Concept design of a Fast Inspection Repair and Maintenance vessel

11/22/2013 K.W. van der Leij

SDPO.14.009.m

Concept design of a Fast Inspection Repair and Maintenance vessel

22-11-2013 Technical University Delft Damen Shipyard Gorinchem

Abstract

This report describes the design of an Inspection, Repair and Maintenance (IRM) vessel for the offshore oil and gas market with the possibility to sail at a maximum speed of 25 knots. The idea came from an operator who wanted to investigate the possibility of a relatively high speed offshore vessel to decrease the transit time in order to increase the amount of working days and in case of emergency response. The problem that arose was that existing IRM vessels have a hull shape which is not built for speed, it had to be investigated which design is suitable for both speed and stationary crane operations at sea.

All the requirements of the vessels were summed up and a market analysis of the offshore oil and gas market was made to get an insight of the operations and supporting vessels, this resulted in the design of two concept vessels, a mono-hull and a catamaran. Both mono-hull and catamaran were designed as a displacement type vessel. The two concepts vessels were tested to each other on several criteria and eventually the mono-hull was chosen because of a significantly lower resistance.

Subsequently the mono-hull concept was evaluated and improvements have been made to solve some problems that arose for the first design. Eventually a final concept vessel was designed. Initially the linesplan was based on a fast displacement parent hull form developed by Marwood and Bailey. The lines were altered to fit all the components, but still very slim for an offshore vessel. Over the length of the work deck "sponsoons" were integrated in the hull, so the operator can increase the waterplane area and displacement of the vessel during hoisting operations and create extra transverse stability by increasing the draft of the vessel.

It can be concluded that a Fast Inspection Repair and Maintenance vessel with a speed requirement of 25 knots is technically possible. However it is very likely that about 90% of the operational time only a limited percentage of the entire installed propulsion power is used, making it a very expensive vessel to buy and operate. On the other hand the day rates of these vessels are in the order of millions, which makes it possible to earn back the investment.

The report is subdivided into six chapters. The first chapter provides an introduction into the offshore oil and gas market through a market analyses. This market analyses together with the initial requirements for the vessel will form the design questions for this project. Chapter two covers the design process of a mono-hull concept. All design aspects like for instance hull form design, resistance calculation, stability calculations and seaway calculations are discussed. The third chapter covers the same design process but now for a catamaran design. Eventually these two concepts are compared to each other in Chapter 4 from which one design is chosen. This design is than evaluated and improved in Chapter 5 leading to the final design for this vessel. The last chapter provides a conclusion and future recommendations for this project.

Table of Contents

Abstract		2		
List of figures		5		
List of tables.	hallangas and problem description			
1. Main challenges and problem description				
1.1.1	Processes and supporting vessels			
117	Offebera (support) vascals	10		
1.1.2	Offshore (support) vessels	12		
1.1.3	Inspection Repair and Maintenance			
1.2 Initia	al requirements / Design criteria FIRM	17		
1.3 Desi	gn questions:	18		
1.4 Con	cepts			
2. Design	mono-hull concept			
2.1 Choi 2.1.1	Marwood and Bailey hull	19 22		
2.1.1		22		
2.2.2 Lir	nesplan	23		
2.2.3 Pr	eliminary general arrangement plan	25		
2.2 Resi	stance calculation			
2.3 Pow	er speed analyses and propulsion system	28		
2.4 Auxi	iliary Systems and electric load balance			
2.5 Tanl	k capacity	32		
2.6 Wei	ght calculation	33		
2.6.1	Results			
2.7 Hyd	rostatics	35		
2.8 Stab	ility calculations	36		
2.8.1	Intact stability calculations			
2.8.2	Accidental loss of load stability calculation	38		
2.8.3	Damage stability calculations	39		
2.8.4	Tank arrangement	40		
2.9 Seal	keeping	41		
2.9.1	Approach and criteria	41		
2.9.2	Results			
2.10		45		
2.10 D	Calculation of forces and moments			
2.10.1	Thructor forces and static equilibrium	45		
2.10.2				
3. Design	catamaran concept			
3.1 Cala 3.2 Deta	armination of main particulars			
3.3 Hull	design and lines			
3.4 Resi	stance calculation			
3.5 Wei	ght calculation			
3.6 Hyd	- rostatics	59		
3.7 Stab	ility	60		
4. Selecti	on	61		
5. Mono-	hull concept optimization and final design	62		
5.1 Resi	stance reduction			
5.2 Increase stability for DP				
5.3 New	/ UESIGIT			
J.J.T				

	5.3.2	Resistance	. 67			
	5.3.3	Power speed analyses and propulsion system				
	5.3.4	Auxiliary systems and electric load balance	. 71			
	5.3.5	Weight calculation	. 72			
	5.3.6	Hydrostatics	. 73			
	5.3.7	Stability	. 75			
	5.3.8	Dynamic positioning	. 78			
	5.3.9	General arrangement plan and tank arrangement	. 80			
	5.3.10	Artists impressions	. 85			
6	Conclu	sion	. 89			
Late	st develo	oments	. 90			
Specification sheet Damen FIRM 120						
Artists impressions and photo Damen FIRM 120			. 93			
Refe	rences		. 97			

Appendices

I Design hydrostatics report mono-hull.	99
II Tank volumes mono-hull concept	101
III Weight calculation mono-hull concept	102
IV Extensive hydrostatics report mono-hull concept	107
V Rules and regulations intact stability calculations	110
VI.A IMO A.749(18)	110
VI.B Accidental loss of load (DNV)	111
VI Intact Stability calculations mono-hull	112
VII Loss of load calculation mono-hull	133
VIII Background information Strip Theory	139
IX Seakeeping performances indices (NORDFORSK)	141
X Dynamic positioning calculations mono-hull	144
X.ABackground information on DP	144
X.B DP calculations mono-hull	147
XI Catamaran database	150
XI.A Trendlines	154
XII Design hydrostatics report catamaran	158
XIII Resistance prediction catamaran design	160
XIV Weight calculation catamaran	163
XIV.A Weight of structure between demi-hulls	163
XIV.B Bare hull weight catamaran	165
XV Extensive hydrostatics report catamaran	166
XVI Intact stability calculations catamaran	169
XVII Design hydrostatics report final design.	172
XVIII Extensive hydrostatics report final design	174
XIX Weight calculation final design	177
XX Intact stability calculations final design	182
XXI Loss of load calculation final design	206
XXII Dynamic positioning calculations final design	212
XXIII Technical tender document knuckle boom crane	213

List of figures

	. 12
Figure 2, Modern IRM vessel	. 16
Figure 3, Typical curves of C_{TL} for a displacement hull, a semi-displacement hull and a fully planing hull.	. 19
Figure 4, Basic layout IRM vessel	. 20
Figure 5, Basic layout main deck	. 21
Figure 6, Linesplan Marwood and Bailey parent hull form	. 22
Figure 7, Linesplan mono-hull concept	. 24
Figure 8, Tanktop, Tween deck and Main deck	. 25
Figure 9, A- B- C- and Bridge deck	. 25
Figure 10, Resistance mono-hull concept	. 27
Figure 11, Effective power mono-hull concept	. 28
Figure 12, Schematic overview propulsion power and efficiencies	. 29
Figure 13, Schematic overview propulsion system mono-hull	. 30
Figure 14, GZ curve DNV loss of load calculation	. 38
Figure 15, G'M limit curve mono-hull	. 39
Figure 16, Tank arrangement mono-hull	. 40
Figure 17, Operability mono-hull, 0 knots	. 42
Figure 18, Operability mono-hull, 15 knots	. 43
Figure 19, Operability mono-hull, 25 knots	. 44
Figure 20, Cd coefficients mono-hull	. 45
Figure 21, Contour mono-hull	. 46
Figure 22, Forces on mono-hull	. 47
Figure 23, Moments on mono-hull	. 47
Figure 24, Thrust vectors mono-hull Figure 25, Orientation forces, moments and heading	. 48
Figure 26, Catamaran Fn vs Lwl	. 51
Figure 27, Basic main deck layout catamaran	. 53
Figure 28, Resistance catamaran	. 54
Figure 29, Linesplan catamaran	. 55
Figure 30, Total resistance catamaran	E 7
Figure 31, Map op North-West Europe	. 62
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m	62 63
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	57 62 63 66
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design	62 63 66 67
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design	62 63 66 67 67
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design	62 63 66 67 67 70
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design 	67 63 66 67 67 70 70
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	62 63 66 67 67 70 70 77
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design 	62 63 66 67 67 70 70 77 78
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	62 63 66 67 70 70 77 78 78
Figure 31, Map op North-West Europe. Figure 32, Resistance mono-hull T=5.50m. Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design	62 63 66 67 67 70 70 70 78 78 78
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	37 62 63 66 67 67 70 70 70 78 78 78 79 81
Figure 31, Map op North-West Europe. Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1. Figure 44, GA plan final design 2.	37 62 63 66 67 70 70 70 70 70 78 78 78 78 81 82
Figure 31, Map op North-West Europe.Figure 32, Resistance mono-hull T=5.50mFigure 33, Linesplan final designFigure 34, Resistance light service draft final designFigure 35, Resistance design draft final designFigure 36, Schematic overview propulsion system final designFigure 37, Artists impression propulsion system final designFigure 38, G'M limit curve final designFigure 39, Forces on final designFigure 40, Moments on final designFigure 41, Thrust vectors final designFigure 43, GA plan final design 1.Figure 44, GA plan final design 2.Figure 45, GA plan final design 3.	37 62 63 66 67 70 70 70 70 78 78 78 81 82 83
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	37 62 63 66 67 67 70 70 70 77 78 78 79 81 82 83 84
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m	37 62 63 66 67 70 70 77 78 78 78 81 81 83 84 85
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m	37 62 63 66 67 70 81 82 83 84 85 85
 Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design	37 62 63 67 70 70 78 78 78 78 81 82 83 85 85 86
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1 Figure 44, GA plan final design 2 Figure 45, GA plan final design 3 Figure 47, Artists impression final design 1 Figure 48, Artists impression final design 2 Figure 49, Artists impression final design 3 Figure 40, Artists impression final design 4	57 62 63 67 67 70 77 78 78 78 78 81 81 82 85 85 86 86
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1 Figure 44, GA plan final design 2 Figure 45, GA plan final design 3 Figure 47, Artists impression final design 1 Figure 48, Artists impression final design 2 Figure 49, Artists impression final design 3 Figure 40, Artists impression final design 3 Figure 40, Artists impression final design 3 Figure 40, Artists impression final design 3 Figure 50, Artists impression final design 3 Figure 51, Artists impression final design 4 Figure 51, Artists impression final design 5	
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1 Figure 44, GA plan final design 2 Figure 45, GA plan final design 3 Figure 46, Tank arrangement final design 1 Figure 48, Artists impression final design 2 Figure 49, Artists impression final design 3 Figure 49, Artists impression final design 3 Figure 50, Artists impression final design 4 Figure 51, Artists impression final design 5 Figure 52, Artists impression final design 6	
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1 Figure 44, GA plan final design 3 Figure 45, GA plan final design 1 Figure 48, Artists impression final design 2 Figure 48, Artists impression final design 3 Figure 48, Artists impression final design 4 Figure 50, Artists impression final design 5 Figure 53, Artists impression final design 7	37 62 63 67 70 70 77 78 78 78 81 81 82 85 86 87 88 88
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 42, Orientation forces, moments and heading Figure 43, GA plan final design 1 Figure 44, GA plan final design 3 Figure 45, GA plan final design 1 Figure 47, Artists impression final design 1 Figure 48, Artists impression final design 2 Figure 49, Artists impression final design 3 Figure 50, Artists impression final design 4 Figure 51, Artists impression final design 5 Figure 52, Artists impression final design 7 Figure 53, Artists impression final design 7 Figure 54, Artists impression final d	
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1 Figure 44, GA plan final design 2 Figure 45, GA plan final design 3 Figure 46, Tank arrangement final design 1 Figure 47, Artists impression final design 2 Figure 48, Artists impression final design 3 Figure 50, Artists impression final design 4 Figure 51, Artists impression final design 5 Figure 52, Artists impression final design 7 Figure 53, Artists impression final design 7 Figure 54, Artists impression final design 7 Figure 55, Artists impression 1 Damen FIRM 120 concept Figure 55, Artists impression 2 Damen FIRM 120 concept	37 62 63 67 67 70 77 78 78 78 78 78 78 81 81 82 85 85 85 87 87 87 87 87 93 93
Figure 31, Map op North-West Europe Figure 32, Resistance mono-hull T=5.50m Figure 33, Linesplan final design Figure 34, Resistance light service draft final design Figure 35, Resistance design draft final design Figure 36, Schematic overview propulsion system final design Figure 37, Artists impression propulsion system final design Figure 38, G'M limit curve final design Figure 39, Forces on final design Figure 40, Moments on final design Figure 41, Thrust vectors final design Figure 43, GA plan final design 1. Figure 43, GA plan final design 2. Figure 44, GA plan final design 3. Figure 47, Artists impression final design 1 Figure 48, Artists impression final design 2 Figure 49, Artists impression final design 3 Figure 50, Artists impression final design 3 Figure 50, Artists impression final design 4 Figure 51, Artists impression final design 7 Figure 52, Artists impression final design 7 Figure 53, Artists impression 1 Damen FIRM 120 concept Figure 54, Artists impression 2 Damen FIRM 120 concept	

Figure 58, Artists impression 5 Damen FIRM 120 concept	
Figure 59, Artists impression 6 Damen FIRM 120 concept	95
Figure 60, Artists impression 7 Damen FIRM 120 concept	
Figure 61, Scale model Damen FIRM 120 concept	
Figure 62, Stability with loss of crane load	111
Figure 63, Definition of ship motions	139
Figure 64, Definition of vessel cross sections, strip theory	140
Figure 65, Cd coëfficient ellipse	147
Figure 66, Stations mono-hull mirrored	147
Figure 67, Trendline catamaran database, Fn vs lwl	154
Figure 68, Trendline catamaran database, DWT vs lwl	154
Figure 69, Trendline catamaran database, lwl/Bdemi vs lwl	155
Figure 70, Trendline catamaran database, IwI/B vs IwI	155
Figure 71, Trendline catamaran database, B/T vs lwl	156
Figure 72, Trendline catamaran database, Cb vs lwl	156
Figure 73, Trendline catamaran database, Pb vs lwl	157
Figure 74, Models for resistance prediction Molland	160
Figure 75, Notation and Main Parameters of Models, Molland	160
Figure 76, Details of Models, Molland	160
Figure 77, Resistance componants Model 3b, Mono-hull	161
Figure 78, Resistance componants Model 4a, Mono-hull	161
Figure 79, Resistance componants Model 4b, Mono-hull	161
Figure 80, Resistance componants Model 3b, S/L=0.2	162
Figure 81, Resistance componants Model 4a, S/L=0.2	162
Figure 82, Resistance componants Model 4b, S/L=0.2	162
Figure 83, Equilibrium of forces on catamaran hull	163
Figure 84, simplyfied equilibrium of forces on catamaran hull	164
Figure 85, Vergeet me nietjes	164

List of tables

Table 1, IRM vessels	16
Table 2, Deck layout	20
Table 3, Parameters Marwood and Bailey parent hull form	22
Table 4, Design challenges	23
Table 5, Main particulars mono-hull concept	24
Table 6, Holtrop and Mennen applicability area	26
Table 7, Main engines mono-hull	30
Table 8, Main consumers mono-hull	31
Table 9, Auxiliary generator sets mono-hull 1 (2x)	31
Table 10, Auxiliary generator sets mono-hull 2 (2x)	31
Table 11, Emergency generator set mono-hull	31
Table 12, Fuel consumption mono-hull	32
Table 13, Total light ship weight and CoG mono-hull	34
Table 14, Hydrostatics mono-hull	35
Table 15, Intact stability criteria	36
Table 16, Intact stability calculation mono-hull results	37
Table 17, Results loss of load calculation mono-hull	38
Table 18, Drafts and G'M values for probabilistic damage stability calculation	39
Table 19, Operability mono-hull, 0 knots	42
Table 20, Operability mono-hull, 15 knots	43
Table 21, Operability mono-hull, 25 knots	44
Table 22, Environmental forces and moments mono-hull	48
Table 23, Thruster forces mono-hull	49
Table 24, Initial main dimensions catamaran	54
Table 25, Main particulars catamaran	55
Table 26, Comparison model catamaran and FIRM catamaran	56
Table 27, Resistance coefficients catamaran models	56
Table 28, Total resistance coefficient H&M and Damen resistance prediction tool	56
Table 29, Total resistance catamaran	57
Table 30, Summary weight calculation	58
Table 31, Hydrostatics catamaran	59
Table 32, Crane operation heel comparison	60
Table 33, Main particulars final design	66
Table 34, Main engines final design	70
Table 35, Main consumers final design	71
Table 36, Auxiliary generator sets mono-hull 1 (2x)	71
Table 37, Auxiliary generator sets mono-hull 2 (2x)	71
Table 38, Emergency generator set mono-hull	71
Table 39. Total light ship weight and CoG final design	72
Table 40, Design hydrostatics final design T=5.15 m	73
Table 41. Design hydrostatics final design T=5.80 m	73
Table 42. Design hydrostatics final design T=6.6 m	74
Table 43. Intact stability calculation final design results	75
Table 44. Results loss of load calculation mono-hull	76
Table 45. Drafts and G'M values for probabilistic damage stability calculation	77
Table 46. Environmental forces and moment on final design	
Table 47. Thruster forces final design	
Table 48. Weight factor comparison	102
Table 49. Weight calculation mono-hull 100	102
Table 50. Steel weight calculation mono-hull Westers	102
Table 51 Weight calculation mono-hull 200	103
Table 52, Weight calculation mono-hull 300	104
Table 53, Weight calculation mono-hull 400	105
Table 54 Weight calculation mono-hull 500	105
Table 55, Weight calculation mono-hull 600	106
	100

Table 56, Weight calculation mono-hull 700	106
Table 57, Weight calculation mono-hull 800	106
Table 58, Current forces and moments mono-hull	148
Table 59, Wind forces and moments mono-hull	149
Table 60, H-profile parameters	164
Table 61, Weight calculation catamaran 100	165
Table 62, Weight calculation final design 100	177
Table 63, Weight calculation final design 200	178
Table 64, Weight calculation final design 300	179
Table 65, Weight calculation final design 400	180
Table 66, Weight calculation final design 500	180
Table 67, Weight calculation final design 600	181
Table 68, Weight calculation final design 700	181
Table 69, Weight calculation final design 800	181
Table 70, Current forces and moments final design	212

1. Main challenges and problem description

The goal for this thesis is to design a concept vessel of an Inspection Repair & Maintenance vessel (IRM) for the offshore oil and gas market. These vessels are deployed worldwide and often have to cope with large transit distances. The idea for this concept is a vessel with all the capabilities of a regular IRM vessel and the ability to sail at 25 knots. This new type of vessel will be called FIRM, Fast Inspection Repair and Maintenance vessel. The speed of 25 knots should give this vessel an advantage over other competitive vessels and will be unique in the offshore oil and gas market.

The main challenge for this concept vessel lies in the speed requirement. Current IRM vessels sail at a maximum speed which lies around 16 knots; this is significantly lower than the required 25 knots for this vessel. Resulting in a design that has to be able to reach this speed and has enough stability to perform crane operations while stationary at sea.

To be able to design a concept vessel, first a market analyses was made which covers the oil and gas winning processes and supporting vessels. This market analyses together with the initial requirements from Damen leads to a series of design questions. On the basis of these criteria and questions the design process is started.

1.1 Market analyses: The offshore oil and gas market

To get a good picture of the offshore oil and gas industry a market analyses has been made. This market analyses is performed to get a better insight of the offshore oil and gas market. Is gives an overview of the processes involved and the vessels used in the support of these processes.

The offshore oil and gas winning process is depending on a variety of technically advanced vessels. Each step of the process, from locating the fields till supplying the rigs, needs dedicated vessels to make offshore oil and gas winning possible. To get a good impression of the entire process an overview is made that shows each step in the chain with the corresponding vessels and their specific tasks. This way it is possible to "fit" the FIRM into the chain and see where the concept can be implemented.

The process of finding and producing oil and bringing it to shore are categorized into upstream and downstream activities. In case of offshore oil and gas winning, all activities from searching and finding hydrocarbons and/or gas till production and bringing it to shore are called upstream activities. Downstream activities cover the moment the product reaches the refinery till the final product flows into for example a car. This analysis focuses on the offshore activities, so downstream activities are not considered.

1.1.1 Processes and supporting vessels

Upstream activities are categorized in two main activities, exploration and exploitation. In order to complete the chain of offshore activities, also decommissioning, abandonment and removal off offshore installations is added.

Exploration

Exploration starts with a geological study of the environment, if geologists conclude that oil and gas may have formed in that area seismic research vessels will perform a seismic investigation to visualize the layers of the earth's crust. If the outcome of this investigation reveals the potential entrapment of hydrocarbons, it is necessary to perform exploration drillings. These drillings are the only irrefutable way to prove the presence of oil and gas. Drilling an exploration well on the seabed requires a platform above water with a drilling rig.

Geophysical survey/seismic surveying

Oil companies' basic assets are oil and gas containing reservoirs, and detection of these fields by geophysical research are of vital importance. There are several tools available to carry out such a research, variations in the earth gravity- or magnetic field can be measured with airborne equipment and air photographs. More precise are seismic surveys, which in case of an offshore field have to be carried out by seismic research vessels. Reflected seismic waves are used to reveal the earth layers, called horizons by geologists, in order to find in particular anticline structures, faults, salt dome outcroppings etc.

Exploration drilling

If a geophysical survey gives an expectation of a possible oil or gas accumulation under the sea bed a test drill is made to determine the size, potential productivity and to test the formation. This procedure can be carried out by rigs or Mobile Drilling Units (MODU). A MODU is an integrated unit with a drilling rig and all necessary auxiliaries, accommodation and stores. This type of rig was first used in the 1950s and costs far less money than a standard drilling rig, because it can easily be relocated and used for several drillings.

There is a significant difference between shallow water drilling on bottom supported rigs and deep water on floating rigs. Drilling on bottom supported rigs resembles drilling on land and is less complex than drilling on floating rigs or vessels. This is because the drilling process largely determines the machinery and stores on a rig or vessel, and this is far greater on a floating platform.

Exploitation

If exploration determines the presence of hydrocarbons and it is economically attractive to extract these from the earth, a production platform is placed to start exploitation of the well. There are several types of production platforms of witch the jacket is the most common. A jacket is a steel structure that is piled into the seabed and has a platform well above the highest wave crests. Other types of platforms are: Compliant towers; Gravity based structures; Tension leg-platforms; Semi-submersible platforms; Spar platforms; Sub-sea installations. After drilling a production well the actual production process starts. This consists of bringing the oil or gas to the surface, transporting it to shore and refining it to an end product. In this thesis, refining is not considered because it's an on shore process and the focus is on off shore activities.

Production drilling

Production drilling is the same operation as explorations drilling, only know it is sure that hydrocarbons are present and the best location in the field is chosen for the placement of the production platform. There are several types of platforms, as explained above, and they are either floating or non-floating. For deep water offshore operations, non-floating platform are required. Shallow water operations usually have a non-floating platform, which is more stable than a floating one.

Production

Production of oil and gas is process from bringing the product from the underground reservoirs to the sales point. Drilling, both onshore and offshore, forms a major cost and time expense in the development of oil and gas fields, but offshore and especially in deep water may be multiple of land drilling costs. The exploration wells which were used to determine the presence and quality of hydrocarbons are not used for production, because their position in the field isn't optimized for flow. Therefore a number of so called development wells are drilled, mostly vertical or even horizontally. For both well types, the drilling technology is identical, the difference starts with the well completion, when one or more tubes are lowered into the cased hole and the casing is perforated to provide access for the reservoir fluids to the hole.

Transportation

There are basically two ways of transporting the oil and gas to shore. First is a pipeline, but is often commercially or technically impossible, because of the temperature that is needed to keep the oil liquid. Second is the use of vessels, the oil and gas is then transported by shuttle tankers, this is the most common used method.

Decommissioning

Like all marine constructions, an offshore oil platform also has an economical or technical lifetime. Regardless of the reason, if one of these lifetimes has come to an end the structure has to be removed. The easiest way is to abandon the platform and leaf it to the elements, or to destroy it with explosives and let it sink to the sea floor. This was a common method in former timer, but nowadays with increasingly stringent environmental regulations most governments demand that the platform is decommissioned properly to minimize the damage to the environment. This process can be done by heavy lift semi-submersible cranes, which are also used during hook-up. Momentarily the Dutch offshore company Allseas is working on the world's first purpose built decommissioning vessel, which is able to remove old production platforms in an economically efficient way.

1.1.2 Offshore (support) vessels

Offshore oil and gas winning is dependent on a variety of vessels supporting the different processes. An overview of the processes and vessels is given below.

Figure 1, Offshore oil and gas processes and supporting vessels

Seismic research vessels

Seismic research vessels are specialized ships, purpose-built for seismic survey of the ocean floor, often characterized by a wide stern. Streamers containing hydrophones are towed behind the vessel. While the vessel works a grid at a steady speed, an air gun generates sound waves directed towards the seabed. Echo's retuning from the seabed are detected by the hydrophones and recorded for further analyses. These recordings are used to map the seabed and detect deeper layers in the earth's crust.

PSV's and AHTS

The Platform Supply Vessel (PSV) and Anchor Handling Towing Supplier (AHTS) are the workhorses of the industry. They are characterized by a superstructure on the bow and a long, low freeboard aft deck to transport containers, anchors, chains etc. The vessels are used to supply platforms with all kind of supplies like equipment, powdered products for the drilling process like cement and bentonite, but also fuel and fresh water. Equipment is stored on the aft deck, while other products are stored below deck in dedicated tanks. In case of an AHTS the vessel has a large towing winch aft of the superstructure to hoist and move the anchors of a platform.

Crew transportation vessels

This are small high speed vessels used to bring relieve crews and small supplies to offshore platform. They are used for short daily trips only and mostly in benign areas like the Gulf of Mexico and Lake Maracaibo. On the North Sea, helicopters are mostly used to perform crew changes.

Accommodation jack-ups and semi submersibles/vessels (flotels)

During hook-up a lot of temporary crew like welders, electricians and fitters work on the platform. It wouldn't be logical to provide accommodation for these workmen on the production platform itself and waste valuable space. Therefore mobile crew accommodation is provided in the form of a jack-up in shallow waters and semi-submersibles (flotels) in deeper waters. These structures are placed alongside and connected to the production platform by a walk bridge. In case of a flotel a telescopic bridge is used to compensate the relative motions between the platform and the floating structure.

Repair and maintenance jack-ups, semi's

Special designed jack-ups and semi submersibles are used to repair and do maintenance of offshore platforms. These platforms often have a large accommodation area to provide accommodation for the platform's crew. Other distinct features are usually a large crane with a wide reach and sometimes a diving system with a decompression chamber, so special deep sea divers can do inspection and repair at great depths.

ROV support vessels

Nowadays a lot of subsea installation, inspection and maintenance is done by remotely operated vehicles or ROV's instead of divers. These ROV's are operated from a vessel through an umbilical which is connected to both the vessel and ROV. Vessel used for these operations are called ROV support vessels and have a crane or A frame for launching and recovery of the ROV, often through a moon pool.

Heavy lift cranes

For the installation of jacket platforms a floating crane in needed for lifting and positioning the jacket, driving piles, deck structures and modules containing for example the living quarters. Hook-up at sea is very expensive, so pre assembly of modules on shore will gain a lot of money. The size of these floating cranes has increased in time together with the increasing size of the platforms. The first heavy lift floating cranes had a mono hull ship-shaped floater with a large crane at the aft of the vessel, leaving deck space for the transportation of equipment. This design was due to a limited breadth of the vessel very sensitive to sea motions and because positioning a module on a jacket is a very precise and subtle job, the weather frame especially on the North Sea was limited. More recent crane vessels are semi submersibles and have the virtue of a large breadth, so the weather downtime was decreased significantly.

The design of a semi-submersible crane vessel is a compromise between a high GM for slewing under load and a preferred low GM for the rolling behavior of the vessel. This can be problem can be solved by using an active healing system that can move ballast water quickly to prevent healing without the need of a high GM. Modern crane vessels like the Balder and Hermod use this system.

Pipe laying vessels

When there is a need for a pipeline from an offshore structure or well you need a pipe laying vessel. There are basically two different techniques of pipe laying, J-lay and S-lay. Reeling or J-lay, is used for small pipes up to about 19" in diameter. The standard 12m pipe lengths are joined together on shore and spooled into a reel, which is later unreeled onto the sea floor. This technique forms less horizontal tension on the pipe than S-lay and is therefore preferred for deep-water applications. J-lay vessels are characterized by a large reel on deck, which can be unreeled amidships under and angle of about 45 degrees. S-lay requires a long vessel with a pipe assembly line onboard, where the 12 meter sections of up to 60" are assembled and lowered as a continues pipe onto the sea floor. S-lay vessels are characterized by the large stinger on the front or aft of the vessel that guides the pipe from the vessel to the bottom.

Well stimulation vessels

This are dedicated vessels used for cleaning and stimulation production wells. There are only a limited number of vessels in the world and only a few companies who offer this specialized work. The vessels have a laboratory onboard, high pressure pumps for fracturing rock and tanks for chemicals.

Trenchers and rock dumpers

To protect or thermally isolate pipelines it is possible to bury the pipeline. In some areas like the North Sea it is even required the bury pipelines up to 16" in diameter. Two types of vessel are needed for this process, a trencher and a rock dumper. Trenchers use several techniques to make a trench like water jets, mechanical cutting with cutters or chain cutters, ploughs and cutter-suction dredgers. Each technique requires a different kind of vessels which aren't discussed in this thesis. If the trench is made a rock dumper, which is a large vessel due to the amount of rocks needed, covers the trenched pipeline with rocks. The rocks are dumped through a fall pipe, often with thrusters at the end to precisely maneuver the fall pipe over the trench.

Semi sub transport vessels

To transport large modules or complete offshore units like jack-ups or semi submersibles special ships have been built, which can submerse to some 10-12 meter water above deck. The loading and unloading operation is always performed in calm waters due to the high risk of the procedure. When fully submersed, only the forecastle and the aft funnels of the vessel remain above the water. Once emerged the vessel can support huge loads and has sufficient initial stability. Only the dynamical stability is limited due to the low freeboard of the vessel, however the load (e.g. a semi-submersible platform) adds to the stability at large rolling angles. The vessels are characterized by a large breadth, superstructure at the front and the funnels at the aft. The design is governed by stability considerations, the ballast tanks have to be subdivided in such a way that free surface effects during (de)ballasting are limited. The deck has to be able to handle high local loads and the hull has to have sufficient collapse resistance to be submersed.

Diving support vessels

The first diving support vessels were built in the 1960s, until than diving operations were performed from mobile oil platforms or vessels like pipe-layers and crane barges. Because the deck space of an oil platform is very valuable and the expectation of continuing diving operations is low, specialized ships for diving operations emerged. Key components of a diving support vessel are dynamic positioning to maintain a position without the use of anchors and a saturation diving system. This system is used for diving operations in deep water. Below 50m divers use a mixture of helium and oxygen to eliminate the narcotic effect of nitrogen under pressure. The divers are lowered trough a moon pool in the bottom of the vessel to the site in a diving bell. Besides these two systems, diving support vessels often have a ROV and also heavy lifting equipment onboard.

Construction support vessels

Construction support vessels or CSV's are generally significantly larger (size between 110-160 meters in length) and more specialized than other offshore support vessels and are principally used to support complex deep water sub-sea construction, installation, maintenance, repair decommissioning and other sophisticated operations. CSVs also support remotely operated vehicles (ROV's), diving activities, well intervention, platform decommissioning and other complex construction operations. Generally, AHTSs and CSVs command higher day rates than PSVs due to their larger relative size and versatility, as well as higher construction and operating costs.

Main tasks of a construction support vessel are: Support in pipe laying; burial and the installation of flowlines; laying control umbilical's as an umbilical lay vessel; installation of distribution pipelines and subsea connections; monitoring of Touch Down Point (TDP); subsea preparation.

1.1.3 Inspection Repair and Maintenance

The goal of Inspection, Repair and Maintenance (IRM) is to maximize the economic returns from an offshore field development by optimizing the production available from a reservoir. The practice extends throughout the whole life of the field and encompasses the offloading of production reserves, integrity monitoring of risers and seabed settlement monitoring.

IRM activities are conducted in an on-going program of inspection, repair and maintenance. Vessels require subsea positioning for divers and ROVs undertaking surveys whilst dedicated well stimulation vessels require wireless control of bespoke tooling deployed to revitalize production from ageing wells.

Vessel tasks:

- Pipeline inspection, repair and maintenance
- Cable inspection, repair and maintenance
- Structure inspection
- Emergency response
- ROV operations
- Repair and maintenance of subsea systems
- Equipment transportation
- General repair operations

IRM vessel comparison

A few modern IRM vessels are listed in the table below

Vessel name	Loa [m]	B [m]	T [m]	D [m]	Crane	ROV	Moonpool	Deck area [m²]	Personnel	Speed [kn]
Acercy Petrel	76.45	15	-	8.8	27t AHC	Yes	Yes	350	50	11.5
Acercy Viking	98	20	7.3	9.6	100t AHC	Yes	Yes	770	60	16
Acercy legend	64.8	18.9	4.1	5.03	30t and 40t A-frame	Yes	No	450	54	10
Island Enforcer	122.4	23	6		100t and 200t	Yes	Yes	1100	120	17
Seisranger	85	20	6.56	10	50t and 40t A-frame	Yes	Yes	520	69	14

Table 1, IRM vessels

An analysis of the vessels in table 1 shows that IRM vessels have a crane for (subsea) hoisting operations; launch and recovery systems (LARS) for ROV operations; a moonpool; working deck area and a large accommodation. Figure 2 is a photo of the Acercy Viking and shows the typical lay-out of an IRM vessel.

Figure 2, Modern IRM vessel

1.2 Initial requirements / Design criteria FIRM

Next to the market analyses and IRM vessel comparison there is a set of initial requirements for the concept vessel, which will form the design criteria of the vessel. The requirements are limited leaving space to design any kind of vessel that meets these requirements and is practical for the purpose of the vessel. The list below sums up the requirements as set by Damen for this project

Basic function of vehicle

- 1. Required dead-weight, volume and area's
 - 600 m² deck area;
 - 600 ton deck load, CoG 1m above deck;
 - Approximately 1450 ton max deadweight.
- 2. Required speed
 - To be at least 25 knots maximum speed.
- 3. Dynamic Positioning
 - DP 2 notation;
 - Sea state 4/5;
 - North sea area, (JONSWAP spectrum);
 - 30kn wind speed;
 - 2kn current;
 - $H_{1/3}$ 2,5m, with a period of (7-11) seconds.
- 4. Range of vessel and operational profile
 - Endurance 30 days
 - i. 5% full speed (25 knots)
 - ii. 15% cruising speed (15 knots)
 - iii. 70% DP
 - iv. 10% Harbor
- 5. Special tasks
 - ROV operations, fully enclosed LARS (Launch And Recovery System);
 - Lifting operations, Offshore crane, 100 ton at 15m and 30 ton at 3000m depth AHC (Active heave Compensation);
 - Subsea inspection, repair and maintenance operations;
 - Transport of supplies and crew to offshore production platforms;
 - Emergency response
- 6. Passengers and level of luxury
 - +- 70 personnel
 - Maximum of 2 persons per cabin
- 7. Maneuverability
 - Dynamic Positioning capabilities

Economic environment

- 1. Goods to be carried
 - Supplies for oil and gas platforms
 - Equipment
 - Containers
- 2. Added value of speed or other specific vehicle qualities
 - Use high speed to arrive quickly at the site to save money and time.
- 3. Possible unique selling points of vessel
 - Significant higher speed than current Inspection Repair and Maintenance vessels
- 4. Available budget
 - No restrictions

Crew

- 1. Number
 - 19
- 2. Level of luxury
 - Western European standard

Sailing area

- 1. Traffic intensity
 - North/Norwegian sea
- 2. No limitations of main dimensions by means of canals, locks, harbors etc.
- 3. No wash and wake limitations
- 4. Sailing limitations due to wind are allowed

All of the requirements for the FIRM can be related to the IRM vessels in table 1, except the speed requirement that stands out. It can be concluded that the vessel distinguishes itself from other IRM vessels due to the requirement to sail at 25 knots.

1.3 Design questions:

In addition to the design criteria a series of design questions are formulated. The answer to these questions will help in the design process of the concept vessel.

- Hull form design.
 - How to get both speed and stability?
 - Enough space to fit all the equipment?
- Resistance calculation, which method can best be applied?
- How to get a good approximation of the lightweight of the vessel?
- Which stability rules have to be complied to?
- How will the vessel behave in seaway?
- Choice of propulsion system, how much power is needed for maximum speed and dynamic positioning?
- Which type of crane is most suitable for subsea hoisting operations?

1.4 Concepts

Two possible concept vessels have been investigated for this project. At first a mono-hull concept, current IRM vessels are all mono-hulls and this is therefore the most obvious option for this vessel. The mono-hull is based on a fast displacement hull form and is described in chapter 2. The second option is a catamaran, because catamarans are known for their high speeds and good transverse stability. Catamarans haven't been applied as IRM vessels yet and little is known about the applicability for this purpose, making it a unique design.

2. Design mono-hull concept

This chapter describes the design process of the mono-hull concept. First the choice of hull form and hull form design are described, followed by calculations concerning resistance; propulsion; weight; hydrostatics; stability; seakeeping and dynamic positioning.

It should be mentioned that the design of a vessel is an iterative process in which many aspects of the design are done parallel to each other. To make this report clearly the different parts of design are ordered by chapter, this should not always be taken as the chronological order of the total design process.

2.1 Choice of hull form type and linesplan

Most IRM vessels are set to sail at low speeds (10 to 16 knots maximum) and are able to use a hull form with a high block coefficient and low L/B value, which is beneficial for the space onboard. For this design we had to look for a hull form that is suitable to sail at 25 knots. Considering the speed range of the vessel a decision had to be made to use a displacement, semi-displacement or maybe even a planing hull-form. The so-called Telfer Coefficient (Telfer 1963) is considered to be a convenient method to compare resistance data for different types of vessels.

Below a graph is shown for a number of vessel types versus the Froude number. It can be seen that a displacement hull form shows superior resistance characteristics over planning and semi-displacement hull forms up to a Froude number of $F_N = 0.45$. For Froude numbers over $F_N = 0.45$, semi-displacement and fully planning hulls perform better, in this area the wave making resistance becomes far too high for a displacement vessel.

Figure 3, Typical curves of C_{TL} for a displacement hull, a semi-displacement hull and a fully planing hull. Reprinted from "Motor yacht hull form design for the displacement to semi-displacement speed range," by Perry van Oossanen, Justus Heimann, Juryk Henrichs and Karsten Hochkirch, 2009, p631.

Preliminary layout and main dimensions assessment

The main particulars of this vessel are based on a few requirements. First the vessel has to be large enough to meet the requirements and fit all equipment and personnel. Second the vessel has to be able to reach the speed of 25 knots and be stable enough for crane operations.

The basic layout (side view) of the vessel is given in figure 4, which is based on other IRM vessels like the ones in table 1. The hull up to the main deck is divided into three decks, the tanktop, a tween deck and the main deck. The superstructure of the vessel is located in front of the working deck area. The superstructure consists of the ROV hangar and deployment system, accommodation (together with offices and other facilities) and bridge deck.

Bridge	
Su	perstructure
Hull	

Figure 4, Basic layout IRM vessel

A preliminary deck layout which is given in table 2 gives an impression of the subdivision of the ship's compartments. At the main deck the 600 m² of deck area is situated aft of the superstructure. The superstructure includes a bridge and three decks for mostly accommodation space, 70 personnel and 19 crew members require about 2225 m² of accommodation space. This includes all spaces like cabin space, mesh rooms, etc. 25 m² per person is a rule of thumb used at Damen to estimate accommodation space in a preliminary design stage.

The ROV hangar with the deployment davit and the moonpool is a large installation which covers three decks, main- A- and B-Deck (the moonpool also takes up space below the main deck) over a length of approximately 20 meters. This system should be located around the CoG of the vessel where the ship motions are lowest. It is therefore placed between the accommodation area and the work deck of the vessel.

Deck	Compartments/spaces/equipment
Tanktop	Tanks, ballast water; fuel oil; fresh water Engine room Bowthruster room Moonpool
Tween deck	Tanks, ballast water; fresh water Engine room Switchboard room ECR Workshop(s) Steering gear room Moonpool
Main deck	Work deck Accommodation space (+-30%) ROV deployment system Moonpool Crane
A-Deck	Accommodation space (+-30%) ROV deployment system
B-deck	Accommodation space (+/-20%) ROV deployment system Life boats
C-Deck	Accommodation space (+/-20%) Life boats
Bridge	

Table 2, Deck layout

Figure 3 showed that displacement vessels are superior to semi-displacement vessels up to a Froude number of F_N =0.45. For a speed of 25 knots the waterline length at this Froude number is 83 meters, below this length a semi-displacement vessel is better, above this length a (fast) displacement vessel is the better choice.

An analysis of the main deck layout in figure 5 leads to a rough estimate of the minimum length of the vessel. The average breadth of the vessel is set at 15 meters, this is based on the vessels in table 1 and compensates for the lost space in the forward section of the vessel and cargo rails at the aft.

Figure 5, Basic layout main deck

This first assessment indicated that the waterline length of the vessel would be over 83 meters and a (fast) displacement hull form is most suitable for this concept.

2.1.1 Marwood and Bailey hull

The decision for a (fast) displacement hull form lead to two possibilities, a hard chine or a round bilge hull. Significant research has been carried out regarding the advantages and disadvantages of round bilge and hard chine hull forms by Bailey (1974) and Blount (1995 and 2009). Blount stated that from a seakeeping point of view, round bilge hulls are supposed to be superior at displacement speeds, but at semi-displacement speeds there is no consensus about the superiority of round bilge or hard chine hulls. This same conclusion is drawn by Keuning (1984). An advantage of a hard chine hull is the lower building costs compared to a round bilge. However the savings are minimal compared to the total costs of such a vessel and better seakeeping performances are considered far more important. Considering the above a round bilge hull has been adopted for this design.

The initial linesplan was based on a Marwood and Bailey type vessel, which is a round bilge high speed displacement hull form, suitable for speeds ranging from $F_N 0.3$ to 1.2. In 1969 Marwood and Bailey published test results of a systematic series of 22 models, carried out at the Ship Division of the British National Physical Laboratory. In this series L/B and B/T values were varied, other main hull parameters were kept constant, see table 3. Figure 8 displays the linesplan which was used as a parent for this concept design, throughout the design process this parent has evolved into the hull form which will be discussed in chapter 2.2.2.

Figure 6, Linesplan Marwood and Bailey parent hull form

Distinctive parameters Marwood and Bailey systematic series are:

Fixed parameters					
C _B	0.4	[-]			
C _P	0.69	[-]			
C _X	0.57	[-]			
LCB/L	0.44 fwd. AP	[-]			
L _E /L	0.60	[-]			
Variable parameters					
F_{nL} , L, L/B, B/T, L/ $\nabla^{1/3}$, i_e		[-]			

Table 3, Parameters Marwood and Bailey parent hull form

2.2.2 Linesplan

The design of the linesplan started out with the parent hull form given in figure 6 and evolved during the design process of the vessel. The main focus was to minimize the resistance and comply with all the design criteria. During this iterative process it is important to have a good insight in the weight, stability, resistance and general arrangement of the vessel. In order to find the right balance between these design aspects the linesplan was constantly adjusted until the best compromise was found.

Vessel characteristics	Design challenge	Design aspects involved
Length	Long waterline to reduce resistance, higher hull speed Don't oversize the vessel	Resistance calculation General arrangement
Breadth	Narrow to reduce resistance Wide for more transverse stability	Resistance calculation Stability calculation Weight calculation General arrangement
Draught	Low to reduce resistance High enough for propeller Comply to deadweight requirement	Resistance calculation Hydrostatics calculation
Depth	High freeboard to optimize working conditions on deck Low freeboard the increase stability	Stability calculation Weight calculation Freeboard calculation
C _B	Low to reduce resistance High to maximize space High enough to comply with the deadweight requirement	Weight calculation Resistance calculation Hydrostatics calculation
LCB	About 6% aft of L/2 for speed Maintain the trim as close to 0 as possible	Weight calculation, CoG Hydrostatics calculation

The design challenges involved the following main considerations:

Table 4, Design challenges

The outcome of this design process is the linesplan in figure 7, which eventually deviated from an original Marwood and Bailey hull form to make it suitable for the purpose of an IRM vessel. Even though some distinctive characteristics like the low block coefficient, narrow lines and backward center of buoyancy are still present.

The design aspects like weight- and resistance calculation which are covered in the next chapters all relate to this hull form.

Main particulars				
L _{oa}	120	[m]		
L _{pp}	116	[m]		
L _{wl}	115	[m]		
В	19	[m]		
T _{design}	6	[m]		
D	8	[m]		
Displacement, at T _{design}	6256	[t]		
C _b	0.4462	[-]		
C _p	0.642	[-]		
Wetted area	2288.2	[m²]		
Waterplane area	1715.3	[m²]		
LCB	-4.347	%		

Table 5, Main particulars mono-hull concept

The complete list of the hull properties can be found in Appendices I.

Figure 7, Linesplan mono-hull concept

2.2.3 Preliminary general arrangement plan

The preliminary general arrangement plan for the vessel is given below, the lines follow from the hull form of Chapter 2.2.2. Figure 8 and 9 give a top view of the preliminary deck arrangement. This is still a basic layout to check if all systems and compartments will fit. The total available space for accommodation and deck area comply with the requirements given in Chapter 1.2.

Figure 8, Tanktop, Tween deck and Main deck

Figure 9, A- B- C- and Bridge deck

2.2 Resistance calculation

The hull form design is derived of a systematic series of hull forms which have been tested in a model basin, the Marwood Bailey series. Therefore it seems to be logical to use this data for the resistance prediction of the concept vessel. However due to alterations to the hull-form, fixed parameters like for instance C_B and LCB, deviate from a standard Bailey hull. Making this a hull form that has a lot of resemblance with a Bailey hull, but doesn't meet the exact requirements and therefore another method has been used to predict the resistance of the vessel.

In the past a number of methods have been developed of which the method of Holtrop and Mennen is probably the best known. J. Holtrop and G.G.J. Mennen have developed a resistance prediction method through regression analyses of random model experiments and full scale data. The method uses a subdivision of the total resistance in several components:

 $R_{total} = R_{F} (1 + k_{1}) + R_{APP} + R_{W} + R_{B} + R_{TR} + R_{A}$

 $R_{\rm F}$ = Frictional resistance according to the ITTC-1957 formula

 $(1 + k_1) =$ Form factor describing the viscous resistance of the hull form in relation to R_F

 $R_{APP} = \text{Resistance of appendages}$

 R_{W} = Wave-making and wave-breaking resistance

 $R_{_B}$ = Additional pressure resistance of bulbous bow near the water surface

 R_{TR} = Additional pressure resistance of immersed transom stern

 $R_A =$ Model-ship correlation resistance

The summation of these individual resistance components forms the total resistance of the vessel. For the entire method and explanation of the calculation of the resistance components we refer to the publication of Holtrop and Mennen (1982/1984). This method has been implemented into an Excel sheet to quickly calculate the resistance of the concept.

The reason to use this particular method for the concept vessel is because the hull form characteristics fit into applicability area and its past proven accuracy.

Midship coefficient	between 0.5 and 1.0	
L _{wl} /B	between 3.5 and 9.5	
L _{CB}	between -5% and +5% wrt L/2	
C _P	between 0.40 and 0.93	
Fn	Up to 0.45	

Table 6, Holtrop and Mennen applicability area

Results

The resistance curve of the vessel in for a speed range between 12 and 25 knots is given below.

Figure 10, Resistance mono-hull concept

Rtotal

[kN]

2.3 Power speed analyses and propulsion system

With the resistance prediction and speed requirement one can calculate the required power of the vessel by starting at the propeller side of the propulsion train. For this concept a diesel direct propulsion system with open propellers is chosen. A diesel direct system is more efficient and cheaper than a diesel electric system and open propellers are most suitable for the speed range. The power speed calculation for this concept is considered to be basic but sufficient for this stage of the vessel design.

The effective power (P_E) or required thrust is calculated by multiplying the speed (in m/s) with the resistance (kN). The desired break power (P_B) and amount of propellers is calculated by taking efficiency losses into account for the propeller, shaft and gearbox. Values for the efficiencies follow from the book of Klein Woud and Stapersma (2002).

After the calculations the main engines and gearboxes are chosen which are suitable for this propulsion concept. The reason to choose a specific engine and gearbox in this early design stage is primarily for the weight calculation in Chapter 2.6. Finally a schematic overview of the complete propulsion system is given to give a visual impression.

Effective power

The effective power versus the speed is displayed in figure 11.

Figure 11, Effective power mono-hull concept

Propellers

The maximum propeller diameter of the design is 4 meters. In propeller design the aim is always to keep the propeller diameter as large as possible to lower the propeller load, which results in lower fuel consumption and less power needed for propulsion.

Damen has developed a set of guidelines for maximum propeller load, based on the diameter of the propeller; these guidelines are used to determine the amount of propellers. For practical reasons (efficiency, vibrations, noise) it is recommended that larger displacement vessels should not exceed ca. 400 kW/m², which is shaft power (P_S) divided by the diameter squared. The maximum propeller load is to some extend related to the Damen Standard blade area ratio's A_E/A_0 . With higher blade area ratio's, higher propeller loads can be allowed to some extent. However, higher propeller loads at low speed will generate less tons thrust per kW. Damen standard creates an acceptable efficiency combined with acceptable noise and vibration levels.

• Assuming an estimated propulsive efficiency of 0.65 and shaft efficiency of 0.98:

P _E	=	15000 kW
Ps	=	23500 kW

• Number of propellers:

Max prop load = $400 \frac{kW}{m^2}$ Max propeller diameter = 4m $P_s \max = 400 \cdot 4^2 = 6400kW$ $\frac{23500}{6400} = 3.67$

The minimum amount of propellers is 4.

Power calculation main engines.

To determine the total break power of the main engines we consider a basic diesel direct concept with four shaft lines, four main engines and reduction gear. The calculation below deals with a maximum speed of 25 knots at trial condition.

Given a shaft loss of 2%, a gearbox loss of 3% and propulsive efficiency of 0.65

Figure 12, Schematic overview propulsion power and efficiencies

 $P_{E} = 15000kW$ $\eta_{D} = 0.65$ $\eta_{S} = 0.98$ $\eta_{GB} = 0.97$ For one shaftline: $P_{P} = \frac{(P_{E} / 4)}{\eta_{D}} = 5770kW$ $P_{S} = \frac{P_{P}}{0.98} = 5888kW$ $P_{B} = \frac{P_{S}}{0.97} = 6070kW \text{ (shaft and gearbox losses included)}$ $P_{P} total = 24280kW$

Main engines

Four diesel engines, with a minimum power of 6070kW each are required according to the power calculation. The Wärtsila 9L38 is a medium speed diesel engine with 6525kW output and suitable for this concept.

Make	Wärtsila
Туре	9L38
Output	6525kW
Speed	600 rpm
Specific fuel consumption	176 g/kWh
Weight	72 ton

Table 7, Main engines mono-hull

Gearbox

4x single in, single out Wärtsila SCV85, weight 14.5 ton each.

Propulsion system layout

The propulsion system layout is given in a sketch in figure 13. This figure shows one shaft line and the electrical system together with the bow and stern thrusters. The main components of the propulsion system and power generating system are listed below:

- 4 main engines
- 4 shaft lines
- 4 gearboxes
- 4 propellers
- 2 Bow thrusters
- 2 Stern thrusters
- 4 generator sets
- 1 Emergency generator set

Figure 13, Schematic overview propulsion system mono-hull

2.4 Auxiliary Systems and electric load balance

The schematic overview in the past chapter already showed generator sets which are needed to provide power to the auxiliary systems. An electric load balance leads up to the total amount of power which is needed. In this load balance the main consumers are listed, together with a post "hotel load" which covers all small consumers.

For this basic load balance we consider a DP condition, with a crane operation. In this condition all relevant consumers should be able to be turned on at full power at the same time. Because the tunnel thrusters and crane are the main electrical consumers, the amount of power that has to be installed for this condition is considered to be sufficient for all other conditions as well.

Load balance

Three main consumers are listed in table 8. The power for the hotel load is based on a comparable Damen vessel. The power for the tunnel thrusters is the maximum power needed for station keeping, calculated in Chapter 2.10 (DP calculations mono-hull). The power needed for the crane is based on the technical tender document from Cargotec for a knuckle boom crane which complies with the crane requirements stated in Chapter 1.2. The complete tender for the crane with all the specifications can be found in Appendices XXIII.

Consumer	Power
Hotel load	500 kW
Crane	1661 kW
Tunnel thrusters	5400 kW
Total	7561 kW

Table 8, Main consumers mono-hull

Generators

Based on the electric load balance a set of generator sets is chosen to provide the electrical power for the vessel. Two large generators and two smaller ones are installed which allows the operator to switch between different settings, based on the amount of power needed at the time. The emergency generator set for the vessel is given in table 11, it is mandatory to have one onboard according to class.

Make	Wärtsila
Туре	8L20
Output	1405 ekW
Speed	900-1000 rpm
Specific fuel consumption	185g/kWh
Weight	20.7 t

Table 9, Auxiliary generator sets mono-hull 1 (2x)

Make	Wärtsila
Туре	8L26
Output	2495 ekW
Speed	900-1000 rpm
Specific fuel consumption	184g/kWh
Weight	45 t

Table 10, Auxiliary generator sets mono-hull 2 (2x)

Make	Caterpillar
Туре	C18
Output	547 ekW
Speed	1800 rpm
Specific fuel consumption	133.2 l/h
Weight	1.9 t

Table 11, Emergency generator set mono-hull

2.5 Tank capacity

The tank capacity calculation involves the main consumables, fuel oil and fresh water, which are needed to comply with the endurance requirement of 30 days operation and contributes to two aspects of the vessel design. First of all does the outcome give an insight of the size of the fuel oil and fresh water tanks, which have to be taken into account in the tank arrangement. Second it contributes to the deadweight requirement of the vessel. This being a conceptual design we only consider main consumables and sewage capacity which are the largest tanks, other small tanks like for instance lubrication oil and sludge tanks are left outside the scope.

