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Abstract
Federated learning enables the construction of ma-
chine learning models, while adhering to privacy
constraints and without sharing data between dif-
ferent devices. It is achieved by creating a machine
learning model on each device that contains data,
and then combining these models through an ag-
gregation algorithm without sharing the data. Fed-
erated learning is currently a hot topic, and a lot
of research has gone into implementing accurate
aggregation algorithms. The original algorithm is
FedAvg, and since then many different algorithms
have been introduced. In this paper, I will com-
pare the performance of five different aggregation
algorithms: FedAvg, FedProx, FedYogi, FedMe-
dian and q-FedAvg. The algorithms are compared
on different data sets, namely MNIST and a kinase
inhibition data set, as well as on different data dis-
tributions and number of clients. The experiments
indicate that among these five algorithms, FedYogi
achieves the best performance, both in terms of
highest final accuracy as well as in terms of con-
vergence rate.

1 Introduction
Federated learning is a new machine learning technique that
trains machine learning models while adhering to privacy re-
strictions [7]. Instead of sharing data between various parties,
privacy is achieved by the parties working together to create
a global model while keeping their local data. They create
the global model through multiple communication rounds. In
each round, the clients receive the current global model and
train it using their local data to create a local model. These lo-
cal models are then combined using an aggregation algorithm
to create a global model [10].

An example of where federated learning is useful is the
medical records kept in hospitals. In this scenario, different
hospitals maintain records of their patients. However, due to
the sensitive nature of the data, they cannot share the data
with other hospitals. The challenge is that each hospital does
not have sufficient data to create an accurate model on their
own. Alternatively, federated learning can be used to create a
model that reflects all the data. The hospitals can communi-
cate with each other in either a centralised or a decentralised
manner. In a centralised setting, there would be an external,
powerful and reliable server acting as the manager. This man-
ager communicates with all the hospitals and aggregates the
different local models created in each hospital to create the
global model. On the other hand, this manager can also be
made in a decentralised approach through blockchain. In both
cases, the learning of the model is divided into multiple differ-
ent learning rounds. During each learning round, the manager
selects a predetermined number of hospitals and sends them
the global model. The hospitals then perform a decided num-
ber of epochs over their data to update the model and create
a local model. Afterwards, they send the new model back to
the manager who aggregates all the new models into a new
global model.

Due to the importance of creating a model with privacy
sensitive information, federated learning became a significant
technology that has been extensively researched. The topic
started with the paper by McMahan, et. al. in 2016 [10],
which explains the need for federated learning, describes the
algorithm behind it, and evaluates it. Since then, a substantial
amount of additional research has been conducted. This re-
search is summarised well in the survey by Li, et. al. [7]. The
survey summarises all the different aspects of federated learn-
ing and outlines the research done in these areas. Moreover,
it describes various open source systems that can be used to
implement federated learning, such as FATE [6], TFF [1] and
PySyft [16]. Further research has gone into evaluating a fed-
erated learning implementation, such as the framework FedE-
val created by Chai, et. al. [4]. This framework provides a
means to evaluate a federated learning implementation.

In the paper by McMahan, et. al. [10], which introduced
federated learning, the aggregation algorithm of FedAvg was
proposed. In this algorithm, the different local models are av-
eraged to create the global model. Since then, many different
algorithms have been developed.

One problem with FedAvg is its inability to effectively
handle a variable number of epochs. Due to different data
distributions and different computational power of different
devices, different clients will be able to run different num-
ber of epochs. FedAvg addresses this issue by instructing
each device to run a specified number of epochs within a
given time limitation. If a device does not finish in time, it
is dropped from the current iteration. However, this approach
was proven to be substandard in the paper by Wang, et. al.
[14]. The paper proved that the model converges to a point
that can be arbitrarily different from the true objective. In-
stead, the paper suggests the algorithm FedNova, which al-
lows each client to have a variable number of epochs. To en-
sure fairness among clients, the local models are normalised.
On the other hand, Li, et. al. [8] propose a different solu-
tion with their algorithm of FedProx. FedProx behaves in a
similar manner to FedNova, but rather than normalising the
local models, it uses a proximal term. This term determine
the maximum allowed difference between the weights of the
local model and the global model.

