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Abstract

Breakwaters are structures located in the water and are used to protect an area against undesirable
wave heights. Floating breakwaters are often applied where conventional breakwaters are less
suitable to apply. In general it is attractive to apply floating breakwaters in deep waters where
short waves occur. Situations like this are for example deep lakes where only wind waves (short
waves) are present.

Because floating breakwaters are used to prevent undesirable wave heights, it is important to
know the wave height which will be transmitted by the floating breakwater, given the incident
wave height is known. The effectiveness of floating breakwaters is characterized by the transmission
coefficient, which represents the fraction of the incident wave height which is transmitted by the
floating breakwater. Depending on the boundary conditions of the area which needs to be protected
by the floating breakwater, the maximum allowable transmitted wave height can be determined.
From previous engineering projects it turned out that it is difficult to determine the transmitted
wave height without performing physical model tests or making use of numerical models. The
focus of this research is to identify the steps which can be taken during the design process, in
order to determine the effectiveness of floating breakwaters more accurately.

In this thesis distinction is made between three pontoon (rectangular) types of structures, namely:
fixed breakwaters (partially submerged structures), floating breakwaters anchored by piles (one
degree of freedom) and floating breakwaters anchored by chains/cables (six degrees of freedom).
A number of formulas which can be used to determine the transmitted wave height are compared
with each other. From this comparison it is concluded that there are large deviations, especially for
short waves. These formulas are also compared with physical model data obtained from different
researchers. Based on this comparison conclusions are drawn regarding to the applicability of
the most appropriate formula which can be used to determine the wave transmission. These
conclusions are graphically shown in the form of a flowchart which can be used as a design tool
for engineering purposes.

Areas of interest for engineering purposes where physical model data is missing are modelled
numerically with the linear three dimensional radiation diffraction model AQWA (Ansys). First
it is investigated how well AQWA can model fixed breakwaters and floating breakwaters, by
comparing the calculation results of the numerical models with the results of the physical models.
From this comparison a good agreement is found. Secondly, the calculation results of the areas of
interest are compared with the formulas to determine the transmission coefficient. Based on this
comparison the flowchart solely based on physical model data is extended with numerical model
data. The final result of this thesis is a flowchart which indicates the applicability of the most
appropriate formula which can be used to determine the wave transmission. This flowchart is
suitable to apply during preliminary design stages and gives a good impression of the effectiveness
of the floating breakwater.
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Preface

This thesis is submitted in order to obtain the degree of Master of Science in Civil Engineering
at the Delft University of Technology. The work was carried out in close cooperation with the
Hydraulic Engineering department of Deltares.

In this thesis it is investigated which steps should be taken during the design process in order to
predict the effectiveness of floating breakwaters more accurately. The final product is a flowchart
which can be used as a guideline during the preliminary design stage in order to predict the wave
transmission of floating breakwaters.
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Chapter 1

Introduction

This chapter introduces the thesis topic: ’Effectiveness of Floating Breakwaters’ and discusses
the motive for conducting research on this topic together with the scope of work, objectives and
research questions.

1.1 Background

Breakwaters are structures located in water and are used to protect an area against waves, a
port for instance. Floating breakwaters are classified as a special type of breakwater and are
applied at locations where conventional breakwaters are not suitable to apply [Verhagen et al.,
2009]. In general it is attractive to apply a floating breakwater in deep waters where short waves
occur. Situations like this are for example deep lakes where only wind waves are present. One
of the main advantages of applying a floating breakwater in a marina is that the layout of the
marina can easily be changed and the floating structure can also be used as walkway. From an
economical point of view it is often cheaper to apply a floating breakwater in deep waters instead
of a conventional breakwater [Elchahal et al., 2008].

The application of floating breakwaters for ports is less common. This is because ports are
often located near seas or oceans where higher and longer waves occur than in (deep) lakes.
Floating breakwaters have historically been ineffective in these harsher ocean environments [Briggs
et al., 2002]. The main reason for this is that the wave length relative to the width of the
floating breakwater is large, causing the floating breakwater to move up- and downwards on the
wave without attenuating wave energy. In order to achieve better wave attenuation, the floating
breakwater needs to have a large width relative to the wave length, resulting in very large and
uneconomical designs.

1.2 Motivation for research

The main objective of a floating breakwater is to protect an area against undesirable wave heights.
One of the most important boundary conditions of a marina design is the allowable downtime. This
is the time period in which the marina cannot fulfill its function, which is preventing unwanted
ship movements. Downtime occurs when a certain wave height is exceeded that causes unwanted
ship movements. This implies that waves transmitted by the floating breakwater into the marina
determine the downtime. Therefore, the wave transmission coefficient of the floating breakwater is
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the most important parameter determining its effectiveness. The wave transmission coefficient, Ct,
is defined as the ratio of the transmitted wave height (Ht) to the incident wave height (Hi). A low
wave transmission coefficient implies effective wave attenuation. Because the wave transmission
coefficient is an important parameter for the determination of the effectiveness, it is necessary to
determine this parameter as accurate as possible during the design stage.

Over the past two decades, floating breakwaters are applied more often in marinas, particularly
in areas with large water depths [Elchahal et al., 2008]. The effectiveness of a floating breakwater
strongly depends on the incident wave period and the dimensions of the structure, which makes it
a complex problem. From previous engineering- and research projects on floating breakwaters, it
turned out that the effectiveness of floating breakwaters is often overestimated during the design
stage. One of the main reasons for the overestimation of the effectiveness of floating breakwaters
are the simplified design formulas used to calculate the wave transmission. These design formulas
do not take all the processes of wave attenuation into account, e.g. energy dissipation, overtopping
and motions of the floating structure (a more detailed description is given in section 2.2.6). This
overestimation of the effectiveness of floating breakwaters created the need for a method to predict
the effectiveness of floating breakwaters more accurately during the design stage.

1.3 Scope and research objectives

The research motive is divided into a problem definition and into a research objective. From this a
research question and a number of sub-research questions are formulated, which are shown below.

1.3.1 Problem definition

The problem is defined as follows:

’The effectiveness of floating breakwaters is often overestimated during the design process’

1.3.2 Research objective

The objective is defined as follows:

’Identifying the steps which can be taken during the design process, in order to predict the
effectiveness of floating breakwaters more accurately ’

1.3.3 Research questions

The research question is defined as follows:

’Which steps should be executed during the design process in order to predict the effectiveness of
a floating breakwater more accurately? ’

The sub-research questions are:

1. Which simplified design formula for wave transmission is the most appropriate to apply for
the design of floating breakwaters?

2. Which processes are missing in the present design methods that cause the overestimation of
the effectiveness of floating breakwaters?
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3. How can these processes be included in the design process?

4. Does the wave transmission coefficient change for more realistic wave conditions than gen-
erally included in design formulas, like a 2D-wave spectrum with oblique incident waves?

5. What are the differences related to wave transmission when a floating breakwater is designed
according to the simplified design formulas and a more complete model?

1.4 Approach

This thesis is divided into two phases. Each phase consists out of a number of steps which will be
elaborated in order to obtain answers for the research questions.

Phase I
This phase is a study of literature on floating breakwaters. In this study several types of floating
breakwaters are examined together with their transmission coefficients. Besides this, the most
commonly used formulas for wave transmission are compared with each other and are compared
with experimental data. The following steps are part of this phase:

Step 0: Thesis approach and brief introduction to breakwaters in general.

Step 1: Gain information about the types of floating breakwaters and their wave attenuating
characteristics.

Step 2: Describe the processes which are involved regarding wave attenuation with a floating
breakwater.

Step 3: Describe and compare the most commonly used design formulas determining wave
transmission for pontoon type floating breakwaters.

Step 4: Comparing the formulas for wave transmission (step 3) with data of physical models
for pontoon type floating breakwaters and conclude which theory is the most suitable
to apply in practice. The result will be presented in the form of a flow-chart.

Phase II
In this phase the areas of interest for engineering purposes where physical model data is missing
or where a poor data agreement is found will be identified. Based on these results a numerical
model will be used in order to obtain additional data in these areas of interests. The steps which
are part of this phase are:

Step 5: Identifying the areas of interest for engineering purposes where physical model data
is missing and where a poor data agreement is found between the wave transmission
theories and physical model data.

Step 6: Validating the numerical model with existing data.

Step 7: Use the numerical model to obtain new data in the areas identified in step 5 and
investigate the effects of more realistic wave conditions, e.g. oblique incident waves.
Finally, the flowchart of step 4 will be modified with the new data and can be used
as a guideline during the design process to predict the wave transmission coefficient of
floating breakwaters more accurately.

Step 8: General conclusions are drawn and the research questions are answered.
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These above introduced steps will be included in a number of chapters. The outline of chapters
and steps is graphically shown in Figure 1.1.

Background Research motive

Scope and research 

objectives
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Wave protection
Wave-structure 

interactions

Types of 
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Breakwater applicability 

based on economic 

considerations

History of floating 

breakwaters

Advantages and 

disadvantages of 

floating breakwaters

Classification of 

floating breakwaters

Applicability in 

special cases

Linear wave theory Wave energy transport

Dynamics of floating 

structures

Wave transmission 

theories

Wave transmission 

theories compared 

with experimental data

Conclusions related to 

applicability of wave 

transmission theories

Approach Model validation

New simulations for 

areas of interest
Conclusions 

Chapter 1: Introduction
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STEP 5,6 and 7
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Update flowchart

Figure 1.1: Thesis outline
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Chapter 2

Breakwaters in general

This chapter introduces the general purpose of a breakwater and the processes involved between the
breakwater and waves. Besides this, the most common types of breakwaters are briefly discussed
and based on water depth and construction costs a conclusion is drawn related to the applicability
of the types of breakwaters.

2.1 Wave protection

Ports are used for decades to receive ships which are transporting all kind of goods around the
world. Large ports are playing an important role in the economic development of a country. The
first ports were located in sheltered areas, but these areas became soon too small to accommodate
larger ships. This resulted in the establishment of ports along the coastline, where higher waves
are present. In order to create a suitable area for moored ships, breakwaters were developed to
protect ports against waves. Breakwaters are also used to protect coasts against erosion caused
by waves.

2.2 Wave-structure interaction

Depending on the type of breakwater, the following phenomena might occur when a wave hits the
breakwater:

� Wave reflection;

� Wave run-up;

� Wave transmission;

� Overtopping;

� Diffraction.

2.2.1 Wave reflection

Wave reflection occurs in front of the structure. The reflected wave height (Hr) depends on the
porosity and the slope of the structure. The reflected wave height is the product of the reflection
coefficient (Cr) and the incoming wave height (Hi), where the reflection coefficient is defined as
the ratio of the reflected wave height and the incident wave height, Cr = Hr/Hi. For vertical
non-porous high walls, where no overtopping occurs, the reflection coefficient can be assumed as
1.0 when energy losses are neglected. In this case all the incoming wave energy will be reflected.
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6 Breakwaters in general

2.2.2 Wave run-up

Wave run-up occurs on the slope of the structure and is defined as the phenomenon in which an
incoming wave crest runs up along the slope up to a level that may be higher than the original
wave crest [Verhagen et al., 2009]. Run-up plays an important role in the determination of the
required crest level for dikes and breakwaters. The wave run-up can be limited by applying a
berm or by increasing the roughness of the slope.

2.2.3 Wave transmission

Wave transmission is the phenomenon in which wave energy is passing over, under or through a
breakwater, creating a reduced wave (transmitted wave) at the lee side of the structure [Verhagen
et al., 2009]. The amount of wave transmission is often expressed with a transmission coefficient,
which is defined as the ratio of the transmitted wave height (Ht) and the incident wave height
(Hi), Ct = Ht/Hi. Wave transmission through a breakwater is possible for relatively long waves
and permeable structures. Wave transmission under a breakwater occurs in the case of a floating
breakwater. Wave transmission over a breakwater occurs at low crested breakwaters, where a lot
of overtopping may occur.

2.2.4 Overtopping

Overtopping is the amount of water passing the crest of a structure per unit of time, it can be seen
as the discharge (Q) of water passing the crest of the structure. The dimension is often expressed
as the amount of discharge per running meter of the structure [m3/s/m]. At low crested structures
considerable amounts of water can overtop the structure causing waves (transmission) at the lee
side of the structure.

2.2.5 Diffraction

Diffraction is the turning of waves around objects towards areas which are more sheltered against
waves. The wave amplitudes will be lower in these areas due to the lateral spreading of energy. This
is illustrated by Figure 2.1. In this figure normal incident waves are approaching the headland. If
diffraction were ignored there would be no waves present behind the headland. Due to diffraction
there are waves behind the headland. These waves have a lower amplitude compared to the
incident waves.

Incoming wave

direction

Figure 2.1: Diffraction of waves around a headland with wave rays, [Holthuijsen, 2007]
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2.2.6 Wave-floating breakwater interaction

A number of processes occur when a wave hits a breakwater. Figure 2.2 shows the processes
which occur when an wave hits a floating breakwater. The incident wave with a wave height Hi

contains a certain amount of energy (Ei). When the wave hits the floating breakwater, a part
of the incoming wave energy is reflected (Er), causing a reflected wave (Hr). Another part of
the incoming wave energy is transmitted (Et). The transmitted wave height (Ht) is caused by
the transmitted wave energy under the breakwater, the overtopped amount of water and by the
radiated waves (Hr) caused by the motions of the floating structure. The flow under the floating
structure encounters friction of the structure and looses energy. At the edges of the structure
energy is dissipated and converted into by turbulence (Ed).

Due to the motions of the floating breakwater waves are induced which are radiating away from
the floating breakwater. Depending on the type of anchoring system the breakwater is free to
move with a number degrees of freedom. For each motion in each degree of freedom a wave is
generated, called the radiated wave. This will be discussed in more detail in Section 4.3.

Hi

Ei Er

Et
Ed

Hr Ht

Overtopping

Motions of

Floating Structure

Mooring Lines

Hi = incident wave height

Hr = reflected wave height

Ht = transmitted wave height

Ei = incident wave energy

Er = reflected wave energy

Et = transmitted wave energy

Ed = energy dissipation

HRHR
HR = radiated wave height

Sea/lake side Lee side
(protected area)

Figure 2.2: Interaction between wave and floating breakwater

2.3 Types of breakwaters

There are many types of breakwaters and they are classified according to their structural fea-
tures. In literature often distinction is made between conventional and unconventional types of
breakwaters. Below these types of breakwaters will be discussed briefly.

2.3.1 Conventional breakwaters

Conventional types of breakwaters are used all around the world and a lot of research has been
performed on this topic. This type of breakwater works by reflecting the incoming wave and is
mounted on the bottom. Three different types of conventional breakwaters are discussed below,
which are the Mound types, Monolithic types and Composite types.

Mound types
Mound types of breakwaters are large heaps of loose elements. These elements may consists out
of rock or concrete blocks. This type of breakwater is attractive to apply if the loose elements are
available in the vicinity of the breakwater location and in shallow waters (depth<10m) [Fousert,
2006]. In deeper waters the costs will raise up rapidly because the structure becomes large which
requires an enormous amount of materials.
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rubble mound breakwater

berm breakwater

submerged breakwater

Overtopping

Overtopping

Core

Armour

Toe
R
ip-rap

Core

Core

Armour

Armour

Reshaped profile

Transmission

Overtopping/wave breaking

Berm
Transmission

Hi Ht

Transmission

Hr
Hi HtHr

Hi Ht
Hr

run-up

Figure 2.3: Mound breakwater types

Monolithic types
Monolithic breakwaters have a cross-section which acts as one large solid block. Structures of this
type are including: a block wall, masonry wall and caissons. This type of breakwater is suitable to
apply in medium water depths (10m<depth<24m) [Fousert, 2006], where it becomes cheaper to
apply this type of breakwater instead of a mound type of breakwater. It should be noted that the
soil conditions must be appropriate to enable a stable foundation of these relatively heavy block
elements.

Overtopping

Caisson

HtHi Hr

Figure 2.4: Monolithic breakwater type

Composite types
A composite type of breakwater is a monolithic breakwater in combination with a low-crested
berm. This type of breakwater is good applicable in deeper waters (24m<depth<32m) [Fousert,
2006] and in areas which have appropriate soil conditions for a stable foundation.

vertically composite caisson horizontally composite caisson

Hr
Hr

Overtopping
Overtopping

Core

Caisson
Caisson

Armour

Hi Ht
HtHi

run-up

Caisson

Figure 2.5: Composite breakwater types
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2.4 Breakwater applicability based on economic considerations 9

2.3.2 Unconventional Breakwaters

Besides the conventional breakwaters, there are many other possibilities to attenuate waves. All
these possibilities are included in the group of unconventional- or special type of breakwaters and
are often only suitable in special cases. In most standard cases this type of breakwater appears
to be uneconomical because of the required high structural strength of the breakwater elements.
In deep waters (depths>20m) floating breakwaters starts to become attractive. The following
breakwaters are considered to be unconventional [Verhagen et al., 2009]:

� Floating breakwaters;

� Pneumatic breakwaters/hydraulic breakwaters;

� Pile breakwaters;

hydraulic breakwater

pile breakwater

floating breakwater

Overtopping

Transmission

underflow

Overtopping

Transmission

Ht
Hi Ht

Ht

Transmission

HrHi

HrHiHr HRHR

1 Surge

2 Sway 

3 Heave

4 Roll

5 Pitch

6 Yaw

x

z

y1
2

3

4

5

6

oscillation modes of floating structure

Figure 2.6: Special breakwater types and oscillations floating structures

2.4 Breakwater applicability based on economic considerations

From the above it becomes clear that the applicability of each type of breakwater strongly depends
on the water depth, availability of stones in the vicinity of the breakwater location and the local
soil conditions. Several publications discusses the construction costs of conventional breakwaters.
Fousert [2006] compared these results and added the construction costs of a floating breakwater, his
result is shown in Figure 2.7. From this figure it can be seen that the costs of a floating breakwater
do not vary a lot with water depth compared to the costs of a conventional breakwater versus
water depth. From this it can be concluded that floating breakwaters are an attractive alternative
for water depths larger than approximately 30m. This figure shows only the construction costs of
four types of breakwaters. Other aspects like maintenance costs and specific site conditions are
not taken into account. If these aspects are taken into account the results may vary.
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10 Breakwaters in general

Figure 2.7: Comparison of breakwater costs per running meter depending on the water depth
[Fousert, 2006]
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Chapter 3

Floating Breakwaters

In the previous chapter different types of breakwaters are discussed. In this chapter the focus will
solely be on floating breakwaters. This chapter discusses the history of floating breakwaters and
the most commonly used floating breakwaters.

3.1 History of floating breakwaters

One of the first applications of a floating breakwater was in the year 1811, in Great Britain. The
aim of this floating breakwater was to provide shelter for the fleet at Plymouth [Morey, 1998].
Since then some small research projects on floating breakwaters were executed mainly in Ireland
and in Great Britain, but unfortunately they did not result in building a floating breakwater.

Research continued on floating breakwaters during World War II when a floating breakwater was
required during the Normandy invasion. Great Britain developed a floating breakwater to protect
men and materials against waves during offloading activities in front of the Normandy coast.
This floating breakwater was called the ‘Bombardon’ and consisted out of several iron elements.
The Bombardon breakwater failed during a severe storm which occurred 9 days after the invasion.
During this storm stresses occurred which were eight times higher than the elements were designed
for. Since this event the interest in floating breakwaters declined until 1957, when the U.S. Navy
Civil Engineering Laboratory (NCEL) started to investigate transportable floating units [Hales,
1981]. The objective of these floating units was to protect small working platforms used in cargo
transfer operations.

