared to the ensemble average. Figure 4c illustrates
the distributions of RMSE, indicating that the ensemble median
values demonstrate greater efficiency than the ensemble average
values.

5.1.2 | Evaluation of Distributions

Figure 5 presents two boxplots, each depicting the ED values for
the average and median of the SEAS5 ensemble members. As
illustrated in the figure, the median values of the seasonal fore-
cast from SEASS5 display distributions that are more compatible
with the observed values than the average values.

5.1.3 | Forecast Skill Score

Figure 6 illustrates the distributions of six forecast skill scores
(including FBI, FAR, CSI, POD, BI and HSS) for both the me-
dian and average values. It is evident that the distributions of the
FBI, FAR, CSI, POD and BI statistics are highly similar between
the median and average ensembles. However, the distribution
of the HSS statistic for the median ensembles shows a greater
range than that of the average ensembles. The POD values in the
median and average scenarios are close to 1 (its perfect value),
which means that the SEAS5 hindcast has a near perfect per-
formance in predicting monthly precipitation. While the perfect
value for HSS is 1, it appears that the median ensembles outper-
form the averages, as indicated by the broader range of values.

5.1.4 | Uncertainty Assessment
To evaluate the probabilistic efficacy of the 25 ensembles in-

cluded in SEASS, three CIs are presented in Figure 7. The CIs
shown in the figure consist of the following ranges: [2.5%,

2} + 1
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|
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FIGURE 5 | Distributions of the energy distance (ED) between
SEASS and observed precipitation values based on 87 stations. [Colour
figure can be viewed at wileyonlinelibrary.com]
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97.5%], [5%, 95%] and [25%, 75%], representing the first, second
and third CLs, respectively. A reduction in the width of the eval-
uated CIs corresponds to a decrease in the bounds and values of
the ARIL, as illustrated in Figure 7a.

Furthermore, lowering the CL from 95% to 50% results in a de-
cline in the median values of the Plevels’ distributions, which
range from 81% to 37%. This reduction in CL also enhances the
efficiency metrics, with the median values of the NUE distribu-
tions increasing from 15.45 to 20.36. These metrics are valuable
when analysing different CIs of the original SEAS5 ensemble
members, as they provide insights into the efficiency of proba-
bilistic forecasts.

5.2 | Statistical Evaluation of the Linear Methods

This section presents the results of the calibration and validation
of the standard linear regression methods with dynamics and
fixed linear parameters (FLS and OLS) for enhancing SEAS5
forecasts. As previously stated (Section 2.3.2), the variability of
slope and offset values in the linear regression calibrated using

the FLS approach is significantly influenced by the calibration
scalar parameter (u).

Figure 8 illustrates the distributions of the three statistical
metrics (B, KGE and RMSE) for varying scaler parameters
(0.1, 10 and 1000) alongside the linear regression calibrated
via Ordinary Least Squares (LROLS) method. The results may
be regarded as a sensitivity analysis of the scaler parameters
(u) on the calibration procedure. The boxplots of the models
with median inputs are observed to be wider than those with
average inputs. An increase in the scaler parameter value
(from Models 1 to 3) results in a notable dissimilarity between
the calibrated SEAS5 and observed precipitation values. As
previously stated in Section 2.3.2, the scaler parameter deter-
mines the variability of the slope and offset values of the dy-
namic model. Furthermore, within the FLS framework, there
is no established methodology for identifying the optimal
parameter value. The next step will entail the augmentation
of the SEAS5 with the calibrated offsets and slopes from the
current stage for the scaler parameter 0.1, with the objective
of demonstrating the effect of the most allowed variability of
slope and offset values.
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FIGUREY9 | Distributions of the statistical metrics based on 87 stations (a) bias (mm), (b) KGE and (c) RMSE (mm) between the observed and orig-
inal and augmented SEASS at the first-coming monthly hindcasted values (u=0.1 for LRFLS). [Colour figure can be viewed at wileyonlinelibrary.

com]

5.3 | Augmenting SEAS5 Products via Linear
Regression Methods

As illustrated in Figure 3, the slope and offset values estimated
at each time step, incorporating all preceding observed precip-
itation data, are employed to enhance the SEAS5 hindcasted
values. The updated slope (mL) and offset (a) values obtained
from the selected linear regression methods (LROLS, linear re-
gression with quantile-quantile (LRQQ) and linear regression
with dynamic parameters using FLSs (LRFLS)) are employed
in the recalculation of the linear regression parameters, a and
mL, at a specific time (f). These parameters are then applied to
augmerltt _t{le forglcoming hindcasted precipitation issued up to
time £ (P, ;and P, ).