The creation of aggregation algorithms became one of the
prominent research topics in federated learning. A great vari-
ety of aggregation algorithms have been developed to achieve
the best machine learning model in different scenarios. One
of these aggregation algorithms is FedMa, which tries to
match the neurons between the local and global model bet-
ter [13]. Three additional algorithms were introduced in the
paper by Reddi, et. al. [12]. The paper introduced the class
of aggregation algorithms called FedOpt. This class includes
the algorithms of FedYogi, FedAdagrad and FedAdam [12].
The aggregation algorithms of the FedOpt class are built on
top of FedAvg by changing the learning rate of the model
throughout its creation. It is important to note that except of
the FedOpt aggregation algorithm class, there is an unrelated
FedOpt aggregation algorithm implemented by Asad, et. al.
[3]. An alternative algorithm is FedMedian. As the name
suggests, the idea behind this algorithm is to use the median
of the weights rather than the mean [15]. Another aggrega-



tion algorithm is q-FedAvg proposed by Li, et. al. [9]. This
algorithm claims to achieve the same performance as FedAvg
while being more fair. The fairness is demonstrated by ob-
taining more similar accuracies across the testing data of each
client. To achieve a higher fairness, the objective function is
tweaked to favour low achieving clients.

The research question I will be answering is: How does
the performance of different federated learning aggregation
algorithms compare to each other? The choice of aggregation
algorithm in federated learning significantly affects the result-
ing model’s performance, therefore it is important to under-
stand the strengths and weaknesses of different aggregation
algorithms. Thus, I will compare the performance of different
aggregation algorithms in different scenarios. The algorithms
I will compare are FedAvg, FedProx, FedYogi, FedMedian
and q-FedAvg.

The paper starts with an explanation of the experiment in
section 2. Afterwards the results are shown and explained
in section 3. This is followed by discussion of the ethical
concerns of the research in section 4. Section 5 continues by
discussing the validity and limitations of the results. Lastly
section 6, concludes the findings of the research.

2 Methodology
In order to answer the research question, I implemented fed-
erated learning using the Flower framework [2]. Then I ran
the implementation multiple times, with different aggregation
algorithms, different data distributions between parties, dif-
ferent number of parties and with different data sets. After-
wards, I analysed the accuracy of the models and compared
the performance of the different aggregation algorithms, as
well as to the model created with classic machine learning
(where all the data was pooled together into a single party).

The decision to use the Flower framework was made due to
the framework’s simplicity and flexibility. Due to the heavy
time constraint of this project, it was important to choose a
framework that can be quickly learned while having great ca-
pabilities. The Flower framework is exactly that. It allows for
a quick implementation of federated learning, while giving a
lot of flexibility in aggregation algorithms, scalable number
of clients and different machine learning models.

I decided to focus on the accuracy of the global model
rather than the different local models, as that is the model
most closely resembling classic machine learning. However,
I also compared the local accuracy of q-FedAvg and FedAvg.
This is because the implementation of q-FedAvg aims to
achieve a more fair local accuracy. I focused on accuracy it-
self, due to the main difference between different aggregation
algorithms is the performance of the model they create. Nat-
urally, other aspects of federated learning are also important
to analyse, such as privacy and efficiency. Nevertheless, these
aspects are often determined by the other parts of the imple-
mentation, other than the aggregation algorithm itself. The
reason behind choosing accuracy as the performance metric,
is due to its simplicity and ability to assess the model in all
scenarios. Furthermore, the papers on the aggregation algo-
rithms I compared, used accuracy to justify their respective
algorithm.

As mentioned earlier, each aggregation algorithm was
tested in multiple different scenarios and on two different data
sets. The two different data sets I used are MNIST [5] and a
kinase inhibition data set [11]. MNIST was chosen due to
its simplicity and widespread use. As well as four of the five
aggregation algorithms I am comparing, have used MNIST
to justify their algorithm in their respective papers (only q-
FedAvg did not) [8; 10; 12; 15]. On the other hand, the kinase
inhibition data set was selected to demonstrate a real life use
of federated learning. The data set was constructed by com-
bining three different data sets, and as a result the data was
collected from different parties.