Fuel capacity

The fuel oil capacity is related to the operational profile of the vessel. The specific fuel consumption of the engines is based on data given by the engine manufacturer, 175g/kWh for the main engines and 185g/kWh for the auxiliary generator sets. The amount of kW's used per operational state are based on the power speed curve and DP analyses.

Operational profile:

Endurance 30 days, 24 hours per day

- 5% full speed (25 knots)
 - 15% economical speed (14 knots)
 - 70% Dynamic Positioning
 - 10% Harbor

Operational state	Percentage of time	Fuel consumption
Full speed	5%	160 ton
Economical speed (14 knots)	15%	57 ton
Dynamic Positioning	70%	420 ton
Harbor	10%	2 ton
Total	100%	639 ton

Table 12, Fuel consumption mono-hull

Fresh water capacity

The capacity of the fresh water tanks is calculated for 89 persons, 19 crew members and 70 special personnel. The consumption per person is set at 135 liters per day, which is based on standard Damen figures. The range is the same as previously mentioned in the fuel oil capacity calculation, 30days. A fresh water generator with a capacity of 12000 L/day is installed and taken into the calculation. This means that the fresh water generator can generate the same amount of water per day as the maximum amount of water that will be used by crew and passengers. To create a buffer the fresh water tank capacity is set at 100 m³ which is sufficient to provide water to all persons onboard for over a week.

Total fresh water capacity: 100 m³

Sewage capacity

The sewage tank is calculated for 4 days with maximum amount of crew and special personnel. A sewage treatment plant is necessary to minimize the size of the sewage tank. The amount of sewage per person onboard per day is equal to the amount of fresh water used, 135 liter.

Sewage tank capacity:	50 m³
Sewage treatment plant capacity:	12000 L/day

2.6 Weight calculation

The weight estimation is used to determine the center of gravity and the light ship weight of the vessel. The center of gravity of the vessel is essential for other calculations like stability, dynamic positioning and seaway. The light ship weight plus the required deadweight has to equal the displacement at a certain draft, if this is not the case the designer has to alter the vessels geometry, and it is therefore essential to make a reliable weight estimation.

There are many methods developed to estimate the steel weight of the vessel. These methods can be very useful if the designer has no or little information about weights of comparable vessels. Damen Shipyards has built a lot of vessels of all kinds in the past and has therefore a database of "as built" vessel weights which are very accurate. Based on this information the company had established weight factors for all kinds of vessels. This means that the steel weight of the vessel is estimated by multiplying the volume with a weight factor (kg/m³).

Besides the steel weight of the hull and superstructure, other components like for instance the main engines are listed and accumulated to the bare hull weight. Also the positions of the components in the vessel are taken into account to calculate the CoG. Most of the components have known weights, others like for instance piping are taken as a percentage of the total equipment weight which uses the piping. The percentage is again based on experience within the company.

Eventually all individual weights are summed up and will form the total light ship weight, for safety a margin of 5% is taken over the total weight. This 5% margin is the result of experience with previously built vessels, most of the time the actual weight of the vessel turns out to be higher than the original estimation. The center of gravity of the vessel is the result of the sum of all the separate components, again for safety a margin of 30cm is added to the vertical center of gravity (VCG), stability calculations are made with this safety margin.

To verify the method with weight factors the steel weight estimation method of Westers, which is a weight estimation method for the early design stage, is used.

2.6.1 Results

The weight components of the vessel are subdivided into 8 weight groups (100-800), this is a standard within the Damen company and makes the calculation clearer. The first weight group is the steel weight of the hull and superstructure, this group is compared and checked with the method of Westers. The other weight groups contain components of the vessel like main machinery, electrical systems and deck equipment.

Hull weight estimation

The weight factors for the hull and superstructure are divided into four groups, hull; superstructure (steel); superstructure (aluminum) and bridge. The weight factor for the hull is calculated by taking the average weight factor of built offshore vessels, see Appendices III. The other weight factors are standard Damen and based on experience within the company. The total hull weight is compared to the Westers calculation, the difference between the two methods is 92 tons, on a total of 2430 tons this is a difference of 3.8%. The method with the weight factor gives a slightly higher steel weight, but the margin is small. To be on the save side the method with the highest outcome is choses throughout the rest of the project.

Total light ship weight

The complete detailed weight calculation can be found in Appendices III, the table below gives the results of the weight calculation and CoG of the vessel.

Weight group	Weight [t]	VCG [m]	LCG [m]	TCG [m]
100 Shipbuilding	2,430	7.07	59.21	0.00
100 Shipbuilding (Westers, not included in total LSW)	2,338	6.74	58.35	0.00
200 Main machinery	710	3.13	27.24	0.00
300 Primary ship systems	284	6.93	56.36	0.00
400 Electrical system	237	5.77	57.27	0.00
500 Deck equipment	403	15.04	34.93	0.00
600 Secondary ship systems	51	7.35	46.09	0.00
700 Joinery and arrangement of accommodation	333	12.63	73.75	0.00
800 Nautical, navigation and communication equipment	3	20.50	60.00	0.00
Margins lightship weight	222 (5%)	0.30	0.00	0.00
Light ship weight (inclusive 5% weight and 30cm VCG margin)	4,674	7.81	52.56	0.00

Table 13, Total light ship weight and CoG mono-hull

The values of the total light ship weight and CoG are used to perform further calculations concerning stability, sea keeping and dynamic positioning.

2.7 Hydrostatics

The hull form, light ship weight and deadweight requirement are now known. This chapter sums up all the components to display if the vessel complies with the deadweight requirement. The results are presented in table 14.

HYDROSTATICS			LCG	VCG		
Light ship weight (incl margin)		4,674	t	52.56	7.81	m
Deadweight						
Deck cargo		600	t	23.00	9.00	m
Fuel oil		639	t	62.28	4.40	m
Fresh water		100	t	96.18	5.43	m
Sewage		50	t	55.00	1.75	m
Crew and stores		15	t	75.00	14.00	m
Total		1404	t	47.78	6.45	m
Displacement (wanted)		6,078	t			
				LCB	VCB	
Available displacement (T = 6.00 m)	6,253	t	52.19	3.81	m
Margin		175	t			

Table 14, Hydrostatics mono-hull

The results show a margin of 175 ton, which can be used as ballast water to adjust the trim of the vessel. A complete list of the vessel hydrostatics for several drafts is given in Appendices IV.
2.8 Stability calculations

Because of safety requirements the vessel has to comply with stability regulations, which are divided into intact and damage stability calculations. The requirements vary with the type and purpose of a vessel, this concept vessel has to comply to the intact stability code for vessels with a large B/H ratio and with the code for special purpose ships (SPS2008) for damage stability because of the number of special personnel onboard. The consequence of the SPS2008 code is that we have to cope with probabilistic damage stability calculations instead of deterministic calculations. These calculations are extensive, especially during this stage of the design process. To make sure the vessel will comply with probabilistic calculations a simple method is developed based on minimum G'M values of the loading conditions.

Additional to the intact and damage stability calculations and because the vessel has to handle high loads and makes use of counter ballast, a "Loss of load" calculation is made. The rules regarding this matter are not mandatory and only Det Norske Veritas (DNV) have made a set of regulations which are given in Appendices VI.B.

2.8.1 Intact stability calculations

The concept vessels have to apply to standard stability criteria for vessels with a large B/H value. These criteria are used for all offshore vessels designed at Damen, and consist of the General intact stability criteria for all ships (IMO Resolution A.749(18)), with addition of IMO's A.562 weather criteria and a maximum statical angle restricted by deck immersion, see table 15. For the calculations a wind pressure of 51.40 kg/m² is used.

Intact Stability Code for vessels with a large B/H ratio							
	Criterion						
Minimum metacentric height G'M	0.150	meter					
Maximum GZ at 30 degrees or more	0.200	meter					
Top of the GZ curve at least at	15.000	degrees					
Area under the GZ curve up to 30 degrees	0.055	mrad					
Area under the GZ curve between 30 and 40 degrees	0.030	mrad					
Maximum angle of inclination acc. to IMO's A.562 weather criterion	50.000	degrees					
Maximum statical angle due to wind	16° or 0.8*angle of deck immersion, whichever is less.	degrees					
Maximum statical angle 80% of angle of deck immersion	0.8*angle of deck immersion	degrees					

Table 15, Intact stability criteria

The stability calculations are made with PIAS. This requires a transformation of the hull form into PIAS, a tank arrangement, light ship weight and CoG of the vessel and definition of the openings. An overview of the tank arrangement is given in figure 16. The light ship weight and CoG of the vessel follow directly from the weight calculation.

A set of loading conditions is made for the most common and most extreme cases the vessel will have to cope with during its lifespan.

- 1.1 Ballast condition T_{design} = 6m
- 2.1 Departure 100% consumables
- 2.2 Arrival 10% consumables
- 3.1 Departure 100% consumables 600t deck load, 1m above main deck
- 3.2 Arrival 10% consumables 600t deck load, 1m above main deck
- 4.1 Crane operation 100t@15m, Departure 100% consumables (heel compensated)
- 4.2 Crane operation 100t@15m, Arrival 10% consumables (heel compensated)

(Note: 100t@15m means 100t at 15m outreach of the crane, this is 20.5m out of the centerline of the ship).

RESULTS

The extensive results of the intact stability calculations can be found in Appendices VII, below in table 16 a summary of the results is given.

Condition	Tmean [m]	Trim [m]	Min G'M [m]	Max GZ [m]	Top GZ [degre es]	Area under GZ up to 30 ⁰ [mrad]	Area under GZ between 30 ⁰ and 40 ⁰ [mrad]	Max angle of inclinatio n [degrees]	Max. stat. angle [degrees]
1.1	6.000	0.026	3.430	1.352	51.040	0.368	0.206	25.731	1.833
2.1	5.605	0.036	3.138	1.090	51.466	0.325	0.173	26.405	2.310
2.2	5.173	-0.268	2.970	0.938	52.475	0.302	0.155	28.763	2.876
3.1	5.983	-0.017	3.017	1.032	48.589	0.313	0.164	27.225	2.097
3.2	5.768	0.055	2.879	0.905	49.017	0.292	0.148	27.421	2.373
4.1	5.969	-0.279	2.644	0.741	44.956	0.260	0.124	29.537	2.405
4.2	5.747	-0.411	2.657	0.698	45.885	0.260	0.120	29.493	2.585

Table 16, Intact stability calculation mono-hull results

The vessel complies with all the intact stability criteria. It is notable that the G'M values are high for this kind of vessel, this could lead to high transvers accelerations which is unpleasant for crew and passengers.

2.8.2 Accidental loss of load stability calculation

The crane operations, loading condition 4.1 and 4.2, have also been subjected to a loss of load calculation. The regulations, made by DNV, are given in Appendices VI.B. These regulations had to be implemented into the stability calculation program (PIAS), we interpreted the rules as follows.

Implementation of the rules

We assume the vessel has no heel angle during the hoisting operation due to counter ballast, than the moment on the vessel (tonm) due to the load in the crane is calculated. This means that the first static angle (QL) should be zero in reality. However the calculation made in PIAS is static and the lost load is not included, therefore we use a trick to solve the calculation. A new loading condition is made without the load in the crane and without counter ballast. This results in a small heeling angle QL, due to the boom of the crane which is still outside the vessel. Now the moment which was initially induced by the load is applied the other way around on the vessel, this results in the second static angle (Qe).

The restoring energy represented by area A2 is to be at least 40% in excess of the potential energy represented by area A1. The angle of static equilibrium Qe after loss of crane load shall not be more than 15 degrees from the upright

Figure 14, GZ curve DNV loss of load calculation

Results

A summary of the results is presented in table 16, detailed results can be found in Appendices VIII.

The moment on the vessel:

100 tons load at 20.5 meters out of heart ship results in a moment of 2,050tonm, or 10,055kNm

Loading condition	Statical angle of inclination (QL)	Statical angle of equilibrium Qe	Area A2>1.40*A1		
4.1	2.060	5.743	Yes		
4.2	2.220	6.269	Yes		

Table 17, Results loss of load calculation mono-hull

The vessel complies with the regulations for loss of load. The final statical angle of equilibrium for the two loading conditions is around 6° , which is a lot when you're on the vessel, but below the safety margin of 15 degrees given in the regulations.

2.8.3 Damage stability calculations

One of the requirements of the vessel is to accommodate 70 special personnel. A consequence of this requirement is that the vessel has to comply with the code of safety for special purpose ships 2008 (SPS 2008), which requires probabilistic damage stability calculations. Because of the extensive nature of these calculations they are not yet done in this stage of the design process. To be sure the vessel will comply with these regulations in the future we developed a simple method based on the G'M values of the loading conditions and experience with these calculations.

It is mandatory for probabilistic calculations make a G'M limit curve, based on the loading conditions. The graph, given in figure 15, shows the G'M values for all loading conditions versus the draft of the vessel for that specific loading condition. Probabilistic damage stability calculations are performed for three drafts of the vessel, the lightest service draft; the design draft and a condition at 60% between the two previous drafts. For each of these drafts the minimum G'M is determined using the G'M limit curve. Experience with probabilistic damage calculations tells us that the minimum G'M value for this kind of vessels should be higher than 1.5 meter. If this is the case the vessel layout can be assigned in such a way that it will comply with the regulations

Figure 15, G'M limit curve mono-hull

Condition	Tmean	G'M
Lightest service draft (dl)	5.215	3.220
Partial subdivision draft (dp)	5.686	3.000
Deepest subdivion draft (ds)	6.000	3.300

Table 18, Drafts and G'M values for probabilistic damage stability calculation

For all three drafts the G'M value is significantly higher than 1.5 meters, therefore it should comply with the regulations of the SPS code for damage stability.

2.8.4 Tank arrangement

This is the tank arrangement and vessel contour used for the stability calculations.

Figure 16, Tank arrangement mono-hull

2.9 Seakeeping

The seakeeping behavior of the concept vessel is predicted using the computer program OCTOPUS, which uses strip theory. The reason to use this method is because it has proven to be very accurate for slender bodies, like this concept vessel, and it can deliver results quickly. A short background on strip theory can be found in Appendices IX.

2.9.1 Approach and criteria

In order to get results regarding the see keeping characteristics of the concepts vessel there are a few steps that need to be taken within the program. Because these steps give a better insight of the calculations, but aren't very important for this thesis, they are only covered shortly.

• Import hull model into Octopus.

The hull model made in DelftShip is imported to Octopus as a .dxf file and later meshed. Only the part of the hull below the waterline is used, because strip theory only deals with this part of the hull. Besides the actual hull form also all the parameters of the hull like main dimensions and displacement are entered.

- Calculate RAO's. The program than calculates the Response Amplitude Operators (RAO's) for all ship motions and for several speeds and headings.
- Simulate waves. There are a few possibilities to simulate the wave

There are a few possibilities to simulate the waves that encounter the vessel, both regular and irregular. It was decided to specify a the sailing area (North- and Norwegian- sea) and use the corresponding wave scatter diagram to simulate the situation as accurate as possible.

- Specify points on the vessel to calculate motions, velocities and accelerations. As a result of the sea keeping calculations we want to know the magnitude of the motions, velocities and accelerations at a certain point on the vessel. One can imagine that for instance vertical accelerations at the bow are higher than at the bridge which is closer to the CoG.
- Determine operability by use of criteria set by Nordforsk (1987).
 In the 70's a group of Norwegian scientists at Marintek have determined a set of criteria for ship motions which are still used today. These criteria give a maximum acceleration or motion for a certain space on the vessel and type of work done at that space. A copy of the paper can be found in Appendices X. These criteria are used to determine the operability of the vessel for the given region expressed in a percentage of the total operating time.
- Visualize results.
 After the calculation is made and the motions and accelerations of the vessel for a variety of speeds at the given points are known the results are plotted in the wave scatter diagram. This shows the maximum significant wave height for a certain wave period in which the vessel can still operate.

Note: The calculations can be considered conservative because all possible headings are taken into account which means that the worst possible heading will give the outcome of the operability. In practice a captain has, and most certainly will also use, the ability to change course in order to avoid the worst scenario.

2.9.2 Results

The results of the sea keeping calculations are visualized in a table and a graph per operational state, dynamic positioning; transit speed and full speed. The table shows the criteria and location for which the criterion is calculated. Example, "Vert. acc. Rms, FP" means the Rms (root mean square) value of the vertical acceleration at the bow. The limit for this criterion as set by Nordforsk is given in the second column and the third column describes the type of work that should be possible at this position, which is also normative for the limit. Finally the last column shows the possible operability of the vessel as a percentage of the total operating time.

The graph visualizes the limiting criteria vs the wave scatter diagram which was used for the calculations. This gives a good impression of the critical significant wave height and period for this vessel.

Operability limiting criteria FIRM DP (0 knots)	Limit	Description	Operability
Vert. acc. Rms, FP	0.15g	Heavy manual work	99.00%
Vert. acc. Rms, Bridge	0.15g	Merchant vessel criteria	100.00%
Lat. Acc. Rms, Bridge	0.12g	Merchant vessel criteria	84.00%
Roll rms	4 deg	Heavy manual work	57.00%
Slamming, bow, crit prob	0.01	Merchant vessel criteria	97.00%
Deck wetn. Crit. Prob. 1/3L	0.05	Merchant vessel criteria	63.00%
Deck wetn. Crit. Prob. 1/2L	0.05	Merchant vessel criteria	64.00%
Vert. acc. Rms. 1/3L	0.15g	Heavy manual work	95.00%
Vert. acc. Rms. 1/2L	0.15g	Heavy manual work	95.00%
Lat. Acc. Rms. 1/3L	0.07g	Heavy manual work	99.00%
Lat. Acc. Rms. 1/2L	0.07g	Heavy manual work	99.00%
Vert. acc. Rms. Accommodation	0.15g	Merchant vessel criteria	93.00%
Lat. acc. Rms. Accommodation	0.12g	Merchant vessel criteria	98.00%

Table 19, Operability mono-hull, 0 knots

Figure 17, Operability mono-hull, 0 knots

Operability limiting criteria FIRM transit (15 knots)	Limit	Description	Operability
Vert. acc. Rms, FP	0.2g	Light manual work	84.00%
Vert. acc. Rms, Bridge	0.15g	Merchant vessel criteria	100.00%
Lat. Acc. Rms, Bridge	0.12g	Merchant vessel criteria	82.00%
Roll rms	6 deg	Light manual work	87.00%
Slamming, bow, crit prob	0.01	Merchant vessel criteria	84.00%
Deck wetn. Crit. Prob. 1/3L	0.05	Merchant vessel criteria	65.00%
Deck wetn. Crit. Prob. 1/2L	0.05	Merchant vessel criteria	66.00%
Vert. acc. Rms. Accommodation	0.15g	Merchant vessel criteria	88.00%
Lat. acc. Rms. Accommodation	0.12g	Merchant vessel criteria	99.00%

Table 20, Operability mono-hull, 15 knots

motion	operability
Bow (Z-Acc)	84%
Bridge (Z-Acc)	100%
Bridge (Y-Acc)	82%
	87%
Bowslamming	84%
1/3L (Z-Mot)	65%
1/2L (Z-Mot)	66%
	c) 88%
Acco 2/3L (Y-Ac	c) 99%

						0	0	0	0	0	0
					0	0	1	1	1	0	0
				0	0	1	2	2	2	1	1
				0	2	4	6	6	4	2	1
			0	1	5	12	18	14	9	5	1
			0	4	17	35	43	34	21	20	
\mathbf{X}			2	15	53	97	105	77	42	19	
		0	7	50	155	247	236	156	?8	32	1
		1	26	159	418	571	480	281	127	47	1
À		7	-97	472	1023	1182	836	441	177	59	1
1		35	339	1276	2222	2118	1293	572	200	59	
5		.61	1089	3005	4107	3111	1550	-572	170	43	1
42	6	97	3107	6105	5932	3361	1294	379	92	20	4
347	2	722	7196	8682	5347	2012	538	114	21	3	1
2734	7	086	7466	3508	903	156	21	2	0		

Figure 18, Operability mono-hull, 15 knots

Operability limiting criteria FIRM transit (25 knots)	Limit	Description	Operability
Vert. acc. Rms, FP	0.2g	Light manual work	69.00%
Vert. acc. Rms, Bridge	0.15g	Merchant vessel criteria	93.00%
Lat. Acc. Rms, Bridge	0.12g	Merchant vessel criteria	81.00%
Roll rms	6 deg	Light manual work	89.00%
Slamming, bow, crit prob	0.01	Merchant vessel criteria	77.00%
Deck wetn. Crit. Prob. 1/3L	0.05	Merchant vessel criteria	65.00%
Deck wetn. Crit. Prob. 1/2L	0.05	Merchant vessel criteria	65.00%
Vert. acc. Rms. Accommodation	0.15g	Merchant vessel criteria	75.00%
Lat. acc. Rms. Accommodation	0.12g	Merchant vessel criteria	100.00%

Table 21, Operability mono-hull, 25 knots

motion	operability
Bow (Z-Acc)	69%
Bridge (Z-Acc)	93%
Bridge (Y-Acc)	81%
Roll Motion	89%
Bowslamming	77%
1/3L (Z-Mot)	65%
1/2L (Z-Mot)	65%
	c) 75%
Acco 2/3L (Y-Ac	c) 100%

						0	0	0	0 /	0	0
					0	0	1	1	1	0	0
				0	0	1	2	2	2	1	1
				0	2	4	6	6	4	2	1
			0	1	5	12	16	14	9	5	2
<u> </u>			0	4	17	35	43	34	21	10	
			2	15	53	97	105	77	42	13	7
		0	7	50	155	247	236	156	73	32	11
	\sum	1	26	159	418	571	480	281	127	47	1
0		R	97	472	1023	1182	856	441	111		1
		35	339	1276	2222	2118	1293	572	200	59	1
5	1	41	1089	3055	4107	3147	1550	572	170	43	1(
42	6	97	3107	6105	5932	3361	1294	379	92	20	4
347	21	722	7196	8682	5347	2012	538	114	21	3	1
2734	7(086	7466	3508	903	156	21	2	0		
	0 5 42 347 2734	0 5 42 2734 7	0 1 0 35 5 141 42 697 347 2722 2734 7086	0 0 2 0 7 1 26 0 7 1 26 0 97 35 339 5 1089 42 697 3107 347 2722 7196 2734 7086 7466	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Figure 19, Operability mono-hull, 25 knots

The results show that the rolling motions at DP and deck wetness are the major limiting factors for the operability. At DP the captain is often not able to adjust the heading of the vessel due to the proximity of a platform. The low operability for transit and full speed due to vertical accelerations can be assigned to bad headings and can most of the time be corrected by intervention of the captain. The lateral accelerations at transit also contribute to a decline of operability, this is most likely the result of the high G'M of the vessel.

2.10 Dynamic positioning

The operational profile indicates that the vessel will be at DP for 70% of the time. It is therefore necessary to investigate the environmental forces on the vessel in order to determine the amount, size and power of the transverse tunnel thrusters. In Appendices X.A a short overview of the theoretical background on dynamic positioning is given.

The best way to calculate the environmental forces on a vessel is to perform model tests or make 3D diffraction calculations at zero speed. Both of these recourses where unavailable, making it impossible to come up with the right transfer functions for the mean second order wave drift forces. This meant that one of the three environmental forces couldn't be calculated. The other two, wind and current, could be estimated to certain accuracy. Based on these two forces it was possible to make an estimation of the required thruster power by adding 20% for the unknown wave drift forces.

2.10.1 Calculation of forces and moments

The results of the forces and moments calculation for current and wind are listed below, the complete detailed calculation can be found in Appendices X.B.

Current

The current force (F_c) is calculated with Bernoulli's law, the moment induced by this force M_c is a result of the force times the distance from L/2.

$$F_C(dX) = \frac{1}{2}\rho v^2 A C_D \qquad M_C = F_C \cdot n \cdot dX$$

The velocity v of the current was set in Chapter 1.4 at a speed of 2 knots.

The cross section of a vessel varies over its length, in order to define the right drag coefficient (C_D) the vessel has been subdivided into sections dX of 5 meter in length and the drag coefficient per section is determined. Various shapes have been tested in the past and the C_D value of a certain (2D) shape for a certain Reynolds number can be read from a graph. The mono-hull concept has an ellipse shape and the corresponding C_D coefficient per section depends on the ratio B/2T (see Appendices). The determined C_D coefficients for this vessel are given in figure 20.

Figure 20, Cd coefficients mono-hull

The current force and moment on the vessel are calculated for a 90° heading, the reason to look only at this heading is that 90° is in most cases the worst possible heading and the worst case is decisive for the thruster choice. Calculating other headings requires other C_D coefficients which is a time-consuming effort and not relevant for this case.

Wind

Wind forces on the lateral plane of the vessel $(90^{\circ} \text{ heading})$, at the design draft T=6m, are also calculated with Bernoulli. The C_D coefficient is determined at 1.2 and the wind speed is given in Chapter 1.2 (30 knots). See Appendices X.B for the complete calculation.

$$F_{W} = \frac{1}{2}\rho v^{2}AC_{D}$$

The vessel has been subdivided in the same way as for current calculations, the vessel contour with subdivision of the section is given in figure 21.

Results

The forces and moments for wind and current are visualized in the graphs below. It shows the force on the vessel induced by wind and current at a specific part on the vessel. It becomes clear that the force on the front is larger than the force at the aft of the vessel. This corresponds to the expectation one has when looking at the vessel contour.

Figure 23, Moments on mono-hull

2.10.2 Thruster forces and static equilibrium

The environmental forces on the vessel have to be counteracted by the vessels thrusters. We use a static approach of the problem and calculate the amount of thrust by finding a static equilibrium; the sum of the force and moment on the vessel has to be 0. Table 22 shows the total applied environmental force and moment on the vessel.

Forces wrt COG					
	waves	current	wind	total	
Fx	0	0	0	0	kN
Fy	0	322	235	557	kN
Mz	0	5984	3292	9276	kNm

Table 22, Environmental forces and moments mono-hull

Figure 25, Orientation forces, moments and heading

Thruster forces:

Because we only look at an incoming angle of 90[°] for both current and wind there is no thrust delivered by the main propulsion. The amount of power installed to reach 25 knots is considered to be more than sufficient for station keeping in the X direction. The 5400kW installed for bow- and stern thrusters is used for 80% in this situation and leaves 20% margin for mean wave drift forces.

	actual	min	max		
Thrust tunnel 1	-154.6	-191.3	191.3	kN	-81%
Thrust tunnel 2	-157.1	-191.3	191.3	kN	-82%
Thrust tunnel 3	-121.6	-153	153	kN	-79%
Thrust tunnel 4	-122.1	-153	153	kN	-80%
Total applied power	4457	0	30600	kW	15%

Table 23, Thruster forces mono-hull

The propulsion configuration will be:

4x Propellers with rudders for forward and backward thrust	6300kW each
2x Bow thruster	1500kW each
2x Stern thruster	1200kW each

3. Design catamaran concept

This chapter describes the design process of the catamaran concept. The structure of the chapter is similar to the previous in which the mono-hull design was described. The methods used in the design of the catamaran are similar to the methods used for the mono-hull, unless otherwise indicated, and are therefore not described and substantiated in this chapter.

A multi-hull design like a catamaran has several positive characteristics that are favorable for the FIRM concept. Catamarans have a larger breadth compared to mono-hull vessel, this leads to a lower overall length and higher transverse GM of the vessel. The hull forms are usually slim, have a large L/B ratio and are therefore able to reach high speeds. These characteristics make it possible to design a smaller vessel in length if compared to a similar mono-hull vessel. A disadvantage of catamaran vessels is the lower deadweight capability.

In this chapter a design for a FIRM catamaran is made to investigate the possibilities of a multi hull for this concept. The final catamaran design is than compared to the mono hull design and a choice is made between the two concept vessels.

3.1 Catamaran comparison and main dimension estimation

A catamaran design of an IRM vessel currently does not exist; all known IRM vessels and comparable offshore vessels are mono-hulls. The idea to analyze the possibility for a catamaran design is the speed requirement of the vessel, possible good transverse stability characteristics and possible decrease in size. The resistance for conventional displacement vessels steeply increases beyond a certain point which usually corresponds with F_N =0.4, which is close to the F_N of the previous mono-hull design. This suggests that for this vessel and speed the mono-hull design is still in the good area. A catamaran has a larger breadth than a mono-hull and can therefore be smaller in length and will operate at higher Froude numbers for the same speed. The resistance hump that mono-hulls experience when sailing over F_N =0.40 is attributed to the generation of increasingly large gravity waves in the free surface. Catamarans minimize the waves generated in the free surface by having extremely slender hulls.

Catamarans as mono-hull vessels can be categorized in displacement, semi-displacement and planning types. The type of vessel depends on the Froude number the vessel operates at. For low to moderate Froude numbers (F_N <0.7) catamarans tend to be of displacement form. In this region the phenomenon of destructive interference is of great importance, which is particularly severe for Froude numbers between 0.3< F_N <0.4 and should be avoided. For higher Froude numbers (F_N >0.7) catamarans generate dynamic lift and become semi-displacement or planning vessels. To get an impression of the region this vessel is in the Froude numbers for a range of waterline lengths for the top speed of 25 knots is plotted in figure 26.

Figure 26, Catamaran Fn vs Lwl

A quick interpretation of the graph and knowledge above shows that the concept design will likely be a displacement catamaran with a maximum waterline length of 100 meters. Above 100 meters the vessel enters the region of destructive interference and only below a waterline length of 35 meters, which is very small for the purpose, the catamaran becomes a semi-displacement craft.

Catamaran comparison analyses

A wide range of catamarans used for different purposes and lengths ranging from 30 up to 125 meters has been collected and put into a database in order to estimate the main dimensions and other characteristics of the vessel. This database can be found in Appendices XI. In Appendices XI.A a number of trend lines are produced with the data of the catamaran database. These trend lines have been used to determine the design parameters of the FIRM catamaran.

An analysis of the data resulted in the following findings:

- All catamarans in the database sail at a higher maximum speed than the speed required for the FIRM, resulting in higher Froude numbers.
- The majority of the catamarans are semi-displacement hull forms.
- Only 5 have a higher deadweight capability than 1000 ton and none of the catamarans have a deadweight capability as high as the mono-hull design.
- Almost all catamarans in the database have water jet propulsion

These findings lead to the conclusion that most catamarans are high speed marine craft, designed to transport people and/or low weight loads. The purpose of the FIRM catamaran is completely different and the design will therefore deviate from most current catamarans. Still the possible advantages of a catamaran as stated in the beginning of this chapter make it worthwhile to design a catamaran concept of the FIRM which can be compared to the mono-hull design.

3.2 Determination of main particulars

The initial requirements for the catamaran design are similar to the mono-hull design. The main requirements which are determinative for the size of the vessel are:

- 600m² deck area
- 2225m² of accommodation space
- ROV handling system and moonpool
- Offshore crane 100t @ 15m
- +- 1450 ton deadweight

As a design start a few assumptions were made, these assumptions are based on information on catamaran design, consultation with the Damen Ferries and Damen Research departments and the catamaran database in Appendices XI.

- The L/B ratio (for 1 demi-hull) for this catamaran should be chosen between 9 and 12, below 8 results in increased wave making and above 12 are values for racing catamarans (Woods). The Damen database of built catamarans shows L/B ratios between 10 and 13. Initially set at 11.5.
- The L/B ratio (for the overall breadth) was initially set at 3.5, based on the trend lines in Appendices XII.A.
- The B/T value should be between 1.5 and 2.8; a value near 2 minimizes the friction resistance (Woods). Initially set at 2.
- The depth equals the draft plus the significant wave height of 2.5 meter for minimum wet deck clearance and an additional meter for the structure between the demi-hulls. The significant wave height of 2.5m is given in the initial requirements of Chapter 1.2.
- The C_B value of one demi-hull is initially set at 0.5, based on the trend lines and Damen vessel information. This value can considered being high for a catamaran, however almost all catamarans are semi-displacement vessels and the FIRM catamaran is a displacement vessel with higher deadweight requirements than the comparison vessels.

Initial deck layout

The initial deck layout is similar to the mono-hull design. The demi-hulls consist of a tanktop, tween deck and a main-deck. The superstructure has three decks A- B- and C-deck, mainly used for accommodation. The ROV system and "moonpool" are considered to occupy 20 meters of the vessel's length, similar to the mono-hull. The moonpool is modeled as a hole in the deck with the same dimensions as the moonpool for the mono-hull design. A sketch of the main-deck layout is made to estimate the main particulars. This sets the overall length and breadth of the catamaran at 85m and 24.3m.

Figure 27, Basic main deck layout catamaran

Main particulars

In accordance with the ratios the preliminary main particulars for the catamaran would be:

Main particulars		
L	85 m	
В	24.3 m	
Т	3.7 m	
D	7.2 m	
B demi	7.4 m	
C _B	0.5	
Displacement	2380 t	

Table 24, Initial main dimensions catamaran

This results in a design with a total predicted resistance of 830kN at 25 knots, which is favorable over the mono-hull design, see figure 28.

Figure 28, Resistance catamaran

However the problem arose that the vessel has far to less displacement for its purpose, see Chapter 3.6 for the hydrostatics calculation. This is because all known catamarans of this size, which were used to determine the main particulars, have a completely different purpose than the FIRM catamaran. They are mainly light weight high speed ferries, with low deadweight requirements built out of aluminum.

The FIRM catamaran is an offshore vessel constructed out of steel, because it has to perform heavy duty offshore operations alongside platforms. The approximated deadweight requirement is 1450 ton, according to the initial requirements. The lightship weight of the FIRM is far higher than the other catamarans, making the required displacement higher and making this concept vessel a unique case. Therefore the main particulars have to deviate from the ones in table 24, changing some of the ratios given earlier.

In accordance with the basic layout of the main deck the overall length and breadth of the vessel remain the same. Increasing these parameters would lead to a vessel too large vessel. It was therefore chosen to increase the draft and C_B of the demi-hulls to gain displacement. Another option was to increase the breadth of the demi-hulls without increasing the overall breadth of the catamaran. This would bring the demi-hulls closer together which is destructive for the resistance of the vessel due to hull interference.

3.3 Hull design and lines

The final linesplan and the main particulars of the catamaran are given in table 25 and figure 29. Striking characteristics of this vessel, compared to other catamarans, are the low B/T ratio and high C_B .

Main particulars				
L _{oa}	85	[m]		
L _{wl}	85	[m]		
L _{pp}	82	[m]		
B demi-hull	7.4	[m]		
B _{oa}	24.3	[m]		
T _{design}	6.0	[m]		
D	9.5	[m]		
Displacement, at T _{design}	5270	[t]		
C _{B, Demi-hull}	0.68	[-]		
L/B _{overall}	3.5	[-]		
L/B _{Demi-hull}	11.5	[-]		
B/T _{Demi-hull}	1.23	[-]		
Wetted area	2547	[m²]		
Waterplane area	1090	[m²]		
LCB	-1.14	%		

Table 25, Main particulars catamaran

The complete list of the hull properties can be found in Appendices XII.

Figure 29, Linesplan catamaran

3.4 Resistance calculation

Compared to a mono-hull vessel there are far less methods available to predict the resistance of a catamaran. Within Damen a resistance prediction tool is used, which is based on model test results of Damen catamarans and data of systematic catamaran series. A result of this tool is given in figure 28, where it was used to determine the resistance of a catamaran based on the initial parameters given in Chapter 3.2. Another method which can be used is described by Molland (1994). He tested a series of systematic catamaran models and compared the resistance of the catamaran with the resistance of only 1 demi-hull. This way it is possible to use a program like Holtrop and Mennen to calculate the single hull resistance, multiply is by 2, and use the research of Molland to predict the extra resistance generated by hull interference.

Molland

Resistance prediction with the method of Molland (1994) for high speed displacement catamarans. In this research a number of systematic models were tested. All 10 models have the same prismatic coefficient of $C_P = 0.693$, and are varied by length/displacement ($L/\nabla^{1/3}$) and breadth/draft (B/T) ratio. The three models that come closest to the FIRM catamaran are given in table 26, where the parameters are compared to the parameters of the FIRM.

Parameter	FIRM catamaran	Model 3b	Model 4a	Model 4b
$L/\nabla^{1/3}$	4.88	6.27	7.4	7.41
B/T	1.23	2	1.5	1.5
C _P	0.757	0.693	0.693	0.693
C _B	0.68	0.397	0.397	0.397

Table 26, Comparison model catamaran and FIRM catamaran

Table 26 shows that the parameters of the models do not match with the FIRM catamaran and interpolation between the models is impossible because the FIRM falls outside the range of tested models. Therefore the results of the model tests are used to make an educated guess of the increased resistance due to hull interference, by examining the dimensionless friction coefficient (C_T) of the tested models. Table 26 gives the C_T coefficients for the three models, for both the mono-hull test and the catamaran test. The coefficients are for a speed of 25 knots, which corresponds to a Froude number of $F_N = 0.45$, and a separation/length (S/L) ratio of 0.2. See Appendices XIV for the complete results of the model tests.

Model	C⊤ demi-hull x1000 [-]	C _T catamaran x1000 [-]	Difference [%]
3b	12	16.5	37.5
4a	9.25	12	29.7
4b	9.25	11.7	26.5

Table 27, Resistance coefficients catamaran models

The results show an average increase of 31% of the total resistance coefficient for the catamaran. The C_T values of the model tests are compared to the C_T values of the resistance prediction according to the method of Holtrop & Mennen and the Damen catamaran resistance prediction tool, which are presented in table 28.

Method	C _T x1000
Damen catamaran prediction tool	12.2
Holtrop and Mennen, 1 demi-hull	7.8

 Table 28, Total resistance coefficient H&M and Damen resistance prediction tool

Results

The resistance predictions for the FIRM catamaran according to the three methods are plotted in figure 30. The red line shows the results of the Damen resistance prediction tool. The blue line is the total resistance according to Holtrop and Mennen for 1 demi hull, multiplied by 2. The green line shows the results of the method of Molland, which is the total resistance according to Holtrop and Mennen multiplied with a correction factor for hull interference.

Figure 30, Total resistance catamaran

Method	Resistance at 25 knots [kN]
Holtrop & Mennen	1684
Molland	2184
Damen catamaran resistance prediction tool	2645

Table 29, Total resistance catamaran

Evaluation of resistance results

The FIRM catamaran falls outside the applicability area for Holtrop and Mennen and the Damen catamaran resistance prediction tool, therefore the results in figure 30 should be regarded as estimations. The only correct way to predict the resistance would be by doing model tests. Unfortunately this is not possible, making the estimations above the only reference for the resistance of the catamaran design. The blue line is considered to be the lower boundary and the red line the upper boundary. The total resistance of the FIRM catamaran should lie between these two boundaries.

After studying the research done by Molland it became clear that $L/\nabla^{1/3}$ is the predominant hull parameter. If this is increased, the resistance decreases rapidly. This corresponds to the results in figure 28. Unfortunately the FIRM catamaran has a high $L/\nabla^{1/3}$ ratio due to its deadweight requirements and respectively high lightship weight. This could be decreased by increasing the length of the vessel. Increasing the length also lowers the Froude number, which is positive for the total resistance coefficient, as is goes down for lower Froude numbers. However an increase of the length would lead to a vessel that is too big for its purpose.

Due to the high uncertainty of the resistance a power speed analyses becomes meaningless. It is recommended that model tests are performed first before proceeding with this design.

3.5 Weight calculation

The hull and superstructure weight (weight group 100) are calculated by means of weight factors, like the mono-hull design. The weight factor for the steel weight of the hull is kept equal to the weight factor for the mono-hull and the superstructure is constructed out of aluminum. Weight group 700, Joinery and arrangement of accommodation is also calculated by Damen standard weight factors and based on the floor area of the accommodation. The other weight groups are based on the mono-hull design. Weight groups 200, 500 and 800 are similar to the mono-hull design, because there is no accurate power speed analyses the total machinery weight of the mono-hull was taken as an estimate for the catamaran. The deck equipment (500) is also considered to be equal to the mono-hull, because the vessel is due to perform the same tasks. The weight of weight groups 300, 400 and 600 is based on the mono-hull design and scaled with a factor of 0.7, which is the ratio between the hull weight of the mono-hull and the catamaran.

The structure between the demi-hulls is modeled by H-beams, spread 1 meter apart and a plate on top of it, the calculation can be found in Appendices XIV.A. The weight calculation for the bare hull weight, weight group 100, can be found in Appendices XIV.B.

Weight group	Weight [t]	VCG [m]	LCG [m]	TCG [m]
100 Shipbuilding	1,758	7.23	45.53	0.00
200 Main machinery	710	3.50	33.00	0.00
300 Primary ship systems	199	7.70	46.00	0.00
400 Electrical system	166	7.10	47.00	0.00
500 Deck equipment	402	16.50	20.00	0.00
600 Secondary ship systems	36	8.50	36.00	0.00
700 Joinery and arrangement of accommodation	333	14.00	65.00	0.00
800 Nautical, navigation and communication equipment	3	13.20	65.00	0.00
Margins lightship weight	180 (5%)	0.30	0.00	0.00
Light ship weight (inclusive 5% margin)	3,787	8,49	42,03	0.00

Total light ship weight

Table 30, Summary weight calculation

3.6 Hydrostatics

This is a summary of the hydrostatics at the design draft, an extensive hydrostatics report can be found in Appendices XV. The deadweight is based on the initial requirements of Chapter 1.2.

HYDROSTATICS			LCG	VCG		
Light ship weight (incl margin)		3787	t	42.03	8.49	
Deadweight (approx)		1450	t	42.00	7.75	
Displacement (wanted)		5237	t			
				LCB	VCB	
Available displacement (T = 6 m)		5270	t	41.53	3.42	
Margin		33	t			

Table 31, Hydrostatics catamaran

3.7 Stability

One of the reasons to design a catamaran concept for the FIRM was the good transverse stability characteristics of a catamaran. Catamarans are known to be very stable due to the two demi-hulls which are apart from each other, resulting in high GM values. In Appendices XVI a stability calculation is made for a crane operation with the catamaran design, without heel compensation. This loading condition is compared to the crane operation condition (100t @ 15m) of the mono-hull without heel compensation. The results are given in table 32.

Vessel	Heeling angle	G'M	T _{mean}	Trim
Mono-hull	7.53	2.613	5.819	-0.326
Catamaran	2.84	12.055	5.83	-0.011

Table 32, Crane operation heel comparison

Looking at the results it can be concluded that the catamaran is much more stable than the mono-hull and therefore better suitable to perform crane operations. The catamaran doesn't need heel compensation and the mono-hull without heel compensation won't even comply with the stability requirements.

4. Selection

In the two preceding chapters the two concept designs of the mono-hull and the catamaran FIRM have been evaluated. Both vessels have positive and negative aspects. In this chapter these aspects are discussed which leads to a choice of concept. The final concept is than evaluated and improved in Chapter 5.

With the start of this project the reason to design a catamaran concept was the high transverse stability and high speed of this type of vessel. Looking at the stability this was correct, a catamaran does have a higher GM than a mono-hull and is more stable for crane operations. On the other hand the speed of a catamaran is mostly due to dynamic lift, making it a semi-displacement vessel. Most catamarans are lightweight vessels with a low deadweight requirement. The FIRM catamaran is an offshore vessel with high deadweight requirements and the "high" speed of 25 knots turned out to be a lot slower than most catamarans can go, making it sail at a lower Froude number. Due to the size, weight and speed, making it a displacement catamaran the vessel turned out to have a very high resistance. In Chapter 3.4 the resistance of the catamaran is calculated with three different methods and even with the method that resulted in the lowest resistance (Holtrop and Mennen, without taking hull interference into account) the resistance of the catamaran turned out to be almost 50% higher than the mono-hull at 25 knots. This leads to only one conclusion, a catamaran is an infeasible solution for this particular vessel and therefore the mono-hull concept is chosen.

5. Mono-hull concept optimization and final design

This chapter continues with the design of the FIRM mono-hull concept. The new goal is to optimize the current design by improving the negative aspects, like the high resistance; roll motions at DP; high GM at transfer and taking over of green water. At first a possible resistance reduction and improved stability at DP is investigated, Chapter 5.1 and 5.3. This eventually leads to a new design of the FIRM mono-hull concept in Chapter 5.3.

5.1 Resistance reduction

During the design phase it was observed that the required power is high and the load on the propellers forced the design to have four propellers for propulsion. This condition only occurs for maximum draft and maximum speed, in other words with full load and 25 knots. Given the purpose of the vessel one can wonder how often this particular situation will occur. For quick response the vessel will travel at maximum speed, but this is only 5% of the total operational profile and it is very unlikely that the vessel will carry 600 ton of deck load in this condition. Quick response means a repair or replacement of a certain critical part of an offshore oil and gas operation; these are never 600 tons in weight.

Besides the deck load requirement the endurance also adds in the total deadweight requirement. In case of quick response it is not necessary to take in 100% consumables, the most likely minimum amount of consumables is calculated and will, together with the deck load requirement, form the new deadweight requirement. Taken this in mind an alteration is made in the requirements in order to investigate the possible reduction of resistance and installed power.

New requirements:

- 25 knots with 100t deck load and minimal amount of consumables
- 15 knots with max deck load (600t) and max consumables

Displacement calculation

To get an impression of the range a map of the North- and Norwegian Sea is given with a radius of 600 nautical miles from Bergen, Norway. This is the most likely operating area and also forms the base of the wave scatter diagram used for the sea keeping calculations.

Figure 31, Map op North-West Europe

The required deadweight and displacement for this new situation:

Fuel capacity for 1200 miles full speed and 2 days DP	=	265	ton	
Fresh water	=	50	ton	
Sewage	=	50	ton	
Deck load	=	100	ton	
Crew and stores	=	17	ton	+
Total	=	482	ton	
Light ship weight	=	4646	ton	
Deadweight	=	482	ton	+
Displacement needed	=	5128	ton	

The design is kept similar and the above summation allows a draft reduction of the vessel which results in a resistance reduction. The new draft for this light service condition is set at 5.5 meters.

Resistance

New resistance calculation according to Holtrop & Mennen (1984), for T_{light} =5,5m.

Resistance reduction = 86

P_B reduction, approximately

On a total required break power 24280 kW this is a decrease of +/- 7.5%. This results in a reduction of fuel consumption of 324 kg every hour while sailing at full speed. Besides the fuel saving it allows the designer to fit smaller engines into the design.

1850

=

kΝ

kW

5.2 Increase stability for DP

One of the weak points of the mono-hull compared to the catamaran was transverse stability; this was for instance expressed in the seaway calculations for DP condition. The criterion for roll is 4 degrees RMS and the calculation showed an operability at DP of only 57%. This calculation already included a passive anti-roll tank and bilge keels. Looking at the differential equation for the roll motion of a vessel it becomes clear what could be done to improve this.

Roll motion:

$$(I_{4} + A_{44})\ddot{\phi} + B_{44}\dot{\phi} + C_{44}\phi = F_{4}e^{i\omega_{e}t}$$

$$\phi = \frac{F_{4}}{\sqrt{(C_{44} - (I_{4} + A_{44})\omega_{e}^{2})^{2} + B_{44}^{2}\omega_{e}^{2}}}\cos(\omega_{e}t + \varepsilon)$$

$$C_{44} = GM_{t}\nabla\rho g$$

$$I_{4} = k_{xx}^{2}\nabla\rho$$

 I_{4} = Moment of inertia for roll

 A_{44} = Added inertia coëfficient for roll

 B_{AA} = Non-dimensional damping coëfficient for roll

- C_{44} = Hydrostatic restoring coëfficient for roll
- F_4 = Roll exciting moment at the encounter frequency ω_e
- ϕ = Instantaneous roll displacement
- $\phi =$ Instantaneous roll velocity
- $\ddot{\phi}$ = Instantaneous roll acceleration

The damping and/or the restoring coefficient have to be increased to decrease the roll motions. To increase the restoring coefficient the GM of the vessel has to be increased. However we always have to keep in mind that a too large GM results in high transverse accelerations which are unpleasant for the people onboard and will also affect the operability. The damping coefficient can be increased by adding for instance a keel, active fin stabilizers, or a larger passive anti rolling tank.

Increase of hydrostatic restoring coefficient.

GM = KB + BM - KG

There are two ways to increase the GM and both require a change in the vessels geometry. First possibility is to lower the CoG, for instance by using lightweight materials in the upper decks or placing heavy equipment lower in the vessel. Second option is to alter the design in such a way that the metacentric height increases, this can be done by increasing the displacement. The negative side of this option is that it will increase the vessels resistance as well.

The best solution is to design a hull form that has the same resistance, or maybe even lower than the current design in transit and has a higher displacement at DP. The next chapter covers a new loop through the design spiral in which the mono-hull design is optimized.

5.3 New design

The new approach of the design requirements, the selection procedure and other knowledge attained in the previous chapters results in a new, final, concept design of the FIRM. This design is based on the previous mono-hull and has the following improvements and alterations:

• Reduction of roll motions

The new design has a keel and integrated sponsoons. The keel increases the damping coefficient of the vessel and reduces the roll motions. The sponsoons are integrated in the hull over the length of the cargo deck. When the vessel is stationary it can increase the draft by pumping ballast water into the vessel, the waterplane area and displacement are than increased due to the geometry of the vessel. This results in an increase of the transverse stability (higher GM) and reduction of roll motions.

- Reduce green water overtaking and decrease GM at transit, higher freeboard The sea keeping calculations also showed a low percentage of operability due to green water overtaking at the cargo deck. Given this information and the idea to increase the draft at DP for increased stability led to an increase of the depth of 1 meter. By increasing the depth the VCG will increase resulting in a lower GM. This decreases the transverse accelerations which is pleasant for crew and passengers during transit.
- Definition of a light service draft for high speed In an attempt to reduce the resistance of the vessel the requirements are altered. The maximum speed of 25 knots has to be reached in a loading condition with only 100 tons of deadweight. The maximum deadweight requirement and corresponding 600t deck load will be reached at another draft.
- Vertical bow

The new design has a vertical bow, this has two reasons. First esthetically, the new line of Damen vessels all have a vertical bow. This is a result of the Axe-Bow concept, applied to small high speed crafts. These vessels have a deeper fore foot (below the baseline) to prevent the bow from emerging out of the water in seaway and prevent corresponding slamming, which results in lower vertical accelerations. The deeper forefoot is unnecessary for larger vessels, because the bow emerges far less out of the water. The second reason is to increase the waterline, which results in a higher hull speed and less resistance. On the other hand the vertical bow raises the wet surface area which is detrimental for the frictional resistance.

• The use of high tensile steel (recommendation)

The alterations to the hull, sponsoons, keel and increased Depth, have a negative effect on the light ship weight. As a result the displacement increases together with the resistance, to counter this effect a recommendation in done to investigate to use of high tensile steel in the hull construction to save weight. For this thesis this option is left out of the scope.

5.3.1 Hull design and lines

The new hull form has integrated sponsoons over the length of the cargo deck and a higher depth of 9 meter instead of 8 to decrease green water overtaking. Due to the sponsoons the total breadth of the vessel in increased with 2 meters, the breadth on the waterline remains same. Due to space requirements in the engine room and at the bow it was necessary to increase the block coefficient, which resulted in a higher displacement and corresponding higher resistance. As a result of the new displacement and light ship weight the design draft is lowered to 5.8 meters.

Main particulars		
L _{oa}	120	[m]
L _{pp}	117	[m]
L _{wl}	120	[m]
B _{max}	21	[m]
T _{design}	5.8	[m]
D	9.0	[m]
Displacement, at T _{design}	6785	[t]
C _b	0.501	[-]
C _p	0.677	[-]
Wetted area	2498	[m²]
Waterplane area	1782	[m²]
LCB	-3.0	%

Table 33, Main particulars final design

The complete list of the hull properties can be found in Appendices XVII.

Linesplan

Figure 33, Linesplan final design

5.3.2 Resistance

One of the new design considerations was the introduction of a light service draft for quick response operations. This concept was mentioned in Chapter 5.1 for the old mono-hull design. The idea behind this concept is that the vessel only has the ability to sail at 25 knots at this draft, with a restricted amount of deck load and fuel oil onboard. This way the resistance at full speed is lowered and the needed propulsion power is also lowered.

Below the resistance curves of the vessel for this light service draft (T=5.15 m) and the design draft are given, both calculated according to the method of Holtrop & Mennen (1984). In the light service draft condition the vessel has 100 ton of deck load and fuel oil for 1200 nautical miles and 2 days at DP. For the design draft the deadweight requirement is as mentioned in Chapter 1.4, 600 ton of deck load and enough fuel for an endurance of 30 days according to the operational profile. An overview of the hydrostatics for these conditions is given in Chapter 5.3.6.

V	Rtotal
[kn]	[kN]
12	132
13	158
14	190
15	228
16	274
17	328
18	399
19	487
20	575
21	651
22	721
23	803
24	914
25	1069

Figure 34, Resistance light service draft final design

V	Rtotal
[kn]	[kN]
12	145
13	175
14	211
15	256
16	310
17	373
18	456
19	565
20	682
21	783
22	867
23	956
24	1077
25	1248

Figure 35, Resistance design draft final design

The results of the resistance calculation show an increase of total resistance for the design draft, compared with the first mono-hull design. This is a result of the new geometry of the vessel with the sponsoons. Due to the new requirements this doesn't matter, for lower speeds like the economical speed of 15 knots the vessel has a low resistance. The light service draft has an almost identical resistance at 25 knots as the first mono-hull had at a light service draft, see Chapter 5.1. This is also a result of the new geometry, the new design has more displacement allowing a draft decrease.

5.3.3 Power speed analyses and propulsion system

The power calculation is focused on the maximum speed for the light service draft and the propulsion system is layed out to reach this speed for this condition. This amount of power is sufficient to reach economical speed at the design draft.

