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Abstract

A future rise in electrical energy demand is expected due to the electrification of the ther-
mal energy supply and the rise in popularity of the Electric Vehicle (EV). This rise in the
electrical energy demand results in needed investments in the electrical energy infrastructure
to prevent congestion at the transformer due to the higher peak of energy transfer between
the microgrid and utility grid. Smart control strategies as EV management and Demand Re-
sponse (DR) programs are used to lower the peak of electrical energy transfer. In this thesis,
the focus is on how the introduction of hydrogen will influence the peak of electrical energy
transfer between the microgrid and utility grid to reduce future electrical grid investments.
The stochastic processes in the microgrid are forecasted with the best-obtained forecasting
models. Using a mixed logic dynamical formulation of the hybrid model of the microgrid,
different Model Predictive Control (MPC) control strategies are implemented to solve the
multi-objective mixed-integer linear programming problem. Microgrids with different levels
of hydrogen penetration are compared. It is concluded that the introduction of hydrogen
to a future microgrid will reduce the peak of electrical energy transfer, i.e., reduce future
investments in the electrical grid. However, it does result in higher overall economic costs
due to the high increase in energy import costs. Furthermore, an increase in the degradation
of the EVs due to their more intensive use is concluded when introducing hydrogen to the
microgrid. Two stochastic MPC methods, scenario- and tree-based MPC are compared to
the nominal controller to see if better performance can be obtained for a hydrogen-based
microgrid. Better overall performance of the stochastic MPC strategies is obtained in the
winter but could not be realized in the summer. Only tree-based MPC shows a reduction in
the peak of electrical energy transfer.
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Chapter 1

Introduction

The reduction of greenhouse gases to mitigate the global average temperature rise has been
a worldwide topic of great concern over the past decade. During the United Nations Climate
Change Conference in 2015, 195 governments signed an agreement for a long-term goal of
keeping the increase of the global average temperature this century below two degrees and
aiming for an increase of a maximum of one and a half degrees. This agreement is commonly
known as the Paris agreement [126]. To prevent exceeding this maximum of two degrees rising
of the global average temperature, scientists have determined that human society needs to
reduce the electricity produced by burning fossil fuels from 70% in 2010 to 20% in 2050 [63].
Therefore, more energy needs to be produced by renewable energy sources. However, due to
the intermittent nature of these renewable energy resources, there is a need for more flexibility
in the energy grid [46] and a rise of complexity for the energy management [79].

The implementation of microgrids seems to be a possible key solution to the integration of
these renewable energy resources in the energy grid [139]. Microgrids consist of interconnected
loads, distributed energy resources, and energy storage systems. These microgrids can be seen
as a miniature version of the larger utility grid. A connection to the utility grid is sometimes
available, but in other cases, the microgrid needs to be self-supplied and operate in an islanded
mode [77]. Due to the distribution of the energy resources by implementing a microgrid,
improved reliability, power quality, and reduced distribution loss are realized [99,101].

Furthermore, changes are happening in the transport sector as well to reduce the emission
of greenhouse gases by replacing the internal combustion engine vehicle with an Electric
Vehicle (EV) [20]. The increased use of EVs has a strong effect on the energy demand in the
microgrid due to their relatively high consumption of energy [99]. This increase in energy
demand in the microgrid results in needed economic investments in the infrastructure of the
energy grid to prevent congestion at the transformer during high consumption times [138].
Therefore, in future microgrids, the focus should be on the peak of electrical energy transfer
between the microgrid and utility grid.

In these future microgrids, smart strategies can be used to create a framework where renewable
energy sources can be implemented and reduce the peak of electrical energy transfer to prevent
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2 Introduction

unnecessary investments in the energy grid. The impact of the increasing energy demand by
the addition of EVs in the microgrid can be reduced by using smart EV management. In
this EV management, the EVs are charged at convenient moments, i.e., when there is an
abundance, or less shortage, of energy in the microgrid. Moreover, EVs can contribute to
mitigate the problem for energy distribution in the microgrid while being used as a power
plant or energy storage system to provide energy at times of high energy demand in the
microgrid [9, 52,99]. Another strategy is the use of Demand Response (DR) programs where
the consumption pattern of the consumers in the microgrid is altered. The use of DR programs
has proven to generate more flexibility in the grid and reduce the electrical energy transfer
peak [101,119].

A new source of energy is emerging in both the energy and transport sector, hydrogen [20,
94]. The popularity of hydrogen is expected to increase in the next years due to its storing
capabilities, cheap transport of energy, and capability to be produced without the emission
of greenhouse gases [80]. Hydrogen offers a great solution to the distribution of generated
renewable energy, e.g., when generated on offshore wind farms. Fuel cell EVs are emerging
due to some beneficial specifications compared to the battery EVs, e.g., greater range and
faster refueling [94,125]. This introduction of hydrogen to the microgrid alters its behaviour.
Therefore, different performance regarding the peak of electrical energy transfer between the
microgrid and utility grid can be obtained.

1-1 Research Objective

In the presented context, the problem is formulated that the rising electrical energy demand in
the microgrid will cause needed investments in the electrical energy grid. Some strategies can
be applied to reduce these investments as smart EVs management and the implementation of
DR programs. However, the influence of hydrogen in a microgrid on these electrical energy
grid investments is unknown. Therefore, the research question of this thesis is formulated as

How does the introduction of hydrogen to the microgrid influence the peak of elec-
trical energy transfer between the microgrid and utility grid?

To answer this question, a comparison should be made between microgrids with different levels
of penetration of hydrogen. The performances of these different microgrids can be compared
to conclude on the influence of hydrogen on the performance. Hence, the first sub-question
to the research question is formulated as

1. What is the difference in the peak of electrical energy transfer for different microgrids
with a different level of penetration of hydrogen?

These microgrids will be controlled with a nominal Model Predictive Control (MPC) frame-
work that has proven to provide good performance on the energy management of a micro-
grid [9, 17, 107, 131]. For the control of the microgrid, different stochastic processes in the
microgrid are forecasted, i.e., the energy demand of the buildings and power generation by
renewable energy sources. The errors in these forecasts can be considered in the optimization
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1-2 Thesis Contribution 3

by using stochastic MPC strategies, potentially improving the performance of the micro-
grid [108]. A comparison should be made between the different stochastic MPC strategies
and the nominal MPC, to see if the peak of electrical energy transfer could be reduced. Hence,
the second sub-question to answer the research question is formulated as

2. Can stochastic MPC strategies improve the performance of the microgrid and will it
reduce the peak of electrical energy transfer?

1-2 Thesis Contribution

This research aims to provide a primary indication of the difference in the performance and
reduction of the peak of electrical energy transfer of the microgrid when hydrogen is intro-
duced. A future microgrid is constructed based on predicted developments in the Nether-
lands. Moreover, the data used in the optimization of the microgrid are real data sets from
the Netherlands. Hence, this study focuses on the specific context of the Netherlands. For
the different stochastic processes, multiple forecasting models are developed based on histor-
ical data of the stochastic process and exogenous inputs. The best performing forecasting
model for each stochastic process is concluded that can be used in other case studies in the
Netherlands. Moreover, different stochastic MPC strategies are implemented and compared
for a hydrogen-based microgrid. Their performance is compared and conclusions are made if
the proposed stochastic MPC strategies can improve the performance of the microgrid.

1-3 Thesis Outline

This thesis report comprises six more chapters. In Chapter 2, a description of the future elec-
tric and thermal microgrid is presented. Furthermore, different distributed energy resources
are discussed and smart strategies are introduced that can be applied in the microgrid, i.e.,
smart EV management and DR programs. Chapter 3 describes the modelling of the proposed
microgrid. In Chapter 4, the different stochastic processes in the microgrid are forecasted
using multiple models. The best performing point forecasting models are concluded and sce-
narios for the stochastic processes are generated. In Chapter 5, the different MPC control
strategies that are used in the microgrid are explained. Moreover, the objective function for
the optimization is constructed. To answer the research question, different case studies are
presented in Chapter 6. The results from the case studies are obtained and discussed. Lastly,
in Chapter 7, the conclusions of this thesis and different proposals for future work are given.
A draft of a paper based on the findings in this thesis is attached in Appendix I.
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Chapter 2

Electric and Thermal Microgrid

Due to the increase of renewable energy sources and their intermittent behaviour, power
fluctuations in the energy grid have become more common. Decentralization of electrical
and thermal energy is the natural consequence of the integration of these renewable energy
sources. Moreover, the current energy infrastructure is not built to cope with the predicted
rise of energy demand that is caused by the electrification of the thermal energy supply and the
presence of the Electric Vehicle (EV) in the energy grid. A microgrid can provide a solution to
these problems. In a microgrid, distributed energy resources are used to compensate for the
energy supply discrepancies in the microgrid. In this chapter, firstly, the electric and thermal
microgrid is described. The general structure and control of microgrids are presented, and a
hypothetical future microgrid with hydrogen technology integration is sketched. Furthermore,
commonly used control objectives in a microgrid are discussed. Secondly, the distributed
energy resources in the microgrid that will be used in this study are explained. Thirdly,
EVs are discussed and focus is on the management of EVs in microgrids. Lastly, Demand
Response (DR) in the microgrid and the response of different consumers are explained.

2-1 Microgrids

This section presents the structure and control of electric and thermal microgrids. Further-
more, a future microgrid in the year 2050 in the Netherlands is sketched. Lastly, different
objectives for microgrids, commonly used in the literature, are explained and evaluated.

2-1-1 General Structure

Microgrids can be explained as smaller versions of the utility grid. They can be self-sustainable
and operate in islanded mode, or be connected to the utility grid to exchange power to
compensate for internal discrepancies in the power [77]. The energy in microgrids comes from
local distributed energy resources or is bought from the utility grid. These distributed energy
resources can be divided into two categories, i.e., resources where energy is generated or stored.
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6 Electric and Thermal Microgrid

The energy demand in the microgrid comprises the electrical and thermal energy demand of
buildings. These buildings are divided into three different consumer groups [6]: industrial,
commercial, and residential consumers, i.e., large factories, local retail stores (small) up to
theaters (big), and houses, respectively. In this thesis, only small commercial and residential
buildings are considered since the focus is on habitable districts. Their consumption pattern
and stochastic behaviour are further discussed in Section 4-3 and 4-4. The introduction of
EVs in the microgrid are originally considered as extra energy demand in the microgrid.
However, using smart EV management, they also operate as a distributed energy resource by
storing and generating energy.

2-1-2 Control Structure

A hierarchical control structure of three levels is used for power management in microgrids:
primary, secondary, and tertiary control [92,106]. Primary control stabilizes the frequency and
voltage in the electrical network using droop controllers within a sampling time of milliseconds.
Secondary control compensates for the steady-state deviations in voltage and frequency caused
by the primary control within sampling times varying from seconds to minutes. Tertiary
control is the highest control of power management that controls the power flow within the
microgrid and between the microgrid and utility grid with a sampling time varying from
minutes to days. In this thesis, the focus is on the tertiary control between a microgrid and
the utility grid.

Three main approaches are used for the tertiary control of the microgrid: centralized, de-
centralized, and distributed approach [104, 106]. In this thesis, a centralized approach is
used where a central controller collects the information of all units in the microgrid and de-
termines a control action for these units at a single point [104]. This method provides easy
implementation and obtains the best achievable performance for a solvable optimization of the
microgrid [106]. However, extensive communication is needed between the central controller
and the controlled units, resulting in high computational complexity [104].

2-1-3 Microgrids in 2050

In this thesis, a hydrogen-based microgrid is considered. Since hydrogen in the energy grid
has not yet emerged, a future microgrid is sketched where hydrogen-based distributed energy
resources and fuel cell EVs are present. The construction of the future microgrid is based on a
national study in the Netherlands that describes the energy infrastructure of the Netherlands
in the year 2050 with no emission of greenhouse gases [20], removing natural gas from the
energy infrastructure and replacing it with ‘green’ gas or hydrogen. This study proposes four
scenarios: regional, national, European, and international management. Each scenario can
be used on its own or be combined with others. A combination of these scenarios is used to
construct the hydrogen-based microgrid in this thesis. It is assumed that the following four
developments will occur before the year 2050 based on [20]:

1. Active involvement of citizens: The intrinsic motivation due to the great attention
given to the climate problem as well as the pressure from society will contribute to the
active involvement of citizens in the energy transition.
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2-1 Microgrids 7

2. Regional management: More responsibility is laid on local governmental organiza-
tions. They are responsible for leading the local energy transition, decreasing their
energy consumption, and increasing their local ‘green’ energy generation.

3. National management: Large projects are established to obtain more energy from
renewable energy sources, e.g., large wind parks in the North Sea or Photovoltaic (PV)
parks in the polder. A large national hydrogen infrastructure will be built to transport
the energy from these sources.

4. European management: Greenhouse gas taxes will be introduced to increase the
use of ‘green’ energy at European level. This tax concerns all sectors and increases
progressively up till 2050.

The impact of these developments on the future microgrid in the year 2050 in the Netherlands,
assuming no strong international management actions are taken, are [20]:

• Residential consumers: Growth in energy consumption of 1% per year till 2050 on
electric devices and the electrification of the thermal energy supply will lead to a rise in
the net electricity use of residential buildings, despite the predicted 10% increase in effi-
cient use of electricity. New residential buildings will install heat pumps in combination
with local batteries to supply the thermal energy demand. However, in existing districts
with poor isolation, chemical energy carriers as hydrogen should be burned to generate
thermal energy as well. Therefore, a hybrid heat pump, that combines a heat pump
and gas condensing boiler, will be a good alternative to the general heat pump. Due to
the extrinsic and intrinsic motivation to be actively involved in the energy transition,
people will be more willing to participate in local programs to reduce their emission
of greenhouse gases or to save energy. Therefore, the willingness to participate in DR
programs is high.

• Hydrogen: Large national projects for getting energy from renewable energy sources
will lead to a problem of transportation of this energy. The large wind parks in the North
Sea are an example of them. This energy will be efficiently stored as hydrogen to be used
on the mainland. Countries in the European Union will create large projects to obtain
energy from renewable energy sources as well due to greenhouse gas taxes. Therefore,
in times of local shortage or abundance in hydrogen, hydrogen can be exported and
imported between the European countries. These above developments will result in
a large hydrogen infrastructure in Europe that will replace the current natural gas
infrastructure to transport the hydrogen.

• Mobility: Municipalities will set environmental zones for ‘green vehicles’ only, espe-
cially in the cities. Moreover, more investment will be made for the proper charging
infrastructure for EVs. This is in line with the ambition of the people that want to
reduce their local emission of greenhouse gases. However, since many will still want to
go for the cheapest way of living, the European Union introduces the taxes on green-
house gases that will motivate them to switch to the ‘greener’ EVs. The generation
of hydrogen and the investments in proper hydrogen infrastructure will result in high
penetration of fuel cell EVs in the private transport sector. Nevertheless, more battery
EVs will still be present than fuel cell EVs due to their economic advantages.
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• Photovoltaic panels: PV panels will become cheaper over time, and due to the
greenhouse gas taxes, people will only profit more from this investment. Moreover,
since people are motivated to shift to EVs, this extra energy demand will make PV
panels on their roof even more appealing. These PV panels will reduce their energy
costs, and they can take their measurements for reducing the local energy impact.

2-1-4 Objectives in Microgrids

Different control objectives are considered for tertiary control in microgrids depending on a
difference in incentives. The main objectives found in the literature are:

• Discomfort: Minimizing the daily discomfort of the consumer. Discomfort can be
created since devices are operating at different times than the usual consumption pattern
or the temperature in the buildings is lowered.

• Durability: Minimizing the degradation of different energy resources in the microgrid.
By smooth operation as control actions, the degradation can be minimized.

• Economic: Minimizing the financial costs of the microgrid. Generally, these costs are
based on the import and export of energy with the utility grid. However, maintenance
and operational costs are sometimes included as well.

• Environmental: Minimizing the emission of greenhouse gases. This can be achieved
by maximizing the use of renewable energy sources and, therefore, decreasing the use
of plants that emit greenhouse gases.

• Grid demand: Minimizing the power flow with the utility grid. The overload of the
grid, especially at the peak demand, needs to be reduced. This objective causes a
microgrid to be more self-supplied, i.e., more towards islanded mode.

In Table 2-1, an overview is given of the objectives found in the literature. It can be concluded
that the economic objective is generally included. Discomfort, durability, environmental, and
grid demand objectives are often combined with the economic objective to prevent construct-
ing a distorted picture of the possibilities, e.g., if the grid demand can be improved by 5%,
but the costs of the microgrid will double, this will most likely not result in realistic suitable
solutions. In this thesis, the focus is on the grid demand of the microgrid by considering the
other objectives as well. However, since it is expected that there is no emission of greenhouse
gases by microgrids in 2050 [20], the environmental objective is left out.

2-2 Distributed Energy Resources in Microgrids

In this section, the different distributed energy resources that will be integrated into our
microgrid are presented. Techno-economic aspects of the different resources are evaluated,
and their likelihood of implementation in the future Dutch energy infrastructure is discussed.
If not stated otherwise, the investment costs are based on the year 2050, while the lifetime
and maintenance costs are based on current values since no accurate predictions are available.

E.A. Bartels Master of Science Thesis
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Table 2-1: Overview of the objectives in microgrids found in the literature.

Papers Discomfort Durability Economic Environmental Grid
demand

[11, 17,18,31,37,42] & ✓[65, 96,102,107,133]
[3, 87,97,110] ✓ ✓
[36] ✓ ✓
[5, 6, 68,85,118,135] ✓ ✓
[9, 49,144] ✓ ✓
[21, 129,131] ✓
[78] ✓ ✓ ✓
[100] ✓ ✓ ✓

2-2-1 Energy Storage Systems

An energy storage system captures the energy in the microgrid and converts it to an efficient
form of storage, so it can be used at a later time. Large benefits can be obtained by using these
energy storage systems in the microgrid, e.g., short-term power supply, providing a framework
for integrating renewable energy resources, arbitrage, and grid stability [123]. In the proposed
microgrid, no extra thermal storage is considered apart from the integrated thermal storage
in the Combined Heat and Power (CHP) plant. In this section, two other energy storage
systems that are included in the proposed microgrid are explained, i.e., electrical energy and
hydrogen storage.

Electrical Energy Storage

The most common electrical energy storage system is the battery. Other electrical energy
storage systems that are often used in microgrids are supercapacitors and superconducting
magnetic energy storage. However, these two electrical energy storage systems are mostly
used for fast charge and discharge capabilities for voltage and frequency regulations, i.e.,
primary and secondary control issues in the microgrid [123]. From the different types of
batteries [41,91,123], the lithium-ion battery is chosen due to the high energy density of the
battery and recommendation made in [41]. The disadvantage of this lithium-ion battery is the
high investment costs, as seen in Table 2-2. These investment costs are based on the maximum
capacity of the stored energy of the battery. The maintenance costs are given for every kWh
of energy exchanged during the operational time while implemented in the microgrid without
associated inverter costs [107]. Despite the maintenance costs are relatively low, they can still
have a large impact on the economic costs of the microgrid when the battery is intensively
used. Since the lifetime of a battery is strongly based on the number of cycles, intenser use
of the battery will shorten the lifetime.

Hydrogen Storage

Hydrogen storage is a chemical energy storage system. The main advantage of hydrogen
storage is that hydrogen can be stored in fuel tanks with high energy density resulting in
compact storage that surpasses the energy density of most batteries [94]. However, hydrogen
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Table 2-2: Economic parameters of the battery, electrolyzer, and Photovoltaic (PV) panels
[9, 20,48,93,107,122].

Specifications Battery Electrolyzer PV panels
Lifetime [years] 10 20 40
Investment 300 [e /kWh] 450 [e /kW] 330 [e /kW]
Maintenance [ce /kWh] 7.84 15 ≈ 0

cannot be easily stored due to its low density and needs to be compressed, cooled, or a
combination of both. In this thesis, the hydrogen is stored by compression in a reservoir
connected to the electrolysis system as proposed in [9]. Therefore, the economic parameters
of the hydrogen storage are included in the values for the electrolyzer.

2-2-2 Electrolyzer

Electrolyzers provide a solution to creating hydrogen without the emission of greenhouse gases,
in contrast to the current industrial manner where hydrogen is extracted using petroleum
fuels [80]. Distributed electrolyzers can be implemented in districts to compromise for the
abundance in electrical energy from PV panels and generate hydrogen for the thermal demand
of buildings or fuel cell EVs [20]. It is not specified which fuel cells in the electrolyzer will most
likely be used in the future microgrid, but an approximation is made of the expected best
performing technique. As written in Section 2-2-1, a hydrogen storage tank is integrated into
the electrolyzer. In Table 2-2, an overview is given of the economic costs of an electrolyzer with
a hydrogen storage tank. In this overview, the investment and maintenance costs are based
on the maximum consumed electrical energy to produce hydrogen. Despite the investment
of an electrolyzer is relatively high, the electrolyzer can still be profitable due to its long
lifespan. The maintenance costs are relatively high, e.g., compared to the maintenance of the
battery, but these costs can be compensated by the extra feature the electrolyzer brings to
the microgrid to convert electrical energy to hydrogen. This feature is especially beneficial
in low consumption hours when there is a lot of electrical energy generation, e.g., by the PV
panels. Moreover, it is expected that the maintenance costs will decrease in the future [94].
It is important to mention that the lifetime and maintenance costs are based on the fact that
no fast on and off switching of the electrolyzer will occur.

2-2-3 Photovoltaic Panels

The most common renewable energy source that is applied in a microgrid is solar energy using
PV panels. Micro wind turbines are sometimes used as well [122], but their presence in the
Dutch energy infrastructure is negligible [20]. In many papers, the focus is on introducing PV
panels in a microgrid and therefore lowering the environmental and economic costs [67, 122].
Similar reasoning indicates that PV panels will be highly used in distributed energy networks
in a microgrid in the Netherlands [20] in 2050. A simple physical model can be used to
calculate the generated power from these PV panels [48]:
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PPV(k) = PSTC
Gc(k)
GSTC

[1 + α (Tc(k)− TSTC)] , with

Tc(k) = Tamb(k) + (NOCT− 20)Gc(k)
800

.

(2-1)

The nominal power PSTC, the global irradiance GSTC, and the cell temperature TSTC are
under standard test conditions (1000 W/m2 and 25 ◦C). The air mass coefficient that is
commonly used to characterize the performance of solar cells under standardized conditions
is assumed to be AM1.5. This is almost universal when characterizing terrestrial PV panels
[112]. Furthermore, α is the negative power temperature coefficient, and NOCT the nominal
operating cell temperature. These values are commonly given by the manufactures of the PV
panels. The global irradiance Gc and ambient temperature Tamb at time step k are estimated
to calculate the cell temperature Tc and generated PV power PPV. The above equation
describes the ratio between the produced PV power and the different variables, where the
total effective area of the PV panel is included in the value of the nominal power to be used.

The maximum possible solar irradiance is strongly related to the latitudinal location, the
day of the year, and time of day due to the rotation and revolution of the earth around the
sun [89]. Furthermore, the actual obtained solar irradiance is highly stochastic due to external
influences that will be further discussed in Section 4-2-1, e.g., cloud covering. The tempera-
ture of the solar cells influences the possible electricity production since higher temperatures
decrease the effectiveness of the PV panels.

In Table 2-2, an overview is given of the economic costs of PV panels, where the investment
costs are based on the installed maximum power that can be generated. The future yearly
investment costs of solar panels are low due to the long lifetime of the panels and a strong
expected decrease in the investment costs in the coming years [20]. This aligns with the trend
that has been noticed that every time the cumulative production of PV panels doubled, the
price went down by 25% [50]. The investment costs are based on the installed maximum power
that can be generated. Furthermore, the maintenance costs are assumed to be negligible.
These economic benefits make the implementation of PV panels in the microgrid almost
certain.

2-2-4 Thermal Devices

Two distributed energy sources are used to generate thermal energy within the microgrid, i.e.,
hybrid heat pumps and micro-CHP plants.

Hybrid Heat Pumps

As discussed in Section 2-1-3, heat pumps will be implemented in new buildings. A heat pump
transfers heat energy from a thermal reservoir using electrical energy. The thermal reservoir
can be deep in the ground, transferring heat from the warm soil to the colder building. Great
energy savings can be achieved by using these heat pumps [35]. However, in the existing
buildings, a combination of the boiler and the heat pump will be used due to lack of thermal
infrastructure and isolation [20], the hybrid heat pump. Due to the two different sources
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of energy that can be used to produce heat, hybrid heat pumps have great potential for
increasing the energy savings of the microgrid as well as minimizing the grid demand [35,74].

In Table 2-3, an overview is given of the economic costs of hybrid heat pumps. A distinction is
made for the investment and maintenance costs for hybrid heat pumps that run on ‘green’ gas
or hydrogen. The electric maintenance costs are applicable when electrical energy is used to
generate thermal energy instead of gas. It is important to notice that the expected investment
costs in 2050 will be around 30% higher when hydrogen is used due to the more expensive
system that is needed. The current maintenance costs of the fuel cell make a hydrogen-based
hybrid heat pump highly unlikely to be integrated into the microgrid. However, considering
these maintenance costs will decrease in the coming years [94], these fuel cell-based hybrid
heat pumps are implemented. Fast on and off switching of the hybrid heat pump or switching
from generating energy from thermal or electrical energy will influence the maintenance costs
since start-up and shut-down costs are now integrated into the maintenance costs. Therefore,
fast switching between modes needs to be prevented.

Table 2-3: Economic parameters of a hybrid heat pump and micro-Combined Heat and Power
(µ-CHP) plant [14,20,26,103,107,124,142].

Specification Hybrid heat pump µ-CHP plant
Lifetime [years] 15 10
Investment gas based [e /kW] 620 2,500
Investment hydrogen based [e /kW] 760 2,500
Electric maintenance [ce /kW] 2 -
Gas boiler maintenance [ce /kW] 5 -
Internal combustion engine maintenance [ce /kW] - 1.5
Fuel cell maintenance [ce /h] 64 64

Micro-Combined Heat and Power Plant

In conventional electrical power generation, the byproduct heat is usually wasted. In CHP
plants, using cogeneration technology as seen in Figure 2-1, the heat is captured and can be
used on-site or stored. In a microgrid, smaller variants of the CHP plants are considered,
i.e., micro-CHP or µ-CHP plants. These µ-CHP plants are often a collective name of a
prime mover technology and a thermal storage system to use the excess thermal energy at a
later time. Different prime mover technologies for µ-CHP plants are currently on the market
having different total efficiencies and power-to-heat ratios [90]. In this thesis, µ-CHP plants
with an internal combustion engine are considered when running on ‘green’ gas since it is the
most well-established technology [65]. Moreover, µ-CHP plants with fuel cells are considered
when hydrogen is the energy source. In the current vision of the energy landscape in the
Netherlands, µ-CHP plants will not take a significant role [20] due to the lack of thermal
infrastructure. However, if the focus will shift to more local self-sustaining microgrids, µ-
CHP plants can be implemented to provide better performance. Therefore, µ-CHP plants are
considered in this thesis, but only on a relatively small scale compared to the overall energy
consumption of the microgrid.

In Table 2-3, an overview is given of the economic costs of the µ-CHP plants. By the absence
of data, the investment costs are based on current internal combustion engine investments
and representative of both technologies in the future due to the decrease in economic costs for
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Figure 2-1: Comparison between separate generation and cogeneration [65].

fuel cells [90, 94, 103]. Both prime movers will have acceptable lifetimes of 10 years [26, 103].
The investment costs of the µ-CHP plant are much higher than of the hybrid heat pumps.
However, due to the use of cogeneration as well as the integrated thermal storage, economic
benefits can be obtained resulting in the repayment of these extra investments. The large
difference in maintenance costs for the different technologies in the µ-CHP plant is almost
similar to that of the hybrid heat pump. According to similar reasoning as for the hybrid heat
pump, both technologies for the prime mover are considered in the microgrid. Fast switching
on and off of the µ-CHP plant should be avoided since it causes an increase in maintenance
costs and a decrease in the lifetime of the µ-CHP plant [59].

2-3 Electric Vehicles

Combustion engine vehicles will be replaced by EVs in the coming years [20]. In this section,
the two different types of EVs are briefly explained that are considered in this thesis, i.e.,
battery and fuel cell EV. Then, smart EV management strategies are explained and the
response of the EVs on these strategies.

2-3-1 Types of Electric Vehicles

The battery EVs are assumed to have lithium-ion batteries due to their higher energy density,
longer durability, and higher power density compared to other suitable types of batteries [8].
The fuel cell EV that is powered by hydrogen is assumed to use a proton exchange membrane
fuel cell due to their high power density, efficiency, and low operating temperature facilitating
the swift start-up of the vehicle compared to other fuel cells [80]. Although battery EVs
currently dominate the EV market, fuel cell EVs are expected to obtain a large share in the
market [20] because their price will be competitive to that of the battery EVs by the year
2030 [94]. Moreover, fuel cell EVs can be more attractive than battery EVs due to their faster
charging time and higher range [94].