Creating a federated learning model on the MNIST data set
was done on six different scenarios. These scenarios include:

• IID scenario with equal distribution - where each party
received an equal distribution of each class, with 500
instances of each class. The distribution can be seen in
Figure 1.

Figure 1: Data distribution scenario of IID and equal distribu-
tion

• Non-IID Scenario with equal distribution - where each
party received an equal distribution of a total of 2
classes, with 2500 instances of each class. The distri-
bution can be seen in Figure 2.

Figure 2: Data distribution scenario of non-IID and equal dis-
tribution



• IID scenario with different distribution - Where every
party received all the different classes of the MNIST
data set with equal distribution, but half of the parties
received four times as much data. In order to maintain a
practical scenario, the parties with less data ran 4 epochs
instead of 1. The distribution can be seen in Figure 3.

Figure 3: Data distribution scenario of IID and non-equal dis-
tribution

• Non-IID Scenario with different distribution - Where
each party received an equal distribution of 2 classes,
but half the parties received 4 times as much data. In or-
der to maintain a practical scenario, the parties with less
data ran 4 epochs instead of 1. The distribution can be
seen in Figure 4.

Figure 4: Data distribution scenario of non-IID and non-equal
distribution

• IID Scenario with exceedingly number of parties - An
IID scenario with 50 parties instead of 10, where in each
communication round 7 parties were contacted. The
data was distributed in such a way that each client re-
ceived 1

50 of all the data in an equal distribution. The
distribution of data was done in the same fashion as in
scenario 1.

• Non-IID Scenario with exceedingly number of parties -
A non-IID scenario with 50 parties, where in each com-
munication round 7 parties were contacted. The data is

distributed in a manner such that each client received 1
10

of all the data of two different classes. It was done in the
same fashion as scenario 2.

Creating a federated learning model on the kinase inhibi-
tion data set involved a single scenario. The scenario was that
the data was distributed between three different parties in the
same fashion as the data was originally collected. This sce-
nario analysed federated learning in a more realistic setting.

To ensure the value of the data collected in this research
for other researchers, I followed the most common type of
federated learning in research. The implemented federated
learning communicated in a centralised manner, where all the
communication and aggregation were carried out by a trust-
worthy third party. Both data sets were horizontal data sets,
meaning that data sets of each party shared the same vector
space. The machine learning model that was used was a neu-
ral network. The architecture of the neural network created
can be found in Appendix A.2. The federated learning was a
cross silo federated learning, meaning there was a small num-
ber of parties compared to the large amount of data. More
specific settings include:

• In the first 4 scenarios of MNIST there were a total of
10 clients.

• The learning rate of the model was set at 0.0001.

• There was one epoch per communication round. This
was the case in all scenarios except of the ones with non-
equal distribution. In those scenarios the clients with
less data ran 4 epochs.

• There were a total of 500 Communication rounds.

• The aggregation algorithms that were compared are Fe-
dAvg, FedProx, FedYogi, FedMedian and q-FedAvg.

I chose to compare FedAvg and FedProx as they are both
some of the most commonly used federated learning algo-
rithms, due to their simplicity and good performance. Fur-
thermore, I decided to analyse FedYogi, as the FedOpt class
of aggregation algorithms have been shown to perform well.
FedYogi was specifically chosen, because it has shown the
best performance among the FedOpt algorithms. I chose to
compare FedMedian, due to its uniqueness in using a me-
dian rather than a mean, as well as its lack of performance
documentation. This lack of documentation is a result of the
algorithm being developed for distributed learning rather than
federated learning. Lastly, I decided to compare q-FedAvg as
instead of aiming to perform better, it aims for a more fair
performance.