Power calculation main engines The total break power is:

$$P_{E} = 13750kW$$

$$\eta_{D} = 0.65$$

$$\eta_{S} = 0.98$$

$$\eta_{GB} = 0.97$$

$$P_{p} = \frac{14893}{\eta_{D}} = 21152kW$$

$$P_{p} = -\frac{P_{p}}{\eta_{D}} = -21583kW$$

$$P_{s} = \frac{1}{0.98} = 21583kW$$

 $P_{B} = \frac{P_{s}}{0.97} = 22251kW$

Propulsion system

Previously the propulsions system consisted of four propellers in a diesel direct lay-out. This turned out to be unpractical and other options had to be considered for the propulsion system. Three possible solutions are:

- Use contra rotating pods, this way it is possible to fit two propellers on one pod.
- Increase the propeller diameter.
- Increase the propeller load

The second option had preference over the first because it is easier to apply in the current design and the third option requires an advanced propeller design. The minimum diameter for a double propeller configuration is:

$$\frac{P_{s}}{2} = 10791.5kW$$

Maximum propeller load = $400kW / D^2$

$$\sqrt{\frac{10791.5}{400}} = 5.20m$$

Minimum tip clearance (C) with the hull according to DNV for twin propeller vessels: 0.26D

 $C = 0.26 \cdot 5.20 = 1.35m$

The design of the vessel hull had to be adapted due to this alteration, unfortunately this wasn't enough and the decision was made to rotate the propulsion train and set it under an angle of 4 degrees. Together with the fact that there is no draft restriction on the vessel lead to the decision to let the propellers protrude under the baseline of the vessel. Now it is possible to fit two propellers with a diameter of 5.20 meters, instead of only 4 meters.

Propulsion concept:

Four main engines: Wärtsila 8L38

Make	Wärtsila
Туре	8L38
Output	5800kW
Speed	600 rpm
Specific fuel consumption	176 g/kWh
Weight	63 ton

Table 34, Main engines final design

Reduction gear : Wärtsila TCH310 twin in single out

Propellers : CPS145/C CPP

Schematic

Figure 36, Schematic overview propulsion system final design

Artist impression

Figure 37, Artists impression propulsion system final design

5.3.4 Auxiliary systems and electric load balance

The auxiliary system is almost similar to the previous mono-hull system. The difference lies in the tunnel thruster power, which is slightly higher for the new design, see Chapter 5.3.8.

Load balance

Consumer	Power
Hotel load	500 kW
Crane	1350 kW
Tunnel thrusters	6000 kW
Total (with 5% margin)	8283 kW

Table 35, Main consumers final design

Generators

Make	Wärtsila
Туре	8L20
Output	1405 ekW
Speed	900-1000 rpm
Specific fuel consumption	185g/kWh
Weight	20.7 t

Table 36, Auxiliary generator sets mono-hull 1 (2x)

Make	Wärtsila
Туре	9L26
Output	2810 ekW
Speed	900-1000 rpm
Specific fuel consumption	184g/kWh
Weight	50 t

Table 37, Auxiliary generator sets mono-hull 2 (2x)

Make	Caterpillar
Туре	C18
Output	547 ekW
Speed	1800 rpm
Specific fuel consumption	133.2 l/h
Weight	1.9 t

Table 38, Emergency generator set mono-hull
5.3.5 Weight calculation

Due to modifications the weight calculation had to be revised. The alterations can be divided into weight increase and weight reduction measures:

Weight increase:

- Keel
 - The weight of the keel is estimated roughly by multiplying the total area of the keel with the specific weight of steel and a plate thickness of 9 mm.
- Higher depth
- Larger beam due to sponsoons
- Counter ballast for knuckle boom crane This was initially left out of the weight calculation. It is however necessary to counter ballast the vessel for the crane, which is place 5.5 meters out of heart ship, to avoid an initial heeling angle.

Weight reduction:

- Lighter main engines
- Two instead of four shaft lines and propellers
- Two instead of four gearboxes

Potential weight reduction, recommendation, not implemented into the design:

• Use of high tensile steel

The specific weight of high tensile steel is similar to that of mild steel. The weight gain lies within the higher strength of the material which allows us to reduce the thickness of the plates. The tensile strength of normal steel is 400MPa, high tensile steel has a tensile strength of 760MPa, an increase of 90%.

Besides the alteration in the weight of the vessel there will also be a shift in the CoG, mainly due to the larger depth.

New light ship weight and CoG

The new light ship weight and CoG is given in table 39, the complete weight calculation can be found in Appendices XIX.

Weight group	Weight [t]	VCG [m]	LCG [m]	TCG [m]
100 Shipbuilding	2,838	7.54	59.29	0.00
200 Main machinery	552	3.18	31.85	0.00
300 Primary ship systems	284	7.66	56.36	0.00
400 Electrical system	237	6.55	57.27	0.00
500 Deck equipment	592	12.84	30.16	0.00
600 Secondary ship systems	51	8.03	46.09	0.00
700 Joinery and arrangement of accommodation	333	13.61	73.75	0.00
800 Nautical, navigation and communication equipment	3	22.50	60.00	0.00
Margins lightship weight	246 (5%)	0.30	0.00	0.00
Light ship weight (inclusive 5% margin)	5,135	8.37	53.24	0.00

Table 39, Total light ship weight and CoG final design

5.3.6 Hydrostatics

The hydrostatic calculations for this design are more extensive than the previous mono-hull concept. For each draft a summary of the hydrostatics is made which can be seen in tables 40 until 42.

HYDRO	STATICS T=5.15m			LCG	VCG	
Light ship weight (incl margin)		5,135	t	53.24	8.37	
Deadweight						
Deck cargo		100	t	23.00	10.00	
Fuel oil		265	t	79.07	4.09	
Fresh water		50	t	97.30	3.25	
Sewage		50	t	55.00	1.75	
Crew and stores		17	t	75.00	13.50	
Total		482	t	66.69	5.32	
Displacement (wanted)		5,617	t			
				LCB	VCB	
Available displacement (T = 5.15 m)	5,643	t 54.70 3.09			
Margin		26	t			

Table 40, Design hydrostatics final design T=5.15 m

HYDRO	STATICS T=5.80m			LCG	VCG	
Light ship weight (incl margin)		5,135	t	53.24	8.37	
Deadweight						
Deck cargo		600	t	23.00	10.00	
Fuel oil		770	t	62.28	4.75	
Fresh water		100	t	97.29	3.85	
Sewage		50	t	55.00	1.75	
Crew and stores		17	t	75.00	13.50	
Total		1537	t	49.13	6.74	
Displacement (wanted)		6,672	t			
				LCB	VCB	
Available displacement (T = 5.80 m)	6,794	t	53.51		
Margin		122	t			

Table 41, Design hydrostatics final design T=5.80 m

Summary of hydrostatics for crane operation and DP draft, T=6.6m

The philosophy behind the new design with the sponsoons and keel is a reduction of the roll motions at DP. Increasing the draft of the vessel results in a larger waterplane area and rapid increase of displacement which leads to more stability, see Chapter 5.2. Therefore a third draft for the vessel is defined, the crane operation and DP draft. To reach this draft ballast water is pumped into the vessel. Table 42 gives an overview of the hydrostatics for this condition.

HYDRO	STATICS T=6.60m			LCG	VCG	
Light ship weight (incl margin)		5,135	t	53.24	8.37	
Deadweight						
Deck cargo		600	t	23.00	10.00	
Fuel oil		770	t	62.28	4.75	
Fresh water		100	t	97.29	3.85	
Sewage		50	t	55.00	1.75	
Crew and stores		17	t	75.00	13.50	
Ballast water		1606	t	55.41	2.30	
Total		3143	t	52.34	3.30	
Displacement (wanted)		8278	t			
				LCB	VCB	
Available displacement (T = 6.60 m)	8283	t	52.30	3.98	
Margin		5	t			

Table 42, Design hydrostatics final design T=6.6 m

5.3.7 Stability

A new design requires a new look at the stability of the vessel. The criteria for the mono-hull given in Chapter 2.8 are also valid for this vessel. The chapter covers intact stability calculations, loss of load calculations for crane operations and a prediction concerning the outcome of future damage stability calculations.

Intact stability calculations

The initial mono-hull design complied with all the stability requirements. The thing that struck was the high G'M for all loading conditions, this is good for the stability, but also leads to high transverse accelerations that are unpleasant for the crew. The new design has a higher VCG due to the higher freeboard, resulting in lower G'M values for the light service draft and design draft. Only the deepest, DP, draft still has a high G'M because the CoG is lowered due to the large amount of ballast water taken into the double bottom of the vessel.

The loading conditions are in accordance with the conditions given in the previous chapter:

Light service draft, maximum mean draft (Lpp/2) = 5,15 meters

- 1.1 Departure, 100t deck load
- 2.2 Arrival, 100t deck load

Design draft, maximum mean draft (Lpp/2) =5.80 meters

- 2.1 Departure, 600t deck load
- 2.2 Arrival, 600t deck load

DP operation draft, maximum mean draft (Lpp/2) = 6.6meters

- 3.1 Departure, 600t deck load
- 3.2 Arrival, 600t deck load

Crane operation

- 4.1 Crane operation 100t@15m, 100% consumables, 550t deck load
- 4.2 Crane operation 100t@15m, 10% consumables, 550t deck load

All loading conditions comply with the stability criteria and the extensive results can be found in Appendices XX.

Condition	Tmean [m]	Min G'M [m]	Max GZ [m]	Top GZ [degrees]	Area under GZ up to 30 ⁰ [mrad]	Area under GZ between 30 ⁰ and 40 ⁰ [mrad]	Max angle of inclination [degrees]	Max. stat. angle [degrees]
1.1	5.093	1.684	0.746	59.387	0.215	0.124	27.472	5.15
1.2	4.981	1.660	0.686	60.000	0.209	0.118	28.639	5.459
2.1	5.796	2.151	0.922	51.727	0.262	0.149	24.291	3.144
2.2	5.466	1.754	0.669	30.38	0.212	0.115	26.183	4.371
3.1	6.596	3.078	1.554	52.449	0.375	0.229	23.484	1.684
3.2	6.131	3.111	1.591	54.007	0.383	0.233	22.915	1.933
4.1	6.600	2.770	1.271	50.310	0.329	0.193	24.236	1.870
4.2	6.263	2.865	1.295	51.573	0.340	0.196	24.173	2.009

Table 43, Intact stability calculation final design results

The loading conditions for free sailing conditions have lower G'M values than the original mono-hull design, resulting in a less cruel vessel. For the DP and crane operations the G'M is high for good stability. This is an improvement compared with the original design.

Loss of load calculation

The loss of load calculation is performed for loading condition Loss of load calculation, maximum mean draft (Lpp/2) = 6.5 meters

- 5.1 Loss of load calculation for loading condition 4.1
- 5.2 Loss of load calculation for loading condition 4.2

A summary of the results is presented in table 44, detailed results can be found in Appendices XXI.

The moment on the vessel:

100 tons load at 20.5 meters out of heart ship results in a moment of 2,050tm, or 20,111kNm

Loading condition	Statical angle of inclination (QL)	Statical angle of equilibrium Qe	Area A2>A1
4.1	1.51	4.086	Yes
4.2	1.73	4.689	Yes

Table 44, Results loss of load calculation mono-hull

The vessel complies with the regulations for loss of load and has a smaller statical angle of inclination and equilibrium than the initial design. The new design heels less due to the sponsoons and performs better than the initial mono-hull design.

Damage stability calculations

The same method as for the original design is used to predict if the vessel will comply with the SPS code (2008).

Figure 38, G'M limit curve final design

Condition	Tmean	G'M
Lightest service draft (dl)	4.981	1.500
Partial subdivision draft (dp)	5.952	1.700
Deepest subdivion draft (ds)	6.600	2.600

Table 45, Drafts and G'M values for probabilistic damage stability calculation

The G'M limit curve visualizes the difference between the free sailing conditions and the crane operation condition. A lower G'M for free sailing results in lower transverse accelerations, which is pleasant for crew and passengers. The higher G'M for the higher drafts gives more stability which is needed for crane operations. All the G'M values for the three drafts are higher than 1.5, this makes it very likely that the vessel will comply with the regulations.

5.3.8 Dynamic positioning

The calculations concerning dynamic positioning are similar to the mono-hull calculations earlier in this report, the big difference lies in the addition of a keel to the model, which results in higher current forces on the aft of the vessel.

Results

The environmental forces and moments on the vessel are given in figures 39 and 40, as a comparison the forces and moments on the original mono-hull design without a keel are also given in the same graph. The contour of the vessel is similar to the original design, resulting in the same wind forces. The complete table with calculations of the forces and moments is given in Appendices XXII.

Figure 39, Forces on final design

Figure 40, Moments on final design

Thruster forces and static equilibrium

Forces wrt COG					
	waves	current	wind	total	
Fx	0	0	0	0	kN
Fy	0	378	235	613	kN
Mz	0	3597	3292	6888	kNm

Table 46, Environmental forces and moment on final design

Figure 41, Thrust vectors final design

Figure 42, Orientation forces, moments and heading

Thruster forces:

	actual	min	max		
Thrust tunnel 1	-155.9	-191.3	191.3	kN	-82%
Thrust tunnel 2	-157.1	-191.3	191.3	kN	-82%
Thrust tunnel 3	-150.0	-191	191	kN	-78%
Thrust tunnel 4	-150.0	-191	191	kN	-78%
Total applied power	4848	0	31200	kW	16%

Table 47, Thruster forces final design

The propulsion configuration will be:

2x Propellers with rudders for forward and backward thrust 2x Bow thruster 2x Stern thruster 11600kW each 1500kW each 1500kW each

Due to the keel the current forces on the vessel are higher resulting in larger stern thrusters. The moment on the vessel due to these forces is lower, also because of the keel. The applied force is divided more equal over the length of the vessel.

5.3.9 General arrangement plan and tank arrangement

For this final design a general arrangement plan has been made, figure 43 until 45. This gives a 2D overview of the arrangement of the decks. Figure 43 shows the tanktop, tween deck and main deck of the vessel. Main areas below the main deck are the engine room, bowthruster room and switchboard room. The top view of the main deck gives an overview of the deck layout with the crane, some accommodations space and the ROV launch and recovery system. Figure 44 shows the decks of the superstructure, which are mainly used for accommodation space, and the bridge. The last figure is the side view of the vessel in which the contour of the new design becomes visible.

The tank arrangement is given in figure 46. The tanks below the tanktop and the wingtanks are mainly ballast water tanks which are used for trimming and draft increase for the crane operations. All the fuel oil tanks are placed before the engine room between tanktop and tween deck and separated from the hull by ballast water tanks or voids according to class. Fresh water tanks are placed at the front of the vessel as a wingtank and separated from the fuel oil tanks by a cofferdam.

Figure 43, GA plan final design 1

Figure 44, GA plan final design 2

Figure 45, GA plan final design 3

Tank arrangement plan

Figure 46, Tank arrangement final design

5.3.10 Artists impressions

The structural design of the vessel is shown above in 2D. Besides the 2D general arrangement plan, a 3D model has been made to give a better impression of the structural design of the vessel. The 3D model is basic, without any details and only meant to give an idea of the appearance of the final concept as a complement to the general arrangement plan.

Figure 47, Artists impression final design 1

Figure 48, Artists impression final design 2

Figure 49, Artists impression final design 3

Figure 50, Artists impression final design 4

Figure 51, Artists impression final design 5

Figure 52, Artists impression final design 6

Figure 53, Artists impression final design 7

6 Conclusion

The outcome of this report shows that it is technically possible to design an Inspection Repair and Maintenance vessel with a maximum speed requirement of 25 knots. At first two design were made which were compared to each other, the outcome of this comparison was that a mono-hull design is preferable over a catamaran due to the significantly lower resistance. The high resistance makes the catamaran an infeasible solution for this design.

The design is based on a fast displacement Marwood and Bailey hull form, which is suitable for the high speed requirement. Integrated sponsoons were implemented, this results in better performance for both stationary operations as well as free sailing conditions. By taking in ballast water the draft of the vessel can be adjusted for the right condition. A lower draft results in a lower G'M which reduces the lateral accelerations at free sailing, optimizing the seaway characteristics. It also reduces the resistance making it possible to reach the maximum speed of 25 knots. A higher draft lowers the vertical center of gravity of the vessel and increases the G'M which is favorable for stationary operations because the vessel becomes more stable. This is especially interesting for crane operations over the side, because the static heeling angle is reduced significantly.

The final design of the FIRM is still a concept vessel, which was the goal for this project. This means that all main characteristics of the vessel are set and checked by means of various calculations. If any interest in this vessel is shown in the future it should be worked out further in detail. If this is the case a few future recommendations are made which might improve the design and also might require an alteration of the initial design criteria.

Future recommendations

The amount of power needed to reach 25 knots is extremely high and according to the operational profile the vessel will only sail at this speed for 5% of the time. With a small reduction of the maximum speed by only a few knots it is possible to install a propulsion system with approximately 20 to 25% less power. The vessel will still be fast in comparison to its competitors.

The propulsion system that was implemented for this design is very basic with a separate power generation system for the electrical system. The main propulsion engines could also be used to generate electrical power by for instance shaft generators. Another possibility is to design a diesel electric system, this can be combined with the use of POD propellers which makes the aft tunnel thrusters redundant.

It can be interesting to investigate the possibility to use high tensile steel for the hull construction. This might lower the light ship weight and results in lower draft and resistance.

Latest developments

Outside the scope of this thesis the FIRM concept has evolved the last few months, this new FIRM design won't be discussed in detail, but it's nice to mention it shortly. The requirements for the vessel were adjusted to the demands of a new Norwegian customer. The major changes in the requirements were:

- Maximum speed reduces to 22 knots instead of 25 knots;
- Two ROV LARS systems over the side (PS and SB), fully enclosed in a hangar;
- Addition of a heli-deck, amidships;
- A second 5x5 m moonpool for ROV LARS operations;
- 800 m² deck space instead of 600 m²;
- Addition of a module handling tower over the 7.2x7.2 m moonpool.

This resulted in major changes in the design, like the addition of an extra deck layer in the superstructure and relocation of the bridge. The vessel is also has a diesel electric propulsion system with POD (pulling) propulsors. The result was a concept vessel which was presented at the Europort 2013 in Rotterdam. The specification sheet, some artists impressions and a photo of the scale model are given below to get an impression.

Specification sheet Damen FIRM 120

enance

GENERAL Basic functions Inspection Repair and Maintena Transport of supplies and crew ROV support Module handling Module nanoling Emergency response & Rescue Dynamic Positioning DnV 1A1 with the following class notations: SF, ED, DYNPOS-AUTR, CLEAN DESIGN, COMF-V(3), ICE-C, LFL* Classification DIMENSIONS Length o.a. Length b.p.p. Beam mid. 120.00 m 117.00 m 21.00 m Beam mid. Depth mid. Design draught (base) Full load draught (base) Deadweight (design) Deadweight (dui load) Deck load (at 1 m above deck) Freeboard at max draught Freeboard at accentional draught 21.00 m 9.50 m 5.00 m 7.00 m 1450 t 5500 t 3000 t 2.5 m 4.5 m Freeboard at operational draught TANK CAPACITIES 1130 m³ 160 m³ 50 m³ 300 m³ 200 m³ Fuel oll (service) Potable water (service) Potable water (set Sewage Special products Roll reduction PERFORMANCES (APPROX.) Speed (at design draught) Speed (economical) 22 kn 14 kn PROPULSION SYSTEM Main propulsion Propulsion power Propeilers Bow thruster Retractable thruster Diesel-Electric, 3300 V, 60 Hz 2x 7000 ekW 2x 4000 mm, FP, POD 2x 1800 ekW, 2300 mm, FP 1x 1800 ekW, 2500 mm, FP

CONCEPT DESIGN

AUXILIARY EQUIPMENT Networks Main generator sets Harbour generator set

Emergency generator set

DECK LAY-OUT Deck crane Module Handling System

Tugger winches Fast rescue craft Live boats

WORKING DECK Deck area Deck strength

ROLL REDUCTION

Active Passive HELICOPTER FACILITIES

Helicopter deck capacity

ACCOMMODATION Crew/ special personne

NAUTICAL AND COMMUNICATION EQUIPMENT Radar systems DP – system Communication

HYDROLOGICAL AND OCEANOGRAPHIC EQUIPMENT

Equipment Moonpool

Spaces

Several working spaces ROV control room 2x ROV LARS 1x 7.2x7.2 m 1x 5x5 m

OPTIONAL Fire fighting equipment Oil recovery equipment

3300 V / 440 V / 230 V - 60 Hz 5x 3000 ekW 1x 340 ekW 1x 175 ekW

1x Knuckle boom, 100 t at 15 m, AHC Capacity to handle modules up to 30 t and 8m height AHC, to 2000 m, in conditions up to 4,5Hs 2x each 100 pull x 6.5 m, 212 hp inloard with waterjet 2x 50 persons each

800 m² 10 t/m²

Active stabilizing fins Roll reduction tank

D-factor 19.5 m , take-off weight 8.6t

100 persons

1x X-band + S-band DP2 GMDSS A3

DAMEN FIRM 120 CONCEPT DESIGN

DAMEN SHIPYARDS GORINCHEM

Member of the DAMEN SHIPYARDS GROUP

Industrieterrein Avelingen West 20 4202 MS Gorinchem

P.O. Box 1 4200 AA Gorinchem The Netherlands

phone +51 (0)185 65 99 11 fsz +51 (0)185 65 21 89

info@damen.nl www.damen.nl

DSG0-4P0.0-mmyy

Registered at the Chamber of Commerce, no. 23036357, under the name BV Scheepswerf Damen Gorinchem. All our offers are without engagement unless stated otherwise. All activities carried out in accordance with the VNSI General Yard Conditions (Netherlands Shipbuilding Industry Association).

Ð

Artists impressions and photo Damen FIRM 120

Figure 54, Artists impression 1 Damen FIRM 120 concept

Figure 55, Artists impression 2 Damen FIRM 120 concept

Figure 56, Artists impression 3 Damen FIRM 120 concept

Figure 57, Artists impression 4 Damen FIRM 120 concept

Figure 58, Artists impression 5 Damen FIRM 120 concept

Figure 60, Artists impression 7 Damen FIRM 120 concept

Figure 61, Scale model Damen FIRM 120 concept

References

A.F. Molland, J. W. (1994). Resistance Experiments on a Systematic Series of High Speed Displacement Catamaran Forms: Variation of Length-Displacement Ratio and Breadth-Draught Ratio. Southampton: University of Southampton.

Bailey, D. (1976). The NPL High Speed Round Bilge. Royal Institution of Naval Architects.

Erik Kasper, T. K. (1987). Assessment of Ship Performances in Seaway. Copenhagen: NORDFORSK.

Gerritsma, P. i. (2003). Bewegingen en Sturen. Delft: Faculteit 3mE.

H. Klein Woud, D. S. (2002). Design of Propulsion and Electric Power Generation Systems. Delft: IMarEST.

Hermand, A. J. (1998). Low-frequency second-order wave-drift forces and damping. Delft: Kluwer.

Hoerner, D. I. (1965). *Fuid-Dynamic Drag.* Bakersfield: Hoerner fluid dynamics.

ir. J. Pinkster, i. C. (2005). Geometrie en Stabiliteit. Delft: Faculteit 3mE.

J. Holtrop, G. M. (1982). An Approximate Power Prediction Method.

Jenson, F. (2011). OSV for Deepwater. Kristiansand: National Oilwell Varco.

Journée, J. (1992). Quick Strip Theory Calculations in Ship Design. Delft: Delft University of Technology.

Kuiper, P. D. (2003). Resistance and Propulsion. Delft: Faculty of design, Engineering and Production.

M. Insel, A. M. (1991). An investigation into the resistance componants of high speed displacement catamarans. London: Royal institute of Naval Architects.

Oossanen, D. P. (sd). Resistance prediction of small high-speed displacement vessels: State of the art.

- Perry van Oossanen, J. H. (2009). *Motor yacht hull form design for the displacement to semi-displacement speed range*. Athens: 10th International Conference on Fast Sea Transportation.
- Peter van Oossanen, J. B. (1984). *MARIN-Systematic series of highspeed displacement ship hullforms.* Wageningen: MARIN.

Prof. Dr. Ir. D. Stapersma, I. J. (2000). Design of advanced marine vehicles. Delft: Faculty of 3mE.

- Prof. ir. C.A. Willemse, i. H. (sd). An Introduction to Offshore Structures and Systems. Delft: Offshore Engineering.
- Rose, R. S. (2011). Future Characteristics of Offshore Support Vessel. Cambridge: Massachusetts Institute of Technology.

Ventura, M. (2009). Hullform design. Instituto Superior Technico.

Versluis, A. (2004). *Moederscheepsvormen*. Delft: Faculteit Ontwerp, Constructie en Produktie.

Wood, R. (sd). Catalac Catamaran Information Website.

Appendices

I Design hydrostatics report mono-hull.

Design leng Length over	th · all		120.00 120.00	(r (r	n) M n) Re	idshi elativ	p locatior e water d	n lensity		60.000 1.025	(m)
Design bear	n		19.000	(r	n) M	ean s	shell thick	ness		0.0000	(m)
Maximum b	eam		19.000	(r	<i>n)</i> Ap	openo	dage coef	ficient		1.0000	
Design draft	t		6.000	(r	n)						
Volume pro	perties					W	Vaterplan	e propertie	25		
Moulded vo	olume			6103.6	(m^3)	Le	ength on	waterline		115.34	(m)
Total displa	ced volum	ne		6103.6	(m^3)	B	eam on w	vaterline		18.515	(m)
Displaceme	nt			6256.2	(tonne.	s) Ei	ntrance a	ngle		51.693	(Degr.)
Block coeffi	cient			0.4462		N N	Vaterplan	e area		1/15.3	(m^2)
Prismatic co		ciont		0.6419		V\ \\	vaterplan	e coefficier	It	0.7523	(m)
Wottod curf	face area	cient		0.5931	(m 1 2)	۷۱ T	vaterpian	e center of	finartia	47.962	(m)
Longitudina	lace died	fhuovan	CV.	5/ 086	(m)	11	ongitudin	al moment	of inertia	41174	(111^{4})
Longitudina	l center o	f buoyan f buoyan	cy cv	-4 347	(111) %		ongituum	armoment		1455045	(111 4)
Vertical cen	ter of hur	n buoyan avancy	Cy	3 807	/0 (m)						
		, yancy		5.007	()						
Midship pro	operties				Ini	tial s	tability				
Midship sec	tion area		79.241	(m^	2) Tra	ansve	erse meta	centric hei	ght	10.55	3 (m)
Midship coe	efficient		0.6951		Lor	ngitu	dinal met	acentric he	eight	239.0	2 (m)
Lateral plan	ie										
Lateral area				583.10	(m^2	?)					
Longitudina	l center o	f effort		64.268	(m)						
Vertical cen	ter of effo	ort		3.244	(m)						
The followi	ng layer p	ropertie	s are ca	lculated	d for bot	th sic	des of the	e ship			
Location	Are	а	Thickr	ness	w	/eigh	t	VCG	LCG	TCG	
	(m^	2)			(to	onne	s)	(m)	(m)	(m)	
Layer 0	395	0.1	0.000		0.	000		5.881	61.018	0.000 (CL)
Sectional an	reas										
Location	Area	Locatio	n Ar	ea	Locatio	n .	Area	Location	Area	Location	Area
(m)	(m^2)	(m)	(m	1^2)	(m)		(m^2)	(m)	(m^2)	(m)	(m^2)
0.000	11.726	24.000	58	.530	48.000		79.884	72.000	70.616	96.000	37.048
2.000	14.190	26.000	61	.939	50.000		80.294	74.000	68.516	98.000	33.808
4.000	16.852	28.000	65	.014	52.000		80.523	76.000	66.241	100.000	30.519
6.000	19.866	30.000	67	.773	54.000		80.554	78.000	63.803	102.000	27.172
8.000	23.367	32.000	70	.201	56.000		80.362	80.000	61.203	104.000	23.738
10.000	27.358	34.000	72	.2/7	58.000		79.923	82.000	58.467	106.000	20.172
12.000	31.//1	36.000	/4	.006	60.000		79.241	84.000	55.614	110.000	10.401
14.000	36.503	38.000	/5	.445	64.000		78.325	86.000	52.660	110.000	12.241
10.000	41.342	40.000	76	.054	04.000		77.185	88.000	49.033	112.000	1.234
10.000	40.097	42.000	//	.094	68,000		72.033	90.000	40.551	114.000	1.297
20.000	50.012	44.000	/8/ 07	300	70 000		74.28U	92.000	43.422	110.000	0.000
22.000	54.700	40.000	19	.309	70.000		12.331	94.000	40.232		

NOTE 1: Draft (and all other vertical heights) is measured above base Z=0.00! NOTE 2: All calculated coefficients based on project length, draft and beam.

II Tank volumes mono-hull concept

Compartment		Volume	Weight	VCG	LCG	TCG	Mom.In.T	S.W.
Void DB	19-37	162.074	162.074	2.798	21,198	0.000	1168.768	1.000
Void SB	19-37	93 067	93 067	5 826	19 869	8 045	17 397	1 000
Void DS	10-27	02 067	02 067	5 926	10 960	_ 0 0 1 5	17 207	1 000
VOID F5	19-37	93.007	107 450	J.020	19.009	-0.045	2001 701	1.000
VOIG DB	4-19	167.450	167.450	4.618	9.230	0.000	3281./31	1.000
Engine room	37-88	2693.516	2693.516	5.388	43.752	0.000	10648.267	1.000
MD acco	51-152	2975.052	2975.052	9.409	66.243	0.000	25864.115	1.000
A-deck acco	51-167	3092.037	3092.037	12.201	67.637	0.000	26011.975	1.000
Subtotal		9276.262	9276.262	8.898	57.431	0.000		
Compartment		Volume	Weight	VCG	LCG	TCG	Mom.In.T	S.W.
BW FP	152-fwd	124.140	127.243	7.159	108.790	0.000	24.432	1.025
BW DB CT	133-142	44 169	45 273	1 509	95 456	0 000	51 167	1 025
DW DD CI	124-133	35 714	36 607	1 528	80 832	1 330	17 682	1 025
DW DD DD	124 133	25.714	30.007	1.520	09.032	1 220	17.002	1 025
BW DB PS	124-133	35./14	36.607	1.528	89.832	-1.339	1/.082	1.025
BW WT SB	124-133	51.151	52.429	5.251	89.930	3.944	6.096	1.025
BW WT PS	124-133	51.151	52.429	5.251	89.930	-3.944	6.096	1.025
BW DB SB	112-124	60.231	61.737	1.542	82.434	1.718	49.885	1.025
BW DB PS	112-124	60.231	61.737	1.542	82.434	-1.718	49.885	1.025
BW WT SB	112-124	69.591	71.331	5.208	82.615	5.112	11.131	1.025
BW WT PS	112-124	69.591	71.331	5.208	82.615	-5.112	11.131	1.025
DM DD CD	100 110	70 705	75 570	1 5 4 0	74 000	2 000	00 707	1 005
BW DB SB	100-112	/3./35	/5.5/8	1.542	74.082	2.099	89.787	1.025
BW DB PS	100-112	/3./35	/5.5/8	1.542	/4.082	-2.099	89./8/	1.025
BW WT SB	100-112	83.503	85.591	5.055	73.964	6.065	18.480	1.025
BW WT PS	100-112	83.503	85.591	5.055	73.964	-6.065	18.480	1.025
BW DB SB	88-100	84.531	86.644	1.541	65.726	2.401	132.980	1.025
BW DB PS	88-100	84.531	86.644	1.541	65.726	-2.401	132,980	1.025
BW WT SB	88-100	102 940	105 514	4 826	65 727	6 475	39 307	1 025
DW WI DD	88-100	102.940	105.514	4.826	65 727	-6 475	39 307	1 025
DW WI IS	72 00	112 100	115 027	1 550	5.727 EC 224	0.475	211 710	1 025
BW DB SB	/3-00	113.100	115.927	1.550	56.554	2.010	211./10	1.025
BW DB PS	/3-88	113.100	115.927	1.558	56.334	-2.616	211./10	1.025
BW WT SB	73-88	87.549	89.737	5.290	56.126	7.765	11.262	1.025
BW WT PS	73-88	87.549	89.737	5.290	56.126	-7.765	11.262	1.025
BW DB SB	61-73	86.749	88.917	1.612	46.966	2,662	174.526	1.025
BW DB PS	61-73	86 749	88 917	1 612	46 966	-2 662	174 526	1 025
DW WT SD	61-73	79 738	81 731	5 256	16.900	7 863	12 368	1 025
BW WI 3B	01-75	19.130	01./51	5.250	40.071	1.005	12.500	1.025
BW WT PS	61-73	79.738	81.731	5.256	46.871	-7.863	12.368	1.025
BW DB SB	49-61	75.022	76.897	1.698	38.644	2.548	148.006	1.025
BW DB PS	49-61	75.022	76.897	1.698	38.644	-2.548	148.006	1.025
BW WT SB	49-61	80.185	82.189	5.298	38.518	7.892	13.250	1.025
BW WT PS	49-61	80.185	82.189	5.298	38.518	-7.892	13.250	1.025
BW DB SB	37-10	111 830	114 635	2 118	30 313	2 907	244 083	1 025
BW DB SB	37-49	111 020	114.000	2.440	20.313	2.907	244.003	1.025
BW DB PS	37-49	111.839	114.035	2.448	30.313	-2.907	244.083	1.025
BW WT SB	37-49	69.3/8	/1.112	5.639	30.122	8.022	13.1//	1.025
BW WT PS	37-49	69.378	71.112	5.639	30.122	-8.022	13.177	1.025
BW SB	4-19	63.457	65.043	6.711	8.106	8.139	12.106	1.025
BW PS	4-19	63.457	65.043	6.711	8.106	-8.139	12.106	1.025
BW SB	-4-4	57.480	58.917	6.723	-0.951	5.899	170.114	1.025
BW PS	-4-4	57.480	58.917	6.723	-0.951	-5.899	170.114	1.025
Subtotal		2940.090	3013 592	3,841	56.031	0.000		
		23.0.000	0010.002	0.011	00.001	0.000		
Compartmont		Volumo	Weight	VCC	TCC	тсс	Mom Tr T	C IAT
compar unen c		v O I UIIIC	WCIGIIC	vcg	109	TCG	110m • 111 • 1	J.W.

SUMMARY OF MAXIMUM TANKVOLUMES

III Weight calculation mono-hull concept

Name	Туре	Hull weight up to D [kg]	L [m]	B[m]	D[m]	Tdesign [m]	Weight factor [kg/m³]
SD Victoria	WSS 8316	754995	83	16	7.2	4.25	79
Seveiros Fragata	PSV 7216	768176	71.8	16	7.5	5	89
Pool Expres	PSV 7216	812799	71.8	16	7.5	5	94
Vos Tracker	SSV 4711	205620	47.98	11	5.5	4.25	71
Barend Biesheuvel	PV 6111	340009	61.25	11	5.8	4	87
World Diamond	PSV 3300	925223	80.2	16.2	7.5	6.15	95
Fairplayer	DP Heavy lift vessel	4374571	133.8	26.5	14.1	8.1	88
Pharuehatsabodi	HRV 6613	452595	66.33	13.2	6.5	3	80
Tran Dai Nghia	HSV 6613	453526	66.33	13.2	6.5	3	80
Hr. Ms. Pelikaan	LSV 6513	449203	65.33	13.2	6.5	3	80
Med Otto	AHTS 6114	489759	60.36	13.5	6	4.5	100
Brodospas Alfa	AHTS 130	677795	66.88	15	6.75	5	100
Average							87

Table 48, Weight factor comparison

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg/m3]	[kg]	[m]	[m]	[m]
			[m3]			AB	fr O	SB = +
100	Shipbuilding							
110	Hull		18240 m3	87 kg/m3	1,586,880	5.00	55.30	
110	MD-AD		4203 m3	50 kg/m3	210,140	9.50	71.00	
110	AD-BD		4256 m3	50 kg/m3	212,800	12.30	71.00	
	Total hull	Total volume	26699 m3					
		Factor	2009820 kg					
			75 kg/m3					
120	BD-CD	Aluminium	2128 m3	30 kg/m3	63,840	15.10	71.00	
120	CD-Bridge deck	Aluminium	1702 m3	30 kg/m3	51,072	17.90	67.00	
120	Wheelhouse	Aluminium	798 m3	48 kg/m3	38,304	22.50	61.00	
	Total superstructure	Total volume	4628 m3					
		Factor	153216 kg					
			33 kg/m3					
130	Small steelwork		2163036	6.0%	129,782	7.07	59.21	
161	Paint		2292818	1.5%	34,392	7.07	59.21	
	Rolling margin & welding material		2292818	4.5%	103,177	7.07	59.21	
	Shipbuilding total				2,430,387	7.07	59.21	

Table 49, Weight calculation mono-hull 100

Description	Mass [t]	VCG	LCG
Basic hull	942.33	4.58	58
Double bottom	278.24	1.77	62.13
Shaft tunnel	9.00	2.5	23.2
Tween deck	99.96	5.25	53
Steel fenders	1.05	8.55	58.50
Transverse bulkheads	79.15	4.58	55.5
Wing tanks	49.1	5.25	49.00
Bridge	64.33	20.5	61.00
Superstructure	533.06	14.1	71.00
Natural Hold vent.	10.64	4.58	58.00
Aux. Foundations	101.55	4.38	39.9
Hull finishing	36.40	4.58	58.00
Engine room finishing	15.20	3.00	39.9
Stem/Stern/Rudder	43.50	3.00	55.68
Shaft brackets	74.55	1.50	4.64
Total	2337.98	6.74	58.35

Table 50, Steel weight calculation mono-hull Westers

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
200	Main machinery							
211	Main engines	Wartsila 9L38	4	72000	288,000	4.00	38.00	
		Single in						
212	Gearboxes	single out	4	14500	58,000	3.50	30.00	
213	Propellers	4000 mm CPP	4	8000	32,000	2.00	2.00	
213	Shafts & stern tubes		4	40000	160,000	2.00	12.00	
213	Seals & bearings		4	2500	10,000	2.00	12.00	
221	Rudders		4	15000	60,000	2.00	0.00	
222	Steering gear		4	5000	20,000	6.00	0.00	
223	Bow thruster - 1	1500 kW	1	10600	10,600	1.50	103.00	
223	Bow thruster - 2	1500 kW	1	10600	10,600	1.50	98.50	
223	Sternthruster - 1	1500 kW	1	10600	10,600	2.00	12.00	
223	Stern thruster - 2	1500 kW	1	10600	10,600	2.00	8.00	
223	E motor bow thruster - 1	1500 kW	1	8000	8,000	3.50	103.00	
223	E motor bow thruster - 2	1500 kW	1	8000	8,000	3.50	98.50	
223	E motor sternthruster - 1	1500 kW	1	8000	8,000	4.00	12.00	
223	E motor stern thruster - 2	1500 kW	1	8000	8,000	4.00	8.00	
223	Drive bow thruster - 1		1	2000	2,000	3.50	103.00	
223	Drive bow thruster - 2		1	2000	2,000	3.50	98.50	
223	Drive sternthruster - 1		1	2000	2,000	4.00	12.00	
223	Drive stern thruster - 2		1	2000	2,000	4.00	8.00	
	Main machinery total				710,400	3.13	27.24	

Table 51, Weight calculation mono-hull 200

Code	Description	Number	Weight	Weight	VCG	LCG	TCG
		[-]	[kg]	[kg]	[m]	[m]	[m]
					AB	fr O	SB = +
300	Primary ship systems						
310	Bilge ballast piping	1	25000	25,000	3.75	55.00	
310	Fifi piping	1	7500	7,500	8.00	58.00	
320	Fuel oil piping	1	10000	10,000	3.75	45.00	
330	Cooling water piping	1	20000	20,000	3.00	48.00	
340	Fresh water piping	1	2000	2,000	11.00	75.00	
340	Sewage piping	1	8000	8,000	11.00	75.00	
340	Deck scupper piping	1	5000	5,000	10.50	58.00	
350	Tank sounding/filling piping	1	17500	17,500	6.00	58.00	
360	Lub oil piping	1	8000	8,000	3.50	47.00	
380	Exhaust piping ER	2	4000	8,000	10.50	50.00	
380	Exhaust piping PR	4	3500	14,000	13.50	57.00	
390	Miscellaneous piping	1	20000	20,000	5.00	58.00	
300	System fillings	145,000	20%	29,000	7.17	55.23	
300	Appendages	145,000	20%	29,000	7.17	55.23	
				0			
310	Bilge ballast equipment	1	2000	2,000	4.00	55.00	
310	Fifi equipment	1	1000	1,000	8.00	58.00	
320	Fuel oil equipment	1	3000	3,000	3.50	45.00	
330	Cooling water equipment	1	12000	12,000	3.00	48.00	
340	Fresh water equipment	1	3000	3,000	11.00	75.00	
340	Sewage plant	1	6000	6,000	3.50	75.00	
340	Other sewage equipment	1	1000	1,000	4.00	83.00	
	Tank sounding/filling						
350	equipment	1	1000	1,000	6.50	58.00	
360	Lub oil equipment	1	2500	2,500	3.50	47.00	
370	HVAC piping (spiro)	1	10000	10,000	13.50	75.00	
370	HVAC unit	1	6500	6,500	13.50	55.00	
370	Other HVAC equipment	1	3000	3,000	13.50	95.00	
380	Exhaust equipment	6	2500	15,000	10.50	48.00	
	Remaining primary ship						
390	systems	 1	15000	15,000	5.00	58.00	
	Primary ship systems total			284,000	6.93	56.36	

Table 52, Weight calculation mono-hull 300

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr 0	SB = +
400	Electrical system							
410	Generator set	Wartsila 8L20	2	20700	41,400	4.00	56.00	
410	Generator set	Wartsila 8L26	2	45000	90,000	4.00	56.00	
410	Emergency set	Cat C18	1	1905	1,905	17.50	54.00	
	Cables & cable trays below							
420	main deck		1	32000	32,000	5.00	55.00	
	Cables & cable trays above							
420	maindeck		1	22000	22,000	12.50	55.00	
430	Main switchboard		4	5500	22,000	6.50	65.00	
430	Other switchboards		1	10000	10,000	6.50	65.00	
450	Lighting		1	3000	3,000	13.50	70.00	
490	Remaining items		1	15000	15,000	8.50	58.00	
	Electrical system total				237,305	5.77	57.27	

Table 53, Weight calculation mono-hull 400

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
500	Deck equipment							
510	Anchor winch		1	5000	5,000	12.50	108.00	
510	Anchors		2	3000	6,000	10.50	113.00	
510	Chain		1	25000	25,000	6.50	110.00	
510	Chain stoppers		2	650	1,300	11.50	111.00	
510	Mooring winches aft		2	6000	12,000	9.00	2.00	
520	Capstans aft		2	1200	2,400	9.00	2.00	
540	Deck crane (subsea execution)		1	275000	275,000	17.20	20.00	
540	Deck crane Pedestal	Incl	1		0			
540	Store crane		1	5000	5,000	14.50	94.50	
550	Tugger winches		2	4000	8,000	9.00	38.50	
560	ROV Davit		1	15000	15,000	11.50	56.00	
570	Fast rescue boat + davit		1	8000	8,000	12.50	49.70	
570	Life boat + davits		2	10000	20,000	15.50	66.50	
570	MOB boat + davit		1	2000	2,000	11.50	42.00	
570	life rafts		6	500	3,000	8.50	41.00	
590	Remaining items		1	15000	15,000	8.00	58.00	
	Deck equipment total				402,700	15.04	34.93	

Table 54, Weight calculation mono-hull 500

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
600	Secondary ship systems							
610	Hydraulic piping		1	5000	5,000	9.00	40.00	
620	Compressed air piping		6	2000	12,000	8.00	45.00	
		Local						
660	Pre-wetting piping	protection	1	3000	3,000	4.00	45.00	
670	CO2 piping		1	1000	1,000	9.00	45.00	
680	Cold & freeze piping		1	1000	1,000	9.50	64.50	
680	Remaining systems		1	10000	10,000	4.00	50.00	
600	System fillings		22,000	20%	4,400	8.45	44.75	
600	Appendages		22,000	20%	4,400	8.45	44.75	
					0			
610	Hydraulic equipment		1	5000	5,000	9.50	45.50	
620	Compressed air equipment		1	3000	3,000	6.50	40.00	
670	CO2 equipment		1	1000	1,000	10.00	42.00	
680	Cold & freeze equipment		1	1500	1,500	9.50	64.50	
	Secondary ship systems total				51,300	7.35	46.09	

Table 55, Weight calculation mono-hull 600

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[m2]	[kg/m2]	[kg]	[m]	[m]	[m]
						AB	fr 0	SB = +
700	Joinery and arrangement of accommodation							
710	Joinery main deck		650 m2	150	97,500	9.00	77.00	
710	Joinery A - deck		650 m2	150	97,500	11.80	75.00	
710	Joinery B - deck		450 m2	120	54,000	14.60	75.00	
710	Joinery C - deck		450 m2	120	54,000	17.40	72.50	
710	Joinery bridge deck		190 m2	100	19,000	21.50	59.50	
730	Floor plates	Steel	250 m2	43	10,750	3.50	58.00	
	Joinery and arrangement of accommodation total				332,750	12.63	73.75	

Table 56, Weight calculation mono-hull 700

Code	Description	Number	Weight	Weight	VCG	LCG	TCG
		[-]	[kg]	[kg]	[m]	[m]	[m]
					AB	fr 0	SB = +
800	Nautical, navigation and communication equipment						
		1	3000	3,000	21.50	60.00	
	Nautical, navigation and communication equipment total			3,000	21.50	60.00	

Table 57, Weight calculation mono-hull 800

IV Extensive hydrostatics report mono-hull concept

HYDROSTATIC	PARTICULARS
FI	RM

Trim = 0.000 m

Draft from base	4.500	4.600	4.700	4.800	4.900
Waterplane area	1418.63	1443.16	1469.80	1497.27	1526.03
Centre of flotation	49.724	49.308	48.812	48.303	47.745
Mom. of inertia long.	946018	980167	1016863	1056758	1100417
Mom. of inertia tran.	27930	28873	29840	30821	31824
Ton/cm immersion	14.54	14.79	15.07	15.35	15.64
Volume	3705.62	3848.57	3994.10	4142.30	4293.30
Volume & appendages	3705.62	3848.57	3994.10	4142.30	4293.30
Displacement	3798.26	3944.79	4093.95	4245.86	4400.63
Vert. Centre Buoyancy	2.859	2.921	2.984	3.048	3.111
Long. Centre Buoyancy	55.840	55.605	55.368	55.125	54.877
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	10.396	10.424	10.455	10.488	10.523
KM longitudinal	258.151	257.604	257.576	258.161	259.421
Mom change trim 1 cm	84.32	87.36	90.63	94.19	98.08
Wetted surface	1748.3	1785.5	1824.9	1865.4	1907.5
Block coefficient	0.3769	0.3829	0.3889	0.3950	0.4010
Hor.prism.coef	0.5988	0.6026	0.6064	0.6103	0.6142
Vert.prism.coef	0.5805	0.5797	0.5782	0.5764	0.5742
Midship coefficient	0.6293	0.6354	0.6414	0.6472	0.6528
Waterplane coef.	0.6493	0.6605	0.6727	0.6852	0.6984
Waterplane coef. fore	0.5036	0.5074	0.5112	0.5149	0.5186
Draft from base	5.000	5.100	5.200	5.300	5.400
Waterplane area	1556.35	1585.94	1611.13	1632.08	1649.27
Centre of flotation	47.147	46.563	46.115	45.788	45.557
Mom. of inertia long.	1148431	1200393	1250259	1292200	1325936
Mom. of inertia tran.	32861	33921	34992	36035	37003
Ton/cm immersion	15.95	16.26	16.51	16.73	16.90
Volume	4447.25	4604.24	4764.00	4926.09	5090.11
Volume & appendages	4447.25	4604.24	4764.00	4926.09	5090.11
Displacement	4558.44	4719.35	4883.10	5049.24	5217.37
Vert. Centre Buoyancy	3.175	3.239	3.303	3.367	3.431
Long. Centre Buoyancy	54.621	54.356	54.088	53.820	53.558
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	10.564	10.606	10.648	10.682	10.700
KM longitudinal	261.408	263.953	265.742	265.684	263.923
Mom change trim 1 cm	102.36	106.99	111.44	115.17	118.18
Wetted surface	1951.5	1995.3	2035.1	2071.1	2103.8
Block coefficient	0.4071	0.4132	0.4193	0.4254	0.4314
Hor.prism.coef	0.6183	0.6225	0.6268	0.6310	0.6353
Vert.prism.coef	0.5715	0.5692	0.5686	0.5695	0.5715
Midship coefficient	0.6584	0.6637	0.6690	0.6741	0.6791
Waterplane coef.	0.7123	0.7258	0.7374	0.7469	0.7548
Waterplane coef. fore	0.5222	0.5256	0.5292	0.5326	0.5360
Draft from base	5.500	5.600	5.700	5.800	5.900
-----------------------	---------	---------	---------	---------	---------
Waterplane area	1664.50	1676.66	1687.30	1696.39	1704.59
Centre of flotation	45.391	45.286	45.233	45.223	45.216
Mom. of inertia long.	1353136	1375497	1393233	1407707	1420100
Mom. of inertia tran.	37880	38647	39305	39890	40425
Ton/cm immersion	17.06	17.19	17.29	17.39	17.47
Volume	5255.76	5422.78	5590.94	5760.07	5930.08
Volume & appendages	5255.76	5422.78	5590.94	5760.07	5930.08
Displacement	5387.15	5558.35	5730.71	5904.07	6078.33
Vert. Centre Buoyancy	3.494	3.558	3.621	3.683	3.745
Long. Centre Buoyancy	53.303	53.058	52.824	52.601	52.389
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	10.702	10.684	10.651	10.608	10.562
KM longitudinal	260.952	257.209	252.815	248.074	243.219
Mom change trim 1 cm	120.61	122.60	124.18	125.47	126.57
Wetted surface	2134.2	2162.4	2188.9	2214.5	2239.7
Block coefficient	0.4373	0.4432	0.4489	0.4545	0.4600
Hor.prism.coef	0.6394	0.6435	0.6475	0.6513	0.6550
Vert.prism.coef	0.5741	0.5775	0.5813	0.5854	0.5896
Midship coefficient	0.6839	0.6887	0.6933	0.6979	0.7023
Waterplane coef.	0.7618	0.7674	0.7722	0.7764	0.7801
Waterplane coef. fore	0.5394	0.5427	0.5462	0.5494	0.5528
	c		c		c
Draft from base	6.000	6.100	6.200	6.300	6.400
Waterplane area	1712.35	1719.78	1726.51	1733.35	1739.89
Centre of flotation	45.238	45.258	45.285	45.304	45.333
Mom. of inertia long.	1431272	1441687	1450497	1459611	1468219
Mom. of inertia tran.	40925	41391	41825	42237	42629
Ton/cm immersion	17.55	17.63	17.70	17.77	17.83
Volume	6100.90	6272.48	6444.78	6617.76	6791.39
Volume & appendages	6100.90	6272.48	6444.78	6617.76	6791.39
Displacement	6253.42	6429.30	6605.90	6783.21	6961.17
Vert. Centre Buoyancy	3.807	3.868	3.929	3.990	4.050
Long. Centre Buoyancy	52.189	51.998	51.818	51.647	51.485
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	10.515	10.467	10.419	10.372	10.327
KM longitudinal	238.407	233.711	228.995	224.550	220.239
Mom change trim 1 cm	127.57	128.50	129.28	130.10	130.86
Wetted surface	2264.5	2289.0	2313.4	2337.6	2361.7
Block coefficient	0.4654	0.4706	0.4757	0.4807	0.4857
Hor.prism.coef	0.6586	0.6621	0.6654	0.6687	0.6719
Vert.prism.coef	0.5938	0.5979	0.6021	0.6060	0.6099
Midship coefficient	0.7066	0.7108	0.7149	0.7189	0.7228
Waterplane coef.	0.7837	0.7871	0.7902	0.7933	0.7963
Waterplane coef. fore	0.5561	0.5592	0.5625	0.5656	0.5687