2-3-2 Electric Vehicle Management

Smart EV management can be implemented in a microgrid where smart charging or refueling
of the EV is done and the EV can be used as an energy storage system or power plant when
parked. Due to these strategies, a microgrid can be more flexible and self-sustainable, i.e.,
less power exchange with the utility grid will be needed [9,36,86,100,129]. Moreover, the EV
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can provide energy in times of great energy demand, reducing the peak of electrical energy
demand [86]. The three EV management strategies in a microgrid are [86]:

1. Vehicle-to-home: In vehicle-to-home, the EV can give power to the home grid in case
of high energy prices or when there is a shortage in energy supply. This structure mostly
contains a single EV and smart home [86]. This strategy is the most simple strategy
but the least flexible since it mostly considers the energy flow of a single household.

2. Vehicle-to-vehicle: In this strategy, a group of EVs share their power among each
other. Vehicle-to-vehicle is mainly executed in large parking lots. This framework is
considered less simple but more flexible in comparison with vehicle-to-home [86].

3. Vehicle-to-grid: In vehicle-to-grid, EVs are connected and exchange power to the
energy grid [86]. This strategy focuses on large groups of EVs and utilizes smart homes,
parking lots, and fast-charging stations for their power exchange. This strategy has a
flexible framework and can provide better results than the other strategies [86], but the
current low use of EVs and missing infrastructure result in the hard implementation of
it [52].

In this study, vehicle-to-grid is chosen since a microgrid is considered with a large amount of
EVs and the assumption is made that in a future scenario, the implementation of it will be
possible. Moreover, this strategy can provide the most beneficial results on the performance
of the microgrid [36,130].

2-3-3 Response to Electric Vehicle Management

The response to EV management is different for battery and fuel cell EVs. To the best of our
knowledge, the difference between those EVs has not been researched yet. Existing literature
on the EV management strategies can be found, however, it is applied exclusively to battery
EVs [3, 18, 36, 78, 85, 100, 129] or fuel cell EVs [9]. For both types of EVs, promising results
were obtained using these strategies, i.e., increase of the performance of the microgrid for
economic, environmental, and grid demand objectives.

A consequence of these strategies is the increase in degradation of the battery or fuel cell in
the EVs [43,129,141]. Therefore, generating much electrical energy to the microgrid from the
EVs as well as the frequent switching on and off of the EV should be prevented. Furthermore,
when the EVs are in stationary mode, i.e., when they can be used for generating electricity,
they only operate at partial load. For the battery EV, the most important reason for that is
to prevent the accelerated degradation of the battery due to intensive usage [129]. For fuel
cell EVs, to operate at partial load is specifically necessary to guarantee that the on-board
utilities of the vehicle will still be able to regulate the fuel cell’s temperature [9].

Lastly, the use of these management strategies results in fear of the users that the EV will
not be sufficiently charged upon departure, i.e., range anxiety [52]. On the other hand,
assuring that the EVs will be fully charged upon departure will increase the conservatism in
the microgrid, resulting in less performance for certain objectives, e.g., for the economic and
grid demand objective. Therefore, constraints are set assuring enough electrical energy or
hydrogen will be present in the EV upon departure.
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Figure 2-2: Different changes in the consumption pattern due to demand response programs [81].

2-4 Demand Response

Since the introduction of renewable energy sources in the microgrid, the power supply in
microgrids has lost some of its flexibility due to the stochastic nature of these sources. For
balancing the generation and consumption of energy, the focus shifted more to controlling
the loads in the microgrid, rather than controlling the energy generation [105]. DR programs
can be used to control these loads, i.e., the energy demand of the buildings, and change the
consumption pattern of the consumers. This change in the consumption pattern is realized in
different ways, as shown in Figure 2-2. Due to the participation in a DR program, the peak of
energy demand can be lowered, more consumption can be insinuated during low consumption
times, loads can be shifted, and flexible load shaping can be realized [16, 69, 72]. The energy
demand of buildings is divided into three different categories to distinguish the possibilities
of control for these loads. These categories, whereof the latter two can be controlled using a
DR program, are [98,115,135]:

1. Critical loads: Loads that have to be met at all times, e.g., refrigerator.

2. Curtailable loads: Loads that can temporarily be lowered or switched off, e.g., heating
of the building.

3. Rescheduable loads: Loads that can be shifted in time with two different subcate-
gories:

(a) Uninterruptible loads: Loads that have to complete their task when started,
e.g., dishwasher.

(b) Interruptible loads: Loads that can be interrupted when started, e.g., charging
of an EV.

How the consumption pattern needs to change depends on the different objectives for the
microgrid. For DR programs in microgrids, three general objectives are most common [16]:
discomfort, economic, and grid demand. Besides, combinations of these objectives are used as
a single objective to realize desired results [16]. As concluded in Section 2-1-4, these objectives
will all be considered in the microgrid.

2-4-1 Demand Response Programs

Different DR programs can be implemented to control the loads in the microgrid and can be
classified into two categories: price-based programs and incentive-based programs. In the first
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category, the price of energy consumption for the consumers alters over time that influences
the consumption pattern. Therefore, utilities create an enticement to reduce electrical energy
consumption at a particular time frame. In the second category, consumers have to change
their consumption patterns to be awarded with certain incentives. Thus, the utilities pay the
consumers for their participation in certain programs [1,2,69,119]. The incentive-based direct
load control is chosen as a DR program since it can provide good performance on lowering
the peak of electrical energy transfer and is suitable for the low consumption consumers
considered in the microgrid [2]. In this program, the utility has a degree of control over the
energy demand of the consumer. It must be noted that the implementation of DR programs
is at the expense of comfort and certain investment costs [4,69,127], of which the investment
costs are not included in this study.

2-4-2 Consumer Response

Commercial and residential consumers react differently to DR programs and their incentives.
Residential consumers are more responsive to DR programs because a great part of their load
is curtailable or rescheduable [69,96]. However, it is important to consider the preferences of
residential consumers, e.g., not turning on the washing machine in the middle of the night
due to noise pollution. The desire of commercial consumers to respond to DR programs
highly depends on the share of their electricity bill in their total costs and their discomfort
costs for participation in DR programs [69]. The commercial consumers respond less to DR
programs than residential consumers, despite their higher energy consumption [96]. Due to the
industrial nature of commercial consumers, they are not able to reschedule many loads [145],
i.e., due to the fixed hours where many commercial consumers operate, there is low flexibility,
and the available incentives to reschedule their loads are not strong [69]. Due to the relatively
little response and strong economic incentives needed for commercial consumers, it is chosen
that only residential consumers will participate in the DR program.

2-5 Conclusions

In this chapter, the electric and thermal microgrid is presented and discussed. A future
hydrogen-based microgrid is constructed for the year 2050. The different distributed energy
resources in this microgrid are discussed. Furthermore, the role of EVs in the microgrid is
analyzed and it is concluded to use vehicle-to-grid as a smart EV management strategy in the
microgrid. It is chosen to implement direct load control as a DR program for the residential
consumers in the microgrid. How these distributed energy resources and smart strategies will
function in the microgrid is further explained in Chapter 3.
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Chapter 3

Microgrid Modelling

A hybrid model is used to describe the dynamics of the microgrid. In this hybrid model,
there is an interaction between continuous and discrete dynamics of the system, e.g., the
different charging and discharging modes having their own dynamics for a battery. The
model is rewritten to a mixed logical dynamical model to tackle the nonlinearities in the
hybrid model, as in [9, 65, 107]. In a mixed logical dynamical model, the system is described
by linear dynamic equations subject to linear mixed-integer inequalities, i.e., inequalities
involving both continuous and binary variables [19]. Due to the fact that no nonlinear mixed-
integer inequalities are present in the system anymore, the computational complexity of the
problem is generally decreased.
In this chapter, the different components in the microgrid and the connection to the utility
grid are firstly described. Secondly, the stochastic processes present in the microgrid are given
and it is described how they will affect the modelled microgrid. Thirdly, the modelling of
the Demand Response (DR) program is presented. Lastly, different constraints are explained
that are modelled in the microgrid. Note that in this chapter, the modelling of the micro-
grid is written in piecewise affine form for the sake of readability. However, in the actual
implementation, a mixed logic dynamical model has been used.

3-1 Components in the Microgrid

In this section, the models of the different components in the microgrid are given. The
dynamics of the components are given and it is explained how certain values of the dynamics
are determined, e.g., travel schedule for the Electric Vehicle (EV). Moreover, the connection
to the utility grid is modelled. In Appendix A, a descriptive overview is given of rewriting
the presented piecewise affine models to mixed logic dynamical models.

3-1-1 Energy Storage Systems

Two energy storage systems in the microgrid are modelled besides the integrated thermal
storage in the µ-Combined Heat and Power (CHP) plant, i.e., the battery and hydrogen
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storage system. The distinction between these two systems is that for the hydrogen storage
system, the charging and discharging efficiency are assumed to be 100% since the efficiencies
are already incorporated in the electrolyzer. Therefore, the modelling is slightly different as
will be explained in this subsection.

Battery

The dynamics to determine the stored energy in a battery xbat at the next time step k + 1,
depend on the different mode the battery is in, i.e., the battery is charging or discharging.
If the binary variable δbat(k) = 1, the battery is charging and if δbat(k) = 0, the battery is
discharging. Therefore, the battery can be described by the following equation:

xbat(k + 1) =
®

xbat(k) + ηc
batubat(k), if δbat(k) = 1

xbat(k) + 1
ηd

bat
ubat(k), if δbat(k) = 0 ,

where ubat is the exchanged electrical energy, ηc
bat the charging efficiency, and ηd

bat the dis-
charging efficiency. The state of the battery and the electrical energy exchanged to or from
the battery cannot exceed their minimal and maximal bounds, i.e., xbat ≤ xbat(k) ≤ xbat
and ubat ≤ ubat(k) ≤ ubat. Moreover, an extra constraint on the energy transfer is set to
distinguish if energy is coming in or leaving the battery, i.e., if the battery is in charging or
discharging mode. Therefore, the constraint δbat(k) = 1⇐⇒ ubat(k) ≥ 0 is added.

Hydrogen Storage Tank

Since no charging and discharging efficiencies are considered in the hydrogen storage tank,
the model is much simpler compared to that of the battery. No logic binary variables need
to be used to describe the dynamics for the amount of hydrogen stored in the tank xhst:

xhst(k + 1) = xhst(k) + uhst(k),

where uhst is the exchanged hydrogen. Similar to the battery, bounds are set on the amount
of stored and exchanged hydrogen, i.e., xhst ≤ xhst ≤ xhst and uhst ≤ uhst ≤ uhst.

3-1-2 Electrolyzer

The electrolyzer converts consumed electrical energy uelc into hydrogen Helc when the system
is on. When the system is off, the electrolyzer will not produce any hydrogen. Therefore,
using the logic variable δelc, the system at time step k can be described as on or off, i.e.,
δelc(k) = 1 or δelc(k) = 0, respectively. The electrolyzer can be written as

Helc(k) =
ß

αelcuelc(k), if δelc(k) = 1
0, if δelc(k) = 0 ,

where αelc is the model parameter related to the specifications of the system as proposed
in [9]. The amount of electrical energy that is consumed is constrained by 0 ≤ uelc(k) ≤ uelc.
If the electrolyzer is turned off, the consumed electrical energy needs to be zero, i.e., δelc(k) =
0 =⇒ uelc(k) = 0.

E.A. Bartels Master of Science Thesis



3-1 Components in the Microgrid 19

3-1-3 Hybrid Heat Pump

The hybrid heat pump produces thermal energy QHP by consuming electrical energy uel
HP,

gas ugas
HP, or hydrogen uhyd

HP , as explained in Section 2-2-4. Since the model is similar for gas
and hydrogen, it is presented as a hybrid heat pump that consumes electrical energy and gas.
Two logic binary variables are introduced to represent if at time step k the hybrid heat pump
is running on electrical energy

(
δel

HP(k) = 1
)
, on thermal energy (δgas

HP(k) = 1), or if the system
is off

(
δel

HP(k) = δgas
HP(k) = 0

)
. Therefore, the hybrid heat pump can be modelled as

QHP(k) =


ηel

HPuel
HP(k), if δel

HP(k) = 1 ∧ δgas
HP(k) = 0

ηgas
HPugas

HP(k), if δel
HP(k) = 0 ∧ δgas

HP(k) = 1
0, if δel

HP(k) = δgas
HP(k) = 0

,

where ηel
HP is the electrical efficiency and ηgas

HP the efficiency of burning gases such as hydrogen.
The maximal consumed energy is constrained by the equations 0 ≤ uel

HP(k) ≤ uel
HP and

0 ≤ ugas
HP(k) ≤ ugas

HP. The consumption of energy, electrical or gas, will be zero if that mode
is off, i.e., δel

HP(k) = 0 =⇒ uel
HP(k) = 0 and δgas

HP(k) = 0 =⇒ ugas
HP(k) = 0. Since the hybrid

heat pump will not consume electrical energy and uses the boiler at simultaneous time, a
constraint is added that the logical binary variables cannot both be equal to one at time step
k, i.e., δel

HP(k) + δgas
HP(k) ≤ 1.

3-1-4 Micro-Combined Heat and Power Plant

The µ-CHP plant produces electrical PCHP and thermal energy QCHP simultaneously. More-
over, a thermal storage unit is integrated with an amount of energy stored xCHP. The produc-
tion of energy depends on the amount of consumed gas or hydrogen uCHP. Similarly to the
hybrid heat pump, two logic binary variables are introduced to indicate whether the µ−CHP
system is turned on or off, i.e., δCHP(k) = 1 or δCHP(k) = 0 at time step k, respectively. The
system of a µ-CHP plant can therefore be described by

PCHP(k) =
ß

ηel
CHPuCHP(k), if δCHP(k) = 1

0, if δCHP(k) = 0

xCHP(k + 1) =
ß

xCHP(k) + ηth
CHPuCHP(k)−QCHP(k), if δCHP(k) = 1

xCHP(k)−QCHP(k), if δCHP(k) = 0

,

where ηel
CHP and ηth

CHP are the electrical and thermal efficiency of the plant. The consumed
energy and stored energy are bounded by 0 ≤ uCHP(k) ≤ uCHP and xCHP ≤ xCHP(k) ≤ xCHP.
The minimum stored thermal energy needs to be higher than a determined threshold xCHP >
0. Furthermore, the consumed energy is zero if the system is turned off at time step k, i.e.,
uCHP(k) = 0⇐⇒ δCHP(k) = 0.

3-1-5 Electric Vehicles

The dynamics of the two different EVs are modelled based on the model of a fuel cell EV
described in [9]. Their main underlying difference in dynamics is the conversion of hydrogen
to electrical energy in the fuel cell EV. Moreover, the transportation schedules and the energy
costs per trip of the EVs in the microgrid are presented.
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Battery Electric Vehicle

The battery EV dynamics are based on the dynamics of the battery but include more modes
since the EV can be in transportation. The EV can be refilled with electrical energy, generate
electrical energy to the microgrid, be in transportation, and arrive after its trip. The amount
of electrical energy stored in the battery EV xBEV is based on the electrical energy uBEV
transferred and the energy costs of a trip hBEV. The model of the battery EV is written as

xBEV(k + 1) =



xBEV(k) + ηc
BEVuBEV(k), if refilling

xBEV(k), if no generation
xBEV(k) + 1

ηd
BEV

uBEV(k), if generation
xBEV(k), if transportation
xBEV(k)− hBEV(k), if arrival

, (3-1)

where ηc
BEV and ηd

BEV are the charging and discharging efficiencies, respectively. Constraints
are set on the total energy storage of the battery xBEV ≤ xBEV(k) ≤ xBEV as well as on the
transferred energy uBEV ≤ uBEV(k) ≤ uBEV. The value of the transferred energy is managed
in a similar way as in the battery: uBEV(k) ≥ 0 ⇐⇒ refilling mode, and uBEV(k) < 0 ⇐⇒
generation mode. Note that, as explained in Section 2-3-3, the charging and discharging of
the EV will be done at partial load. Furthermore, constraints are introduced to prevent the
battery EV from being in different modes simultaneously.

Fuel Cell Electric Vehicle

The fuel cell EV is modelled in similar way as the battery EV to estimate the amount of
hydrogen xFEV in the tank. However, a difference is that the refilled energy uhyd

FEV and energy
costs of a trip hFEV are expressed in hydrogen, while in generation mode electrical energy
uel

FEV is produced. Furthermore, the dynamics of the battery in the battery EV are replaced
by the dynamics of a fuel cell to get the model for a fuel cell EV [9]:

xFEV(k + 1) =


xFEV(k) + uhyd

FEV(k), if refilling
xFEV(k), if no generation
xFEV(k)−

(
αFEVuel

FEV(k) + βFEV
)

, if generation
xFEV(k), if transportation
xFEV(k)− hFEV(k), if arrival

,

where αFEV and βFEV are the model parameters of the fuel cell in the EV. These model
parameters are based on the specifications of the fuel stack in the EV [10, 113]. Constraints
are set on the hydrogen storage, transferred hydrogen, and the electrical energy transferred,
i.e., xFEV ≤ xFEV(k) ≤ xFEV, 0 ≤ uhyd

FEV(k) ≤ uhyd
FEV, and 0 ≤ uel

FEV(k) ≤ uel
FEV, respectively.

The maximum generated electrical energy is based on the fact the fuel cell will operate at
partial load when in generation mode. Furthermore, constraints are introduced to prevent
the fuel cell EV from being in different modes simultaneously.
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Trip Characteristics

A stochastic part for the EV modelling is the trip pattern as well as the fuel costs of these
trips. Assumptions need to be made to model these stochastic processes. For real data on the
arrival and departure time of EVs, a data set of charging patterns of EVs in the Netherlands
form ElaadNL has been obtained. These charging sessions can be clustered into three groups
by the method described in [111]: charge-near-home, park-to-charge, and charge-near work.
In this method, the charging sessions are clustered based on the duration of charging and the
time of the day. Furthermore, it is concluded in [111] that the arrivals are earlier in the summer
and spring than in the autumn and winter. Moreover, people stay out of home longer during
weekends resulting in later arrival times compared to the weekdays. The obtained data set is
clustered and the charge-near-home data are used to describe different arrival and departure
time patterns for the EVs in the microgrid.

The energy costs per trip are calculated based on the average kilometres driven per year.
The yearly average driven distance per vehicle in the Netherlands was 12,984 kilometres in
2018 [33]. In the obtained data set, the charging frequency of vehicles was around one session
a day. Therefore, it is calculated that per trip an average of 35.57 kilometres is driven. In
this reasoning, it is assumed that the driving behaviour will not change when switching from
internal combustion engine vehicles to EVs. From [111], it is estimated that 54.4% of the
charging sessions are charge-near-home sessions. Therefore, not all the energy for the EV
will be refilled in the microgrid, but also at work or in public charging poles elsewhere. It is
assumed that 19.35 kilometres worth of fuel is the average energy cost per trip for the EVs
in the microgrid. Since different vehicles will have different driving patterns, a multivariate
random Gaussian sampling is used to obtain different trip costs for different EVs.

Important assumptions are made to describe the above trip characteristics. It is assumed that
the arrival and departure times are known and that every single EV has its unique constant
driven kilometres per trip. The stochastic properties of the trip characteristics are therefore
neglected and the model is simplified. This will result in less realistic performance of the
microgrid. However, since the large trips on average are home to work distances that are on
daily basis and similar for most weekdays, the reality is closely approached. Moreover, the
smaller trips, e.g., to the local grocery store, will not take long and do not use much fuel.
Therefore, their influence on the performance of the microgrid will be relatively small. In
conclusion, this assumption simplifies the model but it is expected that it will not lead to
a radical different performance of the microgrid. A recommendation in future work is to do
include the stochastic behaviour of the EVs if sufficient data are available, as is proposed in
Section 7-3.

3-1-6 Utility Grid

The microgrid remains connected to the utility grid at all times. Therefore, it is able to
import or export electrical energy, hydrogen, or ‘green’ gas at a certain price. To model the
utility grid, a binary logic variable δUG is introduced to determine if energy uUG is bought
(δUG(k) = 1) or sold (δUG(k) = 0) to the utility grid at time step k with uUG(k) ≥ 0 ⇐⇒
δUG(k) = 1. The economic costs CUG for the microgrid, from the imported and exported
energy with the utility grid, are modelled as
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CUG(k) =
ß

cP(k)uUG(k), if δUG(k) = 1
cS(k)uUG(k), if δUG(k) = 0 ,

where cP(k) and cS(k) are the purchase and sale price of energy at time step k, respectively.
The transferred energy is constrained by the maximum allowed energy transfer between the
microgrid and the utility grid, i.e., uUG(k) ≤ uUG(k) ≤ uUG(k).

Energy Price

For the purchase and sale price of electricity, a time-of-use price is computed. The electrical
energy price varies greatly throughout the day and shows strong weekly patterns. Therefore,
a weekly import price is computed for every time step during the week based on the national
data of the Netherlands from Entsoe of previous years [45]. A 20% increase in this price is
added due to rising electrical energy price [20]. The purchasing price of hydrogen and ‘green’
gas is fixed throughout the day based on the data of [20]. The sale price of energy is assumed
to be equal to the net import price, i.e., excluding taxes and transportation costs. The ratio
of this net import price to the import price is based on the data of [66].

3-2 Stochastic Processes

Different stochastic processes are present in the microgrid and affecting the system dynamics
as external disturbances. Their behaviour has to be modelled and identified to account for
these external disturbances. In the microgrid the following stochastic processes are present:

1. Electrical energy demand of the residential buildings (Pres).

2. Thermal energy demand of the residential buildings (Qres).

3. Electrical energy demand of the small commercial buildings (Pcom).

4. Thermal energy demand of the small commercial buildings (Qcom).

5. Electrical power generation of the Photovoltaic (PV) panels (PPV).

Forecasting models are needed to identify the behaviour of these stochastic processes. How-
ever, these forecasting models contain errors that have to be considered in the model. There-
fore, at every time step a difference is present between the forecasted and real values of
the stochastic processes. Different control strategies that will be covered in Chapter 5 will
consider these errors and their uncertainty. A low level controller needs to be implemented
to compensate for this difference in forecasted and real values of the stochastic processes.
In the model of the microgrid, the actual value of the stochastic process is formulated as a
summation of the point forecast (̂·) and its error (̃·) as
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Pres = P̂res + P̃res,

Qres = Q̂res + Q̃res,

Pcom = P̂com + P̃com,

Qcom = Q̂com + Q̃com,

and PPV = P̂PV + P̃PV.

The detailed behaviour of these stochastic processes and how they are forecasted are discussed
in Chapter 4.

3-3 Demand Response

The electrical and thermal demand of the residential buildings will participate in the DR
program direct load control. Therefore, the utility has a degree of control over a part of the
residential load. This section presents how the curtailed and rescheduled load is modelled.

3-3-1 Curtailable Load

Curtailable loads Dc can temporarily be lowered or switched off. The variable βc(k) with
0 ≤ βc(k) ≤ 1 shows the percentage of preferred power level to be curtailed at time step k.
Thus, if no curtailment is allowed, βc(k) = 0 at time step k [107]. In the model it is assumed
that a part of the thermal energy can only be lowered against discomfort costs, i.e., that the
temperature in the building becomes lower than preferred, or higher in hot climates. The
curtailed load Qc is expressed by

Qc(k) = βc(k)Dc(k).

3-3-2 Rescheduable Load

Rescheduable loads Dr can be shifted in time, but in contrast to the curtailable loads, they
have to be fulfilled after a certain time. These loads are divided, as explained in Section 2-4,
into two subcategories: uninterruptible and interruptible loads. In this thesis, only uninter-
ruptible loads are considered. However, the smart charging of EVs due to the implementation
of the EV management strategies can be considered as an interruptible load in the microgrid.

Fractions of the electrical and thermal energy are considered to be rescheduable. The only
electric devices that are considered to be rescheduable are dishwashers. These devices are
chosen due to their regular consumption pattern and their time of use. Dishwashers are used
in the evening where, in general, large peaks of electrical energy demand are visible. Similar
as to the curtailable load, a variable βr(k) with 0 ≤ βr(k) ≤ 1 is introduced to indicate the
percentage of preferred level to be rescheduled at time step k. This results in the equation of
rescheduled load for electrical and thermal energy demand as

Pr(k) = βel
r (k)Del

r (k) and Qr(k) = βth
r (k)Dth

r (k),
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where Pr and Qr are the rescheduled electrical and thermal load, respectively. These resched-
uled loads have to be consumed at other time steps. Since these loads are uninterruptible
ones, they have to be satisfied in consecutive time steps. The amount of load that is con-
sumed at each time step is a constant denoted as Del

rc or Dth
rc for the electrical and thermal

energy, respectively. A binary variable δrc is introduced to determine if the rescheduled load
is consumed (δrc(k) = 1) or not (δrc(k) = 0) at time step k. This leads to a constraint of the
consumed rescheduled load per time step as

Prc(k) = Del
rcδ

el
rc(k) and Qrc(k) = Dth

rc δth
rc (k),

where Prc(k) and Qrc(k) are the consumed electrical and thermal energy at time step k. It is
assured that the energy is uninterruptedly consumed by the constraints:

δel
rc(k)− δel

rc(k − 1) ≤ δel
rc(τ), with τ = k + 1, . . . , k + T el

rc − 1,

δth
rc (k)− δth

rc (k − 1) ≤ δth
rc (τ), with τ = k + 1, . . . , k + T th

rc − 1,

where T el
rc and T th

rc are the time needed for the unsatisfied rescheduled electrical lel
r and thermal

load lthr to be fully consumed, respectively. The unsatisfied rescheduled loads are updated at
each time step to estimate how much electrical and thermal load needs to be consumed as

lel
r (k) =

k−1∑
i=1

Pr(i)−
k∑

i=1
Prc(i),

lthr (k) =
k−1∑
i=1

Qr(i)−
k∑

i=1
Qrc(i).

The rescheduled load has to be consumed before reaching a defined time step F . For example,
a dishwasher can be rescheduled in the evening to a later time step, but one wants that the
program is done by the coming morning. Therefore, no unsatisfied load should be present at
that time step, i.e., lel

r (F el) = 0 and lthr (F th) = 0.

3-4 Constraints

In the microgrid, several main constraints are introduced besides the more practical ones
explained in previous sections. To prevent the fast degradation of multiple devices in the
microgrid a constraint is introduced. Furthermore, to tackle the problem of range anxiety
introduced by smart EV management, constraints are set on the storage of fuel in the EV.
Lastly, the power balance in the system is presented that guarantees the energy saturation in
the microgrid.

3-4-1 Degradation

To tackle the problem of fast degradation for multiple components in the microgrid, a con-
straint is added as introduced in [107]. A constraint is set on the minimum time the system is
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turned on TON or off TOFF. In this constraint, binary logic variables are introduced to define
if the system is on (δ = 1) or off (δ = 0). Note that in the previous section, these modes
were respectively the charging and discharging mode of the battery and battery EV. The
constraint is expressed without resorting to any additional variable as

δ(k)− δ(k − 1) ≤ δ(τ), with τ = k + 1, . . . , k + TON − 1,

δ(k − 1)− δ(k) ≤ 1− δ(τ), with τ = k + 1, . . . , k + TOFF − 1.
(3-2)

The first line in this equation ensures the system satisfies the minimal ‘on time’ and the second
line the minimal ‘off time’. This constraint is used to prevent fast switching between modes
in the battery, electrolyzer, µ−CHP plant, hybrid heat pump, and both types of EVs. For
the hybrid heat pumps, both for thermal energy generated by electrical energy consumption
and by gas, the constraint is added. Moreover, for the EVs, this constraint is introduced for
both the modes refilling and generation.

3-4-2 Range Anxiety

The use of EV management results in fear of the users that the EV will not be sufficiently
charged upon departure, i.e., range anxiety [52]. In the model, it is chosen that it is not
necessary that the EV should be fully charged upon departure since this will lead to conser-
vative results and the exact departure time is generally not known in real life. However, the
following constraint is introduced to ensure a certain state of charge xt

EV is reached when the
vehicle turns into transportation mode

(
δt

EV = 1
)
:

xEV(k) ≥ xt
EVδt

EV(k),

where xEV(k) is the fuel storage of the EV at time step k. Since not all trips are known
beforehand, one wants to ensure as well that enough fuel is in the EV before the EV will be
generating electricity to the microgrid. Therefore, another constraint is added that assures
a minimal state of charge xg

EV in the EV is set before the EV can be in generation mode
(δg

EV = 1):

xEV(k) ≥ xg
EVδg

EV(k),

where xg
EV < xt

EV.

3-4-3 Power Balance

The different types of energies in the microgrid have to be balanced at every time step. A
constant ratio between energy and power at each time interval is assumed due to the constant
sampling time. In the microgrid, different types of energies are considered: electrical energy,
thermal energy, hydrogen, and ‘green’ gas. The power balances are given using the variables
introduced in the previous sections as
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uel
UG(k) + PPV(k) + PCHP(k) + uel

FEV(k) = Pres(k) + Pcom(k) + Prc(k)− Pr(k)
+ ubat(k) + uBEV(k) + uelc(k) + uel

HP(k),
QCHP(k) + QHP(k) = Qres(k) + Qcom(k) + Qrc(k)−Qr(k)−Qc(k),
ugas

UG(k) = ugas
CHP(k) + ugas

HP(k),

uhyd
UG(k) + Helc(k) = uhyd

CHP(k) + uhyd
HP (k) + uhyd

FEV(k).