In Figure 9, the distributions of the selected statistics (B, KGE
and RMSE) are presented for the augmented average and me-
dian ensemble members using the regression methods includ-
ing LROLS, LRQQ and LRFLS methods. These metrics assess
the a&rtggment between the first-coming hindcasted precipita-
tion (P, ) and observed values across the watershed's stations.

Furthermore, the statistical assessment encompasses the unpro-
cessed SEAS5 models for comparison. The LRFLS method em-
ployed a scaler parameter («) with a value of 0.1.

As illustrated in Figure 9a, all augmentation linear methods
demonstrate a notable reduction in bias values in comparison to
the bias observed in the raw SEAS5 values. The LRFLS method
demonstrates the narrowest distribution of bias values among
the methods under consideration. Figure 9b presents the KGE
values between observed and augmented precipitation, as well
as the SEAS5 methods. The LRQQ method demonstrates the
highest KGE values and the narrowest distributions. The precip-
itation hindcast for the first month ahead, generated using the
LROLS method and the original SEASS5 dataset, ranks second
and third, respectively. The results of the LRFLS method are the
least favourable. With regard to the RMSE statistics illustrated
in Figure 9c, it can be observed that LRFLS (with a scaler value
of 0.1) exhibits the highest RMSE values and the widest distri-
butions for both the average and median values of the SEAS5
ensemble members. The distributions of LRQQ and LROLS are
comparable, with SEAS5 results ranking third before LRFLS. It
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can thus be concluded that LRQQ and LROLS are the optimal
models, respectively.

To evaluate the efficacy of the selected augmentation techniques,
four scatter plots are presented in Figure 10. As the distribution
around the first bisector line increases from the raw SEAS5 data
to the augmented data obtained via the LRQQ method, the num-
ber of outlier augmented values decreases from the LROLS data
to the LRQQ data. In light of the findings, it can be concluded
that LRFLS (with a scaler value of 0.1) outperforms LROLS (or
LRFLS with a scaler value of co).

In Figure 11, the distributions of the selected statistics re-
lated to the second-coming monthly hindcasted values are
presented. As shown in Figure 11a, all calculated bias values
for the augmented methods and their distributions are smaller
than those of SEASS and its distributions. The boxplots of the
KGE values in Figure 11b indicate that LRFLS exhibits the

worst performance, while LRQQ performs the best. Excluding
outliers, the KGE values for the LROLS method are compa-
rable to the raw SEASS5 values, and LRQQ outperforms the
raw SEASS5 values. Similarly, the RMSE values also reveal that
LRFLS has the poorest performance, with the distribution of
RMSE values for LRQQ being lower than that of the original
hindcasted values.

Figure 12 illustrates the scatter plot of the augmented SEAS5
precipitation values (for the second-coming month) versus
the observed precipitation. In Figure 12¢, the LRFLS method
shows the lowest performance due to its outlying values, while
the LRQQ method demonstrates the best performance, as in-
dicated by the distribution of scatter plot points around the
bisector line.

Considering the selected statistical metrics, LRQQ outperforms
LROLS in augmenting SEAS5-hindcasted values. Its statistical
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efficiency is notable for enhancing the first-coming monthly
precipitation and also improves the statistical efficiency of the
second-coming monthly hindcasted precipitation. The FLS
framework demonstrates significant competency in linear re-
gression. It appears that LRFLS, with a small scaling parameter,
has too much flexibility in capturing the mainstream behaviour
of linear parameters during the augmentation process, poten-
tially leading to overfitting.

To evaluate the performance of the proposed augmentation
methods, eight time series, including observed values versus
original SEASS5 (average and median of the ensembles) and their
augmented hindcasted values, are depicted in Figure 13. These
figures pertain to the Sezhab station (ID number: 31-001), lo-
cated in the eastern part of the watershed. The average ensem-
ble of SEASS5 exhibits more bias than its median counterparts.
Considering the RMSE values (between raw or projected fore-
cast time series and observations), all augmentation methods
improve the behaviour of the hindcast precipitation time series.
The LROLS method (considering both median and average sig-
nals) outperforms the LRFLS (with u=0.1) and LRQQ methods,
with LRQQ ranking second.