Waterplane area 1746.19 1751.32 1757.37 1762.35 1767.68 Centre of flotation 45.350 45.405 45.424 45.488 45.526 Mom. of inertia long. 1476283 1484542 1491841 1499340 1506372 Mom. of inertia tran. 43000 43355 43682 44006 44307 Ton/cm immersion 17.90 17.95 18.01 18.06 18.12 Volume 6965.63 7140.46 7315.85 7491.78 7668.23 Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 1.10 4.170 4.230 4.229 4.348 Vert. Centre Buoyancy 0.000 1420 200.120	Draft from base	6.500	6.600	6.700	6.800	6.900
Centre of flotation 45.350 45.405 45.424 45.488 45.526 Mom. of inertia long. 1476283 1484542 1491841 1499340 1506372 Mom. of inertia tran. 43000 43355 43682 44006 44307 Ton/cm immersion 17.90 17.95 18.01 18.06 18.12 Volume 6 appendages 6965.63 7140.46 7315.85 7491.78 7668.23 Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 4.110 4.170 4.230 4.229 4.348 Long. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 KM transverse 10.283 10.242 10.200 10.163 10.126 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5046 Vert. Centre Buoyancy 0.6779 0.6608 0.6636 0.6633 Vert.prism.coef 0.6749 0.6779 0.6608 0.6636 0.6633 Vert.prism.coef 0.6749 0.6779 0.6808 0.6636 0.6633 Vert.prism.coef 0.718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume 4 appendages 7845.19 Volume 5 appendages 7845.19 Volume 4 appendages 7845.19 Volume 5 appendages 7845.19 Volume 6 appendages 7845.19 Volume 6 appendages 7845.19 Volume 6 appendages 7845.19 Volume 6 appendages 7845.19 Volume 194.32 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert.prism.coef 0.6744 Vert. Centre Buoyancy 4.406 Long. Centre Buoyancy 4.4	Waterplane area	1746.19	1751.32	1757.37	1762.35	1767.68
Mom. of inertia long. 1476283 1484542 1491841 1499340 1506372 Mom. of inertia tran. 43000 43355 43682 44006 44307 Mom. of inertia tran. 43000 43355 43682 44006 44307 Ton/cm immersion 17,90 17,95 18.01 18.06 18.12 Volume & appendages 6965.63 7140.46 7315.85 7491.78 7668.23 Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 10.163 10.126 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Hor.prism.coef 0.6137 0.6138 0.6213 0.6251 0.6281 Mortharburg.coef 0.6137 0.6137 0.6133 0.6210 0.6281 Midship coefficient 0.7267 0.7304 0.7311 0.7361 0.7381	Centre of flotation	45.350	45.405	45.424	45.488	45.526
Mom. of inertia tran. 43000 43355 43682 44006 44307 Ton/cm immersion 17.90 17.95 18.01 18.06 18.12 Volume & appendages 6965.63 7140.46 7315.85 7491.78 7668.23 Volume & appendages 6965.63 7140.46 7315.85 7491.78 7668.23 Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 51.32 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000	Mom. of inertia long.	1476283	1484542	1491841	1499340	1506372
Ton/cm immersion 17.90 17.95 18.01 18.06 18.12 Volume 6965.63 7140.46 7315.85 7491.78 7668.23 Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 0.000 KM transverse 10.283 10.242 10.200 10.163 10.126 KM transverse 10.283 10.242 10.200 10.163 144.20 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Vert.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6281 Waterplane coef. 0.7267 0.7304 0.7314 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. 0.5718 0.5778 <	Mom. of inertia tran.	43000	43355	43682	44006	44307
Volume 6965.63 7140.46 7315.85 7491.78 7668.23 Volume & appendages 6965.63 7140.46 7315.85 7491.78 7668.23 Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.6	Ton/cm immersion	17.90	17.95	18.01	18.06	18.12
Volume & appendages 6965.63 7140.46 7315.85 7491.78 7689.03 Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 0.000 Mom change trim 1 cm 131.58 132.21 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4977 0.6808 0.6836 0.6836 Vert.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7316 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5838 Mom. of inertia long. 153.467 150.208 0.643 0.8043 0.8066 0.8090 Volume	Volume	6965.63	7140.46	7315.85	7491.78	7668.23
Displacement 7139.77 7318.97 7498.74 7679.07 7859.94 Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 0.000 KM transverse 10.283 10.242 10.200 10.163 10.126 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5026 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7374 0.7376 0.7311 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane area 1772.27 Centre bioyancy 1513467 Mom. of inertia tran. 44595 Ton/cm immersion	Volume & appendages	6965.63	7140.46	7315.85	7491.78	7668.23
Vert. Centre Buoyancy 4.110 4.170 4.230 4.289 4.348 Long. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 0.000 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Mock coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.5718 0.5778 0.5811 0.5838 Draft from base 7.000 7243 0.5811 0.5838 Mom. of inertia long. 1513467 581 5811 0.5838 Mom. of inertia long. 1513467 581 5811 0.5838 Volume & appendages 7845.19 7845.19 7845.19 7845.19 7845.19 <td>Displacement</td> <td>7139.77</td> <td>7318.97</td> <td>7498.74</td> <td>7679.07</td> <td>7859.94</td>	Displacement	7139.77	7318.97	7498.74	7679.07	7859.94
Long. Centre Buoyancy 51.332 51.186 51.048 50.917 50.792 Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 0.000 KM transverse 10.283 10.242 10.200 10.163 10.126 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. fore 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume 7845.19 Volume 84.519 Volume 7845.19 Volume 7845.19 Volume 7845.19 Mot. Gentre Buoyancy 4.406 Long. Centre Buoyancy 4.406 Long. Centre Buoyancy 50.674 Trans.Centre Buoyancy 0.000 KM transverse 10.091 KM longitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6324 Midship coefficient 0.5129 Hor.prism.coef 0.6324 Midship coefficient 0.7445 Waterplane coef. 0.6324 Midship coefficient 0.7445 Waterplane coef. 0.8111 Waterplane coef. 0.8111 Waterplane coef. 0.674	Vert. Centre Buoyancy	4.110	4.170	4.230	4.289	4.348
Trans.Centre Buoyancy 0.000 0.000 0.000 0.000 KM transverse 10.283 10.242 10.200 10.163 10.120 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6283 Vert.prism.coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane area 1772.27 Centre of flotation 45.589 45.19 4405 Mom. of inertia tran. 44595 7000 7445 7445 7446 7445 Volume 7845.19 745.19 745.19 745.19 745.19 745.19 745.19 745.19 745.19 745.19	Long. Centre Buoyancy	51.332	51.186	51.048	50.917	50.792
KM transverse 10.283 10.242 10.200 10.163 10.126 KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5888 Draft from base 7.000 0 0 0.6435 0.6233 0.6243 0.8066 0.8090 Waterplane area 1772.27 0.5778 0.5811 0.5838 0 0.5838 Draft from base 7.000 18.17 0.001 145455 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.6	Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM longitudinal 216.049 212.076 208.149 204.420 200.791 Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. fore 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 0.000 0.6213 0.6251 0.6251 0.6333 Mom. of inertia long. 1513467 0.5750 0.5778 0.5811 0.5838 Mom. of inertia tran. 44595 45519 0.5014 0.542 0.674 Volume & appendages 7845.19 0.901 18.17 190.91 14.90 14.90 197.323 Vert. Centre Buoyancy 4.406 197.323 197.323 197.323 197.323 197.323<	KM transverse	10.283	10.242	10.200	10.163	10.126
Mom change trim 1 cm 131.58 132.32 132.97 133.64 134.26 Wetted surface 2385.7 2409.7 243.5 2457.3 2481.0 Block coefficient 0.4905 0.4905 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane area 1772.27 0.5778 0.5811 0.5838 Draft from base 7.000 0.000 0.0066 0.8040 Wom. of inertia tran. 44595 0.0778 0.5811 0.5838 Ton/cm immersion 18.17 Volume 7845.19 Volume 7845.19 Volume & appendages 7845.19 0.6074 17ans.Centre Buoyancy 0.000 KM longitudinal 197.323 0.001 KM longitudinal 197.323 Mom change trim 1 cm 134.90 134.90 134.90 134.90 Wetted surface <td>KM longitudinal</td> <td>216.049</td> <td>212.076</td> <td>208.149</td> <td>204.420</td> <td>200.791</td>	KM longitudinal	216.049	212.076	208.149	204.420	200.791
Wetted surface 2385.7 2409.7 2433.5 2457.3 2481.0 Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6251 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume & appendages 7845.19 Volume & appendages 7845.19 Volume & appendages 7845.19 Volume & appendages 7845.19 Non change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6889 Vert.prism.coef 0.6324 Midship coefficient 0.7445 Waterplane coef.	Mom change trim 1 cm	131.58	132.32	132.97	133.64	134.26
Block coefficient 0.4905 0.4951 0.4997 0.5042 0.5086 Hor.prism.coef 0.6179 0.6008 0.6836 0.6863 Vert.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Vaterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44995 4495 Yolume 7845.19 Volume 7845.19 Volume & appendages 7845.19 Volume & appendages 7845.19 Volume & appendages 7847.406 Long. Centre Buoyancy 0.000 KM transverse 10.091 KM longitudinal 197.323 Mom chage trim 1 cm 134.90 Wetted surface 2504.9 S129	Wetted surface	2385.7	2409.7	2433.5	2457.3	2481.0
Hor.prism.coef 0.6749 0.6779 0.6808 0.6836 0.6863 Vert.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume & appendages 7845.19 Volume & appendages 70.674 Trans.Centre Buoyancy 50.674 Trans.Centre Buoyancy 50.674 Trans.Centre Buoyancy 50.674 KM tongitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef </td <td>Block coefficient</td> <td>0.4905</td> <td>0.4951</td> <td>0.4997</td> <td>0.5042</td> <td>0.5086</td>	Block coefficient	0.4905	0.4951	0.4997	0.5042	0.5086
Vert.prism.coef 0.6137 0.6178 0.6213 0.6251 0.6287 Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume & appendages 7845.19 Volume & contre Buoyancy 50.674 Trans.Centre Buoyancy 0.000 KM transverse 10.091 KM longitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6824 Widship coefficient 0.7445 Waterplane coef. 0.8111 Waterplane coef. fore 0.5868	Hor.prism.coef	0.6749	0.6779	0.6808	0.6836	0.6863
Midship coefficient 0.7267 0.7304 0.7341 0.7376 0.7411 Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. fore 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Displacement 8041.32 Vert. Centre Buoyancy 50.674 Trans.Centre Buoyancy 0.000 KM longitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6889 Vert.prism.coef 0.6324 Midship coefficient 0.7445 Waterplane coef. 0.8111 Waterplane coef. fore 0.5868	Vert.prism.coef	0.6137	0.6178	0.6213	0.6251	0.6287
Waterplane coef. 0.7992 0.8015 0.8043 0.8066 0.8090 Waterplane coef. fore 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume & appendages 7845.19 Volume & appendages 7845.19 Vort. Centre Buoyancy 50.674 Trans.Centre Buoyancy 0.000 KM transverse 10.091 KM longitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6889 Vert.prism.coef 0.6324 Midship coefficient 0.7445 Waterplane coef. 0.8111 Waterplane coef. fore 0.5868	Midship coefficient	0.7267	0.7304	0.7341	0.7376	0.7411
Waterplane coef. fore 0.5718 0.5750 0.5778 0.5811 0.5838 Draft from base 7.000 Waterplane area 1772.27 Centre of flotation 45.589 Mom. of inertia long. 1513467 Mom. of inertia tran. 44595 Ton/cm immersion 18.17 Volume 7845.19 Volume & appendages 7845.19 Displacement 8041.32 Vert. Centre Buoyancy 4.406 Long. Centre Buoyancy 0.000 KM transverse 10.091 KM longitudinal 197.323 Mom change trim 1 cm 134.90 Wetted surface 2504.9 Block coefficient 0.5129 Hor.prism.coef 0.6324 Widship coefficient 0.7445 Waterplane coef. 0.811 Waterplane coef. 0.811	Waterplane coef.	0.7992	0.8015	0.8043	0.8066	0.8090
Draft from base7.000Waterplane area1772.27Centre of flotation45.589Mom. of inertia long.1513467Mom. of inertia tran.44595Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef.0.5868	Waterplane coef. fore	0.5718	0.5750	0.5778	0.5811	0.5838
Nater plane area1772.27Centre of flotation45.589Mom. of inertia long.1513467Mom. of inertia tran.44595Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Draft from base	7 000				
NoticeNoticeWom. of inertia long.1513467Mom. of inertia tran.44595Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Waterplane area	1772 27				
Nome of inertia long.1513467Mom. of inertia tran.44595Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Centre of flotation	45 589				
Nom. of inertia tran.44595Mom. of inertia tran.44595Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Mom of inertia long	1513467				
Now, of indication interval1800Ton/cm immersion18.17Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Mom of inertia tran	44595				
Volume7845.19Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Ton/cm immersion	18 17				
Volume & appendages7845.19Displacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Volume	7845.19				
Volume a uppendagesNotationDisplacement8041.32Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Volume & appendages	7845 19				
Vert. Centre Buoyancy4.406Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Displacement	8041.32				
Long. Centre Buoyancy50.674Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Vert. Centre Buovancy	4.406				
Trans.Centre Buoyancy0.000KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Long. Centre Buoyancy	50.674				
KM transverse10.091KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Trans.Centre Buovancy	0.000				
KM longitudinal197.323Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	KM transverse	10.091				
Mom change trim 1 cm134.90Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	KM longitudinal	197.323				
Wetted surface2504.9Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Mom change trim 1 cm	134.90				
Block coefficient0.5129Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Wetted surface	2504.9				
Hor.prism.coef0.6889Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Block coefficient	0.5129				
Vert.prism.coef0.6324Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Hor.prism.coef	0.6889				
Midship coefficient0.7445Waterplane coef.0.8111Waterplane coef. fore0.5868	Vert.prism.coef	0 - 6324				
Waterplane coef.0.8111Waterplane coef. fore0.5868	Midship coefficient	0.7445				
Waterplane coef. fore 0.5868	Waterplane coef.	0.8111				
	Waterplane coef. fore	0.5868				

V Rules and regulations intact stability calculations

VI.A IMO A.749(18)

3.1 General intact stability criteria for all ships

3.1.1 Scope

. The following criteria are recommended for passenger and cargo ships.

3.1.2 Recommended general criteria

3.1.2.1. The area under the righting lever curve (GZ curve) should not be less than 0.055 metre-radians up to $\theta = 30^{\circ}$ angle of heel and not less than 0.09 metre-radians up to $\theta = 40^{\circ}$ or the angle of downflooding θ_{f} see footnote if this angle is less than 40°. Additionally, the area under the righting lever curve (GZ curve) between the angles of heel of 30° and 40° or between 30° and θ_{f} , if this angle is less than 40°, should not be less than 0.03 metre-radians.

3.1.2.2. The righting lever GZ should be at least 0.20 m at an angle of heel equal to or greater than 30°.

3.1.2.3. The maximum righting arm should occur at an angle of heel preferably exceeding 30° but not less than 25°.

3.1.2.4. The initial metacentric height GM_o should not be less than 0.15 m.

VI.B Accidental loss of load (DNV)

Rules (DNV):

Pt.5 Ch.7 Sec.17 D 200Accidental load drop Pt.5 Ch.7 Sec.17 D

201 The effect of accidental drop of crane load shall be investigated and shall meet the following criteria:

- The restoring energy represented by area A2 in Fig.1 is to be at least 40% in excess of the potential energy represented by area A1.
- The angle of static equilibrium Qe after loss of crane load shall not be more than 15 degrees from the upright.

Figure 62, Stability with loss of crane load

- RL1 = Net righting lever (GZ) curve for the condition before loss of crane load, corrected for crane heeling moment and for the righting moment provided by the counter ballast if applicable.
- RL2= Net righting lever (GZ) curve for the condition after loss of crane load, corrected for the transverse moment provided by the counter ballast if applicable.
- QL= Static angle of equilibrium before loss of crane load. QL may alternatively be determined by the equation:
- QL = arctan (TCG/GMt)

If this results in a small angle of heel.

TCG is then to be taken as the vessel's transverse centre of gravity before loss of crane load, and GMt is the corrected transverse metacentric height in the same condition.

- Qe= Static angle of equilibrium after loss of crane load
- Qf= Angle of down flooding as defined in Pt.3 Ch.3 Sec.9.

Guidance note:

Net righting lever implies that the calculation of the GZ curve includes the vessel's true transverse centre of gravity as function of the angle of heel.

VI Intact Stability calculations mono-hull

$\frac{\texttt{TRIM} \texttt{ AND} \texttt{ STABILITY} \texttt{ CALCULATION}}{\texttt{FIRM}}$

					11 Jı	ın 2013 14	:45:04
Condition : <u>1.1 Ba</u>	llast conditi	on T=6m					
Description		Weight	VCG	LCG	TCG	FSM	
		ton	m	m	m	tonm	
Empty ship		4674.000	7.810	52.200	0.000	0.000	
Subtotals for group	p : Ballast w	ater					
BW FP	152-fwd	0.000	0.006	106.845	0.000	0.000	
BW DB CT	133-142	28.522	1.100	95.462	0.000	46.161	
BW DB SB	124-133	0.000	-0.000	89.873	0.115	0.000	
BW DB PS	124-133	0.000	-0.000	89.873	-0.115	0.000	
BW WT SB	124-133	0.000	2.500	89.957	3.058	0.000	
BW WT PS	124-133	0.000	2.500	89.957	-3.058	0.000	
BW DB SB	112-124	0.000	-0.000	82.488	0.133	0.000	
BW DB PS	112-124	0.000	-0.000	82.488	-0.133	0.000	
BW WT SB	112-124	0.000	2.500	82.667	4.083	0.000	
BW WT PS	112-124	0.000	2.500	82.667	-4.083	0.000	
BW DB SB	100-112	0.000	-0.000	74.228	0.150	0.000	
BW DB PS	100-112	0.000	-0.000	74.228	-0.150	0.000	
BW WT SB	100-112	0.000	2.500	73.745	4.922	0.000	
BW WT PS	100-112	0.000	2.500	73.745	-4.922	0.000	
BW DB SB	88-100	0.000	-0.000	66.838	0.124	0.000	
BW DB PS	88-100	0.000	-0.000	66.838	-0.124	0.000	
BW WT SB	88-100	0.000	2.500	65.590	5.297	0.000	
BW WT PS	88-100	0.000	2.500	65.590	-5.297	0.000	
BW DB SB	73-88	0.000	0.006	60.835	0.073	0.000	
BW DB PS	73-88	0.000	0.006	60.835	-0.073	0.000	
BW WT SB	73-88	0.000	2.500	55.809	6.620	0.000	
BW WT PS	73-88	0.000	2.500	55.809	-6.620	0.000	
BW DB SB	61-73	88.917	1.612	46.966	2.662	0.000	
BW DB PS	61-73	88.917	1.612	46.966	-2.662	0.000	
BW WT SB	61-73	81.731	5.256	46.871	7.863	0.000	
BW WT PS	61-73	81.731	5.256	46.871	-7.863	0.000	
BW DB SB	49-61	76.897	1.698	38.644	2.548	0.000	
BW DB PS	49-61	/6.89/	1.698	38.644	-2.548	0.000	
BW WT SB	49-61	82.189	5.298	38.518	7.892	0.000	
BW WT PS	49-61	82.189	5.298	38.518	-7.892	0.000	
BW SB	4-19	65.043	6./11	8.106	8.139	0.000	
BW PS	4-19	65.043	6./11	8.106	-8.139	0.000	
SUBTOTAL		818.079	3.890	39.197	-0.000	40.101	
Subtotals for group	p : Fuel oil				_		
FO CT	124-133	71.281	3.847	89.765	0.000	59.115	
FO CT	112-124	134.176	3.847	82.367	0.000	221.059	
FO CT	100-112	156.539	3.847	74.200	0.000	341.541	
FO CT	88-100	156.539	3.847	65.800	0.000	341.541	
FO SB	4-19	65.224	6.597	8.050	5.600	15.812	
FO PS	4-19	65.224	6.597	8.050	-5.600	15.812	
SUBTOTAL		648.982	4.400	62.275	0.000	994.881	
Subtotals for group	p : Fresh wat	er					
FW WT SB	133-142	46.074	5.113	96.184	2.851	1.797	
FW WT PS	133-142	46.074	5.113	96.184	-2.851	1.797	
SUBTOTAL		92.149	5.113	96.184	-0.000	3.594	

Subtotals for grou	ap : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
TOTAL		6248.210	6.918	52.247	-0.000	1044.635
Hydrostatics			Drafts	and trim		
Volume	6095.862	m ³	Drafts	above base	e :	
LCF	45.226	m	Draft	mean (Lpp/2	2) 6.0	00 m
Mom. change trim	127.551	tonm/cm	Draft	aft (App)	5.9	87 m
Ton/cm immersion	17.555	ton/cm	Draft	fore (Fpp)	6.0	13 m
Specific weight	1.025	ton/m ³	Trim		0.03	26 m
Transverse stabil:	ity					
KM transverse	10.514	m				
VCG	6.918	m				
GM solid	3.597	m				
GG' correction	0.167	m				
G'M liquid	3.430	m	VCG'		7.0	85 m

Statical and dynamical stability, calculated with constant $\ensuremath{\texttt{LCB}}$:

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG ' sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.000	0.026	0.000	0.000	-0.000	0.000	0.000
2.00	5.998	0.029	0.367	0.247	-0.000	0.120	0.002
5.00	5.990	0.045	0.913	0.617	-0.000	0.296	0.013
10.00	5.959	0.126	1.799	1.230	-0.000	0.569	0.051
15.00	5.903	0.259	2.634	1.834	-0.000	0.801	0.111
20.00	5.840	0.288	3.366	2.423	-0.000	0.943	0.188
25.00	5.762	0.232	4.032	2.994	-0.000	1.038	0.274
30.00	5.657	0.120	4.655	3.542	-0.000	1.112	0.368
35.00	5.514	-0.028	5.244	4.064	-0.000	1.180	0.468
40.00	5.317	-0.203	5.810	4.554	-0.000	1.256	0.575
50.00	4.749	-0.694	6.779	5.427	-0.000	1.351	0.804
60.00	3.926	-1.500	7.389	6.136	-0.000	1.253	1.035

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				55.35

Summar	У						
Hydros	tatics				Criterion	Value	
Draft :	mld.				6.000	6.000 n	n
Trim		0.026 m	L				
Static	al angle of inclina	tion 0.00 d	legrees SB				
Floodi	ng angle	55.35 d	legrees				
Intact	Stability Code for	vessels wit	ch a large	B/H ratio	Criterion	Value	
Minimu	m metacentric heigh	t G'M			0.150	3.430 n	neter
Maximu	n GZ at 30 degrees	or more			0.200	1.352 m	neter
to goT	the GZ curve at le	ast at			15.000	51.042 c	learees
Area u	nder the GZ curve u	o to 30 degi	rees		0.055	0.368 m	nrad
Area u	nder the GZ curve b	etween 30 ar	nd 40 dear	ees	0.030	0.206 m	nrad
Maximu	m angle of inclinat	ion acc. to	TMO's A.5	62 weather	riterion50.0	0025.731 c	learees
Maximu	n statical angle du	= to wind	1110 0 1110		13 231	1 833 0	learees
Maximu	m statical angle 80	& of angle (of deck im	mersion	9 984	1 833 0	learees
1102311110	a beactear angle ou	o or angle (JI GOON IM	merbron	5.501	1.000 0	regreeb
VCC							
Notupl		7 0.85 m					
Movimu		9 612 m	L				
Tasdin	allowable	0.012 II	l totod and	torio			
LUauIII	g condition compile	s with the a	stated CII	terra.			
	I I I I						6 I
-							
0							
-							
			XXXXXXX				
-			XIIXIII				
-			<u>IIXIIX</u>				
			(()))))))))))))))))))))))))))))))))))))				
-							
0							
· · -							
-							
-							
-							
-							
-							
						1	
	· · · ·	.0		25.0		_ 50.0	

$\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

Condition : 2.1 Departure 100% consumables

11 Jun 2013 14:45:31

5	FT 1 1 .		1.00		2014
Description	Weight	VCG	LCG	TCG	F'SM
Empty obin	LON 4674 000	III 7 010	III 52 200		
Empty Ship	40/4.000	/.010	52.200	0.000	0.000
Subtotals for group : Ballast wa	ater				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	0.000	-0.000	95.538	0.000	0.000
BW DB SB 124-133	0.000	-0.000	89.873	0.115	0.000
BW DB PS 124-133	0.000	-0.000	89.873	-0.115	0.000
BW WT SB 124-133	0.000	2.500	89.957	3.058	0.000
BW WT PS 124-133	0.000	2.500	89.957	-3.058	0.000
BW DB SB 112-124	0.000	-0.000	82.488	0.133	0.000
BW DB PS 112-124	0.000	-0.000	82.488	-0.133	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB 73-88	0.000	2.500	55.809	6.620	0.000
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	0.000	0.084	50.888	0.053	0.000
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000
BW WT SB 61-73	0.000	2.500	46.960	6.681	0.000
BW WT PS 61-73	0.000	2.500	46.960	-6.681	0.000
BW DB SB 49-61	0.000	0.241	42.533	0.040	0.000
BW DB PS 49-61	0.000	0.241	42.533	-0.040	0.000
BW WT SB 49-61	0.000	2.500	38.976	6.584	0.000
BW WT PS 49-61	0.000	2.500	38.976	-6.584	0.000
BW SB 4-19	65.043	6.711	8.106	8.139	0.000
BW PS 4-19	65.043	6.711	8.106	-8.139	0.000
SUBTOTAL	130.086	6.711	8.106	-0.000	0.000
Subtotals for group : Fuel oil	71 001	2 0 4 7		0 000	
FO CT 124-133	/1.281	3.84/	89.765	0.000	59.115
FO CT 112-124	134.176	3.847	82.367	0.000	221.059
FO CT 100-112	156.539	3.84/	74.200	0.000	341.541
FO CT 88-100	156.539	3.847	65.800	0.000	341.541
FO DC 4-19	65.224	6.59/	8.U5U	5.600	15.812 15.010
EU PS 4-19	649 000	0.39/	0.UOU	-5.600	LJ.012
SUBIUTAL	040.982	4.400	02.213	0.000	994.881
Subtotals for group : Fresh wate	er				
FW WT SB 133-142	46.074	5.113	96.184	2.851	1.797
FW WT PS 133-142	46.074	5.113	96.184	-2.851	1.797
SUBTOTAL	92.149	5.113	96.184	-0.000	3.594

Subtotals for grou	up : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
TOTAL		5560.217	7.358	53.135	-0.000	998.475
Hydrostatics			Drafts	and trim		
Volume	5424.743	m ³	Drafts	above base	e :	
LCF	45.328	m	Draft	mean (Lpp/2	2) 5.60	5 m
Mom. change trim	122.509	tonm/cm	Draft	aft (App)	5.58	7 m
Ton/cm immersion	17.182	ton/cm	Draft	fore (Fpp)	5.62	3 m
Specific weight	1.025	ton/m ³	Trim		0.03	6 m
Transverse stabil:	ity					
KM transverse	10.676	m				
VCG	7.358	m				
GM solid	3.318	m				
GG' correction	0.180	m				
G'M liquid	3.138	m	VCG'		7.53	8 m

Statical and dynamical stability, calculated with constant $\ensuremath{\texttt{LCB}}$:

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG ' sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.605	0.036	0.000	0.000	-0.000	0.000	0.000
2.00	5.603	0.043	0.372	0.263	-0.000	0.109	0.002
5.00	5.593	0.083	0.922	0.657	-0.000	0.265	0.012
10.00	5.554	0.222	1.808	1.309	-0.000	0.499	0.045
15.00	5.485	0.438	2.650	1.951	-0.000	0.699	0.098
20.00	5.389	0.667	3.421	2.578	-0.000	0.843	0.166
25.00	5.275	0.807	4.105	3.186	-0.000	0.919	0.243
30.00	5.130	0.892	4.730	3.769	-0.000	0.961	0.325
35.00	4.943	0.946	5.312	4.324	-0.000	0.988	0.410
40.00	4.695	0.985	5.863	4.845	-0.000	1.018	0.498
50.00	3.947	1.043	6.863	5.774	-0.000	1.088	0.682
60.00	2.803	1.051	7.518	6.528	-0.000	0.990	0.868

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				58.59

Summary	У													
Hydrost	tatics									Crite	rion	Val	ue	
Draft r	mld.									6	.000	5.6	505 r	n
Trim				0.036	m									
Statica	al angle c	f inclin	ation	0.00	degr	ees S	В							
Floodin	ng angle			58.59	degr	ees								
	2 2				2									
Intact	Stability	Code fo	r vess	els w	ith a	lard	qe B/I	H rat	io	Crite	rion	Val	ue	
Minimur	n metacent	ric heig	ht G'M	[0	.150	3.1	.38 r	neter
Maximur	m GZ at 30	degrees	or mo	re						0	.200	1.0)90 r	meter
to goT	the GZ cu	rve at l	east a	t.						15	.000	51.4	69 0	degrees
Area un	nder the G	7 curve	up to	30 de	arees					0	055	0.3	325 r	mrad
Area un	nder the G	Zcurve	betwee	n 30	and 4	0 dec	irees			0	.030	0.1	7.3 r	mrad
Maximur	m angle of	inclina	tion a	cc t	O TMC	s A	562 T	weath	ercr	iterio	un 50 (0026 4	105 0	dearees
Maximur	m statical	angle d		wind	0 1110	0 11	002	neu en	01011	16	000	2 3	100	degrees
Mavimur	n statical	angle 8	02 05	angle	of	lock i	mmor	eion		12	268	2.0	10	dogroos
naximu	II Staticai	angie o	US OI	angre	OI C			51011		12	.200	2.0		acgrees
VCC														
Notuol				7 5 2 0	-									
Actual		-		1.000	111									
Maximur	ll allowabl	.e		0.000 h + h -	III at at									
Loading		on compili	es wit	n the	Stat	.eu ci	.iter.	ld.						
							,		1		1			
°														
H										1				
							177	1						
-					- /		111	N –			-			
						K()))	(11)	2						
_						$\mathcal{H}\mathcal{H}$	AHH	\sim						
						UUU	()))	2						
					χ	(111)	()))							
_					UUU	XIII	())							
				())	()))	χ	()))	\mathbb{N}						
-				1111	1111	1111	1111.							
		<u>AUXAU</u>												
°			<u> </u>							_				
0			Y I											
-		() () Y												
-		\otimes —												
_														
-														
_														
	· ·	I I	<u> </u>	I		1	' 5	5.0	1	T	1	50	0	1
							2					00.	-	

TRIM AND STABILITY CALCULATION FIRM

11 Jun 2013 14:45:56

Condition : 2.2 Arrival 10% consumables

Description	Weight	VCG m	LCG m	TCG	FSM
Empty ship	4674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast	water				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000
BW DB SB 124-133	36.607	1.528	89.832	1.339	0.000
BW DB PS 124-133	36.607	1.528	89.832	-1.339	0.000
BW WT SB 124-133	0.000	2.500	89.957	3.058	0.000
BW WT PS 124-133	0.000	2.500	89.957	-3.058	0.000
BW DB SB 112-124	0.000	-0.000	82,488	0.133	0.000
BW DB PS 112-124	0.000	-0.000	82.488	-0.133	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0 000	-0 000	74 228	0 150	0 000
BW DB PS 100-112	0 000	-0.000	74 228	-0 150	0 000
BW WT SB 100-112	0 000	2 500	73 745	4 922	0 000
BW WT PS 100-112	0 000	2 500	73 745	-4 922	0 000
BW DB SB 88-100	0 000	-0.000	66 838	0 124	0 000
BW DB PS 88-100	0 000	-0.000	66 838	-0 124	0 000
BW WT SB 88-100	0.000	2 500	65 590	5 297	0.000
BW WT PS 88-100	0.000	2.500	65 590	-5 297	0.000
BW DB SB 73-88	0.000	0 006	60 835	0 073	0.000
BW DB PS 73-88	0.000	0.000	60 835	-0 073	0.000
BW WT SB 73-88	0.000	2 500	55 809	6 620	0.000
BW WT DS 73-88	0.000	2.500	55 809	-6 620	0.000
DW WI FS 75-00	0.000	2.500	50 888	-0.020	0.000
DW DB SB 01-75	0.000	0.084	50 888	-0.053	0.000
DW DD F5 01-75	0.000	2 500	16 960	-0.000	0.000
DW WI SD 01-75	0.000	2.500	40.900	6 6 9 1	0.000
DW WI F5 01-75	0.000	2.300	40.900	-0.001	0.000
BW DB SB 49-01	0.000	0.241	42.333	-0.040	0.000
BW DB F5 49-01 DW WT CD 40-61	0.000	2 500	42.333	-0.040	0.000
BW WI SB 49-01	0.000	2.500	20.970	6 594	0.000
BW WT PS 49-61	0.000	2.500	38.976	-0.584	0.000
BW 5B 4-19	0.000	J.250 E 2E0	8.706	7.700	0.000
BW P5 4-19	110 100	1 501	0.700	-7.765	0.000
SUBIUIAL	110.400	1.521	91.900	-0.000	0.000
Subtotals for group : Fuel oil					
FO CT 124-133	7.274	2.637	89.765	0.000	59.115
FO CT 112-124	13.691	2.638	82.367	0.000	221.055
FO CT 100-112	15.973	2.638	74.200	0.000	341.540
FO CT 88-100	15.973	2.637	65.800	0.000	341.540
FO SB 4-19	6.656	5.387	8.050	5,600	15.812
FO PS 4-19	6.656	5.387	8.050	-5.600	15.812
SUBTOTAL	66.223	3.190	62.275	-0.000	994.875
Subtotals for group : Fresh wat	ter				
FW WT SB 133-142	4.701	2.816	96.292	2.181	1.999
FW WT PS 133-142	4.701	2.816	96.292	-2.181	1.999
SUBTOTAL	9.403	2.816	96.292	0.000	3.997

Subtotals for grou	ap : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
TOTAL		4883.113	7.604	53.457	-0.000	998.872
Hydrostatics			Drafts	and trim		
Volume	4764.014	m ³	Drafts	above base	e :	
LCF	45.624	m	Draft	mean (Lpp/2	2) 5.173	m
Mom. change trim	114.257	tonm/cm	Draft	aft (App)	5.307	m
Ton/cm immersion	16.640	ton/cm	Draft	fore (Fpp)	5.039	m
Specific weight	1.025	ton/m ³	Trim		-0.268	m
Transverse stabil:	ity					
KM transverse	10.778	m				
VCG	7.604	m				
GM solid	3.174	m				
GG' correction	0.205	m				
G'M liquid	2.970	m	VCG'		7.809	m

Statical and dynamical stability, calculated with constant LCB :

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.173	-0.268	0.000	0.000	-0.000	0.000	0.000
2.00	5.170	-0.255	0.376	0.273	-0.000	0.103	0.002
5.00	5.158	-0.193	0.931	0.681	-0.000	0.251	0.011
10.00	5.112	-0.007	1.822	1.356	-0.000	0.466	0.043
15.00	5.033	0.258	2.664	2.021	-0.000	0.643	0.091
20.00	4.916	0.588	3.455	2.671	-0.000	0.784	0.154
25.00	4.770	0.884	4.159	3.300	-0.000	0.859	0.226
30.00	4.590	1.121	4.789	3.904	-0.000	0.885	0.302
35.00	4.361	1.332	5.367	4.479	-0.000	0.888	0.380
40.00	4.066	1.535	5.906	5.019	-0.000	0.887	0.457
50.00	3.171	1.993	6.915	5.982	-0.000	0.933	0.616
60.00	1.728	2.600	7.635	6.763	-0.000	0.873	0.777

Summary	Z														
Hydrost	tatics									<u>C</u> 1	riter	ion	Val	ue	
Draft r	nld.										6.	000	5.1	73 m	
Trim				_	0.268	m									
Statica	al angle	of ind	clinat	ion	0.00	degr	ees S	В							
Floodir	ng angle				60.00	degr	ees								
Intact	Stabili	ty Code	e for	vess	els w	ith a	lard	ge B/I	H rati	o C1	riter	ion	Val	ue	
Minimur	n metace	ntric 1	neight	: G'M			-	, 			0.	150	2.9	70 m	eter
Maximur	n GZ at 3	30 dea:	rees d	or mo	re						0.	200	0.9	38 m	eter
to goT	the GZ (curve a	at lea	ast a	t						15.	000	52.4	79 d	earees
Area ur	nder the	GZ Cu	rve ur	o to	30 de	arees	5				0.	055	0.3	02 m	rad
Area ur	nder the	GZ CU	rve be	etwee	n 30	and 4	0 dec	rees			0.	030	0.1	55 m	rad
Maximur	n angle (of inc	linati	on a	cc t	0 TMC)'s A	562 T	weathe	rcrit	erior	150 (0028 7	63 d	earees
Maximur	n static	al angi	le due	- to	wind	0 1110	, 0 11.	002	weaterie	TOTTO	16	000	2 8	67 d	egrees
Mavimur	n static	al ang.	10 809	e of	angle	of	lock i	mmer	sion		14	566	2.0	67 d	agrees
naximu	ii Static	ar ang.		, OI	angre	OI C			51011		<u> </u>	500	2.0	07 u	cyrccs
VCC															
Notual					7 000	m									
Mouimur					0 665										
Taadina	n allowa	JIE ion con			b + b = b										
LUauIII			lipites	S WIL	n the	Stat	leu ci	.iter.	La.						
		1													
_							/	M							
						/		XIII							
							$\langle \rangle \rangle$	()))							
-							HH	HHA	+////						
							$\mathcal{M}\mathcal{M}$	()))							
						()))	χ	()))							
						()))	$\chi (l)$	()))							
						()))	XIII	()))							
_		11111	4111			/////	1111.	/////							
		HHH	HHH	\rightarrow											
		111111	$(11)\lambda$	\searrow											
° —		HHHH	$\qquad \qquad $	×											
		111111													
		<u>111X11</u>	\searrow												
		111111.	Y												
		()())													
_		HVX-													
		SY -													
		Y													
					I	1		<u>،</u>		1	Т			Т	
			0.					2					50.0		

TRIM AND STABILITY CALCULATION FIRM

Condition : <u>3.1 Departure 600t deckload</u>

11 Jun 2013 14:46:17

Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	4674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast	water				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	0.000	-0.000	95.538	0.000	0.000
BW DB SB 124-133	36.607	1.528	89.832	1.339	0.000
BW DB PS 124-133	36.607	1.528	89.832	-1.339	0.000
BW WT SB 124-133	0.000	2.500	89.957	3.058	0.000
BW WT PS 124-133	0.000	2.500	89.957	-3.058	0.000
BW DB SB 112-124	61.737	1.542	82.434	1.718	0.000
BW DB PS 112-124	61.737	1.542	82.434	-1.718	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB 73-88	0.000	2.500	55.809	6.620	0.000
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	0.000	0.084	50.888	0.053	0.000
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000
BW WT SB 61-73	0.000	2.500	46.960	6.681	0.000
BW WT PS 61-73	0.000	2.500	46.960	-6.681	0.000
BW DB SB 49-61	0.000	0.241	42.533	0.040	0.000
BW DB PS 49-61	0.000	0.241	42.533	-0.040	0.000
BW WT SB 49-61	0.000	2.500	38.976	6.584	0.000
BW WT PS 49-61	0.000	2.500	38.976	-6.584	0.000
BW SB 4-19	0.000	5.250	8.706	7.765	0.000
BW PS 4-19	0.000	5.250	8.706	-7.765	0.000
SUBTOTAL	196.688	1.537	85.188	-0.000	0.000
Subtotals for group : Fuel oil					
FO CT 124-133	71.281	3.847	89.765	0.000	59.115
FO CT 112-124	134.176	3.847	82.367	0.000	221.059
FO CT 100-112	156.539	3.847	74.200	0.000	341.541
FO CT 88-100	156.539	3.847	65.800	0.000	341.541
FO SB 4–19	65.224	6.597	8.050	5.600	15.812
FO PS 4-19	65.224	6.597	8.050	-5.600	15.812
SUBTOTAL	648.982	4.400	62.275	0.000	994.881
Subtotals for group : Fresh wa	iter	- 110	0.6.1.0.1	0 0 5 1	1 5 6 5
FW WT SB 133-142	46.074	5.113	96.184	2.851	1.797
<u>FW WT PS 133-142</u>	46.074	5.113	96.184	-2.851	1.797
SUBTOTAL	92.149	5.113	96.184	-0.000	3.594

Subtotals for group	o : Crew a	nd stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
Subtotals for group) : Deck l	oad				
Deckload		600.000	9.000	23.000	0.000	0.000
SUBTOTAL		600.000	9.000	23.000	0.000	0.000
TOTAL		6226.818	7.346	52.184	-0.000	998.475
<u>Hydrostatics</u>			Drafts	and trim		
Volume	6075.012	m ³	Drafts	above base	:	
LCF	45.219	m	Draft	mean (Lpp/2) 5.983	m
Mom. change trim	127.416	tonm/cm	Draft	aft (App)	5.991	m
Ton/cm immersion	17.544	ton/cm	Draft	fore (Fpp)	5.975	m
Specific weight	1.025	ton/m ³	Trim		-0.017	m
Transverse stabilit	су					
KM transverse	10.523	m				
VCG	7.346	m				
GM solid	3.177	m				
GG' correction	0.160	m				
G'M liquid	3.017	m	VCG'		7.506	m

Statical and dynamical stability, calculated with constant $\ensuremath{\texttt{LCB}}$:

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.983	-0.017	0.000	0.000	0.000	-0.000	0.000
2.00	5.982	-0.014	0.367	0.262	0.000	0.105	0.002
5.00	5.974	0.002	0.914	0.654	0.000	0.260	0.011
10.00	5.942	0.083	1.801	1.303	0.000	0.497	0.045
15.00	5.886	0.215	2.636	1.943	0.000	0.693	0.097
20.00	5.823	0.244	3.368	2.567	0.000	0.801	0.163
25.00	5.744	0.187	4.034	3.172	0.000	0.862	0.236
30.00	5.639	0.076	4.656	3.753	0.000	0.903	0.313
35.00	5.495	-0.072	5.245	4.306	0.000	0.940	0.393
40.00	5.297	-0.248	5.811	4.825	0.000	0.986	0.477
50.00	4.725	-0.740	6.780	5.750	0.000	1.030	0.655
60.00	3.894	-1.552	7.391	6.501	0.000	0.891	0.826

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				55.42

Summary	[
Hydrost	tatics								<u>_</u>	Criter	ion	Valu	9
Draft n	nld.									6.	000	5.98	3 m
Trim				-0.0)17 m								
Statica	al angle	of inc	linati	on 0.	00 deg	rees S	В						
Floodir	ng angle			55.	42 deg	rees							
Intact	Stabilit	y Code	for v	essels	s with	a laro	ge B/H	H rat:	io (riter	ion	Valu	Э
Minimun	n metacen	tric h	eight	G'M						0.	150	3.01	7 meter
Maximun	n GZ at 3	0 degre	ees or	more						0.	200	1.03	2 meter
Top of	the GZ c	urve a	t leas	t at						15.	000	48.58	3 degrees
Area ur	nder the	GZ cur	ve up	to 30	degree	es				0.	055	0.31	3 mrad
Area ur	nder the	GZ cur	ve bet	ween 3	30 and	40 deg	grees			0.	030	0.16	4 mrad
Maximun	n angle o	f incl:	inatio	n acc.	to IM	10's A	562 v	weath	ercri	terio	n50.0	0027.22	5 degrees
Maximun	n statica	l angle	e due	to wir	nd					13.	288	2.09	7 degrees
Maximun	n statica	l angle	e 80%	of and	gle of	deck :	Immers	sion		10.	029	2.09	7 degrees
		-		_									-
VCG'													
Actual				7.5	06 m								
Maximun	n allowab	le		8.6	511 m								
Loading	g conditi	on com	olies	with t	he sta	ted c	riteri	ia.					
°													
-									L				
							-	17					
-						1~~	M	\mathcal{N}^{-}					
							χ						
_						A HH	HHH	$\sim 1/1$					
						111111	1111						
						111111	()))						
					())()	XIII	////						
					11X/11	111111	/////						
-					HHH	HHH	HH	H					
		HHH	HHH.	<u>У</u> —									
°		$\chi)) \chi)$	$\left \right \left \right\rangle$										
0		XIIX	$\left \right \right\rangle$										
		XIIIX	\searrow										
-		XHHX	Y										
		XIIX											
_													
		\mathbb{Y}											
							-						
_									ļ				
	I I	1 I	.	I	I	I	י פי	5.0	1	ı I	I	50 0	1
			0.0				2.					00.0	

TRIM AND STABILITY CALCULATION FIRM

11 Jun 2013 14:46:43

Condition : <u>3.2 Arrival 600t deckload</u>

Description	Weight	VCG m	LCG m	TCG	FSM
Empty ship	4674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast	water				
BW FP 152-fwd	127.243	7.159	108.790	0.000	0.000
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000
BW DB SB 124-133	36.607	1.528	89.832	1.339	0.000
BW DB PS 124-133	36.607	1.528	89.832	-1.339	0.000
BW WT SB 124-133	52.429	5.251	89.930	3.944	0.000
BW WT PS 124-133	52.429	5.251	89.930	-3.944	0.000
BW DB SB 112-124	61.737	1.542	82.434	1.718	0.000
BW DB PS 112-124	61.737	1.542	82.434	-1.718	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB 73-88	0.000	2.500	55.809	6.620	0.000
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	0.000	0.084	50.888	0.053	0.000
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000
BW WT SB 61-73	0.000	2.500	46,960	6.681	0.000
BW WT PS 61-73	0.000	2.500	46,960	-6.681	0.000
BW DB SB 49-61	0.000	0.241	42,533	0.040	0.000
BW DB PS 49-61	0.000	0.241	42,533	-0.040	0.000
BW WT SB 49-61	0.000	2.500	38.976	6.584	0.000
BW WT PS 49-61	0.000	2.500	38,976	-6.584	0.000
BW SB 4-19	0.000	5.250	8.706	7.765	0.000
BW PS 4-19	0.000	5.250	8.706	-7.765	0.000
SUBTOTAL	474.063	3.865	93.552	-0.000	0.000
Subtotals for group : Fuel oil					
FO CT 124-133	7.274	2.637	89.765	0.000	59.115
FO CT 112-124	13.691	2.638	82.367	0.000	221.055
FO CT 100-112	15.973	2.638	74.200	0.000	341.540
FO CT 88-100	15.973	2.637	65.800	0.000	341.540
FO SB 4-19	6.656	5.387	8.050	5.600	15.812
FO PS 4-19	6.656	5.387	8.050	-5.600	15.812
SUBTOTAL	66.223	3.190	62.275	-0.000	994.875
Subtotals for group : Fresh wa	ter				
FW WT SB 133-142	4.701	2.816	96.292	2.181	1.999
FW WT PS 133-142	4.701	2.816	96.292	-2.181	1.999
SUBTOTAL	9.403	2.816	96.292	0.000	3.997

Subtotals for group : Crew a	nd stores				
Crew and stores	15.000	14.000	75.000	0.000	0.000
SUBTOTAL	15.000	14.000	75.000	0.000	0.000
Subtotals for group : Deck 1	oad				
Deckload	600.000	9.000	23.000	0.000	0.000
SUBTOTAL	600.000	9.000	23.000	0.000	0.000
TOTAL	5838.688	7.567	52.801	-0.000	998.872
Hydrostatics		Drafts	and trim		
Volume 5696.363	m ³	Drafts	above base	:	
LCF 45.279	m	Draft	mean (Lpp/2) 5.768	m
Mom. change trim 124.970	tonm/cm	Draft	aft (App)	5.741	m
Ton/cm immersion 17.348	ton/cm	Draft	fore (Fpp)	5.796	m
Specific weight 1.025	ton/m ³	Trim		0.055	m
Transverse stability					
KM transverse 10.618	m				
VCG 7.567	m				
GM solid 3.051	m				
GG' correction 0.171	m				
G'M liquid 2.879	m	VCG'		7.739	m

Statical and dynamical stability, calculated with constant $\ensuremath{\texttt{LCB}}$:

Angle(SB)	Draft mld.	Trim	KNsinø	VCG ' sinø	TCGcosø	G'Nsinø	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.768	0.055	0.000	0.000	-0.000	0.000	0.000
2.00	5.767	0.060	0.370	0.270	-0.000	0.100	0.002
5.00	5.757	0.089	0.919	0.674	-0.000	0.245	0.011
10.00	5.722	0.205	1.805	1.344	-0.000	0.461	0.042
15.00	5.657	0.397	2.648	2.003	-0.000	0.645	0.090
20.00	5.574	0.550	3.403	2.647	-0.000	0.756	0.152
25.00	5.474	0.613	4.079	3.270	-0.000	0.808	0.221
30.00	5.345	0.622	4.702	3.869	-0.000	0.833	0.292
35.00	5.175	0.597	5.287	4.439	-0.000	0.848	0.366
40.00	4.948	0.552	5.843	4.974	-0.000	0.869	0.441
50.00	4.270	0.400	6.832	5.928	-0.000	0.904	0.596
60.00	3.254	0.095	7.467	6.702	-0.000	0.765	0.746

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				57.29

Summary												
Hydrostatics							-	Crite	rion	Val	ue	
Draft mld.								6	.000	5.7	68 m	
Trim		0.	.055 m									
Statical angle	of inclina	tion (0.00 degr	ees Si	В							
Flooding angle		51	7.29 degr	ees								
Intact Stabili	ty Code for	vesse	ls with a	larg	e B/H	rat	io	Crite	rion	Val	ue	
Minimum metace	ntric heigh	t G'M						0	.150	2.8	79 m	eter
Maximum GZ at	30 degrees	or more	е					0	.200	0.9	05 m	eter
Top of the GZ	curve at le	ast at						15	.000	49.0	12 d	egrees
Area under the	GZ curve u	p to 30	0 degrees	3				0	.055	0.2	92 m	rad
Area under the	GZ curve b	etween	30 and 4	l0 deq	rees			0	.030	0.1	48 m	rad
Maximum angle	of inclinat	ion aco	c. to IMC)'s A.	562 w	eathe	ercri	lteric	n50.0	0027.4	21 d	earees
Maximum static	al angle du	e to w	ind					15	.055	2.3	73 d	egrees
Maximum static	al angle 80	% of a	nale of d	leck i	mmers	ion		11	.334	2.3	73 d	earees
			5									-)
VCG'												
Actual		7	739 m									
Mavimum allowa	hlo	, , 8	.755 m									
Loading condit	ion complie	s with	the stat	ed cr	itori	a						
louding condic	1011 00mpiic			.04 01	10011	u.						
1 1			I		1		I	1		+		1
						~~~~	ļ	+				
-					200	$\square$						
					1111	$\sim$						
_				$\Delta m$	1111	$\mathcal{H}^{-}$						
				$\chi (())$	())))							
				$\chi$	(111)							
_				HHH	HHH	$H^{-}$						
			XIXIII	$(11)\lambda$	())))							
			(11)(11)	$(11)\lambda$	()))	$\mathcal{N}$						
				1111	1111							
	HHHHH	$+ \forall x$										
• <u> </u>		$\mathbf{Y}$										
•		Ŷ										
	MIIINN											
	<i>1111111</i> 2								-			
	$\longrightarrow$											
	× I											
	Y											
· • •									1			
							I	I	1			
		0.0			25	.0				50.0	)	

# $\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

11 Jun 2013 14:47:08

Condition : 4.1 Crane operation 100t@15m 100% consumables									
Description	Weight	VCG	LCG	TCG	FSM				
	ton	m	m	m	tonm				
Empty ship	4674.000	7.810	52.200	0.000	0.000				
Subtotals for group : Ballast w	vater								
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000				
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000				
BW DB SB 124-133	0 000	-0 000	89 873	0 115	0 000				
BW DB PS 124-133	0 000	-0.000	89 873	-0 115	0 000				
BW WT SB 124-133	0 000	2 500	89 957	3 058	0.000				
DW WI SD 124 133	0.000	2.500	89 957	-3 058	0.000				
DW WI FS 124-133	0.000	-0.000	09.907	-3.050	0.000				
BW         DB         SB         112-124           DW         DD         DQ         110-104	0.000	-0.000	02.400	0.133	0.000				
BW DB PS 112-124	0.000	-0.000	02.400	-0.133	0.000				
BW WI SB 112-124	0.000	2.500	82.007	4.083	0.000				
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000				
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000				
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000				
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000				
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000				
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000				
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000				
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000				
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000				
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000				
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000				
BW WT SB 73-88	89.737	5.290	56.126	7.765	0.000				
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000				
BW DB SB 61-73	58.063	1.276	46.999	2.283	171.101				
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000				
BW WT SB 61-73	81.731	5.256	46.871	7.863	0.000				
BW WT PS 61-73	0.000	2.500	46.960	-6.681	0.000				
BW DB SB 49-61	0.000	0.241	42.533	0.040	0.000				
BW DB PS 49-61	0.000	0.241	42.533	-0.040	0.000				
BW WT SB 49-61	82.189	5.298	38.518	7.892	0.000				
BW WT PS 49-61	0.000	2.500	38,976	-6.584	0.000				
BW SB 4-19	65.043	6.711	8.106	8.139	0.000				
BW PS 4-19	0.000	5.250	8.706	-7.765	0.000				
SUBTOTAL	422.037	4.546	46.467	6.279	171.101				
Subtotals for group : Fuel off	71 001	2 0 4 7		0 000	E0 11E				
FO CT 124-133	/1.281	3.847	89.765	0.000	59.115				
FO CT 112-124	134.1/6	3.847	82.367	0.000	221.059				
FO CT 100-112	156.539	3.847	74.200	0.000	341.541				
FO CT 88-100	156.539	3.847	65.800	0.000	341.541				
FO SB 4-19	65.224	6.597	8.050	5.600	15.812				
FO PS 4-19	65.224	6.597	8.050	-5.600	15.812				
SUBTOTAL	648.982	4.400	62.275	0.000	994.881				
Subtotals for group : Fresh wat	er								
FW WT SB 133-142	46.074	5.113	96.184	2.851	1.797				
FW WT PS 133-142	46.074	5.113	96.184	-2.851	1.797				
SUBTOTAL	92.149	5.113	96.184	-0.000	3.594				

Subtotals for grou	up : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
Subtotals for grou	up : Deck ]	Load				
Deckload 250t		250.000	9.000	23.000	0.000	0.000
SUBTOTAL		250.000	9.000	23.000	0.000	0.000
Subtotals for grou	up : Crane					
Crane load 100t		100.000	27.000	20.000	-20.500	0.000
Crane boom		50.000	25.000	20.000	-12.000	0.000
SUBTOTAL		150.000	26.333	20.000	-17.667	0.000
TOTAL		6252.168	7.703	51.622	0.000	1169.575
Hydrostatics			Drafts	and trim		
Volume	6099.719	m ³	Drafts	above ba	se :	
LCF	45.096	m	Draft	mean (Lpp	/2) 5.9	69 m
Mom. change trim	127.400	tonm/cm	Draft	aft (App)	6.1	09 m
Ton/cm immersion	17.544	ton/cm	Draft	fore (Fpp	) 5.8	30 m
Specific weight	1.025	ton/m ³	Trim		-0.2	79 m
Transverse stabili	ity					
KM transverse	10.534	m				
VCG	7.703	m				
GM solid	2.831	m				
GG' correction	0.187	m				
G'M liquid	2.644	m	VCG'		7.8	90 m

Statical and dynamical stability, calculated with constant LCB :

	-	- ·					
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.969	-0.279	0.000	0.000	0.000	-0.000	0.000
2.00	5.968	-0.277	0.367	0.275	0.000	0.092	0.002
5.00	5.960	-0.265	0.916	0.688	0.000	0.228	0.010
10.00	5.930	-0.197	1.806	1.370	0.000	0.436	0.039
15.00	5.878	-0.097	2.638	2.042	0.000	0.596	0.085
20.00	5.820	-0.115	3.363	2.699	0.000	0.665	0.140
25.00	5.746	-0.217	4.026	3.334	0.000	0.691	0.200
30.00	5.647	-0.374	4.646	3.945	0.000	0.701	0.260
35.00	5.509	-0.570	5.235	4.525	0.000	0.710	0.322
40.00	5.317	-0.798	5.801	5.072	0.000	0.730	0.385
50.00	4.762	-1.429	6.768	6.044	0.000	0.724	0.513
60.00	3.957	-2.464	7.379	6.833	0.000	0.546	0.627