(3-3)

In above equations, (·)el, (·)gas, and (·)hyd represent the energy that is generated or consumed
as electricity, gas, and hydrogen, respectively. For almost all the power balances a connection
to the utility grid that can act as an infinite buffer is present. The net imbalance of the
microgrid can be compensated by importing or exporting more energy from the utility grid.
The thermal power balance does not have this connection. However, since the generation
of thermal energy is more of a conversion of other types of energy to thermal energy, the
connections to the utility grid in the other power balances act indirectly as an infinity buffer
for the thermal power balance.

3-5 Conclusions

In this chapter, it is explained how the electric and thermal microgrid is modelled. Firstly, the
different components in the microgrid are modelled using binary logic variables representing
their different modes. In the modelling of the EVs it is assumed that the trip characteris-
tics are known beforehand. This assumption simplifies the model but it is concluded that
these assumptions will not result in a radical difference in the performance of the microgrid.
Secondly, the stochastic processes are listed and their influence on the model is discussed.
Forecasting models are needed to determine the predicted values and corresponding errors of
these processes. Thirdly, DR for residential buildings is modelled where a distinction is made
between curtailable and rescheduable load. Only thermal energy is chosen to be curtailed, but
both electrical (dishwashers) and thermal energy are able to be rescheduled. Lastly, general
constraints are added to the model. To tackle the degradation of different components in the
microgrid, a constraint is set on the minimal time this component has to stay in the same
mode. Furthermore, constraints tackling range anxiety are included to prevent the state of
charge of the EVs to be too low in the point of view of the consumers when set for departure.
The last added constraint is the power balance wherein the energy balance of the microgrid
is assured.
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Chapter 4

Forecasting of Stochastic Processes

In this chapter, different forecasting models are presented to forecast the stochastic processes
in the microgrid. These processes are the Photovoltaic (PV) power, electrical and thermal
energy demand of residential buildings, and electrical and thermal energy demand of com-
mercial buildings. Firstly, the different models are presented and explained. Secondly, these
models are analyzed for each stochastic process and the best model is chosen. Lastly, sce-
narios are generated for the stochastic processes based on the distribution of the forecasting
error, including the underlying interdependence structure of the prediction errors.

4-1 Point Forecasting

In point forecasting, unique values are forecasted for a stochastic process. The different ap-
proaches for point forecasting can be divided into physical-based, statistical-based, and hybrid
models. In general, physical approaches use numerical weather prediction and the forecast
is calculated from a physical model. In statistical approaches, historic data measurements
are used to train a model. Using online available data, a forecast is generated by the trained
model. The hybrid approach uses a combination of a physical and statistical approach. A
naive approach called the persistence approach is often compared to the more advanced mod-
els and serves as a benchmark model. An overview of these models in the literature is given
in Figure 4-1.

In this thesis, it is chosen to use the persistence approach and different statistical approaches.
Three different statistical models are used: two conventional approaches, i.e., linear regres-
sion and a seasonal autoregressive integrated moving average with exogenous inputs, and an
Artificial Neural Network (ANN). In this section, the motivation behind and explanation of
these models are presented. All the models are evaluated by the root mean square error and
weighted average prediction error. These metrics are chosen since the root mean square error
penalizes large outliers that will influence the performance of the microgrid considerably, and
the weighted average prediction error gives a more general overview of the prediction error.
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Point
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Figure 4-1: Overview of different point forecasting techniques found in the literature.

4-1-1 Persistence Approach

The persistence approach is a naive approach that assumes that the forecast values are the
same as past observed values, e.g., for PV power generation, the solar irradiance during the
day is similar to that of the previous day for each time step. For the energy demand of
buildings, an assumption can be made that the value for next time steps are similar to the
previous time step. However, increasing the forecasting horizon will significantly reduce the
accuracy of the model [132]. For day-ahead forecasting, a day-to-day persistence method can
be used [116]. Due to its naive approach and simplicity, the model is generally used as a
benchmark model.

4-1-2 Linear Regression

Linear regressions are widely used to forecast simple models that have an underlying linear
correlation structure in the time series. This model is often used due to its simplicity. When
nonlinear relationships describe the correlations in the time series better, a more complex
estimation method should be used [62]. The forecasted values are based on the measured
values of previous time steps and can include seasonality. Exogenous influences can be added
as a linear time series to the model. Drawbacks of this method are the poorer performance
compared to smarter forecasting models for complex processes and the fact that data should
be stationary to use the model. The model is trained by using historic data to calculate the
coefficients for the constructed linear regression model.

4-1-3 Autoregressive Moving Average

A conventional statistical approach model used for forecasting is the autoregressive moving
average model based on the Box-Jenkins method [25]. This model shows reliable predictions
when there exists an underlying linear correlation structure in the time series. Furthermore,
a favorable aspect of the model is its flexibility, since it can represent multiple types of time
series by using different orders [132]. A main difference with the linear regression model is
that it includes the moving average. Therefore, unobserved errors of previous forecasts are
included for predicting the value of the next time steps. With the autoregressive moving
average model, one assumes that the data show no characteristics of non-stationarity [38].
When non-stationarity data are considered, a generalization of the model can be used by
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creating an autoregressive integrated moving average model. Inherent seasonal effects of the
data can be added to the model by adding seasonality to the model. Lastly, exogenous inputs
with a high correlation to the forecasting data can be added to improve the performance of
the model. Considering all extensions, a seasonal autoregressive integrated moving average
model can be constructed as

ϕp(L)ΦP(Ls)∇d∇D
s Xt = θq(L)ΘQ (Ls) εt + βkx′

k,t.

In the above equation, the P, D, and Q are the seasonal autoregressive order, seasonal
difference order, and seasonal moving average order, respectively. The quantity ϕp(L) is the
regular autoregressive polynomial of order p and θq(L) the regular moving average polynomial
of order q, while ΦP(Ls) is the seasonal autoregressive polynomial of order P and ΘQ(Ls) the
seasonal moving average polynomial of order Q. Furthermore, L is the lag operator, Ls is the
seasonal lag operator, Xt represents the forecast variable, ∇d the differentiating operator, ∇D

s
the seasonal differentiating operator, and εt white noise. The exogenous part in the equation
is βkx′

k,t, where x′
k,t is the exogenous input and βk the coefficient value of the exogenous input

of the kth exogenous input variable.

4-1-4 Artificial Neural Network

An ANN is a series of algorithms inspired by the neural network in a biological brain. It is
trained by using a historical data set where it computes nonlinear relationships between the
in- and outputs of the model. In general, an ANN consists of an input layer, output layer,
and multiple hidden layers that make the connection between the input and output layer.
Each layer is composed of one or more neurons where an activation function in the neurons
determines the nonlinear mapping characteristics across the ANN [54]. This approach is
widely used since it does not require mathematical expressions, it is self-learning, easy to
implement, and short online computation time is needed. This approach is especially used for
detecting complex nonlinear relations between the input and output [70]. However, drawbacks
of the model are that it needs a significant amount of historical data to be properly trained
and overfitting may occur [38].

The ANN has many different structures and applications. For forecasting time series, super-
vised learning algorithms are used to train the ANN. In this thesis, a long short-term memory
recurrent ANN, as first introduced in [64], is used to forecast the stochastic processes. Re-
current networks are fundamentally different from the traditional feedforward neural network
since they can establish a temporal correlation between previous information and current
circumstances [76]. Therefore, decisions made at a previous time step influences the deci-
sion for coming time steps in the ANN. These recurrent ANNs are trained by the popular
back-propagation through time. Due to the gradient vanishing or exploring in the training of
the ANN, long-range dependencies are difficult to learn. This problem can be overcome by
using long short-term recurrent ANNs that uses a memory cell to capture these long-range
dependencies [64, 76]. The long short-term recurrent ANNs used in this thesis are modelled
with multiple layers using a mini-batch gradient descent. This is done to increase the training
speed of the ANN compared to the batch gradient descent, but preventing the regularizing
effect of using a stochastic gradient descent where a batch size of one is used. A detailed
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mathematical expression of the long short-term memory recurrent ANN and different gradi-
ent descent methods are found in the Appendix B.

4-2 Photovoltaic Power

For the forecasting of solar energy, a physical model is used since no real data of the energy
generation of PV panels are available. Therefore, variables need to be forecasted as input
to the physical model of Eq. (2-1). Two stochastic processes have to be forecasted: solar
irradiance and ambient temperature. In this section, these two stochastic processes are fore-
casted per hour using weather data from the Koninklijk Nederlands Meteorologisch Instituut
for weather station 240 located near Schiphol [75].

4-2-1 Solar Irradiance

The solar irradiance has seasonal patterns [88] due to the orbit of the Earth around the sun and
the obliquity of the Earth [13]. Furthermore, the stochastic behaviour of the solar irradiance
comes from atmospheric conditions, e.g., cloud cover, and also from irradiance reflected from
the surroundings. Many studies use a clear sky model where the global horizontal solar
irradiance is computed as if it is a clear sky day Gcs

c , i.e., without any clouds [15,44]. Therefore,
the stochastic component is excluded and a clear sky global horizontal solar irradiance can be
obtained for every hour in the year. With these values, the clear sky index τ can be computed
as the normalization of the measured solar irradiance Gc(k):

τ(k) = Gc(k)
Gcs

c (k)
.

Multiple models are available to calculate the clear sky global horizontal solar irradiance,
e.g., Bird’s clear sky model [22]. A poor match between the used data set and the clear sky
days of the Bird’s model was obtained due to unknown measurement errors and the extra
measured reflected irradiation. Therefore, the clear sky model is obtained from the data, and
absent data are computed using a statistical smoothing technique based on weighted quantile
regressions, as presented in Appendix C [15]. In general, a limiting factor of developing clear
sky data is the absence or quality of the data [13], i.e., in the winter there are not many clear
sky observations to train the model and this increases the error of the quantile regression.
Therefore, data of the past 20 years are used, increasing the number of clear sky observations.

In Figure 4-2, an overview is given of the solar irradiance per day and the clear sky indices.
The clear sky indices are assumed to be stationary and can be used for the linear regression
models. In the early and late hours, it is seen that there is a more deviating distribution
resulting in an expected poorer performance on the linear regression forecasting models.
However, the solar irradiance at those time steps is relatively low and will therefore not have
a large impact on the performance of the forecasting models. A yearly trend for the clear
sky indices is visible from the boxplot in Figure 4-3. The distribution of the clear sky indices
differs between seasons and two categories can be defined for which different models can be
constructed: the sunnier spring and summer seasons, and the cloudier winter and autumn
seasons. Note that the outliers visible in the figure are due to mismatches with the clear
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Figure 4-2: In the left graph the distribution of the solar irradiance throughout the day is
presented. In the right graph, the distribution of the clear sky index throughout the day is
presented.
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Figure 4-3: In the left graph, the mean clear sky indices of the last sixteen years are presented
per hour. In the right graph, a boxplot of the clear sky index is presented with respect to the
meteorological seasons of the year.

sky days in early hours and will therefore have a negligible influence on the forecast of solar
irradiance. From the autocorrelation of the clear sky index, as presented in Appendix D, it
is concluded that the indices of one hour and 24 hours earlier influence are most related to
the current clear sky index. The literature has shown that multiple exogenous inputs can
be considered in the forecasting models based on the geographical location: temperature,
humidity, rainfall, snowfall, and wind speed [7, 13, 38, 40, 132]. Another promising exogenous
input is snow that blocks the measured solar irradiance, similar to that it blocks the solar
irradiance coming on the PV panels. In the data set, a logic binary variable indicates if
there is a presence of snow on the ground. The correlation coefficients, given in Appendix D,
between the clear sky indices and exogenous inputs are analyzed, and it is concluded that the
highest correlation coefficients are for the temperature, presence of snow, and humidity.

Linear Regression For the linear regression model, the clear sky index of the current hour
and 23 hours before is used to forecast the clear sky index for the next hour. Thus, the daily
seasonality of the clear sky index is considered in the linear regression. It is analyzed to use
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exogenous inputs for the forecasting model, and only including the snow as exogenous input
results in a smaller forecasting error. This results in the following linear equation for the clear
sky index τ at time step k, where S(k) is binary and indicates the presence of snow:

τ̂(k + 1) = α1τ(k) + α2τ(k − 23) + α3S(k),

with α = [α1, α2, α3] being a vector of the optimized parameters. Two different models are
computed for the two different categories of the seasons. In the sunnier category, where no
snow is expected to fall, α3 is not optimized and set to zero.

Another linear regression model that has the same characteristics as the above model is
computed, but for the first hour of light during the day, persistence forecasting is used. This
is done to obtain less error when the prediction horizon grows due to large errors obtained in
the forecasting for the first light hour of the day.

Seasonal Autoregressive Moving Average A seasonal autoregressive moving average is used
to forecast the clear sky index depending on the previous hour and 24 hours before. Seasonal
differencing is used to compensate for the change in variance throughout different days in the
year, as concluded from Figure 4-3. No differencing is needed between sequential time steps
since τ is assumed to be a stationary variable, as seen in Figure 4-2. Adding exogenous inputs
did not lead to smaller errors for the forecasting model. The model to calculate is described
as

(1− ϕ1L)
(
1− Φ24L24) (1− L24) yt = c + (1 + θ1L)

(
1 + Θ24L24) εt, (4-1)

where L is the lag operator, ϕ the autoregressive parameter, θ the moving average parameter,
ϵt the error, and c a constant value.

Artificial Neural Network A long short-term memory recurrent ANN is used to forecast
the solar irradiance and trained with a mini-batch size of 32 while using the data of the past
48 hours. This model does not use the clear sky indices, but the measured solar irradiance.
Therefore, the day of the year and hour of the day are included as exogenous inputs to
include the measured seasonalities. Furthermore, the temperature and presence of snow are
used as exogenous inputs in the model. Including the humidity in the model resulted in larger
prediction errors on the test data.

Results All the models are tested and the root mean squared error and the weighted average
prediction error are calculated up to a prediction horizon of 18 hours for the year 2013. As a
benchmark model, a persistence model is calculated that assumes the solar irradiance to be
similar to 24 hours before. An overview of the calculated errors is given in Figure 4-4. For
the root mean square error, it is clearly visible that the ANN performs as the best model for
larger prediction horizons. However, the weighted average error is significantly higher. Since
outliers will expect to result in a lower performance of the microgrid due to the large influence
it has on the PV power generation, it is chosen to use the ANN model.
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Figure 4-4: Overview of the calculated errors of the different forecasting models for solar irra-
diance, where linear regression 2 is the model including the persistence forecast, SARMA is the
seasonal autoregressive moving average model, and ANN the artificial neural network.
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Figure 4-5: In the left graph the mean ambient temperature of the last sixteen years is presented.
In the right graph, a boxplot of the ambient temperature is presented with respect to the seasons
of the year.

4-2-2 Ambient Temperature

The ambient temperature shows a clear yearly trend between the seasons, as presented in
Figure 4-5. Therefore, one can consider different models during the year or use seasonal
differencing to overcome this trend. The ambient temperature shows a daily trend as well.
However, to use the linear regression methods, the data are normalized over the mean to
create stationary data respectively to the hour of the day as presented in Appendix D. The
autocorrelation, as presented in Appendix D, is analyzed and it is chosen to use the data from
one to five and 24 hours before for the forecasting. Furthermore, the correlation coefficients
between the ambient temperature and some meteorological exogenous inputs are calculated in
Appendix D. It is concluded that solar irradiance and humidity have the strongest correlation,
but these values are still low. Therefore, it is not expected that adding these exogenous inputs
will lead to smaller errors in the forecasting models.

Linear Regression The linear regression uses the stationary data of the previous five hours
and that of 24 hours ago. For the linear regression, no external variables are considered since
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34 Forecasting of Stochastic Processes

they did not increase the performance of the forecast. The parameters of the linear regression
model are estimated for the four different seasons throughout the year due to the different
characteristics in each season, as concluded from Figure 4-5. The linear regression is written
as

Tamb(k + 1) = αi
1Tamb(k) + αi

2Tamb(k − 1) + αi
3Tamb(k − 2)

+ αi
4Tamb(k − 3) + αi

5Tamb(k − 4) + αi
6Tamb(k − 23),

where Tamb is the temperature on time step k and αi = [αi
1, . . . , αi

6] the predicted vector
parameter for each season i = {winter, spring, summer, autumn}.

Seasonal Autoregressive Integrated Moving Average The nonstationary data set is used
in this model since it obtains a smaller error compared to the normalized data set. Using the
integrated extension on a autoregressive moving average model, the model assumes the data
become stationary after differencing. Seasonality is added in the model to include the daily
seasonality and, therefore, indirectly the strong yearly seasonality. Adding exogenous inputs
to the model did not result in a smaller error in the model and were therefore excluded. The
seasonal autoregressive integrated moving average model uses the same sequence of time steps
as the linear regression and is written down as

(
1− ϕ1L− · · · − ϕ5L5) (1− Φ24L24) (1− L)

(
1− L24) yt =

c +
(
1 + θ1L + · · ·+ θ5L5) (1 + Θ24L24) εt,

where the variables have similar definitions as in Eq. (4-1).

Artificial Neural Network A long short-term memory recurrent ANN is implemented that
uses the temperature data of 48 hours and is trained with mini-batches of size 32. Multiple
exogenous inputs are included in the model: day of the year, the hour of the day, and the
ambient air pressure at sea level. Other exogenous inputs with relatively high correlation,
e.g., solar irradiance, did not improve the model.

Results All the models are tested and the root mean squared error and the weighted average
prediction error are calculated up to a prediction horizon of 18 hours for the year 2013. As
a benchmark model, a persistence model is calculated that assumes the temperature to be
similar to 24 hours before. An overview of the calculated errors is given in Figure 4-6. From
both metrics, it is clearly visible that the seasonal autoregressive integrated moving average
model obtains the smallest error. One should expect the ANN to obtain at least similar
performance, but this could not be obtained.

4-3 Residential Energy Demand

The forecasting of the residential energy demand is done with the Liander data set that is
complete for 67 households for the year 2013 [84]. Data of the 67 households are added to-
gether to create the most general training set and different forecasting models are constructed
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Figure 4-6: Overview of the calculated errors of the different forecasting models for temperature,
where SARIMA is the seasonal autoregressive integrated moving average model and ANN the
artificial neural network.

for the electrical and thermal energy demand. The data for the electrical energy demand are
given per quarter of an hour and the data for the thermal energy demand are given per hour.

4-3-1 Forecasting Models

The yearly trend is analyzed from the data set, assuming 2013 was a general year of energy
consumption for these households. From Figure 4-7, a clear trend is visible in both the
electrical and thermal energy demand. The electrical energy demand is clearly less in the days
when there is more daylight. For the thermal energy demand , even a stronger correlation is
visible with the days in the year. In the colder months, more thermal energy is used and the
distribution is larger in absolute terms. In conclusion, it can be interesting to use different
forecasting models dependent on the season, especially for forecasting the thermal demand,
due to the different data characteristics during the year.

In Figure 4-8, a small variation is visible during weekdays and the weekends for both the
electrical and thermal energy demand. For both demands, more energy is consumed during
the middle of the day at the weekends than the weekdays. People will get up later during
the weekends and will be more at home, consuming more energy. The distinctive residential
energy consumption curve during the day is clearly visible from Figure 4-8. The electrical
energy has a high peak after 18:00 hours when people start to come home from work during
the week. The thermal demand has a more constant distribution during the day, and it is
visible that in the nightly hours, the thermal energy consumption drops significantly.

To use linear regression models, the data are made stationary by normalizing the data through
division by the mean per time step during the day, as visualized in Appendix D. From the
autocorrelation, as presented in Appendix D, it is chosen that for the electrical energy demand
the data of the previous 45 minutes and of 23:45-24:15 hours before are used. For the thermal
demand, the data of the last two hours are used as well as the data of the 23 - 25 hours
before. Correlation coefficients of meteorological exogenous inputs, as presented in Appendix
D, are analyzed, and it is concluded that only a high correlation is obtained between the
temperature and thermal demand.

Master of Science Thesis E.A. Bartels



36 Forecasting of Stochastic Processes

0  40 80 120 160 200 240 280 320 360

Day of the year

0

5

10

15

20

E
le

c
tr

ic
a
l 
e
n
e
rg

y
 [
k
W

h
]

Electrical Demand

0  40 80 120 160 200 240 280 320 360

Day of the year

0

100

200

300

400

500

600

T
h
e
rm

a
l 
e
n
e
rg

y
 [
k
W

h
]

Thermal Demand

Winter Spring Summer Autumn

Seasons

2

4

6

8

10

12

14

16

18

E
le

c
tr

ic
a
l 
e
n
e
rg

y
 [
k
W

h
]

Winter Spring Summer Autumn

Seasons

0

100

200

300

400

500

T
h
e
rm

a
l 
e
n
e
rg

y
 [
k
W

h
]

Figure 4-7: Average yearly trend of the energy demand of residential buildings.
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Figure 4-8: Average weekly trend of the energy demand of residential buildings.
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Linear Regression The stationary data are used for linear regression. Despite the high
correlation coefficient between the temperature and thermal demand, including this exogenous
input did not result in better performance. For the thermal demand, there is a significant
difference in the distribution of the data in the different seasons of the year, as seen in Figure 4-
10. Therefore, a different model will be used for every season to predict the parameters of
the thermal demand. The equations of the linear regressions for the residential electrical and
thermal energy demand are

Pres(k + 1) = αel
1 Pres(k) + αel

2 Pres(k − 1) + αel
3 Pres(k − 2) + αel

4 Pres(k − 94)
+ αel

5 Pres(k − 95) + αel
6 Pres(k − 96)

Qres(k + 1) = αth,i
1 Qres(k) + αth,i

2 Qres(k − 1) + αth,i
3 Qres(k − 22) + αth,i

4 Qres(k − 23)

+ αth,i
5 Qres(k − 24),

(4-2)

where Pres and Qres are the electrical and thermal residential energy demand, respectively.
Furthermore, αel = [αel

1 , . . . , αel
6 ] is a vector of the optimized parameters for the electrical

energy demand and αth,i = [αth,i
1 , . . . , αth,i

5 ] a vector of the optimized parameters for the
thermal demand for different seasons during the year i = {winter, spring, summer, autumn}.

Seasonal Autoregressive Integrated Moving Average In this model, the nonstationary
data set is used since a lower prediction error is obtained compared to the stationary data
set. Moreover, the integrated part is used and it is assumed that the data become stationary
after differencing. Daily seasonal differencing is used to include the yearly seasonality. No
exogenous inputs are considered since they did not improve the performance of the model.
The models used for the electrical and thermal energy demand are, respectively,

(
1− ϕ1L− · · · − ϕ3L3) (1− Φ96L96) (1− L)

(
1− L96) yt =

c +
(
1 + θ1L + · · ·+ θ3L3) (1 + Θ96L96) εt and(

1− ϕ1L− ϕ2L2) (1− Φ23L23 − · · · − Φ25L25) (1− L)
(
1− L24) yt =

c +
(
1 + θ1L + θ2L2) (1 + Θ23L23 + · · ·+ Θ25L25) εt.

The variables in the above equation have similar definitions as in Eq. (4-1).

Artificial Neural Network A long short-term memory recurrent ANN is implemented using
data of the past 48 hours and the model is trained with mini-batches of size 32. In both
models, the following exogenous inputs are included: the hour of the day and day of the
week. The day of the year is not included since only data are available of one single year. For
the thermal demand forecasting, the temperature data of the past 12 hours are also included.

4-3-2 Results

All the models are tested and the root mean squared error and the weighted average prediction
error are calculated up to a prediction horizon of 18 hours for the year 2013. As a benchmark
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Figure 4-9: Overview of the calculated errors of the different forecasting models for the residential
energy demands, where SARIMA is the seasonal autoregressive integrated moving average model
and ANN the artificial neural network.

model, a persistence model is calculated that assumes the energy demand to be similar to 24
hours before. An overview of the calculated errors is given in Figure 4-9. From both metrics,
it is concluded that the seasonal autoregressive integrated moving average model obtains the
smallest errors for both energy demands. One should expect the ANN to obtain at least
similar performance, but this could not be achieved due to the lack of training data.

4-4 Commercial Energy Demand

The forecasting of the commercial energy demand is done with the data from De Energiem-
anager commissioned by NEDU [39]. These data give the average energy demand of stores in
the Netherlands in a yearly percentage. The data are for the electrical and thermal energy
demand per quarter of an hour and hour, respectively. Assuming that a general store uses
around 10,000 kWh electricity and 5000 m3 gas per year [140], the demand of a small store
in the Netherlands is calculated during the year. Forecasting models are constructed for the
electrical energy demand per quarter of an hour and for the thermal energy demand per hour.

4-4-1 Forecasting Models

A yearly trend is visible in the electrical and thermal energy demand, as seen in Figure 4-10.
Especially for the thermal demand, a considerable difference in the distribution of the data
per season is visible. Therefore, it might be interesting to use different forecasting models
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Figure 4-10: Average yearly trend of the energy demand of commercial buildings.

dependent on the season. The electrical energy demand for commercial buildings is strongly
influenced by the opening hours of the buildings which differ for weekends compared to the
weekdays, as seen in Figure 4-11. Most of the energy is consumed during the opening hours,
and the electrical energy peak is during the middle of the day. The thermal demand is not
influenced much by the type of day and has a more similar pattern to that of the residential
thermal demand.

To use linear regression models, the data are made stationary by normalizing the data through
division by the mean per time step during the day, as visualized in Appendix D. From the
autocorrelation, as presented in Appendix D, it is chosen that for the electrical energy demand,
data of the previous 30 minutes back in time as well as of 168 hours before (week) are used.
For the thermal energy demand, the data of the previous hour are used as well as of 23-
25 hours before. Correlation coefficients of meteorological exogenous inputs, as presented
in Appendix D, are analyzed, and it is concluded that only a high correlation is obtained
between the temperature and thermal demand.

Linear Regression The stationary data are used for linear regression. No exogenous inputs
were used since they did not result in smaller forecasting error. For the thermal demand,
there is a significant difference in the distribution of the data in the different seasons of the
year, as seen in Figure 4-10. Therefore, a different model will be used for every season to
predict the parameters of the thermal demand. Making two different models for weekdays and
weekends did not improve the model for both the electrical and thermal energy demand. The
equations of the linear regressions for electrical and thermal energy demand of commercial
buildings are
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Pcom(k + 1) = αel
1 Pcom(k) + αel

2 Pcom(k − 1) + αel
3 Pcom(k − 671)

Qcom(k + 1) = αth,i
1 Qcom(k) + αth,i

2 Qcom(k − 22) + αth,i
3 Qcom(k − 23) + αth,i

4 Qcom(k − 24),

where Pcom and Qcom are the electrical and thermal commercial energy demand, respectively.
The other variables having similar definitions as in Eq. (4-2).

Seasonal Autoregressive Integrated Moving Average In this model, the nonstationary data
set is used since it obtained smaller errors compared to the normalized data set. Moreover,
the integrated extension is used and it is assumed that the data become stationary after dif-
ferencing. Daily seasonal differencing is used to include the yearly seasonality. No exogenous
inputs are used since they did not result in lower errors. Different models are constructed for
the electrical energy demand demand for the weekdays and weekends. The model used for
the electrical and thermal energy demand are, respectively,(

1− ϕi
1L− ϕ2L2) (1− Φi

672L672) (1− L)
(
1− L672) yt =

ci +
(
1 + θi

1L + θi
2L2) (1 + Θi

672L672) εt

(1− ϕ1L)
(
1− Φ23L23 − · · · − Φ25L25) (1− L)

(
1− L24) yt =

c + (1 + θ1L)
(
1 + Θ23L23 + · · ·+ Θ25L25) εt.

The variables in the above equation have similar definitions as in Eq. (4-1), with i ={weekdays,
weekends}.

Artificial Neural Network A long short-term memory recurrent ANN is implemented using
data of the previous 24 hours and the same day a week before with mini-batches of size 32 for
the electrical energy demand. For the thermal energy demand, data of the previous 48 hours
are used and the model is trained with mini-bathes of size 24. For both stochastic processes
the hour of the day, day of the week, and day of the year are used as exogenous inputs to the
model. Furthermore, the temperature is added as exogenous input for the thermal energy
demand.