During the 1970s the demand for floating breakwaters for the protection of marinas increased. At
that time there was a large demand for marinas while appropriate locations for marinas were scarce.
The result was that marinas had to be constructed in deeper waters which were less protected
against waves. Floating breakwaters were used to create an appropriate area for these marinas.
Due to the increasing demand of floating breakwaters many new types of floating breakwaters
were developed. This increased the stimulation for engineers and scientists to develop theoretical
models which were able to describe the behaviour of floating structures exposed to waves [Hales,
1981]. Numerical computer models were developed in order to design and to predict the behaviour
of floating breakwaters.

M.Sc. Thesis A.C. Biesheuvel



12 Floating Breakwaters

3.2 Advantages and disadvantages of floating breakwaters

Whether a floating breakwater is attractive to apply depends strongly on the site specific condi-
tions and on the requirements the floating breakwater has to fulfil. Therefore, determining if a
floating breakwater is suitable to apply the advantages and disadvantages have to be taken into
consideration. The advantages and disadvantages of a floating breakwater in comparison with a
conventional breakwater are briefly summarized below.

3.2.1 Advantages

� At larger water depths they are attractive to apply from economical point;

� Transportability, which enables to change the lay-out of a port easily;

� Applicable at poor soil conditions;

� Hardly any interference with sediment transport processes and water circulation;

� Multiple functions, such as: mooring facilitation, walkway or parking facility (Monaco).

3.2.2 Disadvantages

� Provides less protection against waves;

� Sensitive for wave frequencies close to its natural frequency (resonance);

� Less effective for longer waves;

� Dynamic response to the incoming waves can result into fatigue problems and heavy mooring
forces;

� Maintenance costs are higher due to the dynamic response.

3.3 Classification of floating breakwaters

There are many types of floating breakwaters developed throughout the years. In this study
only the most common types of floating breakwaters are discussed. Information regarding to
the transmission coefficients for these types of floating breakwaters is enclosed as Appendix A.1.
Based on the principle on how floating breakwaters attenuate waves, they can be classified into
two classes [PIANC, 1994]:

� Reflective structures, these types of structures reflect the incoming wave and are often rigid
structures. The term rigid implies here that the structure does not deform under the wave
load. In Appendix A.1.1 information of the wave transmission coefficients is shown for these
types of floating breakwaters.

� Dissipative structures, these types of structures dissipate wave energy by turbulence, friction
and non-elastic deformation. Often these structures are flexible. In Appendix A.1.2 infor-
mation of the wave transmission coefficients is shown for these types of floating breakwaters.

3.3.1 Reflective structures

Single pontoon and double pontoon
This type of floating breakwater is one of the simplest forms of floating breakwaters and is ex-
tensively researched with numerical models and physical models in wave flumes. Its prismatic
shape offers good possibilities for multiple use such as mooring facility for ships, storage areas and
walkways.

A.C. Biesheuvel M.Sc. Thesis



3.3 Classification of floating breakwaters 13

The effectiveness of floating breakwaters anchored by chains or cables is determined by the meta-
center and the radius of gyration. The metacenter is the intersection point of the lines through
the vertical buoyant forces at a zero angle of heel and at an angle of heel, φ. The position of the
metacenter depends on the shape of the structure at and near its water plane [Journee and Massie,
2001]. When a floating object is making an angle φ, the position of the metacenter changes. Due
to the angle φ, the shape of the under water part of the structure will also change and the center
of buoyancy will shift. This is graphically shown in Figure 3.1, where B represents the center of
buoyancy, G represents the center of gravity and Nφ represents the metacenter due to the angle φ.
In order to obtain equilibrium with the external heeling moment, MH , there must be a righting
stability moment MS which equals MH :

MH = MS = ρg∇GZ = ρg∇GNφ sin(φ) (3.1)

Figure 3.1: Rotational equilibrium at an angle of heel φ, [Journee and Massie, 2001]

In Eq.(3.1) is ∇ the displaced volume of water, GZ is the righting stability lever arm and GNφ
is the distance between the center of gravity and the metacenter. From Eq.(3.1) it becomes clear
that the distance between the metacenter and the center of gravity (GNφ) has a large influence
on the stability of the pontoon. From this equation it also follows that for a wide pontoon the
righting stability lever arm will be large, hence a more stable pontoon. For double pontoons this
is the case and therefore these types can serve as a floating pier where cargo can be offloaded.
Appropriate materials to construct these pontoons are concrete and steel.

Single pontoon Double pontoon

HrHi Ht HrHi Ht

Figure 3.2: Floating breakwater, Pontoon type
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14 Floating Breakwaters

A-frame
This type of floating breakwater is applied in many parts of the United States and in Canada. In
these countries there is a large availability of timber by which these breakwaters can be constructed
[Hales, 1981]. Its effectiveness can be increased significantly by increasing the metacentric height,
which is discussed previously. This type of floating breakwater may also be classified as a double
pontoon breakwater, because it consists out of two pontoons in which between a vertical wall is
located.

Figure 3.3: Floating breakwater, A-frame type [Morey, 1998]

Hinged floating breakwater
The hinged floating breakwater [Leach et al., 1985] is a vertical wall extending through the water
level and is connected by a hinge at the bottom. Cables which are running under an angle of 45
degrees relative to the bottom connect the top of the wall with the bottom. The restoring forces
are coming from the buoyancy of the wall and from the cables.

Figure 3.4: Floating breakwater, Hinged type [Leach et al., 1985]

3.3.2 Dissipative structures

Scrap-tire floating breakwater
Different floating breakwater designs are made which consists out of old tires of trucks and cars.
Several investigators like rubber companies and coastal engineers investigated the possibilities to
absorb wave energy with rubber [Hales, 1981]. Some floating breakwaters are consisting completely
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out of rubber, like the design developed by Goodyear. The wave is influenced by this type of
breakwater in at least three ways [PIANC, 1994]:

� Their mass, inertia and damping characteristics induce the first attenuation;

� They form a semi-flexible sheet which tends to follow the fluctuations of the water surface.
This sheet will limit the vertical displacements;

� Their large porosity generates drag forces which contributes to energy losses.

Pile-tire breakwater Goodyear breakwater

Figure 3.5: Floating breakwater, scrap tire types [Harms et al., 1982]

Tethered-float breakwater
The tethered-float breakwater consists of a submerged pontoon which is anchored with cables to
the seabed. Due to the buoyancy of the pontoon the cables are always under tension. On the
pontoon a large number of floats are attached with cables. The floats are at or just below the
water level surface. The wave attenuating effect can be achieved as follows:

� Due to the fluctuating pressure gradient the floats will move and cause drag which results
in energy losses [Hales, 1981];

� When the floats are excited by a wave which period is near to the natural period of the floats,
the floats tends to oscillate out of phase with the incident wave and cause high relative flow
velocities which results in large friction, hence large energy dissipation [PIANC, 1994].

Hi Ht

Figure 3.6: Floating breakwater, Tethered float

Porous-Walled
These types of structures float at or just below the water surface and are the most effective in short
period wave conditions. The wave attenuating effect is obtained by creating drag and turbulence.
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16 Floating Breakwaters

Major eddy formation occurs as well as the fluid moves between the breakwater members, which
increases the loss of energy.

n

a

Porous wall

Hi Ht

Figure 3.7: Floating breakwater, porous wall

Flexible membrane
For short waves in deep water most wave energy is presented in the upper part of the water
column, therefore it is not necessary to have a floating structure with a deep draft. A flexible
floating breakwater may attractive to apply in short wave and deep water situations.

Horizontal Wave trap - short waves
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Vertical Wave trap - long waves

Floating Tupe
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Figure 3.8: Floating breakwater, Wave trap (membrane)

The most successful membrane-type for shorter waves consists of a floating blanket on which
a second blanket, below the floating blanket is attached by lines. The submerged blanket has
valves creating a maximum resistance when rising and minimum resistance when falling. The
wave amplitude will be reduced by the large water mass between the blankets, this is because the
incoming wave tends to accelerate the water mass. This type of wave attenuator is developed by
the U.S. rubber company.

For longer waves the valved blankets are placed vertically and are attached to floating tubes. The
orbital motions of the water particles will be reduced by the blankets and hence energy dissipation.
Figure 3.8 shows the wave trap principle for relatively short and long waves.

3.4 Applicability in special cases

Besides the application of a floating breakwater in deep waters in combination with short waves,
there are some other applications where floating breakwaters maybe suitable to apply.

Floating Ports
Due to the rapidly increasing growth of ships, ports needs to have larger water depths in order to
accommodate these large ships. Ports with large water depths are often very expensive to construct
because of the high quay walls and the large amount of dredging works required. Therefore it might
be attractive to build floating ports which can be located in deep waters. From studies which are
covering this topic (see also Ali [2006] and De Rooij [2006]) it can be concluded that the efficiency
of floating ports is strongly determined by the wave climate. To enable save (off)loading of cargo,
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3.5 Conclusion 17

it is necessary to prevent high waves in the port which causes unwanted ship movements. In order
to make a floating port feasible a floating breakwater will be necessary to attenuate the wide wave
spectrum of oceans and large seas [Ali, 2006]. A major disadvantage of a floating breakwater in an
oceanic environment, are storms with waves heights up to 6 meter and associated periods up to 18
seconds [Briggs et al., 2002]. In order to attenuate these waves, a very large floating breakwater
is required which is in most cases an uneconomic solution.

Offshore Engineering
Another field in which floating breakwaters may be attractive to apply is in offshore engineering.
Offshore windmill parks are booming business these days and the development of these parks is
growing rapidly. In order to execute maintenance on these windmills it is not desirable to have
large waves, resulting in a large downtime of maintenance works. A floating breakwater is relatively
easy to transport and may be suitable to reduce large wave heights to acceptable wave heights,
which do not hinder maintenance activities. In this case maintenance can be continued for a longer
period of time. The same holds for maintenance activities to other offshore located structures.
Because the floating breakwater is not a permanent structure in this case and maintenance will not
be executed during storms, the major drawback related to the difficulty of attenuating long waves
might be rejected here. However, further research related to the feasibility of this applicability
has to be performed.

Local Regulations
Sometimes floating breakwaters are applied at locations where conventional breakwaters seems
to be more attractive to apply. Reasons for this are often local regulations. An example of this
are the local regulations in Bulgaria. When a conventional breakwater is applied in Bulgaria,
it is necessary to apply for a construction permit, which is a time and money consuming job in
Bulgaria. When a floating breakwater is applied in Bulgaria, only a mooring permit is necessary,
which is much easier to obtain [Drieman, 2011].

3.5 Conclusion

There are different ways to attenuate waves and during the years many different types of floating
breakwaters are developed. Each type of floating breakwater has its own theory to determine the
wave transmission coefficient. These different theories are discussed in Appendix A.

In the following sections of this report the focus will be on pontoon type floating breakwaters.
The reasons to focus on this type of floating breakwater are as follows:

� There is a lot of experimental data available for pontoon type floating breakwaters which
makes it possible to compare theories with experimental data;

� Pontoon type floating breakwaters can fulfill several functions, e.g. floating jetty or storage
platforms and are therefore attractive to apply;

� There are a number of theories to predict the wave transmission coefficient of pontoon type
floating breakwaters.
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Chapter 4

Physics of waves and floating
structures

This chapter discusses the motions of floating breakwaters (pontoon types) caused by the incoming
waves. The effectiveness of floating breakwaters largely depends on the incoming waves, therefore
a short description of waves will be given first. Secondly, a simple model will be given which
describes the motions of the floating breakwater due to the incoming waves.

4.1 Linear wave theory

Ocean waves can be described by linear wave theory. The most interesting result of this theory
is a long-crested propagating harmonic wave. Based on this theory, many wave characteristics
can be derived. Besides this, most theories on wave transmission (see also Chapter 5) are based
on linear wave theory. In order to understand the behaviour of waves and its characteristics, an
explanation of linear wave theory is given. For more detailed information and the derivations of
the formulas given below, reference is made to Holthuijsen [2007] and Appendix B.

Linear wave theory is based on two equations: a mass balance equation and a momentum balance
equation. These two equations are describing the kinematic and dynamic aspects of waves. Waves
can be described by linear wave theory when the amplitude of the wave is small compared to the
water depth and wave length. In this case non-linear effects of waves are negligible. Furthermore it
is assumed that water is an ideal fluid, which implies: incompressible, constant density, no viscosity
and no rotation of water particles around their own axis. From the mass balance equation the
continuity equation can be derived:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (4.1)

In which:
u = velocity
x, y, z = indicating direction of a 3-dimensional reference frame

The position of the reference frame is located on the mean water level surface, with the positive
x-axis towards the right and the positive z-axis upwards, see also Figure 4.1.
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20 Physics of waves and floating structures

To solve this equation use is made of the velocity potential function φ = φ(x, y, z, t), shown below
as Eq.(4.2). This function is defined as a function of which the spatial derivatives are equal to
the velocities of the water particles [Holthuijsen, 2007]. Substituting this in Eq.(4.1) the Laplace
equation is obtained (Eq.(4.3)).

Velocity potential funcion : ux =
∂φ

∂x
, uy =

∂φ

∂y
, uz =

∂φ

∂z
(4.2)

Laplace equation :
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (4.3)

Boundary conditions can be defined at the water surface (η) and at the bottom in terms of the
velocity potential function. The kinematic boundary conditions are:

Kinematic boundary conditions


∂φ

∂z
=
∂η

∂t
at z=0

∂φ

∂z
= 0 at z=-d

(4.4)

With the kinematic boundary conditions and the velocity potential function the Laplace equation
can be solved. The kinematic boundary condition at the water surface (z = 0) represents the
vertical velocity of the surface elevation. The kinematic boundary condition at the sea bed (z =
−d) implies a zero vertical velocity at the seabed. One of the analytical solutions of the Laplace
equation with the kinematic boundary conditions is a long-crested harmonic wave, propagating in
the positive x-direction. In fact, this wave represents the surface elevation and can be defined as:

η(x, t) = a sin(ωt− kx) (4.5)

In which:
a = wave amplitude [m]
ω = radian frequency [rad/s], defined as 2π

T , where T is the wave period [s]
t = time [s]
k = wave number [rad/m], defined as 2π

L , where L is the wave length [m]

The above solution of the Laplace equation is based on a mass balance (continuity equation) and
the kinematic boundary conditions only. This implies that all the kinematic aspects (velocities
and accelerations) can be derived from Eq.(4.5). Since wave energy implies the movement of water
particles, the equations above are essential for describing the distribution of wave energy in the
water column.

When waves are propagating they are transporting energy in the direction of propagation. This
horizontal transport of energy is due to the work done by the wave induced pressure [Holthuijsen,
2007]. This wave induced pressure can be described by the dynamic aspects of waves, which are
derived from the momentum balance.

Momentum is by definition the mass density of water times the velocity of the water particles. The
second law of Newton states that the rate of change of momentum equals force. For momentum
in the x-direction the following momentum balance equation is obtained:

∂(ρux)

∂t
+
∂ux(ρux)

∂x
+
∂uy(ρux)

∂uy
+
∂uz(ρux)

∂z
= Fx (4.6)

The dynamic boundary condition is defined as pressure (p): p = 0 at z = 0 (4.7)
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The pressure (p) at the water surface is assumed as zero and functions as a reference pressure
since the interest is in the pressures below the water surface. In Eq.(4.6) Fx is the body force
in x-direction per unit volume. The second, third and fourth terms are the advective terms and
contain non-linear terms. In order to make the theory linear, these terms should be removed from
the momentum equation. After applying some mathematics and ignoring the non-linear terms in
Eq.(4.6) the linearised Bernoulli equation for unsteady flow is obtained, shown as Eq.(4.8).

∂φ

∂t
+
p

ρ
+ gz = 0 (4.8)

Just as the kinematic boundary condition, it is possible to express the dynamic boundary condition
in terms of the velocity potential. This implies z = η with p = 0 and results in:

∂φ

∂t
+ gη = 0 at z=0 (4.9)

The equations above together with the boundary conditions are summarized in Figure 4.1. In this
figure the Laplace equation together with the kinematic boundary conditions and the linearised
Bernoulli equation with the dynamic boundary conditions are shown.

Figure 4.1: Linearised basic equations and boundary conditions for the linear wave theory, in terms
of velocity potential [Holthuijsen, 2007]

4.1.1 Regular waves

The most interesting result of linear wave theory is a long-crested propagating harmonic wave. This
harmonic wave (regular wave) can be defined as a propagating sinusoidal wave with an amplitude
(a), radian frequency (ω) and wave number (k). The equation of the sinusoidal harmonic wave is
shown below.

η(x, t) =
H

2
sin

(
2π

T
t− 2π

L
x

)
= a sin(ωt− kx) (4.10)

The phase speed is the forward speed (c) by which the wave propagates while the phase (ωt− kx)
remains constant. Mathematically this implies that the time derivative of the phase is zero. From
this the phase speed is obtained (Eq.4.11). The parameters used in the equations are shown in
Figure 4.2.

c =
ω

k
=
L

T
(4.11)
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Figure 4.2: Propagating harmonic sine wave, [Holthuijsen, 2007]

4.1.2 Irregular waves

If one observes the water surface, it can be seen that it continuously changes without repeating
itself. When the water surface elevation is measured, the resulting signal will be like an irregular
wave signal, which can be modelled by the sum of a large number of harmonic wave components:

η(t) =

N∑
i=1

ai cos(2πfit+ αi) (4.12)

In which:
N = large number of frequencies
αi = phase
ai = amplitude
fi = wave frequency

Each wave component is a propagating regular wave which has a sinusoidal shape. From this it
follows that the irregular wave signal, which describes the surface elevation, can be decomposed
by a Fourier series into a number of harmonic waves, see Figure 4.3. The result is a set of values
for the amplitude (ai) and phase (αi). Each set of values of ai and αi belongs to the frequency
fi. The benefit of this model is that it is possible to describe the waves as a spectrum.

Waves are propagating in a certain direction. The direction can be taken into account by con-
sidering the propagation of the harmonic wave in the x, y-plane. If θ is the angle relative to the
positive x-axis and using the principles for the one-dimensional variance density spectrum (See
Section B.1.2), the two-dimensional variance density spectrum (Figure 4.4) is obtained:

E(f, θ) = lim
∆f→0

lim
∆θ→0

1

∆f∆θ
E{ 1

2a
2} (4.13)

In which:
E(f, θ) = variance density as function of frequency (f) and direction (θ) [m2/Hz/radian]
a = amplitude as a random variable [m]

From the variance density spectrum it is relatively easy to obtain a wave energy density spectrum.
This can be obtained by multiplying the variance density spectrum with the density of the water
and with the gravitational acceleration. Besides obtaining an energy density spectrum from a
variance density spectrum, it is also possible to obtain the response spectrum of motion of a
floating breakwater from the variance density spectrum, which is discussed in more detail in
Section 4.3.2.
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Figure 4.3: Wave record analyses, ζa rep-
resent wave amplitude, [Journee and Massie,
2001]

Figure 4.4: Two-dimensional variance den-
sity spectrum as the distribution of the to-
tal variance of the sea-surface elevation over
frequency and direction (polar coordinates),
[Holthuijsen, 2007]

4.2 Wave energy transport

In section 2.2.6 a short overview is given of the processes which occur when a wave hits a floating
breakwater. These processes are shown in Figure 4.5. Because the transmitted wave depends
largely on the amount of wave energy transmission below the structure, the concept of wave
energy transport is briefly discussed below.

Hi

Ei Er

Et
Ed

Hr Ht

Overtopping

Motions of

Floating Structure

Mooring Lines

Hi = incident wave height

Hr = reflected wave height

Ht = transmitted wave height

Ei = incident wave energy

Er = reflected wave energy

Et = transmitted wave energy

Ed = energy dissipation

HRHR
HR = radiated wave height

Sea/lake side Lee side
(protected area)

Figure 4.5: Interaction between wave and floating breakwater

A wave at the water surface implies movement of water particles, which represents potential
and kinetic energy. The wave induced potential energy (per unit horizontal surface area) can be
obtained by considering potential energy as a function of water depth (z) and integrating this
function from the mean water level surface (z = 0) to the actual water level (η), the result is
shown as Eq.(4.14). In this equation the overbar represents time-averaging (one wave period) and
a represents the amplitude of a harmonic wave. Figure 4.6 shows the upper and lower boundaries
of the integrals.