Opening			is	submerged	at	[degrees]
ER	Vent	in				55.09

Hydrostatics       Criterion       Value         Drart mid.       -0.279 m       6.000       5.969 m         Statical angle of inclination 0.00 degrees SB       51.09 degrees       0.150       2.644 meter         Minimum metacentric height G'M       0.150       2.644 meter       2.644 meter         Waximum 32 at 30 degrees or more       0.000       0.741 meter       2.644 meter         Top of the G2 curve at least at       15.000       44.956 degrees       0.124 mrad         Area under the G2 curve up to 30 degrees       0.030       0.124 mrad         Waximum angle of inclination acc. to IXO'S A.562 weathercriterion       2.405 degrees         Waximum statical angle 80% of angle of deck immersion       9.546       2.405 degrees         YCG'       7.890 m       Xaximus allowable       8.585 m         Loading condition complies with the stated criteria.       0.000       0.000         """"""""""""""""""""""""""""""""""""	Summary	[												
Draft mld. Constraints of the stated criteria. Set of the stated criteria set of the stated criteria. Set of the stated criteria set of the stated set of the stated criteria set of the stated criteria set of the stated set of the stated criteria set of the stated set of the state set of the set of the set of the state set of the set o	Hydrost	tatics								C	riter	ion	Valu	<u>e</u>
Trim -0.279 m Statical angle of inclination 0.00 degrees SB Flooding angle 55.09 degrees Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric beight G'M Maximum 2 at 30 degrees or more 0.200 0.741 meter Top of the GZ curve at least at 15.000 44.956 degrees Area under the GZ curve by to 30 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.0029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle due to wind 12.666 2.405 degrees VCC! Actual 7.890 m Maximu allowable 8.585 m Loading condition complies with the stated criteria.	Draft r	nld.									6.	000	5.96	9 m
Statical angle of inclination 0.00 degrees SB Flooding angle 55.09 degrees Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height GM 0.150 2.644 meter 0.150 2.644 meter 0.200 0.741 meter Top of the GZ curve up to 30 degrees 0.055 0.260 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees VCG' Actual 7.890 m Maximum allowable 8.565 m Loading condition complies with the stated criteria.	Trim			-	0.279	m								
Flooding angle 55.09 degrees Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height G'M 0.150 2.644 meter Waximum 2 at 30 degrees or more 0.200 0.741 meter Top of the GZ curve at least at 15.000 44.956 degrees Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees VCC' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Statica	al angle	of incl	ination	0.00	degr	ees S	В						
Intact Stability Code for vessels with a large B/H ratio Minimum metacentric height G'M Maximum G2 at 30 degrees or more Top of the G2 curve at least at Area under the G2 curve up to 30 degrees Area under the G2 curve between 30 and 40 degrees Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.0029.537 degrees Maximum statical angle due to wind Maximum statical angle 80% of angle of deck immersion YCG' Actual Coding condition complies with the stated criteria. Tog of the stated criteria.	Floodir	ng angle			55.09	degr	ees							
Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height G'M 0.150 2.644 meter Maximum GZ at 30 degrees or more 0.200 0.741 meter Top of the GZ curve at least at 15.000 44.956 degrees Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to TMO'S A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees VCC' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.														
Minimum metacentric height G'M 0.150 2.644 meter Maximum GZ at 30 degrees or more 0.200 0.741 meter Top of the GZ curve up to 30 degrees 0.055 0.260 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees VCG' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Intact	Stabilit	y Code	for vess	sels w	ith a	a larg	re B/H	l rati	<u>o</u> <u>C</u> :	riter	ion	Valu	<u>e</u>
Maximum GZ at 30 degrees or more 0.200 0.741 meter Top of the GZ curve at least at 15.000 44.956 degrees Area under the GZ curve between 30 and 40 degrees 0.035 0.260 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees Maximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees VCG' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Minimur	n metacen	tric he	ight G'N	1						0.	150	2.64	4 meter
Top of the GZ curve at least at 15.000 44.956 degrees 0.050 0.124 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00029.537 degrees 12.666 2.405 degrees 9.546 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556	Maximur	n GZ at 3	0 degre	es or mo	ore						0.	200	0.74	1 meter
Area under the GZ curve up to 30 degrees 0.055 0.260 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO'S A.562 weathercriterios0.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees VCC' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Top of	the GZ c	urve at	least a	at						15.	000	44.95	6 degrees
Area under the GZ curve between 30 and 40 degrees 0.030 0.124 mrad Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees VCG' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Area ur	rea under the GZ curve up to 30 degrees rea under the GZ curve between 30 and 40 degrees										055	0.26	0 mrad
Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00029.537 degrees Maximum statical angle due to wind 12.666 2.405 degrees Waximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees VCG' Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Area ur	rea under the GZ curve between 30 and 40 degrees										030	0.12	4 mrad
Maximum statical angle due to wind Maximum statical angle due to wind Maximum statical angle 80% of angle of deck immersion VCG' Actual Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Maximur	n angle o	f incli	nation a	acc. to	o IMC	)'s A.	562 w	reathe	rcrit	erior	150.0	0029.53	7 degrees
Maximum statical angle 80% of angle of deck immersion 9.546 2.405 degrees  VCG' Actual 7.890 m Baximum allowable 8.585 m Loading condition complies with the stated criteria.	Maximur	n statica	l angle	due to	wind						12.	666	2.40	5 degrees
Actual 7.890 m Maximum allowable 8.885 m Loading condition complies with the stated criteria.	Maximur	n statica	l angle	80% of	angle	of d	leck i	mmers	ion		9.	546	2.40	5 degrees
VCG' Actual 7.890 m s.585 m Loading condition complies with the stated criteria.														
Actual 7.890 m Maximum allowable 8.585 m Loading condition complies with the stated criteria.	VCG'													
Maximum allowable 8.585 m Loading condition complies with the stated criteria.	Actual				7.890	m								
Loading condition complies with the stated criteria.	Maximur	n allowab	le		8.585	m								
	Loading	g conditi	on comp	lies wit	th the	stat	ed cr	iteri	a.					
	_						/							
						/	1	1117						
	-						K III	HH						
	ın.						$\chi (l)$	()))	())))					
	0					$\langle \rangle \rangle$	$\chi (l)$	()())						
	_					HH	XHH	HH	HHH					
						////	XIII	())))						
						()))	XIII	((((	()))					
	_				A H H	HH	HHH	$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$	HH					
			XIIX											
	-		XIIX	$\overline{(}$										
	°. •		XIIIX											
	0		XIIIX											
	_		XIIIX	¥ —										
			$\mathcal{M}$	Y										
			XIIIX											
	-		HH											
	-		Y I											
	۰		*											
	-													
	-						1							
						1	1	1	1					
<b>v.v</b> 25.0 50.0				0.0				25	.0				50.0	

# $\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

11 Jun 2013 14:47:32

Description	Weight	VCC	ICC	тсс	FGM
Description	ton	m	m	m	tonm
Empty ship 4	674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast wate	er				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000
BW DB SB 124-133	36.607	1.528	89.832	1.339	0.000
BW DB PS 124-133	36.607	1.528	89.832	-1.339	0.000
BW WT SB 124-133	52.429	5.251	89.930	3.944	0.000
BW WT PS 124-133	52.429	5.251	89.930	-3.944	0.000
BW DB SB 112-124	61.737	1.542	82.434	1.718	0.000
BW DB PS 112-124	61.737	1.542	82.434	-1.718	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB 73-88	89.737	5.290	56.126	7.765	0.000
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	58.063	1.276	46.999	2.283	171.101
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000
BW WT SB 61-73	81.731	5.256	46.871	7.863	0.000
BW WT PS 61-73	0.000	2.500	46.960	-6.681	0.000
BW DB SB 49-61	0.000	0.241	42.533	0.040	0.000
BW DB PS 49-61	0.000	0.241	42.533	-0.040	0.000
BW WT SB 49-61	82.189	5.298	38.518	7.892	0.000
BW WT PS 49-61	0.000	2.500	38.976	-6.584	0.000
BW SB 4-19	65.043	6.711	8.106	8.139	0.000
BW PS 4-19	0.000	5.250	8.706	-7.765	0.000
SUBTOTAL	723.584	3.830	63.291	3.662	171.101
Subtotals for group : Fuel oil					
FO CT 124-133	7.274	2.637	89.765	0.000	59.115
FO CT 112-124	13.691	2.638	82.367	0.000	221.055
FO CT 100-112	15.973	2.638	74.200	0.000	341.540
FO CT 88-100	15.973	2.637	65.800	0.000	341.540
FO SB 4-19	6.656	5.387	8.050	5.600	15.812
FO PS 4-19	6.656	5.387	8.050	-5.600	15.812
SUBTOTAL	66.223	3.190	62.275	-0.000	994.875
Subtotals for group . Freeh water					
FW WT SB 133-142	4 701	2 816	96 292	2 1 8 1	1 999
FW WT PS 133-142	4 701	2.010	96 292	-2 181	1 999
SUBTOTAL	9.403	2.816	96.292	0.000	3.997

## Condition : 4.2 Crane operation 100t@15m 10% consumables

Subtotals for grou	up : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
Subtotals for grou	ıp : Deck ]	oad				
Deckload 250t		250.000	9.000	23.000	0.000	0.000
SUBTOTAL		250.000	9.000	23.000	0.000	0.000
Subtotals for grou	up : Crane					
Crane load 100t	-	100.000	27.000	20.000	-20.500	0.000
Crane boom		50.000	25.000	20.000	-12.000	0.000
SUBTOTAL		150.000	26.333	20.000	-17.667	0.000
TOTAL		5888.209	7.799	51.745	0.000	1169.973
Hydrostatics			Drafts	and trim		
Volume	5744.709	m ³	Drafts	above ba	se :	
LCF	44.994	m	Draft	mean (Lpp,	/2) 5.7	47 m
Mom. change trim	125.351	tonm/cm	Draft	aft (App)	5.9	52 m
Ton/cm immersion	17.379	ton/cm	Draft	fore (Fpp)	) 5.5	41 m
Specific weight	1.025	ton/m ³	Trim		-0.4	11 m
Transverse stabili	Lty					
KM transverse	10.655	m				
VCG	7.799	m				
GM solid	2.856	m				
GG' correction	0.199	m				
G'M liquid	2.657	m	VCG'		7.9	98 m

Statical and dynamical stability, calculated with constant LCB :

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.747	-0.411	0.000	0.000	0.000	-0.000	0.000
2.00	5.745	-0.409	0.372	0.279	0.000	0.093	0.002
5.00	5.737	-0.390	0.924	0.697	0.000	0.227	0.010
10.00	5.703	-0.301	1.818	1.389	0.000	0.429	0.039
15.00	5.642	-0.146	2.663	2.070	0.000	0.593	0.084
20.00	5.569	-0.076	3.404	2.735	0.000	0.668	0.140
25.00	5.479	-0.093	4.071	3.380	0.000	0.691	0.199
30.00	5.361	-0.167	4.691	3.999	0.000	0.692	0.260
35.00	5.201	-0.278	5.274	4.587	0.000	0.687	0.320
40.00	4.985	-0.416	5.831	5.141	0.000	0.690	0.380
50.00	4.338	-0.813	6.816	6.127	0.000	0.689	0.501
60.00	3.369	-1.513	7.447	6.926	0.000	0.520	0.610

Opening			is	submerged	at	[degrees]
ER	Vent	in				56.69

Summar	У											
Hydros	tatics								Crite	rion	Value	<u>e</u>
Draft n	mld.								6	.000	5.74	7 m
Trim			-0.411	m								
Statica	al angle of i	nclination	0.00	degr	ees S	В						
Floodi	ng angle		56.69	degr	ees							
Intact	Stability Co	de for ves	sels w	ith a	a larg	ge B/	H rat	io	Crite	rion	Value	9
Minimur	m metacentric	height G'	М						0	.150	2.65	7 meter
Maximu	m GZ at 30 de	grees or m	ore						0	.200	0.698	8 meter
Top of	the GZ curve	at least	at						15	.000	45.880	) degrees
Area u	nder the GZ c	0	.055	0.260	) mrad							
Area under the GZ curve between 30 and 40 degrees 0.03 Maximum angle of inclination acc. to IMO's A.562 weathercriterion5											0.120	) mrad
Maximu	m angle of in	clination	acc. t	o IMC	)'s A	.562 ·	weath	ercr	iterio	n50.0	0029.49	3 degrees
Maximu	m statical an	gle due to	wind						14	.050	2.58	5 degrees
Maximu	m statical an	gle 80% of	angle	of c	deck :	Lmmer	sion		10	560	2.58	5 degrees
VCG '												
Actual			7.998	m								
Maximu	m allowable		8.631	m								
Loading	g condition c	omplies wi	th the	stat	ed c	riter	ia.					
				/	1 -	1177	111/2	<b>†</b>				$\sim$
_					$\langle n \rangle$	$\qquad \qquad $	$\mu\mu$					
					XIII X	1111	m					
· · —					$HH\lambda$	()	HHR					
_				$\langle    \rangle$	MM	())	$(11)\Lambda$					
_				()))	$\chi (l) \chi$	()))	MM					
-				HH	HH	HH	HHK					
				()))	$\chi () ()$	$\chi (l) \chi$	MM					
-		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>	1111	1111	1111	1111					
_		HHH										
° —		<i>HHH</i>										
-		MA -										
_		₩ <u> </u>										
		S I										
-		/										
-												
· · -												
-												
-												
				1				1				
		0.0				2	5.0				50.0	

# VII Loss of load calculation mono-hull

# $\frac{\texttt{TRIM} \texttt{ AND STABILITY CALCULATION}}{\texttt{FIRM}}$

				11 J1	un 2013 14:48:43
Condition : <u>5.1 Crane operation</u>	100t@15m 1	LOO% cons	umables LOI	_ Calc	
Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	4674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast w	ater				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000
BW DB SB 124-133	0.000	-0.000	89.873	0.115	0.000
BW DB PS 124-133	0.000	-0.000	89.873	-0.115	0.000
BW WT SB 124-133	0.000	2.500	89.957	3.058	0.000
BW WT PS 124-133	0.000	2.500	89.957	-3.058	0.000
BW DB SB 112-124	0.000	-0.000	82.488	0.133	0.000
BW DB PS 112-124	0.000	-0.000	82.488	-0.133	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB /3-88	0.000	0.006	60.835	0.073	0.000
BW DB PS /3-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB /3-88	0.000	2.500	55.809	6.620	0.000
BW WT PS /3-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	0.000	0.084	50.888	0.053	0.000
BW DB PS 01-73	0.000	2 500	16 060	-0.033	0.000
BW WI SB 01-73 DW WT DC 61-72	0.000	2.500	46.960	0.001 -6.691	0.000
	0.000	2.300	40.900	-0.081	0.000
DW DD 5D 49-01	0.000	0.241	42.535	-0.040	0.000
BW DD F5 49-01 BW WT SB 49-61	0.000	2 500	38 976	6 584	0.000
DW WI DD 40 01	0.000	2.500	38 976	-6 584	0.000
BW SB 4-19	0.000	5 250	8 706	7 765	0.000
BW PS 4-19	0.000	5.250	8.706	-7.765	0.000
SUBTOTAL	45.273	1.509	95.455	0.000	0.000
Cubtotale for group . Eucl oil					
FO CT 124-122	71 001	2 217	80 765		50 115
FO CI = 124-133	124 176	2.04/	09.700	0.000	221 050
FO CI = 112 - 124 FO CT = 100 - 112	156 530	3 847	74 200	0.000	221.0J9 341 541
FO СТ 100 112 FO СТ 88–100	156 539	3 847	65 800	0.000	341 541
FO SB 4–19	65 224	6 597	8 050	5 600	15 812
FO PS 4–19	65 224	6 597	8 050	-5 600	15 812
SUBTOTAL	648.982	4.400	62.275	0.000	994.881
Subtatals for group . Eracht	or				
FW WT CR 133-140	46 074	5 110	96 191	2 251	1 797
FW WT PS 133-142	46 074	5 113	96 184	-2 851	1.797
SUBTOTAL	92.149	5.113	96.184	-0.000	3.594

Subtotals for grou	up : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
Subtotals for grou	ıp : Deck 1	Load				
Deckload 250t		250.000	9.000	23.000	0.000	0.000
SUBTOTAL		250.000	9.000	23.000	0.000	0.000
Subtotals for grou	ip : Crane					
Crane boom		50.000	25.000	20.000	-12.000	0.000
SUBTOTAL		50.000	25.000	20.000	-12.000	0.000
TOTAL		5775.404	7.551	52.889	-0.104	998.475
Hydrostatics			Drafts	and trim		
Volume	5634.659	m ³	Drafts	above bas	se :	
LCF	45.271	m	Draft	mean (Lpp,	/2) 5.73	2 m
Mom. change trim	124.475	tonm/cm	Draft	aft (App)	5.70	3 m
Ton/cm immersion	17.314	ton/cm	Draft	fore (Fpp)	5.76	1 m
Specific weight	1.025	ton/m ³	Trim		0.05	8 m
Transverse stabili	ty					
KM transverse	10.632	m				
VCG	7.551	m				
GM solid	3.081	m				
GG' correction	0.173	m				
G'M liquid	2.908	m	VCG'		7.72	4 m

Statical ar	nd dynamical	stability,	calculat	ed with cor	nstant LCB	:	
Angle(PS)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.732	0.058	0.000	0.000	0.104	-0.104	0.000
2.00	5.730	0.063	0.371	0.270	0.104	-0.003	0.000
5.00	5.721	0.094	0.920	0.673	0.103	0.143	0.004
10.00	5.684	0.216	1.805	1.341	0.102	0.362	0.026
15.00	5.618	0.414	2.648	1.999	0.100	0.549	0.066
20.00	5.532	0.587	3.408	2.642	0.098	0.668	0.120
25.00	5.429	0.672	4.085	3.264	0.094	0.727	0.181
30.00	5.297	0.696	4.709	3.862	0.090	0.757	0.246
35.00	5.123	0.690	5.293	4.430	0.085	0.777	0.313
40.00	4.891	0.665	5.848	4.965	0.080	0.804	0.382
50.00	4.196	0.564	6.840	5.917	0.067	0.856	0.527
60.00	3.151	0.335	7.479	6.689	0.052	0.738	0.671

Statical angle of inclination is 2.056 degrees to portside

Ope	ening		is	submerged	at	[degrees]
ER	Vent	out				57.59

Summary Hydrostatics Criterion Value Draft mld. 6.000 5.732 m Trim 0.058 m Statical angle of inclination 2.06 degrees PS 57.59 degrees Flooding angle DNV loss load Criterion Value DNV Loss of Load (Pt. 5 Ch. 7 Sec 17 D) Area A2> 1,4 A1 8.382 -1.400 DNV Loss of Load, angle max 15 degrees 15.000 5.743 degrees VCG' A non-zero statical angle of equilibrium occurs,

No maximum allowable VCG' is calculated. Loading condition complies with the stated criteria.



Angle of inclination in degrees 1/3.69

# $\frac{\texttt{TRIM} \texttt{ AND STABILITY CALCULATION}}{\texttt{FIRM}}$

Condition : <u>5.2 Crane operation</u>	100t@15m 1	.0% consum	nables LOL	Calc	
Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	4674.000	7.810	52.200	0.000	0.000
Subtotals for group : Ballast w	vater				
BW FP 152-fwd	0.000	0.006	106.845	0.000	0.000
BW DB CT 133-142	45.273	1.509	95.456	0.000	0.000
BW DB SB 124-133	36.607	1.528	89.832	1.339	0.000
BW DB PS 124-133	36.607	1.528	89.832	-1.339	0.000
BW WT SB 124-133	52.429	5.251	89.930	3.944	0.000
BW WT PS 124-133	52.429	5.251	89.930	-3.944	0.000
BW DB SB 112-124	61.737	1.542	82.434	1.718	0.000
BW DB PS 112-124	61.737	1.542	82.434	-1.718	0.000
BW WT SB 112-124	0.000	2.500	82.667	4.083	0.000
BW WT PS 112-124	0.000	2.500	82.667	-4.083	0.000
BW DB SB 100-112	0.000	-0.000	74.228	0.150	0.000
BW DB PS 100-112	0.000	-0.000	74.228	-0.150	0.000
BW WT SB 100-112	0.000	2.500	73.745	4.922	0.000
BW WT PS 100-112	0.000	2.500	73.745	-4.922	0.000
BW DB SB 88-100	0.000	-0.000	66.838	0.124	0.000
BW DB PS 88-100	0.000	-0.000	66.838	-0.124	0.000
BW WT SB 88-100	0.000	2.500	65.590	5.297	0.000
BW WT PS 88-100	0.000	2.500	65.590	-5.297	0.000
BW DB SB 73-88	0.000	0.006	60.835	0.073	0.000
BW DB PS 73-88	0.000	0.006	60.835	-0.073	0.000
BW WT SB 73-88	0.000	2.500	55.809	6.620	0.000
BW WT PS 73-88	0.000	2.500	55.809	-6.620	0.000
BW DB SB 61-73	0.000	0.084	50.888	0.053	0.000
BW DB PS 61-73	0.000	0.084	50.888	-0.053	0.000
BW WT SB 61-73	0.000	2.500	46.960	6.681	0.000
BW WT PS 61-73	0.000	2.500	46.960	-6.681	0.000
BW DB SB 49-61	0.000	0.241	42.533	0.040	0.000
BW DB PS 49-61	0.000	0.241	42.533	-0.040	0.000
BW WT SB 49-61	0.000	2.500	38.976	6.584	0.000
BW WT PS 49-61	0.000	2.500	38.976	-6.584	0.000
BW 5B 4-19	0.000	5.25U 5.250	8.706	7.765	0.000
SUIDEOED 1	246 920	2.250	0.700	-7.765	0.000
SUBIUTAL	540.020	2.030	07.902	-0.000	0.000
Subtotals for group : Fuel oil					
FO CT 124-133	7.274	2.637	89.765	0.000	59.115
FO CT 112-124	13.691	2.638	82.367	0.000	221.055
FO CT 100-112	15.973	2.638	74.200	0.000	341.540
FO CT 88-100	15.973	2.637	65.800	0.000	341.540
FO SB 4-19	6.656	5.387	8.050	5.600	15.812
FO PS 4-19	6.656	5.387	8.050	-5.600	15.812
SUBTOTAL	66.223	3.190	62.275	-0.000	994.875
Subtotals for group : Fresh wat	er				
FW WT SB 133-142	4.701	2.816	96.292	2.181	1.999
FW WT PS 133-142	4.701	2.816	96.292	-2.181	1.999
SUBTOTAL	9.403	2.816	96.292	0.000	3.997

11 Jun 2013 14:49:35

Subtotals for grou	up : Crew a	and stores				
Crew and stores		15.000	14.000	75.000	0.000	0.000
SUBTOTAL		15.000	14.000	75.000	0.000	0.000
Subtotals for grou	ıp : Deck 1	Load				
Deckload 250t		250.000	9.000	23.000	0.000	0.000
SUBTOTAL		250.000	9.000	23.000	0.000	0.000
Subtotals for grou	p : Crane					
Crane boom		50.000	25.000	20.000	-12.000	0.000
SUBTOTAL		50.000	25.000	20.000	-12.000	0.000
TOTAL		5411.445	7.645	53.109	-0.111	998.872
Hydrostatics			Drafts	and trim		
Volume	5279.638	m ³	Drafts	above ba	se :	
LCF	45.309	m	Draft	mean (Lpp,	/2) 5.50	7 m
Mom. change trim	121.204	tonm/cm	Draft	aft (App)	5.54	2 m
Ton/cm immersion	17.090	ton/cm	Draft	fore (Fpp)	) 5.47	2 m
Specific weight	1.025	ton/m ³	Trim		-0.07	0 m
Transverse stabili	.ty					
KM transverse	10.720	m				
VCG	7.645	m				
GM solid	3.075	m				
GG' correction	0.185	m				
G'M liquid	2.890	m	VCG'		7.83	0 m

Statical an	nd dynamical	stability,	calculat	ed with cor	nstant LCB	:	
Angle(PS)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.507	-0.070	0.000	0.000	0.111	-0.111	0.000
2.00	5.505	-0.062	0.373	0.273	0.111	-0.011	0.000
5.00	5.494	-0.019	0.925	0.682	0.110	0.132	0.003
10.00	5.454	0.128	1.813	1.360	0.109	0.344	0.024
15.00	5.383	0.353	2.655	2.027	0.107	0.522	0.062
20.00	5.283	0.603	3.432	2.678	0.104	0.650	0.114
25.00	5.162	0.771	4.119	3.309	0.100	0.709	0.174
30.00	5.010	0.885	4.744	3.915	0.096	0.733	0.237
35.00	4.814	0.968	5.325	4.491	0.091	0.743	0.301
40.00	4.557	1.035	5.872	5.033	0.085	0.754	0.366
50.00	3.777	1.165	6.876	5.998	0.071	0.806	0.503
60.00	2.569	1.274	7.543	6.781	0.055	0.707	0.639

Statical angle of inclination is 2.217 degrees to portside

Ope	ening		is	submerged	at	[degrees]
ER	Vent	out				59.21

Summary Hydrostatics Criterion Value Draft mld. 6.000 5.507 m -0.070 m Trim Statical angle of inclination 2.22 degrees PS 59.21 degrees Flooding angle DNV loss load Criterion Value 6.323 -DNV Loss of Load (Pt. 5 Ch. 7 Sec 17 D) Area A2> 1,4 A1 1.400 DNV Loss of Load, angle max 15 degrees 15.000 6.269 degrees VCG' A non-zero statical angle of equilibrium occurs,

No maximum allowable VCG' is calculated. Loading condition complies with the stated criteria.



Angle of inclination in degrees 1/3.69

## **VIII Background information Strip Theory**

A vessel sailing in waves has six degrees of freedom of and about the centre of gravity (CoG), as illustrated in the figure below.



#### Figure 63, Definition of ship motions

The equations of motion of an oscillating ship with six degrees of freedom have to be written as follows (Newton's second law):

 $\sum_{j=1}^{b} \{ M_{ij} \cdot \ddot{x}_{i} \} = \text{sum of all forces or moments in direction } i \text{ for: } i = 1, \dots 6$  1 = Surge 2 = Sway

3 = Heave	Z	-	Sway
	3	=	Heave

- 4 = Roll
- 5 = Pitch
- 6 = Yaw

The right hand side of these equations consists of a superposition of:

- Exciting wave forces and moments on the restrained body, and
- Hydromechanic forces and moments, caused by a harmonic oscillation of the rigid body in the undisturbed surface of a fluid previously at rest.

Therefore a vessel moving in waves can be considered to be a linear mass-damper-spring system with frequency dependent coefficients and linear exciting forces and moments. Given Newton's second law and the six degrees of freedom, the equations of motions become:

$$\sum_{i=1}^{6} \left\{ (M_{ij} + a_{ij}) \cdot \ddot{x}_{i} + b_{ij} \cdot \dot{x}_{i} + c_{ij} \cdot x_{i} \right\} = F_{i} \quad \text{for: } i = 1, \dots 6$$

 $M_{ii}$  = Solid mass or solid mass moments of inertia

 $a_{ii}$  = Added mass or added mass moments of inertia

 $\ddot{x}_i$  = Acceleration of harmonic oscillation in direction i

- $\dot{x}_i$  = Velocity of harmonic oscillation in direction i
- $x_i$  = Displacement of harmonic oscillation in direction i
- $b_{ii} =$  Hydrodynamic damping coefficient
- $c_{ii}$  = Spring coefficient
- $F_i$  = Harmonic exciting wave force or moment in direction i

Strip theory divides the ship in a finite number of cross sections, which are rigidly connected to each other, for which the 2 dimensional hydromechanics and exciting wave loads are calculated. These values are then integrated over the ships length numerically to obtain 3 dimensional values. Each 2 dimensional cross section is treated hydrodynamically as if it is a segment of an infinitely long floating cylinder;



#### Figure 64, Definition of vessel cross sections, strip theory

Assumptions:

- For zero speed case, interactions between the cross sections are ignored.
- All waves which are produced by the oscillating ship (hydromechanics loads) and the diffracted waves (wave loads) are assumed to travel parallel to the (y,z)-plane of the ship.
- The fore and aft side of the body does not produce waves in the x-direction.
- Strip theory is valid for long and slender bodies only.

# 4. Criteria connected with motion parameters

3

----

ł . .... .

ł

Ŷ, V

# 4.1 Ship motions

Criterin for acceptable levels of ship motions, which are used in the procedure for predict-ing percentage operability, have been defined on the basis of full-scale data and criteria proposed in the literature. This information available has been supplemented with our own observations during scokeeping tests with small naval vessels.

In general the speed is reduced, the course is changed or the operations are discontinued by order of the captain if safety of the ship, cargo or personnel is in danger, the effective-ness of the personnel has dropped markedly or habitability onboard is significantly redu-ced. All ship responses are not equally important from the point of view of operation of different ship subsystems as the table below shows.

# Table 4.1 Limiting criteria versus ship subsystems

Shipanbayatem	Slam	Deck wetn.	Nort.	Lat.	Rull	Pitch	Vert.	
Ship hull	9	9	9	T				
Propulsion machinery	1							
Shipequipment		e,	0	0	0	•		
Cargo		•	0	0	0	•		
Personnel								
effectiveness		٩,	0	0	G	•		
Passenger comfort			0	9	0	•		
Special operations								
helicopter					•	•	•	1
Ionar					_			
illing			•		•	,	•	

IX Seakeeping performances indices (NORDFORSK)

¹ For equipment on foredeck.
 ² For deck cargo.
 ³ For operations on open lower decks.
 16

17

sidered necessary since on merchant ships large pitch angles in themselves are usually not a problem. The effects of pitch that may be experienced by the people onboard are acvery and lifting operations while vertical acceleration has an effect on almost all activi-ties onboard. In the operability prediction procedure criteria have been defined with re-gard to all responses marked with a *e* in Table 4.1. A criterion for pitch has not been concounted for by the criteria for slamming, deck wetness and vertical acceleration. For instance, vertical velocity is important only from the point of view of helicopter reco

The basic set of criteris used in the operability prediction procedure is given in the following table.

Table 4.2 General operability limiting criteria for ships

	Merchant	Naval vezsels	Fasternal
Vert. act. rms, FP	Fig. 4.1	0.275g	0.65 g
Vert. acc. rms, bridge	0.15g	0.2 8	0.275 g
Lat. acc. rms, bridge	0.12g	0.1g	0.1g
Roll ring	6.0 deg	4.0 deg	4.0 drg
Slamming, crit. prob.	Fig. 4.3	0.03	0.03
Deck wetn., crit. prob.	0.05	0.05	0.05

. 1

The slamming and deck wetness criteria have been defined in terms of critical probali-ties (events per hundred wave encounters) while all other criteria as a root mean square values. The different points of view considered in estimating the limiting magnitudes of ship motions given in Table 4.2 are presented in Table 4.3 below.

٢

Table 4.3 Phints of view considered in the criteria

	Hull	Equip.	Cargo	Personnel safety and
Criterion		1	-	efficiency
Vert. acceleration, FP	0		0	
Vert. acc., bridge		9	j.	s
Lateral acc., bridge		0	9	0
Roll		0	9	0
Slemming	0			
Deck wetness	0			

.

ļ



10. 1 .

The following table repeats vertical acceleration criteria and shows the corresponding criteria with regard to roll and lateral acceleration which may not be as reliable as the vertical acceleration criteria.

# Table 4.5 Criteria with regard to accelerations and roll

Cruise liner	2.0*	0.03 g	0.02 g
Transit passengers	2.5	0.04 g	0.05 g
Intellectual work	3.0*	0.05g	0.10 g
Heavy manual work	4.0*	0.07 g	0.15 8
Light manual work	6.0°	0.10 g	0.20 g
	Roll	Lat. acc.	Vert. acc.
Description	on	Square Criter	Root Mean

# References

Meeting, New York, 1968. Acrtssen, G., Laboring of Ships in Rough Seas. Proc. SNAME 1968 Diamond Jubilee Int

Container Ship. Transactions of the Royal Institution of Naval Architects, Vol. 114, 1972. Aertasen, G. & van Sluya, M.F., Service Performance and Seakceping Trials on a Large

Applebee, T.R. & Bailis, A.E., Seakeeping Investigation of the U.S. Coast Guard 270.0 vid W. Taylor NSRDC Report No. SPD-1120-01, August 1984. Medium Endurance Class Cutters: Sea Trials Abord the USGC BEAR (WMEC 901), I)a

onellen Schiffen. Jahrbuch der Schiffbautechnischen Gesellschaft, 74. Hand, 1980. Bakenhus, J., Ergebnisse von See-Erprobungen mit konventionellen und unkonventi

cept. Marine Technology, Vol. 18, No. 3, July 1981, pp. 264-275. Bales, N.K., Optimum Prechnard: A Critical Resurcement of the Balanced-Ship Con

national Shipbuilding Progress, Vol. 26, No. 302, 1979, pp. 299-313. Child, B. & Sarturi, G., Seakceping Merit Rating Criteria Applied to Ship Design. Inter

Chilb, B., Sartori, G. & Santos, R., A New Methodology Developed by CETENA to Assess the Seakeeping Behaviour of Marine Vensels. Ocean Engineering, Vol. 13, No. 3, 1986, pp.

9th Symposium on Naval Hydrodynamics, Paris, August 1972. Chrystoniomidia, C., Seakeeping Considerations in a Tutal Ship Design Methodology

291-318

Conolly, J.E., Standards of Good Seakeeping for Destroyers and Prigates in Head Scas. International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, London, April 1974.

2

zation. SNAME Transactions, Vol. 85, 1977, pp. 51-93. Car, G.G., & Lloyd, A.R., Hydrodynamic Design Basis for Navy Ship Roll Mution Stabili

Ferry. International Shipbuilding Progress, Vol. 17, No. 196, December 1970, pp. 361-394. Ferdinande, V. & De Lembre, R., Service-Performance and Seakeeping Trials on a Car-

PRADS 83, 2nd Int. Symp., Thkyo & Seoul, 1983. Goto, D., Characteristics and Evaluation of Motion Sickness Incidence on-board Ships

Hoffman, D., The Impact of Seakeeping on Ship Operations. Marine Technology, Vol. 13, No. 2, July 1976, pp. 241-262.

keeping Performance in Ship Design Based on Mission Effectiveness Concept. PRADS 83, 2nd Int. Symp., Thkyn & Seoul, 1983. Hosoda, R., Kunitake, Y., Koyama, H. & Nakamura, H., A Method for Evaluation of Sea

sign. Nuval Architecture and Ocean Engineering, Vol. 22, 1984. Howda, R. & Kunitake, Y., Seakceping Evuluation in SWATH Ship Design. RINA Int Howda, R. et al., Integrative Evaluation of Seakeeping Performance in Initial Ship De

Conf. on SWATH Ships and Adv. Multi-Hulled Vessels, London, April 1985.

Vessel Optimized for Mission Flexibility and Seukceping. Murine Technology, Vol. 24. No. 2, April 1987, pp. 170-190. Hutchison, B.L. & Laible, D.H., Conceptual Design of a Medium-Endurance Research

150 2631/3, Evaluation of Human Exposure to Whole Body Vibration -- Part 3: Evalualinn — A Stochastic Approach. Naval Engineers Journal, December 1979

Journée, J.M.J. & Meijers, J.H.C., Ship Routeing for Optimum Performance. Trans., The Institute of Marine Engineers, (C), 1980, Vol. 92, Paper C 56.

ing of the Nordic Naval Architecta, Stockholm, 1986. Karppinen, T. & Aitta, T., Scakceping Performance Assessment of Ships. nstm'86, Meet

pp. 269-276 Kitazawa, T., Kuroi, M. & Takagi, M., Critical Speed of a Container Ship in Rough Sea (In Japanese.) Journal of the Soc. of Naval Architects of Japan, Vol. 138, December 1975,

The Univ., Southampton, England, to be published, 1986. ness amongst Passengers. Human Factors Research Unit, Inst. of Sound and Vibr. Res. Lawther, A. & Griffin, M.J., The Motion of a Ship at Sea and the condequent Motion Sick

SNAME Transactions, Vol. 85, 1977, pp. 131-173. Systems for Increased Safety and Improved Structural Utilization in Rough Weather Lindemann, K., Odland, J. & Strengehagen, J., On the Application of Hull Surveillance

Lloyd, A.R.J.M. & Hanson, P.J., The Operational Effectiveness of the Shipborne Naval Helicopter. International Symposium on the Air Threat at Sea. London, June 1985.

and Seakeeping Prediction. D.R.E.A. Tech. Memorandum 78/B, July 1978 Mackay, M. & Schmitke, R.T., PHHS, A FORTRAN Programme for Ship Pitch, Heave

of a Mathematical Model. Human Factors Research Inc., Technical Report 1733-2, 1976 ness Incidence: Exploratory Studies of Habituation, Pitch and Roll, and the Refinement McCauley, M.E., Royal, J.W., Wylie, C.D., O'Hanlon, J.F. & Mackie, R.R., Motion Sick

Naval Engineera Journal, May 1985, pp. 224-233 McCreight, K.K. & Stahl, R.G., Recent Advances in the Seakeeping Assessment of Ships
## X Dynamic positioning calculations mono-hull

### X.ABackground information on DP

#### There are three types of forces acting on a vessel in DP:

- Environmental forces
- Fluid reaction forces
- Thruster forces

In an idealized situation the sum of all the forces is zero, so the acceleration of the forces is zero.

$$F_{environment} = F_{reaction} + F_{DPsystem_generated}$$

Environmental forces are excitation forces, forces that make the vessel move from target position. Due to the mass of the vessel it is not responsive to fast variations of the exciting forces. Environmental forces are built up from three components:

- Wind forces
- Current forces
- Wave forces

#### Wind

Two types of wind forces:

- Steady flow force
- Dynamic wind

The steady flow force is calculated with Bernoulli:

$$F = \frac{1}{2}\rho v^2 A C_L$$

The difficulty lies within the drag coefficient ( $C_D$ ) value which is shape dependent and determined using wind tunnel tests and estimation of empirical coefficients for "standard shapes". The  $C_D$  values are valid within a certain range of Reynolds numbers and a specific shape.

Dynamic wind (gusting) forces can be calculated using a wind spectrum:

- Harris
- Ochi Shin
- DnV

These are various wind spectrum formulations and the low frequency part is the most important and can be quite different, depending on the spectral fit formulation. Wind is normally defined to be 1 hour sustained (mean) wind speed, but the 10 minute and 1 minute values are about 25 and 40% higher.

### Current

Current forces have similarity with wind flow forces and are calculated with the same equation.

$$F_{c} = \frac{1}{2} \rho v^{2} A C_{D}$$

In addition to the effects which were also found for wind (velocity profile, Reynolds number dependency, vortex shedding and dynamic effects due to turbulence) there is another strong effect: Keel clearance (water depth to draft ratio) effect for shallow waters.

### Waves

Third force on a vessel is caused by waves and is called wave drift forces; they are divided into two components:

- First order wave drift forces
- Second order wave drift forces

The first order wave drift forces are oscillatory forces around zero mean and described by the following equation:

Regular wave:  

$$\varsigma(t) - \varsigma_a \sin(\omega t)$$
First order forces:  
 $F(t) = F_a \sin(\omega t + \varepsilon)$ 
F

Second order wave drift forces:

A floating body encounters incoming waves and these waves are reflected by the body. Second order wave forces are caused by second order pressures:

Bernoulli

**Relative motion** 

$$p - p_0 = -\rho gz - \frac{1}{2}\rho V^2 - \rho \frac{\delta\phi}{\delta t}$$

To calculate the wave drift forces, the pressure has to be integrated over the surface of the vessel. This force causes a body to slowly drift with the waves. For regular waves the wave drift forces are constant for a certain frequency and depend on the amplitude squared. In irregular waves it is more complicated, the drift forces slowly vary. The wave amplitude is dependent on the summation of multiple waves:

An example for 2 waves with different frequency and phase:

$$\begin{aligned} \varsigma(t) &= \sum_{i=1}^{2} \varsigma_{i} \sin(\varpi_{i} + \varepsilon_{i}) \\ A^{2}(t) &= \varsigma_{1}(t) + \varsigma_{2}(t) \\ &= \varsigma_{1}^{2} + \varsigma_{2}^{2} + 2\varsigma_{1}\varsigma_{2}\cos(\mu t + \Delta\varepsilon) \\ \text{with } \mu &= \omega_{1} - \omega_{2} \end{aligned}$$

The low frequency part of the square of the wave envelope can now be defined as follows:

$$S_{\varsigma} \Delta \omega = \frac{1}{2} \varsigma_n^2 \text{ (definition of wave energy)}$$
$$S_{A^2}(\mu) \Delta \omega = \frac{1}{2} (2\varsigma_1 \varsigma_2)^2$$
$$= 8S_{\varsigma}(\omega_1) \Delta \omega S_{\varsigma}(\omega_2) \Delta \omega$$

Generalization for an irregular wave train with infinite frequencies yields the following expression for the spectral density of all wave groups with frequency difference  $\mu$ :

$$S_{A^2}(\mu) = 8 \int_0^\infty S_{\varsigma}(\omega) S_{\varsigma}(\omega + \mu) d\omega$$

The mean wave drift force in a regular wave with frequency  $\omega$  and amplitude  $\varsigma$  is given by:  $X_i^{(2)} = \varsigma_1^2 \cdot P_{ii}$ In which  $P_{ii}$  is the quadratic transfer function, this can be computed using diffraction theory at V=0.

$$A^{2}(t) = \varsigma_{1}^{2} + \varsigma_{2}^{2} + 2\varsigma_{1}\varsigma_{2}\cos(\mu t + \Delta\varepsilon)$$
  
Using 
$$S_{A^{2}}(\mu) = 8\int_{0}^{\infty} S_{\varsigma}(\omega)S_{\varsigma}(\omega + \mu)d\omega$$

It can be derived that:

$$\overline{X_{i}^{(2)}} = \left\{ \sum_{i=1}^{n} \sum_{j=1}^{n} \varsigma_{i} \varsigma_{j} \cdot P_{ij} \right\} \bigg|_{i=j} = 2 \int_{0}^{\infty} S_{\varsigma}(\omega) P(\omega, \omega) d\omega$$
$$S_{F}(\mu) = 8 \int_{0}^{\infty} S_{\varsigma}(\omega) S_{\varsigma}(\omega + \mu) P^{2}(\omega, \omega + \mu) d\omega$$

In which  $S_F$  is the low frequency spectral density of the wave drift force  $[kN^2m^4s]$ . So in order to calculate the wave drift forces on a vessel one needs to have a wave spectrum for a certain area and a transfer function of the mean second-order drift forces.

#### Other side of force balance

The forces on the vessel created by wind, current and waves have to be opposed by thruster forces. The types of thruster used are:

- Azimuth thrusters, or rudder propellers, with or without nozzles
- Podded thrusters
- Main propellers in combination with rudders
- Tunnel thrusters
- Voith Schneider propeller

Each of these systems are designed to accelerate water to create a reaction force. Open water thrust and torque for a propeller are calculated with:

$$T = K_{\tau} \rho D^4 n^2$$

$$Q = K_{Q} \rho D^{5} n^{2}$$

In which  $K_T$  and  $K_Q$  are the dimensionless thrust and torque coefficients for a certain propeller. In case of DP the advance speed is 0, similar as in bollard condition. This means that the advance coefficient J is also 0, so values for  $K_T$  and  $K_Q$  are high for zero speed. Given an open water propeller diagram for a B-series propeller:

### X.B DP calculations mono-hull



Figure 65, Cd coëfficient ellipse

#### Stations:

The vessels hull is subdivided in sections of 5 meters in length and a corresponding drag coefficient is calculated. Below there is a picture of all stations, mirrored at the design waterline. It is clearly visible that an ellipse is a good comparison for the stations, with horizontal orientated ellipses in the aft and vertical oriented ellipses in the front of the vessel.



Figure 66, Stations mono-hull mirrored

Section	Shape	T [m]	2T [m]	B [m]	Re	B/2T [-]	Cd [-]	dX [m]	dF [kN]	x wrt L/2 [m]	M [kNm]
1	Ellipse	0.97	1.94	17.65	14242	9.10	0.31	5	0.82	-57.5	-47.37
2	Ellipse	1.35	2.7	18.21	14694	6.74	0.25	5	0.91	-52.5	-47.58
3	Ellipse	2.02	4.04	18.38	14831	4.55	0.33	5	1.79	-47.5	-84.84
4	Ellipse	2.94	5.88	18.46	14895	3.14	0.42	5	3.33	-42.5	-141.41
5	Ellipse	3.86	7.72	18.5	14928	2.40	0.52	5	5.49	-37.5	-205.86
6	Ellipse	4.61	9.22	18.51	14936	2.01	0.62	5	7.80	-32.5	-253.43
7	Ellipse	5.14	10.3	18.51	14936	1.80	0.70	5	9.70	-27.5	-266.69
8	Ellipse	5.44	10.9	18.5	14928	1.70	0.74	5	10.87	-22.5	-244.48
9	Ellipse	5.6	11.2	18.49	14919	1.65	0.76	5	11.52	-17.5	-201.52
10	Ellipse	5.72	11.4	18.46	14895	1.61	0.78	5	12.03	-12.5	-150.34
11	Ellipse	5.85	11.7	18.35	14807	1.57	0.80	5	12.64	-7.5	-94.83
12	Ellipse	5.92	11.8	18.22	14702	1.54	0.81	5	13.03	-2.5	-32.58
13	Ellipse	5.97	11.9	17.93	14468	1.50	0.83	5	13.45	2.5	33.63
14	Ellipse	5.99	12	17.46	14088	1.46	0.85	5	13.88	7.5	104.10
15	Ellipse	6	12	16.76	13524	1.40	0.89	5	14.46	12.5	180.76
16	Ellipse	6	12	15.77	12725	1.31	0.94	5	15.27	17.5	267.26
17	Ellipse	6	12	14.48	11684	1.21	1.01	5	16.43	22.5	369.71
18	Ellipse	6	12	12.94	10441	1.08	1.10	5	17.98	27.5	494.47
19	Ellipse	6	12	11.26	9086	0.94	1.22	5	19.90	32.5	646.66
20	Ellipse	6	12	9.48	7649	0.79	1.36	5	22.21	37.5	833.04
21	Ellipse	6	12	7.63	6157	0.64	1.53	5	24.97	42.5	1061.30
22	Ellipse	6	12	5.69	4591	0.47	1.74	5	28.29	47.5	1343.84
23	Ellipse	5.99	12	3.57	2881	0.30	1.99	5	32.41	52.5	1701.76
24	Ellipse	2.16	4.32	0.92	742	0.21	2.13	5	12.50	57.5	718.60
SUM							0.94		321.67		5984.19

Table 58, Current forces and moments mono-hull

Section	Shape	A [m ² ]	Cd	dX [m]	dF wind [kN]	x wrt L/2 [m]	M wind [kN]
1	Solid area	10	1.2	5	1.751	-57.5	-100.66
2	Solid area	10	1.2	5	1.751	-52.5	-91.911
3	Solid area	10	1.2	5	1.751	-47.5	-83.157
4	Solid area	10	1.2	5	1.751	-42.5	-74.404
5	Solid area	10	1.2	5	1.751	-37.5	-65.651
6	Solid area	10	1.2	5	1.751	-32.5	-56.897
7	Solid area	10	1.2	5	1.751	-27.5	-48.144
8	Solid area	19.36	1.2	5	3.389	-22.5	-76.26
9	Solid area	54.85	1.2	5	9.602	-17.5	-168.04
10	Solid area	66.04	1.2	5	11.56	-12.5	-144.52
11	Solid area	78.12	1.2	5	13.68	-7.5	-102.57
12	Solid area	110.1	1.2	5	19.28	-2.5	-48.192
13	Solid area	109.7	1.2	5	19.21	2.5	48.021
14	Solid area	103.1	1.2	5	18.04	7.5	135.31
15	Solid area	91.63	1.2	5	16.04	12.5	200.52
16	Solid area	84.72	1.2	5	14.83	17.5	259.56
17	Solid area	82.77	1.2	5	14.49	22.5	326.03
18	Solid area	78.38	1.2	5	13.72	27.5	377.35
19	Solid area	71.56	1.2	5	12.53	32.5	407.16
20	Solid area	74.42	1.2	5	13.03	37.5	488.57
21	Solid area	71.95	1.2	5	12.6	42.5	535.34
22	Solid area	68.98	1.2	5	12.08	47.5	573.62
23	Solid area	65.25	1.2	5	11.42	52.5	599.72
24	Solid area	39.82	1.2	5	6.971	57.5	400.84
SUM		1341			234.7		3291.6

Table 59, Wind forces and moments mono-hull

## XI Catamaran database

Name	Loa [m]	Lwl [m]	Beam [m]	Beam demihull [m]	Lwl/Bdemi	Lwl/B
Sun Eagle	29.2	26.6	9.5	2.5	10.64	2.80
Jet Caraibe	35	31.3	9.4	3.8	8.24	3.33
Seamax	39.5	33.3	11.4	3.6	9.25	2.92
Dodekanisos Express	40.05	34.6	11.5	3.5	9.89	3.01
Royal ferry	40.25	37	9.3	3.2	11.56	3.98
CNM Evolution	43.1	40.1	10.4	2.4	16.71	3.86
Brelyan	44	39	12	3.41	11.44	3.25
Eid Travel	46	41.7	12	4.33	9.63	3.48
Jade Express	48	41.6	13	4.88	8.52	3.20
San Gwann (KvFj)	49	43.1	12.5	3.1	13.90	3.45
Madikera	49.45	43.6	14			3.11
SSTH 50 (d) IHI LTD	49.9		8			
San Gwann (Fjellstrand)	51	48	12.5	3.3	14.55	3.84
FBM 53 Tricat	52.8	47.5	13			3.65
LA Viking Two	55	47.5	15.2	4.1	11.59	3.13
55m RO/RO PTE LTD	55		15			
Autoexpress 56	56	49.8	14			3.56
K40 Incat (d)	58	52	14.5			3.59
Turgut Reis 1	59.9	51.2	17.5	4.5	11.38	2.93
Nordic Jet	60	54.5	16.5	3.95	13.80	3.30
Solidor 5	60	56.5	16.9	3.9	14.49	3.34
Sea Bird	62	56.6	15.4	3.4	16.65	3.68
63m RO/RO PTE LTD	63	0010	16		10.00	5.00
Autoexpress 66 Austal	66.2	59	18.2			3.24
Juan Patricio	70.36	63.9	19.5	5	12.78	3.28
Highsneed 2	72	63.5	17.5	4 73	13.42	3.63
Ocean arrow	72 09	70.2	12.9	4 69	14.97	5.05
73m CAR FERRY (d) AMHS	73.4	63.8	18	1.05	11.57	3.54
luan l	74.2	60.5	26	4.33	13.97	2.33
Mai Mols	76.12	63	23.4	4.6	13.70	2.69
HighSpeed 1	76.6	68	22.2	6.15	11.06	3.06
Luciano Fedderico I	77.32	69.9	19	5.65	12.37	3.68
Condor 11	77.5	63.9	26	4.33	14.76	2.46
Cat Link 3	78.6	66.5	23	4.3	15.47	2.89
Sunflower	79.25	72.3	19.5	5	14.46	3.71
A50 Afai Shinsl TD	80.1	72.3	19.5	5	14.46	3.81
Condor 12	81 15	66.3	26	4 33	15 31	2 55
Autoexpress82	82.3	69	23	5.2	13.27	3.00
INCAT 86	86.3	76.4	26	43	17.77	2 94
Autoexpress 86	86.6	74.2	24	5.31	13.97	3.09
Condor Express	86.62	76.4	26	4 33	17.64	2 94
Stena Charisma	88	76.4	30	7	10.91	2.51
90m Schelde (d0	89.8	81.6	24		10.51	3.40
Devil Cat	91.3	81.3	26	4 33	18 78	3.13
Highspeed 4	92.6	80.6	20	5 34	15.09	3 36
Incat Tasmania	92.0	92	26.6	1 33	21.05	3.46
	95	52	20.0		21.23	5.40
	95.8	82.5	2.1 2			3 /1
Bonanza express	96	86	26.2	4.5	19.11	3.28
Havabusa	99.78	89	20.2	5.79	15.37	4.45
Havabusa AMD	100		20	5.75	13.37	
Furoferrys Express	101	88 7	26.7	6 79	13.06	3 32
105m Scholde (d)	105 /	100.8	20.7	0.75	13.00	3.52
Austal Track Express 112	112	100.0	25.2			3.43
	112.6	105.6	30.2			3 50
INCAT 122 (0)	12.0	103.0	20.2			3.50
Pacificat Explorer	120	117.5	25	6	16.00	4.05
Autoexpress 125 (d)	122.3	106.5	31.7	0	10.00	3.36
······································	+	100.0	J	1	1	5.55