3 Results
Figures 5-8 show the accuracy of the aggregation algorithms
per communication round in the four different scenarios of
10 parties in MNIST. Unlike the research done by Wang, et.
al. [14], I noticed that there was minimal to non-existent im-
pact on having a non-equal distribution. Although in their
paper they emphasized the impact of non-equal distribution
and variations in the number of epochs have on the overall
model. They justify it by explaining that the model does not
converge to the true objective. However, Figures 5 and 6,



as well as Figures 7 and 8, are almost identical, which con-
tradicts their statement. The difference between our results
could have been caused by the use of a simulation in this re-
search and the difficulty in simulating a realistic scenario. As
the federated learning was simulated on a single device, the
number of epochs ran on each device was set in advance. In
order to simulate a more practical environment, in the scenar-
ios where some devices had 4 times the amount of data com-
pared to other devices, the devices with less data ran 4 times
the number of epochs. While this simulated a more practical
scenario, it did not take into account possible differences in
devices computation ability or specific parties not finishing
the required epochs in time. As a result, the simulation in this
research did not simulate a completely realistic scenario.

There is a lot of valuable information to be taken out of
Figures 5 and 6. These figures show that on IID data sets, fed-
erated learning achieves nearly identical accuracy compared
to classic machine learning. In particular, the FedYogi aggre-
gation algorithm does achieve the same accuracy. Although it
converges in a slightly slower manner. On the other hand, Fe-
dAvg, FedProx, q-FedAvg and FedMedian all achieve slightly
lower accuracy and convergence rate compared to classic ma-
chine learning.

Figure 5: Accuracy on MNIST on IID data set of equal distribution

Figure 6: Accuracy on MNIST on IID data set of non-equal distri-
bution

Figures 7 and 8 illustrate the accuracy of the models when
the data distribution is non-IID. In this scenario, there is a
notable difference in accuracy between the different aggrega-
tion algorithms. FedYogi does achieve the highest accuracy,
with a considerable margin. Nevertheless, the difference in
accuracy between FedYogi and classic machine learning is
substantial. Additionally, there is a visible instability of the
FedYogi model in both of these scenarios. After FedYogi, the
algorithms of FedAvg, FedProx and q-FedAvg achieve very
similar accuracy, but with a large decrease in performance
when compared to FedYogi. Finally, there is another large
drop in accuracy when comparing FedMedian.

Figure 7: Accuracy on MNIST on non-IID data set of equal distri-
bution

Figure 8: Accuracy on MNIST on non-IID data set of non-equal
distribution

After experimenting with federated learning with 10
clients, I proceeded to evaluate the algorithms in scenarios
with 50 clients. Due to memory limitation of Flower sim-
ulation, only 7 parties were contacted in each communica-
tion round, and the neural network architecture was slightly
smaller. The neural network architecture can be found in Ap-
pendix A.2. Figure 9 presents the accuracy of the models in a
scenario with 50 clients, where the data is distributed equally
in an IID fashion. In this scenario FedYogi achieves the high-
est accuracy, but this accuracy is lower than classic machine



learning. Subsequently, FedMedian, FedAvg, FedProx and q-
FedAvg all achieve a similar accuracy, which is substantially
lower than FedYogi. Furthermore, all four algorithms do have
different convergence rates.

Figure 9: Accuracy of MNIST on IID data set with 50 clients

Figure 10 shows the accuracy of the different aggregation
algorithms with 50 clients and non-IID data. As only 7 par-
ties were contacted in each round, there were rounds where
some classes were not present, resulting in instability of all
the accuracies. Also in this case FedYogi achieved the high-
est accuracy, which is followed by FedProx, q-FedAvg and
FedAvg, and lastly FedMedian achieved the worse.

Figure 10: Accuracy of MNIST on non-IID data set with 50 clients

Lastly, I tested the aggregation algorithms on a more real-
istic scenario with the kinase inhibition data set. Figure 11
displays the accuracy in this more realistic scenario. In this
scenario, FedAvg, FedProx, q-FedAvg and FedYogi exhibit
similar performance, achieving accuracy comparable to that
of a single client. On the other hand, FedMedian performs no-
tably worse. An additional observation from the data is that
all the plots show a slight decrease after reaching their respec-

tive maximas. The decrease can be explained by overfitting
on the training data.