Epotential =

∫ η

0

ρgz dz = 1
2ρgη

2 = 1
4ρga

2 (4.14)
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Figure 4.6: Integral from bottom to surface as a function of f(z) beneath the wave, divided into
two integrals: one below the mean surface (z = 0) and one above. [Holthuijsen, 2007]

Kinetic energy is defined as 1
2 × mass × velocity squared. The kinetic energy in the entire water

column, time-averaged and per unit surfaced area is then:

Ekinetic =

∫ η

−d

1
2ρu

2 dz = 1
4ρga

2 (4.15)

With u =
√
u2
x + u2

z and a represents the amplitude of a harmonic wave. The total wave induced
energy density can be described as a function of amplitude (a) or as a function of wave height
(H), under the assumption of a = 1

2H.

E = Epotential + Ekinetic = 1
2ρga

2 = 1
8ρgH

2 (4.16)

The transport of wave energy consists of three contributions, namely: transport of potential energy,
kinetic energy and work done by pressure. These contributions are shown in Eq.(4.17). Per unit
crest length and time-averaged the energy transport in the positive x-direction is:

Penergy =

∫ η

−d
(ρgz)ux dz︸ ︷︷ ︸

potential energy transport

+

∫ η

−d
( 1

2ρu
2)ux dz︸ ︷︷ ︸

kinetic energy transport

+

∫ η

−d
(−ρgz + Pwave)ux dz︸ ︷︷ ︸
work done by pressure

(4.17)

The term ρgz of the first and third expression on the right-hand side of Eq.(4.17) will cancel each
other out. The second expression on the right-hand side is third order in amplitude and may be
ignored in a second-order approximation. The third expression on the right-hand side is second-
order in amplitude and is therefore the only integral to be evaluated. For details of the evaluation
of Eq.(4.17) and integration to a certain order accuracy reference is made to Holthuijsen [2007].
If the phase speed is represented by c then the solution of Eq.(4.17) is:

Penergy = Enc with E = 1
2ρga

2 and n =
1

2

(
1 +

2kd

sinh(2kd)

)
(4.18)

4.3 Dynamics of floating breakwaters

Water waves cause periodic loads on floating breakwaters. In response to these periodic loads
the floating structure accelerates and displaces, causing internal forces in the structure and in
the mooring system. In this section the equations which describes the motion of the floating
breakwater are discussed.
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A floating body in a three-dimensional reference frame has six degrees of freedom. Three trans-
lations of the structures center of gravity in the direction of the x−, y− and z-axes and three
rotations around these axes. Figure 4.7 shows these translations and rotations for a pontoon type
floating breakwater.

Figure 4.7: Degrees of freedom for a floating body in a three-dimensional space, [Fousert, 2006]

The incoming wave is a harmonic wave and therefore the equations describing the motions of the
structure will be harmonic as well. When the motions of the centre of gravity are known, the
motions in any point on the structure can be calculated by the use of superposition. The motions
of the floating body’s center of gravity can be described by the following equations [Journee and
Massie, 2001]:

1. Surge: x = xa cos(ωet+ εxζ)
2. Sway: y = ya cos(ωet+ εyζ)
3. Heave: z = za cos(ωet+ εzζ)
4. Roll: φ = φa cos(ωet+ εφζ)
5. Pitch: θ = θa cos(ωet+ εθζ)
6. Yaw: ψ = φa cos(ωet+ εψζ)

(4.19)

In which:
na = Motion amplitude [m], [rad]
εnζ = Phase angle [rad]
ω = Circular wave frequency [rad/s]

4.3.1 Dynamics of floating structures in regular waves

The equations which are describing the motion of a floating rigid structure are derived from the
second law of Newton. From this two vector equations are obtained [Journee and Massie, 2001],
one for describing translations (Eq.4.20a) and one for describing rotations (Eq.4.20b).

→
F =

d

dt

(
m

→
U
)

(4.20a)

→
M =

d

dt

(→
H
)

(4.20b)
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In which:
→
F = resulting external force acting in the center of gravity [N]
m = mass of rigid body [kg]
→
U = instantaneous velocity of the center of gravity [m/s]
→
M = resulting external moment acting about the center of gravity [Nm]
→
H = instantaneous angular moment about the center of gravity [Nms]
t = time [s]

In many cases the motions of floating structures have a linear behaviour. This implies that when
the amplitude of the excitation force is doubled, the amplitude of response will be doubled as well,
while the phase shifts between the response and excitation does not change.

Because a floating structure is a linear system, superposition of the oscillations of the structure
in still water and the forces acting on the restrained structure in waves can be applied in order to
derive the resulting motion of the structure. This is illustrated by Figure 4.8 below.

Figure 4.8: Superposition of Hydromechanical and Wave loads, [Journee and Massie, 2001]

From this superposition, two important assumptions are made for the terms on the right hand
side of Figure 4.8.

1. The so-called hydromechanical forces and moments are induced by the harmonic oscillations
of the rigid body, moving in the undisturbed surface of the fluid.

2. The so-called wave exciting forces and moments are produced by waves coming in on the
restrained body.

The hydromechanical forces and moments acting on an oscillating structure in still water are the
linear hydrodynamic reaction forces and moments, e.g., damping- and spring forces. The coupled
equations of motion in six degrees of freedom in waves can be written as:

6∑
j=1

mi,j ẍj = Fi for: i = 1, ...6 (4.21)

In which:
mi,j = 6 × 6 matrix of solid mass and inertia of the structure
ẍj = acceleration of the structure in direction j (6 × 1 vector)
Fi = sum of forces or moments acting in direction i (6 × 1 vector)

Eq.(4.21) states that the resulting force (Fi) equals mass × acceleration (second law of Newton),
in which the acceleration is defined as the second derivative of location (x) as a function of time,
x(t). From this equation, the six equations of motions are derived.

The resulting force (Fi) consists out of three components:
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1. Harmonic (regular) wave exciting forces and moments
→

(f)

2. Linear hydrodynamic damping force (c
→
ẋ)

3. Linear hydrostatic spring force (k
→
x)

Eq.(4.21) can be expressed as a damped-mass-spring-system. This results in a coupled second
order differential equation, governing six degrees of freedom:

(M + A)
→
ẍ + C

→
ẋ + K

→
x =

→
f (4.22)

In which:
M = 6 × 6 matrix of solid mass and inertia of the structure
A = 6 × 6 matrix of the added mass
→
ẍ = acceleration of the structure (6 × 1 vector)
→
ẋ = velocity of the structure (6 × 1 vector)
→
x = location of the structure with respect to reference frame (6 × 1 vector)
C = 6 × 6 matrix of hydrodynamic damping coefficient
K = 6 × 6 matrix of hydrodynamic spring constant
→
f = excitation force acting on the structure (6 × 1 vector)

When Eq.(4.22) is solved for vector
→
ẍ, the solution is

→
x, which is an expression of the deflection

and rotation of the structure for each degree of freedom for a specific wave forcing (f).

4.3.2 Dynamics of floating structures in irregular waves

The variance density spectrum (Fig.4.4) describes the surface elevation of water waves generated
by wind in a statistical sense. From the variance density spectrum the response spectrum of the
motion can be obtained by using a transfer function of the motion. For a system which is linear
and constant in time, the two-dimensional amplitude response function is shown as Eq.(4.23).

R̂(f, θ) =
X̂(f, θ)

x̂(f, θ)
(4.23)

In which:
X̂(f, θ) = indicates the amplitude of the response wave
x̂(f, θ) = indicates the amplitude of the excitation (harmonic wave)

The response spectrum EX(f, θ) is defined as the excitation spectrum Ex(f, θ) times the square
of the amplitude response function R̂(f, θ):

EX(f, θ) = Ex(f, θ)
[
R̂(f, θ)

]2
(4.24)

The exciting harmonic wave has a direction of propagation. The response of the structure is not
a wave propagating with a certain direction. Depending on the anchor system the motion of the
structure is fixed into one or several directions. The amplitude of the non-directional response
spectrum can be determined from the two-dimensional response spectrum. This can be achieved
by integrating the two-dimensional response spectrum (Eq.4.24) over all directions, resulting in
the one-dimensional response spectrum shown as Eq.(4.25).

EX(f) =

∫ 2π

0

EX(f, θ) dθ (4.25)
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Chapter 5

Performance of floating breakwaters

This chapter discusses the different theories which are available to predict the wave transmission
of pontoon-type floating breakwaters. These theories will be compared with each other and with
experimental data obtained from different researches. Based on this conclusions are drawn regard-
ing to the applicability of these theories. Formulas to determine the wave transmission coefficients
for non-pontoon floating breakwaters discussed in Section 3 can be found in Appendix A.

5.1 Wave transmission theories

The performance of floating breakwaters is defined by the amount of wave attenuation, which
strongly depends on the amount of energy reflection (Er), energy transmission (Et) and energy
dissipation (Ed). This is graphically shown in Figure 5.1. Many wave transmission theories are
related to wave energy transport (Section 4.2) and are derived from linear wave theory, which is
discussed in Section 4.1.
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Hi = incident wave height

Hr = reflected wave height

Ht = transmitted wave height
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Figure 5.1: Interaction between wave and floating breakwater

For effective attenuation of short waves only blockage of the upper part of the water column
is necessary, because there is the most amount of wave energy present. For longer waves the
structure should have a larger draft in order to block a larger part of the water column where
the wave energy is present. A large draft also implies large mooring forces on the structure. This
requires an optimization between draft and wave attenuation in order to obtain an economical
design.
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30 Performance of floating breakwaters

In general, for all common types of floating breakwaters the effectiveness is defined by the trans-
mission coefficient. This coefficient is defined as the transmitted wave height over the incident
wave height:

Ct =
Ht

Hi
(5.1)

This equation only holds for regular waves. A wave climate consists of short-crested irregular waves
and in this case it might be better to use the transmitted wave energy instead of the transmitted
wave height according to Hales [1981], the result is shown below:

Ct =
H2
t

H2
i

=
Et
Ei

(5.2)

In this thesis most of the time regular waves are considered and Eq.(5.1) will be used in order to
determine the wave transmission coefficient. In the case of irregular waves, the significant wave
height of the incident wave record Hs;i and transmitted wave record Hs;t will be used in Eq.(5.1),
instead of the wave height H. The significant wave height is the mean of the highest one-third of
waves in the wave record [Holthuijsen, 2007].

5.1.1 Wave transmission theories for fixed rigid reflective structures

Fixed rigid structures are structures which movements relative to the bottom are negligible small
and no deformations of the structure itself occur. The term fixed may be unrealistic in conditions
where the frequency of the excitation is close to the natural frequency of the structure, in this
case large motions of the structure may occur.

One of the first researchers who studied wave transmission for partially submerged structures was
Ursell [1947] and Macagno [1954]. Several years later Wiegel (1960) developed a linear theory,
named as: “Power transmission theory”. This is the time rate of energy propagation and is one of
the most well known theories. All the theories discussed below are assuming a fixed structure which
only blocks wave energy in the upper part of the water column. Processes such as, turbulence
(energy dissipation), radiated waves due to the motions of the floating structure and overtopping
are not taken into account by these theories.

Ursell (1947)
Ursell [1947] developed a theory for partial transmission and partial reflection of waves in deep
water. The theory of Ursell is based on the following assumptions:

� Rigid structures;

� Fixed structures;

� Infinitely small width;

� Deep water (linear wave theory);

� Full reflection of the upper part of the water column where the structure is present;

� No overtopping.

With the aid of the modified Bessel function, Ursell obtained the following expression for the
transmission coefficient:
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Ct =
K1

2πD

Li√
π2I2

1

2πD

Li
+K2

1

2πD

Li

(5.3)

In which:

I1( 2πD
Li

) = first order modified Bessel function of the first kind

K1( 2πD
Li

) = first order modified Bessel function of the second kind

D = draft of the structure [m]
Li = incident wave length [m]

The modified Bessel functions are the solutions to the Bessel equation, which is a second order
ordinary differential equation.

Figure 5.2: Transmission coefficient in deep water for Ursell and Wiegel, [Bouwmeester and Van
der Breggen, 1984]

From Figure 5.2 it becomes clear that the influence of draft relative to wavelength (D/L) plays
an important role in wave transmission. The larger the draft of the structure the lower the wave
transmission coefficient will be.

Macagno (1954)
Macagno made the following assumptions:

� Rigid structures;

� Fixed structure;

� Finite width;

� Deep water (linear wave theory);

� Not known if reflection is taken into account;

� No overtopping.

Based on the above, assumptions Macagno developed the following equation [Bouwmeester and
Van der Breggen, 1984]:

Ct =
1√

1 +

[
kiB sinh(kid)

2 cosh(kid− kiD)

]2
(5.4)
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In which:
ki = incident wave number [rad/m]

h

D

B

(a) Definition sketch (b) Transmission coefficient

Figure 5.3: Definitions of Macagno’s formula and theoretical results

Wiegel (1960)
Wiegel investigated the concept of wave power transmission and developed a theory which con-
siders wave power. His assumptions are as follows:

� Rigid structures;

� Fixed structure;

� Deep water (linear wave theory);

� No reflection;

� No overtopping.

Wave power is the product of the wave induced pressure (Pwave) and wave-induced horizontal
fluid velocities (u), time-averaged over one wave period. Wiegel assumed in his model that the
transmitted wave power over the full water depth occurs between the bottom of the structure and
the bottom of the sea/lake, which is in fact a fraction of the incident wave power. When use
is made of the distribution of the wave power in the water column, Eq.(5.5) is derived. In this
equation the left hand side represents the transmitted wave power over the full water depth and
the right hand side represents a fraction of the incident wave power (wave power below structure).
The overbar represents time-averaging over one wave period. The theory of Wiegel is graphically
shown in Figure 5.4.

∫ 0

−d
Pwave;t ut dz =

∫ −D
−d

Pwave;i ui dz (5.5)

d

hH

D

Figure 5.4: Theory of Wiegel
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The transmission coefficient is obtained by substituting the expressions of Pwave and u in Eq.(5.5)
and evaluating this integral, which results in:

Ct =

√
2ki(d−D) + sinh(2ki(d−D))

sinh(2kid) + 2kid
(5.6)

Figure 5.5 shows the influence of the draft of the structure over wavelength (D/L) and the influence
of water depth over wavelength (d/L) on the transmission coefficient. From this figure it can be
seen that for deep water conditions (d/L ≥ 0.5) the amount of wave attenuation becomes larger
than for intermediate water depth conditions (0.05 < d/L < 0.5).

Figure 5.5: Ct values for the theory of Wiegel, shallow water d/L = 0.05, intermediate water depth
d/L = 0.25 and deep water d/L = 0.50, [Bouwmeester and Van der Breggen, 1984]

Modified Power Transmission Theory (1996)
Several researchers investigated the theory of Wiegel and compared this theory with physical
model tests. From this it turns out that in general Wiegels theory over-predict wave transmission
in deep water conditions and under-predict wave transmission in shallow water conditions. The
theory of Wiegel does not take partial wave reflection and energy dissipation into account. Kriebel
and Bollmann [1996] developed the Modified Power Transmission Theory based on the theory of
Wiegel, but they included partial wave reflection.

In this theory it is assumed that the wave induced pressure under the structure equals the sum
of the incident wave induced pressure (Pwave;i) and the reflected wave induced pressure (Pwave;r).
The result is that the net pressure under the structure is larger than assumed by Wiegel. The
horizontal fluid velocity is modified by subtracting the reflective horizontal fluid velocity (ur)
from the incident horizontal fluid velocity (ui), resulting in a lower fluid velocity than assumed
by Wiegel. From this a similar equation like Eq.(5.5) can be obtained. The equation proposed by
Kriebel and Bollmann [1996] is:

∫ 0

−d
(Pwave;i + Pwave;r)(ui − ur) dz =

∫ −D
−d

Pwave;t ut dz (5.7)

Due to the implementation of the reflective wave, the solution of the equation above contains two
unknowns. To solve this problem use is made of continuity of fluid velocities below the floating
structure which is defined as, ut = ui−ur. Ignoring phase shifts and assuming linear wave theory,
Kriebel and Bollmann found the following relationship:
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Ct = 1− Cr with Cr =
Hr

Hi
(5.8)

With this relationship and the solution of Eq.(5.7), the following expression is obtained for the
wave transmission coefficient:

Ct =
2Ct,Wiegel

1 + Ct,Wiegel
(5.9)

Kriebel and Bollman compared the theory of Wiegel, with their own developed Modified Power
Transmission Theory and with the Eigenfunction Solution theory. This latter theory is the exact
mathematical solution for a linear water wave interaction with a thin vertical structure. From
Figure 5.6 it can be seen that the Modified Power Transmission Theory shows a better agreement
with the experimental data than the theory of Wiegel.

Figure 5.6: Comparison of three wave transmission theories in deep water with experimental data,
w = draft, d = water depth and L = wavelength, [Kriebel and Bollmann, 1996]

5.1.2 Wave transmission theories for non-fixed rigid structures

The previous formulas are valid for structures which are fixed relative to the bottom. Since floating
breakwaters are non-fixed and are able to move, it would be better to implement the motions of
the structure into the formula for the wave transmission coefficient. Recently, Ruol et al. [2013a]
developed a modification factor for the formula of Macagno in order to approximate the wave
transmission coefficients of floating breakwaters which are anchored by chains or cables. The
other formula’s presented in most literature are computer models based on numerical codes.

Ruol (2012)
The formula of Ruol et al. [2013a] is a function of the relative period χ, which is defined as the wave
peak period over the natural heave period (Tp/Th). Initially this formula was developed for pi-type
floating breakwaters anchored by chains, shown on the left-hand side in Figure 5.7. The vertical
plates on both sides of the pontoon resembles the Greek letter π, which explains the name of this
type of floating breakwater. The pi-type floating breakwater is an effective solution for increasing
the draft without increasing the mass too much. The vertical attached plates will increase the
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vortices on the edges of the plates resulting in energy dissipation. Due to these vertical plates
the effectiveness of the floating breakwater increases, which is also shown by experimental models
performed by Koutandos et al. [2005]. The applicability of this formula is examined by Ruol et al.
[2013b]. Based on this, it is concluded that this formula is also valid for ordinary pontoon type
floating breakwaters anchored by chains. Furthermore, the formula is valid for a relative draft
(D/d) range between 0.20 and 0.60 and for relative period range (Tp/Th = χ) between 0.50 and
1.50.

The formula developed by Ruol is in fact a modification factor for the existing formula of Macagno
(Eq.5.4). This modification factor is based on a dataset of experimental data and is a function
of the relative period. The natural period for heave motion of a floating structure is difficult to
obtain without performing experiments. This is because of the added mass which has to be taken
into account. The added mass can be seen as additional mass which represents the mass of the
fluid which has to be accelerated when the structure accelerates. Therefore, this additional mass
has to be taken into account when the mass of the structure is considered. The natural frequency
of heave motion when neglecting damping can be described as:

ωh =

√
K

Mtotal
=

√
K

M +Ma
=

√
ρwgB

M +Ma
(5.10)

In which:
K = linear spring constant [N/m]
M,Ma = mass of structure and added mass respectively [kg]
ρw = density of the water [kg/m3]
g = gravitational acceleration [m/s2]
B = width of structure [m]
ωh = natural heave radian frequency [rad/s]

For heave motion the added mass can be assumed as the volume of water under the floating
structure, where the boundary of the volume is described by a semicircle with a radius equal to
half the width of the structure. This is graphically shown in Figure 5.7. Because the additional
mass can be approximated, it follows that the natural frequency of heave can be described by
Eq.(5.11).