Name				Tunnel width St		
	Depth [m]	Draft [m]	B/T	[m]	(St+Bdemi)/IWI	Bdemi/Draft
Sun Eagle	Deptir[iii]	1.5	1.67	4.5	0.26	1.67
let Caraibe	35	1.0	2 71	1.8	0.18	2 71
Seamax	0.0	1.9	1.89	4.2	0.23	1.89
Dodekanisos Express	3.2	1.81	1.03	4.5	0.23	1 93
Boyal ferry	3.5	1.5	2.13	2.9	0.16	2.13
CNM Evolution	4.1	1.44	1.67	5.6	0.20	1.67
Brelvan		1 75	1.95	5.18	0.22	1 95
Fid Travel		1.75	1.55	3.34	0.18	1.55
lade Express	4	1.4	3.49	3.24	0.20	3,49
San Gwann (KvFi)	4.65	1.95	1.59	6.3	0.22	1.59
Madikera		2.35	2.00	14	0.32	0.00
SSTH 50 (d) IHI LTD		2.00		8	0.01	0.00
San Gwann (Eiellstrand)	4.75	1.95	1.69	5.9	0.19	1.69
FBM 53 Tricat		1.62		13	0.27	
LA Viking Two	4.5	2	2.05	7	0.23	2.05
55m RO/RO PTE LTD		2	2.00	15	0.20	2.00
Autoexpress 56		2.7		14	0.28	
K40 Incat (d)		2		14.5	0.28	
Turgut Reis 1	5.65	2	2 25	85	0.25	2 25
Nordic let	5.85	29	1 36	8.6	0.23	1 36
Solidor 5	5.85	2.5	1.50	9.1	0.23	1.30
Sea Bird	5.05	2.7	1.44	86	0.25	1.44
63m BO/BO PTE LTD	5.4	2.5	1.40	16	0.21	1.40
Autoexpress 66 Austal		25		18.2	0.31	
Juan Patricio	5.65	2.5	2.38	9.5	0.23	2.38
Highsneed 2	5.05	2.1	1.89	8.04	0.20	1.89
Ocean arrow	1.5	2.5	2.20	3.52	0.20	2.29
73m CAB FEBRY (d) AMHS	4.5	2.05	2.23	18	0.12	2.25
		3	1 44	17 34	0.26	1 44
Mai Mols	8.05	3 38	1 36	14.2	0.30	1 36
HighSpeed 1	7.2	3	2.05	9.9	0.24	2.05
Luciano Fedderico L		2.23	2.53	7.7	0.19	2.53
Condor 11	7.2	3.4	1.27	17.34	0.34	1.27
Cat Link 3	7	2.5	1.72	14.4	0.28	1.72
Sunflower		2.16	2.31	9.5	0.20	2.31
A50 Afai ShipsLTD		1.2	4.17	9	0.19	4.17
Condor 12		3	1.44	17.34	0.33	1.44
Autoexpress82	6.5	2.5	2.08	12.6	0.26	2.08
INCAT 86		3.5	1.23	17.4	0.28	1.23
Autoexpress 86	7.3	3.2	1.66	13.38	0.25	1.66
Condor Express	6.75	3.5	1.24	17.34	0.28	1.24
Stena Charisma	12.6	3.7	1.89	16	0.30	1.89
90m Schelde (d0		3.2		24	0.29	
Devil Cat	6.8	3.7	1.17	17.34	0.27	1.17
Highspeed 4	7.8	3.9	1.37	13.32	0.23	1.37
Incat Tasmania		3.4	1.27	17.94	0.24	1.27
Austal cargo 95		4.1		29		
Autoexpress 96 Austal		4.2		24.2	0.29	
Bonanza express		3.7	1.22	17.2	0.25	1.22
Hayabusa	7.3	3.1	1.87	8.42	0.16	1.87
Hayabusa AMD		3.1		20		
Euroferrys Express	9.4	4.2	1.62	13.12	0.22	1.62
105m Schelde (d)	1	3.4	1	29.2	0.29	
Austal Track Express 112	1	3.6	1	25		
INCAT 112 (d)	1	3.3	1	30.2	0.29	
INCAT 120m	1	4.8	1	29	0.25	
Pacificat Explorer	6.6	3.9	1.54	13.8	0.21	1.54
Autoexpress 125 (d)	1	4.9	1	31.7	0.30	

Name						
	DWT [t]	Displ [t]	Vol/2	Cb	LWL/(Vol/2)^(1/3)	Light ship [t]
Sun Eagle		110	53.66	0.54	7.05	110
Jet Caraibe	30.7	121.8	59.41	0.36	8.02	91.1
Seamax		300	146 34	0.64	6.32	300
Dodekanisos Express		500	110.51	0.01	0.52	300
Boyal ferry						
CNM Evolution	60					
Brelvan	00					
Fid Travel	50					
lade Express	50	250	121.05	0.42	9.20	106
San Gwann (KyEi)	54	250	121.95	0.43	8.39	190
Madikara	50					
San Gwann (Fjellstrand)	89					
FBM 53 Tricat	68					
LA Viking Two	105					
55m RO/RO PTE LTD						
Autoexpress 56						
K40 Incat (d)	100					
Turgut Reis 1	173	680	331.71	0.72	7.40	507
Nordic Jet	135					
Solidor 5	110	800	390.24	0.66	7.73	690
Sea Bird	140					
63m RO/RO PTE LTD	340					
Autoexpress 66 Austal						
Juan Patricio	112					
Highspeed 2	190					
Ocean arrow	204					
73m CAR FERRY (d) AMHS	200					
Juan L	200	850	414 63	0.53	8 11	650
Mai Mols	250	890	414.05	0.33	8 37	640
HighSpeed 1	250	850	434.15	0.44	0.52	040
	142	701	251 71	0.40	0.00	570
Conder 11	142	721	351.71	0.40	9.90	379
Cat Link 3	250	950	403.41	0.49	8.20	700
Sunflower	350	1240	604.88	0.85	7.80	890
ALCO Afai Shinal TD	123					
	320	1100	536.59	0.62	8.16	780
Autoexpress82	327	1250	609.76	0.68	8.14	923
INCAT 86	380					
Autoexpress 86	400	1380	673.17	0.53	8.47	980
Condor Express	345	1165	568.29	0.49	9.22	820
Stena Charisma	450					
90m Schelde (d0	450					
Devil Cat	500	1350	658.54	0.51	9.34	850
Highspeed 4	470	1600	780.49	0.46	8.75	1130
Incat Tasmania	650	1810	882.93	0.65	9.59	1160
Austal cargo 95	1172					
Autoexpress 96 Austal	750					
Bonanza express	800	1600	780.49	0.55	9.34	800
Hayabusa	570					
Hayabusa AMD						
Euroferrys Express	750	2000	975.61	0.39	8.94	1250
105m Schelde (d)	750					
Austal Track Express 112	1393					
INCAT 112 (d)	1500	1	1			1
INCAT 120m	1200					
Pacificat Explorer	1200	1916	00F 0F	0.20	10.00	1916
Autoevoress 125 (d)	1200	1910	662.65	0.39	10.00	0191
Autoexpress 125 (u)	1200			1	1	1

Name	Speed Full					
	Load	Nr. engines	Power [kW]	Power total [kW]	Fn	Propulser
Sun Eagle	30	2	1222	2444	0.96	wjets
Jet Caraibe	34	2	1939	3878	1.00	wjets
Seamax	45	4	2023	8092	1.28	wjets
Dodekanisos Express	35	4	788	3152	0.98	срр
Royal ferry	40	2	2000	4000	1.08	wjets
CNM Evolution	30	4	2088	8352	0.78	wjets
Brelyan	29	2	2000	4000	0.76	wjets
Eid Travel	38	4	2000	8000	0.97	wjets
Jade Express	38	4	1980	7920	0.97	wjets
San Gwann (KvFj)	37.5	4	2320	9280	0.94	wjets
Madikera	35	4	2000	8000	0.87	wjets
SSTH 50 (d) IHI LTD	35			3640		wjets
San Gwann (Fjellstrand)	39	4	2320	9280	0.92	wjets
FBM 53 Tricat	40	2	4444	8888	0.95	wjets
LA Viking Two	36	4		9680	0.86	wjets
55m RO/RO PTE LTD	38	4		9680		wjets
Autoexpress 56	38	4	2320	9280	0.88	wjets
K40 Incat (d)	35	2	4320	8640	0.80	wjets
Turgut Reis 1	34.50	2	6500	13000	0.79	wjets
Nordic Jet	36.00	2	7200	14400	0.80	wjets
Solidor 5	36.00	2	7200	14400	0.79	wjets
Sea Bird	35.00	4	2023	8092	0.76	wjets
63m RO/RO PTE LTD	32.00	4	2320	9280		wjets
Autoexpress 66 Austal	31.00				0.66	wjets
Juan Patricio	45.00	4	5420	21680	0.92	wjets
Highspeed 2	41.00	4	3866	15464	0.85	wjets
Ocean arrow	30.00	2	3925	7850	0.59	fpp
73m CAR FERRY (d) AMHS	35.00	4	3600	14400	0.72	wjets
Juan L	43.00	4	4050	16200	0.91	wjets
Mai Mols	40.80	2	12400	24800	0.84	wjets
HighSpeed 1	36.00	4	5700	22800	0.72	wjets
Luciano Fedderico L	52.00	1	16100	16100	1.02	wjets
Condor 11	37.00	4	4320	17280	0.76	wjets
Cat Link 3	34.00	4	5500	22000	0.68	wjets
Sunflower	47.00	4	5420	21680	0.91	wjets
A50 Afai ShipsLTD	48.00	4	5500	22000	0.93	wjets
Condor 12	40.00	4	5500	22000	0.81	wjets
Autoexpress82	37.50	4	6000	24000	0.74	wjets
INCAT 86	42.00	4	7080	28320	0.79	wjets
Autoexpress 86	42.00	4	7200	28800	0.80	wjets
Condor Express	44.00	4	7080	28320	0.83	wjets
Stena Charisma	40.00	2	17000	34000	0.75	wjets
90m Schelde (d0	42.00			28800	0.76	wjets
Devil Cat	43.00	4	7080	28320	0.78	wjets
Highspeed 4	40.50	4	7200	28800	0.74	wjets
Incat Tasmania	42.00	4	7080	28320	0.72	wjets
Austal cargo 95				41000		wjets
Autoexpress 96 Austal	36.00	4	7200	28800	0.65	wjets
Bonanza express	37.50	4	7080	28320	0.66	wjets
Hayabusa	30.00	2	5420	10840	0.52	wjets
Hayabusa AMD	35.50			18960		wjets
Euroferrys Express	37.00	4	7200	28800	0.65	wjets
105m Schelde (d)	36.00			28800	0.59	wiets
Austal Track Express 112				43000		wjets
INCAT 112 (d)	40.00	4	9000	36000	0.64	wiets
INCAT 120m				52496		wjets
Pacificat Explorer	34.00	4	7000	28000	0.57	wiets
Autoexpress 125 (d)	40.00			45000	0.64	wiets
	-					

## XI.A Trendlines



Figure 67, Trendline catamaran database, Fn vs lwl



Figure 68, Trendline catamaran database, DWT vs lwl



Figure 69, Trendline catamaran database, lwl/Bdemi vs lwl



Figure 70, Trendline catamaran database, lwl/B vs lwl



Figure 71, Trendline catamaran database, B/T vs lwl



Figure 72, Trendline catamaran database, Cb vs lwl



Figure 73, Trendline catamaran database, Pb vs lwl

# XII Design hydrostatics report catamaran.

Design ler	ngth		85.000	(m)	Mids	hip locat	tion		42.500 (m)	
Length ov	er all		85.000	(m)	Relat	ive wate	er density		1.025	
Design be	am		7.400	(m)	Mea	n shell th	nickness		0.0000	) (m)
Maximum	ı beam		24.323	(m)	Арре	endage c	oefficient		1.0000	)
Design dra	aught		6.000	(m)						
Volume p	properties	5				Water	plane pro	perties		
Moulded	volume		5	141.2 (	m³)	Length	on waterli	ne	85.0	00 (m)
Total disp	laced volu	me	5	141.2 (	(m³)	Beam	on waterlin	e	24.2	.94 (m)
Displacem	nent		5	269.7 (	tonnes)	Entran	ce angle		0.00	0 (Degr.)
Block coet	fficient		1	3624		Water	Waterplane area			0.2 (m²)
Prismatic	coefficient	I	0	7429		Water	plane coeffi	cient	1.73	34
Vert. prisr	matic coeff	ficient	0	7860	2	Water	plane cente	r of floatation	39.1	.64 (m)
Wetted su	urface area	1	2	547.1 (	(m²)	Transv	erse mome	nt of inertia	8190	01 (m⁴)
Longitudi	nal center	of buoyan	су 4	1.529 (	(m)	Longitu	udinal mom	ent of inertia	5473	110 (m⁼)
Longitudi	nal center	of buoyan	cy -1	142	%					
Vertical ce	Vertical center of buoyancy 3.415 (m)									
Midship	propertie	S			Initial	stability	/			
Midship s	ection area	a	81.416	(m²)	Transv	erse met	acentric he	ight	19	.345 (m)
Midship c	oefficient		1.8339		Longitu	udinal m	etacentric ł	neight	10	9.83 (m)
Lateral p	lane									
Lateral are	ea			0.000	(m²)	-				
Longitudi	nal center	of effort		0.000	(m)					
Vertical ce	enter of eff	fort		0.000	(m)					
The followi	ing layer pro	operties are	calculated	for bot	h sides of	f the ship				
Location	Area	a	Thickness		Weigł	nt	VCG	LCG	TCG	
	(m ² )	C 1	0.000		(tonnes	)	(m)	(m)	(m)	. \
Layer U	445	0.1	0.000		0.000	)	4.842	42.803	0.000 (C	L)
Sectional	lareas									
Location	Area	Location	Area	Lo	cation	Area	Location	Area	Location	Area
(m)	(m ⁻ ) 11 207	(m) 19 700	(m ⁻ ) 74.06	(m) רכ ח	400	(m ⁻ ) 91 760	(m)	(m ⁻ )	(m) 74 800	(m ⁻ )
1 700	15 106	20.400	74.00	5 37 1 20	100	81.700 81.777	57 800	71 622	74.800	27 011
3 400	19,100	20.400	77.35	1 35 4 40	800	81 686	59 500	69 670	78.200	33 735
5 100	24 318	22.100	78 38	0 5 42	500	81 416	61 200	67 372	79.200	29.056
6 800	24.510	25.000	70.50	9 42 8 <i>11</i>	200	80 864	62 900	64 727	81 600	23.050
8 500	37 470	27 200	79.10	0 45	900	80.004	64 600	61 855	83 300	15 048
10 200	45 621	28 900	80 40	4 47	600	79 074	66 300	58 858	85 000	68 727
11 900	53 885	30 600	80.40	 4 49	300	78 112	68 000	55 770	55.000	00.727
13 600	61 172	32 300	81 22	, ₇ , 7 51	000	77 08/	69 700	52 586		
15 300	66 939	34 000	81 /Q	- 51 0 57	700	75 975	71 400	49 272		
17.000	71.164	35.700	81.66	4 54	.400	74.761	73.100	45.726		



NOTE 1: Draught (and all other vertical heights) is measured above base Z= NOTE 2: All calculated coefficients based on project length, draught and beam.

## XIII Resistance prediction catamaran design



Figure 74, Models for resistance prediction Molland

$L/\nabla^{\frac{1}{3}}$		$C_P$		
6	1.5	2.0	2.5	
6.3		3b*	—	0.693
7.4	4a	4b*	4c	0.693
8.5	5a	5b*	5c	0.693
9.5	<u>6</u> a	6b	6c :	0.693

TABLE I: Notation and Main Parameters of Models

Figure 75, Notation and Main Parameters of Models, Molland

TABLE II: Details of the Models

Model	<i>L</i> [m]	L/B	B/T	$L/\nabla^{\frac{1}{3}}$	C _B	$C_P$	$C_M$	A[m ² ]	LCB [% 🕸 ]
3b	1.6	7.0	2.0	6.27	0.397	0.693	0.565	0.434	-6.4
4a	1.6	10.4	1.5	7.40	0.397	0.693	0.565	0.348	-6.4
4b	1.6	9.0	2.0	7.41	0.397	0.693	0.565	0.338	-6.4
4c	1.6	8.0	2.5	7.39	0.397	0.693	0.565	0.340	-6.4
5a	1.6	12.8	1.5	8.51	0.397	0.693	0.565	0.282	-6.4
5b	1.6	11.0	2.0	8.50	0.397	0.693	0.565	0.276	-6.4
5c	1.6	9.9	2.5	8.49	0.397	0.693	0.565	0.277	-6.4
6a	1.6	15.1	1.5	9.50	0.397	0.693	0.565	0.240	-6.4
6b	1.6	13.1	2.0	9.50	0.397	0.693	0.565	0.233	-6.4
6c	1.6	11.7	2.5	9.50	0.397	0.693	0.565	0.234	-6.4

Figure 76, Details of Models, Molland



Figure 77, Resistance componants Model 3b, Mono-hull



Figure 78, Resistance componants Model 4a, Mono-hull



Figure 79, Resistance componants Model 4b, Mono-hull



Figure 80, Resistance componants Model 3b, S/L=0.2







Figure 82, Resistance componants Model 4b, S/L=0.2

## XIV Weight calculation catamaran

### XIV.A Weight of structure between demi-hulls

Total weight of the structure is the sum of the beams and a metal plate of 12mm thick. The problem is simplified by using a static approach of the situation and "Vergeet me nietjes". The weight distribution is considered evenly over the length of the vessel, so the calculation is made for 1 section of the vessel of 1 meter.





Figure 83, Equilibrium of forces on catamaran hull



Figure 84, simplyfied equilibrium of forces on catamaran hull



Figure 85, Vergeet me nietjes

For this calculation the deflection (w) is determined to be a maximum of 20 centimeters, this is a little over 2% of the length of the beam.

Moment of inertia of the beam:

$$I = \frac{1}{48} \frac{FI^3}{wE} = \frac{1}{48} \frac{(36380 \cdot 9.81) \cdot (9^3)}{(0.2 \cdot 2E + 11)} = 1.36E + 08mm^4$$

Selected profile:

Profile nr.	HEA 1000	
G ₈	277	kg/m
А	34685	mm²
Н	990	mm
В	300	mm
tw	16.5	mm
t _f	31	mm
AL	3.1	m²/m
I _Y	553846	x10 ⁴ mm³
Wy	11189	x10³mm³
Iz	14004	x10 ⁴ mm³
Wz	934	x10 ³ mm ³



Table 60, H-profile parameters

Total weight beams: 1 beam =  $9 \cdot 277 = 2493kg$ Weight of steel plate: Plate =  $9 \cdot 0.012 \cdot 7850 = 848kg / m$ Total weight of the structure: 3340 kg/m

## XIV.B Bare hull weight catamaran

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[m³]	[kg/m³]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
100	Shipbuilding							
110	Demi-hull SB		5967 m3	87 kg/m3	519,166	4.75	42.50	
110	Demi-hull PS		5967 m3	87 kg/m3	519,166	4.75	42.50	
110	MD-AD	Aluminium	2041 m3	30 kg/m3	61,236	10.90	63.75	
110	AD-BD	Aluminium	2041 m3	30 kg/m3	61,236	13.70	63.75	
110	BD-CD	Aluminium	1361 m3	30 kg/m3	40,824	16.50	58.75	
110	CD-Bridge deck	Aluminium	1361 m3	30 kg/m3	40,824	19.30	58.75	
	Total hull	Total volume	18739 m3					
			1242452					
		Factor	kg					
			66 kg/m3					
	Structure between							
120	demi-hulls		85 m	3340 kg/m	283,900	9.00	42.50	
120	Wheelhouse		798 m3	48 kg/m3	38,304	22.30	63.75	
	Total superstructure	Total volume	883 m3					
		Factor	322204 kg					
			365 kg/m3					
130	Small steelwork		1564656	6.0%	93,879	7.23	45.53	
161	Paint		1658535	1.5%	24,878	7.23	45.53	
	Rolling margin &							
	welding material		1658535	4.5%	74,634	7.23	45.53	
	Shipbuilding total				1,758,047	7.23	45.53	0.00

Table 61, Weight calculation catamaran 100

## XV Extensive hydrostatics report catamaran

HYDROSTATIC PARTICULARS FIRM Catamaran

Trim = 0.000 m

12 Jun 2013 13:42:06

Draft from base	4.000	4.100	4.200	4.300	4.400
Waterplane area	992.92	1000.95	1009.08	1017.16	1025.32
Centre of flotation	40.805	40.618	40.429	40.233	40.037
Mom. of inertia long.	431721	440547	449709	459258	469122
Mom. of inertia tran.	74455	75063	75662	76277	76894
Ton/cm immersion	10.18	10.26	10.34	10.43	10.51
Volume	3038.87	3138.51	3238.96	3340.23	3442.32
Volume & appendages	3038.87	3138.51	3238.96	3340.23	3442.32
Displacement	3114.84	3216.98	3319.94	3423.74	3528.38
Vert. Centre Buoyancy	2.304	2.359	2.415	2.470	2.526
Long. Centre Buoyancy	42.893	42.824	42.753	42.680	42.605
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	26.804	26.276	25.775	25.306	24.864
KM longitudinal	144.370	142.727	141.258	139.963	138.807
Mom change trim 1 cm	52.06	53.12	54.23	55.38	56.57
Wetted surface	1805.3	1842.4	1879.7	1917.4	1955.3
Block coefficient	0.3820	0.3849	0.3877	0.3905	0.3933
Hor.prism.coef	0.6791	0.6827	0.6862	0.6896	0.6931
Vert.prism.coef	0.7651	0.7648	0.7642	0.7637	0.7630
Midship coefficient	0.5624	0.5638	0.5651	0.5663	0.5675
Waterplane coef.	0.4992	0.5032	0.5073	0.5114	0.5155
Waterplane coef. fore	0.4643	0.4658	0.4672	0.4687	0.4701
Draft from base	4.500	4.600	4.700	4.800	4.900
Waterplane area	1033.08	1040.04	1046.39	1052.10	1057.13
Centre of flotation	39.861	39.704	39.577	39.457	39.374
Mom. of inertia long.	478937	487644	495853	503159	509738
Mom. of inertia tran.	77475	78003	78484	78920	79312
Ton/cm immersion	10.59	10.66	10.73	10.78	10.84
Volume	3545.21	3648.83	3753.13	3858.02	3963.46
Volume & appendages	3545.21	3648.83	3753.13	3858.02	3963.46
Displacement	3633.84	3740.05	3846.96	3954.47	4062.55
Vert. Centre Buoyancy	2.582	2.638	2.694	2.750	2.805
Long. Centre Buoyancy	42.528	42.450	42.372	42.294	42.218
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	24.435	24.015	23.605	23.206	22.816
KM longitudinal	137.676	136.282	134.811	133.169	131.415
Mom change trim 1 cm	57.75	58.80	59.79	60.68	61.47
Wetted surface	1993.0	2030.1	2066.7	2102.8	2138.4
Block coefficient	0.3961	0.3988	0.4015	0.4041	0.4067
Hor.prism.coef	0.6966	0.6999	0.7033	0.7066	0.7098
Vert.prism.coef	0.7626	0.7627	0.7631	0.7640	0.7652
Midship coefficient	0.5686	0.5698	0.5709	0.5719	0.5729
Waterplane coef.	0.5194	0.5229	0.5261	0.5290	0.5315
Waterplane coef. fore	0.4716	0.4729	0.4743	0.4756	0.4769

Draft from base	5.000	5.100	5.200	5.300	5.400
Waterplane area	1061.69	1065.58	1069.19	1072.51	1075.39
Centre of flotation	39.308	39.256	39.216	39.186	39.170
Mom. of inertia long.	515467	520387	524656	528420	531795
Mom. of inertia tran.	79658	79968	80245	80503	80737
Ton/cm immersion	10.88	10.92	10.96	10.99	11.02
Volume	4069.39	4175.74	4282.47	4389.55	4496.94
Volume & appendages	4069.39	4175.74	4282.47	4389.55	4496.94
Displacement	4171.12	4280.13	4389.53	4499.29	4609.37
Vert. Centre Buoyancy	2.861	2.917	2.973	3.028	3.084
Long. Centre Buoyancy	42.143	42.070	41.999	41.931	41.865
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	22.436	22.068	21.711	21.368	21.038
KM longitudinal	129.531	127.539	125.485	123.410	121.341
Mom change trim 1 cm	62.16	62.75	63.27	63.72	64.13
Wetted surface	2173.7	2208.7	2243.4	2277.9	2312.3
Block coefficient	0.4092	0.4117	0.4141	0.4164	0.4187
Hor.prism.coef	0.7130	0.7161	0.7191	0.7220	0.7249
Vert.prism.coef	0.7666	0.7684	0.7703	0.7722	0.7744
Midship coefficient	0.5739	0.5749	0.5758	0.5767	0.5776
Waterplane coef.	0.5338	0.5357	0.5376	0.5392	0.5407
Waterplane coef. fore	0.4783	0.4795	0.4809	0.4822	0.4834
Draft from base	5.500	5.600	5.700	5.800	5.900
Waterplane area	1078.42	1081.25	1083.30	1085.74	1088.13
Centre of flotation	39.151	39.147	39.148	39.152	39.144
Mom. of inertia long.	534757	537540	540095	542501	544712
Mom. of inertia tran.	80953	81155	81347	81530	81705
Ton/cm immersion	11.05	11.08	11.10	11.13	11.15
Volume	4604.63	4712.58	4820.80	4929.25	5037.94
Volume & appendages	4604.63	4712.58	4820.80	4929.25	5037.94
Displacement	4719.74	4830.40	4941.32	5052.48	5163.89
Vert. Centre Buoyancy	3.139	3.194	3.249	3.304	3.359
Long. Centre Buoyancy	41.802	41.741	41.683	41.627	41.574
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	20.720	20.415	20.124	19.844	19.577
KM longitudinal	119.274	117.259	115.284	113.362	111.481
Mom change trim 1 cm	64.49	64.82	65.13	65.42	65.69
Wetted surface	2346.6	2380.8	2414.9	2449.0	2483.1
Block coefficient	0.4209	0.4231	0.4252	0.4273	0.4293
Hor.prism.coef	0.7277	0.7304	0.7330	0.7356	0.7381
Vert.prism.coef	0.7763	0.7783	0.7807	0.7828	0.7847
Midship coefficient	0.5785	0.5793	0.5801	0.5809	0.5817
Waterplane coef.	0.5422	0.5436	0.5446	0.5459	0.5471
Waterplane coef. fore	0.4847	0.4859	0.4871	0.4885	0.4897

Draft from base	6.000	6.100	6.200	6.300	6.400
Waterplane area	1090.33	1092.43	1094.58	1096.53	1098.54
Centre of flotation	39.144	39.160	39.169	39.183	39.187
Mom. of inertia long.	546830	548959	550944	552925	554743
Mom. of inertia tran.	81870	82033	82190	82339	82487
Ton/cm immersion	11.18	11.20	11.22	11.24	11.26
Volume	5146.85	5255.98	5365.31	5474.85	5584.59
Volume & appendages	5146.85	5255.98	5365.31	5474.85	5584.59
Displacement	5275.52	5387.38	5499.45	5611.72	5724.20
Vert. Centre Buoyancy	3.414	3.469	3.524	3.578	3.633
Long. Centre Buoyancy	41.523	41.473	41.426	41.381	41.338
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	19.321	19.076	18.842	18.618	18.403
KM longitudinal	109.660	107.914	106.210	104.572	102.967
Mom change trim 1 cm	65.94	66.20	66.44	66.68	66.90
Wetted surface	2517.2	2551.3	2585.3	2619.3	2653.4
Block coefficient	0.4313	0.4332	0.4351	0.4369	0.4387
Hor.prism.coef	0.7404	0.7428	0.7450	0.7473	0.7494
Vert.prism.coef	0.7867	0.7887	0.7906	0.7925	0.7943
Midship coefficient	0.5825	0.5832	0.5840	0.5847	0.5854
Waterplane coef.	0.5482	0.5492	0.5503	0.5513	0.5523
Waterplane coef. fore	0.4909	0.4922	0.4933	0.4946	0.4959
Draft from base	6.500				
Waterplane area	1100.29				
Centre of flotation	39.200				
Mom. of inertia long.	556571				
Mom. of inertia tran.	82630				
Ton/cm immersion	11.28				
Volume	5694.52				
Volume & appendages	5694.52				
Displacement	5836.88				
Vert. Centre Buoyancy	3.687				
Long. Centre Buoyancy	41.297				
Trans.Centre Buoyancy	0.000				
KM transverse	18.197				
KM longitudinal	101.425				
Mom change trim 1 cm	67.12				
Wetted surface	2687.4				
Block coefficient	0.4405				
Hor.prism.coef	0.7515				
Vert.prism.coef	0.7962				
Midship coefficient	0.5861				
Waterplane coef.	0.5532				
Waterplane coef. fore	0.4972				

## XVI Intact stability calculations catamaran

### TRIM AND STABILITY CALCULATION FIRM Catamaran

				. 13 Ju	ın 2013 15:	30 <b>:</b> 46
Condition : <u>crane opera</u>	ation + 650t deadwei	<u>.ght + 250</u>	)t deck loa	ad		
Description	Weight	VCG	LCG	TCG	FSM	
	ton	m	m	m	tonm	
Empty ship	3769.000	7.600	41.711	0.000	0.000	
Subtotals for group : H	Ballast water					
FP SB	124.939	3.400	78.851	8.446	32.356	
FP PS	124.939	3.400	78.851	-8.446	32.356	
SUBTOTAL	249.879	3.400	78.851	0.000	64.712	
Subtotals for group : (	Crew and stores					
Crew and stores	17.000	14.000	60.000	0.000	0.000	
SUBTOTAL	17.000	14.000	60.000	0.000	0.000	
Subtotals for group : I	Deck load					
Deck load 250t	250.000	10.500	15.000	0.000	0.000	
SUBTOTAL	250.000	10.500	15.000	0.000	0.000	
Subtotals for group : (	Crane					
Crane load	100.000	28.500	15.000	-23.000	0.000	
Crane boom	50.000	26.500	15.000	-15.000	0.000	
SUBTOTAL	150.000	27.833	15.000	-20.333	0.000	
Deadweight	650.000	4.000	42.500	0.000	0.000	
TOTAL	5085.879	7.694	41.597	-0.600	64.712	
Hydrostatics	2	Drafts	and trim			
Volume 496	2.121 m ³	Drafts	above bas	se :		
LCF 3	9.152 m	Draft	mean (Lpp/	(2) 5.83	0 m	
Mom. change trim 6	5.504 tonm/cm	Draft	aft (App)	5.83	5 m	
Ton/cm immersion 1	1.135 ton/cm	Draft	fore (Fpp)	5.82	4 m	
Specific weight	1.025 ton/m³	Trim		-0.01	1 m	
Transverse stability						
KM transverse 1	9.762 m					
VCG	7.694 m					
GM solid 12	2.068 m					
GG' correction	0.013 m				_	
G'M Liquid 13	2.055 m	VCG'		7.70	7 m	

The stability values are calculated for the actual trim.

	•	ISLANL LUB	ea with con	Calculat	stability,	la aynamicai	Statical an
Area	G'Nsinφ	TCGcosφ	VCG <b>'</b> sinφ	KNsinφ	Trim	Draft mld.	Angle(PS)
mrad	m	m	m	m	m	m	degrees
0.000	-0.600	0.600	0.000	0.000	-0.011	5.830	0.00
0.000	-0.178	0.599	0.269	0.690	-0.011	5.829	2.00
0.009	0.457	0.597	0.672	1.726	-0.009	5.823	5.00
0.049	1.096	0.594	1.073	2.762	0.002	5.812	8.00
0.095	1.524	0.591	1.338	3.453	0.022	5.800	10.00
0.275	2.601	0.579	1.995	5.175	0.141	5.750	15.00
0.549	3.630	0.564	2.636	6.829	0.371	5.694	20.00
0.893	4.180	0.544	3.257	7.980	0.796	5.822	25.00
1.266	4.311	0.519	3.853	8.684	1.283	6.109	30.00
1.639	4.206	0.491	4.421	9.118	1.910	6.461	35.00
1.995	3.943	0.459	4.954	9.356	2.811	6.843	40.00
2.614	3.075	0.385	5.904	9.364	6.068	7.492	50.00
3.047	1.851	0.300	6.674	8.826	9.394	7.164	60.00
3.255	0.536	0.205	7.242	7.983	14.877	6.177	70.00

Statical and dynamical stability calculated with constant ICP .

Statical angle of inclination is 2.845 degrees to portside

Loading condition complies with the stated criteria.

Summary Hydrostatics Criterion Value Draft mld. 6.000 5.830 m Trim -0.011 m Statical angle of inclination 2.84 degrees PS Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height G'M 0.150 12.055 meter Maximum GZ at 30 degrees or more 0.200 4.311 meter Top of the GZ curve at least at 15.000 29.800 degrees Area under GZ curve up to top of the curve (Supply vessel criterion) 0.055 1.251 Area under the GZ curve between 30 and 40 degrees  $% \left( {{\left( {{{\left( {{{\left( {{C_{1}}} \right)}} \right)}_{\rm{cl}}}} \right)}_{\rm{cl}}} \right)$ 0.730 mrad 0.030 Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00022.649 degrees Maximum statical angle due to wind 16.000 2.845 degrees Maximum statical angle 80% of angle of deck immersion 13.753 2.845 degrees VCG' A non-zero statical angle of equilibrium occurs, No maximum allowable VCG' is calculated.



Angle of inclination in degrees 1/5.54

# XVII Design hydrostatics report final design.

Design len	gth		120.00	(m) Mie	dship loca [.]	tion		60.000	(m)
Length ove	er all		120.00	(m) Rel	ative wate	er density		1.025	, ,
Design bea	am		21.000	(m) Me	an shell th	nickness		0.0000	(m)
Maximum	beam		21.000	(m) Ap	pendage c	oefficient		1.0000	
Design dra	lught		5.800	(m)					
Volume p	oroperties	5			Water	plane prop	erties		
Moulded v	/olume		661	9.2 (m ³ )	Length	on waterlin	e	120.00	0 (m)
Total displ	aced volu	me	661	9.2 (m³)	Beam c	on waterline		19.37	5 (m)
Displacem	ent		678	4.6 (tonnes	s) Entrano	ce angle		40.06	7 (Degr.)
Block coef	ficient		0.45	529	Waterp	lane area		1781.	5 (m⁻)
Prismatic o	coefficient		0.6	/55	Waterp	lane coeffic	ient	0.7069	9
Vert. prism	rface area	icient	0.04	$\frac{100}{77}$ (m ² )	waterp	nane center	of floatation	49.70	L (m) (m ⁴ )
Longitudin	nace area	of huovan	249 SV 567	1.7 (11)	Longitu	idinal mome	nt of inertia	43010	(11)
Longitudin	al center i	of buoyan	cy _29	405 (III) 197 %	Longito			13003	50 (m)
Vertical ce	nter of bu	loyancy	3.50	09 (m)					
N 41-1-1-1-									
Midship p	properties	S	04.656		al stability	/	• • •	10	007 ( )
Midship se	ection area	9	81.656	(m) Trans	sverse me	tacentric he	ignt	10.	097 (m)
widship cc	Demcient		0.6704	Long	itudinai m	etacentric n	eignt	240	).15 (m)
Lateral plane									
Lateral are	a		6	55.61 (m ²	² )				
Longitudin	al center	of effort	6	3.321 (m)					
Vertical ce	nter of eff	fort	2.	.916 (m)					
The followir	ng laver pro	operties are	calculated for	or both sides	of the ship				
Location	Area	) )	Thickness	Wei	ight	VCG	LCG	TCG	
	(m ² )			(tonr	nes)	(m)	(m)	(m)	
Layer 0	429	5.0	0.000	0.0	00	5.439	59.983	0.000 (CL	.)
Sectional	areas								
Location	Area	Location	Area	Location	Area	Location	Area	Location	Area
(m) 0 000	(m) 7 814	(m) 26.000	(m) 69 115	(m) 52 000	(m) 85 141	(m) 78 000	( <i>m</i> ) 65 153	(m) 104 000	(m) 31 167
2.000	9.370	28.000	74.110	54.000	84.552	80.000	62.869	106.000	27.950
4.000	11.200	30.000	78.085	56.000	83.780	82.000	60.522	108.000	24.600
6.000	13.484	32.000	80.823	58.000	82.813	84.000	58.109	110.000	21.071
8.000	16.448	34.000	82.640	60.000	81.656	86.000	55.653	112.000	17.400
10.000	21.424	36.000	83.872	62.000	80.324	88.000	53.157	114.000	13.584
12.000	29.133	38.000	84.722	64.000	78.832	90.000	50.624	116.000	9.615
14.000	38.118	40.000	85.299	66.000	77.196	92.000	48.049	118.000	5.454
16.000	46.336	42.000	85.679	68.000	75.432	94.000	45.428	120.000	0.000
18.000	53.212	44.000	85.886	70.000	73.551	96.000	42.754		
20.000	57.608	46.000	85.932	72.000	71.570	98.000	40.005		
22.000	60.837	48.000	85.824	74.000	69.507	100.000	37.167		
24.000	64.568	50.000	85.562	76.000	67.367	102.000	34.226		



NOTE 1: Draught (and all other vertical heights) is measured above base Z= NOTE 2: All calculated coefficients based on project length, draught and beam.

## XVIII Extensive hydrostatics report final design

HYDROSTATIC PARTICULARS FIRM

Trim = 0.000 m

Draft from base	4.500	4.600	4.700	4.800	4.900
Waterplane area	1499.95	1522.95	1547.41	1575.34	1603.56
Centre of flotation	51.894	51.473	51.017	50.430	49.856
Mom. of inertia long.	1071093	1104254	1141854	1184899	1233486
Mom. of inertia tran.	31484	32266	33080	33930	34823
Ton/cm immersion	15.37	15.61	15.86	16.15	16.44
Volume	4477.94	4628.95	4782.34	4938.34	5097.17
Volume & appendages	4477.94	4628.95	4782.34	4938.34	5097.17
Displacement	4589.89	4744.67	4901.89	5061.80	5224.60
Vert. Centre Buoyancy	2.695	2.755	2.816	2.877	2.939
Long. Centre Buoyancy	55.710	55.580	55.441	55.293	55.133
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	9.726	9.726	9.733	9.748	9.771
KM longitudinal	241.888	241.309	241.581	242.816	244.933
Mom change trim 1 cm	93.84	96.74	100.03	103.81	108.06
Wetted surface	2015.3	2052.7	2092.4	2134.5	2177.6
Block coefficient	0.4050	0.4096	0.4141	0.4187	0.4234
Hor.prism.coef	0.6214	0.6238	0.6264	0.6290	0.6319
Vert.prism.coef	0.6634	0.6608	0.6576	0.6531	0.6487
Midship coefficient	0.6518	0.6565	0.6612	0.6657	0.6700
Waterplane coef.	0.6105	0.6198	0.6298	0.6412	0.6527
Waterplane coef. fore	0.4872	0.4903	0.4933	0.4962	0.4990
Draft from base	5.000	5.100	5.150	5.200	5.300
Waterplane area	1629.88	1654.98	1666.99	1678.17	1699.37
Centre of flotation	49.336	48.869	48.648	48.450	48.089
Mom, of inertia long.	1283376	1330067	1352087	1372970	1412078
Mom. of inertia tran.	35766	36750	372.61	37774	38809
Ton/cm immersion	16.71	16.96	17.09	17.20	17.42
Volume	5258.73	5422.88	5505.87	5589.44	5758.23
Volume & appendages	5258.73	5422.88	5505.87	5589.44	5758.23
Displacement	5390.20	5558.45	5643.51	5729.17	5902.18
Vert. Centre Buovancy	3.001	3.063	3.094	3.125	3.187
Long. Centre Buoyancy	54.964	54.787	54.696	54.604	54.419
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	9.802	9.839	9.861	9.883	9.927
KM longitudinal	247.047	248.332	248.666	248.761	248.415
Mom change trim 1 cm	112.43	116.52	118.45	120.28	123.71
Wetted surface	2219.3	2259.6	2279.3	2298.5	2335.5
Block coefficient	0.4281	0.4328	0.4351	0.4375	0.4422
Hor.prism.coef	0.6348	0.6378	0.6394	0.6410	0.6441
Vert.prism.coef	0.6453	0.6425	0.6413	0.6405	0.6393
Midship coefficient	0.6743	0.6785	0.6805	0.6826	0.6865
Waterplane coef.	0.6634	0.6736	0.6785	0.6830	0.6916
Waterplane coef. fore	0.5017	0.5045	0.5058	0.5070	0.5095
<u> </u>					

Draft from base	5.400	5.500	5.600	5.700	5.800
Waterplane area	1718.31	1735.01	1749.51	1763.77	1775.93
Centre of flotation	47.792	47.572	47.377	47.196	47.072
Mom. of inertia long.	1446869	1476746	1502389	1524745	1544233
Mom. of inertia tran.	39825	40796	41725	42617	43466
Ton/cm immersion	17.61	17.78	17.93	18.08	18.20
Volume	5929.03	6101.63	6275.82	6451.43	6628.35
Volume & appendages	5929.03	6101.63	6275.82	6451.43	6628.35
Displacement	6077.26	6254.17	6432.71	6612.72	6794.05
Vert. Centre Buoyancy	3.249	3.312	3.374	3.436	3.498
Long. Centre Buoyancy	54.233	54.047	53.865	53.686	53.511
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	9.966	9.998	10.022	10.042	10.055
KM longitudinal	247.281	245.337	242.767	239.778	236.472
Mom change trim 1 cm	126.76	129.37	131.62	133.58	135.29
Wetted surface	2370.4	2403.4	2434.7	2464.8	2493.8
Block coefficient	0.4469	0.4515	0.4561	0.4607	0.4651
Hor.prism.coef	0.6473	0.6504	0.6535	0.6566	0.6596
Vert.prism.coef	0.6390	0.6394	0.6406	0.6417	0.6435
Midship coefficient	0.6904	0.6942	0.6979	0.7016	0.7052
Waterplane coef.	0.6994	0.7061	0.7121	0.7179	0.7228
Waterplane coef. fore	0.5120	0.5144	0.5167	0.5189	0.5212
Draft from base	5.900	6.000	6.100	6.200	6.300
Waterplane area	1787.40	1797.80	1807.57	1817.38	1826.42
Centre of flotation	46.959	46.861	46.816	46.735	46.695
Mom. of inertia long.	1561180	1576227	1589735	1601926	1613256
Mom. of inertia tran.	44275	45052	45798	46521	47225
Ton/cm immersion	18.32	18.43	18.53	18.63	18.72
Volume	6806.45	6985.65	7165.87	7347.06	7529.18
Volume & appendages	6806.45	6985.65	7165.87	7347.06	7529.18
Displacement	6976.61	7160.29	7345.02	7530.74	7717.41
Vert. Centre Buoyancy	3.559	3.620	3.682	3.742	3.803
Long. Centre Buoyancy	53.341	53.177	53.017	52.864	52.715
Trans.Centre Buoyancy	0.000	0.000	0.000	0.000	0.000
KM transverse	10.064	10.070	10.073	10.074	10.075
KM longitudinal	232.927	229.258	225.530	221.779	218.070
Mom change trim 1 cm	136.77	138.09	139.27	140.34	141.33
Wetted surface	2521.9	2549.4	2576.3	2602.9	2629.2
Block coefficient	0.4695	0.4739	0.4781	0.4823	0.4864
Hor.prism.coef	0.6625	0.6654	0.6682	0.6709	0.6736
Vert.prism.coef	0.6454	0.6476	0.6499	0.6520	0.6543
Midship coefficient	0.7087	0.7121	0.7155	0.7189	0.7221
Waterplane coef.	0.7275	0.7317	0.7357	0.7397	0.7434
Waterplane coef. fore	0.5234	0.5256	0.5276	0.5298	0.5317

Waterplane area1834.471843.651851.811859.571867.6Centre of flotation46.65946.59446.57746.54146.57Mom. of inertia long.1622776163366116421771651169165994Mom. of inertia tran.479114858549257499095056Ton/cm immersion18.8018.9018.9819.0619.7Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Centre of flotation46.65946.59446.57746.54146.57Mom. of inertia long.1622776163366116421771651169165994Mom. of inertia tran.479114858549257499095056Ton/cm immersion18.8018.9018.9819.0619.7Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.6Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.6854	46.54146.51716511691659943499095056119.0619.148266.278452.588472.938663.894.0444.10352.17152.0470.0000.00010.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
Mom. of inertia long.1622776163366116421771651169165994Mom. of inertia tran.479114858549257499095056Ton/cm immersion18.8018.9018.9819.0619.7Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	16511691659943499095056119.0619.148266.278452.588266.278452.588472.938663.894.0444.10352.17152.0470.0000.00010.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
Mom. of inertia tran.479114858549257499095056Ton/cm immersion18.8018.9018.9819.0619.7Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.6Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	499095056119.0619.148266.278452.588266.278452.588472.938663.894.0444.10352.17152.0470.0000.00010.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
Ton/cm immersion18.8018.9018.9819.0619.7Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	19.0619.148266.278452.588266.278452.588472.938663.894.0444.10352.17152.0470.0000.00010.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
Volume7712.197896.058080.758266.278452.5Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758.8Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	8266.27       8452.58         8266.27       8452.58         8472.93       8663.89         4.044       4.103         52.171       52.047         0.000       0.000         10.081       10.085         203.791       200.486         144.65       145.42         2732.5       2758.0         0.5021       0.5059         0.6834       0.6856
Volume & appendages7712.197896.058080.758266.278452.5Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	8266.27       8452.58         8472.93       8663.89         4.044       4.103         52.171       52.047         0.000       0.000         10.081       10.085         203.791       200.486         144.65       145.42         2732.5       2758.0         0.5021       0.5059         0.6834       0.6856
Displacement7905.008093.458282.778472.938663.8Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	8472.93       8663.89         4.044       4.103         52.171       52.047         0.000       0.000         10.081       10.085         203.791       200.486         144.65       145.42         2732.5       2758.0         0.5021       0.5059         0.6834       0.6856
Vert. Centre Buoyancy3.8643.9243.9844.0444.10Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	4.0444.10352.17152.0470.0000.00010.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
Long. Centre Buoyancy52.57252.43352.30052.17152.04Trans.Centre Buoyancy0.0000.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	52.171       52.047         0.000       0.000         10.081       10.085         203.791       200.486         144.65       145.42         2732.5       2758.0         0.5021       0.5059         0.6834       0.6856
Trans.Centre Buoyancy0.0000.0000.0000.0000.000KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	0.000 0.000 10.081 10.085 203.791 200.486 144.65 145.42 2732.5 2758.0 0.5021 0.5059
KM transverse10.07610.07710.07910.08110.08KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	10.08110.085203.791200.486144.65145.422732.52758.00.50210.50590.68340.6856
KM longitudinal214.281210.820207.205203.791200.48Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	203.791         200.486           144.65         145.42           2732.5         2758.0           0.5021         0.5059           0.6834         0.6856
Mom change trim 1 cm142.17143.12143.87144.65145.4Wetted surface2655.22681.12706.92732.52758Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	144.65       145.42         2732.5       2758.0         0.5021       0.5059         0.6834       0.6856
Wetted surface2655.22681.12706.92732.52758.3Block coefficient0.49040.49440.49830.50210.5021Hor.prism.coef0.67610.67860.68100.68340.685	2732.5 2758.0 0.5021 0.5059 0.6834 0.6856
Block coefficient0.49040.49440.49830.50210.505Hor.prism.coef0.67610.67860.68100.68340.685	0.5021 0.5059
Hor.prism.coef         0.6761         0.6786         0.6810         0.6834         0.685	0 6834 0 6856
	0.0034 0.0030
Vert.prism.coef 0.6569 0.6589 0.6612 0.6635 0.665	0.6635 0.6655
Midship coefficient 0.7254 0.7286 0.7317 0.7348 0.73	0.7348 0.7379
Waterplane coef. 0.7466 0.7504 0.7537 0.7568 0.760	0.7568 0.7601
Waterplane coef. fore 0.5339 0.5359 0.5379 0.5399 0.541	0.5399 0.5418
Draft from base 6.900 7.000	
Waterplane area 1876.07 1882.62	
Centre of flotation 46.469 46.467	
Mom. of inertia long. 1668172 1676704	
Mom. of inertia long. 1668172 1676704 Mom. of inertia tran. 51211 51855	
Mom. of inertia long.         1668172         1676704           Mom. of inertia tran.         51211         51855           Ton/cm immersion         19.23         19.30	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89	
Mom. of inertia long.16681721676704Mom. of inertia tran.5121151855Ton/cm immersion19.2319.30Volume8639.688827.56Volume & appendages8639.688827.56Displacement8855.679048.25Vert. Centre Buoyancy4.1634.222Long. Centre Buoyancy51.92751.811Trans.Centre Buoyancy0.0000.000KM transverse10.09010.096KM longitudinal197.245194.162Mom change trim 1 cm146.14146.89Wetted surface2783.52808.8	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89         Wetted surface       2783.5       2808.8         Block coefficient       0.5096       0.5133	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89         Wetted surface       2783.5       2808.8         Block coefficient       0.5096       0.5133         Hor.prism.coef       0.6878       0.6899	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89         Wetted surface       2783.5       2808.8         Block coefficient       0.5096       0.5133         Hor.prism.coef       0.6878       0.6899         Vert.prism.coef       0.6674       0.6699	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89         Wetted surface       2783.5       2808.8         Block coefficient       0.5096       0.5133         Hor.prism.coef       0.6674       0.6699         Vert.prism.coef       0.6674       0.6699         Midship coefficient       0.7409       0.7439	
Mom. of inertia long.       1668172       1676704         Mom. of inertia tran.       51211       51855         Ton/cm immersion       19.23       19.30         Volume       8639.68       8827.56         Volume & appendages       8639.68       8827.56         Displacement       8855.67       9048.25         Vert. Centre Buoyancy       4.163       4.222         Long. Centre Buoyancy       51.927       51.811         Trans.Centre Buoyancy       0.000       0.000         KM transverse       10.090       10.096         KM longitudinal       197.245       194.162         Mom change trim 1 cm       146.14       146.89         Wetted surface       2783.5       2808.8         Block coefficient       0.5096       0.5133         Hor.prism.coef       0.6674       0.6699         Widship coefficient       0.7409       0.7439         Waterplane coef.       0.7636       0.7662	

## XIX Weight calculation final design

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg/m3]	[kg]	[m]	[m]	[m]
			[m3]			AB	fr 0	SB = +
100	Shipbuilding							
110	Hull		21600 m3	87 kg/m3	1,879,200	5.50	56.00	
				7850				
110	Skeg		2 m3	kg/m3	14,036	2.25	14.50	
110	MD-AD		4645 m3	50 kg/m3	232,260	10.50	71.00	
110	AD-BD		4704 m3	50 kg/m3	235,200	13.30	71.00	
		Total						
	Total hull	volume	30951 m3					
		Factor	2360696 kg					
			76 kg/m3					
120	BD-CD	Aluminium	2352 m3	30 kg/m3	70,560	16.10	71.00	
120	CD-Bridge deck	Aluminium	1882 m3	30 kg/m3	56,448	18.90	67.00	
120	Wheelhouse	Aluminium	798 m3	48 kg/m3	38,304	23.50	61.00	
120	Funnel		0 m3		0			
		Total						
	Total superstructure	volume	5032 m3					
		Factor	165312 kg					
			33 kg/m3					
130	Small steelwork		2526008	6.0%	151,560	7.54	59.29	
161	Paint		2677568	1.5%	40,164	7.54	59.29	
161	Rolling margin & welding							
	material		2677568	4.5%	120,491	7.54	59.29	
	Shipbuilding total				2,838,222	7.54	59.29	0.0

Table 62, Weight calculation final design 100

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr 0	SB = +
200	Main machinery							
211	Main engines	Wärtsila 8L38	4	63000	252,000	4.00	38.00	
		Single in twin						
212	Gearboxes	out	2	32000	64,000	3.50	30.00	
213	Propellers	5350mm CPP	2	14500	29,000	0.50	1.60	
213	Shafts & stern tubes		2	40000	80,000	2.00	13.00	
213	Seals & bearings		2	2500	5,000	2.00	13.00	
221	Rudders		2	15000	30,000	1.80	0.00	
222	Steering gear		2	5000	10,000	6.00	0.00	
223	Bow thruster - 1	1500 kW	1	10600	10,600	1.50	107.00	
223	Bow thruster - 2	1500 kW	1	10600	10,600	1.50	103.50	
223	Sternthruster - 1	1500 kW	1	10600	10,600	2.00	16.50	
223	Stern thruster - 2	1500 kW	1	10600	10,600	2.00	13.00	
223	E motor bow thruster - 1	1500 kW	1	8000	8,000	3.50	107.00	
223	E motor bow thruster - 2	1500 kW	1	8000	8,000	3.50	103.50	
223	E motor sternthruster - 1	1500 kW	1	8000	8,000	4.00	16.50	
223	E motor stern thruster - 2	1500 kW	1	8000	8,000	4.00	13.00	
223	Drive bow thruster - 1		1	2000	2,000	3.50	107.00	
223	Drive bow thruster - 2		1	2000	2,000	3.50	103.50	
223	Drive sternthruster - 1		1	2000	2,000	4.00	16.50	
223	Drive stern thruster - 2		1	2000	2,000	4.00	13.00	
256	Bottom doors	Incl 110	0	15000	0	2.00	46.90	
	Main machinery total				552.400	3.18	31.85	0.00

Table 63, Weight calculation final design 200

Code	Description	Number	Weight	Weight	VCG	LCG	TCG
		[-]	[kg]	[kg]	[m]	[m]	[m]
					AB	fr O	SB = +
300	Primary ship systems						
310	Bilge ballast piping	1	25000	25,000	4.50	55.00	
310	Fifi piping	1	7500	7,500	9.50	58.00	
320	Fuel oil piping	1	10000	10,000	4.00	45.00	
330	Cooling water piping	1	20000	20,000	3.00	48.00	
340	Fresh water piping	1	2000	2,000	12.50	75.00	
340	Sewage piping	1	8000	8,000	12.50	75.00	
340	Deck scupper piping	1	5000	5,000	12.00	58.00	
350	Tank sounding/filling piping	1	17500	17,500	7.00	58.00	
360	Lub oil piping	1	8000	8,000	4.00	47.00	
380	Exhaust piping ER	2	4000	8,000	12.00	50.00	
380	Exhaust piping PR	4	3500	14,000	15.00	57.00	
390	Miscellaneous piping	1	20000	20,000	5.50	58.00	
300	System fillings	145,000	20%	29,000	7.17	55.23	
300	Appendages	145,000	20%	29,000	7.17	55.23	0.00
				0			0.00
310	Bilge ballast equipment	1	2000	2,000	4.50	55.00	
310	Fifi equipment	1	1000	1,000	9.50	58.00	
320	Fuel oil equipment	1	3000	3,000	4.00	45.00	
330	Cooling water equipment	1	12000	12,000	3.00	48.00	
340	Fresh water equipment	1	3000	3,000	12.50	75.00	
340	Sewage plant	1	6000	6,000	4.00	75.00	
340	Other sewage equipment	1	1000	1,000	4.50	83.00	
350	Tank sounding/filling	1	1000	1,000	7.00	58.00	
	equipment						
360	Lub oil equipment	1	2500	2,500	4.00	47.00	
370	HVAC piping (spiro)	1	10000	10,000	15.00	75.00	
370	HVAC unit	1	6500	6,500	15.00	55.00	
370	Other HVAC equipment	1	3000	3,000	15.00	95.00	
380	Exhaust equipment	6	2500	15,000	13.00	48.00	
390	Remaining primary ship	1	15000	15,000	5.50	58.00	
	systems						
	Primary ship systems total			284,000	7.66	56.36	