Figure 11: Accuracy on Kinase inhibition data set

The local accuracies of q-FedAvg and FedAvg were com-
pared and the results are shown in Figure 12. This comparison
is interesting because q-FedAVg aims to achieve more fair re-
sults. According to the definition of fairness by Li, et. al. [9],
fairness is evaluated by analysing the similarity of accura-
cies in different clients. From the graph, it can be observed
that FedAvg achieves the same or slightly higher fairness than
q-FedAvg. The difference in fairness between FedAvg and
q-FedAvg is minor, therefore the graph does not prove nor
disprove the statement of Li, et.al [9] that q-FedAvg achieves
a higher fairness than FedAvg. Furthermore, q-FedAvg and
FedAvg have achieved a very similar accuracy in all seven
scenarios. This coincides with the paper’s statement that the
global accuracy of FedAvg and q-FedAvg is comparable [9].
The local accuracies of FedProx, Fedmedian and FedYogi can
be found in Appendix A.1

Figure 12: Local accuracy on kinase inhibition dataset of FedAvg
and q-FedAvg

In all seven scenarios, FedYogi achieved the highest accu-



racy or shared the highest accuracy among the aggregation al-
gorithms. However, it exhibit slight instability in the non-IID
cases. My hypothesis is that due to the algorithm changing
the learning rate, it allowed for a more diverse exploration of
the search space. This ability to explore different regions of
the search space may enable the model to avoid getting stuck
in local maximas.

After FedYogi, the algorithms of FedProx, q-FedAvg and
FedAvg consistently achieved the next best performance,
with their accuracies being very similar across all seven sce-
narios. Conversely, FedMedian had the lowest or shared low-
est performance in all seven scenarios.

4 Responsible Research
When conducting this research, ethical methods were fol-
lowed to ensure the integrity of this study. The data sets used
are open source material, that are available to be used for fur-
ther research. Similarly, frameworks used are open source,
that are available online. Throughout the research process,
the Netherlands Code of Conduct for Research Integrity was
followed. All the data constructed in the experiments was
constructed by following the information in the methodology.
The methodology was written with a lot of detail, to ensure
it can be used to recreate the experiments. The code for the
experiment can be found online1. It is important to note that
not all data created was afterwards used. Specifically the data
collected of FedYogi and FedMedian when running 50 clients
and non-IID distribution. Instead of using the original data, it
was simulated again. This was because in the original simu-
lation, the computer ran out of memory, and as a result many
communication rounds did not run correctly. To compare the
accuracies in a more fair manner, the simulation was rerun.

5 Discussion
The research done in this paper provides useful insight when
selecting an aggregation algorithm. It is evident that FedYogi
consistently achieved the best performance in the seven sce-
narios. On the other hand, FedMedian consistently had the
lowest accuracy.

Upon reviewing the papers introducing the five aggregation
algorithms, it is evident that the accuracy achieved in this re-
search on the MNIST IID dataset is on par with the papers for
FedMedian and FedProx. However, there was a large drop of
accuracy in the results from this research compared to the re-
sults in the papers of FedAvg and FedYogi. One potential
explanation is the difference in implementation of the neu-
ral network. As the neural networks used in their experiment
were considerably larger.

While the reliability of the results is improved by having
on par accuracy with other research, the ability to effectively
compare the aggregation algorithms can always be improved.
Each federated learning scenario is different and each sce-
nario may require different aggregation algorithms for op-
timal performance. By expanding the analysis to include a
winder range of scenarios, researchers can compare aggrega-
tion algorithms better.

1https://github.com/roykatz10/RP FL/tree/main

Further explorations of scenarios with more parties or more
parties running in each communication round would be valu-
able. This scenarios are very important to explore, due to the
use of federated learning in creating machine learning mod-
els of private data from our phones. The memory limitation of
the Flower framework in simulating on one device more than
50 clients, or more than 7 clients per communication round,
posed challenges in conducting such experiments in this re-
search.