B

D1

D2

B

D

M

D

Figure 5.7: Added mass for pi-type- (left) and pontoon type (right) floating breakwater

ωh =

√
ρwgB

ρwBD + ρw
π
8B

2
=

√
g

D + π
8B

(5.11)

Ruol et al. [2013a] investigated the natural heave period for pi-type floating breakwaters and
compared analytical calculations with experimental measurements. Based on this Ruol et al.
concluded that the value π

8 ≈ 0.39 should be 0.35. From Eq.(5.11) the natural heave period can
be determined:
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ωh =
2π

Th
→ Th =

2π√
g

D + 0.35B

(5.12)

Deltares performed experiments for a pontoon type floating breakwater anchored by piles. Based
on a free decay test a natural heave period of 3.95 s was found for the pontoon. When Eq.(5.12)
is used to determine the natural heave period, a natural heave period of 4.06 s is found. The
difference of the natural heave period between the experiment and calculation is very small (0.11
seconds). Therefore, it is concluded that Eq.(5.12) is suitable to apply to determine the natural
heave period.

The dimensionless parameter χ, which has been mentioned earlier, is defined as follows by Ruol
et al. [2013a]:

Tp
Th
≈ χ =

Tp
2π

√
g

D + 0.35B
(5.13)

Eq.(5.13) considers the peak period Tp, which implies irregular waves. Macagno assumes in his
theory only regular waves, hence the mean period T . In general the peak period is 10% larger
than the mean period T . In order to apply Macagno in combination with χ, the wave period T
for the calculation of χ should be multiplied with a factor of 1.1, i.e. χ should be increased with
10%. Another remark related to this formula is that it contains several parameters describing the
system, such as: width of the structure B, draft of the structure D and the wave period T or Tp.

Based on a number of experimental datasets and curve fitting, Ruol et al. developed a modification
factor β(χ) for the formula of Macagno. With the developed modification factor β the ”new”
formula for wave transmission becomes as follows:

Ct = β(χ)Ct;Macagno with β(χ) =
1

1 +

(
χ− χ0

χ0

)
exp−

(
χ− χ0

σ

) (5.14)

In which:
β = modification factor based on curve fitting
χ0 = 0.7919, with 95% confidence interval 0.7801, 0.8037
σ = 0.1922, with 95% confidence interval 0.1741, 0.2103

Figure 5.8: Results of the formula of Ruol et al. [2013a], applied on floating breakwaters anchored
by chains and piles, the legend of this figure is presented in Table 5.1
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Figure 5.8 shows the results of the formula obtained by Ruol et al. [2013a], presented as Eq.(5.14).
In this figure experimental results for floating breakwaters anchored by piles and chains are shown.
These data points are obtained from the authors themselves and from several other researchers
in order to validate their proposed formula. The dotted lines represents ± 20% confidence limits.
Based on this figure Ruol et al. concluded that an excellent agreements is found for pi-type floating
breakwaters anchored by chains for the datasets of Gesraha [2006] and Martinelli et al. [2008]. A
good agreement is found for the three models anchored by cables for Peña et al. [2011]. Floating
breakwaters anchored by piles are generally overestimated. The table below shows the datasets
used in Figure 5.8. All these datasets excluding Ruol et al., 2013a (first line of this table) are used
to validate this formula.

Symbol Dataset Type of anchorage Pontoon type Waves

shaded circle Ruol et al., 2013a cables pi-type irregular
solid circle Martinelli et al., 2008 cables pi-type irregular
square Gesraha, 2006 cables pi-type regular
diamond Koutandos et al., 2005 piles pontoon regular
open asterisk Cox et al., 2007 piles pontoon regular
solid asterisk Cox et al., 2007 piles pontoon irregular
left triangle Peña et al., 2011 (Model A) chains pi-type regular
upward triangle Peña et al., 2011 (Model B) cables pi-type regular
right triangle Peña et al., 2011 (Model C) cables pi-type regular

Table 5.1: Experimental data floating breakwaters used in Figure 5.8

5.1.3 Comparison of wave transmission theories

In the foregoing sections a number of theories are discussed related to wave transmission. All these
theories are valid for fixed structures in deep water, except for the theory of Ruol et al. In order to
gain insight in the differences between these theories, the discussed theories are plotted in Figure
5.9. In this figure the transmission coefficient is shown as a function of the dimensionless values χ
(used for non-fixed structures) and L/d (can be used for all structures). Although nearly all the
theories are valid for fixed structures, comparisons will also be made for non-fixed structures in
order to investigate how well these theories approximate floating structures. The values used to
perform this calculation are typical conditions for a floating breakwater used to protect a marina
located in a lake.

From the graphs below it becomes clear that in shallow water conditions (depth/Lwave ≤ 1
2 →

Lwave/depth ≥ 2) the theories converge to an approximately constant value. The theories of
Wiegel, Kriebel and Bollmann, Ursell, Ruol et al. and Macagno show for wave periods larger than
the natural period of the structure (χ > 1) transmission coefficients larger than 50%. The theory
of Kriebel and Bollmann takes wave reflection into account which is not included in the theory of
Wiegel. The effect of wave reflection between the theories of Kriebel and Bollmann and Wiegel
becomes clear for values of χ smaller than 1.0, where the transmission coefficient according to
Kriebel and Bollmann is smaller than the wave transmission coefficient according to Wiegel. In
this figure it also becomes clear that the theory of Ruol et al. differs from Macagno for χ-values
between 0.5 and 1.5.
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Figure 5.9: Wave transmission theories compared for Twave/Theave and Lwave/waterdepth. The
boundary conditions used for the calculations are: d=25m, T=[0 - 7] s, D=1m, B=4m, Th=3.1 s.

When the phenomenon of wave energy is considered, it is clear that most wave energy is presented
in the upper part of the water column. Therefore, it is expected that the draft of the structure
plays an important role for the blockage of wave energy. Besides this, the width of the structure
will have an effect on wave energy dissipation. It should be obvious that when the draft of the
structure equals the water depth (D/d = 1), there will be no wave transmission. In this case all
the wave energy in the entire water column is blocked. To illustrate this a calculation is performed.
The calculation results are shown in Figure 5.10 which shows the influence of the relative draft
of the structure on the wave transmission coefficient. The values used to perform this calculation
are typical values for a floating breakwater located in a lake. It is remarkable that the theories of
Macagno and Ruol et al. predicting wave transmission for the case when the water depth equals
the draft of the floating structure, the other theories do not predict wave transmission in this
case. A remark related to this figure is that formula of Ruol et al. is applicable for values of D/d
between 0.2 and 0.6 Ruol et al. [2013b].

Figure 5.10: Wave transmission theories
compared for draft vs. water depth, D/d.
The boundary conditions used for the cal-
culations are: d=25m, T=6s, D=[0 - d]m,
B=4m, Th=[2.3 - 10.3]s

Figure 5.11: Wave transmission theory of
Macagno and Ruol et al. as function of wave-
length over width (Lwave/B). The bound-
ary conditions used for the calculations are:
d=25m, T=[0 - 6]s, Lwave=[0 - 55.8]m,
D=2m, B=4m
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In the theories discussed above, Macagno and Ruol et al. are the only theories which takes the
draft and the width of the structure into account. Figure 5.11 shows the influence of the ratio
of the wavelength to the width of the structure on the transmission coefficient. From this figure
it can be seen that the transmission coefficient increases rapidly for 0 < L/B < 6.0. For L/B >
6.0 the increase of the wave transmission coefficient goes is more slowly. Figure 5.12 shows the
influence of the draft and the width of the structure on the wave transmission coefficient for the
formula of Macagno, which is the only formula for fixed structures which takes both the draft and
the width of the structure into account. The lower panel in this figure shows the contours of the
upper panel.

Figure 5.12: Wave transmission theory of Macagno as function of width (B) and draft (D). The
boundary conditions used for the calculations are: d=25m, T=5s, D=[0 - 25]m, B=[0 - 25]m, deep
water depth/Lwave = 0.64.

Figure 5.13: Contour plot of Figure 5.12
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Conclusions

� There are a number of wave transmission theories available and there is a large difference
between the theories, which can be seen in Figure 5.9. The largest differences between the
theories occur for deep water situations (L/d ≤ 2). Because of the large differences between
the theories it is unclear for the designer when to use which theory.

� The difference between the theory of Wiegel and Kriebel and Bollmann is that Kriebel and
Bollmann takes wave reflection into account. This effect becomes clear for short waves. For
long waves this effect is negligible small.

� A large draft results in a low transmission coefficient, see Figure 5.10. When the draft of
the structure equals the water depth it is expected that there is no wave transmission. The
theory of Macagno and Ruol et al. shows wave transmission for this case while the other
theories do not show any wave transmission.

� The formula of Macagno and Ruol et al. are the only formulas which takes the draft and
the width of the structure into account.

5.2 Wave transmission theories compared with experimental data

There are a number of wave transmission theories available which are discussed in the previous
section. Nearly all these theories are valid for fixed structures in deep water where linear wave
theory holds. In order to investigate how well these theories are applicable for floating and non-
floating (fixed) structures, these theories are compared with experimental data. The aim of this
comparison is to conclude which theory is appropriate to apply under which condition.

The experimental datasets are obtained from literature and are shown in the sections below. Dis-
tinction is made between three types of anchorage systems, namely: anchorage for fixed structures,
anchorage by piles (one degree of freedom) and anchorage by chains (six degrees of freedom), see
also Figure 5.14. This distinction is made because the dynamics is different between these three
systems. The wave steepness (H/L) in the experimental models is approximately between the 1%
and 6%. The experiments obtained from literature are performed with a horizontal bottom and
no overtopping is included.

B

anchored by piles 

Hr HtHi

d

D

Pile structure

pi-type, anchored by chains

HtHrHi

Chains Chains

D

B

d

HtHrHi

fixed, supported on piles 

B

D

Pile structure
d

HR HR

HR HR

Figure 5.14: Different types of anchorage for floating breakwaters

For each experimental dataset the wave transmission theories are plotted together with the ex-
perimental data. In these graphs the y-axis represents the transmission coefficient and the x-axis
represents different dimensions, which depends on the type of anchoring system. For fixed break-
waters the x-axis represent the wavelength over draft (L/D) and for floating breakwaters anchored
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by piles or by chains the x-axis represents the relative period χ ≈ Tp/Th or wavelength over width
(L/B). These ratios are all dimensionless in order to compare different datasets with each other.
The reason for applying different ratios on the x-axis for different types of anchoring systems has
to do with the dynamics which is totally different for each type of anchoring system, e.g. it is
not useful to use the relative period χ for fixed structures since their natural heave period is zero.
The difference of the wave transmission coefficient between each theory and each experimental
data point is shown in a bar plot to identify where the largest differences occur. The Root Mean
Square Error (RMSE, shown as Eq.5.15) is determined for each theory to see how well the theories
compared to each other approximate the experimental data. The RMSE applied in this case is
a measure of the spread of the experimental data (measured transmission coefficients) about the
predicted transmission coefficients (wave transmission theories). The RMSE presents the same
units which are used to calculate RMSE, i.e. when the RMSE is calculated with transmission
coefficients defined as percentages, the RMSE will indicate the spread of the experimental data
around the theories in percentages as well. The plots for each experimental dataset and the ta-
bles which show the RMSE are shown in Appendix C.1. In this section the conclusion of each
comparison will be discussed.

RMSE =

√∑N
i=1 (Ct;theory − Ct;exp)2

N
(5.15)

Below an example is shown of one experimental dataset where the theories and the measured data
points are plotted in Figure 5.15. The difference between each theory and experimental data point
is plotted in Figure 5.16. The RMSE for each theory for this particular dataset is shown in Table
5.2. From this table it can be seen that the theory of Ruol has the smallest RMSE and this theory
might be the most appropriate one to apply for this dataset.

Figure 5.15: Experimental data from Peña
et al. [2011], (d) = 6.75m, (B) = 4.0m and
(D) = 1.2m. FB anchored by chains/cables

Figure 5.16: Differences between theories
and experimental data of Figure 5.15
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Formula RMSE: D/d=0.18, B/d=0.59

Macagno 0.1694
Wiegel 0.1606
Ursell 0.2110
Kriebel and Bollmann 0.2476
Ruol et al. 0.1570

Table 5.2: Root mean square errors between theories and experimental data of Peña et al. [2011],
regular waves, FB anchored by chains

5.2.1 Fixed breakwaters

Experimental data for fixed breakwaters (partially submerged rigid structures) is obtained from
Koutandos et al. [2005] and from Gesraha [2006]. The formulas for fixed breakwaters which are
discussed above are compared with these experimental datasets. For all the comparisons reference
is made to Appendix C.1.1. In Table 5.3 the characteristics of each used dataset is shown.

Dataset Waves Range T [s] D/d [-] B/d [-] d [m]

Koutandos et al. [2005] Regular 2.4 - 10.5 0.2; 0.25; 0.33 1.00 2.00
Koutandos et al. [2005] Irregular 2.8 - 5.5 0.2; 0.25; 0.33 1.00 2.00
Gesraha [2006] Irregular 0.6 - 1.8 0.4 0.75 0.43

Table 5.3: Experimental data fixed floating breakwaters

The largest difference of these two datasets are the wave periods and thus the wavelengths. The
ratios D/d are in the same order of magnitude. In order to compare these datasets well, the
dimensionless ratio L/D is considered, shown in Table 5.4. This ratio represents the wavelength
to draft. The draft has a large influence on the blockage of wave energy in the water column.
When the waves are long relative to the draft the wave transmission coefficients increases.

L/D range Gesraha
irregular waves

L/D range Koutan-
dos reguler waves

L/D range Koutan-
dos irregular waves

3.3 - 19.6 12.3 - 114.7 15.13 - 58.2

Table 5.4: Ratios of wavelength to water depth

When the dataset of Koutandos et al. is compared with the theories it becomes clear that for long
waves, thus large L/D-values the theory of Kriebel and Bollmann (one theory) and the theory of
Wiegel are the most appropriate one to apply. For very long waves the results of these two theories
are the same because wave reflection becomes negligible small. In this dataset it is observed that
all the theories are overestimating the transmission coefficient.
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Dataset RMSE:
D/d=0.2
B/d=1.0

RMSE:
D/d=0.25
B/d=1.0

RMSE:
D/d=0.33
B/d=1.0

Koutandos et al. [2005]
regular waves

0.1500 0.1500 0.1500

Koutandos et al. [2005]
irregular waves

0.1500 0.1000 0.0500

Table 5.5: RMSE for Kriebel and Bollmann

The dataset of Gesraha relates to shorter waves and contains smaller L/D-ratios, see Table 5.4.
According to this dataset the theory of Macagno approximates the date the best compared to the
other theories. In this dataset it is observed that all the theories are underestimating the wave
transmission.

Dataset RMSE:
D/d=0.4
B/d=0.75

Gesraha [2006]
irregular waves

0.1500

Table 5.6: RMSE for Macagno

Conclusions
Based on experimental data obtained from different researchers a number of conclusions can be
drawn for fixed breakwaters. These conclusions holds for the ranges 0.75 < B/D < 1.0 and for
0.20 < D/d < 0.4.

� In general it can be concluded that the RMSE is large and there is a poor agreement between
the theories and experimental data, see Table 5.5 and Table 5.6. The dataset of Koutandos
et al. is overestimated by all the theories. This overestimation becomes larger when the
L/D-values decreases, hence shorter waves.

� For values L/D < 5 the transmission coefficient is smaller than 0.3 for both datasets.

� Notwithstanding the large RSME, there are two different theories applicable for fixed struc-
tures which can be used during the preliminary design stage, namely: Kriebel and Bollmann
(1) and Macagno (2). For 5 < L/D < 15 the theory of Macagno can be applied. For
15 < L/D < 95 the theory of Kriebel and Bollmann can be applied. When the above
theories are applied the wave transmission will be overestimated in general, but for a prelim-
inary design the theories will give a good estimation regarding the effectiveness of the fixed
structure.

5.2.2 Floating breakwaters anchored by piles

The experimental data for heave floating breakwaters obtained from literature is shown below in
Table 5.7. The heave floating breakwater tested by Deltares differs from the other heave floating
breakwaters shown in Table 5.7 in the sense of an additional fixed vertical screen between the piles.
On these piles a floating caisson is located which is able to move up and downwards on the waves.
The advantage of this screen is that a larger part of the water column is blocked, resulting in lower
transmitted waves. For the calculation of the transmission coefficients the draft includes the length
of the vertical screen. The dimensionless parameter set on the x-axis is the ratio wavelength to
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draft L/D and not the dimensionless period χ. This is because the dimensionless period χ includes
the draft of the floating structure. For the dataset of Deltares the draft of the floating structure
is not equal to the draft of the floating breakwater in total, which includes the vertical screen.
Therefore, the applicability of χ is not appropriate in this case.

Dataset Waves Range χ [-] or L/D [-] D/d [-] B/d [-] d [m]

Cox et al., 2007 Irregular χ = 0.94 - 1.56 0.40 0.57 4.20
Deltares Irregular L/D = 2.07 - 11.06 0.38 0.12
Deltares Irregular L/D = 1.46 - 7.71 0.54 0.12
Deltares Irregular L/D = 2.60 - 7.16 0.41 0.13
Deltares Irregular L/D = 1.82 - 5.06 0.58 0.13
Koutandos et al., 2005 Irregular χ = 1.12 - 3.51 0.20 1.00 2.00
Martinelli et al., 2008 Irregular χ = 0.77 - 1.38 0.20 0.49 0.52
Cox et al., 2007 Regular χ = 0.76 - 1.90 0.40 0.57 4.20
Deltares Regular L/D = 1.49 - 11.85 0.38 0.12
Deltares Regular L/D = 1.04 - 8.33 0.54 0.12
Deltares Regular L/D = 2.64 - 7.79 0.41 0.13
Deltares Regular L/D = 1.86 - 5.48 0.58 0.13
Koutandos et al., 2005 Regular 1.32 - 2.62 0.20 1.00 2.00

Table 5.7: Experimental data floating breakwaters anchored by piles

In Appendix C.1.2 plots are shown for each dataset where the experimental data is compared to
the theories. According to these plots it can be concluded that the theory of Wiegel approximates
this dataset the best in comparison with the other theories. This is the case for both regular
and irregular waves. For all the data points the theory of Wiegel is underestimating the wave
transmission coefficient with more or less the same deviation for each L/D-value set on the x-
axis. Table 5.8 shows the RMSE for the theory of Wiegel which has the best agreement with the
experimental data. The effect of the length of the vertical screen becomes also clear in these plots.

Dataset RMSE:
D/d=0.38
B/d=0.12

RMSE:
D/d=0.54
B/d=0.12

RMSE:
D/d=0.41
B/d=0.13

RMSE:
D/d=0.58
B/d=0.13

Deltares regular waves 0.1531 0.2204 0.1273 0.1961
Deltares irregular waves 0.1250 0.2213 0.0952 0.1642

Table 5.8: RMSE for the theory of Wiegel for the dataset of Deltares

The RMSE for the theory of Wiegel is large and a very poor agreement is found with the ex-
perimental data. When the theory of Wiegel is used for this type of structures (heave floating
breakwater including vertical screen) the wave transmission coefficient is always underestimated.
When the vertical screen is neglected the wave transmission is overestimated by the theories.