Table 64, Weight calculation final design 300
Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
400	Electrical system							
410	Generator set	Wartsila 8L20	2	20700	41,400	4.50	56.00	
410	Generator set	Wartsila 8L26	2	45000	90,000	4.50	56.00	
410	Emergency set	Cat C18	1	1905	1,905	19.00	54.00	
420	Cables & cable trays below		1	32000	32,000	6.00	55.00	
	main deck							
420	Cables & cable trays above		1	22000	22,000	14.00	55.00	
	maindeck							
430	Main switchboard		4	5500	22,000	7.50	65.00	
430	Other switchboards		1	10000	10,000	7.50	65.00	
450	Lighting		1	3000	3,000	15.00	70.00	
490	Remaining items		1	15000	15,000	9.50	58.00	
	Electrical system total				237,305	6.55	57.27	

Table 65, Weight calculation final design 400

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
500	Deck equipment							
510	Anchor winch		1	5000	5,000	13.50	108.00	
510	Anchors		2	3000	6,000	11.50	113.00	
510	Chain		1	25000	25,000	7.50	110.00	
510	Chain stoppers		2	650	1,300	12.50	111.00	
510	Mooring winches aft		2	6000	12,000	10.00	2.00	
520	Capstans aft		2	1200	2,400	10.00	2.00	
540	Deck crane (subsea execution)		1	275000	275,000	18.20	20.00	-5.50
540	Deck crane Pedestal	Incl			0			
540	Deck crane counter ballast		1	189000	189,000	6.00	20.00	8.00
540	Store crane		1	5000	5,000	15.50	94.50	
550	Tugger winches		2	4000	8,000	10.00	38.50	
560	ROV Davit		1	15000	15,000	12.50	56.00	
570	Fast rescue boat + davit		1	8000	8,000	13.50	49.70	
570	Life boat + davits		2	10000	20,000	16.50	66.50	
570	MOB boat + davit		1	2000	2,000	12.50	42.00	
570	life rafts		6	500	3,000	9.50	41.00	
590	Remaining items		1	15000	15,000	9.00	58.00	
	Deck equipment total				591,700	12.84	30.16	

Table 66, Weight calculation final design 500

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[-]	[kg]	[kg]	[m]	[m]	[m]
						AB	fr O	SB = +
600	Secondary ship systems							
610	Hydraulic piping		1	5000	5,000	10.00	40.00	
620	Compressed air piping		6	2000	12,000	8.50	45.00	
660	Pre-wetting piping	Local	1	3000	3,000	4.50	45.00	
(=0		protection						
670	CO2 piping		1	1000	1,000	10.00	45.00	
680	Cold & freeze piping		1	1000	1,000	10.50	64.50	
680	Remaining systems		1	10000	10,000	5.00	50.00	0.00
600	System fillings		22,000	20%	4,400	8.45	44.75	0.00
600	Appendages		22,000	20%	4,400	8.45	44.75	
					0			
610	Hydraulic equipment		1	5000	5,000	10.50	45.50	
620	Compressed air equipment		1	3000	3,000	7.50	40.00	
670	CO2 equipment		1	1000	1,000	11.00	42.00	
680	Cold & freeze equipment		1	1500	1,500	10.50	64.50	
	Secondary ship systems total				51,300	8.03	46.09	

Table 67, Weight calculation final design 600

Code	Description		Number	Weight	Weight	VCG	LCG	TCG
			[m2]	[kg/m2]	[kg]	[m]	[m]	[m]
						AB	fr 0	SB = +
700	Joinery and arrangement of accommodation							
710	Joinery main deck		650 m2	150	97,500	10.00	77.00	
710	Joinery A - deck		650 m2	150	97,500	12.80	75.00	
710	Joinery B - deck		450 m2	120	54,000	15.60	75.00	
710	Joinery C - deck		450 m2	120	54,000	18.40	72.50	
710	Joinery bridge deck		190 m2	100	19,000	22.50	59.50	
730	Floor plates	Steel	250 m2	43	10,750	4.00	58.00	
	Joinery and arrangement of accommodation total				332.750	13,61	73,75	

Table 68, Weight calculation final design 700

Code	Description	Number	Weight	Weight	VCG	LCG	TCG
		[-]	[kg]	[kg]	[m]	[m]	[m]
					AB	fr O	SB = +
800	Nautical, navigation and communication equipment						
		1	3000	3,000	22.50	60.00	
	Nautical, navigation and communication equipment total			3,000	22.50	60.00	

Table 69, Weight calculation final design 800

## XX Intact stability calculations final design

# TRIM AND STABILITY CALCULATION FIRM

Condition • 1 1 Light service	draft Depar		deckload	14 Ju:	n 2013 15:1	8:44
	arare, Depar	.cuic 1000	<u>ucchiodu</u>			
Description	Weight	VCG	LCG	TCG	FSM	
	ton	m	m	m	tonm	
Empty ship	5135.000	8.370	53.241	0.000	0.000	
Subtotals for group : Ballast	water					
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000	
BW DB CT 133-145	0.000	-0.000	97.190	0.000	0.000	
BW DB SB 124-133	0.000	-0.000	89.889	0.106	0.000	
BW DB PS 124-133	0.000	-0.000	89.889	-0.106	0.000	
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000	
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000	
BW DB SB 112-124	0.000	-0.000	82.495	0.118	0.000	
BW DB PS 112-124	0.000	-0.000	82.495	-0.118	0.000	
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000	
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000	
BW DB SB 100-112	0.000	-0.000	74.152	0.131	0.000	
BW DB PS 100-112	0.000	-0.000	74.152	-0.131	0.000	
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000	
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000	
BW DB SB 88-100	0.000	-0.000	65.835	0.137	0.000	
BW DB PS 88-100	0.000	-0.000	65.835	-0.137	0.000	
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000	
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000	
BW DB SB 73-88	0.000	-0.000	56.254	0.136	0.000	
BW DB PS 73-88	0.000	-0.000	56.254	-0.136	0.000	
BW WT SB 73-88	0.000	2.500	56.485	7.076	0.000	
BW WT PS 73-88	0.000	2.500	56.485	-7.076	0.000	
BW DB SB 61-73	0.000	-0.000	48.739	0.137	0.000	
BW DB PS 61-73	0.000	-0.000	48.739	-0.137	0.000	
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000	
BW WI PS 61-73	0.000	2.500	46.740	-7.419	0.000	
BW DB SB 49-61	0.000	0.015	42.024	0.203	0.000	
BW DB PS 49-01	0.000	0.015	42.024	-0.203	0.000	
BW WI SB 49-01	0.000	2.500	20.430 20 /50	7.400	0.000	
DW WI FS 49-01	0.000	2.300	34 063	-7.400	0.000	
BW DB 3B 57-49 37-49	0.000	0.123	34.003	-0 144	0.000	
BW DD FS 57-49 BW WT SB 37-49	0.000	2 500	30 151	7 108	0.000	
BW WT PS 37-49	0.000	2.500	30 454	-7 408	0.000	
BW SB 4-10		5 750	8 540	8 034	0 000	
BW PS 4-19	0 000	5 750	8 540	-8 034	0 000	
BW SB -4-4	0 000	4,761	-1.533	0.033	0.000	
BW PS -4-4	0.000	4.761	-1.533	-0.033	0.000	
SUBTOTAL	0.000	0.000	0.000	0.000	0.000	

TOTAL		5570.817	8.163	54.405	-0.000	373.073	
SUBTOTAL		100.000	10.000	23.000	0.000	0.000	
Deckload 100t		100.000	10.000	23.000	0.000	0.000	
Subtotals for group	: Deck load						
SUBTOTAL		17.000	13.500	75.000	0.000	0.000	
Crew and stores		17.000	13.500	75.000	0.000	0.000	
Subtotals for group	: Crew and	stores					
SUBTOTAL		49.576	3.254	97.303	-0.000	31.528	
FW WT PS	133-145	24.788	3.254	97.303	-2.544	15.764	!
FW WT SB	133-145	24.788	3.254	97.303	2.544	15.764	!
Subtotals for group	: Fresh wate	er					
SUBTOTAL		269.241	4.092	79.070	0.000	341.545	
FO PS	4-19	0.000	5.750	8.050	-5.600	0.000	
FO SB	4-19	0.000	5.750	8.050	5.600	0.000	
FO CT	88-100	0.000	2.500	65.800	0.000	0.000	
FO CT	100-112	185.000	4.092	74.200	0.000	341.545	!
FO CT	112-124	0.000	2.500	82.367	0.000	0.000	
FO CT	124-133	84.241	4.092	89.765	0.000	0.000	!
Subtotals for group	: Fuel oil						

Hydrostatics			Drafts and trim		
Volume	5434.946	m ³	Drafts above base :		
LCF	48.486	m	Draft mean (Lpp/2)	5.093	m
Mom. change trim	118.834	tonm/cm	Draft aft (App)	5.178	m
Ton/cm immersion	17.087	ton/cm	Draft fore (Fpp)	5.008	m
Specific weight	1.025	ton/m ³	Trim	-0.171	m
Transverse stabili	ty				
KM transverse	9.913	m			
VCG	8.163	m			
GM solid	1.751	m			
GG' correction	0.067	m			
G'M liquid	1.684	m	VCG '	8.230	m

The stability values are calculated for the actual trim.

Statical an	d dynamical	stability,	calculate	ed with com	nstant LCB	:	
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.093	-0.171	0.000	0.000	-0.000	0.000	0.000
2.00	5.090	-0.157	0.346	0.287	-0.000	0.059	0.001
5.00	5.077	-0.091	0.864	0.717	-0.000	0.147	0.006
7.00	5.062	-0.022	1.208	1.003	-0.000	0.205	0.013
10.00	5.030	0.115	1.721	1.429	-0.000	0.292	0.026
15.00	4.948	0.417	2.562	2.130	-0.000	0.432	0.057
20.00	4.826	0.814	3.376	2.815	-0.000	0.562	0.101
25.00	4.658	1.295	4.142	3.478	-0.000	0.664	0.155
30.00	4.447	1.784	4.827	4.115	-0.000	0.712	0.215
35.00	4.187	2.254	5.435	4.720	-0.000	0.715	0.277
40.00	3.860	2.730	5.991	5.290	-0.000	0.701	0.339
50.00	2.890	3.788	7.025	6.304	-0.000	0.721	0.462
60.00	1.261	5.098	7.873	7.127	-0.000	0.746	0.591

Statical angle of inclination is 0.000 degrees to starboard Contour :  $\ensuremath{\mathsf{FIRM}}$ 

Summary

Hydrostatics	Criterion	Value
Draft mld.	6.600	5.093 m
Trim -0.171 m		
Statical angle of inclination 0.00 degrees SB		
Flooding angle 60.00 degrees		
Intact Stability Code for vessels with a large B/H ratio	Criterion	Value
Minimum metacentric height G'M	0.150	1.684 meter
Maximum GZ at 30 degrees or more	0.200	0.746 meter
Top of the GZ curve at least at	15.000	59.390 degrees
Area under the GZ curve up to 30 degrees	0.055	0.215 mrad
Area under the GZ curve between 30 and 40 degrees	0.030	0.124 mrad
Maximum angle of inclination acc. to IMO's A.562 weatherc:	riterion <mark>50</mark> .	00027.473 degrees
Maximum statical angle due to wind	16.000	5.150 degrees
Maximum statical angle 80% of angle of deck immersion	18.511	5.150 degrees
VCG'		
Actual 8 230 m		

Actual 8.230 m Maximum allowable 8.894 m Loading condition complies with the stated criteria.



## $\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

14 Jun 2013 15:19:20

Condition : <u>1.2 Ligh</u>	nt service	draft, Arriv	val 100t	deckload		
Description		Weight	VCG	LCG	TCG	FSM
		ton	m	m	m	tonm
Empty ship		5135.000	8.370	53.241	0.000	0.000
Subtotals for group	: Ballast	water				
BW FP	155-fwd	0.000	0.002	110.300	0.000	0.000
BW DB CT	133-145	89.028	1.430	97.069	0.000	157.940
BW DB SB	124-133	0.000	-0.000	89.889	0.106	0.000
BW DB PS	124-133	0.000	-0.000	89.889	-0.106	0.000
BW WT SB	124-133	0.000	2.500	90.007	3.360	0.000
BW WT PS	124-133	0.000	2.500	90.007	-3.360	0.000
BW DB SB	112-124	0.000	-0.000	82.495	0.118	0.000
BW DB PS	112-124	0.000	-0.000	82.495	-0.118	0.000
BW WT SB	112-124	0.000	2.500	82.749	4.281	0.000
BW WT PS	112-124	0.000	2.500	82.749	-4.281	0.000
BW DB SB	100-112	0.000	-0.000	74.152	0.131	0.000
BW DB PS	100-112	0.000	-0.000	74.152	-0.131	0.000
BW WT SB	100-112	0.000	2.500	73.849	5.053	0.000
BW WT PS	100-112	0.000	2.500	73.849	-5.053	0.000
BW DB SB	88-100	0.000	-0.000	65.835	0.137	0.000
BW DB PS	88-100	0.000	-0.000	65.835	-0.137	0.000
BW WT SB	88-100	0 000	2 500	65 579	5 452	0 000
BW WT PS	88-100	0 000	2 500	65 579	-5 452	0 000
BW DB SB	73-88	0 000	-0 000	56 254	0 136	0 000
BW DB PS	73-88	0 000	-0 000	56 254	-0 136	0 000
BW WT SB	73-88	0 000	2 500	56 485	7 076	0 000
BW WT PS	73-88	0.000	2.500	56 485	-7 076	0.000
BW DB SB	61-73	0.000	-0 000	48 739	0 137	0.000
BW DB PS	61-73	0.000	-0 000	48 739	-0 137	0.000
BW WT SB	61-73	0.000	2 500	46.740	7 419	0.000
BW WT DS	61-73	0.000	2.500	46.740	-7 /19	0.000
BW DB SB	19-61	0.000	0 015	40.740	0 203	0.000
	49-01	0.000	0.015	42.024	-0.203	0.000
	49-01	0.000	2 500	38 158	-0.203	0.000
	49-61	0.000	2.500	20.450	-7 466	0.000
	37-49	0.000	2.500	24 063	-7.400	0.000
DE DE DE DE	37-49	0.000	0.123	24.003	-0 144	0.000
	37-49	0.000	2 500	30 454	7 108	0.000
	27-49	0.000	2.500	20 454	-7 400	0.000
	37-49	0.000	2.300	9 540	-7.400	0.000
	4-19	0.000	5.750	0.540	-9 034	0.000
BW FS	4-19	0.000	3.750	0.040	-0.034	0.000
BW SB	-4-4	0.000	4.701	-1.555 1 E22	0.033	0.000
SUBTOTAL	-4-4	89.028	1.430	97.069	0.000	157.940
Quilitatal - 6-						
SUDTOTALS FOR GROUP	: Fuel oil	- 0 E0.0	0 660	80 76E	0 000	
	110 104	0.000	2.00Z	09.100	0.000	0.000 !
	100 110		2.500	02.30/ 74 000	0.000	U.UUU 241 E45 -
	100-112	τα.α/8	2.662	/4.2UU	0.000	341.343 !
	00-LUU	0.000	∠.3UU 5 750	03.0UU	0.000	0.000
FO DC	4-19	0.000	5./5U	8.050	5.6UU E (00	0.000
<u>FO</u> PS	4-19	0.000	5./50	8.050	-5.600	0.000
SUBTOTAL		21.414	2.662	19.070	0.000	34⊥.545

TOTAL		5418.078	8.226	54.005	-0.000	531.013
SUBTOTAL		100.000	10.000	23.000	0.000	0.000
Deckload 100t		100.000	10.000	23.000	0.000	0.000
Subtotals for group :	Deck load					
SUBTOTAL		17.000	13.500	75.000	0.000	0.000
Crew and stores		17.000	13.500	75.000	0.000	0.000
Subtotals for group :	Crew and s	tores				
SUBTOTAL		49.576	3.254	97.303	-0.000	31.528
FW WT PS	133-145	24.788	3.254	97.303	-2.544	15.764 !
FW WT SB	133-145	24.788	3.254	97.303	2.544	15.764 !
Subtotals for group :	Fresh wate	r				

Hydrostatics			Drafts and trim		
Volume	5285.932	m ³	Drafts above base :		
LCF	48.343	m	Draft mean (Lpp/2)	4.981	m
Mom. change trim	118.387	tonm/cm	Draft aft (App)	5.194	m
Ton/cm immersion	17.020	ton/cm	Draft fore (Fpp)	4.769	m
Specific weight	1.025	ton/m ³	Trim	-0.426	m
Transverse stabili	ty				
KM transverse	9.985	m			
VCG	8.226	m			
GM solid	1.758	m			
GG' correction	0.098	m			
G'M liquid	1.660	m	VCG '	8.324	m

The stability values are calculated for the actual trim.

Statical and dynamical stability, calculated with constant LCB :

	-						
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	4.981	-0.426	0.000	0.000	-0.000	0.000	0.000
2.00	4.979	-0.412	0.348	0.291	-0.000	0.058	0.001
5.00	4.965	-0.345	0.870	0.726	-0.000	0.145	0.006
7.00	4.950	-0.275	1.216	1.014	-0.000	0.202	0.012
10.00	4.917	-0.139	1.732	1.446	-0.000	0.286	0.025
15.00	4.835	0.162	2.576	2.155	-0.000	0.422	0.056
20.00	4.711	0.559	3.392	2.847	-0.000	0.545	0.098
25.00	4.539	1.040	4.159	3.518	-0.000	0.641	0.151
30.00	4.324	1.535	4.845	4.162	-0.000	0.683	0.209
35.00	4.059	2.009	5.452	4.775	-0.000	0.677	0.268
40.00	3.725	2.486	6.005	5.351	-0.000	0.654	0.326
50.00	2.737	3.541	7.033	6.377	-0.000	0.656	0.440
60.00	1.061	4.842	7.895	7.209	-0.000	0.686	0.557

Summary	7														
Hydrost	catic	S									Crit	cerion	V	alue	
Draft n	nld.											6.600	4	.981	m
Trim					-0.	426 m									
Statica	al an	gle o:	f incl	inati	on C	).00 d	egree	s SB							
Floodir	ng an	gle			60	).00 d	egree	S							
Intact	Stab	ility	Code	for v	vessel	ls wit	h a l	arge	B/H r	atio	Crit	erion	v.	alue	
Minimun	n met	acent	ric he	eight	G'M							0.150	1	.660	meter
Maximun	n GZ	at 30	degre	es oi	more	9						0.200	0	.686	meter
to goT	the	GZ cu:	rve at	: leas	st at							15.000	60	.000	degrees
Area ur	nder	the G	Z curv	ve up	to 30	) dear	ees					0.055	0	.209	mrad
Area ur	nder 1	the G	Z curv	ve bet	ween	.30 ar	nd 40	deare	es			0.030	0	.118	mrad
Maximun	n ang	le of	incli	natio	n acc	to	TMO	: A 56	52 wea	therc	riter	$i \circ n 50$	00028	637	dearees
Maximum	n sta	tical	angle		to wi	ind	1110 0		/2 1100		11001	6 000	5	459	degrees
Mavimum	n sta	tical	angle	2 80%	of ar	nale c	of dec	rk imm	ersic	n		8 850	5	459	degrees
naximun	ii sta	CICUI	angro	. 000	or ar	igic c		21X ±1100		/11	-	10.000	0	. 135	ucgrees
VCCI															
Netuol					0	201 m									
ACTUAL		1- 1	_		••	007 m									
Maximum	i all	owabi	е		8.	.88/11									
Loading	j con		n comp	orres	WICH	the s	stated	i Crit	eria.						
									277	$\top$			<b>↓</b>		
4									$\mathcal{W}\mathcal{W}$						
									m						
ın								$\Delta III$	$\mathcal{M}\mathcal{M}$						
0								XIII	$\mathcal{H}\mathcal{H}$						
_								XIII	1112						
							XIII	XIII	UI K						
							$\chi$	XIII	1112						
						$\langle     \rangle$	XIII	HH	HH						
	1	1111	7////	(111)				1							
1		U = U	XIII	U = U = U	$\nabla$										
		XIIIX	HHX.	$\langle \rangle \rangle \rangle$	Y										
1		$\chi _{III}$	XIII	$\sim$											
		IIIX	XIIIX.	$\bigtriangledown$											
· · -		$\frac{1112}{1112}$	$\chi//\Sigma$												
		VIII	$\mathcal{H}$												
-		XIII	$\mathbb{Y}^{-}$			-					-				
	5	$\chi   D$	×												
+		$H \rightarrow$													
		$\mathbb{N}$													
	<b></b>	<b>/</b>													
-															
4	<i></i>														
ł		1		1	Ì	i	1	1	1	1	i	İ	1		
			Ō	.0				:	25.0				50	.0	

### TRIM AND STABILITY CALCULATION FIRM

				14 J	un 2013 15:19:
Condition : 2.1 Design draft,	Departure 3	100% consu	mables 600	t deckload	
Description	tet a di aula da	1100	T G G	шаа	TOM
Description	Weight	vCG	LCG	TCG	FSM topm
Empty chin	5125 000	. III 0 270	52 2/1	0 000	
	5135.000	0.370	JJ.241	0.000	0.000
Subtotals for group : Ballast	water				
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000
ви DB СТ 133-145	95 217	1 498	97 069	0 000	0 000
BW DB SB 124-133	45 511	1 499	89 857	1 626	0 000
BW DB PS 124-133	45 511	1 499	89 857	-1 626	0 000
BW WT SB 124-133	0 000	2 500	90 007	3 360	0.000
BW WT PS 124-133	0.000	2.500	90 007	-3 360	0.000
BW DB SB 112-124	0.000	-0.000	82 495	0 118	0.000
BW DB DB BS 112 124	0.000	-0.000	82 195	-0 118	0.000
DW DD 15 112 124 DW WT SD 112_124	0.000	2 500	82 7/9	1 281	0.000
DW WI 5D 112 124 DW WT DC 112_124	0.000	2.500	82 749	-1 281	0.000
DW WI 15 112 124 DW 110_112	0.000	-0.000	71 152	4.201 0 131	0.000
BW DB 3B 100-112 BW DB 3B 100-112	0.000	-0.000	74.1JZ 74.152	_0 121	0.000
BW DB FS 100-112 DW WT CD 100-112	0.000	-0.000	74.132	-0.131	0.000
BW WI SB 100-112	0.000	2.500	73.049	5.055	0.000
BW WI FS 100-112 DW DD CD 99-100	0.000	-0.000	65 025	-3.033	0.000
BW DB 5B 00-100	0.000	-0.000	03.035	0.137	0.000
BW DB PS 88-100	0.000	-0.000	63.833 (E E70	-0.137	0.000
BW W1 SB 88-100	0.000	2.500	65.579 CE E70	J.452 E.452	0.000
BW W1 P5 88-100	0.000	2.500	63.379 EC 2E4	-5.452	0.000
BM DB SB /3-88	0.000	-0.000	56.254	0.136	0.000
BW DB PS /3-88	0.000	-0.000	56.254	-0.136	0.000
BW WT SB /3-88	0.000	2.500	56.485	7.076	0.000
BW WT PS /3-88	0.000	2.500	56.485	-/.0/6	0.000
BW DB SB 61-73	0.000	-0.000	48.739	0.137	0.000
BW DB PS 61-73	0.000	-0.000	48.739	-0.13/	0.000
BW WI SB 61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-73	0.000	2.500	46.740	-/.419	0.000
BW DB SB 49-61	0.000	0.015	42.024	0.203	0.000
BW DB PS 49-61	0.000	0.015	42.024	-0.203	0.000
BW WT SB 49-61	0.000	2.500	38.458	7.466	0.000
BW WT PS 49-61	0.000	2.500	38.458	-/.466	0.000
BW DB SB 37-49	0.000	0.123	34.063	0.144	0.000
BW DB PS 37-49	0.000	0.123	34.063	-0.144	0.000
BW W1' SB 37-49	0.000	2.500	30.454	7.408	0.000
BW WT PS 37-49	0.000	2.500	30.454	-7.408	0.000
BW SB 4-19	0.000	5.750	8.540	8.034	0.000
BW PS 4-19	0.000	5.750	8.540	-8.034	0.000
BW SB -4-4	0.000	4.761	-1.533	0.033	0.000
<u>BW PS -4-4</u>	0.000	4.761	-1.533	-0.033	0.000
SUBTOTAL	186.240	1.498	93.544	-0.000	0.000
Subtotals for group . Fuel oil					
FO CT $12A_{-122}$		1 092	89 765		
$10 CI = 124^{-1} 100$	150 571	7.092 1 000	82 367	0.000	
I = 0 = 112 - 124 FO CT $I = 100 - 112$	185 000	4.092 1 000	71 200	0.000	3/1 5/5 1
$E_{\rm C} = 100^{-112}$	185 000		65 800	0.000	0 000 1
FO CR = 100	103.000	4.U92 7 210	8 050	5 600	
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	77 004	7 342	8 050	-5 600	
SUBTOTAL	766 980	4 746	62 275	0 000	341.545

58

TOTAL		6799.650	7.867	53.362	0.000	373.073
SUBTOTAL		600.000	10.000	23.000	0.000	0.000
Deckload 600t		600.000	10.000	23.000	0.000	0.000
Subtotals for group	: Deck load	l				
SUBTOTAL		17.000	13.500	75.000	0.000	0.000
Crew and stores		17.000	13.500	75.000	0.000	0.000
Subtotals for group	: Crew and	stores				
SUBTOTAL		94.431	3.848	97.285	0.000	31.528
FW WT PS	133-145	47.216	3.848	97.285	-2.648	15.764 !
FW WT SB	133-145	47.216	3.848	97.285	2.648	15.764 !
Subtotals for group	: Fresh wat	er				

Hydrostatics			Drafts and trim	
Volume	6634.102	m ³	Drafts above base :	
LCF	47.006	m	Draft mean (Lpp/2)	5.796 m
Mom. change trim	135.574	tonm/cm	Draft aft (App)	5.832 m
Ton/cm immersion	18.220	ton/cm	Draft fore (Fpp)	5.760 m
Specific weight	1.025	ton/m ³	Trim	-0.073 m
Transverse stabili	lty			
KM transverse	10.072	m		
VCG	7.867	m		
GM solid	2.206	m		
GG' correction	0.055	m		
G'M liquid	2.151	m	VCG '	7.922 m

The stability values are calculated for the actual trim.

Statical and dynamical stability, calculated with constant LCB :

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.796	-0.073	0.000	0.000	-0.000	0.000	0.000
2.00	5.794	-0.064	0.351	0.276	-0.000	0.075	0.001
5.00	5.783	-0.021	0.876	0.690	-0.000	0.185	0.008
7.00	5.771	0.029	1.222	0.965	-0.000	0.257	0.016
10.00	5.743	0.136	1.738	1.376	-0.000	0.363	0.032
15.00	5.673	0.387	2.587	2.050	-0.000	0.537	0.071
20.00	5.571	0.704	3.404	2.709	-0.000	0.694	0.125
25.00	5.448	0.991	4.138	3.348	-0.000	0.790	0.191
30.00	5.298	1.215	4.794	3.961	-0.000	0.833	0.262
35.00	5.107	1.417	5.396	4.544	-0.000	0.852	0.335
40.00	4.857	1.621	5.958	5.092	-0.000	0.866	0.410
50.00	4.096	2.076	6.988	6.068	-0.000	0.920	0.566
60.00	2.906	2.534	7.702	6.860	-0.000	0.842	0.724

Summary		
Hydrostatics	Criterion	Value
User defined draft	5.900	5.796 m
Trim -0.073 m		
Statical angle of inclination 0.00 degrees SB		
Flooding angle 60.00 degrees		
Intact Stability Code for vessels with a large B/H ratio	Criterion	Value
Minimum metacentria height CIM	0 150	$\frac{value}{2}$
	0.150	2.151 meter
Maximum GZ at 30 degrees or more	0.200	0.922 meter
Top of the GZ curve at least at	15.000	51.726 degrees
Area under the GZ curve up to 30 degrees	0.055	0.262 mrad
Area under the GZ curve between 30 and 40 degrees	0.030	0.149 mrad
Maximum angle of inclination acc. to IMO's A.562 weatherc	riterion50.	00024.291 degrees
Maximum statical angle due to wind	16.000	3.144 degrees
Maximum statical angle 80% of angle of deck immersion	14.794	3.144 degrees
VCC		
Actual 7.922 III		
Maximum allowable 9.005 m		
Loading condition complies with the stated criteria.		
<b>--------−-−−−−−−−−−−−−−</b>	++	
	++	
v. 🕅 🕅		
		50.0

# $\frac{\texttt{TRIM} \texttt{ AND STABILITY CALCULATION}}{\texttt{FIRM}}$

				1 Л т,	m 2012 15.20.21
Condition : 2.2 Design draft, A	rrival 10%	consumabl	les 600t de	eckload	111 2013 15:20:31
Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	5135.000	8.370	53.241	0.000	0.000
Subtotals for group : Ballast w	ater				
BW FP 155-fwd	199.539	6.137	111.550	0.000	0.000
BW DB CT 133-145	95.217	1.498	97.069	0.000	0.000
BW DB SB 124-133	45.511	1.499	89.857	1.626	0.000
BW DB PS 124-133	45.511	1.499	89.857	-1.626	0.000
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000
BW DB SB 112-124	0.000	-0.000	82.495	0.118	0.000
BW DB PS 112-124	0.000	-0.000	82.495	-0.118	0.000
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000
BW DB SB 100-112	0.000	-0.000	74.152	0.131	0.000
BW DB PS 100-112	0.000	-0.000	74.152	-0.131	0.000
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000
BW DB SB 88-100	0.000	-0.000	65.835	0.137	0.000
BW DB PS 88-100	0.000	-0.000	65.835	-0.137	0.000
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000
BW DB SB 73-88	0.000	-0.000	56.254	0.136	0.000
BW DB PS 73-88	0.000	-0.000	56.254	-0.136	0.000
BW WT SB 73-88	0.000	2.500	56.485	7.076	0.000
BW WT PS 73-88	0.000	2.500	56.485	-7.076	0.000
BW DB SB 61-73	0.000	-0.000	48.739	0.137	0.000
BW DB PS 61-73	0.000	-0.000	48.739	-0.137	0.000
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-73	0.000	2.500	46.740	-7.419	0.000
BW DB SB 49-61	0.000	0.015	42.024	0.203	0.000
BW DB PS 49-61	0.000	0.015	42.024	-0.203	0.000
BW WT SB 49-61	0.000	2.500	38.458	7.466	0.000
BW WT PS 49-61	0.000	2.500	38.458	-7.466	0.000
BW DB SB 37-49	0.000	0.123	34.063	0.144	0.000
BW DB PS 37-49	0.000	0.123	34.063	-0.144	0.000
BW WT SB 37-49	0.000	2.500	30.454	7.408	0.000
BW WT PS 37-49	0.000	2.500	30.454	-7.408	0.000
BW SB 4-19	0.000	5.750	8.540	8.034	0.000
BW PS 4-19	0.000	5.750	8.540	-8.034	0.000
BW SB -4-4	0.000	4.761	-1.533	0.033	0.000
BW PS -4-4	0.000	4.761	-1.533	-0.033	0.000
SUBTOTAL	385.779	3.898	102.858	-0.000	0.000
Subtotals for group : Fuel oil					
FO CT 124-133	8.596	2.662	89.765	0.000	0.000 !
FO CT 112-124	16.181	2.662	82.367	0.000	0.000 !
FO CT 100-112	18.878	2.662	74.200	0.000	341.545 !
FO CT 88-100	18.878	2.662	65.800	0.000	341.541
FO SB 4-19	7.866	5.912	8.050	5.600	0.000 !
FO PS 4-19	7.866	5.912	8.050	-5.600	0.000 !
SUBTOTAL	78.263	3.316	62.275	0.000	683.086

TOTAL		6227.846	8.190	53.657	-0.000	714.614
			20.000	20.000		
SUBTOTAL		600.000	10.000	23,000	0.000	0.000
Deckload 600t		600.000	10.000	23.000	0.000	0.000
Subtotals for group :	Deck load					
SUBTOTAL		17.000	13.500	75.000	0.000	0.000
Crew and stores		17.000	13.500	75.000	0.000	0.000
Subtotals for group :	Crew and s	tores				
SUBTOTAL		11.804	2.693	97.329	-0.000	31.528
FW WT PS	133-145	5.902	2.693	97.329	-2.432	15.764 !
FW WT SB	133-145	5.902	2.693	97.329	2.432	15.764 !
Subtotals for group :	Fresh wate	er				

Hydrostatics			Drafts and trim	
Volume	6075.947	m ³	Drafts above base :	
LCF	47.364	m	Draft mean (Lpp/2)	5.466 m
Mom. change trim	130.251	tonm/cm	Draft aft (App)	5.566 m
Ton/cm immersion	17.819	ton/cm	Draft fore (Fpp)	5.367 m
Specific weight	1.025	ton/m ³	Trim	-0.199 m
Transverse stabili	ity			
KM transverse	10.058	m		
VCG	8.190	m		
GM solid	1.869	m		
GG' correction	0.115	m		
G'M liquid	1.754	m	VCG '	8.304 m

The stability values are calculated for the actual trim.

Statical and dynamical stability, calculated with constant LCB :

	-						
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.466	-0.199	0.000	0.000	-0.000	0.000	0.000
2.00	5.464	-0.188	0.351	0.290	-0.000	0.061	0.001
5.00	5.452	-0.133	0.874	0.724	-0.000	0.150	0.007
7.00	5.439	-0.074	1.220	1.012	-0.000	0.208	0.013
10.00	5.409	0.046	1.735	1.442	-0.000	0.293	0.026
15.00	5.334	0.320	2.582	2.149	-0.000	0.432	0.058
20.00	5.223	0.674	3.400	2.840	-0.000	0.560	0.101
25.00	5.077	1.061	4.155	3.510	-0.000	0.645	0.154
30.00	4.900	1.402	4.821	4.152	-0.000	0.669	0.212
35.00	4.678	1.722	5.423	4.763	-0.000	0.659	0.270
40.00	4.394	2.045	5.979	5.338	-0.000	0.641	0.327
50.00	3.533	2.765	7.013	6.362	-0.000	0.652	0.439
60.00	2.141	3.572	7.781	7.192	-0.000	0.589	0.550

Summary															
Hydrost	atics	3									Crit	erion	V	alue	
User de	finec	d drai	Et									5.900	5	.466	m
Trim					-0.	.199 m									
Statica	l ang	gle of	f incl	inat	ion (	).00 d	egree	s SB							
Floodin	g ang	gle			60	).00 d	egree	S							
Intact	Stabi	lity	Code	for v	vessel	ls wit	h a l	arge 1	3/H r	atio	Crit	erion	V	alue	
Minimum	meta	acenti	ric he	eight	G'M							0.150	1	.754	meter
Maximum	GZ a	at 30	degre	es or	nore	9						0.200	0	.669	meter
Top of	the G	GZ CUI	rve at	leas	st at						1	5.000	30	.363	degrees
Area un	der t	he G	Z curv	re up	to 30	) degr	rees					0.055	0	.212	mrad
Area un	der t	he G	Z curv	re bet	tween	30 ar	nd 40	deare	es			0.030	0	.115	mrad
Maximum	angl	e of	incli	natio	on aco	c. to	IMO's	A.56	2 wea	therc	riter	ion50	.00026	.183	degrees
Maximum	stat	ical	angle	due	to w	ind					1	6.000	4	.371	degrees
Maximum	stat	ical	angle	80%	of ar	nale c	of dec	k imm	ersio	n	1	6 406	4	371	degrees
1102X ±III 0III	beut	JICUI	ungro	. 000	or ui	igre c	JI UCC	±11010			-		1	• • • • •	acgreeb
VCG!															
Natual					Q	301 m									
Movimum	-11-	wable	_		0. 0	077 m									
Taadina	alle		=	1400	0.	+ h o o	. + - + - d	and t							
LUauing	COIIC			TTES	WICH	the s	stateu		eria.						
							1								
								Va	1				+		+
4					-				7	-		-			
								()))							
· ·					-			XHH							
							())	XIIII							
-					-		AHH	XHHX	$\geq$ $-$	-					
							$\chi (())$	XIIIX							
+						XIII	XHH	HHH	$\sim$						
						X////	XIII	11112							
4						7////	1111	7777							
		HHH.	XIIII	()))	Y										
4		1111	(111)	$\langle \rangle \rangle$											
		HH	AIIII	$\otimes$											
°		<u> </u>	$\overline{\sqrt{1}}$	Y											
0			M												
		$\overline{111}$	$\bigvee$												
			$\mathbf{Y}$												
		())													
T		$\mathbb{N}$													
		Y													
. 1	X														
-															
F			· ·			1		1		1	1	1	1	_	
			0.	. U				2	5.0				50		

# $\frac{\texttt{TRIM} \texttt{ AND STABILITY CALCULATION}}{\texttt{FIRM}}$

Condition : <u>3.1 DP draft, Depa</u>	rture 100%	consumable	es 600t de	eckload	JUII 2015 1.	J•21•
Description	Weight	VCG	LCG	TCG	FSM	
Empty ship	5135 000	8 370	53 241			
	3133.000	0.070	00.211	0.000	0.000	
Subtotals for group : Ballast	water					
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000	
BW DB CT 133-145	95.217	1.498	97.069	0.000	0.000	
BW DB SB 124-133	45.511	1.499	89.857	1.626	0.000	
BW DB PS 124-133	45.511	1.499	89.857	-1.626	0.000	
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000	
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000	
BW DB SB 112-124	73.001	1.494	82.466	1.951	0.000	
BW DB PS 112-124	73.001	1.494	82.466	-1.951	0.000	
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000	
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000	
BW DB SB 100-112	86.731	1.487	74.092	2.301	0.000	
BW DB PS 100-112	86.731	1.487	74.092	-2.301	0.000	
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000	
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000	
BW DB SB 88-100	99.317	1.484	65.718	2.627	0.000	
BW DB PS 88-100	99.317	1.484	65.718	-2.627	0.000	
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000	
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000	
BW DB SB /3-88	137.750	1.489	56.277	2.926	0.000	
BW DB PS /3-88	137.750	1.489	56.277	-2.926	0.000	
BW WI SB /3-88	0.000	2.500	56.485	7.076	0.000	
BW WT PS /3-88	0.000	2.500	56.485	-7.076	0.000	
BW DB SB 61-73	114.709	1.499	46.898	3.070	0.000	
BW DB PS 61-73	114.709	1.499	46.898	-3.070	0.000	
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000	
BW W1 P5 01-73	0.000	2.500	46.740	-7.419	0.000	
BW DB SB 49-01	0.000	0.015	42.024	0.203	0.000	
BW DB FS 49-01	0.000	2 500	42.024	-0.203	0.000	
DW WI 3D 49-01	0.000	2.500	38 158	-7 466	0.000	
BW WI FS 49-01 BW DB SB 37-19	93 7/3	1 659	30.346	2 99/	0.000	
BW DB PS 37-49	93 743	1 659	30.346	-2 994	0.000	
BW WT SB 37-49	0 000	2 500	30 454	7 408	0.000	
BW WT PS 37-49	0.000	2.500	30 454	-7 408	0.000	
BW SB 4-19	104 916	7 507	8 120	8 566	0 000	
BW PS 4-19	104.916	7.507	8.120	-8.566	0.000	
BW SB -4-4	0.000	4.761	-1.533	0.033	0.000	
BW PS -4-4	0.000	4.761	-1.533	-0.033	0.000	
SUBTOTAL	1606.574	2.297	55.413	0.000	0.000	
Subtotals for group . Eucl						
FO CT 12/122	Q1 011	1 000	89 765			1
10 CI 124-100	150 571	1 092	82 267			I
IIZ = IZ4 FO CT $IOO = 112$	185 000	4.092 1 NG2	74 200		341 545	:
FO CT 88–100	185 000	4 092	65 800	0.000	0 000	I
FO SB $\Delta = 10$	77 08/	7 340	8 050	5 600		I
FO PS 4–19	77 084	7.342	8 050	-5 600	0 000	•
SUBTOTAL	766.980	4.746	62.275	0.000	341.545	

14 Jun 2013 15:21:03

TOTAL	8219.984	6.922	52.852	0.000	372.391
SUBIOTAL	600.000	10.000	23.000	0.000	0.000
	600 000	10 000	22 000	0 000	0 000
Deckload 600t	600.000	10.000	23.000	0.000	0.000
Subtotals for group : Deck loa	d				
SUBTOTAL	17.000	13.500	75.000	0.000	0.000
Crew and stores	17.000	13.500	75.000	0.000	0.000
Subtotals for group : Crew and	stores				
SUBTOTAL	94.431	3.848	97.285	0.000	30.846
FW WT PS 133-145	47.216	3.848	97.285	-2.648	15.423
FW WT SB 133-145	47.216	3.848	97.285	2.648	15.423
Subtotals for group : Fresh wa	ter				

Hydrostatics			Drafts and trim	
Volume	8019.525	m ³	Drafts above base :	
LCF	46.694	m	Draft mean (Lpp/2)	6.596 m
Mom. change trim	143.435	tonm/cm	Draft aft (App)	6.451 m
Ton/cm immersion	18.934	ton/cm	Draft fore (Fpp)	6.742 m
Specific weight	1.025	ton/m ³	Trim	0.291 m
Transverse stabili	ty			
KM transverse	10.046	m		
VCG	6.922	m		
GM solid	3.123	m		
GG' correction	0.045	m		
G'M liquid	3.078	m	VCG '	6.968 m

The stability values are calculated for the actual trim.

Statical and dynamical stability, calculated with constant LCB :

	-	<u> </u>					
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.596	0.291	0.000	0.000	0.000	-0.000	0.000
2.00	6.595	0.296	0.351	0.243	0.000	0.107	0.002
5.00	6.585	0.322	0.876	0.607	0.000	0.269	0.012
7.00	6.574	0.355	1.225	0.849	0.000	0.376	0.023
10.00	6.551	0.429	1.745	1.210	0.000	0.535	0.047
15.00	6.493	0.610	2.590	1.803	0.000	0.787	0.105
20.00	6.430	0.731	3.358	2.383	0.000	0.975	0.182
25.00	6.361	0.750	4.052	2.945	0.000	1.107	0.273
30.00	6.274	0.705	4.698	3.484	0.000	1.214	0.375
35.00	6.154	0.629	5.309	3.997	0.000	1.312	0.485
40.00	5.987	0.535	5.895	4.479	0.000	1.416	0.604
50.00	5.515	0.243	6.885	5.338	0.000	1.548	0.865
60.00	4.847	-0.237	7.520	6.034	0.000	1.485	1.133

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				56.02

Hydrostatics Draft md. Trim 0.291 m Statical angle of inclination 0.00 degrees SB Flooding angle 56.02 degrees Intact Stability Code for vessels with a large B/H ratio Minimum metacentric height G'M Maximum date and the G2 curve at least at Trop of the G2 curve at least at Area under the G2 curve by to 30 degrees Area under the G2 curve by to 30 degrees Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind Maximum atles angle due to wind Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Summary	1									
Draft mid. 6.600 6.596 m Trim 0.291 m Statical angle of inclination 0.00 degrees SB Flooding angle 56.02 degrees Intact Stability Code for vessels with a large B/H ratio Criterion Value Maximum G2 at 30 degrees or more 0.200 1.554 meter Top of the G2 curve up to 30 degrees 0.055 0.375 mrad Area under the G2 curve up to 30 degrees 0.055 0.375 mrad Area under the G2 curve up to 30 degrees 0.055 0.375 mrad Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle due to wind 16.000 1.684 degrees VCC' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Hydrost	tatics						Criter	ion	Value	
Trim 0.291 m Statical angle of inclination 0.00 degrees SB Flooding angle 56.02 degrees Intact Stability Code for vessels with a large B/H ratio 0.101 No.00 3.078 meter Minimum metacentric height G'M 0.150 3.078 meter Top of the GZ curve at least at 15.000 52.453 degrees Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum angle of inclination acc. to INO'S A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle due to wind 11.143 1.684 degrees VCC' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Draft r	nld.						6.	500	6.596	m
Statical angle of inclination 0.00 degrees SB Flooding angle 56.02 degrees Intact Stability Code for vessels with a large B/H ratio 0.150 3.078 meter Maximum GZ at 30 degrees or more 0.200 1.554 meter Top of the GZ curve at least at 15.000 52.453 degrees Area under the GZ curve up to 30 degrees 0.035 0.375 mrad Maximum gale of inclination acc. to IMO's A.562 weather or iterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Trim			0.291 m							
Flooding angle 56.02 degrees Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height G'M 0.150 3.078 meter Naximum 2 at 30 degrees or more 0.200 1.554 meter Top of the GZ curve at least at 15.000 52.453 degrees Area under the GZ curve up to 30 degrees 0.035 0.375 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind Maximum statical angle due to wind Maximum attical angle 80% of angle of deck immersion 11.143 1.684 degrees VCG' Actual 6.968 m Maximum allowable 8.886 m Leading condition complies with the stated criteria.	Statica	al angle of in	nclination	0.00 deg	rees SB						
Intact Stability Code for vessels with a large B/H ratio       Criterion       Value         Minimum metacentric height G'M       0.150       3.078 meter         Maximum GZ at 30 degrees or more       0.200       1.554 meter         Top of the G2 curve at least at       15.000       52.453 degrees         Area under the G2 curve up to 30 degrees       0.055       0.375 mrad         Area under the G2 curve between 30 and 40 degrees       0.030       0.229 mrad         Maximum angle of inclination acc. to IMO'S A.562 weathercriterion50.00023.464 degrees       0.262         Maximum statical angle due to wind       16.000       1.664 degrees         VCG'       Actual       6.968 m         Maximum allowable       8.886 m         Loading condition complies with the stated criteria.       0	Floodin	ng angle		56.02 deg	rees						
Intact Stability Code for vessels with a large B/H ratio Criterion Value Minimum metacentric height G'M 0.150 3.078 meter Maximum GZ at 30 degrees or more 0.200 1.554 meter Top of the GZ curve at least at 15.000 52.453 degrees Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees WCG' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.											
Minimum metacentric height G'M 0.150 3.078 meter Maximum G2 at 30 degrees or more 0.200 1.554 meter Top of the GZ curve up to 30 degrees 0.055 0.375 mrad Area under the GZ curve between 30 and 40 degrees 0.035 0.229 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Intact	Stability Co	de for ves	sels with	a large	e B/H r	atio	Criter	ion	Value	
Maximum GZ at 30 degrees or more 0.200 1.554 meter Top of the GZ curve up to 30 degrees 0.055 0.375 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum angle of inclination acc. to IMO's A.552 weathercriterion5.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees Maximum allowable 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Minimur	n metacentric	height G'I	М				0.1	150	3.078	meter
Top of the GZ curve at least at 15.000 52.453 degrees 0.055 0.375 mrad Area under the GZ curve between 30 and 40 degrees 0.055 0.375 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees VCG' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Maximur	n GZ at 30 deg	grees or m	ore				0.1	200	1.554	meter
Area under the GZ curve up to 30 degrees 0.055 0.375 mrad Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees VCG' Actual 6.968 m Loading condition complies with the stated criteria.	Top of	the GZ curve	at least	at				15.0	000	52.453	degrees
Area under the GZ curve between 30 and 40 degrees 0.030 0.229 mrad Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees VCG' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Area u	nder the GZ cu	urve up to	30 degree	es			0.0	)55	0.375	mrad
Maximum angle of inclination acc. to IMO's A.562 weathercriterion50.00023.484 degrees Maximum statical angle due to wind 16.000 1.684 degrees Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees VCG' Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Area u	nder the GZ cu	urve betwe	en 30 and	40 degr	cees		0.0	030	0.229	mrad
Maximum statical angle due to wind Maximum statical angle 80% of angle of deck immersion VCG' Actual Maximum allowable Loading condition complies with the stated criteria.	Maximur	n angle of ind	clination (	acc. to IN	40's A.5	562 wea	thercr	iterior	50.00	023.484	degrees
Maximum statical angle 80% of angle of deck immersion 11.143 1.684 degrees	Maximur	n statical and	gle due to	wind				16.0	000	1.684	degrees
VCG' Actual 6.968 m Sading condition complies with the stated criteria.	Maximur	n statical and	gle 80% of	angle of	deck in	mersio	n	11.1	143	1.684	degrees
VCG ⁴ Actual 6.968 m 8.886 m Loading condition complies with the stated criteria.											
Actual 6.968 m Maximum allowable 8.886 m Loading condition complies with the stated criteria.	VCG'										
Maximum allowable 8.886 m Loading condition complies with the stated criteria.	Actual			6.968 m							
Loading condition complies with the stated criteria.	Maximur	n allowable		8.886 m							
	Loading	g condition co	omplies wi	th the sta	ated cri	teria.					
											- marked
	-										
	_										
	°					- 17					
	-				XIII	H -					
					XIIIX						
	-				XIIIXI						
					XIIIX						
	_				XIIIXI.						
	_			XIIIXIII	HHHH						
	°:										
	-		$\rightarrow$								
	-	UNIIDA									
	_										
0.0         25.0         50.0	• -										
K     I     I     I     I     I     I     I     I       0.0     25.0     50.0											
<b>0.0</b> 25.0 50.0		r i i		1 1			1	1 1	1		
			0.0			25.0				50.0	

## $\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

14 Jun 2013 15:21:30

Condition : <u>3.2 DP draft</u> , P	arrival 10% con	sumables	600t deckl	oad	
Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	5135.000	8.370	53.241	0.000	0.000
Subtotals for group : Balla	ast water				
BW FP 155-fw	rd 0.000	0.002	110.300	0.000	0.000
BW DB CT 133-14	95.217	1.498	97.069	0.000	0.000
BW DB SB 124-13	45.511	1.499	89.857	1.626	0.000
BW DB PS 124-13	45.511	1.499	89.857	-1.626	0.000
BW WT SB 124-13	0.000	2.500	90.007	3.360	0.000
BW WT PS 124-13	0.000	2.500	90.007	-3.360	0.000
BW DB SB 112-12	73.001	1.494	82.466	1.951	0.000
BW DB PS 112-12	73.001	1.494	82.466	-1.951	0.000
BW WT SB 112-12	24 0.000	2.500	82.749	4.281	0.000
BW WT PS 112-12	24 0 000	2 500	82 749	-4 281	0 000
BW DB SB 100-11	2 86 731	1 487	74 092	2 301	0 000
BW DB PS 100-11	2 86 731	1 487	74.092	-2 301	0.000
DW DD 15 100 11 DW WT CD 100-11	2 0.000	2 500	73 849	5 053	0.000
DW WI DC 100-11	2 0.000	2.500	73.849	-5 053	0.000
	0.000	1 484	65 718	-5.055	0.000
	0 99.517	1 101	65 710	2.027	0.000
BW DB FS 00-10	0 99.317	2 500	65 570	-2.027	0.000
BW WI SB 00-10		2.500	65.579	5.452	0.000
BW WI PS 00-10	10  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.0	2.300	65.579	-5.452	0.000
	127.750	1.409	50.277	2.920	0.000
BW DB PS /3-8	137.750	1.489	56.277	-2.926	0.000
BW WT SB /3-8		2.500	56.485	7.076	0.000
BW WT PS /3-8		2.500	56.485	-7.076	0.000
BW DB SB 61-7	114.709	1.499	46.898	3.070	0.000
BW DB PS 61-7	114./09	1.499	46.898	-3.070	0.000
BW WT SB 61-7	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-7	0.000	2.500	46.740	-/.419	0.000
BW DB SB 49-6	111.381	1.533	38.547	3.077	0.000
BW DB PS 49-6	111.381	1.533	38.547	-3.077	0.000
BW WT SB 49-6	0.000	2.500	38.458	7.466	0.000
BW WT PS 49-6	0.000	2.500	38.458	-7.466	0.000
BW DB SB 37-4	9 93.743	1.659	30.346	2.994	0.000
BW DB PS 37-4	9 93.743	1.659	30.346	-2.994	0.000
BW WT SB 37-4	0.000	2.500	30.454	7.408	0.000
BW WT PS 37-4	0.000	2.500	30.454	-7.408	0.000
BW SB 4-1	.9 0.000	5.750	8.540	8.034	0.000
BW PS 4-1	.9 0.000	5.750	8.540	-8.034	0.000
BW SB -4-	-4 0.000	4.761	-1.533	0.033	0.000
BW PS -4-	-4 0.000	4.761	-1.533	-0.033	0.000
SUBTOTAL	1619.504	1.517	59.220	0.000	0.000
Subtotals for group : Fuel	oil				
FO CT 124-13	8.596	2.662	89.765	0.000	0.000 !
FO CT 112-12	16.181	2.662	82.367	0.000	0.000 !
FO CT 100-11	.2 18.878	2.662	74.200	0.000	341.545 !
FO CT 88-10	18.878	2.662	65.800	0.000	0.000 !
FO SB 4-1	.9 7.866	5.912	8.050	5.600	0.000 !
FO PS 4-1	.9 7.866	5.912	8.050	-5.600	0.000 !
SUBTOTAL	78.263	3.316	62.275	0.000	341.545

TOTAL	7461.571	6.963	52.321	0.000	356.385
SUBTOTAL	600.000	10.000	23.000	0.000	0.000
Deckload 600t	600.000	10.000	23.000	0.000	0.000
Subtotals for group : Deck loa	d				
SUBTOTAL	17.000	13.500	75.000	0.000	0.000
Crew and stores	17.000	13.500	75.000	0.000	0.000
Subtotals for group : Crew and	stores				
SUBTOTAL	11.804	2.693	97.329	-0.000	14.840
FW WT PS 133-145	5.902	2.693	97.329	-2.432	7.420
FW WT SB 133-145	5.902	2.693	97.329	2.432	7.420
Subtotals for group : Fresh wa	ter				

Hydrostatics			Drafts and trim		
Volume	7279.650	m ³	Drafts above base :		
LCF	46.594	m	Draft mean (Lpp/2)	6.131	m
Mom. change trim	140.384	tonm/cm	Draft aft (App)	6.290	m
Ton/cm immersion	18.616	ton/cm	Draft fore (Fpp)	5.972	m
Specific weight	1.025	ton/m ³	Trim	-0.318	m
Transverse stabil:	ity				
KM transverse	10.122	m			
VCG	6.963	m			
GM solid	3.158	m			
GG' correction	0.048	m			
G'M liquid	3.111	m	VCG '	7.011	m

The stability values are calculated for the actual trim.