Another scenario that could have been explored further is a
different neural network implementation. The neural network
used in this research was relatively small. Similarly to having
more clients, when having a larger neural network there were
problems in terms of memory. A solution that can work in
both cases is using more devices when simulating the feder-
ated learning.

Other than exploring more scenarios, it is also important to
explore more data sets. While both data sets used in this re-
search effectively test the performance of federated learning,
conducting tests with additional data sets would improve our
ability to compare the algorithms.

Lastly, in order to thoroughly evaluate the performance of
the aggregation algorithms, they should be tested on a broader
range of data distributions. The non-IID distribution used,
tested a very extreme scenario, which stressed the impact of
a non-IID distribution on the performance of the algorithms.
Nevertheless, it is important to explore a more diverse data
distributions to gain a comprehensive understanding of the
algorithms’ performance.

Apart from comparing the algorithms in more scenarios,
a possible future work is to compare additional algorithms.
Some other algorithms worth exploring include FedNova and
FedMa, which were mentioned earlier. I decided not to com-
pare FedMa due to memory constraints. Since I used a small
neural network, the nodes between the different local mod-
els would not switch as much. Furthermore, FedNova is not
compared, because it aims to improve scenarios where dif-
ferent clients run a different number of epochs due to varying
device capabilities and data distribution. However, when sim-
ulating such a scenario, it did not have a significant impact on
the overall model’s performance. Similarly to testing addi-
tional scenarios, five algorithms were compared due to the
time limitation of the project.

6 Conclusion
With the increased use of federated learning, the ability to
create an accurate federated learning model becomes more
important. The choice of aggregation algorithm has a great
impact on the overall model, thus selecting the correct aggre-
gation algorithm is essential. I compared the algorithms of
FedAvg, FedProx, FedYogi, q-FedAvg and FedMedian. By
comparing them with several different scenarios and on two
different data sets, it is clear that FedYogi consistently out-
performed the other algorithms in terms of overall accuracy as
well as convergence rate. While FedYogi achieved the highest
accuracy, it is important to consider the main goal of feder-
ated learning in specific scenarios. For example, if fairness is
critical, fair-based aggregation algorithms, such as q-FedAvg

https://github.com/roykatz10/RP_FL/tree/main


should be considered.
In terms of performance, FedAvg, q-FedAvg and FedProx

achieved a very similar performance levels, all falling below
that of FedYogi. Lastly, FedMedian consistently achieved the
lowest performance. From the results, it can be stated that
FedYogi achieves the highest performance in the tested sce-
narios. That being said, it is important to remember that there
are different scenarios where different aggregation algorithms
may work better. Thus, it is important to compare the perfor-
mance of these algorithms in more scenarios. Possible addi-
tional scenarios include testing on other data sets, testing on
a greater variety of neural networks, testing with a different
number of clients, testing with different data distributions, as
well as testing additional aggregation algorithms.

A Appendix

A.1 Local Accuracies

Figures 13-15 show the local accuracies for FedProx,
FedYogi and FedMedian on the kinase inhibition data set.

Figure 13: Local accuracy on kinase inhibition dataset of FedProx

Figure 14: Local accuracy on kinase inhibition dataset of FedYogi

Figure 15: Local accuracy on kinase inhibition dataset of Fedmedian

A.2 Neural Network Implementation
Table 1 shows the architecture of the neural networks used.

Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

MNIST
10
clients

784×
128

ReLU 128×
256

ReLU 256×10

MNIST
50
clients

784×
128

ReLU 128×64 ReLU 64×10

Kinase
Inhibi-
tion
Dataset

8192×
128

ReLU 128×
256

ReLU 256×2

Table 1: The neural network architecture
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Zarreen Naowal Reza, and G. Kaissis. Pysyft: A library
for easy federated learning. 2021.


	Introduction
	Methodology
	Results
	Responsible Research
	Discussion
	Conclusion
	Appendix
	Local Accuracies
	Neural Network Implementation