4-4-2 Results

All the models are tested and the root mean squared error and the weighted average prediction
error are calculated up to a prediction horizon of 18 hours for the year 2013. As a benchmark
model, a persistence model is calculated that assumes the energy demand to be similar to 24
hours before. An overview of the calculated errors is given in Figure 4-12. From the figure, it
can be concluded that the ANN performs better for prediction horizons larger than six hours
for the electrical energy demand, i.e., the cumulative error of the linear regression model
exceeds the ANN. Since the prediction horizon will be larger than six hours in the case studies
of this thesis, the ANN is chosen to be the most suitable model. The seasonal autoregressive
integrated moving average model gives an unexpected high error for the electrical energy
demand. The model was able to forecast the weekends accurately, but high errors were
obtained during the weekdays. For the thermal energy demand, it is concluded that the ANN
obtains the smallest errors.
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Figure 4-11: Average weekly trend of the energy demand of commercial buildings.
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Figure 4-12: Overview of the calculated errors of the different forecasting models for the com-
mercial energy demands, where SARIMA is the seasonal autoregressive integrated moving average
model and ANN the artificial neural network.
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4-5 Scenario Generation

By including the expected error of the point forecasting, scenarios can be generated for the
stochastic processes to obtain a more accurate forecast. Before these scenarios can be gener-
ated, distributions of the forecasting errors should be computed by a probabilistic forecasting
model.

Three different types of probabilistic forecasting approaches are mostly used in the literature:
parametric, non-parametric, and ensemble approach. The parametric approach assumes that
the distribution can be approximated by pre-defined distribution structures. For the stochas-
tic processes used in this thesis, this approach is mainly not used or does not show good
performance [53]. Since the different point forecasting methods differ substantially in perfor-
mance, the ensemble approach as described in [70] is not preferable. Hence, a non-parametric
approach is used to describe the distribution. A linear quantile regression, as described in
Appendix C, is computed as a non-parametric model to calculate the quantiles of the error
distribution of each stochastic process. The quantiles are calculated for each distinctive time
step during the day in the prediction horizon. By fitting a smooth curve through the set of
quantiles of each time step during the day in each step in the prediction horizon, a continu-
ous cumulative quantile distribution is obtained. This distribution is inversed to obtain the
cumulative distribution of the error in each hour of the day for the prediction horizon. It
must be noted that possibly more accurate distributions can be obtained with more sophis-
ticated machine learning methods as quantile regression forest, ANNs, or gradient boosting
techniques [83]. However, these methods exceed the goal of this thesis.

From these cumulative distributions, scenarios can be generated for the different stochastic
processes using a sampling-based method. To include the interdependence structure of pre-
diction errors, a method inspired by [109] is used. This method relies on the fundamental
property of reliable probabilistic predictions that the prediction errors can by transforma-
tion be made Gaussian. A unique covariance matrix is made to capture the interdependence
structure for each distribution per hour per time step in the prediction horizon. Using a mul-
tivariate Gaussian random number generator with zero mean and the computed covariance
matrix, scenarios are generated. Note that probably more accurate and complex interdepen-
dence structures can be obtained using the copula theory [109]. A detailed description of this
method is found in Appendix E.

4-6 Conclusions

Different point forecasting models are implemented for the stochastic processes in this thesis:
persistence approach, linear regression, autoregressive moving average, and ANN. The solar
irradiance and ambient temperature are forecasted to calculate the expected PV power. It is
concluded that for the solar irradiance and commercial buildings the ANN obtains the small-
est errors. Seasonal autoregressive integrated moving average models obtained the smallest
errors for the ambient temperature and the residential buildings. For the forecasting of the
residential energy demand, this can be explained due to the lack of a large training data set.
Lastly, scenarios are generated using linear quantile regression to compute the error distribu-
tions and a multivariate Gaussian random number generator, including the interdependence
structure of the different stochastic processes.
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Chapter 5

Control Strategies

Different control strategies are used in the literature for the tertiary control problem within a
microgrid. An important aspect in these control strategies is how to deal with the errors in the
stochastic processes of Chapter 4. In some studies, optimal scheduling models are used to solve
the scheduling problems for the tertiary control of a microgrid in, e.g., a day-ahead scenario.
These algorithms use a predefined control structure to decide when it is the best time for
certain appliances in the microgrid to be operated to obtain the best performances [137]. The
advantages of such methods are their low complexity and easy implementation. However,
improvements in the performance can be obtained by using closed-loop scheduling models
as Model Predictive Control (MPC) [17, 107, 131]. In this chapter, firstly, nominal MPC
and a low-level controller to adjust for the errors in the forecasts are introduced. Secondly,
stochastic MPC strategies are introduced that might improve the performance of the microgrid
by including the uncertainties of the point forecasts. Lastly, the control objective of the
optimization is given.

5-1 Model Predictive Control

MPC is a widely used control strategy since its adoption in the process industry [95]. This
adoption was mainly due to the conceptual simplicity of MPC and the ability to easily handle
complex systems with hard constraints on the system as well as on the inputs. In this
section, the principles of nominal MPC are explained and a low-level controller is introduced
to compensate for the errors in the forecasts.

5-1-1 Nominal

There has been a vast amount of literature on nominal MPC for discrete-time systems where
the known states x and inputs u are constrained, described as
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x+ = f(x, u), y = h(x),
x ∈ X, u ∈ U, f ∈ Rn × Rm → Rn, y ∈ Rb, and h ∈ Rn,

(5-1)

with x+ representing the successor states and y the outputs of the system. In this system,
the state is assumed to be observable. At each event of the state or time, the optimal control
problem is solved while simulating future states in a receding horizon fashion. The length of
the finite-horizon, wherein these future states lie, is called the prediction horizon. For this
prediction horizon, a control sequence is computed with the length of the control horizon.
The first control of the computed sequence is implemented in the system and the process is
repeated for the next control step. Due to this method, future output in the chosen prediction
horizon can be considered while choosing the control input. Increasing the control horizon
can improve the performance of the optimal control problem, but increases the computation
time.

The use of MPC on hybrid systems is not as extensively researched as standard linear processes
with linear constraints [27]. The main drawback of hybrid systems is the computational
burden due to the introduction of the integer variables in the optimization. The complexity
is NP-hard and to test if a new feasible solution improves the best one so far is an NP
problem [27]. Another drawback is the loss of convexity and it is therefore not known if a
feasible solution is the global optimum.

5-1-2 Low-Level Controller

No constraints satisfaction nor recursive feasibility can be guaranteed by using the nominal
MPC due to the errors in the point forecasts, i.e., violations of the constraints can occur [95].
For example, the rescheduled Qr and curtailed thermal energy Qc can exceed the maximum
defined fraction of the real consumed thermal energy. Moreover, due to the errors in the
forecast, a difference occurs in the electrical and thermal power balance of Eq. (3-3) due to
differences in the stochastic processes PPV, Pres, Pcom, Qres, and Qcom. An online low-level
controller is assumed to be available to adjust for these discrepancies.

This low-level controller adjusts the maximum possible thermal energy that can be resched-
uled and curtailed. Then, it checks if an abundance or shortage of thermal energy is present.
A shortage of thermal energy is compensated by burning extra imported ‘green’ gas or hydro-
gen using the hybrid heat pumps. If this is not possible, extra electrical energy is consumed
by the heat pumps to generate the thermal energy. During an abundance of thermal energy,
similar steps are taken but the abundance in gas or hydrogen is subtracted from the imported
quantity. The electrical energy difference is computed out of the error of the electrical stochas-
tic processes and the extra electrical energy needed for the hybrid heat pumps. The utility
grid compensates for this electrical energy difference by purchasing or selling electrical energy.
Feasibility is assumed to be ensured since there are no constraints on the imported energy
and the hybrid heat pumps can provide more thermal energy than the maximum thermal
demand measured in the historic data. A more detailed description of the low-level controller
is given in Appendix F.
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5-2 Stochastic Model Predictive Control

Due to the errors in the point forecasts, the system in Eq. (5-1) is not necessarily stable, i.e.,
infeasibility can occur [56, 95]. To prevent this, the system can be described as a perturbed
model containing additive disturbances w:

x+ = f(x, u, w), y = h(x),
x ∈ X, u ∈ U, w ∈W, f ∈ Rn × Rm → Rn, y ∈ Rb, and h ∈ Rn.

(5-2)

The disturbance can be bounded or described by a mathematical formulation, e.g., probability
distributions. Different extensions on the nominal MPC are possible to deal with the uncer-
tainties of the point forecasts for the stochastic processes. In this section, a brief comparison
is made between robust and stochastic MPC. Furthermore, two stochastic MPC methods
that can deal with the nonlinearities of the mixed-integer linear programming problem are
explained and adapted to the control of the microgrid in this thesis [47]: scenario-based and
tree-based MPC. Note that in these stochastic MPC methods, the low-level controller from
Section 5-1-2 will still be applied.

5-2-1 Robust versus Stochastic

The two different methods considering the uncertainty, as described in Eq. (5-2), are robust
and stochastic MPC. In robust MPC, the uncertainty is assumed to be bounded and for all
required realizations of the disturbances w = {w(0), w(1), . . . , w(N − 1)} ∈WN the control
constraints need to be satisfied [95]. This guarantees feasibility for the bounded disturbances
but results in a conservative solution. To decrease the conservatism of the results, stochastic
MPC will be used in this thesis where the constraints are assumed to be stochastic. In this
method, the constraints are softened, i.e., the constraints do not need to be satisfied for
all possible realizations of the disturbances [95]. In the optimization of stochastic MPC, a
trade-off is made between the control performance and the probability of state constraint
violation [60].

5-2-2 Scenario-Based Model Predictive Control

In the scenario-based approach, the state distribution is approximated by generating scenar-
ios. A single finite-horizon input trajectory is computed that is feasible for all the sampled
scenarios, i.e., the state constraints should hold for all the sampled scenarios [117]. The finite-
horizon input trajectory is calculated by the cost function that computes the state and input
costs over the prediction horizon as an average over the scenarios as

min
u

Ns∑
i=1

J (xi, u) , (5-3)

where u describes the control inputs, Ns the number of scenarios, J the cost function, and
x the states. A high number of scenarios is needed to obtain good performance, but one
has to keep in mind that the computational complexity increases greatly with the number of
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scenarios. Furthermore, an infinite number of scenarios would converge to the performance
of the nominal MPC with the point forecasting prediction. Erratic behaviour of sampled
scenarios with unlikely outliers will influence the results much since it has to be feasible for
all scenarios. One can choose to decrease the number of generated scenarios to exclude these
outliers [117]. Another more efficient method is to use posterior scenario removal methods
that can be used to obtain less conservative results [28]. Since highly unlikely outliers have
a small chance of occurring due to Gaussian random number generator that is based on the
cumulative distribution of the point forecast, and a more robust controller is preferred, it is
chosen not to implement scenario removal.

Differences between the scenarios for the power balances from Eq. (3-3) will occur. To assure
feasibility, some control inputs influencing the electrical and thermal power balance should
be different for each scenario or a feasible bound for the constraints should be defined. For
the electrical power balance, the utility grid will act as a buffer. Each scenario has its ‘own’
electric utility grid regulating the transfer of electrical energy. For the thermal power balance,
the thermal energy generated for each scenario will be different. The hybrid heat pumps will
be in the same mode for each scenario, but their electrical energy or gas consumed will be
different for each scenario. It was also considered to determine a bound where a single control
input for the electric utility grid and heat pumps could be used for all scenarios. However,
the disadvantage is that the bound would be highly influenced by single outliers resulting in
poorer performance and is therefore not used.

5-2-3 Tree-Based Model Predictive Control

Tree-based MPC uses similar reasoning as scenario-based MPC wherein the state distribution
is approximated by the generated scenarios. However, in tree-based MPC, these scenarios
share a common history up to a branching node as seen in Figure 5-1. For each scenario, a
unique control sequence is computed, but the control trajectories are equal for scenarios up
to the bifurcation point where they branch from each other. This is done to reduce the large
number of decision variables, decreasing the computational complexity of the problem. To
ensure that the control trajectories are similar for scenarios up to their branching point, a
non-anticipative constraint is introduced

ui(k) = uj(k), with k = (1, . . . , min(Bij, Np)), ∀i, j ∈ (1, . . . , Ns), (5-4)

with Np the prediction horizon, u(k) the control inputs at time step k, and Bij the branching
point of the scenarios i and j. Furthermore, the control inputs and the stochastic values for
all scenarios are the same in the tree root, i.e., the first time step. Therefore, a single control
input can be implemented in the closed-loop system. The optimization problem that needs
to be solved is almost similar to that of scenario-based MPC as in Eq. (5-3), only multiple
different control sequences are considered for the scenarios as

min
u1,...,uNs

Ns∑
i=1

J (xi, ui) ,
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Figure 5-1: An illustrative example of a scenario tree [31].

Tree-based MPC is computationally more complex than scenario-based MPC, but less conser-
vative since the control sequence only has to satisfy the constraints related to the disturbances
in its branch.
The same scenarios are used as for scenario-based MPC. The scenarios have to be clustered
to generate the tree structure. Many different clustering algorithms can be used as described
in [61, 82, 134]. It is chosen to cluster the scenarios based on bounds without a predefined
structure, i.e., the scenarios merge if there values lie too close to each other. The following
steps are taken to obtain the tree structure from the generated scenarios:

1. For time step k = 1, the median value is calculated and is implemented as the root
value for all scenarios.

2. A bound ∆ is defined wherein scenarios will be merged based on a determined percentage
of the average prediction error of the stochastic process.

3. At time step k it is checked if scenarios share a common history, i.e., are still in the
same branch at time step k. Multiple clusters are made of scenarios sharing a common
history.

4. For each cluster, the median value µ is calculated.

5. If a scenario of cluster n at time step k lays outside the bound µn ± 1
2∆, it branches

from that cluster. All the branched scenarios from cluster n form a new cluster i.

6. The median is calculated for cluster i and all the scenarios that lie within the bound
µi ± 1

2∆ are assigned to a new cluster. For the remaining scenarios, this procedure is
repeated until all scenarios are assigned to a new cluster.

7. Steps 3–6 are repeated for every time step 1 < k ≤ Np.

Since there are multiple stochastic processes in the microgrid, it is chosen to construct two
trees, i.e., an electric and thermal tree. The constructed scenarios of the commercial and res-
idential electrical energy consumption are added to the Photovoltaic (PV) power generation,
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Figure 5-2: An example of 15 electric scenarios used in scenario-based (left) and tree-based
model predictive control(right).

and the commercial and residential thermal energy consumption are added to each other.
The structures of the trees should be similar to obtain feasibility using the non-anticipative
constraint from Eq. (5-4). Therefore, the above described algorithm is used for constructing
the electrical energy tree, and the obtained structure is copied to the thermal one. In Fig-
ure 5-2, it is seen how this method concludes in a tree structure of the generated scenarios
for the electrical energy demand. A recommendation for future work is made in Section 7-3
on how to obtain the optimal trade-off between multiple stochastic trees in tree-based MPC.
This optimal trade-off might improve the performance of the microgrid in comparison with
copying the structure of one tree to the other, as done in this thesis.

5-3 Objective

A multi-objective optimization problem is defined considering the grid demand Jgd, economic
Jeco, discomfort Jdis, and durability Jdur objectives. In this section, it is written how the
different objectives are constructed that sum up the multi-objective function J as

J = αJeco + βJdis + γJdur + λJgd,

with α, β, γ, and λ being arbitrary predefined weights.

Economic

The economic costs of the microgrid are represented by the energy transfer costs of the
microgrid. Operational costs caused by the increase in maintenance can in general be included
[107], but is chosen to exclude them due to the difficult assumptions that need to be made to
approximate these costs in the future microgrid. If these assumptions were made, they would
influence the performance of the microgrid considerably, e.g., the operating costs of hydrogen-
based components is currently much higher than these of electric-based ones. Therefore, the
economic objective is written down as

Jeco =
Np∑
k=1

Ä
Cel

UG(k) + Cgas
UG(k) + Chyd

UG (k)
ä

,
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where Cel
UG, Cgas

UG, and Chyd
UG are respectively the economic costs of the transferred electrical

energy, ‘green’ gas, and hydrogen.

Discomfort

The discomfort for the consumers in the microgrid will mainly be influenced by the use of
demand response. Furthermore, the range anxiety is included by penalizing a lower state
of charge of an Electric Vehicle (EV). Another low penalization is placed on the amount of
energy in the battery and hydrogen storage tank. This is penalized in a similar way as for
the state of charge of the EVs. The discomfort objective can be written as

Jdis =
Np∑
k=1

(
ρcβc(k) + ρel

r βel
r (k) + ρth

r βth
r (k) + ρEV

NEV

(
NBEV∑

i=1

xBEV,i − xBEV,i(k)
xBEV,i

+
NFEV∑
i=1

xFEV,i − xFEV,i(k)
xFEV,i

)
+ ρbat

xbat − xbat(k)
xbat

+ ρhst
xhst − xhst(k)

xhst

) (5-5)

where ρc, ρel
r and ρth

r are the penalty weight on curtailment and rescheduling of the electrical
and thermal energy, respectively. The variables ρEV, ρbat, and ρhst are the penalties given on
the state of charge of the total number of EVs (NEV), the battery, and the hydrogen storage
tank, respectively. The number of battery and fuel cell EVs in the microgrid are respectively
noted as NBEV and NFEV

Durability

Frequent use of the EVs in vehicle-to-grid will result in faster degradation of these EVs.
Despite fast degradation is partly prevented by the constraint in Eq. (3-2), a penalization is
still applied to the use of the EVs in vehicle-to-grid for giving energy to the microgrid, to
increase the durability of the EVs, as

Jdur = 1
NEV

Np∑
k=1

(
NBEV∑

i=1

zg
BEV,i(k)
zg

BEV,i
+

NBEV∑
i=1

uel
FEV,i(k)
uel

FEV,i

)
, (5-6)

where zg
BEV = δg

BEVuBEV is chosen as introduced for the mixed logical dynamical modelling
in Appendix A, where δg

BEV indicates if the battery EV is in generation mode as explained in
Eq. (3-1).

Grid Demand

The maximum value of the electrical energy exchange per time step is penalized to reduce the
needed investments in the electrical grid. Therefore, the absolute maximum energy transfer
of the electricity is minimized using the weight ρgd. An auxiliary variable ζel

ug is introduced
to maintain the linear objective function using zel

UG = δel
UGuel

UG as introduced for the mixed
logical dynamical modelling in Appendix A. This results in the grid demand objective as

Master of Science Thesis E.A. Bartels



50 Control Strategies

Jgd = ρgd ·max
k
|uel

UG(k)| = ρgd · ζel
UG, with

ζel
UG ≥ 2zel

UG(k)− uel
UG(k), k = 1, . . . , Np.

5-4 Conclusions

An MPC framework will be used to optimize the performance of the microgrid. A nominal
MPC structure that considers the point forecasting values is used and a low-level controller is
developed to adjust for the errors in the forecast during the optimization. Furthermore, two
stochastic MPC methods that consider the uncertainty of the point forecasts, scenario- and
tree-based MPC, are implemented. For these stochastic methods, scenarios are generated
considering their interdependence structure between time steps in the day and prediction
horizon. A tree structure of the scenarios is constructed based on bounds. Moreover, the
control objective is described as containing an economic, discomfort, durability, and grid
demand component.
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Chapter 6

Simulations and Results

In this chapter, simulations are done in different case studies to obtain results to answer
the research question of this thesis. The set-up of the case studies is formulated. Three
scenarios that consider different levels of penetration of hydrogen in the microgrid are defined.
Furthermore, the differences between the case studies and an overview of the performance
indices are presented. Specifications of the simulations and assumptions made in this thesis
are presented as well. Then, the results of each case study are discussed. Both conclusions on
the different performances of the constructed scenarios and on the performance of stochastic
Model Predictive Control (MPC) strategies are made.

6-1 Setup of the Case Studies

In this section, firstly, a microgrid is formulated for each scenario. Secondly, the case studies
and their differences are presented. Thirdly, the performance indices are formulated. Then,
an overview of the main assumptions made in this thesis is presented. Lastly, the details of
the simulations are discussed.

6-1-1 Microgrids

The microgrids in the case studies consist of the distributed energy resources listed in Section
2-2. The number of distributed energy resources and their maximum power is partly chosen
by making a realistic investment based on the energy demand and partly by obtained ratios
from data.

Buildings To estimate the energy demand of the microgrid, the number of buildings in the
microgrid is chosen. A ratio of 42:1 for residential to small commercial buildings is calculated
based on data in Amsterdam [12]. Therefore, it is chosen to construct a microgrid with
42 residential buildings and one small commercial building. It is chosen not to include more
buildings since this will increase the computation time due to an increase of decision variables.
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52 Simulations and Results

Demand Response In each residential building, a dishwasher, with an energy consumption
of 0.78 kWh that is used five times a week, is chosen to participate in the Demand Response
(DR) program as rescheduable load. Furthermore, 10% of the real consumed thermal energy
demand in residential buildings can be rescheduled and another 10% curtailed.

Electric Distributed Energy Resources Photovoltaic (PV) panels are installed on each
building with an average power of 3.34 kW, estimated from the research done in [20]. This
yields a 143.62 kW maximum power of solar panels in the microgrid. A district battery with
a maximum storage capacity of 500 kWh and a maximum power of 150 kW is considered.
It is assumed that the battery does not discharge below 10% of its maximum capacity and
has a charging and discharging efficiency of 90%. An electrolyzer is used with a maximum
power consumption of 25 kW containing an integrated hydrogen storage system of 500 kg. It
is assumed that the storage level does not drop below 5% of the maximum storage. Since an
efficiency of the electrolyzer of 70% and a heating value of hydrogen of 39.4 kWh/kg [9] are
assumed, the model parameter αelc is estimated to be 0.02 kg/kWh.

Thermal Distributed Energy Resources A hybrid heat pump is installed with a maximum
power of 20 kW. The efficiency for the electric part is 400%, assuming similar ground temper-
atures as in the United Kingdom [55]. The boiler in the hybrid heat pump that burns gas has
an efficiency of 90% for both ‘green’ gas and hydrogen. Furthermore, a 5 kW µ-Combined
Heat and Power (CHP) plant is installed with a thermal storage capacity of 70 kWh. The
efficiency for the electrical energy and thermal energy are 22.5% and 67.5% for the µ−CHP
plant with an internal combustion engine, respectively, and both 45% for the µ−CHP plant
with a fuel cell.

Electric Vehicles The current ratio for the number of vehicles per building is 1.09 [32]. In this
thesis, it is chosen to lower this ratio for the future scenario and a single Electric Vehicle (EV)
per household is considered. Battery EVs with a charging and discharging efficiency of 90%
and a maximum battery storage capacity of 100 kWh are used. Their charging or discharging
power is set to be a maximum of 16 kW. The fuel cell EVs in the microgrid have a fuel storage
of 7 kg of hydrogen with a refilling rate of 2 kg/h. Since this EV operates on partial load
in the microgrid, the maximum power is set to be at 15 kW. The model parameters αFEV
and βFEV for the fuel cell EVs are based on the model of fuel cell stacks in [113] and are
determined to be 0.06 kg/kWh and 0.11 kg/h, respectively [9].

Scenarios

Three scenarios with a different level of penetration of hydrogen in the microgrid are consid-
ered. The energy and thermal demand is similar for each scenario. Therefore, a fair compar-
ison can be made about how the introduction of hydrogen to the microgrid will influence the
performance. The following three scenarios are considered:

1. Electric: In this scenario, no hydrogen is present in the microgrid, excluding the pres-
ence of the electrolyzer with an integrated hydrogen storage tank and fuel cell EVs.
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The hybrid heat pumps and µ-CHP plant can run on ‘green’ gas that is imported from
the utility grid.

2. Mixed: This scenario is based on the expected microgrid assuming the developments
explained in Section 2-1-3. Both electric- and hydrogen-based components are present
in the microgrid. However, no ‘green’ gas is considered since hydrogen will be using the
current natural gas infrastructure. Using both gases will lead to an extra gas network
that is preferred to be avoided since the extra investments needed will probably overrule
the potential profit. Therefore, the hybrid heat pumps and µ-CHP plant will contain
fuel cells to run on hydrogen instead of the ‘green’ gas. Furthermore, the electrolyzer
with an integrated hydrogen storage tank is included in the microgrid. Both types of
EVs are present and a ratio of 1.5:1 for the battery to the fuel cell EVs is used [20].

3. Hydrogen: In this scenario, a largely hydrogen-based microgrid is sketched. The
microgrid consists of almost the same distributed energy resources as in the mixed
scenario, only the battery is excluded from the microgrid. Furthermore, all the battery
EVs are replaced by fuel cell EVs.

A schematic overview of the scenarios is found in Appendix G. In Table 6-1, the difference in
the fixed investment costs due to the different distributed energy resources in each scenario
is presented. These investment costs are based on the specifications presented in Section 2-2.
Introducing hydrogen in the microgrid increases the investment costs by 9.15%. This increase
is due to including the electrolyzer with an integrated hydrogen storage tank and changing
the hybrid heat pumps to run on hydrogen instead of ‘green’ gas. Especially the investment
costs for hydrogen-based hybrid heat pumps are high and contributed to approximately 90%
of the increase in investments. For the hydrogen scenario, the battery is excluded, decreasing
the investment by 24.36% compared to the mixed scenario. These differences in the fixed
investment costs need to be acknowledged when concluding on the scenarios in the case
studies.

Table 6-1: Fixed investment costs for the distributed energy resources in the microgrid for the
different proposed scenarios in the year 2050.

Scenario Electric Mixed Hydrogen
Investment costs yearly [e ] 56,410.70 61,570.70 46,570.70
Investment costs weekly[e ] 1,081.85 1,180.81 893.14

6-1-2 Difference in Case Studies

Three case studies are considered that represent different energy demand and generation
patterns. A strong difference for the energy demand and PV power generation throughout
the year is concluded from the analysis of the stochastic processes in Chapter 4. Therefore,
it is chosen to simulate a typical winter and summer week in the Netherlands. These two
case studies are analyzed, and it is concluded what type of week the most energy transfer
between the microgrid and utility grid is expected. Then, a week with extreme conditions
is constructed where the most energy transfer between the microgrid and utility grid is ex-
pected. This case study indicates the minimum electrical energy grid investment needed to
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guarantee the reliability of the microgrid. From these different case studies, an overview of
the average costs during the year can be sketched based on the summer and winter case study.
Furthermore, the minimum electrical energy grid investments can be obtained by the extreme
condition case study.

6-1-3 Performance Indices

The performance of the tertiary control of the microgrid is measured by quantitative and
qualitative performance indices. In the quantitative performance indices, the performance is
measured in economic costs. The qualitative performance indices are estimated as a ratio
between 0 and 1, resembling a better performance with a higher value. An overview of these
different performance indices for the simulation time T are:

Quantitative performance indices

• Electrical grid investment: The peak of electrical energy transfer is translated to
variable economic investments needed to be paid by the energy suppliers following the
current prices of Stedin in 2020 [121]. It is assumed that for all the microgrids a
‘MS’ connection [121] is established with its corresponding fixed investments. Hence,
economic costs can be associated with the rise of the peak electrical energy transfer,
i.e., e 2.4147 per month (Tm) per maximum transferred energy in kW. This results in
the equation for the electrical grid investment as

EGI = 2.4147 · T

Tm
ζel

UG

• Energy import costs: The netted economic costs of the microgrid by purchasing and
selling energy is calculated as

EIC =
T∑

k=1

Ä
Cel

UG(k) + Cgas
UG(k) + Chyd

UG (k)
ä

Qualitative performance indices

• Comfort level: The discomfort costs as estimated in the objective function in Eq. (5-
5) are rewritten as a normalized comfort level for the consumers. This comfort level is
estimated by normalizing Eq. (5-5) by its weights, considering the comfort decrease due
to participation in DR, the influence of range anxiety, and battery state of charge. The
comfort level is calculated as

CL = 1− Jdis
ρc + ρel

r + ρth
r + ρEV + ρbat + ρhst

• Durability of EV: The durability of the EVs is influenced by the possible intensive
usage in vehicle-to-grid and is also penalized in the objective function as Eq. (5-6). A
durability ratio for the EVs is calculated that identifies the ratio of vehicle-to-grid used
when not on transportation

(
δt = 0

)
. The durability ratio for the EVs is calculated as
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DEVnum =
T∑

k=1

(
NBEV∑

i=1

(
1− δt

i (k)
) zg

BEV,i(k)
zg

BEV,i
+

NBEV∑
i=1

(
1− δt

i (k)
) uel

FEV,i(k)
uel

FEV,i

)

DEV = 1− DEVnum∑T
k=1

∑NEV
i=1 (1− δt

i (k))

• Electric self-supply: A microgrid can be rated by the ability to use the generated
energy in the microgrid as proposed in [29,30,58], i.e., not selling the energy if there is an
abundance. The electric self-supply performance index calculates the ratio between the
exported and generated electrical energy in the microgrid, where (·)th can be presenting
hydrogen or ‘green’ gas in kWh dependent on the scenario, as

ESS = 1−
∑T

k=1
(
zel

UG(k)− uel
UG(k)

)∑T
k=1 (PPV(k) + PCHP(k))

• Energy independence: The energy independence of a microgrid can be rated by
calculating the ratio of imported energy to the consumed energy [29, 30, 71, 73]. The
energy independence is a measure for self reliance of a microgrid. It explains the ability
of a microgrid to deal with unexpected excessive demand. Similar to the self-supply
performance index, (·)th can be presenting hydrogen or ‘green’ gas in kWh dependent
on the scenario. Furthermore, the trip costs of the fuel cell EVs are also written in
kWh. The energy independence of the microgrid is calculated as

EIden =
T∑

k=1

(
Pres(k) + Pcom(k) + Qres(k) + Qcom(k)

+
NBEV∑
k=1

(hBEV,i(k)) +
NFEV∑
k=1

(hFEV,i(k))

)

EI = 1−
∑T

k=1
(
zel

UG(k) + zth
UG(k)

)
EIden

6-1-4 Assumptions

Different assumptions are made in the simulations in the case studies to simplify the model
or as a result of the absence of data. The main assumptions are:

1. Tertiary control optimization is performed in this study and deals with the long-term
behaviour of the microgrid. It is assumed that the influences of the fast dynamics in the
system are minimal to the performance of the distributed energy resources. Therefore, a
steady-state where no loss of accuracy is considered for the distributed energy resources
in the microgrid is assumed.