In Section 5.1.3 the wave transmission theories are compared with each other and it is concluded
that a large draft results in a low transmission coefficient. When the ratio wavelength to break-
water width (L/B) is large, the wave transmission coefficient will be large as well. This is because
the floating breakwater moves upwards and downwards on the waves and reflects very little wave
energy, hence a large transmission coefficient. From this it can be concluded that the parame-
ters wave period (which is related to the wavelength), draft and breakwater width influence the
effectiveness of floating breakwaters with one degree of freedom. These three parameters are all
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combined in the dimensionless period χ, shown as Eq.5.16. From this equation is becomes clear
that when the width (B) and the draft (D) are large, χ will be small. From all the figures shown
in Appendix C.1.2, in which experimental data is compared with the theories, it can be seen that
for small χ-values the wave transmission coefficient is small. Therefore, this parameter will be
used to set on the x-axis for floating breakwaters anchored by piles (without fixed vertical screen)
because all the parameters which influence the transmission coefficient are included in χ.

Tp
Th
≈ χ =

Tp
2π

√
g

D + 0.35B
(5.16)

The dataset of Cox et al. is well approximated by the theory of Kriebel and Bollmann, see Table
5.9 for the RMSE. This is remarkable since the difference of the relative draft between the dataset
of Deltares and Cox et al. is small. This difference can be explained by the vertical screen used
in the experiments of Deltares, which is not used by Cox et al. Cox et al. performed their
experiments with two different wave heights. From Table 5.9 it can be seen that the influence of
the wave height on the wave transmission coefficient is very small.

Dataset RMSE: D/d=0.40
B/d=0.57 Hs=0.4m

RMSE: D/d=0.40
B/d=0.57 Hs=0.8m

Cox regular waves 0.1026 0.0959
Cox irregular waves 0.0360 0.0309

Table 5.9: RMSE for the theory of Kriebel and Bollmann for the dataset of Cox et al. [2007]

The tests executed by Koutandos et al. for regular waves are performed for a wide range of
χ-values. The relative draft used by Koutandos et al. is smaller than the relative draft of the
tests performed by Cox et al.. The smallest RMSE for this dataset is obtained with the theory
of Kriebel and Bollmann, shown in Table 5.10. For χ-values smaller than 1.3 it can be seen that
the theory of Macagno approximates the experimental data better than Kriebel and Bollmann.
This is probably due to the combination of a small D/d-ratio and a large B/d-ratio, which holds
for the dataset of Koutandos et al. and not for the other datasets. However, for a wide range of
χ-values the theory of Kriebel and Bollmann is suitable to apply and the differences between the
theory of Kriebel and Bollmann and Wiegel are small. The table below shows the RMSE for the
theory of Kriebel and Bollmann.

Dataset RMSE:
D/d=0.20
B/d=1.0

Koutandos et al. regular waves 0.1230
Koutandos et al. irregular waves 0.1417

Table 5.10: RMSE for the theory of Kriebel and Bollmann for the dataset of Koutandos et al. [2005]

The dataset of Martinelli et al. contains low χ-values and has the same relative draft as the
experiments performed by Koutandos et al. and by Cox et al.. When considering the RMSE it
can be seen that the theory of Kriebel and Bollmann approximates this dataset the best. Besides
this, the differences between the theories of Kriebel and Bollmann and Wiegel are larger than for
the datasets of Koutandos et al. and Cox et al., implying that for this dataset wave reflection
has a larger effect than for the datasets of Cox et al. and Koutandos et al.. Table 5.11 shows the
RMSE for the theory of Kriebel and Bollmann for the dataset of Martinelli et al.
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Dataset RMSE:
D/d=0.20
B/d=0.48

Martinelli et al. irregular waves 0.1013

Table 5.11: RMSE for the theory of Kriebel and Bollmann for the dataset of Martinelli et al. [2008]

Conclusions

� Although all the theories used for the comparisons with experimental data are derived for
fixed structures, a reasonable agreement is found for floating breakwaters with one degree
of freedom without a fixed vertical screen for the theory of Kriebel and Bollmann.

� Floating breakwaters anchored by piles which includes a fixed vertical screen between the
piles show a very poor agreement with the theories. With the aid of physical models the
wave transmission can be determined for this type of structure. For the dataset of Deltares
(includes a fixed vertical screen) it is concluded that the theories of Kriebel and Bollmann
and Wiegel are showing more or less the same trend as the experimental data points, but
the deviation is very large. When the length of the fixed vertical is screen is taken into
account as draft, the wave transmission theories of Kriebel and Bollmann and Wiegel are
underestimating the effectiveness. If the length of the vertical screen is neglected in the wave
transmission theories, the theories of Kriebel and Bollmann and Wiegel are overestimating
the effectiveness. Because of the very poor agreement between the experimental data and
theories, this type of floating breakwater is not taken into account regarding the conclusions
in the next sections of this report.

� The relative period χ is an appropriate value to set on the x-axis for floating breakwaters
anchored by piles without a fixed vertical screen between the piles. The ratio χ contains all
the parameters which influence the wave transmission coefficient. For floating breakwaters
anchored by piles with a fixed vertical screen between the piles, where the length of the
vertical screen is included in the draft, the ratio L/D is appropriate to apply.

� Based on the experimental datasets of Cox et al. and Koutandos et al. it is concluded that
for values of 0.6 < χ < 3.5 the theory of Kriebel and Bollmann is good applicable. For
χ < 0.6 the wave transmission coefficient is smaller than 0.3. When the value of χ increases
the differences between the theories of Kriebel and Bollmann and Wiegel becomes smaller.
Based on the dataset of Cox et al. it can be concluded that the influence of the wave height
on the wave transmission coefficient is small.

� When the ratio D/d is small and the ratio B/d is large, it is observed that for the dataset of
Koutandos et al. the theory of Macagno shows a good agreement when the theory of Kriebel
and Bollmann becomes larger than the theory of Macagno. This occurs for small χ-values
representing short waves.

5.2.3 Floating breakwaters anchored by chains

Floating breakwaters anchored by chains have a different behaviour than floating breakwaters
anchored by piles. Instead of one degree of freedom there are six degrees of freedom and some
motions are coupled, such as sway and roll. Table 5.12 shows the datasets which are used for the
comparisons.
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Dataset Waves Range χ [-] D/d [-] B/d [-] d [m]

Gesraha, 2006 Irregular 0.56 - 1.67 0.4 0.75 0.43
Martinelli et al., 2008 (flume) Irregular 0.78 - 1.23 0.13 0.40 0.50
Martinelli et al., 2008 (basin) Irregular 0.78 - 1.20 0.13 0.40 0.50
Brebner and Ofuya, 1968 Regular 0.69 - 1.03 0.15 1.10 0.45
Brebner and Ofuya, 1968 Regular 0.66 - 0.99 0.19 1.10 0.45
Brebner and Ofuya, 1968 Regular 0.61 - 0.86 0.30 1.10 0.45
Peña et al., 2011 Regular 0.80 - 1.45 0.18 0.60 6.75
Peña et al., 2011 Regular 0.80 - 1.20 0.18 0.57 6.75
Peña et al., 2011 Regular 0.60 - 1.10 0.32 0.60 6.75

Table 5.12: Experimental data floating breakwaters anchored by chains

Peña et al. performed tests for pi-type floating breakwaters anchored by chains for deep and
intermediate water depths. In their experiments they changed the length of the vertical plates
and the width of the structure, resulting in different D/d and B/d ratios. When the RMSE is
considered (Table 5.13) for this dataset, it is remarkable to see that for each test there is another
theory which shows a good agreement with the data, while the changes they made are relatively
small.

Dataset RMSE:
D/d=0.17
B/d=0.53

RMSE:
D/d=0.32
B/d=0.59

RMSE: D/d=0.18
B/d=0.59

Peña et al. [2011] regular
waves

Ursell = 0.1206 Macagno = 0.0488 Ruol et al. = 0.1570

Table 5.13: Lowest RMSE for different theories for the dataset of Martinelli et al. [2008]

The experiments by Brebner and Ofuya are performed for pontoon floating breakwaters where
the D/d ratios are nearly the same as for the experiments performed by Peña et al.. When these
two datasets are compared with each other, the differences are the ratios B/d and L/B. The B/d
ratio in the experiments of Brebner and Ofuya are twice as large as in the experiments of Peña
et al. and the ratio L/B is in the experiments of Peña et al. twice as large as in the experiments
of Brebner and Ofuya. The ratio L/B plays a significant role for floating breakwaters with one
degree of freedom, which is mentioned in the previous section. Again this ratio is considered
(Table 5.14) and it can be concluded that for large L/B ratios the transmission is large as well.
This can be seen in the plots for the data of Brebner and Ofuya and Gesraha, see Figures 5.17
and 5.18.

Dataset L/B range regular waves L/B range irregular waves

Gesraha [2006] - 1.32 - 7.87
Martinelli et al. [2008] 2D - 0.84 - 2.01
Martinelli et al. [2008] 3D - 0.84 - 2.00
Brebner and Ofuya [1968] 1.3 - 3.3 -
Peña et al. [2011] 2.60 - 6.60 -

Table 5.14: Ratios of wavelength to breakwater width
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Figure 5.17: Data from Brebner and Ofuya
[1968], regular waves (d) = 0.46m and heave
period (Th) = 1.12s

Figure 5.18: Data from Gesraha [2006], ir-
regular waves (d) = 0.43m and heave period
(Th) = 5.89s

Ruol et al. [2013a] developed a modification factor for the formula of Macagno in order to take the
motions of the floating breakwater into account. Ruol et al. [2013b] investigated between which
ranges of χ and D/d their formula is applicable. They concluded that for χ-values between 0.5 and
1.5 and for D/d-values between 0.20 and 0.60 their formula is suitable to apply for both pi-types
and pontoon types floating breakwaters.

When the data of Brebner and Ofuya is compared with the formula of Ruol et al. a good agreement
if found between the experimental data and the predicted values. For the dataset of Brebner and
Ofuya with a D/d-value of 0.15, the formula of Macagno gives a good agreement and the formula
of Ruol et al. as well, see Figure 5.17.

Dataset RMSE:
D/d=0.15
B/d=1.11

RMSE:
D/d=0.19
B/d=1.11

RMSE:
D/d=0.30
B/d=1.11

Brebner and Ofuya
[1968] regular waves

Macagno =
0.0593

Ruol et al. =
0.0592

Ruol et al. =
0.0615

Table 5.15: Lowest RMSE for different theories for the dataset of Brebner and Ofuya [1968]

Martinelli et al. [2008] performed experiments in a flume (two-dimensional) and performed exper-
iments in a basin (three-dimensional). Both experiments are performed with a D/d ratio equal
to 0.13. For the two-dimensional dataset a good agreement is found for the theory of Macagno.
For the three-dimensional dataset a good agreement is found for the theory of Ruol et al. and the
wave transmission coefficients are for this dataset smaller than for the two-dimensional dataset.
In this chapter only two-dimensional datasets are considered and therefore the three-dimensional
dataset is neglected here.
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Dataset RMSE: 2D,
D/d=0.13
B/d=0.4

Martinelli et al.
irregular waves

0.0411

Table 5.16: RMSE for different theories for the dataset of Martinelli et al. [2008]

The experiments performed by Gesraha [2006] for the free floating breakwater are executed under
the conditions where the formula of Ruol et al. is applicable. When the RMSE is considered, it is
concluded that the formula of Ruol et al. is the most suitable one to apply.

Dataset RMSE:
D/d=0.4
B/d=0.75

Gesraha irregu-
lar waves

0.1107

Table 5.17: RMSE for different theories for the dataset of Gesraha [2006]

Conclusions

� Three dimensionless ratios are considered in order to make distinction between the applica-
bility of the different theories. These ratios are: width over water depth (B/d), draft over
water depth (D/d) and the relative period (χ). For long wave periods the dimensionless
values χ and L/B becomes large and the wave transmission coefficient becomes large as
well.

� According to the datasets of Peña et al. and Brebner and Ofuya the formula of Ruol et al.
is applicable. This holds for the following ranges: 0.5 < B/d < 1.10 and 0.20 < D/d < 0.60
and 0.60 < χ < 1.70.

� According to the datasets of Martinelli et al. and Brebner and Ofuya the formula of Macagno
is applicable. This holds for the following ranges: 0.4 < B/d < 1.10 and D/d < 0.20 and
0.60 < χ < 1.20.

� Areas of interest where experimental data is missing holds for the ratio of B/d < 0.5 where
D/d and χ are in the range where the formula of Ruol et al. is applicable. Another area of
interest is for the ratio B/d < 0.4 where the formula of Macagno is applicable. These areas
will be investigated with a numerical model in the next chapter.

5.2.4 Oblique incident waves

Till so far all the presented experimental data is related to normal incident waves, i.e. waves
normal to the breakwater. In more realistic situations waves will approach the breakwater not
only perpendicular, but also under an angle (oblique incident waves). Therefore it is important to
know what the transmission coefficient will be for oblique incident waves in order to model more
realistic situations. Only a few experiments are conducted in wave basins where transmission
coefficients are measured for oblique incident waves. Figure 5.19 shows results of an experiment
performed in a wave basin. From this figure it can be seen that the transmission coefficient
decreases when the wave angle increases relative to the normal of the breakwater.
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Figure 5.19: Transmission coefficient for oblique incident waves, θ = 0◦ implies normal incident
waves, [Martinelli et al., 2008]

The decrease of the wave transmission coefficient for oblique incident waves can be taken into
account when the above theories are used for a specific type of breakwater. This figure only shows
data for relative periods between 0.7 and 1.0. In the next chapter a numerical model will be used
in order to investigate the effect of oblique incident waves for larger values of Tp/Th.

5.3 Conclusion

In this chapter the performance of floating breakwaters is discussed together with the available
theories to predict the wave transmission. Based on literature and experimental data a number
of conclusions are drawn. With these conclusions a flowchart is constructed which indicates the
applicability of the different theories for wave transmission. In this flowchart three different types
of floating breakwaters are considered, namely: fixed breakwaters (partially submerged), floating
breakwaters anchored by piles and floating breakwaters anchored by chains/cables. The wave
steepness (H/L) of the experimental models is approximately between the 1% and 6% for both
regular waves and irregular waves. Besides this, the experiments are performed with a horizontal
bottom and no overtopping is included.

In order to compare experimental data with the theories for wave transmission, there are a num-
ber of relevant dimensionless parameters available to set on the x-axis. For fixed breakwaters
and floating breakwaters anchored by piles with a vertical fixed screen between the piles, the
dimensionless value wavelength over draft L/D is suggested. For floating breakwaters anchored
by piles (without a fixed vertical screen) and floating breakwaters anchored by chains/cables the
dimensionless value peak period over natural heave period χ = Tp/Th is suggested. A conclusion
which holds for all the considered structures is that the wave transmission coefficient is small for
short waves. It is observed that the transmission coefficient is smaller than 30% for L/D < 5 and
for χ < 0.6.

Fixed breakwaters
For values of L/D < 5 the wave transmission coefficient is smaller than 30%. For 5 < L/D < 15
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the theory of Macagno is suitable to apply. For 15 < L/D < 95 the theory of Kriebel and Bollmann
is suitable to apply. For L/D > 95 there is no experimental data available. Data for this area of
interest will be generated with a numerical model , which is discussed in the next chapter. For large
L/D-values all the theories are underestimating the wave transmission. For small L/D-values all
the theories are overestimating the wave transmission coefficients. The RMSE for these theories is
approximately 0.15 in the order of magnitude. This implies that there is a poor agreement between
the theories and experiments. When the above theories are applied, the wave transmission will be
overestimated in general. For a preliminary design these theories can be applied and will give a
good estimation regarding the effectiveness of the fixed breakwater.

Floating breakwaters anchored by piles
Although all the theories used for the comparisons with experimental data are derived for fixed
structures, a reasonable agreement is found for floating breakwaters with one degree of freedom
without a fixed vertical screen for the theory of Kriebel and Bollmann. For χ < 0.6 the wave
transmission coefficient is smaller than 30%. Based on the experimental datasets of Cox et al.,
Martinelli et al. and Koutandos et al. it is concluded that for values of 0.6 < χ < 3.5 the theory
of Kriebel and Bollmann is good applicable. When the theory of Macagno becomes smaller than
the theory of Kriebel and Bollmann it is observed that Macagno is suitable to apply, according to
the dataset of Koutandos et al. Cox et al. performed experiments with two different wave heights.
From these experiments is becomes clear that the influence of the wave height on the wave trans-
mission coefficient is very small compared to the influence of wave period. The RMSE for these
datasets are approximately 0.10 in the order of magnitude, meaning a reasonable agreement is
found. When the theories discussed above are applied, the wave transmission is slightly overesti-
mated. For a preliminary design this overestimation is not very relevant and a good estimation is
obtained regarding the effectiveness of the floating breakwater.

Floating breakwaters anchored by chains
The dimensionless ratios considered in order to make distinction between the applicability of the
different theories are: width over water depth (B/d), draft over water depth (D/d) and the relative
period (χ). The formula of Ruol et al. is applicable for the following ranges: 0.5 < B/d < 1.10
and 0.20 < D/d < 0.60 and 0.60 < χ < 1.70. The formula of Macagno is applicable for the
following ranges: 0.4 < B/d < 1.10 and D/d < 0.20 and 0.60 < χ < 1.20. Areas of interest where
experimental data is missing are the ratio of B/d < 0.5 where D/d and χ are in the range where
the formula of Ruol et al. is applicable. Another area of interest is for the ratio B/d < 0.4 where
the formula of Macagno is applicable.

Below the flowchart is shown which can be constructed with the conclusions drawn above. In this
flowchart there are a several question marks shown, this implies that there is no experimental data
available. Data can be obtained by performing physical models or by making numerical simula-
tions. The flow chart includes references of authors from which experimental data is obtained.
The plots which shows the comparisons between the experimental data and theories are enclosed
as Appendix C. From these plots the conclusions becomes visible. Oblique incident waves are not
taken into account in this flow chart. The next chapter discusses a numerical model which is used
to generate additional data for the areas of interest. This model will also be used to investigate
the effect of the ratios, χ, D/d, L/D and B/d.
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Figure 5.20: Flow chart of application for wave transmission theories
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Chapter 6

Modelling of Floating Breakwaters

In the previous section a number of formulas which predicts the wave transmission are compared
with experimental data. From this a conclusion is drawn regarding to the applicability of these
formulas, which is graphically displayed as a flow chart (Fig. 5.20). From this flow chart it can
be observed that there are areas where question marks are present. This implies that there is no
experimental data available. Besides this, there are also areas where a bad agreement is found
between theory and experimental data. In order to answer these question marks additional data
has to be generated by physical modelling or by numerical modelling.

This chapter discusses the numerical model which is used to generate data in order to complete
the flow chart shown in the previous section. Numerical data is generated for fixed floating
breakwaters, floating breakwaters anchored by piles and anchored by chains.

6.1 Approach

There are several software programs available which are able to compute motions of floating
structures. In this thesis the program AQWA is used, which is developed by the company Anys.
The reason for using AQWA is because the program is user friendly and the Delft University of
Technology has the program available for students. AQWA is a diffraction and radiation model
used to investigate effects of waves, wind and currents on floating structures such as ships and
offshore platforms. The program is able to calculate the motions of the floating body and pressures
on the floating body and its surrounding. When the surface elevation in front of the structure is
known and behind the structure, the wave transmission coefficient can be determined.

Before AQWA will be used to model floating breakwaters, it will be investigated which equations
the model solves and which theories are behind these equations. The aim of this is to understand
how the model works and to explain the results. The next step is to set up a model which is
equal to the physical models performed for the different type of breakwaters and to validate the
applicability of the model. Because most of the physical model data is obtained in wave flumes,
i.e. two-dimensional experiments, it will be investigated how these two-dimensional situations can
be modelled in AQWA since AQWA is a three-dimensional model. The final step is to model the
areas of interest where experimental data is missing or where a bad agreement is found for the
theories.
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6.1.1 Theory used in AQWA

Setting up a model in AQWA is relatively easy and user friendly. Often this means that the
user does not know what the program is doing and the model can be seen as a ’blackbox model’,
meaning that it is difficult to judge the output of the model. Below the theory which is used by
AQWA is briefly discussed in order to gain more insight in what the program is doing and when
the program is not suitable to use. In Appendix D the theory behind AQWA is discussed into
more detail.