Statical and dynamical stability, calculated with constant LCB :

	-	<u> </u>					
Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.131	-0.318	0.000	0.000	0.000	-0.000	0.000
2.00	6.129	-0.313	0.353	0.245	0.000	0.109	0.002
5.00	6.119	-0.283	0.882	0.611	0.000	0.271	0.012
7.00	6.108	-0.247	1.233	0.854	0.000	0.378	0.023
10.00	6.083	-0.164	1.755	1.217	0.000	0.538	0.047
15.00	6.020	0.040	2.607	1.815	0.000	0.793	0.105
20.00	5.937	0.249	3.402	2.398	0.000	1.004	0.184
25.00	5.846	0.354	4.108	2.963	0.000	1.145	0.278
30.00	5.731	0.401	4.754	3.506	0.000	1.249	0.383
35.00	5.580	0.415	5.357	4.021	0.000	1.336	0.496
40.00	5.376	0.418	5.929	4.507	0.000	1.422	0.616
50.00	4.758	0.384	6.943	5.371	0.000	1.572	0.879
60.00	3.821	0.207	7.608	6.072	0.000	1.536	1.154

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				58.48

Summary					
Hydrostatics			Criterion	Value	
Draft mld.			6.600	6.131 m	
Trim	-0.318 m				
Statical angle of inclin	ation 0.00 degrees	s SB			
Flooding angle	58.48 degrees	5			
Intact Stability Code fo	r vessels with a l	arge B/H ratio	Criterion	Value	
Minimum metacentric heig	ht G'M		0.150	3.111 meter	
Maximum GZ at 30 degrees	or more		0.200	1.591 meter	
Top of the GZ curve at 1	east at		15.000	54.002 degre	es
Area under the GZ curve	up to 30 degrees		0.055	0.383 mrad	
Area under the GZ curve	between 30 and 40	degrees	0.030	0.233 mrad	
Maximum angle of inclina	tion acc. to IMO's	A.562 weatherc	riterion50.0	0022.915 degre	es
Maximum statical angle d	ue to wind		16.000	1.933 degre	es
Maximum statical angle 8	0% of angle of dec	k immersion	12.805	1.933 degre	es
VCG '					
Actual	7.011 m				
Maximum allowable	8.989 m				
Loading condition compli	es with the stated	criteria.			
					-
					_
					-
0					
					-
					_
					-
					-
					_
<i></i>					_
: · <u> </u>					-
	×				
					-
					4
					-
•					
					1
	0.0	25.0		50.0	

# $\frac{\texttt{TRIM} \texttt{ AND STABILITY CALCULATION}}{\texttt{FIRM}}$

Condition : <u>4.1 Crane operation</u>	100t@15m	100% consi	umables 500	14 Ju Dt deckload	nn 2013 15:33:32
Description	Weight.	VCG	LCG	TCG	FSM
	ton	m		m	tonm
Empty ship	5135.000	8.370	53.241	0.000	0.000
Subtotals for group : Ballast wa	ater				
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000
BW DB CT 133-145	11.426	0.290	97.137	0.000	63.317
BW DB SB 124-133	45.511	1.499	89.857	1.626	0.000
BW DB PS 124-133	45.511	1.499	89.857	-1.626	0.000
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000
BW DB SB 112-124	73.001	1.494	82.466	1.951	0.000
BW DB PS 112-124	73.001	1.494	82.466	-1.951	0.000
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000
BW DB SB 100-112	86.731	1.487	74.092	2.301	0.000
BW DB PS 100-112	86.731	1.487	74.092	-2.301	0.000
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000
BW DB SB 88-100	99.317	1.484	65.718	2.627	0.000
BW DB PS 88-100	99.317	1.484	65.718	-2.627	0.000
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000
BW DB SB 73-88	137.750	1.489	56.277	2.926	0.000
BW DB PS 73-88	137.750	1.489	56.277	-2.926	0.000
BW WT SB 73-88	0.000	2.500	56.485	7.076	0.000
BW WT PS 73-88	0.000	2.500	56.485	-7.076	0.000
BW DB SB 61-73	114.709	1.499	46.898	3.070	0.000
BW DB PS 61-73	114.709	1.499	46.898	-3.070	0.000
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-73	0.000	2.500	46.740	-7.419	0.000
BW DB SB 49-61	0.000	0.015	42.024	0.203	0.000
BW DB PS 49-61	0.000	0.015	42.024	-0.203	0.000
BW WT SB 49-61	100.510	5.847	38.458	8.622	5.681
BW WT PS 49-61	0.000	2.500	38.458	-7.466	0.000
BW DB SB 37-49	93.743	1.659	30.346	2.994	0.000
BW DB PS 37-49	93.743	1.659	30.346	-2.994	0.000
BW WT SB 37-49	102.194	5.899	30.116	8.658	0.000
BW WT PS 37-49	0.000	2.500	30.454	-7.408	0.000
BW SB 4-19	104.916	7.507	8.120	8.566	0.000
BW PS 4-19	0.000	5.750	8.540	-8.034	0.000
BW SB -4-4	0.000	4.761	-1.533	0.033	0.000
BW PS -4-4	0.000	4.761	-1.533	-0.033	0.000
SUBTOTAL	1620.571	2.440	53.674	1.635	68.998
Subtotals for group : Fuel oil					
FO CT 124-133	84.241	4.092	89.765	0.000	0.000 !
FO CT 112-124	158.571	4.092	82.367	0.000	0.000 !
FO CT 100-112	185.000	4.092	74.200	0.000	341.545 !
FO CT 88-100	185.000	4.092	65.800	0.000	0.000 !
FO SB 4-19	77.084	7.342	8.050	5.600	0.000 !
<u>FO PS 4-19</u>	77.084	7.342	8.050	-5.600	0.000 !
SUBTOTAL	766.980	4.746	62.275	0.000	341.545

TOTAL	8283.981	7.257	52.282	0.000	441.389
Deckload 500t	500.000	10.000	23.000	0.000	0.000
SUBTOTAL	150.000	26.333	20.000	-17.667	0.000
Crane boom	50.000	25.000	20.000	-12.000	0.000
Crane load	100.000	27.000	20.000	-20.500	0.000
Subtotals for group : Crane					
SUBTOTAL	17.000	13.500	75.000	0.000	0.000
Crew and stores	17.000	13.500	75.000	0.000	0.000
Subtotals for group : Crew	and stores				
SUBTOTAL	94.431	3.848	97.285	0.000	30.846
FW WT PS 133-14	5 47.216	3.848	97.285	-2.648	15.423
FW WT SB 133-14	5 47.216	3.848	97.285	2.648	15.423
Subtotals for group : Fresh	water				

		Drafts and trim		
8081.957	m ³	Drafts above base :		
46.582	m	Draft mean (Lpp/2)	6.600	m
143.887	tonm/cm	Draft aft (App)	6.605	m
18.976	ton/cm	Draft fore (Fpp)	6.595	m
1.025	ton/m ³	Trim	-0.010	m
lity				
10.080	m			
7.257	m			
2.823	m			
0.053	m			
2.770	m	VCG '	7.310	m
	8081.957 46.582 143.887 18.976 1.025 <u>lity</u> 10.080 7.257 2.823 0.053 2.770	8081.957 m ³ 46.582 m 143.887 tonm/cm 18.976 ton/cm 1.025 ton/m ³ <u>lity</u> 10.080 m <u>7.257 m</u> 2.823 m 0.053 m 2.770 m	B081.957 m³       Drafts and trim         8081.957 m³       Drafts above base :         46.582 m       Draft mean (Lpp/2)         143.887 tonm/cm       Draft aft (App)         18.976 ton/cm       Draft fore (Fpp)         1.025 ton/m³       Trim         1ity       10.080 m         7.257 m       2.823 m         0.053 m       VCG'	Bostings       Drafts and trim         Bostings       Drafts above base :         46.582 m       Draft mean (Lpp/2)       6.600         143.887 tonm/cm       Draft aft (App)       6.605         18.976 ton/cm       Draft fore (Fpp)       6.595         1.025 ton/m ³ Trim       -0.010         1ity       10.080 m       7.257 m         2.823 m       0.053 m       VCG'       7.310

The stability values are calculated for the actual trim.

Statical	and	dynamical	stability.	calculated	with	constant	LCB	•
DCUCICUI	ana	aynamitout	beabirrey,	curcuracea	W T CII	conscanc		•

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.600	-0.010	0.000	0.000	0.000	-0.000	0.000
2.00	6.598	-0.005	0.352	0.255	0.000	0.097	0.002
5.00	6.589	0.019	0.879	0.637	0.000	0.242	0.011
7.00	6.578	0.049	1.230	0.891	0.000	0.339	0.021
10.00	6.555	0.116	1.753	1.269	0.000	0.483	0.042
15.00	6.500	0.275	2.598	1.892	0.000	0.706	0.094
20.00	6.443	0.343	3.355	2.500	0.000	0.854	0.163
25.00	6.381	0.309	4.044	3.089	0.000	0.954	0.242
30.00	6.301	0.212	4.688	3.655	0.000	1.033	0.329
35.00	6.189	0.080	5.298	4.193	0.000	1.105	0.422
40.00	6.030	-0.074	5.885	4.699	0.000	1.187	0.522
50.00	5.586	-0.527	6.871	5.600	0.000	1.271	0.739
60.00	4.959	-1.255	7.504	6.331	0.000	1.173	0.955

Opening		is	submerged	at	[degrees]	
ER	Vent	in				55.57

Summar	У		
Hydros	tatics	Criterion	Value
Draft n	mld.	6.600	6.600 m
Trim	-0.010 m		
Statica	al angle of inclination 0.00 degrees SB		
Floodi	ng angle 55.57 degrees		
Intact	Stability Code for vessels with a large B/H ratio	o Criterion	Value
Minimu	m metacentric height G'M	0.150	2.770 meter
Maximu	m GZ at 30 degrees or more	0.200	1.271 meter
Top of	the GZ curve at least at	15.000	50.310 degrees
Area u	nder the GZ curve up to 30 degrees	0.055	0.329 mrad
Area u	nder the GZ curve between 30 and 40 degrees	0.030	0.193 mrad
Maximu	m angle of inclination acc. to IMO's A.562 weathe	rcriterion50.(	)0024.236 degrees
Maximu	m statical angle due to wind	15 932	1 870 degrees
Maximu	m statical angle 80% of angle of deck immersion	10.831	1 870 degrees
11a211IIIa	a beactear angle out of angle of acer indicipion	10.001	1.070 acgrees
VCG!			
Actual	7 310 m		
Movimu	7.510  m		
Toodin	a condition complice with the stated criteria		
Поацти	g condición compiles with the stated cilteria.		
-			
·			
_			
_			
-			
-			
0			
· · –			
-			
-			
_			
-			
	· · · · · · · · · · · · · · · · · · ·	· ·	50.0

# TRIM AND STABILITY CALCULATION FIRM

Condition . 4.2 Crans operation	n 100+015m 5	0%	mahlag 500+	14 Ju docklood	ın 2013 15:36:38
condition : 4.2 crane operation	II IUUUUUUUU	0% CONSU	Mables 5000	L deckload	
Description	Weight	VCG	LCG	TCG	FSM
	ton	m	m	m	tonm
Empty ship	5135.000	8.370	53.241	0.000	0.000
Subtotals for group : Ballast	water				
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000
BW DB CT 133-145	95.217	1.498	97.069	0.000	0.000
BW DB SB 124-133	45.511	1.499	89.857	1.626	0.000
BW DB PS 124-133	45.511	1.499	89.857	-1.626	0.000
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000
BW DB SB 112-124	73.001	1.494	82.466	1.951	0.000
BW DB PS 112-124	73.001	1.494	82.466	-1.951	0.000
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000
BW DB SB 100-112	86.731	1.487	74.092	2.301	0.000
BW DB PS 100-112	86.731	1.487	74.092	-2.301	0.000
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000
BW DB SB 88-100	99.317	1.484	65.718	2.627	0.000
BW DB PS 88-100	99.317	1.484	65.718	-2.627	0.000
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000
BW DB SB 73-88	137.750	1.489	56.277	2.926	0.000
BW DB PS 73-88	137.750	1.489	56.277	-2.926	0.000
BW WT SB 73-88	0.000	2.500	56.485	7.076	0.000
BW WT PS 73-88	0.000	2.500	56.485	-7.076	0.000
BW DB SB 61-73	114.709	1.499	46.898	3.070	0.000
BW DB PS 61-73	114.709	1.499	46.898	-3.070	0.000
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-73	0 000	2 500	46 740	-7 419	0 000
BW DB SB 49-61	111 381	1 533	38 547	3 077	0 000
BW DB PS 49-61	111 381	1 533	38 547	-3 077	0 000
BW WT SB 49-61	100 510	5 847	38 458	8 622	5 681
BW WT PS 49-61	0 000	2 500	38 458	-7 466	0 000
BW DB SB 37-49	93 743	1 659	30.346	2 994	0.000
BW DB PS 37-49	93 743	1 659	30.346	-2 994	0.000
BW WT SB 37-49	102 194	5 899	30 116	8 658	0.000
BW WT PS 37-49	0 000	2 500	30 454	-7 408	0.000
BW SB 4-19	104 916	7 507	8 120	8 566	0.000
BW PS 4-19	0 000	5 750	8 540	-8 034	0.000
BW SB -1-1	0.000	1 761	-1 533	0.033	0.000
BW BS = -1 - 1	0.000	4.761	-1 533	-0.033	0.000
SUBTOTAL	1927.124	2.301	53.812	1.375	5.681
Subtotals for group : Fuel oil	0 506	2 660	00 765	0 000	
TO CI 124-133	0.390	2.002	07.100	0.000	
FO CT = 112 - 124	10.101 10.070	2.662	02.30/ 74 000	0.000	U.UUU ! 241 E4E !
	10.070	2.662	/4.2UU	0.000	J41.J45 !
FU UT 88-100	10.0/0	Z.06Z	000.000	U.UUU E.COO	
FU SE 4-19	1.866	5.912 E 010	8.U5U	5.600	
<u>FU PS 4-19</u>	/.866	5.91Z	<u>δ.050</u>	-5.600	
	/ 0. 2 0 3	0.010	0/.//2	0.000	

TOTAL	7819	.191 7.27	5 51.015	0.000	362.066
Deckload 500t	500	.000 10.00	0 23.000	0.000	0.000
SUBTOTAL	150	.000 26.33	3 20.000	-17.667	0.000
Crane boom	50	.000 25.00	0 20.000	-12.000	0.000
Crane load	100	.000 27.00	0 20.000	-20.500	0.000
Subtotals for group :	Crane				
SUBTOTAL	17	.000 13.50	0 75.000	0.000	0.000
Crew and stores	17	.000 13.50	0 75.000	0.000	0.000
Subtotals for group :	Crew and stores	5			
SUBTOTAL	11	.804 2.69	3 97.329	-0.000	14.840
FW WT PS 1	33-145 5	.902 2.69	3 97.329	-2.432	7.420
FW WT SB 1	33-145 5	.902 2.69	3 97.329	2.432	7.420
Subtotals for group :	Fresh water				

		Drafts and trim		
7628.518	m ³	Drafts above base :		
46.268	m	Draft mean (Lpp/2)	6.263	m
n 142.469	tonm/cm	Draft aft (App)	6.708	m
18.815	ton/cm	Draft fore (Fpp)	5.817	m
1.025	ton/m ³	Trim	-0.891	m
lity				
10.187	m			
7.275	m			
2.912	m			
0.046	m			
2.865	m	VCG '	7.321	m
	7628.518 46.268 142.469 18.815 1.025 1.025 1.025 1.025 2.912 0.046 2.865	7628.518 m ³ 46.268 m 142.469 tonm/cm 18.815 ton/cm 1.025 ton/m ³ 10.187 m 7.275 m 2.912 m 0.046 m 2.865 m	Drafts and trim         7628.518 m³       Drafts above base :         46.268 m       Draft mean (Lpp/2)         142.469 tonm/cm       Draft aft (App)         18.815 ton/cm       Draft fore (Fpp)         1.025 ton/m³       Trim         1ity       10.187 m         2.912 m       0.046 m         2.865 m       VCG'	Drafts and trim         7628.518 m³       Drafts above base :         46.268 m       Draft mean (Lpp/2)       6.263         142.469 tonm/cm       Draft aft (App)       6.708         18.815 ton/cm       Draft fore (Fpp)       5.817         1.025 ton/m³       Trim       -0.891         1ity       10.187 m       -0.25 m         2.912 m       0.046 m       VCG'       7.321

The stability values are calculated for the actual trim.

Statical	and	dynamical	stability.	calculated	with	constant	LCB	•
DCUCICUI	ana	aynamitout	beabirrey,	curcuracea	W T CII	conscanc		•

Angle(SB)	Draft mld.	Trim	KNsinφ	VCG'sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.263	-0.891	0.000	0.000	0.000	-0.000	0.000
2.00	6.261	-0.887	0.356	0.256	0.000	0.100	0.002
5.00	6.252	-0.863	0.889	0.638	0.000	0.251	0.011
7.00	6.241	-0.835	1.244	0.892	0.000	0.351	0.021
10.00	6.218	-0.772	1.772	1.271	0.000	0.501	0.044
15.00	6.161	-0.620	2.627	1.895	0.000	0.732	0.098
20.00	6.099	-0.563	3.389	2.504	0.000	0.885	0.169
25.00	6.030	-0.604	4.078	3.094	0.000	0.983	0.251
30.00	5.941	-0.717	4.718	3.661	0.000	1.057	0.340
35.00	5.817	-0.865	5.322	4.199	0.000	1.123	0.435
40.00	5.643	-1.036	5.901	4.706	0.000	1.195	0.536
50.00	5.126	-1.529	6.901	5.609	0.000	1.292	0.755
60.00	4.356	-2.377	7.550	6.341	0.000	1.210	0.977

Ope	ening		is	submerged	at	[degrees]
ER	Vent	in				56.71

Summary	[														
Hydrost	tatics									(	Crite	rion	Va	lue	
Draft r	nld.										6	.600	6.2	263 :	m
Trim				— (	0.891	m									
Statica	al angle (	of inc	linat	cion	0.00	degr	ees S	В							
Floodir	ng angle			1	56.71	degr	ees								
Intact	Stabilit	y Code	for	vess	els w	ith a	larc	ge B∕H	H rat	io (	Crite	rion	Val	lue	
Minimur	n metacen	tric h	eight	: G'M							0	.150	2.8	365	meter
Maximur	n GZ at 3	0 degr	ees d	or mo	re						0	.200	1.2	295 :	meter
Top of	the GZ c	urve a	t lea	ast a	t						15	.000	51.5	573	degrees
Area ur	nder the (	GZ cur	ve up	to to	30 de	grees					0	.055	0.3	340 :	mrad
Area ur	nder the (	GZ cur	ve be	etwee	n 30	and 4	0 dec	rees			0	.030	0.1	196 :	mrad
Maximur	n angle of	f incl	inati	on a	cc. t	o IMC	's A.	562 t	weath	ercri	teric	n50.0	0024.3	173	degrees
Maximur	n statica	l angl	e due	e to '	wind						15	.698	2.0	009	degrees
Maximur	n statica	l angl	e 808	of	angle	of d	leck i	mmers	sion		10	.589	2.0	009	degrees
		2			2										2
VCG'															
Actual					7.321	m									
Maximur	n allowab	le		5	8.915	m									
Loading	conditi	on com	plies	s wit	h the	stat	ed cr	iter	ia.						
			-												
1				1	1		1	I	V	1	1	ا ا			+ I
-								/							
- · -															
-								HH							
_							$\mathcal{HH}$	HH							
						$\langle    $	$\chi (())$								
_						$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$	$\mathcal{H}\mathcal{H}$	HH							
						())))	XIII	(11)							
_					(H)	()))	(1)	(111)							
		1111	(111)												
°		$\chi$	()))	$\boldsymbol{\succ}$											
0		XIIIX	$\square$												
_		$\overline{U}$	$\vee$												
		$\chi(D)$													
		$\mathbb{Y}$													
		Y I													
-															
-															
-															1
		1	<u> </u>		1	Ì	1	i _	1	1	ì	1			1
			0.	. 0				2.	5.0				50.	0	

## XXI Loss of load calculation final design

# TRIM AND STABILITY CALCULATION FIRM

Condition • 5 1 Grane operation	LoL calcul	ation 10	N& consumat	14 Ju	un 2013 16:20:30
<u>stretane operation</u>	I DOD CAICUI			162	
Description	Weight	VCG	LCG	TCG	FSM
Empty ship	ton 5135.000	m 8.370	m 53.241	m 0.000	0.000
Subtotals for group : Ballast w	vater				
BW FP 155-fwd	0.000	0.002	110.300	0.000	0.000
BW DB CT 133-145	11.426	0.290	97.137	0.000	63.317
BW DB SB 124-133	45.511	1.499	89.857	1.626	0.000
BW DB PS 124-133	45.511	1.499	89.857	-1.626	0.000
BW WT SB 124-133	0.000	2.500	90.007	3.360	0.000
BW WT PS 124-133	0.000	2.500	90.007	-3.360	0.000
BW DB SB 112-124	73.001	1.494	82.466	1.951	0.000
BW DB PS 112-124	73.001	1.494	82.466	-1.951	0.000
BW WT SB 112-124	0.000	2.500	82.749	4.281	0.000
BW WT PS 112-124	0.000	2.500	82.749	-4.281	0.000
BW DB SB 100-112	86.731	1.487	74.092	2.301	0.000
BW DB PS 100-112	86.731	1.487	74.092	-2.301	0.000
BW WT SB 100-112	0.000	2.500	73.849	5.053	0.000
BW WT PS 100-112	0.000	2.500	73.849	-5.053	0.000
BW DB SB 88-100	99.317	1.484	65.718	2.627	0.000
BW DB PS 88-100	99.317	1.484	65.718	-2.627	0.000
BW WT SB 88-100	0.000	2.500	65.579	5.452	0.000
BW WT PS 88-100	0.000	2.500	65.579	-5.452	0.000
BW DB SB 73-88	137.750	1.489	56.277	2.926	0.000
BW DB PS 73-88	137.750	1.489	56.277	-2.926	0.000
BW WT SB 73-88	0.000	2.500	56.485	7.076	0.000
BW WT PS 73-88	0.000	2.500	56.485	-7.076	0.000
BW DB SB 61-73	114.709	1.499	46.898	3.070	0.000
BW DB PS 61-73	114.709	1.499	46.898	-3.070	0.000
BW WT SB 61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS 61-73	0.000	2.500	46.740	-7.419	0.000
BW DB SB 49-61	0.000	0.015	42.024	0.203	0.000
BW DB PS 49-61	0.000	0.015	42.024	-0.203	0.000
BW WT SB 49-61	0.000	2.500	38.458	7.466	0.000
BW WT PS 49-61	0.000	2.500	38.458	-7.466	0.000
BW DB SB 37-49	93.743	1.659	30.346	2.994	0.000
BW DB PS 37-49	93.743	1.659	30.346	-2.994	0.000
BW WT SB 37-49	0.000	2.500	30.454	7.408	0.000
BW WI PS 3/-49	0.000	2.500	30.454	-7.408	0.000
BW SB 4-19	0.000	5.750	8.540	8.034	0.000
BW PS 4-19	0.000	5.750	8.540	-8.034	0.000
BW SB -4-4	0.000	4.761	-1.333 1 522	0.033	0.000
SUBTOTAL -4-4	1312.951	1.505	60.313	0.000	63.317
Subtotals for group . Fuel oil					
FO CT 124-133	84 241	4 092	89 765	0 000	0.000 1
FO CT 112–124	1.58 571	4,092	82.367	0.000	0.000 !
FO CT 100-112	185.000	4.092	74,200	0.000	341.545 !
FO CT 88-100	185.000	4.092	65.800	0.000	0.000 !
FO SB 4–19	77.084	7.342	8.050	5.600	0.000 !
FO PS 4-19	77.084	7.342	8.050	-5.600	0.000 !
SUBTOTAL	766.980	4.746	62.275	0.000	341.545

TOTAL	7876.361	7.039	53.744	-0.076	435.708
Deckload 500t	500.000	10.000	23.000	0.000	0.000
SUBTOTAL	50.000	25.000	20.000	-12.000	0.000
Crane boom	50.000	25.000	20.000	-12.000	0.000
Subtotals for group : Crane					
SUBTOTAL	17.000	13.500	75.000	0.000	0.000
Crew and stores	17.000	13.500	75.000	0.000	0.000
Subtotals for group : Crew and	l stores				
SUBTOTAL	94.431	3.848	97.285	0.000	30.846
FW WT PS 133-145	47.216	3.848	97.285	-2.648	15.423
FW WT SB 133-145	47.216	3.848	97.285	2.648	15.423
Subtotals for group : Fresh wa	ter				

Hydrostatics			Drafts and trim		
Volume	7684.337	m ³	Drafts above base :		
LCF	46.964	m	Draft mean (Lpp/2)	6.449	m
Mom. change trim	141.238	tonm/cm	Draft aft (App)	6.129	m
Ton/cm immersion	18.743	ton/cm	Draft fore (Fpp)	6.768	m
Specific weight	1.025	ton/m ³	Trim	0.638	m
Transverse stabili	lty				
KM transverse	9.991	m			
VCG	7.039	m			
GM solid	2.953	m			
GG' correction	0.055	m			
G'M liquid	2.897	m	VCG '	7.094	m

The stability values are calculated for the actual trim.

Statical	and	dynamical	etahility	calculated	with	constant	TCB	•
Statical	anu	uynamitcar	stabiiity,	Carcurateu	WICII	Constant	цор	•

Angle(PS)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	6.449	0.638	0.000	0.000	0.076	-0.076	0.000
2.00	6.447	0.644	0.349	0.248	0.076	0.025	0.000
5.00	6.437	0.677	0.870	0.618	0.076	0.176	0.005
7.00	6.425	0.717	1.216	0.865	0.076	0.276	0.013
10.00	6.400	0.806	1.732	1.232	0.075	0.425	0.032
15.00	6.338	1.021	2.575	1.836	0.074	0.665	0.079
20.00	6.258	1.254	3.366	2.426	0.072	0.868	0.147
25.00	6.170	1.390	4.075	2.998	0.069	1.008	0.229
30.00	6.062	1.467	4.726	3.547	0.066	1.113	0.322
35.00	5.920	1.516	5.335	4.069	0.062	1.204	0.423
40.00	5.727	1.557	5.915	4.560	0.058	1.297	0.532
50.00	5.162	1.621	6.923	5.434	0.049	1.440	0.772
60.00	4.343	1.642	7.572	6.143	0.038	1.390	1.023

Statical angle of inclination is 1.506 degrees to portside

Ope	ening		is	submerged	at	[degrees]
Er	vent	out				57.57





Angle of inclination in degrees 1/3.69

## $\frac{\text{TRIM AND STABILITY CALCULATION}}{\text{FIRM}}$

14 Jun 2013 16:21:28

Condition : <u>5.2 Cran</u>	e operation	LoL calcula	ation 10%	consumabl	es	
Description		Weight	VCG	LCG	TCG	FSM
		ton	m	m	m	tonm
Empty ship		5135.000	8.370	53.241	0.000	0.000
Subtotals for group	: Ballast w	ater				
BW FP	155-fwd	0.000	0.002	110.300	0.000	0.000
BW DB CT	133-145	11.426	0.290	97.137	0.000	63.317
BW DB SB	124-133	45.511	1.499	89.857	1.626	0.000
BW DB PS	124-133	45.511	1.499	89.857	-1.626	0.000
BW WT SB	124-133	0 000	2 500	90 007	3 360	0 000
BW WT PS	124-133	0 000	2 500	90 007	-3 360	0 000
BW DB SB	112-124	73 001	1 494	82 466	1 951	0 000
BW DB BS	112-124	73 001	1 / 9/	82.466	-1 951	0.000
	112_124	0 000	2 500	82 7/9	1 281	0.000
BW WI SB	112 - 124 112 124	0.000	2.500	02.749	4.201	0.000
BW WI FS	112-124	0.000	2.300	02.749	-4.201	0.000
BW DB SB	100-112	86./31 06.701	1.48/	74.092	2.301	0.000
BW DB PS	100-112	86./31	1.48/	74.092	-2.301	0.000
BW WT SB	100-112	0.000	2.500	/3.849	5.053	0.000
BW WT PS	100-112	0.000	2.500	/3.849	-5.053	0.000
BW DB SB	88-100	99.317	1.484	65.718	2.627	0.000
BW DB PS	88-100	99.317	1.484	65.718	-2.627	0.000
BW WT SB	88-100	0.000	2.500	65.579	5.452	0.000
BW WT PS	88-100	0.000	2.500	65.579	-5.452	0.000
BW DB SB	73-88	137.750	1.489	56.277	2.926	0.000
BW DB PS	73-88	137.750	1.489	56.277	-2.926	0.000
BW WT SB	73-88	0.000	2.500	56.485	7.076	0.000
BW WT PS	73-88	0.000	2.500	56.485	-7.076	0.000
BW DB SB	61-73	114.709	1.499	46.898	3.070	0.000
BW DB PS	61-73	114.709	1.499	46.898	-3.070	0.000
BW WT SB	61-73	0.000	2.500	46.740	7.419	0.000
BW WT PS	61-73	0.000	2.500	46.740	-7.419	0.000
BW DB SB	49-61	0.000	0.015	42.024	0.203	0.000
BW DB PS	49-61	0.000	0.015	42.024	-0.203	0.000
BW WT SB	49-61	0.000	2.500	38.458	7.466	0.000
BW WT PS	49-61	0.000	2.500	38.458	-7.466	0.000
BW DB SB	37-49	93.743	1.659	30.346	2.994	0.000
BW DB PS	37-49	93.743	1.659	30.346	-2.994	0.000
BW WT SB	37-49	0 000	2 500	30 454	7 408	0 000
BW WT PS	37-49	0 000	2 500	30 454	-7 408	0 000
BW SB	4-19	0 000	5 750	8 540	8 034	0.000
BW DS	4 1 9	0.000	5 750	8 540	-8 034	0.000
BW IS BW SB	-1-1	0.000	1 761	-1 533	0.034	0.000
DW DC	-1-1	0.000	4.761	_1 533	-0.033	0.000
SUBTOTAL		1312.951	1.505	60.313	0.000	63.317
Cubtotolo for more	· Eucl 1					
SUDICIALS FOR GROUP	: FUEL OLL		2 660	00 765	0 000	
	110 104	0.396		09./00	0.000	0.000 !
FO CT	112-124	10.181	2.662	82.367	0.000	U.UUU !
FO CT	100-112	18.878	2.662	/4.200	0.000	341.545 !
FO CT	88-100	18.878	2.662	65.800	0.000	0.000 !
FO SB	4-19	7.866	5.912	8.050	5.600	0.000 !
FO PS	4-19	7.866	5.912	8.050	-5.600	0.000 !
SUBTOTAL		78.263	3.316	62.275	0.000	341.545

TOTAL	7105.018	7.280	52.411	-0.084	419.702
Deckload 500t	500.000	10.000	23.000	0.000	0.000
SUBTOTAL	50.000	25.000	20.000	-12.000	0.000
Crane boom	50.000	25.000	20.000	-12.000	0.000
Subtotals for group : Crane					
SUBTOTAL	17.000	13.500	75.000	0.000	0.000
Crew and stores	17.000	13.500	75.000	0.000	0.000
Subtotals for group : Crew and	stores				
SUBTOTAL	11.804	2.693	97.329	-0.000	14.840
FW WT PS 133-145	5.902	2.693	97.329	-2.432	7.420
FW WT SB 133-145	5.902	2.693	97.329	2.432	7.420
Subtotals for group : Fresh wat	ter				

5.928 6.137	m m
5.928 6.137	m m
6.137	m
5.719	m
-0.418	m
7.339	m
	7.339

The stability values are calculated for the actual trim.

Statical an	d dynamical	stability,	calculate	ed with cor	nstant LCB	:	
Angle(PS)	Draft mld.	Trim	KNsinφ	VCG <b>'</b> sinφ	TCGcosφ	G'Nsinφ	Area
degrees	m	m	m	m	m	m	mrad
0.00	5.928	-0.418	0.000	0.000	0.084	-0.084	0.000
2.00	5.926	-0.412	0.354	0.256	0.084	0.013	0.000
5.00	5.916	-0.378	0.883	0.640	0.084	0.159	0.005
7.00	5.905	-0.338	1.234	0.894	0.084	0.255	0.012
10.00	5.878	-0.246	1.755	1.274	0.083	0.397	0.029
15.00	5.812	-0.025	2.608	1.900	0.082	0.627	0.074
20.00	5.720	0.232	3.417	2.510	0.079	0.828	0.138
25.00	5.615	0.407	4.133	3.102	0.077	0.955	0.216
30.00	5.484	0.519	4.782	3.670	0.073	1.039	0.303
35.00	5.315	0.603	5.382	4.210	0.069	1.103	0.397
40.00	5.091	0.680	5.948	4.718	0.065	1.166	0.496
50.00	4.401	0.834	6.969	5.622	0.054	1.292	0.711
60.00	3.334	0.883	7.655	6.356	0.042	1.257	0.937

Statical angle of inclination is 1.726 degrees to portside

Ope	ening		is	submerged	at	[degrees]
Er	vent	out				59.74

Summary Hydrostatics Criterion Value Draft mld. 6.600 5.928 m Trim -0.418 m Statical angle of inclination 1.73 degrees PS 59.74 degrees Flooding angle DNV loss load Criterion Value DNV Loss of Load (Pt. 5 Ch. 7 Sec 17 D) Area A2> 1,4 A1 84.485 -1.400 DNV Loss of Load, angle max 15 degrees 15.000 4.689 degrees VCG' Actual 7.339 mMaximum allowable 8.987 m Loading condition complies with the stated criteria.



Angle of inclination in degrees 1/3.69

Section	Shape	Т	2T	В	Re	B/2T	Cd	dX [m]	x wrt L/2 [m]	dF keel [kN]	M keel [kNm]
1	Ellipse	0.97	1.94	17.65	14242	9.10	0.31	5	-57.5	0.82	-47.37
2	Ellipse	1.35	2.7	18.21	14694	6.74	0.25	5	-52.5	0.91	-47.58
3	Ellipse	2.02	4.04	18.38	14831	4.55	0.33	5	-47.5	23.16	-1100.3
4	Ellipse	2.94	5.88	18.46	14895	3.14	0.42	5	-42.5	19.76	-839.92
5	Ellipse	3.86	7.72	18.5	14928	2.40	0.52	5	-37.5	16.98	-636.89
6	Ellipse	4.61	9.22	18.51	14936	2.01	0.62	5	-32.5	15.26	-496.07
7	Ellipse	5.14	10.3	18.51	14936	1.80	0.70	5	-27.5	9.70	-266.69
8	Ellipse	5.44	10.9	18.5	14928	1.70	0.74	5	-22.5	10.87	-244.48
9	Ellipse	5.6	11.2	18.49	14919	1.65	0.76	5	-17.5	11.52	-201.52
10	Ellipse	5.72	11.4	18.46	14895	1.61	0.78	5	-12.5	12.03	-150.34
11	Ellipse	5.85	11.7	18.35	14807	1.57	0.80	5	-7.5	12.64	-94.83
12	Ellipse	5.92	11.8	18.22	14702	1.54	0.81	5	-2.5	13.03	-32.58
13	Ellipse	5.97	11.9	17.93	14468	1.50	0.83	5	2.5	13.45	33.63
14	Ellipse	5.99	12	17.46	14088	1.46	0.85	5	7.5	13.88	104.10
15	Ellipse	6	12	16.76	13524	1.40	0.89	5	12.5	14.46	180.76
16	Ellipse	6	12	15.77	12725	1.31	0.94	5	17.5	15.27	267.26
17	Ellipse	6	12	14.48	11684	1.21	1.01	5	22.5	16.43	369.71
18	Ellipse	6	12	12.94	10441	1.08	1.10	5	27.5	17.98	494.47
19	Ellipse	6	12	11.26	9086	0.94	1.22	5	32.5	19.90	646.66
20	Ellipse	6	12	9.48	7649	0.79	1.36	5	37.5	22.21	833.04
21	Ellipse	6	12	7.63	6157	0.64	1.53	5	42.5	24.97	1061.30
22	Ellipse	6	12	5.69	4591	0.47	1.74	5	47.5	28.29	1343.84
23	Ellipse	5.99	12	3.57	2881	0.30	1.99	5	52.5	32.41	1701.76
24	Ellipse	2.16	4.32	0.92	742	0.21	2.13	5	57.5	12.50	718.60
SUM							0.94			378.45	3596.59

XXII Dynamic positioning calculations final design

Table 70, Current forces and moments final design

## XXIII Technical tender document knuckle boom crane

TECHNICAL TENDER

Page 1 of 10



TECHNICAL TENDER DOCUMENT									
This document and all information and data herein or herewith is the confidential and proprietary property of Cargotec Norway AS and is not to be used, reproduced or disclosed in whole or in part by or to anyone without the written confirmation from Cargotec Norway AS. © Cargotec Norway AS Equipment: HMC 3568 LKO 250-32 (1000-15) AHC 2500m									
1				11.11.11	TSS	LMA			
А	Issued for IDC			19.09.11	PUB				
Rev.	Reason for issue:			Date	Auth.	Check.			
Title: OFFSHORE KNUCKLE JIB CRANE									
Customer	:		Project name.:						
	Damen	Shipyard	237 034						
Cargotec Quote no.:			Customer Ref:						
	ST	Mark Couwenberg							
Cargotec de	oc. no.:	No. of pages:							
		10							

Cargotec Norway AS Andøyvelen 23 N-4523 Tel +47 91 68 60 00 Fax +47 38 01 87 01 www.cargotec.com Domicile Kristiansand, Norway Business Identity code NO914248965 Registered office Andgyveien 23 N-4623, Kristiansand, Norway



Loyd's Register Quality Assurance contriles that the Quality Management System for Cargosoc Corporation's business area MacGregor is ISO 9001 compliant.

HAB - KELMAR - MACCRECOR

Page 2 of 10



#### 1 SCOPE OF SUPPLY AND PRICES

The work to be performed includes all management, engineering, supervision, equipment and materials necessary to perform the work as outlined below.

### 1.1 Project management:

- a Provision of overall project management for the completion of the required work.
- b Establishment of schedule and quality documentation
- c Overall administration of the work

### 1.2 Engineering:

- a Preparation of manufacturing procedures.
- b Detail design.
- c Preparing user manual and data book.
- d As built documentation.

### 1.3 Procurement:

Provision of materials and equipment for completion of the work.

### 1.4 Manufacturing:

- a Manufacturing and assembly of units as described in technical section.
- b Manufacturing follow up by Cargotec and eventual class.
- 1.5 Testing:
- a FAT test at Cargotec's facilities for offshore load handling.

### 1.6 Installation (NB! Optional):

- a Installation to vessel at Cargotec's facilities
- b HAT (quayside) Harbour Acceptance Test (Overload test onboard)(Option)
- c SAT (Sea test) Test of crane at sea (Option)

HIRB • KRUMAR • MACGREGOR

Page 3 of 10



### A 100T OFFSHORE KNUCKLE JIB CRANE WITH AHC

- Pos: Qty: Description:
- A1 1 El. hydraulic Self-contained Offshore Knuckle Jib Crane: Type: HMC 3568 LKO 250-32 (1000-15) AHC 2500m

Complete Active Heave Compensated electro-hydraulic driven knuckle jib MacGregor crane for efficient general offshore/subsea load handling, with integrated electro-hydraulic power unit, delivered as a complete unit ready for installation to vessels.

The crane is equipped with a circular foundation for welding/bolting to deck with a height of 5000 mm, a fully equipped operator cabin, a hydraulic driven Active Heave Compensated winch system with SWL 100 tons single line winch, hydraulic cylinder operated luffing and knuckle jibs and a hydraulic driven slew system.

Knuckle jib cranes were originally designed to keep the jib end, including load, as low as possible to reduce pendulum motion caused by vessel movement. However, when these cranes are used to lift large and heavy objects, it is sometimes necessary to have more free-hook height to provide increased space for lifting arrangements, slings etc.

All our knuckle jib cranes are designed to lift high loads with an extended knuckle jib. This includes sufficient strength in the structure and cylinder system to deal with these forces. This feature provides operators with great flexibility during planning of lifting operations.

When the crane is in the over-side working position, with active heave-compensation (AHC) activated and the crane hook in the water, it is still possible to operate jib and slew crane functions. This makes load positioning possible and optimizes other crane functions without shutting down the AHC mode or moving the vessel.

On all larger MacGregor cranes the slew drive system components, including drive gears and motors, are located inside the crane's king. This simplifies maintenance and inspections throughout the entire lifetime of the crane and protects the components from the aggressive environment/surroundings.

The crane is fully tested and adjusted ready for installation by welding/bolting to deck and connection of el. supply to integrated el. slip rings.

HIRB - KRUMAR - MACGREGOR
Page 4 of 10

# CARGOTEC

 Main winch Data:
 2500 meters

 Hook travel length:
 2500 meters

 Wire type and dimension:
 OD Ø64mm, galvanized, non rotating type.

 Hoisting speed, single line, 0-33t:
 0-60 m/min stepless var. on mid lay

 Hoisting speed, single line, 33-66t:
 0-60-30 m/min stepless var. on mid lay

 Hoisting speed, single line, 66-100t:
 0-30-20 m/min stepless var. on mid lay

 (Hoisting speeds are automatic a function of load, therefore speeds are approximate values)

 Main Crane Data

 Slewing speed, R=15/35m:
 0-1/0-0.5 rpm 

 Minimum working radius:
  $\sim 6.5 \text{ m}$  

 Dynamic factor:
  $\psi = 1.3$  (2.0 on pedestal/slew system)

 (Hoisting speeds are automatic a function of load, therefore speeds are approximate values)

#### El.supply data

Power supply connection location: Power supply: Required power, main motors: Required power, aux motors: Required power, emergency: Required power, aux power: Required power, controlsystem, UPS: To terminals inside pedestal 690V/60Hz/3ph, 440V/60Hz 3x300 kW + 1x550 kW 141 kW 50 kW 15 kW (230V/60Hz/3ph) 5 kW (230V/60Hz/1ph)

#### Weight Data

Total weight of crane ex. whip line winch: Weight of whip line winch system: Approximate 270t According to selected option

add buoyancy of the load

## Main hook lifting capacity,

Crane lifting capacity is an automatic step less function of the crane outreach with the following main capacities: (Lifting capacity on outer drum layer, full drum)

a.	Lifting capacity, single line arr.	SWL 250 kN (25t) at 32m outreach
b.	Lifting capacity, single line arr:	SWL 1000 kN (100t) at 15m outreach
c.	Ship to ship capacity:	Derating curves will be issued
d.	Subsea lift capacity:	Reduce above SWL with weight of submerged
		rope and DAF due to hydrodynamic forces and

Auto tension system: Auto tension force setting: Emergency pay out function: High speed auto-tension function included 0-100t, set from operators cabin MOPS and AOPS

HIRB - KALMAR - MACGREGOR



## Table 1: Remaining lifting capacity vs. depth

Capacity	Deck	Wire	Weight dry/wet	1000m	2000m	3000m	3500m
Max SWL=100t	100t	Ø64mm	19.9/17.9kg/m	93t	76t	59t	50t
Max SWL=150t	150t	Ø77mm	29.8/25.0kg/m	141t	116t	91t	79t
Hydrodynamic forces etc. are not considered in this table							

In the buoyancy calculation the volume is calculated from massive steel with a density of steel =  $7850 \text{ kg/m}^3$  and the density of seawater =  $1025 \text{ kg/m}^3$ .

## A2 1 Active Heave compensation system (AHC/AT):

By using the finest and most reliable motion sensors, position sensors and control system components, MacGregor cranes provide the best possible active heave-compensation performance on the market. Accuracy measured to a few centimetres is achievable even under extreme heave conditions.

Max top wire tension, single line during AHC: 1000 kN (100t single line)

 Performance case AHC/AT, 0-50t:

 Heave period:
 10 sec

 Nominal displacement:
 +/- 3.2

 Nominal displacement:
 +/- 3.2 m (6.4 m total motion)

 Max. displacement:
 +/- 4.2 m (8.4 m total motion)

 Max compensation speed:
 2.0 m/s

 Reference system:
 MRU in crane control system

 Performance case AHC/AT, 50-100t:
 12 sec

 Heave period:
 12 sec

 Nominal displacement:
 +/- 3.9 m (7.8 m total motion)

 Max compensation speed:
 2.0 m/s

2.0 m/s MRU in crane control system

Dual sensor system (important safety function):

Reference system:

In our expert opinion, all regulation sensors used in AHC/AT mode are of critical importance and are therefore, specifically focused on during the product design stage. A fail-safe sensor system with dual sensors has been developed, tested and implemented in our products. This system with auto-takeover ensures unique winch function reliability when operating in AHC/AT mode. The load cell is one of these sensors which have a dual output (two channels). This enables the AHC/AT to continue (without stop) in case of a failure in one of these channels. Another sensor is the winch position encoder which is original a Profibus sensor, while a secondary independent analog sensor operates without the Profibus system. If a failure in the default sensor occurs, the secondary sensor takes over immediately, without any stop in AHC/AT mode. These new features significantly increase the system reliability. The crane jib

HIRB • KRUMAR • MACGREGOR

Page 6 of 10



system is also equipped with dual-sensors giving important feedback to the system in AHC/AT mode. The control system will automatically switch to the second sensor if there is a failure in the primary one. All dual sensors will generate alarms if there is deviation between them. This is to warm the operator at an early stage that one of the sensors is not sending a correct value. The operator can easily switch between the sensors, unless one of them has totally failed.

Logging from the verification test when switching from one position encoder to another during AHC



The AHC winch is following a simulated compensating motion (sinus curve), when at this spot the default encoder suddenly fails!  $\rightarrow$  The control system respond immediately by switch to the second encoder, with an almost invisible deviation form the reference/motion curve.

Crane design: The crane is categorized as an offshore crane according to DNV "Standard for Certification No.2.22, Lifting Appliances, October 2008" with all operational and safety features included.

## A3 1 Electro hydraulic power unit:

Complete electro hydraulic power unit of sufficient capacity, totally enclosed unit mounted in the crane king. Hydraulic oil tank is built-in in the crane king structure.

## A4 1 Surface treatment / Paint spec.:

- The external surfaces are sandblasted to Sa 2,5
- International Interspec System 1, or equivalent for general purpose.
- International Interspec System 6, for application on non-ferrous metals.
- International Interspec for Hydraulic Tank, for oil reservoir on inside.
- Top coat color: RAL9010 White

#### Pipe / Fittings material

Pipes and pipe fittings conforms to ISO 8434-1 (DIN 2353) standards. Pipes, Nuts and locking rings in stainless steel AISI 316. All other fittings in el. zn coated steel,

Hoses conforms to EN 856 (SAR R13/12) / EN 857 (SAE R2T) Hose couplings are in regular steel and coated with "Tuff Coat". Fitting system <038 mm pipes: "Walform" DIN 2353. Body in yellow chromate steel Fitting system >038 mm pipes: Flange sys. SAE J518 and ISO6164 in yellow chrome. steel Pipe materials, external OD up to OD 050mm, AISI 316 stainless steel. OD above 050mm, Mild steel

HIRB - KALMAR - MACGREGOR

Page 7 of 10



All couplings/fittings are covered with "Denso Tape" to ensure a NON CORROSIVE environment

A5	1	DNV approval of crane pedestal: Design review and manufacturing control of crane pedestal
A6	1	FAT: FAT test carried out at Cargotec's facilities for offshore load handling. Client invited for attendance.
A7	3	User manual: Contains all required user information as, installation, first start up, operation, maintenand

Contains all required user information as, installation, first start up, operation, maintenance and preservation. All required drawings, diagrams and certificates are included here. English language.

A10 1 Operators Cabin:

The crane is equipped with a well dimensioned operator cabin representing a comfortable work place for the crane operator. The operator cabin is equipped with an ergonomic and dampened operator chair with all main operation handles of joy stick type located in armrests at side of the operators chair. The cabin is fully insulated equipped air condition system, Window wipers, Signal horn, window sun-blinds, FM radio/CD player, VHF / UHF radio and general instrumentation.

The size and comfort of our operator cabins are among the best in the market. The ergonomic control consoles and the screen-based control system provide the operator with a clear view of the crane's status and performance.

# All 4 El. motor starter starter system of Star/Delta type:

This item is included and fitted inside the crane king. Electrical termination of supply cables from crane pedestal mounted main slip ring and to all electrical motors fitted in crane king. Starter cabinet is of Star/Delta type with sequence start of each motor. Starter is separated in two sections for redundant supply from two separate power tables.

- Al2 1 Fully integrated Automatic Grease lubrication system: Two sectioned fully automatic crane grease system for automatic lubrication of all grease points on the MacGregor crane. This system simplifies the maintenance of the crane significantly. The advantage of a central lubrication system is that it releases "a little grease frequently" as opposed to "too much grease infrequently", which is often the case with manual lubrication.
- A13 1 EPS; emergency power system: An emergency power system, consisting of a totally-independent pump/motor system with a separate remote control panel, ensures the safe operation of the crane, even if the main power

HIRB - KALMAR - MACGREGOR

Page 8 of 10



supply (and aux. 230V power supply) fails. All crane and winch functions (not AHC/AT mode) can be operated at <u>full load</u> at reduced speed. The hook-up of the emergency system is done with a cable from the bottom of the pedestal, giving power to the system independent of the slip rings. It is a great advantage that crane operations can continue even if such situation occurs.

A14	1	Main Hook / Block: Subsea swivel hook swivel for single line lift – SWL 100t
A15	2	Flood light: The crane jib is fitted with a pendulum suspended 400W, Marine floodlight in marine enclosures.
A16	2	Helicopter Warning Lights: The crane is fitted with a helicopter warning light, in marine enclosure, on top of main winch and in front of main jib.
A17	1	Extra slip rings: 6 off extra slip rings for ROV monitors and communication system.
A18	1	Winch camera monitoring system: Complete camera monitoring system for all crane winches. LCD flat screen monitor in crane cabin.
A19	1	SPM nipples in electric main motors: All main electric motors are fitted with SPM nipples for condition control.
A20	1	Crane load diagrams: The crane will be delivered with a set of load diagrams covering normal offshore operation modes, including internal lifting on vessel, ship to ship and ship to seabed operations. The diagrams will be calculated and included in crane user manual. The diagrams will also be used as basis for programming the crane compute in cabin.
A21	1	Derating table – ship to ship operation: Derating table for ship to ship lifting is included in scope. The table specifies the crane capacity during loading / offloading operations between mother vessel and another vessel in a specified seastate condition. The key element in these calculations is expected max relative speed between crane hook and load, at time of pick up.

HIRB • KALMAR • MACGREGOR

TECHNI	CAL T	ENDER

Page 9 of 10



OPTIONS:		
1000007150	 11	

AO8201150	Whip line winch:			
	Complete whip line winch mounted on the main jib. Separate wire sheave bracket on knuckle jib.			
	Whip line hook lifting capacity:			
	Safe working load (SWL):	100kN (10t)		
	Hook travel:	150 m		
	Hoisting speed:	30 m/min		
	Weight, incl. wire sheaves and wire:	Approximate 3t		
AO10.1 1	Remote diagnostic (Satellite based sy	stem) control system:		
	Satellite based remote diagnostic syster	n (yearly fee will apply).		
A011.1 1	Power Management System:			
	Crane control system with interface for	bridge monitoring / control of power management.		
AO12.2 1	Bridge Monitor:			
	Includes 17" Slavemonitor with repeate	1.		
A014.3 1	DNV certification Large cranes:			
	The crane is designed, manufactured an	d tested acc to DNV requirements for offshore cranes.		
	As option a third party certification by I	DNV can be included. This includes complete DNV		
	design review/approval, manufacturing	control, FA1 test attendance.		
A015.1 1	Tugger winches 2x4T:	fields 1/ 15 demonstration because front second a		
	from crane cabin. Winches are located of	m side of crane king, just below main jib cylinders.		
A017.1	Personnel lift:	Ality Francisco and a second and ality of		
	Crane designed for personnel lifting cap nower from ship emergency generators	ability. Emergency operation assumed run with el.		
	power non support of generation of	, seeme and an end of the set of stepping.		
AO19.1 1	Air ventilation, pedestal:			
	The crane is equipped with an air coole	r in pedestal, suitable for normal to cold climates.		
AO19.2 1	Water cooling, pedestal:			
	The crane is equipped with a water cool Customer to provide ice water	ler in pedestal, suitable for all climatic conditions.		
	Customer to provide ice water.			
AO22.2 1	Bolted Counter foundation / bolt set 1	HMC 3568:		
	The crane is quoted with a standard, 5m	high pedestal, with the lower end prepared for welding		
	towards deck / substructure.			

HIRB • KALMAR • MACGREGOR

Page 10 of 10



An alternative is to bolt the crane to deck, and this option includes the 5m pedestal to be flanged for bolting in the lower end, prepared for interface towards supplied counter pedestal (400mm incl. flange, due to torque tool for the bolts). Bolts will be supplied by Cargotec.

AO23.1 1 Arctic package, large cranes:

The crane is equipped with an additional package for extreme cold conditions. Includes ice-scrapers, open gratings, heating for oil and motors, steel covers over essential components, low temperature cables and hoses, hydraulic system designed for low temperatures.

HIRB • KALMAR • MACGREGOR