2. A constant ratio between energy and power per time step is assumed due to the constant
sampling ∆T = T (k + 1)− T (k).
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3. The energy can flow unconditionally throughout the microgrid. The consumers have
agreed that the central controller regulates the energy flow to optimize the total per-
formance, even when the performance will locally be decreased.

4. The energy demand of the buildings in the microgrid and the energy generated by the
PV panels are available by using the proposed forecasting methods.

5. The central controller can decide the participation in DR actions of the consumers.

6. The specifications of the distributed energy resources in the microgrid related to effi-
ciency are assumed to be similar to current specifications. All the specifications of these
distributed energy resources are known by the central controller.

7. Future arrival and departure times of the EVs are known. Therefore, the controller
knows when the EVs can be used for vehicle-to-grid operations and if they have enough
energy upon departure.

8. The purchasing and sale prices of energy are known and are based on a time-of-use pat-
tern. The electrical energy has a weekly pattern containing different prices at each time
step. The prices of ‘green’ gas and hydrogen are constant throughout the simulation.

6-1-5 Simulations

Each simulation in the case studies consists of eight consecutive days whereof the first day is
used for initialization. Thus, the results are based on the last seven days of the simulation.
The simulation starts on a Monday and ends on the next Monday. It is chosen to use this
order to include the influences of the weekend on the first weekday. Time steps of 30 minutes
are taken to get an accurate model, but decreasing the computational complexity compared
to smaller time steps. The PV power and thermal energy demand are interpolated to obtain
data per 30 minutes. A prediction horizon of eight hours is used since a longer prediction
horizon did not improve the results on the performance indices, sometimes even worse, and
increased the computational complexity.
In each case study, the scenarios are compared to each other using nominal MPC controllers.
A ‘perfect’ controller is included as well that resembles the best performance possible while
assuming point forecasts without errors. Then, the different control strategies are compared
for the mixed scenario to conclude if stochastic MPC control strategies could improve the
performance of the microgrid. The mixed scenario is chosen since it approaches the expected
future microgrid, as sketched in Section 2-1-3. These stochastic MPC control strategies both
used 20 scenarios since for a larger number of scenarios the computation time was decided to
be too long. The energy flows between the microgrid and the utility grid in each simulation
are presented in Appendix H.
The mixed-integer linear programming problem is solved in the Matlab R2020a environment
using Gurobi [57]. A HP EliteBook 8570w with a 2.3 GHz Intel Core i7 processor and 4
GB of RAM is used for the simulations. Different computation times are obtained for the
controllers in each case study and scenario. In general, the computation time increases with
a higher energy demand in the case study. The computation time for the week with extreme
conditions are approximately 3 hours, 11 hours, and 78 hours for the nominal, scenario-based,
and tree-based MPC, respectively.
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6-2 Case Study A: Winter Week

In this case study, an average winter week in the Netherlands is simulated. This week rep-
resents a microgrid with a relatively high thermal energy demand due to the cold ambient
temperatures and lower PV power generation due to the lower solar irradiation in winter than
in summer. Moreover, the electrical energy consumption is higher than in the summer due
to the shorter daylight. It is expected that the microgrids show low energy independence,
resulting in a large amount of energy transfer between the microgrid and utility grid. First
the different results in this case study for the scenarios are discussed. Then, the performances
of the stochastic MPC strategies are compared for the mixed scenario.

6-2-1 Scenarios of Hydrogen Penetration

The introduction of hydrogen to the microgrid results in a lower peak of electrical energy
transfer and, therefore, lowers the investment costs in the electrical energy grid, as concluded
from Table 6-2. The results show a strong decrease in maximal energy transfer of 29.33% and
86.75% while a decrease in electrical energy demand by the replacement of battery to fuel
cell EVs of 8.39% and 26.79% is realized for the mixed and hydrogen scenario, respectively.
However, the energy import costs increase substantially. The hydrogen-based microgrid have a
higher total costs due the higher 80% higher price of hydrogen per kWh than electrical energy.
Moreover, more energy is consumed due to reduce the peak of electrical energy transfer and
the low efficiency of the fuel cell, resulting in even a higher total costs. Decreasing the price of
hydrogen to that of electrical energy only has a marginal effect on the total costs. To reduce
the total costs of the hydrogen-based microgrid it is more appealing to increase the efficiency
of the fuel cells.

For the mixed scenario, a decrease in comfort level is seen compared to the other scenarios in
Table 6-3. From Table 6-5, only a small difference is seen in the use of DR and the decrease
of comfort level is mostly due to the lower state of charge of the EVs, battery, and hydrogen
storage tank. This decrease in comfort level based on the lower state of charge of the EVs
is in line with the decrease in the durability of the EVs for the mixed scenario, i.e., more
intensive use of vehicle-to-grid operations.

The electric self-supply of the microgrids is roughly the same for each scenario. The difference
between the ‘perfect’ and nominal controller for each scenario is due to the exported energy to
adjust for the errors in the forecasts. The high values of the electric self-supply are explained
by the fact that the PV power generation is low in the winter and the generated electrical
energy can be consumed by the microgrid at all times.

The energy independence of the microgrids shows a negative trend for the introduction of
hydrogen, i.e., it decreases with the introduction of more hydrogen in the microgrid. This
decrease is partially caused by the lower efficiency of hydrogen to electrical energy in the fuel
cells used for driving and vehicle-to-grid operations.

A noteworthy observation is made that the thermal energy demand is for more than 98%
satisfied by converting electrical energy to thermal energy for all the scenarios, i.e., almost no
‘green’ gas or hydrogen is consumed to generate thermal energy. Therefore, the µ-CHP plant
is not operating much of the time, resulting in the question if it should be excluded in the
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microgrid resulting in a decrease of investments for the distributed energy resources. This
reasoning also applies to the boiler parts of the hybrid heat pumps. An explanation for this
unexpected result is the higher price of ‘green’ gas and hydrogen in the future compared to
the current price of natural gas. Furthermore, the high efficiency of the electric heat pump
amplifies the difference in economic costs between the gases and electrical energy even more.
These developments cause that it is economically more beneficial to consume electrical energy
than gas for the generation of thermal energy.
In conclusion, the overall performance of the microgrid in winter decreases with a higher
penetration of hydrogen in the microgrid, as seen in Table 6-4. On the other hand, on a
purely economic level, the electrical energy grid investment can be substantially reduced
against extra import energy costs.

Table 6-2: Results of quantitative performance indices for the scenarios in the winter week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
EGI [e ] 358.56 338.03 242.47 238.87 45.09 47.50
EIC [e ] 383.59 408.70 665.60 711.29 1,103.07 1,114.57
Total costs [e ] 743.25 746.73 908.07 950.16 1,148.16 1,162.07

Table 6-3: Results of qualitative performance indices for the scenarios in the winter week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
CL 0.6493 0.6379 0.5811 0.5873 0.6583 0.6320
DEV [103] 0.7512 0.7554 0.62392 0.6230 0.7367 0.7424
ESS 1.0000 0.8448 1.0000 0.8414 1.0000 0.8660
EI 0.6385 0.5956 0.5573 0.5171 0.4345 0.4075

Table 6-4: Calculated relative objectives of the optimizations in the winter week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Objective 1.0000 1.0272 1.3727 1.4474 1.9742 2.0017

Table 6-5: Residential energy demand used in demand response in the winter week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Electrical rescheduled [kWh] 92.74 90.02 96.56 68.88 43.78 72.89
Thermal rescheduled [kWh] 5.65 14.29 13.67 3.73 48.51 38.00
Thermal curtailed [kWh] 848.23 902.37 874.29 893.29 863.84 898.25

6-2-2 Stochastic Control Strategies

The implementation of stochastic control strategies to the mixed scenario increases the overall
performance compared to the nominal MPC strategy, as can be concluded Table 6-8. As
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expected, tree-based MPC performs better than scenario-based MPC. However, one should
remember that the computation time is significantly increased by using tree-based MPC.

A distinction in focus for the different stochastic control strategies is seen from Table 6-6 and
6-7, i.e., while scenario-based MPC tends to focus more on reducing the import costs and
increasing the comfort level, tree-based MPC focuses more on reducing the investments of
the electrical energy grid investments. Moreover, the scenario-based strategy has an overall
increase in economic costs but obtains good results for the comfort level due to the low usage
in DR, as seen in Table 6-9. It is seen that compared to nominal MPC, the implementation
of scenario-based MPC results in more degradation of the EVs, while tree-based MPC results
in less degradation of the EVs.

The electric self-supply and energy independence are both decreased for scenario-based MPC
and increased for tree-based MPC, compared to the nominal controller. These lower values for
these performance indices indicate lower self-reliance of the scenario-based MPC controller.
Note that the energy independence of the microgrids is also partly lowered due to the higher
total energy consumption since almost no thermal energy curtailment is realized.

The difference in focus can be explained by the working principle of the different controllers.
Scenario-based MPC optimizes a single sequence of decision variables for all the generated
scenarios. However, the decision variables representing the behaviour of the electric utility
grid are unique for each scenario. Averaging the cost function stimulates to lower the import
energy costs and DR since they have a similar effect for each scenario, while the peak of
electrical energy transfer changes with a lower relative degree. Thus, these decisions lead to a
lower value for the cost function. Tree-based MPC considers multiple scenarios with their own
decision variables when branched in the prediction horizon Np > 1. Therefore, the controller
decides to import more energy beforehand, i.e., in the implemented control input for Np = 1,
preventing excessive electrical energy transfer for the higher energy demand scenarios. Hence,
more energy is stored and the peak of electrical energy transfer is lowered compared to the
nominal controller. However, this results in buying energy sometimes at a higher cost price,
explaining the increase in import energy costs compared to the nominal controller.

Table 6-6: Results of quantitative performance indices for the different control strategies for the
mixed scenario in the winter week.

Controller Perfect Nominal Scenario Tree
EGI [e ] 242.47 238.87 468.61 193.82
EIC [e ] 665.60 711.29 605.83 718.28
Total costs [e ] 908.07 950.16 1,074.44 912.10

Table 6-7: Results of qualitative performance indices for the different control strategies for the
mixed scenario in the winter week.

Controller Perfect Nominal Scenario Tree
CL 0.5811 0.5873 0.7241 0.5931
DEV [103] 0.6292 0.6230 0.5382 0.6702
ESS 1.0000 0.8414 0.7222 0.9461
EI 0.5573 0.5171 0.4420 0.5191
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Table 6-8: Calculated relative objectives of the different control strategies for the mixed scenario
in a winter week.

Controller Perfect Nominal Scenario Tree
Objective 1.0000 1.0544 1.04054 1.0335

Table 6-9: Residential energy demand used in demand response for the different control strategies
for the mixed scenario in the winter week.

Controller Perfect Nominal Scenario Tree
Electrical rescheduled [kWh] 96.56 68.88 58.90 54.68
Thermal rescheduled [kWh] 13.67 3.73 0.00 15.82
Thermal curtailed [kWh] 874.29 893.29 18.11 907.46

6-3 Case Study B: Summer Week

An average summer week in the Netherlands is used to simulate the performance of the
different microgrids in a relatively low energy demand environment. Furthermore, a large
amount of PV power can be obtained due to the high amount of solar irradiation in the
summer, causing potential problems to the electric self-supply of the microgrid, i.e., too much
energy is generated to consumer or store in the microgrid. It is expected to see a considerable
reduction in the economic costs for the import of energy and investments for the electrical
energy grid. First the different results in this case study for the scenarios are discussed. Then,
the performances of the stochastic MPC strategies are compared for the mixed scenario.

6-3-1 Scenarios of Hydrogen Penetration

Almost similar behaviour between the scenarios is seen for the summer week compared to
the winter week. The introduction of hydrogen lowers the electrical energy grid investments
but increases the imported energy costs, as seen in Table 6-10. Therefore, the total economic
costs of the microgrid increase with a higher level of penetration of hydrogen in the microgrid.
Moreover, this rise in economic costs concludes to a poorer performance of the microgrid, as
concluded from Table 6-12.

For all the scenarios, the electrical energy grid investments are higher in the winter case.
Therefore, it can be concluded that a lower penalization can potentially be used on the
maximum energy transfer in the summer to reduce the other costs. Moreover, it is concluded
that the electrical energy grid investments will not be based on extreme conditions in the
summer but in the winter.

For the qualitative performance indices in Table 6-11, a similar trend is visible for the comfort
level compared to the winter case. The comfort level is mainly based on the stored energy in
the EVs and storage system since almost no energy is used in DR, as seen in Table 6-13. Note
that no thermal energy is rescheduled or curtailed. For a full hydrogen microgrid, a substantial
increase in the durability of the EVs is realized. Furthermore, the energy independence index
lowers considerably while using more hydrogen. This large difference is due to the fact that
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the hydrogen demand of the fuel cell EVs have a large mark on the total energy demand due
to the lower energy demand of the buildings. The electric self-supply is almost the same for
each scenario. Therefore, it can be concluded that each scenario can cope with the abundance
of energy by the PV panels equally well. Similar as to the winter week, almost no ‘green’ gas
or hydrogen is consumed to generate thermal energy.

Table 6-10: Results of quantitative performance indices for the scenarios in the summer week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
EGI [e ] 280.32 271.31 170.88 172.78 12.09 33.54
EIC [e ] 45.95 53.02 190.73 211.45 445.91 510.66
Total costs [e ] 326.27 324.33 361.61 384.24 458.00 544.20

Table 6-11: Results of qualitative performance indices for the scenarios in the summer week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
CL 0.8901 0.8826 0.7431 0.7432 0.8358 0.8258
DEV [103] 0.6705 0.6795 0.6355 0.6349 0.8099 0.8031
ESS 1.0000 0.7973 1.0000 0.8007 1.0000 0.8034
EI 0.7938 0.7073 0.4731 0.3831 0.2481 0.1347

Table 6-12: Calculated relative objectives of the optimizations in the summer week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Objective 1.0000 1.0203 1.5047 1.6320 2.5884 2.8544

Table 6-13: Residential energy demand used in demand response in the summer week.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Electrical rescheduled [kWh] 0.00 14.08 0.00 0.00 3.80 22.09

6-3-2 Stochastic Control Strategies

The stochastic control strategies did not improve the overall performance of the microgrid in
the mixed scenario compared to nominal MPC, as observed from Table 6-16. Scenario-based
MPC originally performed worse but setting constraints on the maximum electrical energy
transfer, i.e., a maximum energy transfer per time step of 50% higher than the computed
maximal energy transfer of the nominal MPC, improved its performance. This reduced the
peak of electrical energy transfer that was computed first but still not enough to provide
better results than the nominal controller. The bad performance of the stochastic control
strategies could be caused by a high difference in the thermal energy since the probabilistic
forecasting in Section 4-5 uses a single cumulative distribution for the entire year. Therefore,
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the scenarios consider unlikely high thermal demands resulting in a decrease in the perfor-
mance for the stochastic control strategies. Improvements could be made by considering a
different cumulative distribution for the thermal demand in the summer. Another explanation
can be that poorer performance for the global objective is obtained since the global objective
of the simulation differentiates from the partial objective during the MPC strategy. This can
occur since the electrical energy grid investment is based on the peak of electrical energy
transfer throughout the whole simulation, but is penalized at each time step. Furthermore,
similar trends between scenario-based and tree-based MPC are seen in Table 6-14 and 6-15
compared to the winter week. No energy is rescheduled or curtailed for all the different control
strategies.

Table 6-14: Results of quantitative performance indices for the different control strategies for
the mixed scenario in the summer week.

Controller Perfect Nominal Scenario Tree
EGI [e ] 170.88 172.78 254.40 156.11
EIC [e ] 190.73 211.46 177.22 227.98
Total costs [e ] 361.61 384.24 431.62 384.09

Table 6-15: Results of qualitative performance indices for the different control strategies for the
mixed scenario in the summer week.

Controller Perfect Nominal Scenario Tree
CL 0.7431 0.7432 0.7452 0.7404
DEV [103] 0.6355 0.6349 0.6710 0.6827
ESS 1.0000 0.8007 0.7347 0.9036
EI 0.4731 0.3831 0.3453 0.3883

Table 6-16: Calculated relative objectives of the different control strategies for the mixed scenario
in a summer week.

Controller Perfect Nominal Scenario Tree
Objective 1.0000 1.0846 1.1087 1.1083

6-4 Case Study C: Week with Extreme Conditions

The overall peak is used to determine the electrical energy grid investments to assure the
reliability of the microgrid. As expected and confirmed by the previous case studies, the worst
performance and highest peak of electrical energy transfer is found in the winter. Therefore,
in this case study, a winter week with extreme conditions for the Netherlands is simulated.

Since the maximum solar irradiance in the winter is low in the Netherlands, it is expected
that this will be of significantly less importance compared to the thermal energy demand.
Therefore, the focus is on a week with extreme cold temperatures. The week of 30 January
2012 is found as an extremely cold week in the Netherlands with an average daily temperature
of -5.9 ◦C with hourly outliers up to -17.8 ◦C. The PV power and commercial energy demand
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are calculated from the historical data of this week. However, for the residential energy
demand, only data from the year 2013 is available. It is assumed that the ratio between the
same week in 2013 is similar for the residential energy demand as for the commercial energy
demand. A ratio is obtained and the residential energy demand for the chosen week in 2012
is calculated.

6-4-1 Scenarios of Hydrogen Penetration

The highest electrical grid investments are obtained for this week with extreme conditions
for each scenario and similar trend are obtained as in the previous case studies, as seen in
Table 6-17. A reduction in the electrical grid investments of 16.90% and 81.29% is obtained
while a decrease in electrical energy demand by the replacement of battery to fuel cell EVs
of 8.36% and 26.70% is realized for the mixed and hydrogen scenario, respectively. However,
the prevented investments in the electrical grid are not enough to compensate for the increase
in energy import costs for the scenarios containing hydrogen. Therefore, it is concluded that
only based on economic incentives, the electric scenario performs the best. Moreover, the
overall performance is better for the electric scenario as concluded from Table 6-19.
The increase of the electrical grid investments is rather low compared to the rise in the thermal
(59.01%) and total energy demand (55.77%) of the microgrid. Therefore, the microgrid can
cope with unexpected high energy demand in colder periods and no extra measures need to
be applied for such weeks, e.g., emergency generators. Furthermore, still more than 95% of
the thermal energy is generated by electrical energy in the scenarios
The qualitative performance indices show a similar underlying relationship between the sce-
narios compared to the winter case and are presented in Table 6-18 and 6-20. Therefore,
similar conclusions are drawn as in Section 6-2-1. The main reason for the increase in the
electric self-supply compared to the winter week is due to the percent increase of generated
energy by the PV panels. Note that the energy generated by the PV panels is little compared
to the total energy demand and has little influence on the performance of the microgrid.

Table 6-17: Results of quantitative performance indices for the scenarios in the week with
extreme conditions.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
EGI [e ] 294.57 344.73 309.60 286.44 63.16 64.50
EIC [e ] 525.69 547.60 798.74 849.84 1,168.61 1,256.90
Total costs [e ] 820.26 892.33 1,108.34 1,136.28 1,231.77 1,321.40

Table 6-18: Results of qualitative performance indices for the scenarios in the week with extreme
conditions.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
CL 0.4536 0.4537 0.4387 0.4306 0.4656 0.4624
DEV [103] 0.7607 0.7648 0.6346 0.6450 0.7494 0.7497
ESS 1.000 0.9478 1.0000 0.9402 1.0000 0.9618
EI 0.6942 0.6760 0.6432 0.6081 0.5835 0.5406
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Table 6-19: Calculated relative objectives of the optimizations in the week with extreme condi-
tions.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Objective 1.0000 1.0662 1.3804 1.4379 1.7416 1.8676

Table 6-20: Residential energy demand used in demand response in the week with extreme
conditions.

Scenario Electric Mixed Hydrogen
Controller Perfect Nominal Perfect Nominal Perfect Nominal
Electrical rescheduled [kWh] 120.22 122.85 120.67 122.11 104.85 98.06
Thermal rescheduled [kWh] 0.00 16.21 0.00 26.16 20.10 37.62
Thermal curtailed [kWh] 2,643.50 2,618.01 2,611.38 2,614.34 2,589.25 2,595.46

6-4-2 Stochastic Control Strategies

The stochastic control strategies for the mixed scenario outperform the nominal one, as con-
cluded from Table 6-23. Similar trends for scenario-based and tree-based MPC as in the
winter week are seen in Table 6-21, 6-22, and 6-24. Tree-based MPC shows a better overall
performance than scenario-based MPC. Moreover, tree-based MPC lowers the peak of electri-
cal energy transfer while increasing the energy import and discomfort costs for the consumer.
Scenario-based MPC focuses more on the reduction of the energy import costs and increases
the comfort level, resulting in a higher peak of electrical energy transfer.

Table 6-21: Results of quantitative performance indices for the different control strategies for
the mixed scenario in the week with extreme conditions.

Controller Perfect Nominal Scenario Tree
EGI [e ] 309.60 286.44 474.87 225.57
EIC [e ] 798.74 849.84 772.55 870.26
Total costs [e ] 1,108.34 1,136.28 1,247.42 1,095.83

Table 6-22: Results of qualitative performance indices for the different control strategies for the
mixed scenario in the week with extreme conditions.

Controller Perfect Nominal Scenario Tree
CL 0.4387 0.4306 0.5821 0.4229
DEV [103] 0.6346 0.6450 0.5636 0.6568
ESS 1.000 0.9405 0.9477 0.9557
EI 0.6432 0.6081 0.5639 0.6016

Table 6-23: Calculated relative objectives of the different control strategies for the mixed scenario
in the week with extreme conditions.

Controller Perfect Nominal Scenario Tree
Objective 1.0000 1.0416 1.0358 1.0325
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Table 6-24: Residential energy demand used in demand response for the different control strate-
gies for the mixed scenario in the week with extreme conditions.

Controller Perfect Nominal Scenario Tree
Electrical rescheduled [kWh] 120.67 122.11 118.46 116.86
Thermal rescheduled [kWh] 0.00 26.16 16.83 34.81
Thermal curtailed [kWh] 2,611.38 2,614.34 1,440.13 2,770.44

6-5 Conclusions

In this chapter, scenarios with different levels of penetration of hydrogen in the microgrid
are sketched and the case studies are defined. Simulations are performed for each case study
and it is concluded that the introduction of hydrogen decreases the peak of electrical energy
transfer. At the same time, the introduction of hydrogen results in higher total economic
costs due to the increase in the energy import costs. Furthermore, a strong decrease in
energy independence for the microgrids with more hydrogen is obtained.

Stochastic MPC strategies are implemented in the different case studies and it is concluded
that for weeks with high energy demand, i.e., the winter weeks, the stochastic MPC strategies
outperform nominal MPC for the mixed scenario. For the summer week, the stochastic MPC
strategies did not obtain better performance compared to nominal MPC. Specific trends are
identified for the different stochastic control strategies. Scenario-based MPC focuses more
on decreasing the energy import costs and increasing the comfort level, where tree-based
MPC focuses more on minimizing the peak of electrical energy transfer and durability of the
EVs. Tree-based MPC provides better performance than scenario-based MPC but results in
a substantially larger computation time.
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Chapter 7

Conclusions and Recommendations for
Future Work

A summary of the work done in this thesis is presented in this chapter. Then, the research
question and the two sub-questions for this thesis are answered. Lastly, recommendations for
future work are given.

7-1 Summary

In this thesis, it is investigated how the introduction of hydrogen in a future microgrid in-
fluences the peak of electrical energy transfer between the microgrid and utility grid. The
motivation behind this research is that in a future microgrid the energy demand is expected
to rise, and more uncertainty is added to the microgrid by the introduction of renewable en-
ergy sources. These aspects can result in a higher peak of electrical energy transfer, resulting
in needed economic investments in the electrical energy grid. Since hydrogen has not yet
emerged in the microgrid or only on small scale, a future electric and thermal microgrid with
residential and commercial consumers in the year 2050 in the Netherlands is sketched. Fur-
thermore, smart upcoming strategies are implemented in the microgrid, i.e., vehicle-to-grid
for the Electric Vehicle (EV) management and direct load control as implemented Demand
Response (DR) program.

Different stochastic processes in the microgrid are forecasted, i.e., Photovoltaic (PV) power
generation and energy demand of residential and commercial consumers. Multiple point
forecasting models are analyzed and the model with the smallest root mean square error
for each stochastic process is concluded. With the results of the point forecasting models,
distributions of the forecasting errors are obtained by using quantile regression. Scenarios for
each stochastic process are generated based on the point forecasting values and distributions
of the errors, including the interdependence structure between time steps.

For the control of the microgrid, multiple Model Predictive Control (MPC) controllers are
introduced. A nominal MPC controller is introduced and to include the errors of the forecast
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of the stochastic processes, stochastic MPC controllers are constructed: scenario-based and
tree-based MPC. The tree structure of the stochastic processes in tree-based MPC is build
up from the same scenarios used in scenario-based MPC, with clustering the scenarios if they
appear too similar based on a defined bound. A linear multi-objective function is formulated
and the microgrid is modelled as a mixed logic dynamical model, resulting in a mixed-integer
linear programming problem that is solved.

Case studies are formulated to answer the research question and the different sub-questions
of this thesis. The first two case studies show the results for an average summer and winter
week in the Netherlands. From these results, a week with extreme conditions is formulated
where the lowest performance of the microgrid is expected, i.e., the highest peak of electrical
energy transfer, since the electrical energy grid should be designed for this largest obtained
peak. In each case study, three scenarios with different levels of penetration of hydrogen in the
microgrid are constructed: electric, mixed, and hydrogen. From these results, it is concluded
how the performance of the microgrid changes with different levels of hydrogen penetration.
Moreover, for the realistic hydrogen-based scenario in 2050 in the Netherlands, i.e, the mixed
scenario, stochastic MPC strategies are compared to a nominal MPC controller to analyze if
they improve the performance of the microgrid.

7-2 Conclusions

The effects of hydrogen on the peak of electrical energy transfer has been researched in this
thesis. The research question of this thesis is:

How does the introduction of hydrogen to the microgrid influence the peak of elec-
trical energy transfer between the microgrid and utility grid?

To answer this question, the formulated sub-questions are first answered:

1. What is the difference in the peak of electrical energy transfer for different microgrids
with a different level of penetration of hydrogen?
This question can be answered from the obtained results of the scenarios of hydrogen
penetration in each case study. It is concluded that a general trend is present for
each case study between the scenarios. A higher level of hydrogen penetration in the
microgrid reduces the peak of electrical energy transfer of the microgrid. However,
the total economic costs increase due to the higher energy import costs. These higher
energy import costs are mainly due to the more expensive fuel costs for fuel cell EVs
compared to battery EVs. The fuel costs are more expensive due to the higher import
price of hydrogen compared to electrical energy and the low efficiency in the fuel cells.
It must be noted that the expected hydrogen price and low efficiency of the fuel cells
influence the results of the optimization substantially and future research should focus
on these developments.
To quantify the reduction of the peak of electrical energy transfer and the total eco-
nomic costs, the electrical energy grid investments are based on the week with extreme
conditions. The energy import costs are calculated by averaging the costs in the typical
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winter and summer weeks, representing an approximation of the mean costs throughout
the year. It is concluded that a reduction in the electrical grid investments is realized
of 16.90% and 81.29% for the mixed and hydrogen scenario, respectively. However, the
total economic costs are increased for the mixed and hydrogen scenario, respectively, by
16.36% and 6.81%. Excluding the investment costs of the distributed energy resources
result in an increase in the economic costs of 29.92% and 52.38% for the mixed and
hydrogen scenario, respectively.

The introduction of hydrogen results in lower energy independence of the microgrid,
decreasing the self-reliance of the microgrid. This is caused due to the lower efficiency
of the fuel cell compared to the battery. Another trend is that for the mixed scenario
including both battery and fuel cell EVs, there is more degradation on the vehicles due
to the higher use of the EVs in vehicle-to-grid operations. Furthermore, in the mixed
scenario, a lower comfort level is obtained due to the lower state of charge of the EVs.
No clear differences are concluded for the self-supply of the microgrids between the
scenarios.