AQWA is based on the 3D panel method and on the linear three-dimensional potential flow theory.
This implies that viscous forces are not taken into account, the wave elevation is small and the
fluid is assumed as incompressible and irrotational. The boundary condition problem is solved
by satisfying the body boundary condition (Timman-Newman relations), linearised free surface
condition and radiation condition. This theory applies to finite depth and the diffraction problem
is solved in the frequency domain.

Calculations can be performed in frequency domain and in time domain. Analyses in the frequency
domain implies that the system is linear, i.e. there is a linear relationship regarding displacement,
velocity and acceleration. For a linear system it also means that when the input is doubled the
output of the system will be doubled as well. In this case the superposition principle holds, which
is discussed in section 4.3.1. A nice result of linear theory is that the resulting motions in irregular
waves can be obtained by adding the results of regular waves. The output of AQWA are Response
Amplitude Operators (RAO’s), wave spreading and 2D spectra as a function of wave frequency.

Analyses in time domain implies time/history analyses for (multiple) structures with irregular
waves. In this case linear assumptions are not valid and therefore the superposition principle can
not be used any more. This is the case for non-linear viscous damping, forces and moments due
to currents and wind. The output of the analyses in the time domain are the motions of the
structure and forces as a function of time. The calculations performed for this thesis are executed
in the frequency domain, since wind and currents are not taken into account and the system can
be assumed as linear system.

Waves
All the calculations are performed with the default value of 1.0 for the wave amplitude. The
required value for the amplitude is obtained by AQWA by multiplying the default value of 1.0 by
the user defined value for the amplitude. The regular waves in AQWA are described by linear wave
theory, see Eq.(4.10) and by second order Stokes waves. The theory of Stokes adds corrections to
the harmonic wave profile by adding extra harmonic waves to the basic harmonic. Stokes’ theory
approximates waves which are slightly steeper than harmonic waves and this theory is applicable
in deep waters. In AQWA where 2nd order Stokes waves are applied only one ’extra’ harmonic
wave is added to the basic harmonic with the wave steepness raised to the second order. If the
wave steepness is defined as ε = ak, then the basic harmonic can be written as:

η(x, t) = a cos(ωt− kx) = εη1(x, t) with η1(x, t) = k−1 cos(ωt− kx) (6.1)

In the equation above η1(x, t) = k−1 cos(ωt− kx) represents the basic harmonic. The first correc-
tion in the Stokes theory is adding a harmonic wave to the basic harmonic with the wave steepness
squared:

η(x, t) = εη1(x, t) + ε2η2(x, t) = a cos(ωt− kx) + 0.5ka2 cos 2(ωt− kx) (6.2)
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Figure 6.1 shows the result of the 2nd order Stokes theory. From this figure it becomes clear that
the 2nd order Stokes wave has a sharper crest and a flatter trough than a harmonic wave.

Figure 6.1: 2nd order Stokes waves, [Holthuijsen, 2007]

Potential flow
A velocity potential of a flow is a mathematical expression which has the useful property that
the velocity component in a point in the fluid in any chosen direction is the derivative of the
potential function [Journee and Massie, 2001]. Potential lines are curves where the potential value
is constant. If the potential function is defined as φ, then this implies that φ = constant. When
substituting these velocity potentials in the continuity equation the Laplace equation is obtained.
The advantage of this theory is that the velocity problem with three unknowns, ux, uy and uz, is
reduced to a problem of one unknown, φ. When the Laplace equation is solved a solution for φ
is obtained. The Laplace equation can be solved with the kinematic boundary conditions, which
are discussed in Section 4.1 and in Appendix D.2.

Potential flow around floating structures
The pressures on and around the floating body are determined by splitting the linear fluid velocity
potential φ into three parts:

• Radiation potential (φr) potential of the oscillations of the body in still water
• Wave potential (φw) potential of the incoming waves
• Diffraction potential (φd) potential of the waves diffracting around the restrained body

The resulting fluid velocity potential then becomes:

φ(x,y,z,t) = φr + φw + φd (6.3)

When the six degrees of motion are taken into account of the floating body, the radiation potential
consist of six parts. Each part belongs to an specific type of motion, represented as φr,j where
j = 1, ..., 6. The potential of the floating body then becomes:

φ =

6∑
j=1

φr,j + φw + φd (6.4)

This equation is numerically solved by AQWA which results in potential values from which veloc-
ities and pressures are obtained. In total there are seven boundary conditions used to solve the
potential of the floating body (Eq.6.4). Three of these seven boundary conditions are discussed
in Section 4.1 and are the continuity condition, the kinematic boundary conditions at the seabed
and at the surface. These boundary conditions are used to solve the velocity potential without a
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floating structure. Besides these three boundary conditions, four additional boundary conditions
are used to solve the potential when of floating body is included. These four additional boundary
conditions are discussed below.

1. Dynamic boundary condition :
∂2φ

∂t2
+ g

∂φ

∂z
= 0 at z=0 (6.5)

2. Kinematic boundary of oscillating body :
∂φ

∂n
= vn(x, y, z, t) =

6∑
j=1

vjfj(x, y, z) (6.6)

3. Radiation condition : lim
R→∞

φ = 0 (6.7)

4. Symmetric and anti-symmetric conditions : φ2(−x, z) = −φ2(+x, z) Sway (6.8)

φ3(−x, z) = +φ3(+x, z) Heave

φ4(−x, z) = −φ4(+x, z) Roll

Dynamic boundary condition, Eq.(6.5):
The requirement for this condition is that the pressure at the surface equals the atmospheric
pressure. This dynamic boundary condition is defined at the water surface and can be derived by
differentiating the free surface dynamic boundary condition to t, see Appendix D.2, Eq.(D.23).

Kinematic boundary of oscillating body, Eq.(6.6):
This is the boundary condition at the surface of the floating body and implies that the velocity of
the water particles at the surface of the floating body are equal to the velocity of the floating body.
In Eq.(6.6) is vn the outward normal velocity at the surface of the floating body. The subscript
j = 1, ..., 6 are indicating the mode of motion of the floating body.

Radiation condition, Eq.(6.7):
Far from the oscillating body the potential value has to become zero. To meet this requirement,
the radiation condition states that at a large distance (R) from the floating body the potential
value becomes zero.

Symmetric and anti-symmetric conditions, Eq.(6.8):
Since floating bodies, such as floating breakwaters and ships, are symmetric with respect to its
middle line plane, the potential equations may be simplified to those three shown as Eq.(6.8).
The indices in these equations indicate the directions. The motions for sway and roll are anti-
symmetric because the horizontal velocities, ∂φ∂x , of the water particles at both sides of the floating
body must have the same direction at any time. The heave motions are symmetric because the
horizontal velocities must be of opposite sign. The vertical velocities, ∂φ

∂z , must have the same
direction on both sides at any time.

With potential flow theory it is possible to model flows around complex structures, e.g. a ship
or circular objects by superimposing simple flow elements. This is possible since the potential
flow theory is a linear theory, which allows summation of different flow elements. This principle
is discussed into more detail in Appendix D.2.2.

Hydrodynamic and hydrostatic loads
When the velocity potentials are known, forces and moments can be obtained by executing the
following steps:

1. Solve the potential function together with the boundary conditions. From this the stream
functions and velocity potential functions are obtained.
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2. Determine the pressures from the velocity potentials with the linearised Bernoulli equation
(Eq.4.8) .

3. Determine the forces and moments by integrating the pressure over the submerged surface
(S) of the floating body.

The equations belonging to the three steps above are not discussed into detail, only the result will
be discussed. For a more detailed description reference is made to [Journee and Massie, 2001].
The forces and moments are two double integrals of the linearized Bernoulli equation:

→
F = ρ

∫∫
S

(
∂φr
∂t

+
∂φw
∂t

+
∂φd
∂t

+ gz

)
→
n dS =

→
Fr +

→
Fw +

→
Fd +

→
Fs (6.9)

→
M = ρ

∫∫
S

(
∂φr
∂t

+
∂φw
∂t

+
∂φd
∂t

+ gz

)
(
→
n

→
r ) dS =

→
Mr +

→
Mw +

→
Md +

→
Ms (6.10)

In Eq.(6.9) and Eq.(6.10) is
→
n the outward normal vector on surface dS and

→
r is the position

vector of surface dS. The result consists of four contributions, which are defined as follows:

1. Radiated waves generated by the oscillating body in still water,
→
Fr,

→
Mr

2. Waves which are approaching the fixed body (incident waves),
→
Fw,

→
Mw

3. Waves which are diffracting around the fixed body,
→
Fd,

→
Md

4. Hydrostatic buoyancy in still water,
→
Fs,

→
Ms

To summarize the above, AQWA solves the potential functions (Laplace equation) and determines
the pressures at the water surface and at the floating body. The pressures at the water surface
can be converted to waves, shown in Figure 6.3. From the pressures on the floating body AQWA
calculates the forces and moments by which the equation of motion is derived (equation in Figure
6.2). The fluid force consists of a hydrodynamic force and a hydrostatic force. The hydrostatic
force is the buoyancy force in still water. The hydrodynamic force is divided into wave forces and
radiation forces. This is graphically shown below in Figure 6.2.

Fluid force

Hydrodynamic force Hydrostatic force

Wave forces Radiation force

In phase

(added mass)
Out of phase

(damping)Incident waves Diffraction

Mass of 

structure

Figure 6.2: Summary of fluid forces, [partially adapted from AQWA ANSYS intro lectures presen-
tation]
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The result of the calculation by AQWA is shown in Figure 6.3, where the colours represents
pressures in meters of water column.

Figure 6.3: Result AQWA presented in pressures on floating structure

3D Panel method
The panel method is a suitable method for objects with zero forward speed. This method calculates
the potential around the floating body based on the principle of Green’s integral theorem, which
states that a three-dimensional linear homogeneous differential equation can be transformed in
a two-dimensional integral equation. This implies that the Laplace equation can be transformed
into a surface integral, hence the three-dimensional problem becomes a two-dimensional problem.
This explains why the surface of the body is divided in a number of panels (two-dimensional) and
the water surface can be modelled with a two-dimensional grid. Figure 6.4 shows the panels on
the surface of a floating structure.

Figure 6.4: Mesh of floating breakwater

The integral obtained by Green’s theory represents a number of sources or sinks and dipoles on the
surface [Journee and Massie, 2001]. These sources, sinks and dipoles are potential flow elements
and are discussed in Appendix D.2.2. The integral obtained by Green’s theory is solved in a
numerical way by dividing the surface of the body in a number of panels. The source and dipole
densities are constant for each panel, resulting in a constant pressure over each element. Flow
around sharp corners is not approximated well by this method. In reality flow will separate around
these sharp corners, which is not included in the potential theory.

6.1.2 Model set up

Before the areas of interest where no experimental data is known can be modelled, it will be
investigated how well the model performs calculations in general. Besides this, the model needs
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to be validated. In order to validate the model, experimental data of Koutandos et al. [2005] is
used. Koutandos et al. performed experiments with floating breakwaters in a large scale facility
for regular and irregular waves for intermediate water depths. They tested floating breakwaters
on a model scale of 1:15 and performed tests for fixed and heave floating breakwaters. The tests
are executed in a wave flume with normal incident waves, thus no three-dimensional effects were
included. AQWA is a three-dimensional model and it takes three-dimensional effects like diffraction
into account. During the experiments, the transmitted waves are measured at the point which is
located at halve a wavelength (Lwg) from the floating breakwater in the center line of the wave
flume, see Figure 6.5. To compare the model results with the experimental data, three-dimensional
diffraction effects at the location where the transmitted wave is calculated with AQWA needs to
be very small. This is achieved by making the length of the floating breakwater long relative to
the incident wavelength.

Floating Breakwater

Centre line flume

Wave gauge

Lwg

1/2 width

Incident wave 

direction

Figure 6.5: Sketch of wave flume

AQWA calculates the wave heights for each wave frequency. The incident wave height is defined
in the model and the transmitted wave height is calculated by the model, hence the wave trans-
mission coefficient can be determined. The wave transmission coefficient for each wave frequency
is compared with the experimental data. In order to compare how well the model results are for
all the wave frequencies, use is made of the Root Mean Square Error (RMSE):

RMSE =

√∑N
i=1 (Ct;experiment − Ct;model)2

N
(6.11)

The RMSE applied in this case is a measure of the spread of the experimental transmission
coefficients about the modelled transmission coefficients by AQWA.

Sensitivity analyses of 3D effects
As mentioned earlier, the experiments are performed in wave flumes and three-dimensional effects
such as diffraction of waves around the breakwater are not taken into account. Diffraction is the
turning of waves around objects towards areas which are more sheltered against waves. The wave
amplitudes will be lower in these areas due to the lateral spreading of wave energy, see also Section
2.2. AQWA is a three-dimensional model and takes effects like diffraction into account. In order to
compare the calculation results with the results of the experiments, the diffraction effects should
be minimized at the location where the transmitted wave is calculated. This can be achieved by
increasing the length of breakwater.

Many diffraction diagrams are available for diffraction of long crested regular waves around semi-
infinite breakwaters with constant water depths. Use is made of these diagrams to determine the
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length of the breakwater by which the diffracted wave height is very small at the location where
the transmitted wave is calculated. Sommerfeld developed in 1896 an analytical solution of the
diffraction problem for light waves, which can be used for semi-infinite breakwaters as well. The
Sommerfeld solution which is used for semi-infinite breakwaters is shown in Figure 6.6.

Figure 6.6: Sommerfeld solution for diffraction around an semi-infinite breakwater for normal incident
waves, constant water depth, tip breakwater at x=0 and y=0, [Holthuijsen, 2007]

Bettess et al. [1984] presented a numerical code to solve the diffraction problem of waves for semi-
infinite breakwaters based on finite and infinite elements. This code is based on polar coordinates
and solves the diffraction problem for which no analytical solution exists. The origin of the
coordinate system is located at the tip of the breakwater. This code is implemented in Matlab
(which is a mathematical computer program) in order to investigate the effect of the breakwater
length on diffraction. The result is shown below as Figure 6.7. From Figure 6.6 and from Figure
6.7 it can be seen that for the dimensionless value X/Lwave = 5 the diffraction coefficient is
0.1. The diffraction coefficient Cd is defined as the diffracted wave height over the incident wave
height. In these figures X represents the breakwater length. At the tip of the breakwater the
diffraction coefficient is for both solutions approximately 0.5. Since these solutions are valid for a
semi-infinite breakwater, the diffraction coefficient and the X/Lwave value needs to be doubled in
order to represent a finite breakwater length. Based on these results, it can be concluded that the
breakwater length has to be at least ten times the wavelength (X/Lwave ≥ 10) in order to have a
diffraction coefficient ≤ 0.2.

Figure 6.7: Numerical solution of diffraction according to Bettess et al. [1984]
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To investigate how AQWA models diffraction, a calculation is performed in AQWA for a fixed
non-floating bottom mounted breakwater. In this calculation the breakwater is defined as a fully
reflective (impermeable) object. This means that there is no wave transmission because the
breakwater is impermeable and there is no overtopping. In this case the calculated wave height
by AQWA behind the breakwater represents the diffracted wave height. The wave input for this
calculation is shown in Table 6.1. In this dataset the longest wave has a period of 6.99s and with
a water depth of 2m the wavelength becomes 30.03m. In order to minimize the diffraction effects,
the breakwater modelled in AQWA has to be at least 301.2 meters long according to Figure 6.7.
The diffracted wave height is calculated at a distance of half the wave length from the breakwater.
This distance is indicated as Lwg in Table 6.1 for each wavelength.

Lwave [m] T[s] Lwg [m] X/Lwave [-] Cd;aqwa [-]

30.03 6.99 15.06 11.62 0.13
23.75 5.60 11.88 14.74 0.07
13.11 3.36 6.56 26.71 0.07
10.20 2.78 5.10 34.30 0.13
8.20 2.40 4.10 42.67 0.07

Table 6.1: Diffraction results of AQWA for a bottom mounted breakwater with a length (X) of 350
meter

From this table it can be seen that the diffraction coefficient is 0.13 when the breakwater is 11.62
times the wavelength. This is smaller than the expected diffraction coefficients of 0.20.

The diffraction results of the AQWA model for the bottom mounted breakwater can be represented
as wave contours (snapshot), shown in Figure 6.8. From this figure it can be seen that the waves
turn around the breakwater into the shadow zone. The reflected waves can be identified as well
and are shown by the red colours representing high pressures.

Y

X

Figure 6.8: Snapshot of surface elevation of diffracted waves in AQWA for normal incident
waves, H=0.30m T=6.99 s, d=2m, fixed breakwater, bottom mounted (non-floating), breakwater
length=350 m.
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In order to gain more insight in the diffracted wave height behind the breakwater, it is investi-
gated how the diffraction coefficient changes parallel to the breakwater and perpendicular to the
breakwater. These results are shown in Figure 6.9. In the upper panel of this figure the diffraction
coefficient parallel to the breakwater at a distance of half a wavelength (15m) from the breakwater
in the shadow zone is shown. The breakwater in this figure is defined between x=0 and x=350.
It becomes clear that outside the breakwater (x < 0) and (x > 350) the diffraction coefficient
becomes 1.0, which is expected. It can also be seen that at the corners of the breakwater (x = 0)
and (x = 350) the diffraction coefficient is approximately 0.5. This is also expected when making
use of the diffraction diagrams (Figure 6.6 and Figure 6.7).

Figure 6.9: H=0.30m T=6.99s, d=2m, fixed breakwater, bottom mounted (non-floating), break-
water length=350 m.

The lower panel of Figure 6.9 shows the diffraction coefficients perpendicular to the breakwater at
the centre line of the breakwater (x=175) as a function of the distance behind the breakwater (y).
This plot shows that the diffraction coefficient increases when the distance behind the breakwater
increases, this is also observed in the Figures 6.6 and 6.7 where the contour lines show a small
curvature. The maximum wave amplitudes are shown in Figure 6.10. From this figure it can be
seen that the wave amplitude decreases towards the middle of the breakwater.

A remark regarding Figure 6.9 are the ’jumps’ of the diffraction coefficients. This is due to the
accuracy of the model and partially due to the amount of plotted points. It is expected when more
points are plotted and the calculations are performed with a higher accuracy, the line with the
diffraction coefficients will be smoother. The accuracy of the model can be explained as follows:
The length scale of the model has the unit metres and the calculations are performed with an
accuracy of two decimals, hence centimetres. When calculations are performed with wave heights
of several metres as input, the output will be more accurate than when the input of the wave
height is several centimetres. However, the trend of data points gives a good impression of the
diffraction effects.

From Table 6.1 and Figure 6.9 it can be concluded that AQWA always predicts a diffracted
wave height for a bottom mounted impermeable breakwater, even in the case when the length of
the breakwater is approximately forty times the incident wavelength. The result of this is that
the calculated wave pattern behind the floating breakwater consists of transmitted waves and
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diffracted waves which reinforce each other or cancel each other out, resulting in a complex wave
pattern. Due to this complex pattern it is not possible to subtract the diffracted wave height from
the calculated wave height in the shadow zone of the floating breakwater in order to obtain the
transmitted wave without diffraction effects. To investigate the magnitude of diffraction on the
transmitted waves, wave energy behind the breakwater (in the shadow zone) is considered. The
energy of a wave can be expressed as 1

8ρgH
2, see also Section 4.2. The energy balance behind the

floating breakwater is:

H2
t +H2

d = H2
total = 1 (6.12)

Because the diffracted wave height behind the breakwater changes in space (see Figure 6.9), the
average diffracted wave height is determined for an specified area which is indicated as a grid in
Figure 6.10. In each grid cell the diffracted wave height is calculated. With the diffracted wave
heights calculated for this grid the average diffracted wave height is determined, which equals 0.12.
Using the energy balance shown as Eq.(6.12) the following is obtained:

H2
t +H2

d = H2
total = 1 → Ht =

√
H2
total −H2

d → Ht =
√

12 − 0.122 ≈ 0.993 (6.13)

From Eq.(6.13) it becomes clear that the effect of diffraction is negligible small on the transmitted
wave height. Therefore, the calculated transmission coefficients by AQWA will not be corrected
in the following sections of this thesis.