5.4 | Spatial Patterns of Augmentation Efficiencies

Figure 14 shows the spatial distribution of the bias values for
the second hindcast for the median and mean of the ensemble
members. From the figures (SEASS5 column), it can be seen that
stations located in the central part of the ULW (near the lake)
have the highest bias values, while those located in the west and
southwest of the ULW have the lowest bias values. Most of the
stations scattered in the western part of the ULW show under-
estimation and stations with overestimation conditions are lo-
cated in the central and eastern parts of the ULW. In addition, it
appears that stations at lower altitudes tend to have higher and
overestimated values, while SEASS5 hindcast values in the high-
lands are lower and underestimated.

In contrast, the extended patterns shown in the figures show
that stations with positive bias values are mainly concentrated
to the north and northeast of the ULW. This pattern is generally
observed when looking at the median of the ensembles across
the catchment. Based on the figure, the southern and northern
stations have negative and positive bias values using the LRFLS
projection method with average and median datasets. Also, the
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jected with (b), LROLS, (c) LRFLS (x=0.1) and (d) LRQQ methods for the second-coming lead time (average ensembles) based on 22,419 monthly

samples. [Colour figure can be viewed at wileyonlinelibrary.com]

bias values of the LRQQ projection method are semirandom pat-
terns over the watershed.

6 | Conclusion

Researchers have emphasised the importance of calibrating bias
values to effectively utilise SEAS5 hindcasted precipitation in
hydroclimatological research and studies. In this article, the au-
thors conducted a linear projection of the hindcast model using
three regression methods including LROLS, LRFLS and LRQQ
methods. These methods incorporated dynamic updates to ob-
tain appropriate slope and offset values at each time step.

The ULW has been selected as a case study to assess the per-
formance of the proposed linear projection methods. This is an
endorheic watershed with semicomplex orographic conditions.
The results presented in the previous sections indicate that these

augmentation procedures, particularly LRQQ, significantly im-
prove the statistical efficiency of the SEASS5 hindcast precipita-
tion for both the first- and second-coming months.

However, while increasing the degrees of freedom for variabil-
ity in the linear regression model parameters through the use of
FLS improved certain statistical metrics, it did not necessarily
translate into improved performance of the regression models
in the augmentation mode. The findings suggest that overfit-
ting may occur when the LRFLS method is allowed to adjust
its model parameters at each time step. Interestingly, LROLS,
which is a specific version of LRFLS, outperformed LRFLS
with a lower scaling parameter in improving the accuracy of the
hindcasted precipitation.

Among the various methods evaluated, LRQQ demonstrated the
highest efficiency and played a considerable role in augmenting
hindcasted precipitation. By employing the LRQQ method, the
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FIGURE 13 | Times series of the observed monthly precipitation (grey bars) at Sehzab station (with ID number: 31-001) versus first-coming
monthly hindcasted SEASS5 values (a) average ensemble, (b) median ensemble, projected with (c) LROLS (average), (d) LROLS (median), (¢) LRFLS
(u=0.1) (average), (f) LRFLS (u=0.1) (median), (g) LRQQ (average) and (h) LRQQ (median) with their RMSE values.
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proposed augmentation procedure effectively correlated the
statistical distributions of ensemble SEASS5 precipitation with
observed values, leading to improved forecast accuracy.

Additionally, both the average and median of the ensemble mem-
bers were assessed in their raw and augmented states. While
the statistical efficiencies, forecast skill scores and uncertainty
metrics varied between the average and median ensembles, no
distinct patterns emerged from the results. Furthermore, the ef-
fects of LROLS, LRQQ and LRFLS on the median and average

of the ensemble members differed without revealing any notable
or unique trends.

The augmentation approaches discussed are primarily based on
linear methods. The proposed methodology is case-independent
and applicable in any study area, and the performance of linear
projection methods needs to be evaluated. Future research should
explore distribution-free linear methods, such as generalised
linear models (GLM) and support vector machines (SVMs), as
well as nonlinear methods such as generalised regression neural
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networks (GRNNSs). Given the recursive and dynamic nature
of these augmentation techniques, the adoption of parametric
assimilation methods, such as the Kalman filter, is also recom-
mended to enhance model performance and adaptability.
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