2. Can stochastic MPC strategies improve the performance of the microgrid and will it
reduce the peak of electrical energy transfer?
It is concluded that in the winter weeks, comprising the winter and extreme conditions
case study, stochastic MPC strategies improve the performance of the microgrid. In
the summer, no better performance is obtained using stochastic MPC strategies. Tree-
based MPC performs better than scenario-based MPC, but increases the computation
time by approximately 700%.

A different focus on the objectives in the multi-objective optimization for the different
stochastic MPC strategies is concluded. Implementation of scenario-based MPC in-
creases the electrical energy grid investment costs but reduces the import energy costs.
It results in overall higher economic costs compared to nominal MPC. The comfort
level is higher in scenario-based MPC compared to the other controller, and there is
a significant reduction in the use of DR in the winter weeks. Tree-based MPC lowers
the electrical energy grid investments against higher energy import costs. This decision
leads to lower total economic costs compared to nominal MPC. In conclusion, tree-based
MPC reduces the peak of electrical energy transfer with a better overall performance
of the microgrid in the winter weeks.

With the two sub-questions answered, an answer is formulated on the research question of
this thesis. The introduction of hydrogen in the microgrid reduces the peak of electrical
energy transfer against higher energy import costs. Therefore, the total economic costs of
the microgrid and the overall performance increase with the introduction of hydrogen. Fur-
thermore, the introduction of hydrogen in the microgrid shows a clear decrease in the energy
independency of the microgrid. In a microgrid containing both battery and fuel cell EVs,
it is concluded that more vehicle-to-grid operations are used compared to the microgrids in-
cluding only one type of EV. Stochastic MPC methods improve the overall performance of
a hydrogen-based microgrid in winter weeks, but do not lead to better overall performance
compared to a microgrid without hydrogen. Tree-based MPC reduces the peak of electrical
energy transfer compared to nominal MPC.
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7-3 Recommendations for Future Work

Suggestions for future work on the continuation of this thesis and different problems encoun-
tered in the construction of this thesis are:

1. Larger microgrids: The fixed economic investments for the electrical energy grid
rise considerably after reaching a certain threshold, e.g., for a peak higher than 1,500
kW [121]. Microgrids around this turning point can potentially obtain large economic
benefits by introducing hydrogen. Therefore, the influence of hydrogen on these larger
microgrids should be evaluated. Moreover, it should be analyzed if their performance
alters compared to the considered microgrid in this thesis to conclude on the scalability
of the microgrid.

2. Decreasing computation time: For the implementation of smaller time steps to
improve the performance of the microgrid, or larger microgrids, the computation time
for the MPC strategies can exceed the sampling time. Therefore, the effects of methods
as distributed MPC, parameterized MPC, or by using a hybrid control scheme on the
problem in this thesis should be analyzed. These methods will decrease the computation
time against expected lower performance. Furthermore, these methods could provide
the solution to implement the MPC controllers in real-time.

3. Composition of future microgrid: In the study, it was shown that with the imple-
mentation of hybrid heat pumps, almost no gas was consumed to satisfy the thermal
energy demand in the microgrid. This raises the question of how the performance of the
microgrid will be if only electric heat pumps are considered, reducing the investment
costs for the heat pumps and removing the investments costs for the µ-Combined Heat
and Power (CHP). Using only the electric heat pumps could change the performance in
tertiary control, but the influences on the primary or secondary control of the microgrid
should also be analyzed.

4. Including operational costs: Due to the hard prediction of the operational costs in
the future microgrid, the operational costs are not included in the objective function in
this thesis. However, including these operational costs will influence the economic costs
of the microgrid substantially. Therefore, it can result in a different performance of the
microgrid and potentially changes the preferred composition of the future microgrid.
Research should be done to approximate these expected operational costs in the future
microgrid and analyze their influence on a hydrogen-based microgrid.

5. Stochastic arrival and departure times of EVs: An important assumption made in
this thesis is that the arrival and departure times of the EVs are known beforehand. By
considering unknown departure times, forecasting models should be developed to predict
the behaviour of this stochastic process. Furthermore, it is expected that different
(lower) performance will be obtained for the microgrid that should be analyzed.

6. Heat from fuel cells: Heat is produced when hydrogen converts to electrical energy
in the fuel cell. This heat can be transferred to the buildings to supply their thermal
energy demand. It should be analyzed how this heat can be captured and used in the
microgrid, causing an increase in the energy independence of the microgrid.
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7. Hydrogen price and efficiency: Extensive research on the future price of imported
hydrogen and the future efficiency of the fuel cells needs to be done. These specifications
influence the performance of the microgrid considerably and can lead to lower energy
import costs for the hydrogen-based microgrids.

8. Multiple stochastic trees: In this thesis, two different trees are considered in tree-
based MPC. It is chosen to project the tree structure of one stochastic process to
the other. However, probably better performance of the microgrid can be obtained
if an optimal trade-off in the structure generation of the different trees is computed.
Constructing an algorithm to define this trade-off can improve the performance in fields
where multiple stochastic processes are present.

9. Memorizing the peak of electrical energy transfer: The optimization penalizes
the maximum electrical energy transfer for the prediction horizon for every moment in
the simulation. However, only the peak in the whole simulation is considered. Therefore,
better performance of the microgrid could be obtained by memorizing the obtained
highest peak of the electrical energy transfer in the closed-loop optimization of the
microgrid and not penalizing the energy transfer for future lower values. This method
was tried in the process of this thesis, but it resulted in an unreliable comparison due to
the high influence on the time in which, during the simulation, the peak was obtained.
A robust method should be constructed to prevent this problem.
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Appendix A

Mixed Logic Dynamical Models

In this appendix, mixed logic dynamical models are explained and it is clarified how to derive
a mixed logic dynamical form of the model. Moreover, an example is given of the derivation
of a battery in mixed logic dynamical form.

A-1 Intermediate Steps in Deriving a Mixed Logic Dynamical Model

Mixed logic dynamical models can easily be derived from the insightful piecewise affine models.
To derive to a mixed logic dynamical model, binary logic variables δ are introduced to indicate
to each mode from the piecewise affine model. Through this method, the system can be
described by a single equation containing continuous and binary variables. The dynamics of
the system changes in these different modes, so a link between the continuous and the logical
variables needs to be established. Consider the statement that δ = 1 ⇐⇒ f(x) ≤ 0, with
f : Rn −→ R is linear and x ∈ X. The maximum and minimum of the function f(x) are given
as

M ≜ max
x∈X

f(x)

m ≜ min
x∈X

f(x)
.

Then, the statement can be transformed into two linear inequalities as

δ = 1⇐⇒ f(x) ≤ 0 is true iff
ß

f(x) ≤M(1− δ)
f(x) ≥ ϵ + (m− ϵ)δ ,

where ϵ is a small tolerance. This tolerance is needed to transform the constraint of the form
f(x) < 0 to f(x) ≤ 0, since only nonstrict inequalities are handled by mixed-integer linear
or quadratic solvers [107]. These constraints are written as mixed-integer linear inequalities,
i.e., inequalities containing both continuous and logical binary variables.
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Nonlinearities can occur due to the multiplication of binary variables, and of binary and
continuous variables. These nonlinearities can be transformed to linear inequalities by intro-
ducing auxiliary variables as in [19]. For example, a new variable is defined to account for a
nonlinear equation in the model z(x) = u(x)δ(x) with

M ≜ max
x∈X

u(x),

m ≜ min
x∈X

u(x).

This nonlinear statement is expressed by linear inequalities as

z(x) ≤Mδ(x),
z(x) ≥ mδ(x),
z(x) ≤ u(x)−m(1− δ(x)),
z(x) ≤ u(x)−M(1− δ(x)).

The dynamics of the system and corresponding constraints can than be transformed in an
easily linear standard mixed logical dynamical model as

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) + B4,

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k),
E1x(k) + E2u(k) + E3δ(k) + E4z(k) ⩽ g5.

(A-1)

A-2 Example: Battery as Mixed Logic Dynamical Model

The dynamics of the battery can be described as explained in Section 3-1-1 with xbat ≤
xbat(k) ≤ xbat and ubat ≤ ubat(k) ≤ ubat:

xbat(k + 1) =
®

xbat(k) + ηc
batubat(k), if δbat(k) = 1

xbat(k) + 1
ηd

bat
ubat(k), if δbat(k) = 0 , (A-2)

where the binary auxiliary variable δbat is to indicate whether the battery is charging (δbat(k) = 1)
or discharging (δbat(k) = 0) at time step k. Therefore, the transferred energy ubat(k) at time
step k to the battery can be defined as δbat = 1⇐⇒ ubat(k) ≥ 0.

A continuous auxiliary variable zbat(k) = ubat(k)δbat(k) is introduced to write the dynamics
of the battery in Eq. (A-2) as a single equation:

xbat(k + 1) = xbat(k) + 1
ηd

bat
ubat(k) +

Ç
ηc

bat −
1

ηd
bat

å
zbat(k).

The extra constraints that will be added to the model to explain that zbat(k) = ubat(k)δbat(k)
at time step k are
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−ubat+zbat(k) ≤ 0,

ubat−zbat(k) ≤ 0,

−ubat(k)− ubat+zbat(k) ≤ −ubat,

ubat(k) + ubat−zbat(k) ≤ ubat.

To tackle the degradation, as explained in Section 3-4-1, the following constraint is added:

δbat(k + 1)− δbat(k)− δbat(τ) ≤ 0, τ = k + 2, . . . , t + TCbat ,

δbat(k)− δbat(k + 1) + δbat(τ) ≤ 1, τ = k + 2, . . . , t + TDbat ,

where TCbat and TDbat are the minimum time the battery should be in charging or discharging
mode, respectively.

The dynamics and constraints of the battery can be described in a standard mixed logical
dynamic model as written in Eq. (A-1). This results in the equation:

xbat(k + 1) = Axbat(k) + B1ubat(k) + B3zbat(k),
E1xbat(k) + E2ubat(k) + E3δbat(k) + E4zbat(k) ⩽ g5.
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Appendix B

Long Short-Term Memory Recurrent
Artificial Neural Network

In this appendix, the mathematical description of the long short-term memory recurrent
Artificial Neural Network (ANN) is presented. Then, different gradient descent algorithms
are presented that can be used to train the ANN.

B-1 Mathematical Description of the Artificial Neural Network

A long short-term memory recurrent ANN computes a mapping from the input sequence
X = (x1, . . . , xT) to an ouput sequence Y = (y1, . . . , yT). These are calculated iteratively
from t = (1, . . . , T ) using the equation [76,114]:

it = σ (Wixxt + Wimmt−1 + bi)
ft = σ (Wfxxt + Wfmmt−1 + bf )

ct = ft ⊙ ct−1 + it ⊙ g (Wcxxt + bc)
ot = σ (Woxxt + Wommt−1 + bo)

mt = ot ⊙ h (ct)
yt = ϕ (Wymmt + by)

,

where W is the weight matrix, e.g., Wix is the weight matrix from the input gate to the
input. Furthermore, σ, b, i, f, c, m, and o are respectively the logistic sigmoid function,
bias vectors, input gate, forget gate, cell activation vectors, cell output activation vector, and
output gate. The functions g, h, and ϕ denote the cell input, cell output, and network output
activation functions, respectively. Deep long short-term memory recurrent ANNs can be built
up by multiple of these layers between the input and ouput [114].
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B-2 Gradient Descent

The gradient descent is an algorithm for training shallow and deep ANN [54]. It optimizes
the cost function with respect to the weights matrices Wi from one to the next layer for each
time step k, with i the number of layers. Three different variants can be described for the
gradient descent with cost function J based on the input vector X and desired output Y [54]:

1. Batch gradient descent: Computes the weight vectors for the next time step for each
layer by using the entire training set as

Wi(k + 1) = Wi −
∂J(X, Y )
∂Wi(k)

.

2. Stochastic gradient descent: This algorithm is faster and more useful for the training
of large data sets. However, this method results in a frequent update of the parameters
that often results in a high variance that causes the cost function to fluctuate a lot.
This method computes the weight vectors for the next time step for each layer by using
one training example:

Wi(k + 1) = Wi −
∂J(X(k), Y (k))

∂Wi(k)
.

3. Mini-batch gradient descent: Uses a trade-off between the batch and stochastic
gradient descent. Therefore, it is a lot faster than the batch gradient descent, but it
reduces the variance of the parameter update resulting in a more stable convergence
state. This method computes the weight vectors for the next time step for each layer
by using n training examples for a parameter update:

Wi(k + 1) = Wi −
∂J(X(k : k + n), Y (k : k + n))

∂Wi(k)
.
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Linear Quantile Regression

In this appendix, the algorithm used for the linear quantile regression is presented. The linear
quantile regression is based on the method described in [83]. A linear relationship is assumed
between the predictand y and the predictors x as

y = βx + ϵ,

where β is the vector of optimized parameters and ϵ a random error term. In this method, the
quantiles of the error distribution are estimated by applying asymmetric weights to the mean
absolute error. A quantile loss function is used with τ representing the quantile probability
level as

ρτ (u) =
ß

τu if u ≥ 0
(τ − 1)u if u < 0 .

Therefore, the estimated quantity of the quantile τ is calculated as ŷτ = β̂τ x. β̂τ is obtained
by optimizing the minimization problem:

β̂τ = argmin
β

N∑
i=1

ρτ (yi − βxi) .

Due to the fact that every quantile is computed separately, it is possible that the quantile
regression curves may intersect, i.e., ŷ1

τ > ŷ2
τ while τ1 < τ2 [83]. A rearrangement method

can be used to avoid this problem as described in [34].
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Appendix D

Supportive Figures and Tables for
Analyzing of Stochastic Processes

In this appendix, supportive figures and tables used in analyzing of the different stochastic
processes of Chapter 4 are given.

D-1 Solar Irradiance

The autocorrelation of the clear sky index is presented in Figure D-1. In Table D-1, the cor-
relation coefficients between the clear sky index and multiple exogenous inputs are presented.
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Figure D-1: Autocorrelation of the clear sky index.
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Table D-1: Correlation coefficients of exogenous variables with respect to the clear sky index.

Variable Correlation coefficient
Humidity -0.5958
Rainfall -0.0952
Snow -0.42
Temperature 0.3769
Wind speed 0.0888

D-2 Ambient Temperature

The autocorrelation of the ambient temperature is presented in Figure D-2. In Table D-2,
the correlation coefficients between the ambient temperature and multiple exogenous inputs
are presented. Furthermore, in Figure D-3, the distribution of the ambient temperature is
given throughout the day.
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Figure D-2: Autocorrelation of the ambient temperature.

Table D-2: Correlation coefficients of exogenous variables with respect to the ambient temper-
ature.

Variable Correlation coefficient
Air pressure -0.0320
Humidity -0.4624
Rainfall 0.0107
Solar irradiance 0.5066
Wind speed 0.0399
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Figure D-3: Boxplot of the ambient temperature during the day. The upper graph shows the
distribution of the measured ambient temperature and the lower graph the normalized ambient
temperature by its mean per hour during the day.
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D-3 Residential Energy Demand

The autocorrelations of the residential energy demands are presented in Figure D-4. In
Table D-3, the correlation coefficients between the residential energy demands and multiple
exogenous inputs are presented. Furthermore, in Figure D-5, the distribution of the residential
energy demands are given throughout the day.
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Figure D-4: Autocorrelation of the electrical and thermal energy demand of residential buildings.

Table D-3: Correlation coefficients of exogenous variables with respect to the energy demands
of residential buildings

Variable Correlation coefficient
Electrical demand Thermal demand

Air presssure -0.0116 -0.1326
Humidity -0.1480 -0.0097
Rainfall 0.0341 -0.0059
Snowfall 0.0337 0.2192
Solar irradiance 0.0152 -0.1544
Temperature -0.1022 -0.6765
Windspeed 0.1460 0.1850
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Figure D-5: Boxplots of the energy demand of residential buildings during the day. The upper
graphs show the distribution of the measured residential energy demands and the lower graphs
the normalized energy demands by their mean per quarter or hour during the day.
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D-4 Commercial Energy Demand

The autocorrelations of the commercial energy demands are presented in Figure D-6. In
Table D-4, the correlation coefficients between the commercial energy demands and mul-
tiple exogenous inputs are presented. Furthermore, in Figure D-7, the distribution of the
commercial energy demands are given throughout the day.
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Figure D-6: Autocorrelation of the electrical and thermal energy demand of commercial buildings.

Table D-4: Correlation coefficients of exogenous variables with respect to the energy demand of
commercial buildings.

Variable Correlation coefficient
Electrical demand Thermal demand

Air presssure 0.0002 -0.0115
Humidity -0.3079 0.0804
Rainfall -0.0058 -0.0234
Snowfall 0 0
Solar irradiance 0.4589 -0.1647
Temperature 0.1094 -0.7028
Windspeed 0.2022 0.1542
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Figure D-7: Boxplots of the energy demand of commercial buildings during the day. The upper
graphs show the distribution of the measured commercial energy demands and the lower graphs
the normalized energy demands by their mean per quarter or hour during the day.
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Appendix E

Capturing Interdependencies of
Prediction Errors in Scenario

Generation

In this appendix, the algorithm that captures the interdependencies of the prediction errors
is presented. Furthermore, it is explained how scenarios are generated using these captured
interdependencies of the prediction errors.
The interdependencies of the prediction errors that are needed for scenario generation are
captured using the method described in [109]. This method assumes that the interdepen-
dence of the prediction errors can be made Gaussian by applying a transformation. Then,
a covariance matrix is constructed containing these interdependencies. In the algorithm, at
a time of the day t, with a look-ahead time of k, a random uniformly distributed variable
Y is introduced. This variable depends on the estimated cumulative distribution F̂ and a
measured value of the stochastic value from the training data set s as

Y t
k = F̂t+k(st+k).

Using the probit function for a Gaussian distribution with ‘erf’ the error function

Φ−1(p) =
√

2 erf−1(2p− 1),

a random variable X is obtained that is a distributed Gaussian with zero mean and unit
standard deviation as

Xt
k = Φ−1(Y t

k ). (E-1)

This random variable X is configured for each look ahead time k at different time steps during
the day t using the training data set. A covariance for each time step during the day in the
prediction horizon Np can be obtained by
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Σi,j
t = Cov

(
Xt

i , Xt
j
)

,

with i, j ∈ 1, . . . , Np. A large covariance matrix is constructed for each time step during the
day containing all the covariance in the prediction horizon.

Scenario Generation

Using the calculated covariance matrices for each time step during the day, scenarios can be
generated following the steps:

1. A multivariate Gaussian random number generator with zero mean and using the es-
timated covariance matrix for that time step during the day configures a number of
realizations Ns of the random variable X.

2. For each look-ahead time k, Ns realizations of the uniformly variable Y are obtained
using the inverse probit function from Eq. (E-1) as

Y t
k = Φ(Xt

k).

3. The forecasted value for each scenario is then produced as putting the obtained uni-
formly variable in the inverse cumulative distribution function as

ŝt
k = F̂ −1

t+k
(
Y t

k
)

.
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Appendix F

Low-Level Controller

In this appendix, the low-level controller that is implemented in the microgrid is presented.
This controller is implemented to guarantee saturation of the power balance. It is first checked
if the thermal rescheduled or curtailed energy exceeds the maximum possible using the actual
thermal demand. The new curtailed and thermal energy is updated and a thermal difference
due to the difference in thermal load (∆th,dr) is computed as

Qnew
c (1) = max (Dc(1), Qc(1))

Qnew
r (1) = max

Ä
Dth

r (1), Qr(1)
ä

∆th,dr = Qnew
c (1)−Qc(1) + Qr(1)−Qnew

r (1)

The thermal imbalance ∆th is calculated by adding the calculated thermal difference in the
above equation to the thermal difference between the forecasted and real value of the thermal
energy of buildings ∆th,b as ∆th = ∆th,l + ∆th,dr. The electric imbalance ∆el is equal to
the error of the forecasted values for the electrical residential energy, electrical commercial
energy, and the generated Photovoltaic (PV) power. A rule-based algorithm is used to act as
low-level controller to compensate for those imbalances as seen in Algorithm 1.

The difference in thermal energy is compensated by using the heat pumps. Firstly, it is
checked if it can be compensated by using gas since this option can react the fastest and has
the least impact on the peak of electrical energy transfer. If that is not possible, it is assumed
that by consuming electrical energy the difference can be compensated as well in the thermal
demand. The utility grid is exclusively used to compensate for the difference in the electrical
energy demand. Another source that could have been used is the battery. However, this could
potentially lead to poorer results due to the change in energy stored in the battery compared
to the initial optimization.
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Algorithm 1: Low-level controller in the microgrid.
Input: A calculated electric (∆el) and thermal difference (∆th). Moreover, the results of

the variables out of the optimization for time step k = 1. The amount of heat
pumps in the microgrid NHP. Furthermore, a logic binary variable is chosen as
F to indicate whether the low-level controller has already succeeded to provide
for the thermal energy difference.

Output: The actual produced energy, imported energy, and costs where (·)el and (·)th

are the electric and thermal part, respectively.
F ← 0, ∆HP,el ← 0
if ∆th≤ 0 then

for i← 1 to NHP do
if Qi

HP −Qth,i
HP > ∆th & δth,i

HP = 1 then
Qi

HP = Qi
HP + ∆th

uth,i
UG = uth,i

UG + ηth,i
HP ∆th

Cth
UG = Cth

UG + cP,th · ηth,i
HP ∆th

F = 1

for i← 1 to NHP do
if Qi

HP −Qth,i
HP > ∆th & δel,i

HP = 1 & F = 0 then
Qi

HP = Qi
HP + ∆th

∆HP,el = ηel
HP∆th

F = 1

else if ∆th > 0 then
for i← 1 to NHP do

if Q
th,i
HP −Qi

HP ≥ ∆th & δth,i
HP = 1 then

Qi
HP = Qi

HP + ∆th

uth,i
UG = uth,i

UG + ηth,i
HP ∆th

Cth
UG = Cth

UG + cP,thηth
HP∆th

F = 1

for i← 1 to NHP do
if Qi

HP −Qth,i
HP > ∆th & δel,i

HP = 1 & F = 0 then
Qi

HP = Qi
HP + ∆th

∆HP,el = ηel
HP∆th

F = 1

∆el = ∆el + ∆HP,el
uel

UG = uel
UG∆el

if ∆el ≤ 0 then
Cel

UG = Cth
UG + cS,el∆el

else if ∆el > 0 then
Cel

UG = Cth
UG + cP,el∆el
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Appendix G

Microgrid Build-Up for the Scenarios
in the Case Studies

In this appendix, a schematic overview of the different microgrids used in the case studies
is presented. The three scenarios with a different level of penetration of hydrogen in the
microgrid, as explained in Section 6-1-1, are:

1. Electric: In this scenario, no hydrogen is present in the microgrid, excluding the pres-
ence of the electrolyzer with an integrated hydrogen storage tank and fuel cell Electric
Vehicle (EV)s. The hybrid heat pumps and µ-Combined Heat and Power (CHP) plant
can run on ‘green’ gas that is imported from the utility grid.

2. Mixed: This scenario is based on the expected microgrid assuming the developments
explained in Section 2-1-3. Both electric- and hydrogen-based components are present
in the microgrid. However, no ‘green’ gas is considered since hydrogen will be using the
current natural gas infrastructure. Using both gases will lead to an extra gas network
that is preferred to be avoided since the extra investments needed will probably overrule
the potential profit. Therefore, the hybrid heat pumps and µ-CHP plant will contain
fuel cells to run on hydrogen instead of the ‘green’ gas. Furthermore, the electrolyzer
with an integrated hydrogen storage tank is included in the microgrid. Both types of
EVs are present and a ratio of 1.5:1 for the battery to the fuel cell EVs is used [20].

3. Hydrogen: In this scenario, a largely hydrogen-based microgrid is sketched. The
microgrid consists of almost the same distributed energy resources as in the mixed
scenario, only the battery is excluded from the microgrid. Furthermore, all the battery
EVs are replaced by fuel cell EVs.

In Figure G-1, a schematic overview is given of these different microgrids. An overview of the
different distributed energy resources present in each scenario can be obtained. Moreover,
the four different types of energy flows are given: hydrogen, ‘green’ gas, electrical energy, and
thermal energy. These flows are based on the behaviour of the distributed energy resources
and the power balance written in Eq. (3-3).
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Appendix H

Supportive Figures of Simulations in
Case Studies

In this Appendix, figures are presented of the energy transfer between the microgrid and the
utility grid in the different simulations in the case studies.
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H-1 Case Study A: Winter Week

In this section, an overview is given of the energy transfer between the microgrid and utility
grid for the scenarios in the typical winter week. In Figure H-1, the energy transfer for the
electric scenario is presented. In Figure H-2, the energy transfer for the mixed scenario is
presented. Lastly, in Figure H-3, the energy transfer for the hydrogen scenario is presented.
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Figure H-1: Energy transfer between the microgrid and utility grid for the electric scenario in
the winter week case study.
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Figure H-2: Energy transfer between the microgrid and utility grid for the mixed scenario in the
winter week case study.
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Figure H-3: Energy transfer between the microgrid and utility grid for the hydrogen scenario in
the winter week case study.
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H-2 Case Study B: Summer Week

In this section, an overview is given of the energy transfer between the microgrid and utility
grid for the scenarios in the typical summer week. In Figure H-4, the energy transfer for the
electric scenario is presented. In Figure H-5, the energy transfer for the mixed scenario is
presented. Lastly, in Figure H-6, the energy transfer for the hydrogen scenario is presented.
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Figure H-4: Energy transfer between the microgrid and utility grid for the electric scenario in
the summer week case study.
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Figure H-5: Energy transfer between the microgrid and utility grid for the mixed scenario in the
summer week case study.
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Figure H-6: Energy transfer between the microgrid and utility grid for the hydrogen scenario in
the summer week case study.
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H-3 Case Study C: Week with Extreme Conditions

In this section, an overview is given of the energy transfer between the microgrid and utility
grid for the scenarios in the week with extreme conditions. In Figure H-7, the energy transfer
for the electric scenario is presented. In Figure H-9, the energy transfer for the mixed scenario
is presented. Lastly, in Figure H-8, the energy transfer for the hydrogen scenario is presented.
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Figure H-7: Energy transfer between the microgrid and utility grid for the electric scenario in
the week with extreme conditions case study.
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Figure H-8: Energy transfer between the microgrid and utility grid for the hydrogen scenario in
the week with extreme conditions case study.
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Figure H-9: Energy transfer between the microgrid and utility grid for the mixed scenario in the
week with extreme conditions case study.
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Appendix I

Paper draft

In this appendix, a draft version of a paper describing the results for the nominal Model
Predictive Control (MPC) controller for the scenarios in the different case studies is attached.
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Influences of Hydrogen on the Grid Investments for
a Future Microgrid with Model Predictive Control

Emiel Bartels, Tomas Pippia, Bart De Schutter, Senior Member, IEEE

Abstract—Electrification of the heat network in buildings and
rise in popularity of the Electric Vehicle (EV) will result in
needed investments made in the electrical energy infrastructure
preventing congestion at the transformer. This paper concludes
on the influence of hydrogen in smart future microgrids on
these investments. Moreover, smart control strategies as EV
management and Demand Response (DR) programs are used
to lower the peak of electrical energy demand resulting in the
prevention of these investments. The performance of microgrids
with different level of hydrogen penetration are discussed. It is
shown that a higher level of penetration of hydrogen does reduce
the needed electrical grid investments against a higher total costs
due to the increase of energy import costs.

Index Terms—demand response, electric vehicles, hydrogen,
microgrid, model predictive control

I. INTRODUCTION

IN 2015, 195 governments signed an agreement for a long-
term goal of keeping the increase of the global average

temperature this century below two degrees and aiming for
an increase of a maximum of one and a half degrees, the
Paris agreement. To prevent exceeding this maximum of two
degrees rising of the global average temperature, scientists
have determined that human society needs to reduce the
electricity produced by burning fossil fuels from 70% in 2010
to 20% in 2050 [1]. Therefore, more energy needs to be
produced by renewable energy sources, because they have no
emission of greenhouse gases. However, due to the intermittent
nature of these renewable energy resources, there is a need for
more flexibility in the energy grid [2] and a rise of complexity
for the energy management [3].

The implementation of microgrids seems to be a possible
key solution to the integration of these renewable energy
resources in the energy grid [4]. Microgrids consist of in-
terconnected loads, distributed energy resources, and energy
storage systems. These microgrids can be seen as a miniature
version of the larger utility grid. A connection to the utility grid
is sometimes available, but in other cases, the microgrid needs
to be self-supplied and operate in an islanded mode [5]. Due
to the distribution of the energy resources by implementing
a microgrid, improved reliability, power quality, and reduced
distribution loss are realized [6], [7].

Furthermore, changes are happening in the transport sector
as well to reduce the emission of greenhouse gases by replac-
ing the internal combustion engine vehicle with an Electric
Vehicle (EV). The increased use of EVs has a strong effect on
the demand of energy for the grid due to their relatively high
consumption of energy [7]. This increase in energy demand in
the microgrid results in needed economic investments in the

infrastructure of the energy grid since during large consuming
times the current infrastructure will not be able to cope with
the rising energy demand [8]. Therefore, in future microgrids,
the focus should be on the peak of electrical energy transfer
between the microgrid and utility grid.