Y

x

Lwave

100m

Figure 6.10: Maximum wave amplitudes solely due to diffraction and grid used to determine the
average diffracted wave height due to normal incident waves, H=0.30m T=6.99 s, d=2m, fixed
breakwater, bottom mounted (non-floating), breakwater length=350 m.

Mesh size
Another aspect which might influence the calculation results is the mesh size and thus the number
of panels. A small mesh results in a large number of panels. The mesh size relates to the
maximum wave frequency which can be calculated by the model. A small mesh size allows high
wave frequencies to be modelled. This can be explained because high wave frequencies represents
short waves. In order to model short waves well a number of grid cells needs to be available which
is achieved with a small mesh size. Depending on the mesh size which has to be defined by the
user, AQWA will specify the highest wave frequency which can be modelled. When the mesh size
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is to coarse to model an specified frequency, AQWA will give an error. The longest wave which
can be modelled in AQWA depends on the water depth. To gain insight in the effect of the mesh
size a number of models with the same wave input are made where the mesh size increases from
a coarse mesh to a fine mesh.

The model used for the comparison is a fixed structure located in a water depth of 2m. The
dimensions of the structure are as follows: length = 350m, width=2m and the draft=0.67m. The
wave periods used for the calculations together with the calculated transmission coefficients are
shown in Table 6.3. The coarsest mesh size used for the calculations has 5862 panels and the finest
mesh has 17550 panels. The maximum number of panels in AQWA is 18000. With the coarsest
mesh size AQWA was just able to model the shortest wave period. In total six calculations are
performed where the mesh size of each calculation decreased and the number of panels increased,
see Table 6.2. For all the calculations the same input (T) is used, shown in Table 6.3. The result
is that the calculation results (Ct) did not change when the mesh size decreased. From this it is
concluded that the mesh size does not influence the calculation results as long as the mesh is fine
enough to model the shortest waves.

Calculation Number of panels

1 5862
2 11722
3 12622
4 14650
5 16730
6 17550

Table 6.2: Number of panels used for the
calculations to investigate the effect of the
mesh size

T [s] Ct [-]

6.97 0.87
5.60 0.87
3.36 0.67
2.78 0.53
2.40 0.33

Table 6.3: Input (T) and the computed out-
put (Ct) used for the model to investigate
influence of mesh size

6.1.3 Model calibration and validation

Now the diffraction effects and the influence of the mesh size are investigated, the data of the
two-dimensional experiments performed by Koutandos et al. [2005] can be used to compare how
well AQWA can model the transmitted waves of floating breakwaters. Since AQWA is based on
potential flow theory it takes no turbulence into account and therefore no energy losses. When
energy losses are taken into account the transmitted wave height will be lower. Because of this
it is expected that AQWA predicts higher transmission coefficients than are observed during the
experiments. The remark made for Figure 6.9, regarding the ’jumps’ of the numerical data points
and model accuracy, also holds for the figures shown below where numerical data points are
plotted.

Model validation for fixed breakwaters
In AQWA three different simulations are performed for fixed breakwaters. The difference between
the simulations is the draft of the breakwater. For each simulation the transmission coefficient is
determined at the point which is located at halve a wavelength from the breakwater. The table
below shows the simulation results for the fixed breakwater with a draft of 0.5m (D/d=0.25).
The results for the fixed breakwaters with a draft of 0.4m and 0.67m are shown in Appendix
D.3.1 in Table D.2 and D.3. The RMSE for these two fixed floating breakwater are 0.07 and 0.03
respectively.
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T [s] CtAQWA [-] Ctexp [-] Ctexp - CtAQWA

5.50 0.87 0.81 -0.05
3.33 0.73 0.73 -0.01
2.77 0.60 0.56 -0.04
2.50 0.53 0.48 -0.05
2.20 0.40 0.38 -0.02

RMSE 0.04

Table 6.4: Results AQWA compared with data obtained from Koutandos et al. [2005] for a fixed
floating breakwater, regular waves, D=0.5m, L=350m, d=2m

In the Figures 6.11 and 6.12 the results of the numerical models are shown together with the
experimental data and the theories for wave transmission. From these figures it can be concluded
that the numerical model approximates the experimental data very well. The transmission coef-
ficients obtained from AQWA are larger than the transmission coefficients measured during the
experiments, which is expected because turbulence is not included in AQWA. This is also observed
in Table 6.4. There is no experimental data available for shorter wave periods. When these shorter
wave periods are modelled, it can be seen that these results follow the same trend line which one
could draw through the experimental data points.

Figure 6.11: Experimental data from
Koutandos et al. [2005] for fixed breakwa-
ter compared with numerical model AQWA,
regular waves (d) = 2m, (B) = 2m

Figure 6.12: Experimental data from
Koutandos et al. [2005] for fixed breakwa-
ter compared with numerical model AQWA,
irregular waves, (d) = 2m, (B) = 2m

Irregular wave input
The input for AQWA consists of regular waves with a wave period T for each wave. Irregular
waves are often presented in literature as waves with a peak period and a significant wave height.
The peak period is the period which corresponds with the frequency in the spectrum for which the
spectrum has a maximum. The proper manner to model irregular waves in AQWA is to decompose
a wave spectrum into a number of regular waves with different frequencies and amplitudes, see
also Section 4.1.2. In the case of a two-dimensional spectrum, the wave direction should be taken
into account as well. Regular waves with different frequencies and amplitudes (and directions) can
be used as input for AQWA. AQWA calculates for each wave period and for each wave direction
the transmitted wave. With the transmitted wave heights and periods, a new wave spectrum can
be generated. This wave spectrum represents the wave spectrum of the transmitted waves. When
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the significant wave height of the transmitted spectrum is divided by the significant wave height
of the incident wave spectrum the transmission coefficient is obtained.

A more simplified method to estimate the effect of irregular waves in AQWA is considering the
peak period Tp as input for a regular wave. The difference between the peak period and the
mean period is that the mean period approximately 10% smaller is than the peak period. The
advantage of using the peak period of spectrum as input for the period of a regular wave is that
the calculation time is less than when a number of periods are modelled in order to represent a
spectrum. This method is applied to model irregular waves in AQWA, the results are shown in the
table below. From this table it becomes clear that when a regular wave is modelled with a peak
period and a significant wave height, the differences between results of AQWA and the experiments
for irregular waves are small. In order to draw proper conclusions regarding irregular wave input,
the calculations results of a decomposed spectrum should be compared with the calculation results
shown in Table 6.5 (regular wave with a peak period). Because the limited amount of time, no
calculations with AQWA are performed for a decomposed spectrum. In the next sections a regular
wave with a period equal to the peak period will be used to model irregular waves because the
differences are small between AQWA and the experiments.

Tp [s] Tin;aqwa [s] CtAQWA [-] Ctexp [-] Ctexp - CtAQWA

5.50 5.50 0.87 0.92 0.05
3.34 3.34 0.73 0.76 0.03
2.78 2.78 0.60 0.59 -0.01

RMSE 0.03

Table 6.5: Peak wave period as input for wave periods in AQWA

Model validation for heave floating breakwaters
Floating breakwaters which are for instance anchored by piles have one degree of freedom, which
are only vertical translations called heave. Due to the vertical motions of the floating breakwater,
waves are generated which are radiating away from the structure (radiated waves). The larger
the vertical motions are, the larger the radiated waves are, hence the larger the transmission
coefficient will be. Therefore it is important to model the heave motion well in order to obtain
the transmission coefficient.

AQWA is able to model fixed structures and structures with six degrees of freedom. In order to
model one degree of freedom use is made of springs with a very large spring stiffness. Additional
springs are defined for all the degrees of freedom except for heave. These springs contains very
large spring stiffness values in order to prevent motions. The heave floating breakwater used in the
experiments of Koutandos et al. contained wheels at the corners of the floating structure. These
wheels are running in rails which are attached to the walls of the flume. This combination of wheels
and rails allows unrestricted vertical motions. In this experiment some mechanical friction was
present due to the horizontal wave forces on the floating breakwater. Beside mechanical friction,
viscous effects were present. The mechanical friction and viscous effects limits the heave motion
and are not taken into account by AQWA. Because the radiated waves and thus the heave motions
influence the wave transmission coefficient, it is important that the heave motions in the model
are the same as the heave motions measured during the experiments.

The heave floating breakwater modelled in AQWA is calibrated with the heave motion observed
during the experiments, shown in Figure 6.13. The maximum amplitude of this record is 0.129m
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for a wave height of 0.2m and a period of 2.65s. This implies that the Response Amplitude
Operator (RAO) should be 0.645 meter for this period. The RAO is the reponse motion of a
floating object for an incoming wave height of 1m.

Initially, the heave motions modelled by AQWA were larger than the observed motions during
the experiments. In order to obtain the same heave motion in the model as in the experiments,
additional hydrodynamic damping is used. This damping represents mechanical friction between
the pontoon and the anchoring system and viscous effects. With trial and error the necessary
additional damping constant for heave was found of 1600000 N s/m, for a floating breakwater
with a length of 350m, a width of 2m and a draft of 0.4m. This additional damping is assumed
to be independent of the wave frequency. The RAO of the heave floating breakwater with this
damping constant is shown in Figure 6.14.

Figure 6.13: Measured heave motion of ex-
periments for regular waves with T=2.65s ob-
tained from Koutandos

Figure 6.14: Response Amplitude Operator
(RAO) for floating breakwater anchored by
piles, obtained from the AQWA calculations

The same value for the damping is used for the other frequencies. Furthermore, the AQWA model
equals the input of the experimental model in order to compare the results of AQWA with the
experiments. The calculation results of AQWA for the floating breakwater anchored by piles are
shown in Table 6.6.

T [s] f [Hz] Lwave [m] Lwg [m] Ctexp [-] Ctaqwa [-] Ctexp-Ctaqwa [-]

6.91 0.14 28.86 14.43 0.86 0.89 -0.03
5.49 0.18 29.86 14.93 0.85 0.89 -0.04
4.27 0.23 30.86 15.43 0.85 0.89 -0.04
3.34 0.30 31.86 15.93 0.82 0.79 0.03
2.76 0.36 32.86 16.43 0.73 0.69 0.04
2.39 0.42 33.86 16.93 0.69 0.49 0.20
2.14 0.47 34.86 17.43 0.47 0.39 0.08
2.06 0.49 35.86 17.93 0.41 0.40 0.01

RMSE 0.08

Table 6.6: Results AQWA compared with data obtained from Koutandos et al. [2005] for a heave
floating breakwater, D=0.4m, L=350m, d=2m, Th=2.10s
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In this table large differences between the experimental transmission coefficient and the modelled
transmission coefficient are observed for the wave periods of 2.14s and 2.39s. The natural heave
period Th (without damping) is 2.10s. The difference is probably due to additional damping which
is present in the model, the result is that the natural heave period increases.

In Figure 6.15 it can be seen that the results of AQWA show a good agreement with the exper-
imental data. For the value χ ≈ 1 (L/B ≈ 4) a large deviation is observed in this figure. This
deviation can be explained because of the additional damping used in the AQWA model. A ’jump’
in the numerical data points is observed for χ ≈ 4.3 (L/B ≈ 19). This can be explained by the
accuracy of the model, which is explained in Section 6.1.2. When numerical data is generated for
the areas where no experimental data is available, it can be concluded that these results follow
the same trend line which one could draw through the experimental data points. Therefore it is
concluded that AQWA is suitable to model floating breakwaters with one degree of freedom.

Figure 6.15: Experimental data from Koutandos et al. [2005] for heave floating breakwater compared
with numerical model AQWA, regular waves, (d) = 2m, (B) = 2m, Th = 2.10s

Model validation for floating breakwaters anchored by chains
AQWA is initially designed to determine the motions of floating structures with six degrees of
freedom and takes hydrodynamic damping into account. Therefore it is expected that AQWA
is suitable to model floating breakwaters with six degrees of freedom. The floating breakwater
modelled in AQWA is described by Martinelli et al. [2008]. This is a pi-type floating breakwater,
which is in fact a pontoon with two vertical screens on both sides. Because these vertical plates are
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very thin, it is not possible in AQWA to model these plates because the amount of panels exceeds
the maximum of 18000. In AQWA this floating breakwater is modelled as a pontoon (rectangular
box) with the same draft as the the length of the vertical plates of the pi-type floating breakwater.

In order to model a floating breakwater anchored by piles well, additional damping is needed which
represents mechanical friction between the pontoon and the anchoring system and represents the
viscous effects, this is discussed above. For floating breakwaters anchored by chains, it is also
expected that additional damping needs to be included in the model. The chains or cables by
which the floating breakwater is anchored will behave like a spring, which is attached below the
floating structure. To investigate how large this effect is, two simulations are performed. One
simulation does not include additional damping and the other simulation only includes additional
damping for the heave motion. The results are shown below in the Figures 6.16 and 6.17.

Figure 6.16: Comparison between experi-
mental data and numerical data no damping
included

Figure 6.17: Comparison between experi-
mental data and numerical data where heave
damping is included

From Figure 6.16 it becomes clear that the transmission coefficients modelled by AQWA are much
larger than the transmission coefficients of the experimental data. When the RAO’s are considered,
which are shown in Figure 6.18 and 6.19 it can be seen that the heave motions are very large.
This is expected because there is no additional damping in the model. Therefore, additional
damping should be taken into account in the model. During the experiments no motions were
measured of the floating breakwater. Because of this, the model can not be calibrated. In order
to see what the effect will be when additional damping is included, the same additional damping
coefficient used in the model of the floating breakwater anchored by piles is used. The reason
why the same amount of additional damping is used, is because the floating breakwaters in both
models have dimensions in the same order of magnitude. The result of this additional damping
is that the transmission coefficient determined by the model where damping is included is smaller
than the transmission coefficients determined by the model without damping. When the RAO’s
are considered of the model with additional damping, it can be seen that the heave motions are
smaller. When considering the sway motions, it can be seen that these are relatively large in
comparison with the heave motions. Therefore, additional damping might also be necessary for
sway motions in order to calibrate the model. The roll motions are small (maximum of 3.4 degrees
per meter) and does not change due to the additional damping for heave.
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Figure 6.18: RAO’s for translations of float-
ing breakwater anchored by chains modelled
with AQWA

Figure 6.19: RAO’s for rotations of floating
breakwater anchored by chains modelled with
AQWA

It can be concluded that the anchoring system of floating breakwaters with six degrees of freedom
has a large influence on the effectiveness. The anchoring system can be seen as a spring. Therefore,
numerical models of floating breakwaters needs to be calibrated in order to obtain realistic data.
This calibration can be done by adding damping to the system. When the RAO’s of the model
are the same as during the experiments, the model can be used after validation. Because the
experimental data of the motions of the floating breakwater is not available, the model can not
be calibrated and other simulations for this type of floating breakwater are not performed.

6.2 New simulations for areas of interest

In section 5.1.3 several wave transmission theories are compared with experimental data. Based on
these comparisons conclusions are drawn regarding to the applicability of the wave transmission
theories. These conclusions are shown in the form of a flowchart, see Figure 5.20. In the plots
below some ’jumps’ can be observed in the numerical data points, this is due to the accuracy of
the model which is discussed in Section 6.1.2.

The availability of experimental data is very limited and does not cover all the areas of interest.
Besides this, some conclusions based on experimental data needs to be verified. In order to obtain
additional data and to verify the previous conclusions, validated AQWA models are used. These
validated models are discussed in the previous section. The new data obtained from the models
will be compared with the wave transmission theories. Finally, a number of new conclusions are
drawn and the flowchart shown in Figure 5.20 will be updated with numerical data obtained from
AQWA.

6.2.1 Fixed breakwaters

There is experimental data available for fixed breakwaters for the ranges of 0.75 < B/d < 1.00
and for 0.20 < D/d < 0.40. From the flowchart shown in Figure 5.20, it can be seen that for fixed
breakwaters for L/D values larger than 95 no experimental data is available. Besides this, the
B/d ratios are large and it would be interesting to see what the influence is of smaller B/d ratios.
In order to gain insight in the influence of the parameters B and D, a number of simulations are
performed where these parameters are varied. The simulations are executed for the range of wave
periods between 2 and 8.5 seconds, with an interval period of 0.5s.
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For the area of interest in the flowchart for L/D-values larger than 95, the result is shown in
Figure 6.20.

Figure 6.20: Data AQWA compared with theories for fixed breakwaters, d=2m, regular waves

Regarding Figure 6.20 it can be concluded that for small L/D values the theories of Wiegel
and Kriebel and Bollmann are nearly the same. For large L/D-values both theories show a good
agreement with the model data. When the results for the theory of Macagno becomes smaller than
the theory of Kriebel and Bollmann, Macagno shows a good agreement. This is also observed with
the comparisons of experimental data for fixed breakwaters and floating breakwaters anchored by
piles where the D/d ratio is small compared to the B/d ratio. Whether this conclusion is due to
the combination of small D/d ratios compared to the B/d ratio, will be investigated below, where
the width is varied.

Variation of width and draft
In total six simulations are performed. In three simulations the draft is increased while the other
parameters are constant. In the other three simulations the width is decreased while the other
parameters are constant. The range of the parameters used in the calculations are outside the
range of the experimental data in order to draw new conclusions. For each simulation the results
are compared with the theories for wave transmission. All these comparisons are enclosed as
Appendix D.4.1. Below the conclusions are discussed regarding these comparisons.

In Figure 6.22 the influence of the draft is shown. From this figure it becomes clear that when the
draft increases, the transmission coefficient decreases, which is expected.

The effect of the width of the floating breakwater on the wave transmission coefficient is taken into
account by the theory of Macagno for fixed breakwaters. To gain insight in the influence of the
width on the wave transmission coefficient, three simulations are performed with AQWA. Figure
6.21 shows the results of these simulations for the different widths and constant drafts. From this
figure it becomes clear that the width of the floating breakwater has a large effect for small wave
periods. When the effect of the draft and the width are compared (see Figures 6.22 and 6.21), it
is concluded that the draft has a larger effect in reducing the wave transmission coefficient than
the width for this specific case. This result may vary when ratio D/d is very small compared to
the B/d ratio.
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Figure 6.21: Influence of the variation of
width on Ct, d=2m, regular waves, exp. data
obtained from Koutandos et al. [2005]

Figure 6.22: Influence of the variation of
draft on Ct, d=2m, regular waves, exp. data
obtained from Koutandos et al. [2005]

Conclusions regarding comparisons between theories and numerical model
The comparisons between the calculations performed with AQWA and the transmission theories
where the draft and the width are varied can be found in Appendix D.4.1. Regarding to these
comparisons the following conclusions are drawn:

� For 0.75 < B/d < 1.0 and 0.15 < D/d < 0.4 the theory of Kriebel and Bollmann is suitable
to apply, which generally holds for large L/D values. When the the theory of Macagno
predicts smaller values than the theory of Kriebel and Bollmann (short waves), the theory
of Macagno should be applied.

� For 0.75 < B/d < 1.0 and D/d > 0.4 a poor agreement is found between the results of
AQWA and the transmission theories. For this area physical or numerical models maybe
suitable to apply.

� The width of the floating breakwater has a positive effect on the reduction of the wave
transmission coefficient. This effect is taken into account by the theory of Macagno for fixed
breakwaters. When the results of the AQWA model are considered (Appendix D.4.1), it is
concluded that the theory of Macagno is suitable to apply for ratios of B/d < 0.75 and for
a D/d ratio of 0.15.