In these future microgrids, smart strategies can be used to
create a framework where renewable energy sources can be
implemented and reduce the peak of electrical energy transfer
to prevent unnecessary investments in the energy grid. The
impact of the increasing energy demand by the addition of
EVs in the microgrid can be reduced by using smart charging
strategies where the EVs can be charged when there is an
abundance, or less shortage, of energy in the microgrid. More-
over, EVs can contribute to mitigate the problem for energy
distribution in the microgrid while being used as a power
plant or energy storage system to provide energy at times of
high energy demand in the microgrid [9], [7], [10]. Another
strategy is the use of Demand Response (DR) programs where
the consumption pattern of the consumers in the microgrid is
altered. The use of DR programs has proven to generate more
flexibility in the grid and reduce the electrical energy transfer
peak [6], [11].

A new source of energy is emerging in both the energy and
transport sector, hydrogen [12]. The popularity of hydrogen
is expected to increase in the next years due to its storing
capabilities and cheap transport of energy. Furthermore, it
can be produced without the emission of greenhouse gases
[13]. Hydrogen offers a great solution to the distribution of
generated renewable energy, e.g., when generated on offshore
wind farms. Fuel cell EVs are emerging due to some beneficial
specifications compared to the nowadays more used battery
EVs, e.g., greater range and faster refueling [12], [14]. This
introduction of hydrogen to the microgrid can alter its be-
haviour. Therefore, different performance regarding the peak
electrical energy transfer of the microgrid could be obtained.

In this study, the microgrids will be controlled with a
nominal Model Predictive Control (MPC) framework that has
proven to provide good performance on the energy manage-
ment of a microgrid [9], [15], [16], [17]. For the control of
the microgrid, different stochastic processes in the microgrid
are forecasted, i.e., the energy demand of the buildings and
power generation by renewable energy sources.

In this paper, future microgrids are constructed based
on the year 2050 in the Netherlands where hydrogen has
widely emerged in the energy infrastructure. Different levels
of penetration of hydrogen in the microgrid are compared
to reduce the electrical grid investments. The mixed logical
dynamical framework is used in this paper to describe the
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model of the microgrid. A multi-objective mixed-integer linear
programming problem is solved using an MPC framework.

The remainder of this papers is organized as follows. In
Section II the key features of the microgrid are given and
how the microgrid is modelled. In Section III, the different
forecasting models are given that are used to forecast the
stochastic processes in the microgrid. For each stochastic
process, it is concluded which model obtains the smallest
error. Then, the control objective is presented and the nominal
MPC framework in Section IV. Scenarios with different level
of hydrogen penetration are compared and discussed. Some
final conclusions and suggestions for future work are given in
Section VI

II. MICROGRID MODELLING

In this section, we describe the key features of the mi-
crogrid, which comprises continuous-time dynamics of the
distributed energy resources and energy flows. We remark that
a constant ratio between energy and power per time step is
assumed due to the constant sampling ∆T = Tk+1 − Tk. A
future microgrid is constructed based on future predictions
in the Dutch energy infrastructure in 2050 [18]. In this
future microgrid, a level of penetration of hydrogen can be
considered, resulting in a relatively vast share of hydrogen-
based components in the microgrid. Therefore, an electrolyzer
with hydrogen storage tank and fuel cell EVs are present.
Furthermore, ‘green’ gas that will be used in the future to
satisfy the thermal demand, could be replaced by hydrogen
resulting in fuel cells in the thermal devices. A microgrid with
residential and small commercial consumers is considered with
a high use of Photovoltaic (PV) panels.

A. Components in the microgrid

1) Battery: The dynamics to determine the stored energy
in a battery xbat at the next time step k + 1 depends on the
different mode the battery is in, i.e., the battery is charging
or discharging. If the binary variable δbat(k) = 1, the battery
is charging and if δbat(k) = 0, the battery is discharging. It
is necessary to model the battery using this binary variable
due to the difference in charging and discharging efficiency.
Therefore, the battery can be described by the following
equation:

xbat(k + 1) =

{
xbat(k) + ηcubat(k), if δbat(k) = 1
xbat(k) + 1

ηd
ubat(k), if δbat(k) = 0

,

(1)
where ubat is the exchanged electrical energy, ηc the

charging efficiency, and ηd the discharging efficiency. The
state of the battery and the electrical energy exchanged to
or from the battery cannot exceed their minimal and maximal
bounds. Therefore, the equations xbat ≤ xbat(k) ≤ xbat and
ubat ≤ ubat(k) ≤ ubat apply to these variables. Moreover,
an extra constraint on the energy transfer is set to distin-
guish if energy is coming in or leaving the battery, i.e., if
the battery is in charging or discharging mode. Therefore,
δbat(k) = 1⇐⇒ ubat(k) ≥ 0.

2) Hydrogen storage tank: The model of the hydrogen
storage tank is quite similar to that of the battery. However,
since no charging and discharging efficiency are considered,
the model becomes more simple without using a logic binary
variable. Therefore, the amount of hydrogen stored in the tank
xhst at time step k + 1 can be modelled as

xhst(k + 1) = xhst(k) + uhst(k),

where uhst is the exchanged hydrogen. Similar to the
battery, bounds are set on the amount of stored and exchanged
hydrogen, i.e., xhst ≤ xhst ≤ xhst and uhst ≤ uhst ≤ uhst.

3) Electrolyzer: The electrolyzer converts the consumed
electrical energy uelc into hydrogen Helc when the system is
on. When the system is off, the electrolyzer will not produce
any hydrogen. Therefore, using the logic variable δelc, the
system at time step k can be described as on or off, i.e.,
δelc(k) = 1 or δelc(k) = 0, respectively. The electrolyzer can
be written as

Helc(k) =

{
αelcuelc(k), if δelc(k) = 1
0, if δelc(k) = 0

,

where αelc is the model parameter related to the specifications
of the system as proposed in [9]. The amount of electrical
energy that is consumed is constrained by 0 ≤ uelc(k) ≤ uelc.
If the electrolyzer is turned off, the consumed electrical energy
needs to be zero as well, i.e., δelc(k) = 0⇐⇒ uelc(k) = 0.

4) PV Power: The power coming from the PV panels
is calculated by the obtained solar irradiance and ambient
temperature as

PPV(k) = PSTC
Gc(k)

GSTC
[1 + α (Tc(k)− TSTC)] , with

Tc(k) = Tamb(k) + (NOCT− 20)
Gc(k)

800
.

(2)

The nominal power PSTC, the global irradiance GSTC, and
the cell temperature TSTC are under standard test conditions of
(1000W/m2, 25C). The air mass coefficient that is commonly
used to characterize the performance of solar cells under stan-
dardized conditions is assumed to be AM1.5. This is almost
universal when characterizing terrestrial PV panels [19]. Fur-
thermore, α is the negative power temperature coefficient, and
NOCT the nominal operating cell temperature. These values
are commonly given by the manufactures of the PV panels.
The global irradiance Gc and ambient temperature Tamb at
time step k are estimated to calculate the cell temperature
Tc and generated PV power PPV. This equation describes
the ratio between the produced PV power and the different
variables, where the total effective area of the PV panel is
included in the value of the nominal power to be used.

5) Hybrid Heat Pump: The hybrid heat pump can produce
thermal energy QHP by consuming electrical energy uelHP or
gas uthHP. Therefore, two logic binary variables are introduced
to represent if at time step k the hybrid heat pump is running
on electrical energy δelHP(k) = 1, on thermal energy δthHP(k) =
1, or if the system is off δelHP(k) = δthHP(k) = 0. Therefore,
the hybrid heat pump can be modelled as:
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QHP(k) =

 ηelHPu
el
HP(k), if δelHP(k) = 1 and δthHP(k) = 0

ηthHPu
th
HP(k), if δelHP(k) = 1 and δthHP(k) = 0

0, if δelHP(k) = δthHP(k) = 0

where ηelHP is the electrical efficiency and ηthHP the efficiency
of burning gases such as hydrogen. The maximal consumed
energy is constrained by the equations 0 ≤ uelHP(k) ≤ uelHP and
0 ≤ uthHP(k) ≤ uthHP. The consumption of energy, electrical or
gas, will be zero if that mode is off, i.e., δelHP(k) = 0 ⇐⇒
uelHP(k) = 0 and δthHP(k) = 0 ⇐⇒ uthHP(k) = 0. Since the
hybrid heat pump will not consume electrical energy and uses
the boiler at simultaneous time, a constraint is added that the
logical binary variables cannot both be equal to one at time
step k, i.e., δelHP(k) + δthHP(k) ≤ 1.

6) Micro-combined heat and power plant: The micro-
combined heat and power (µ-CHP) plant produces electrical
PCHP and thermal energy QCHP simultaneously. Moreover, a
thermal storage unit is integrated with an amount of energy
stored xCHP. The production of energy depends on the amount
of consumed gas uCHP. Similarly to the hybrid heat pump,
two logic binary variables are introduced to indicate whether
the CHP system is turned on or off, i.e., δCHP(k) = 1 or
δCHP(k) = 0 at time step k, respectively. The system of a
µ-CHP plant can therefore be described by

PCHP(k) =

{
ηelCHPuCHP(k), if δCHP(k) = 1
0, if δCHP(k) = 0

xCHP(k + 1) =


xCHP(k) + ηthCHPuCHP(k)−QCHP(k),
if δCHP(k) = 1
xCHP(k)−QCHP(k),
if δCHP(k) = 0

where ηelCHP and ηthCHP are the electrical and thermal effi-
ciency of the plant. The consumed energy and stored energy
are bounded by 0 ≤ uCHP(k) ≤ uCHP and xCHP ≤
xCHP(k) ≤ xCHP. The minimum stored thermal energy
needs to be higher than a determined threshold xCHP > 0.
Furthermore, the consumed energy is zero if the system is
turned off at time step k, i.e., uCHP(k) = 0⇐⇒ δCHP(k) = 0.

B. Electric vehicles

Smart EV management can be implemented in a microgrid
where smart charging or refueling of the EV is done and the
EV can be used as an energy storage system or power plant
when parked. Due to these strategies, a microgrid can be more
flexible and self-sustainable, i.e., less power exchange with the
utility grid will be needed [9], [20], [21], [22]. Moreover, the
EV can provide energy in times of great demand for energy,
reducing the peak of electrical energy demand [20]. In this
study, vehicle-to-grid is chosen since a microgrid is considered
with a large amount of EVs and the assumption is made that
in a future scenario, the implementation of it will be possible.
Moreover, this strategy can provide the most beneficial results
for the microgrid [22], [21].

1) Battery EV: The battery EV dynamics are based on the
dynamics of the battery but includes more modes since the

EV can be in transportation. The EV can be refilled with
electrical energy, generate electrical energy to the microgrid,
be in transportation, and arrive after its trip. The amount of
electrical energy stored in the battery EV xBEV is based on
the electrical energy uBEV transferred and the energy costs
of a trip hBEV. The model of the battery EV can be written
down as

xbev(k+1) =


xbev(k) + ηcbevubev(k), if refilling
xbev(k), if no generation
xbev(k) + 1

ηdbev

ubev(k), if generation
xbev(k), if transportation
xbev(k)− hbev(k), if arrival.

where ηcbev and ηdbev are the charging and discharging
efficiencies, respectively. Constraints are set on the total energy
storage of the battery xbev ≤ xbev(k) ≤ xbev as well as
on the transferred energy ubev ≤ ubev(k) ≤ ubev. The
value of the transferred energy is managed in a similar way
as in the battery: ubev(k) ≥ 0 ⇐⇒ refilling mode, and
ubev(k) < 0⇐⇒ generation mode.

2) Fuel cell EV: The fuel cell EV is modelled in similar
way as the battery EV to estimate the amount of hydrogen
xfev in the tank. However, a difference is that the refilled
energy uhydfev and trip cost hfev are expressed in hydrogen,
while in generation mode electrical energy uelfev is produced.
Furthermore, the dynamics of the battery in the battery EV
are replaced by the dynamics of a fuel cell to get the model
for a fuel cell EV [9]:

xfev(k+1) =



xfev(k) + uhydfev (k), if refilling
xfev(k), if no generation
xfev(k) if generation−
(
αfevu

el
fev(k) + βfev

)
,

xfev(k), if transportation
xfev(k)− hfev(k), if arrival.

where αfev and βfev are the model parameters of the
fuel cell in the EV. These model parameters are based on
the specifications of the fuel stack in the EV as described
in [23], [24]. Constraints are set on the hydrogen storage,
transferred hydrogen, and the electrical energy transferred,
i.e., xfev ≤ xfev(k) ≤ xfev, 0 ≤ uhydfev (k) ≤ uhydfev , and
0 ≤ uelfev(k) ≤ uelfev, respectively. The maximum generated
electrical energy is based on the fact the fuel cell will
operate at partial load when in generation mode. Furthermore,
constraints are introduced to prevent the fuel cell EV from
being in different modes simultaneously.

3) Trip charactersitcs: A stochastic part for the EV mod-
elling is the trip pattern as well as the fuel costs of these
trips. Assumptions need to be made to model these stochastic
processes. For real data on the arrival and departure time of
EVs, a data set of charging patterns of EVs in the Netherlands
form ElaadNL has been obtained. These charging sessions can
be clustered into three groups by the method described in [25]:
charge-near-home, park-to-charge, and charge-near work. In
this method, the charging sessions are clustered based on the
duration of charging and the time of the day. Furthermore, it
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is concluded in [25] that the arrivals are earlier in the summer
and spring than in the autumn and winter. Moreover, people
stay out of home longer during weekends resulting in later
arrival times compared to the weekdays. The obtained data
set is clustered and the charge-near-home data are used to
describe different arrival and departure time patterns for the
EVs in the microgrid.

The energy cost per trip is calculated based on the average
kilometres driven per year. It is assumed that the driving
behaviour will not change when switching form internal com-
bustion engine vehicles to EVs, and that the average kilometres
driven per trip is 35.57 in the Netherlands. From [25], it is
estimated that 54.4% of the charging sessions are charge-near-
home sessions. Therefore, not all the energy for the EV will be
refilled in the microgrid, but also at work or in public charging
poles elsewhere. It is assumed that 19.35 kilometres worth of
fuel is the average energy cost per trip for the EVs in the
microgrid. Since different vehicles will have different driving
patterns, a multivariate random Gaussian sampling is used to
obtain different trip costs for different EVs.

C. Demand response

Direct load control is implemented in the microgrid as DR
program since it can provide good performance on lowering
the peak of electrical energy transfer and is suitable for the
low consumption consumers considered in the microgrid. It
is assumed that only residential consumers are willing to
participate in the DR program.

1) Curtailable load: Curtailable load Dc can temporarily
be lowered or switched off. The variable βc(k) with 0 ≤
βc(k) ≤ 1 shows the percentage of preferred power level to
be curtailed at time step k. Thus, if no curtailment is allowed,
βc(k) = 0 at time step k [16]. In the model it is assumed that
the thermal energy can only be lowered during the day against
the discomfort costs, i.e., that the temperature in the building
becomes lower than preferred (or higher in hot climates). Note
that only a fraction of the thermal energy demand will be
considered to be able to curtail. The curtailed load Qc is
expressed by

Qc(k) = βc(k)Dc(k).

2) Rescheduable load: Rescheduable loads Dr can be
shifted in time, but in contrast to the curtailable loads, they
have to be fulfilled after a certain time. These loads are
divided into two different subcategories: uninterruptible and
interruptible loads. In this thesis, only uninterruptible loads
are considered. However, the smart charging of EVs due to
the implementation of the EV management strategies can be
considered as an interruptible load in the microgrid.

Both fractions of the electrical and thermal energy are
considered to be rescheduable. The only electric devices that
are considered to be rescheduable are dishwashers. These
devices are chosen due to their regular consumption pattern
and their time of use. Dishwashers are used in the evening
where, in general, large peaks of electrical energy demand
are visible. Similar as to the curtailable load, a variable βr(k)
with 0 ≤ βr(k) ≤ 1 is introduced to indicate the percentage of

preferred level to be rescheduled at time step k. This results
in the equation of rescheduled load for electrical and thermal
demand:

Pr(k) = βel
r (k)Del

r (k)

Qr(k) = βth
r (k)Dth

r (k)
,

where Pr and Qr are the rescheduled electrical and thermal
load, respectively. These rescheduled loads have to be con-
sumed at other time steps. Since these loads are uninterruptible
ones, they have to be satisfied in consecutive time steps.
The amount of load that is consumed at each time step is a
constant denotes as Del

rc or Dth
rc for the electrical and thermal

energy, respectively. A binary variable δrc is introduced to
determine if the rescheduled load is consumed (δrc(k) = 1)
or not (δrc(k) = 0) at time step k. This leads to the following
constraint of the consumed rescheduled load per time step:

Prc(k) = Del
rcδ

el
rc(k)

Qrc(k) = Dth
rc δ

th
rc (k)

,

where Prc(k) and Qrc(k) are the consumed electrical and
thermal energy at time step k. That this energy is uninterrupt-
edly consumed, is assured using the constraint

δelrc(k)− δelrc(k − 1) ≤ δelrc(τ),

δthrc (k)− δthrc (k − 1) ≤ δthrc (τ),

with τ = k + 1, . . . , k + T el
cr − 1 for the electrical energy or

τ = k + 1, . . . , k + T th
cr − 1 for the thermal. T el

cr and T th
cr are

the time needed for the unsatisfied rescheduled electrical lelr
and thermal load lthr to be fully consumed, respectively. To
estimate how much electrical and thermal load still needs to
be consumed at time step k, it is updated following:

lelr (k) =
k−1∑
i=1

Pr(i)−
k∑
i=1

Prc(i)

lthr (k) =

k−1∑
i=1

Qr(i)−
k∑
i=1

Qrc(i)

.

The rescheduled load has to be consumed before reaching
a defined time step F . For example, a dishwasher can be
rescheduled in the evening to a later time step, but one wants
that the program is done by the coming morning. Therefore,
no unsatisfied load should be present at that time step, i.e.,
lelr (Fel) = 0 and lthr (Fth) = 0.

D. Connection to utility grid

The microgrid remains connected to the utility grid at all
times. Therefore, it is able to import or export electrical energy,
hydrogen, or ‘green’ gas at a certain price. To model the utility
grid, a binary logic variable δUG is introduced to determine if
energy uUG is bought (δUG(k) = 1) or sold (δUG(k) = 0)
to the utility grid at time step k with uUG(k) ≥ 0 ⇐⇒
δUG(k) = 1. The economic cost CUG for the microgrid,
from the imported and exported energy with the utility grid,
is modelled as
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CUG(k) =

{
cP(k)uUG(k), if δUG(k) = 1
cS(k)uUG(k), if δUG(k) = 0

,

where cP(k) and cS(k) are the purchase and sale price of
energy at time step k, respectively. The transferred energy is
constrained by the maximum allowed energy transfer between
the microgrid and the utility grid, i.e., uUG(k) ≤ uUG(k) ≤
uUG(k).

For the purchase and sale price of electricity, a time-of-
use price is computed. The electrical energy price varies
greatly throughout the day and shows strong weekly patterns.
Therefore, a weekly import price is computed for every time
step during the week based on the national data of the
Netherlands. A 20% increase in this price is added due to
rising electrical energy price [18]. The purchasing price of
hydrogen and ‘green’ gas is fixed throughout the day based
on the data of [18]. The sale price of energy is assumed to
be equal to the net import price, i.e., excluding taxes and
transportation costs.

E. Operational constraints

Multiple operational constraints are presented in this section
that are used in the microgrid.

1) Degradation: To tackle the problem of fast degradation
for multiple components in the microgrid, a constraint is added
as introduced in [16]. A constraint is set on the minimum
time the system is turned on or off, i.e., TON and TOFF,
respectively. In this constraint, the introduced binary logic
variables are used to define if the system is on (δ = 1) or
off (δ = 0). Note that in the previous section, these modes
were respectively the charging and discharging mode of the
battery and battery EV. The constraint is expressed without
resorting to any additional variable as

δ(k)− δ(k − 1) ≤ δ(τ), (off–on switch)
δ(k − 1)− δ(k) ≤ 1− δ(τ), (on-off switch)

with τ = k+1, . . . , k+TON−1 if the constraints for the ON
time are considered or τ = k+1, . . . , k+TOFF−1 otherwise.
The first line in this equation ensures the system satisfies
the minimal ‘on time’ and the second line the minimal ‘off
time’. This constraint is used to prevent fast switching between
modes in the battery, electrolyzer, µ−CHP, hybrid heat pump,
and both types of EVs. For the hybrid heat pumps, both for
thermal energy generated by electrical energy consumption
and by gas, the constraint is added. Moreover, for the EVs,
this constraint is introduced for both the modes refilling and
generation.

2) Range anxiety: The use of EV management strategies
results in fear of the users that the EV will not be sufficiently
charged upon departure, i.e., range anxiety [10]. In the model,
it is chosen that it is not necessary that the EV should be fully
charged upon departure since this will lead to conservative
results and the exact departure time is generally not known
in real life. However, the following constraint is introduced
to ensure a certain state of charge xtEV is reached when the
vehicle turns into transportation mode δtEV:

xEV(k) ≥ xtEVδ
t
EV(k),

where xEV(k) is the fuel storage of the EV at time step k.
Since not all trips are known beforehand, one wants to ensure
as well that enough fuel is in the EV before the EV will
be generating electricity to the microgrid. Therefore, another
constraint is added that assures a minimal state of charge xgEV

in the EV is set before the EV can be in generation mode δgEV:

xEV(k) ≥ xgEVδ
g
EV(k),

where xgEV < xtEV.
3) Power balance: The different types of energies in the

microgrid have to be balanced at every time step. A constant
ratio between energy and power at each time interval is due
to the constant sampling time [16]. In the microgrid, different
types of energies are considered: electrical energy, thermal
energy, hydrogen, and ‘green’ gas. The power balances are
given using the variables introduced in the previous section,
respectively:

uelUG(k) + PPV(k) + PCHP(k) + uelfev(k) = Pres(k)

+ Pcom(k) + Prc(k)− Pr(k)

+ ubat(k) + ubev(k) + uelc(k) + uelHP(k)

QCHP(k) +QHP(k) = Qres(k) +Qcom(k) +Qrc(k)

−Qr(k)−Qc(k)

ugasUG(k) = ugasCHP(k) + ugasHP(k)

uhydUG (k) +Helc(k) = uhydCHP(k) + uhydHP (k) + uhydfev (k).

(3)

In above equations, (·)el, (·)gas, and (·)hyd represent the
energy that is generated or consumed as electricity, gas, and
hydrogen, respectively. For almost all the power balances
a connection to the utility grid that can act as an infinite
buffer is present. The net imbalance of the microgrid can be
compensated by importing or exporting more energy from the
utility grid. The thermal power balance does not have this
connection. However, since the generation of thermal energy
is more of a conversion of other types of energy to thermal
energy, the connections to the utility grid in the other power
balances act indirectly as an infinity buffer for the thermal
power balance.

III. STOCHASTIC PROCESSES

The different stochastic processes in the microgrid, i.e.,
PV power, electrical and thermal energy demand of residen-
tial buildings, and electrical and thermal energy demand of
commercial buildings, need to be forecasted to control the
model described in previous section. This section comprises
an overview of the different point forecasting models for each
stochastic process. Real data is used based on meteorological
measurements and energy consumption patterns in the Nether-
lands.

A. Background literature

An overview is presented of the different point forecasting
models compared in this study.
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1) Persistence approach: The persistence approach is a
naive approach that assumes that the forecast values are the
same as past observed values, e.g., for PV power generation,
the solar irradiance during the day is similar to that of the
previous day for each time step. For the energy demand of
buildings, an assumption can be made that the value for next
time steps are similar to the previous time step. However,
increasing the forecasting horizon will significantly reduce
the accuracy of the model [26]. For day-ahead forecasting,
a day-to-day persistence method can be used [27]. Due to its
naive approach and simplicity, the model is generally used as
a benchmark model.

2) Linear regression: Linear regressions are widely used to
forecast simple models that have an underlying linear corre-
lation structure in the time series. This model is often used
due to its simplicity. When nonlinear relationships describe
the correlations in the time series better, a more complex
estimation method should be used [28]. The forecasted values
are based on the measured values of previous time steps and
can include seasonality. Exogenous influences can be added as
a linear time series to the model. Drawbacks of this method
are the worse performance compared to smarter forecasting
models for complex processes and the fact that data should
be stationary to use the model. The model is trained by using
historic data to calculate the coefficients for the constructed
linear regression model.

3) Autoregressive Moving Average: A conventional statisti-
cal approach model used for forecasting is the autoregressive
moving average model based on the Box-Jenkins method [29].
This model shows reliable predictions when there exists an
underlying linear correlation structure in the time series. Fur-
thermore, a favorable aspect of the model is its flexibility, since
it can represent multiple types of time series by using different
orders [26]. A main difference with the linear regression model
is that it includes the moving average. Therefore, unobserved
errors of previous forecasts are included for predicting the
value of the next time steps. With the autoregressive moving
average model, one assumes that the data show no charac-
teristics of non-stationarity [30]. When non-stationarity data
are considered, a generalization of the model can be used by
creating an autoregressive integrated moving average model.
Inherent seasonal effects of the data can be added to the
model by adding seasonality to the model. Lastly, exogenous
inputs with a high correlation to the forecasting data can be
added to improve the performance of the model. Considering
all extensions, a seasonal autoregressive integrated moving
average model can be constructed as

ϕp(L)ΦP (Ls)∇d∇Ds Xt = θq(L)ΘQ (Ls) εt + βkx
′
k,t.

In the above equation, the P, D, and Q are the seasonal
autoregressive order, seasonal difference order, and seasonal
moving average order, respectively. The quantity φp(L) is the
regular autoregressive polynomial of order p and θq(L) the
regular moving average polynomial of order q, while ΦP (Ls)
is the seasonal autoregressive polynomial of order P and
ΘQ(Ls) the seasonal moving average polynomial of order Q.
Furthermore, L is the lag operator, Xt represents the forecast

variable, ∇d the differentiating operator, ∇Ds the seasonal
differentiating operator, and εt white noise. The exogenous
part in the equation is βkx′k,t, where x′k,t is the exogenous
input and βk the coefficient value of the exogenous input of
the kth exogenous input variable.

4) Artificial neural network: An Artificial Neural Network
(ANN) is a series of algorithms inspired by the neural network
in a biological brain. It is trained by using a historical data
set where it computes nonlinear relationships between the in-
and outputs of the model. In general, an ANN consists of
an input layer, output layer, and multiple hidden layers that
make the connection between the input and output layer. Each
layer is composed of one or more neurons where an activation
function in the neurons determines the nonlinear mapping
characteristics across the ANN [31]. This approach is widely
used since it does not require mathematical expressions, it is
self-learning, easy to implement, and short online computation
time is needed. This approach is especially used for detecting
complex nonlinear relations between the input and output [32].
However, drawbacks of the model are that it needs a significant
amount of historical data to be properly trained and overfitting
may occur [30].

The ANN has many different structures and applications.
For forecasting time series, supervised learning algorithms
are used to train the ANN. In this thesis, a long short-
term memory recurrent ANN, as first introduced in [33], is
used to forecast the stochastic processes. Recurrent networks
are fundamentally different from the traditional feedforward
neural network since they can establish a temporal correlation
between previous information and current circumstances [34].
Therefore, decisions made at a previous time step influences
the decision for coming time steps in the ANN. These re-
current ANNs are trained by the popular back-propagation
through time. Due to the gradient vanishing or exploring in the
training of the ANN, long-range dependencies are difficult to
learn. This problem can be overcome by using long short-
term recurrent ANNs that uses a memory cell to capture
these long-range dependencies [34], [33]. The long short-term
recurrent ANNs used in this thesis are modelled with multiple
layers using a mini-batch gradient descent. This is done to
increase the training speed of the ANN compared to the batch
gradient descent, but preventing the regularizing effect of using
a stochastic gradient descent where a batch size of one is used.

B. PV power

For the PV power, two stochastic processes needed to be
forecasted as determined from (2), i.e., the solar irradiance and
ambient temperature. Both stochastic processes are forecasted
in time steps of one hour.

1) Solar irradiance: A clear sky model is sued where
the global horizontal solar irradiance is computed as if it
is a clear sky day Gcs

c , i.e., without any clouds [35], [36].
Therefore, the stochastic component is excluded and a clear
sky global horizontal solar irradiance can be obtained for every
hour in the year. With these values, the clear sky index τ
can be computed as the normalization of the measured solar
irradiance Gc(k):
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τ(k) =
Gc

Gcs
c

. (4)

The clear sky model is obtained from the used data, and
absent data are computed using a statistical smoothing tech-
nique based on weighted quantile regressions as in [35]. In
general, a limiting factor of developing clear sky data is the
absence or quality of the data [37], i.e., in the winter there are
not many clear sky observations to train the model and this
increases the error of the quantile regression. This problem is
partly solved by using data of the past 20 years.

It is decided from the autocorrelation of the the clear sky
index that the prediction models will use data of one hour and
24 hours before. Different exogenous inputs can be considered
based on the geographical location [30], [38] and from the data
it is concluded the highest correlation coefficients for the solar
irradiance are obtained with the temperature, presence of snow,
and humidity. With these exogenous inputs, it is concluded that
an ANN model provides the smallest error.

2) Ambient Temperature: The autocorrelation is analyzed
and it is chosen to use the data from one to five and 24 hours
before for the forecasting. It is concluded that solar irradiance
and humidity have the strongest correlation for temperature,
but are still low. Using a seasonal autoregressive integrated
moving average model provided the smallest error, i.e., without
the use of exogenous inputs.

C. Residential energy demand

The energy of residential consumers is characterized by the
distinctive pattern during the day, having a peak consumption
in the early evening. This peak is often the creating the
general peak in the microgrid where the electrical energy grid
investments are based upon. In this section, both the electrical
and thermal energy demand are forecasted in the sampling
time of 15 minutes and one hour, respectively. Since data of
only one year is available and used, the ANN did not have
enough training data to construct a proper model.

1) Electrical energy demand: From the autocorrelation,
it is chosen that for the electrical energy demand, data of
the previous 45 minutes and of 23:45-24:15 hours before is
used. No exogenous inputs did improve the models of for the
residential electrical energy demand. A seasonal autoregressive
integrated moving average obtained the smallest error and is
used in this study.

2) Thermal energy demand: Time series data of the pre-
vious two hours and of of 23 - 25 hours before is used,
as concluded from the autocorrelation. A high correlation
coefficient between the thermal energy demand and the ambi-
ent temperature is calculated, and the temperature is used as
an exogenous input in the forecasting models. The smallest
error is obtained using the seasonal autoregressive integrated
moving average model.

D. Commercial energy demand

The commercial energy demand show great differences in
the consumption pattern between weekdays and the weekend.
This is based on their opening hours, i.e., small stores are more

often closed in the weekend in the Netherlands. In this section,
both the electrical and thermal energy demand are forecasted
in the sampling time of 15 minutes and one hour, respectively.

1) Electrical energy demand: From the autocorrelation,
it is chosen that for the electrical energy demand, data of
the previous 30 minutes and of 168 hours before (week) is
used. No exogenous inputs did improve the models of for the
commercial electrical energy demand. The ANN obtained the
best performance, i.e., smallest error in the point forecasts.

2) Thermal energy demand: Time series data of the previ-
ous hour and of 23 - 25 hours before is used, as concluded
from the autocorrelation. A high correlation coefficient be-
tween the thermal energy demand and the ambient temperature
is calculated, and the temperature is used as an exogenous
input in the forecasting models. The smallest error is obtained
using the ANN model.

IV. CONTROL

This section comprises the objective function of the opti-
mization in the microgrid and the MPC strategy used.

A. Objective function

The objective function considers the economic profitability
of lowering the peak of electrical energy demand (Jgd) as well
as the energy import costs (Jeco). Discomfort penalties (Jdis)
and the durability of the EVs (Jdur) are included as well,
concluding on a multi-objective function as

J = αJeco + βJdis + γJdur + λJgd,

with α, β, γ, and λ being arbitrary predefined weights.

1) Economic objective: The economic objective is based
on the import costs of the different energy sources from the
utility grid in the prediction horizon Np, i.e., electricity (Cel

UG),
‘green’ gas Cgas

UG, and hydrogen Chyd
UG . Operational costs as

the increase in maintenance and startup and shut-down costs
as in [16] are not considered due to the difficult assumptions
that need to be made to approximate these costs in the future
microgrid. Therefore, the economic objective is written as

Jeco =

Np∑
k=1

(
Cel

UG(k) + Cgas
UG(k) + Chyd

UG (k)
)
.

2) Discomfort objective: The discomfort for the consumers
in the microgrid will mainly be influenced by the usage of
demand response. Furthermore, the range anxiety is included
by penalizing a lower state of charge of an EV. Another low
discomfort is placed on the amount of energy in the battery
and hydrogen storage tank. This is penalized in a similar way
as for the state of charge of the EVs. The discomfort objective
can be written as
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Jdis =

Np∑
k=1

(
ρcβc(k) + ρelr β

el
r (k) + ρthr β

th
r (k)

+
ρEV

NEV

(
Nbev∑
i=1

xbev,i − xbev,i(k)

xbev,i

+

Nfev∑
i=1

xfev,i − xfev,i(k)

xfev,i

)

+ ρbat
xbat(k)− xbat

xbat
+ ρhst

xhst − xhst(k)

xhst

)
where ρc, ρelr and ρthr are the penalty weight on curtailment

and rescheduling of the electrical and thermal energy, respec-
tively. ρEV, ρbat, and ρhst are the penalty given on the state
of charge of the total number of EVs (NEV), the battery, and
the hydrogen storage tank, respectively.

3) Durability objective: Frequent use of the EVs in vehicle-
to-grid, will result in faster degradation of these EVs. Despite
the degradation is tackled up to a certain degree using the
operation constraints, a penalization is still applied to the usage
of the EVs in vehicle-to-grid for giving energy to the microgrid
to increase its durability as

Jdur =
1

NEV

Np∑
k=1

(
Nbev∑
i=1

zgbev,i(k)

zgbev,i
+

Nbev∑
i=1

uelfev,i(k)

uelfev,i

)
,

where zgbev = δgbevubev is chosen as introduced for the
mixed logical dynamical modelling, where δgbev indicates if
the battery EV is in generation mode.

4) Grid demand objective: The maximum value of the
electrical energy exchange per time step is penalized since
this study wants to reduce the increase in energy infrastruc-
ture. Therefore, the absolute maximum energy transfer of the
electricity needs to be minimized using the weight ρGD. An
auxiliary variable ζelug is introduced to maintain the linear
objective function using zelUG = δelUGu

el
UG as introduced for

the mixed logical dynamical modelling. This results in the
objective as

Jgd = ρGD ·max
k
|uelUG(k)| = ρGD · ζelug, with

ζelug ≥ 2zelUG(k)− uelUG(k), k = 1, . . . , Np.

B. Nominal MPC

There has been a vast amount of literature on nominal MPC
for discrete-time systems where the known states x and inputs
u are constrained, described as

x+ = f(x, u), y = h(x),x ∈ X, u ∈ U,
f ∈ Rn × Rm → Rn, y ∈ Rb, and h ∈ Rn,

(5)

with x+ representing the successor states and y the outputs
of the system. In this system, the state is assumed to be
observable. At each event of the state or time, the optimal
control problem is solved while simulating future states in
a receding horizon fashion. The length of the finite-horizon,

wherein these future states lie, is called the prediction horizon.
For this prediction horizon, a control sequence is computed
with the length of the control horizon. The first control of
the computed sequence is implemented in the system and
the process is repeated for the next control step. Due to this
method, future output in the chosen prediction horizon can
be considered while choosing the control input. Increasing the
control horizon can improve the performance of the optimal
control problem, but increases the computation time.

The use of MPC on hybrid systems is not as extensively
researched as standard linear processes with linear constraints
[39]. The main drawback of hybrid systems is the computa-
tional burden due to the introduction of the integer variables
in the optimization. The complexity is NP-hard and to test if
a new feasible solution improves the best one so far is an NP
problem [39]. Another drawback is the loss of convexity and
it is therefore not known if a feasible solution is the global
optimum.

No constraints satisfaction nor recursive feasibility can be
guaranteed by using the nominal MPC due to the errors in
the point forecasts, i.e., violations of the constraints can occur
[40]. A low-level controller is implemented in the microgrid
to compensate for the discrepancies the microgrid during the
optimization.

V. CASE STUDY

In this chapter, simulations are done in different case
studies. The set-up of the case studies is formulated. Three sce-
narios that consider different levels of penetration of hydrogen
in the microgrid are defined to be tested in the case studies.
From these results, the question how hydrogen influences the
peak of electrical energy transfer of the microgrid is answered.

A. Setup

The number of distributed energy resources and their maxi-
mum power is partly chosen by making a realistic investment
based on the energy demand and partly by obtained ratios from
data.

a) Buildings: To estimate the energy demand of the
microgrid, the number of buildings in the microgrid is chosen.
A ratio of 42:1 for residential to small commercial buildings is
calculated based on data in Amsterdam. Therefore, it is chosen
to construct a microgrid with 42 residential buildings and one
small commercial building. It is chosen not to include more
buildings since this will increase the computation time due to
an increase of decision variables.

b) Demand Response: In each residential building, a
dishwasher, with an energy consumption of 0.78 kWh that
is used five times a week, is chosen to participate in the DR
program as rescheduable load. Furthermore, 10% of the real
consumed thermal energy demand in residential buildings can
be rescheduled and another 10% curtailed.

c) Electric Distributed Energy Resources: PV panels are
installed on each building with an average power of 3.34 kW,
estimated from the research done in [18]. This yields a 143.62
kW maximum power of solar panels in the microgrid. A
district battery with a maximum storage capacity of 500 kWh
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and a maximum power of 150 kW is considered. It is assumed
that the battery does not discharge below 10% of its maximum
capacity and has a charging and discharging efficiency of 90%.
An electrolyzer is used with a maximum power consumption
of 25 kW containing an integrated hydrogen storage system
of 500 kg. It is assumed that the storage level does not drop
below 5% of the maximum storage. Since an efficiency of
the electrolyzer of 70% and a heating value of hydrogen of
39.4 kWh/kg [9] are assumed, the model parameter αelc is
estimated to be 0.02 kg/kWh.

d) Thermal Distributed Energy Resources: A hybrid heat
pump is installed with a maximum power of 20 kW. The
efficiency for the electric part is 400%. The boiler in the
hybrid heat pump that burns gas has an efficiency of 90% for
both ‘green’ gas and hydrogen. Furthermore, a 5 kW µ-CHP
plant is installed with a thermal storage capacity of 70 kWh.
The efficiency for the electrical energy and thermal energy
are 22.5% and 67.5% for the µ−CHP plant with an internal
combustion engine, respectively, and both 45% for the µ−CHP
plant with a fuel cell.

e) Electric Vehicles: A ratio of a single EV per house-
hold is considered. Battery EVs with a charging and discharg-
ing efficiency of 90% and a maximum battery storage capacity
of 100 kWh are used. Their charging or discharging power is
set to be a maximum of 16 kW. The fuel cell EVs in the
microgrid have a fuel storage of 7 kg of hydrogen with a
refilling rate of 2 kg/h. Since this EV operates on partial load
in the microgrid, the maximum power is set to be at 15 kW.
The model parameters αFEV and βFEV for the fuel cell EVs
are based on the model of fuel cell stacks in [23] and are
determined to be 0.06 kg/kWh and 0.11 kg/h, respectively [9].

B. Scenarios
Three scenarios with a different level of penetration of

hydrogen in the microgrid are considered. The energy and
thermal demand is similar for each scenario. Therefore, a
fair comparison can be made about how the introduction of
hydrogen to the microgrid will influence the performance. The
following three scenarios are considered:

1) Electric: In this scenario, no hydrogen is present in the
microgrid, excluding the presence of the electrolyzer
with an integrated hydrogen storage tank and fuel cell
EVs. The hybrid heat pumps and µ-CHP plant can run
on ‘green’ gas that is imported from the utility grid.

2) Mixed: This scenario is based on the expected micro-
grid in the Netherlands in 2050 [18]. Both electric-
and hydrogen-based components are present in the mi-
crogrid. However, no ‘green’ gas is considered since
hydrogen will be using the current natural gas infras-
tructure. Using both gases will lead to an extra gas
network that is preferred to be avoided since the extra
investments needed will probably overrule the potential
profit. Therefore, the hybrid heat pumps and µ-CHP
plant will contain fuel cells to run on hydrogen instead
of the ‘green’ gas. Furthermore, the electrolyzer with
an integrated hydrogen storage tank is included in the
microgrid. Both types of EVs are present and a ratio of
1.5:1 for the battery to the fuel cell EVs is used [18].

3) Hydrogen: In this scenario, a largely hydrogen-based
microgrid is sketched. The microgrid consists of almost
the same distributed energy resources as in the mixed
scenario, only the battery is excluded from the micro-
grid. Furthermore, all the battery EVs are replaced by
fuel cell EVs.

C. Performance Indices

The performance of the tertiary control of the microgrid is
measured by quantitative and qualitative performance indices.
In the quantitative performance indices, the performance is
measured in economic costs. The qualitative performance
indices are estimated as a ratio between 0 and 1, resembling a
better performance with a higher value. An overview of these
different performance indices for the simulation time T are:

Quantitative performance indices

• Electrical grid investment: The peak of electrical energy
transfer is translated to variable economic investments
needed to be paid by the energy suppliers following the
current prices in the Netherlands. Hence, economic costs
can be associated with the rise of the peak electrical en-
ergy transfer, i.e., e 2.4147 per month (Tm) per maximum
transferred energy in kW. This results in the equation for
the electrical grid investment as

EGI = 2.4147 · T
Tm

ζelug

• Energy import costs: The netted economic costs of the
microgrid by purchasing and selling energy is calculated
as

EIC =
T∑

k=1

(
Cel

UG(k) + Cgas
UG(k) + Chyd

UG (k)
)

Qualitative performance indices

• Comfort level: The discomfort costs in the microgrid are
rewritten as a normalized comfort level for the consumers.
This comfort level is estimated by considering the com-
fort decrease due to participation in DR, the influence of
range anxiety, and battery state of charge. The comfort
level is calculated as the discomfort objective divided by
its weights as

CL = 1− Jdis
ρc + ρelr + ρthr + ρEV + ρbat + ρhst

• Durability of EV: The durability of the EVs is influenced
by the possible intensive usage in vehicle-to-grid and
is also penalized in the objective function. A durability
ratio for the EVs is calculated that identifies the ratio of
vehicle-to-grid used when not on transportation (δt = 0).
The durability ratio for the EVs is calculated as
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DEVn =
T∑

k=1

(
NBEV∑
i=1

(
1− δti (k)

) zgBEV,i(k)

zgBEV,i

+

NBEV∑
i=1

(
1− δti (k)

) uelFEV,i(k)

uelFEV,i

DEV = 1− DEVn∑T
k=1

∑NEV

i=1 (1− δti (k))

• Electric self-supply: A microgrid can be rated by the
ability to use the generated energy in the microgrid as
proposed in [41], [42], [43], i.e., not selling the energy
if there is an abundance. The electric self-supply perfor-
mance index calculates the ratio between the exported
and generated electrical energy in the microgrid, where
(·)th can be presenting hydrogen or ‘green’ gas in kWh
dependent on the scenario, as

ESS = 1−
∑T

k=1

(
zelUG(k)− uelUG(k)

)∑T
k=1 (PPV(k) + PCHP(k))

• Energy independence: The energy independence of a
microgrid can be rated by calculating the ratio of im-
ported energy to the consumed energy [41], [44], [42],
[45]. The energy independence is a measure for self
reliance of a microgrid. It explains the ability of a
microgrid to deal with unexpected excessive demand.
Similar to the self-supply performance index, (·)th can
be presenting hydrogen or ‘green’ gas in kWh dependent
on the scenario. Furthermore, the trip costs of the fuel cell
EVs are also written in kWh. The energy independence
of the microgrid is calculated as

EId =
T∑

k=1

(
Pres(k) + Pcom(k) +Qres(k) +Qcom(k)

+

NBEV∑
k=1

(hBEV,i(k)) +

NFEV∑
k=1

(hFEV,i(k))

)

EI = 1−
∑T

k=1

(
zelUG(k) + zthUG(k)

)
EId

D. Simulation weeks

Three different weeks are simulated, each representing a
different energy demand and generation patterns. A strong
difference for the energy demand and PV power generation
throughout the year is concluded from the analysis of the
stochastic processes. Therefore, it is chosen to simulate a
typical winter and summer week in the Netherlands. These
two weeks are analyzed, and it is concluded what type of
week the most energy transfer between the microgrid and
utility grid is expected. Then, a week with extreme conditions
is constructed where the most energy transfer between the
microgrid and utility grid is expected. This week indicates
the minimum electrical energy grid investment needed to
guarantee the reliability of the microgrid. A week with extreme
cold temperatures in the winter is chosen to present this
week. Therefore, there is a high thermal energy demand and

low PV power due to the low solar irradiance in the winter.
From these different weeks, an overview of the average costs
during the year can be sketched based on the summer and
winter case study. Furthermore, the minimum electrical energy
grid investments can be obtained by the week with extreme
conditions.

Each simulation in the different microgrids consists of eight
consecutive days whereof the first day is used for initialization.
Thus, the results are based on the last seven days of the
simulation. The simulation starts on a Monday and ends on
the next Monday. It is chosen to use this order to include the
influences of the weekend on the first weekday.

The mixed-integer linear programming problem is solved
in the Matlab R2020a environment using Gurobi. A HP
EliteBook 8570w with a 2.3 GHz Intel Core i7 processor and 4
GB of RAM is used for the simulations. Different computation
times are obtained for the controllers in each case study and
scenario. In general, the computation time increases with a
higher energy demand in the case study. The computation
time for the week with extreme conditions are approximately
3 hours.

E. Results
In Table I the system performance is presented. It is con-

cluded that a general trend is present for each week between
the scenarios. A higher level of hydrogen penetration in the
microgrid reduces the peak of electrical energy transfer of the
microgrid. However, the total economic costs increase due to
the higher energy import costs. These higher energy import
costs are mainly due to the more expensive fuel costs for
fuel cell EVs compared to battery EVs. The fuel costs are
more expensive due to the higher import price of hydrogen
compared to electrical energy and the low efficiency in the
fuel cells. It must be noted that the expected hydrogen price
and low efficiency of the fuel cells influence the results of the
optimization substantially and future research should focus on
these developments.

To quantify the reduction of the peak of electrical energy
transfer and the total economic costs, the electrical energy grid
investments are based on the week with extreme conditions.
The energy import costs are calculated by averaging the costs
in the typical winter and summer weeks, representing an
approximation of the mean costs throughout the year. It is
concluded that a reduction in the electrical grid investments is
realized of 16.90% and 81.29% for the mixed and hydrogen
scenario, respectively. However, the total economic costs are
increased for the mixed and hydrogen scenario, respectively,
by 29.92% and 52.38%.

The introduction of hydrogen results in lower energy inde-
pendence of the microgrid, decreasing the self-reliance of the
microgrid. This is caused due to the lower efficiency of the
fuel cell compared to the battery. Another trend is that for
the mixed scenario including both battery and fuel cell EVs,
there is more degradation on the vehicles due to the higher
use of the EV in vehicle-to-grid operations. Furthermore, in
the mixed scenario, a lower comfort level is obtained due to
the lower state of charge of the EVs. No clear differences are
concluded for the self-supply of the microgrids.
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TABLE I
THE RESULTS ON THE PERFORMANCE INDICES FOR THE SCENARIOS IN THE DIFFERENT WEEKS.

Week Scenario EGI [e ] EIC [e ] Total costs [e ] CL DEV [103] ESS EI

Winter
Electric 338 409 747 0.6379 0.7554 0.8448 0.5956
Mixed 239 711 950 0.5873 0.6230 0.8414 0.5171

Hydrogen 48 1,115 1,163 0.6320 0.7424 0.8660 0.4075

Summer
Electric 271 53 324 0.8826 0.6795 0.7973 0.7073
Mixed 173 211 384 0.7432 0.6349 0.8007 0.3831

Hydrogen 34 511 545 0.8258 0.8031 0.8034 0.1347

Extreme conditions
Electric 345 548 893 0.4537 0.7648 0.9478 0.6760
Mixed 286 850 1,136 0.4306 0.6450 0.9402 0.6081

Hydrogen 64 1,257 1,321 0.4624 0.7497 0.9618 0.5406

VI. CONCLUSIONS

In this paper, the influence of hydrogen to the peak of elec-
trical energy transfer of a microgrid is analyzed. A simulation-
based case study is performed where scenarios with different
levels of hydrogen are compared. It is concluded that the
introduction of hydrogen in the microgrid reduces the peak
of electrical energy transfer against higher energy import
costs. Therefore, the total economic costs of the microgrid
and the overall performance increase with the introduction of
hydrogen. Furthermore, the introduction of hydrogen in the
microgrid show a clear decrease in the energy indecency of
the microgrid. In a microgrid containing both battery and fuel
cell EVs, it is concluded that more vehicle-to-grid operations
are used compared to the microgrids including only one type
of EV.

In this study, the arrival and departure times of the EVs
are assumed to be known. By considering unknown departure
times, forecasting models should be developed to predict
the behaviour of this stochastic process. Furthermore, it is
expected that different (lower) performance will be obtained
for the microgrid and this should be analyzed.

Scaling the size of the microgrid could influence the perfor-
mance of the microgrid. Therefore, the influence of hydrogen
on these smaller or larger microgrids should be evaluated.
Since the computational complexity rises when increasing the
size of the microgrid, alternative techniques as distributed
MPC or parameterized MPC could be considered.
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List of Acronyms

ANN Artificial Neural Network
CHP Combined Heat and Power
DR Demand Response
EV Electric Vehicle
MPC Model Predictive Control
PV Photovoltaic
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List of Symbols

Symbols Related to the Model of the Microgrid

k Time step
xbat Energy storage in the battery [kWh]
ubat Energy exchange of the battery [kWh]
δbat Logic binary variable indicating if the battery is charging or discharging
ηc

bat Charging efficiency of the battery
ηd

bat Discharging efficiency of the battery
xhst Hydrogen stored in the hydrogen storage tank [kg]
uhst Hydrogen exchanged with the hydrogen storage tank [kg]
Helc Hydrogen produced by the electrolyzer [kg]
uelc Electrical energy consumed by the electrolyzer [kWh]
δelc Logic binary variable indicating if the electrolyzer is on or off
αelc Model parameter of the electrolyzer [kg/kWh]
QHP Thermal energy generated by the hybrid heat pump [kWh]
uel

HP Electrical energy consumed by the hybrid heat pump [kWh]
ugas

HP Gas consumed by the hybrid heat pump [kWh]
uhyd

HP Hydrogen consumed by the hybrid heat pump [kWh]
δel

HP Logic binary variable indicating if the hybrid heat pump is consuming
electrical energy

δel
HP Logic binary variable indicating if the hybrid heat pump is consuming gas

δhyd
HP Logic binary variable indicating if the hybrid heat pump is consuming hydrogen

ηel
HP Electrical energy efficiency of the hybrid heat pump

ηgas
HP Gas efficiency of the hybrid heat pump

ηhyd
HP Hydrogen efficiency of the hybrid heat pump

PCHP Electrical energy produced by the CHP plant [kWh]
QCHP Thermal energy produced by the CHP plant [kWh]
xCHP Thermal energy stored in the storage component of the CHP plant [kWh]
uCHP Gas or hydrogen consumed by the CHP plant [kWh]
δCHP Logic binary variable indicating if the CHP plant is turned on or off
ηel

CHP Electrical efficiency of the CHP plant
ηth

CHP Thermal efficiency of the CHP plant
xBEV Electrical energy stored in the battery EV [kWh]
uBEV Electrical energy transferred with the battery EV [kWh]
hBEV Electrical energy costs per trip for the battery EV [kWh]
δg

BEV Logic binary variable indicating if the battery EV is in generation mode
zg

BEV Auxiliary variable indicating the generated energy for the microgrid from
the battery EV

ηc
BEV Charging efficiency of the battery EV

ηd
BEV Discharging efficiency of the battery EV

xFEV Hydrogen stored in the fuel cell EV [kg]
uhyd

FEV Hydrogen transferred with the fuel cell EV [kg]
uel

FEV Electrical energy transferred with the fuel cell EV [kWh]
hFEV Hydrogen costs per trip for the fuel cell EV [kg]
αFEV Model parameter of the fuel cell EV [kg/kWh]
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βFEV Model parameter of the fuel cell EV [kg/h]
CUG Economic cost for the imported energy from the utility grid [e ]
uUG Energy exchanged with the utility grid [kWh]
δUG Logic binary variable indicating if energy is purchased from or sold to

the utility grid
cp Purchasing price of energy [e ]
cs Sale price of energy [e ]
Dc Thermal curtailable load [kWh]
βc Percentage of preferred power level to be curtailed
Qc Actual curtailed thermal load [kWh]
Dr Rescheduable load [kWh]
Del

r Electrical rescheduable load [kWh]
Dth

r Thermal rescheduable load [kWh]
βr Percentage of preferred power level to be rescheduled
βel

r Percentage of preferred electrical power level to be rescheduled
βth

r Percentage of preferred thermal power level to be rescheduled
Pr Actual rescheduled electrical load [kWh]
Qr Actual rescheduled thermal load [kWh]
Drc Consumed rescheduled load [kWh]
Del

rc Consumed electrical rescheduled load [kWh]
Dth

rc Consumed thermal rescheduled load [kWh]
δel

rc Logic binary variable indicating if electrical rescheduable load is consumed
δth

rc Logic binary variable indicating if thermal rescheduable load is consumed
Prc Actual consumed rescheduled electrical load [kWh]
Qrc Actual consumed rescheduled thermal load [kWh]
lel
r Unsatisfied rescheduled electrical load [kWh]

lthr Unsatisfied rescheduled thermal load [kWh]
T el

rc Time needed for the unsatisfied rescheduled electrical load to be consumed [h]
T th

rc Time needed for the unsatisfied rescheduled thermal load to be consumed [h]
Fel Defined time step when rescheduled electrical load needs to be consumed
Fth Defined time step when rescheduled thermal load needs to be consumed

Symbols Related to the Constraints in the Model of the Microgrid

δ Logic binary variable indicating different modes
TON Minimum time the system is turned on [h]
TOFF Minimum time the system is turned off [h]
xEV Fuel stored in the EV [kWh]
xt

EV Minimum fuel that needs to be stored upon departure in the EV
δt

EV Logic binary variable indicating if the EV is in transportation mode
xg

EV Minimum fuel that needs to be stored in the EV before in generation mode
δg

EV Logic binary variable indicating if the EV is in generation mode
(·)el Indicating that it is about electrical energy
(·)gas Indicating that it is about gas
(·)hyd Indicating that it is about hydrogen
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Symbols Related to the Stochastic Processes

PPV Photovoltaic power [kW]
PSTC Photovoltaic power under standard test conditions [kW]
Gc Global horizontal solar irradiance [W/m2]
GSTC Global horizontal solar irradiance under standard test conditions [W/m2]
Gcs

c Global horizontal solar irradiance for a clear sky day [W/m2]
Tc Cell temperature [◦C]
TSTC Cell temperature under standard test conditions [◦C]
α Negative power temperature coefficient
Tamb Ambient temperature [◦C]
NOCT Nominal operating cell temperature [◦C]
τ Clear sky index
Pres Electrical energy demand of the residential buildings [kWh]
Qres Thermal energy demand of the residential buildings [kWh]
Pcom Electrical energy demand of the commercial buildings [kWh]
Qcom Thermal energy demand of the commercial buildings [kWh]

Symbols Related to the Forecasting Models

α Vector of optimized parameters for the linear regression
p Autoregressive order
d Difference order
q Moving average order
ϕp Regular autoregressive polynomial of order p
θq Regular moving average polynomial of order q
L Regular lag operator
∇d Regular differentiating operator
P Seasonal autoregressive order
D Seasonal difference order
Q Seasonal moving average order
ΦP Seasonal autoregressive polynomial of order P
ΘQ Seasonal moving average polynomial of order Q
Ls Seasonal lag operator
∇D

s Seasonal differentiating operator
Xt Forecast variable
εt White noise
x′

k,t Exogenous input of the kth exogenous input variable
βk Coefficient value of the exogenous input of the kth exogenous input variable
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Symbols Related to the Control of the Microgrid

x States of the system
u Inputs of the system
y Outputs of the system
w Additive disturbances to the system
f Function of the states of the system
h Function of the outputs of the system
Np Prediction horizon
Ns Number of scenarios
Bij Branching point of scenarios i and j
∆ Bound for the tree structure
µ Median
J Cost function
Jeco Economic cost function
Jdis Discomfort cost function
Jdur Durability cost function
Jgd Grid demand cost function
ρc Penalty weight on curtailment
ρel

r Penalty weight on electrical energy rescheduling
ρth

r Penalty weight on thermal energy rescheduling
ρEV Penalty weight on the state of charge of the EVs
ρbat Penalty weight on the state of charge of the battery
ρhst Penalty weight on the state of charge of the hydrogen storage tank
NEV Number of EVs
NBEV Number of battery EVs
NFEV Number of fuel cell EVs
ρgd Penalty weight on the maximum transferred electrical energy

between the microgrid and the utility grid
ζel

UG Auxiliary variable indicating the maximum electrical energy transfer between
the microgrid and the utility grid

zel
UG Auxiliary variable indicating only imported electrical energy

Symbols Related to the Performance Indices

T Simulation time steps
Tm Time steps in a month
EGI Electric grid investment performance index
EIC Energy import costs performance index
CL Comfort level performance index
DEV Durability of EV performance index
ESS Electric self-supply performance index
EI Energy independence performance index
δt Logic variable indicating if EV is in transportation mode
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