� When the effect of the draft and the width are compared with each other, it is concluded
that the draft has a larger effect in reducing the wave transmission coefficient than the width
for the case which is modelled. This result may vary when the D/d ratio is small compared
to the B/d ratio.

6.2.2 Floating breakwaters anchored by piles

There is experimental data available for floating breakwaters anchored by piles for the ranges
0.5 < B/d < 1.0 and for 0.2 < D/d < 0.4, see also the flowchart in Figure 5.20. An area of
interest for this type of floating breakwater where data is missing is indicated in the flowchart as
the area where the relative period χ > 3.5 (long waves). A model in AQWA is made to model the
areas where χ > 3.5. For this calculation the validated model of Koutandos et al. is used. The
mechanical friction between the floating breakwater and anchoring system is represented in this
model as additional damping. The details of this validated model regarding to the motions and
damping are discussed in Section 6.1.3. The results are shown in Figure 6.23. From this Figure

A.C. Biesheuvel M.Sc. Thesis



6.2 New simulations for areas of interest 73

it can be concluded that the theories of Wiegel and Kriebel and Bollmann are suitable to apply
for long waves. From this Figure it can also concluded that when the theory of Macagno predicts
smaller values for the transmission coefficient than the theory of Kriebel and Bollmann, Macagno
should be applied. The data point at χ ≈ 4.3 looks like an outliner and is due to the accuracy of
the model.

Figure 6.23: Flow chart of application for wave transmission theories

Variation of width and draft
The effect of the draft of the floating breakwater on the wave transmission coefficient is investigated
by making several models where the draft varies and all the other parameters are constant for each
model. The same is done for the width were the width varies and the other parameters are constant.
The variation of these parameters D/d and B/d are outside the range where experimental data is
available in order to draw new conclusions related to the applicability of the different transmission
theories. The comparisons between the model results and the theories are enclosed as Appendix
D.4.2.

Figure 6.25 shows the effect of the draft on the transmission coefficient and Figure 6.24 shows
the effect of the width on the transmission coefficient. Just as for the fixed breakwater it can be
concluded that the draft has larger effect on the wave transmission coefficient than the width for
this specific case. Results may vary when the radio D/d is small compared to the B/d ratio.

Figure 6.24: Influence of the variation of the
width on Ct, d=2m, regular waves, exp. data
obtained from Koutandos et al. [2005]

Figure 6.25: Influence of the variation of the
draft on Ct, d=2m, regular waves, exp. data
obtained from Koutandos et al. [2005]
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Conclusions regarding comparisons between theories and numerical model
In Appendix D.4.2 the comparisons are shown between the model data and the theories for wave
transmission. Based on these comparisons the following conclusions are drawn:

� For the ranges of 0.15 < D/d < 0.40 and 0.2 < B/d < 1.0 the theory of Macagno is
suitable to apply and overestimates the modelled data. For χ-values smaller than 2 this
overestimation becomes larger.

� For the ratios D/d > 0.4 and B/d = 1.0 a very poor agreement is found for χ-values
larger than 2.0. Physical and numerical models are suitable to obtain proper transmission
coefficients for this area of interest. For χ-values smaller than 2 the theory of Kriebel and
Bollmann is suitable to apply.

� Both the width and the draft of the floating breakwater has an effect on the wave transmis-
sion. However, the draft has the largest effect on the wave transmission for the case which
is modelled. This result may vary when the D/d ration is small compared to the B/d ratio.

6.2.3 Floating breakwaters anchored by chains

The AQWA model for floating breakwaters anchored by chains is not calibrated with the ex-
perimental data. This is because the motions of the floating breakwater observed during the
experiments on which the model should be calibrated are not available. In Section 6.1.3 the calcu-
lations results of the (non-calibrated) model are compared with the experimental data. From these
calculation results the conclusion can be drawn that additional damping is needed in the model
to represent the effect of the anchoring system and viscous effects on the breakwater. Because the
model is not calibrated, new simulations are not performed. New simulations made with a model
which is not calibrated and validated are very unreliable and are often not good.

6.2.4 Oblique incident waves

Martinelli et al. [2008] performed experiments for floating breakwaters anchored by chains in a
wave basin for waves which approached the breakwater under an angle, oblique incident waves.
Martinelli et al. concluded that when the wave angle increases, the transmission coefficient de-
creases. This conclusion is drawn regarding Figure 6.26.

Figure 6.26: Transmission coefficient for
oblique incident waves, θ = 0◦ implies normal
incident waves, [Martinelli et al., 2008]
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Figure 6.27: Effective width for oblique
incident waves
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From this figure it becomes also clear that the decrease of the transmission coefficient goes faster
for larger values of Tp/Th. The wave transmission decreases because the effective width (Beff )
increases for oblique incident waves, shown in Figure 6.27. In the previous sections it is concluded
that when the width increases in the model, the wave transmission decreases. Therefore it is
concluded that AQWA should be able to model the effect of oblique incident waves.

The calibrated models for fixed breakwaters and floating breakwaters anchored by piles are used
to investigate the effect of oblique incident waves. Based on the calculation results of these models,
the effect of oblique incident waves is negligible small. This is remarkable because in the previous
sections it is shown that the model is able to take the width of the floating breakwater into account.
An explanation for this is the accuracy of AQWA, which is two decimals when the dimension of
the length scale is in meters. When the wave height is small, for instance 0.30m, small effects on
wave transmission like oblique incident waves are not visible because of the accuracy of the model.
To overcome this accuracy problem, the model is scaled with a scale-factor of fifteen based on the
Froude scaling law. The result is that the input for the wave height can be increased (for instance
to 4.5m) and the output of the model for the transmitted waves is calculated with an accuracy of
two decimals (centimetres), meaning that the small effects become visible.

The length of the breakwaters in both up-scaled models is at least ten times the longest wavelength
in order to minimize diffraction effects. The water depth (d) used in the model is 30m, resulting
in a B/d-ratio of 1.0 and a D/d-ratio of 0.2. The incident wave steepness, defined as the incident
wave height over the incident wavelength is between the 3% and 7%. The transmitted waves are
calculated at one wavelength behind the breakwater, which is graphically shown in Figure 6.28.
For each wave period, six incident wave angles (α) are calculated between 0 and 50 degrees, with
an interval of 10 degrees. The angle of 0 degrees represents normal incident waves. In total twelve
wave periods are used as input for both types of floating breakwaters. The results are shown in
figures below.

Hi (0 )

Hi (50 )

Floating Breakwater

o

o

Lwave

Lbreakwater

Figure 6.28: Location where the
transmitted waves are calculated
due to oblique incident waves (Hi)

transmitted waves

reflected waves

Incident waves

Figure 6.29: Oblique incident waves simu-
lated by AQWA, angle of incidence is 40 de-
grees

Figures 6.30 and 6.31 show the results of the calculated transmitted waves due to oblique incident
waves. In both figures the wave periods are between the 6.5 and 12 seconds, with and interval
period of 0.5 second. For fixed breakwaters the dimensionless value L/D is used and for floating
breakwaters anchored by piles the dimensionless value T/Theave is used. In general the effect of
oblique incident waves is small for both types of floating breakwaters. On average the decrease of
the wave transmission coefficient due to oblique incident waves is 10% for an angle of 50 degrees.
For an oblique incident wave angle of 50 degrees, the increase of the effective width is 55%. When
the calculation results of the influence of the width (Figures 6.21 and 6.24) are compared with
the calculation results of the oblique incident waves, it can be concluded that the decrease of the
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76 Modelling of Floating Breakwaters

transmission coefficient due to oblique incident waves with an angle of 50 degrees, is in the same
order of magnitude due to an increase of the width of approximately 50%. This conclusion is based
on calculations where the width of the breakwater and the natural heave period did not change,
only the wave period changed. Width variations of the floating breakwater and variations of the
natural heave period might influence the magnitude of the decrease of the wave transmission.

Figure 6.30: Effect of oblique incident waves on the wave transmission coefficient for fixed break-
waters, regular waves

Figure 6.31: Effect of oblique incident waves on the wave transmission coefficient for floating
breakwaters anchored by piles, regular waves

6.3 Conclusion

In this chapter a numerical model is discussed in order to model floating breakwaters. The
numerical model is used to generate additional data in order to extend the use of the flowchart
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shown in Figure 5.20, which is solely based on experimental data. The numerical computations
are performed with a horizontal bottom and with a wave steepness (H/L) between the 1% and
5%. Below a number of conclusions are drawn regarding the applicability of the model and the
model results for the areas of interest. The flowchart in Figure 5.20 is updated with the results of
the numerical models. This updated flowchart is based on experimental data and numerical data
and is shown as Figure 6.32.

� AQWA is a three-dimensional model and takes effects like diffraction around the tip of the
breakwater into account. When these three dimensional effects needs to be excluded from the
model, the length of the breakwater needs to be at least ten times the length of the longest
incident wave. In this case the diffraction effects are negligible small on the transmitted
waves in the middle of the breakwater.

� As long as the mesh size is fine enough to enable the modelling of the shortest wave, a finer
mesh size has no effect on the calculation results.

� AQWA is able to model fixed breakwaters mounted on the bottom, fixed breakwaters
mounted on piles (partially submerged) and floating breakwaters with one degree or more
degrees of freedom. Floating breakwater models with one or more degrees of freedom needs
to be calibrated. This calibration needs to be done in order to obtain the same motions in
the model as in the experiments. It is concluded that the motions of the floating breakwater
has a large influence on the wave transmission coefficients. Floating breakwaters anchored
by chains (six degrees of freedom) could not be calibrated in this report, because the motions
observed during the experiments are not available.

� The effect of the width and the draft of the floating breakwater on the wave transmission is
investigated with AQWA. It is concluded that both width and draft have an effect on the
wave transmission. The draft has a larger influence than the width on the wave transmission
over a larger range of wave periods for the cases modelled with AQWA. This result may vary
when D/d is small compared to the B/d ratio.

� Based on the new simulations which are performed in order to obtain additional data for
fixed breakwaters, it is concluded that for fixed breakwaters for the ranges 0.75 < B/d < 1.0
with 0.15 < D/d < 0.4 the theory of Kriebel and Bollmann is applicable. When the theory
of Macagno predicts smaller values for these ranges than Kriebel and Bollmann, Macagno is
suitable to apply. Based on the numerical models Macagno is suitable to apply for D/d =
0.15 with B/d < 0.75.

� Based on the model results for floating breakwaters anchored by piles, it is concluded that
Macagno is suitable to apply for the ranges of 0.15 < D/d < 0.40 with 0.2 < B/d <
0.5. For this range Macagno overestimates the modelled transmission coefficients and this
overestimation becomes larger for χ-values smaller than two. For the ratios D/d = 0.6 and
B/d = 1.0 a very poor agreement is found for χ > 2.0. For this area a numerical model is
suggested. When χ < 2.0 for this area, the theory of Kriebel and Bollmann is suitable to
apply.

� The effect of oblique incident waves on the wave transmission can be modelled by AQWA. It
is concluded that when the angle of the incident wave increases the transmission coefficient
decreases. This is due to the increase of the effective width.
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Figure 6.32: Flowchart with the applicable theories for wave transmission based on experimental
and numerical data
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Chapter 7

Conclusions and Recommendations

In the previous chapters a number of conclusions are drawn. When these conclusions are combined,
an answer for the research question is obtained. This chapter discusses the main conclusions and
the answer on the research question. Besides the conclusions a number of recommendations are
made for future research.

The research objective in this thesis is defined as follows:

’Identifying the steps which can be taken during the design process, in order to predict the
effectiveness of floating breakwaters more accurately ’

7.1 Conclusions

Floating breakwaters are suitable to apply in deep waters in combination with short waves. The
wave period is the most important parameter determining the effectiveness of floating breakwaters.
It is concluded from experimental data and numerical data that the effectiveness strongly decreases
when the wave period increases. In order to attenuate long waves, the floating breakwater needs
to have a large width and a large draft.

Wave transmission theories
The existing formulas for wave transmission are derived for fixed structures in deep water where
linear wave theory is valid. When these formulas are compared with each other it is concluded
that there are large differences between the theories. Because of the large differences between the
theories, it becomes unclear for the designer when to use which formula. This might be a reason
why the effectiveness of floating breakwaters is often overestimated.

Another reason for the differences in the expected floating breakwater performance and the
achieved effectiveness of floating breakwaters, is that the available formulas to determine the wave
transmission neglect a number of processes. These processes are, motions of the floating struc-
ture, overtopping and energy dissipation. Energy dissipation results in lower transmitted waves,
while the motions of the floating breakwater generates waves. When the motions of the floating
breakwater are large, the theories for wave transmission underestimate the wave transmission. To
include al these processes in an analytical formula is a difficult task. Ruol et al. [2013a] derived a
modification factor for the formula of Macagno. This modification factor is based on experimental
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data and describes the difference between the formula of Macagno and the experimental data.
There is not a real physical background behind this factor, but the results are suitable to use.

Fixed breakwaters
Fixed breakwaters are structures which movements relative to the bottom are negligible small and
no deformations of the structure itself occur. When the wave transmission theories are compared
with experimental data for fixed structures, it is concluded that nearly all theories are overesti-
mating the wave transmission coefficient. This overestimation increases for shorter wave periods.
The dimensionless values used to make distinction between the theories is the ratio wavelength to
draft (L/D), ratio width to depth (B/d) and ratio draft to depth (D/d). For values of L/D < 5
the wave transmission coefficient is smaller than 30%. When the wave transmission predicted
according to the theory of Macagno becomes smaller than the predicted wave transmission ac-
cording to the theory of Kriebel and Bollmann, it is observed that Macagno is suitable to apply
for 0.75 < B/d < 1.0 and 0.15 < D/d < 0.4. When for these same ratios the wave transmission
predicted by the theory of Macagno becomes larger than the wave transmission predicted by the
theory of Kriebel and Bollmann, the theory of Kriebel and Bollmann is suitable to apply. For
structures with a large draft, D/d > 0.4, the available theories are not suitable to apply and
numerical and physical models are suitable.

Floating breakwaters anchored by piles
Floating breakwaters anchored by piles are breakwaters with one degree of freedom. Only vertical
translations occur which are called heave. Although all the theories used for the comparisons with
experimental data are derived for fixed structures, a reasonable agreement is found for floating
breakwaters with one degree of freedom for the theory of Kriebel and Bollmann. The parameter
which is suggested in order to make distinction between the use of the theories for floating break-
waters with one degree of freedom is the relative period χ, representing the peak period (Tp) over
the natural heave period (Th). For χ < 0.6 the wave transmission coefficient is smaller than 30%.
For the ranges 0.2 < B/d < 0.5 and 0.15 < D/d < 0.4 the theory of Macagno is suitable to apply.
For the ranges 0.5 < B/d < 1.0 and 0.15 < D/d < 0.4 and for 0.7 < χ < 1.7 the theory of Kriebel
and Bollman is applicable. For large drafts, D/d > 0.4, physical and numerical models needs to
be applied.

Floating breakwaters anchored by chains
Floating breakwaters which are anchored by chains have six degrees of freedom and have a different
behaviour than floating breakwaters with one degree of feedom. The dimensionless ratios consid-
ered in order to make distinction between the applicability of the different theories are: width
over water depth (B/d), draft over water depth (D/d) and the relative period (χ). The formula
of Ruol et al. is applicable for the following ranges: 0.5 < B/d < 1.10 and 0.20 < D/d < 0.60 and
0.60 < χ < 1.70. The formula of Macagno is applicable for the following ranges: 0.4 < B/d < 1.10
and D/d < 0.20 and 0.60 < χ < 1.20. Areas of interest where experimental data is missing are
the ratio of B/d < 0.5 where D/d and χ are in the range where the formula of Ruol et al. is
applicable. Another area of interest is for the ratio B/d < 0.4 where the formula of Macagno is
applicable.

Applicability of wave transmission theories
When the theories discussed above are applied for the areas where a good/reasonable agreement
is found between the theory and numerical or experimental data, the wave transmission is slightly
overestimated. For a preliminary design this overestimation is not very relevant and a reasonable
estimation is obtained regarding the effectiveness of the floating breakwater. Based on experimen-
tal data and numerical data a flowchart is constructed which indicates when to use which formula.
This flowchart is shown as Figure 6.32. The experimental models obtained from literature are per-
formed with a wave steepness between the 1% and 6%, a horizontal bottom and no overtopping
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is included. The same holds for the numerical models, except for the maximum wave steepness,
which is 5% for the numerical models.

Modelling of floating breakwaters
In this report use is made of a linear radiation and diffraction model which is based on the
three-dimensional potential flow theory. This model is able to model the motions of the floating
breakwater and the transmitted waves. A disadvantage of this model is that energy losses are not
included and that steep waves can not be modelled.

With this model fixed breakwaters, floating breakwaters anchored by piles and floating breakwa-
ters anchored by chains are modelled. It is concluded that the model is suitable to model fixed
breakwaters well. The model is also suitable to model floating breakwaters with one or more de-
grees of freedom, but the model needs to be calibrated for these two types of floating breakwaters.
It is important that the motions in the model are the same as the motions observed during the
experiments. For floating breakwaters anchored by piles this calibration can be done by adding
additional damping to the system for the heave motions. This additional damping represents
mechanical friction between the pontoon and the piles and represents viscous effects. For floating
breakwaters anchored by chains additional damping needs to be included for several modes of mo-
tion. It is expected that when the model is calibrated on the motions which are observed during
the experiments, the model will be suitable to model wave transmission of these types of floating
breakwaters.

The effect of oblique incident waves can be taken into account in the model. It is concluded that
when the angle of wave incidence increases, the wave transmission decreases. This decreases is
due to the increase of the effective width of the breakwater. This only holds for fixed breakwaters
and floating breakwaters anchored by piles. For a floating breakwater anchored by chains the
movements will also have effect on the transmission coefficient for oblique incident waves.

In general, the calibrated numerical models show a good agreement with the experimental data.
When the numerical models and the available theories for wave transmission are compared with
experimental data, it is concluded that the numerical models shows a better agreement with the
experimental data than the available theories for wave transmission.

Answer research question
The research question is defined as follows:

’Which steps should be executed during the design process in order to predict the effectiveness of
a floating breakwater more accurately? ’

The answer for this question is shown in the form of a flowchart, shown as Figure 6.32. To use this
flowchart the input parameters are the wave period T or peak period Tp, the water depth d, the
width of the floating breakwater B and the draft of the floating breakwater D. Depending on the
type of anchoring system for the floating breakwater, a number of options are available which are
all based on the input parameters. If one executes all the steps in the flowchart the result is that
one obtains the most suitable formula to predict the wave transmission of floating breakwaters.
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7.2 Recommendations

During this thesis multiple areas are identified where additional research possibilities exists. Below
these possibilities are listed:

� Investigate the influence of the anchoring system on the wave transmission.

� Obtaining a suitable method by which the additional amount of damping (effect of the
anchoring system and viscous effects) can be determined which is necessary to obtain a good
model for each type of floating breakwater with one or more degrees of freedom.

� Calibration and validation of the numerical model for floating breakwaters anchored by
chains.

� Investigate how to model the effects of a full wave spectrum on the wave transmission.

� Extend the flowchart for floating breakwaters anchored by chains for D/d < 0.20 and χ >
1.20 and for the ranges of D/d > 0.20 with χ > 1.70.

� Investigate the effect of the breakwater width and the natural heave period on the wave
transmission for oblique incident waves.

� Define a procedure to obtain automatically the numerical wave field computed by AQWA
with sufficient accuracy.
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Appendix A

Performance of floating breakwaters

This appendix shows the results of transmission coefficients obtained by physical models. Several
graphs are shown for each type of floating breakwater discussed in Chapter 3, which are presenting
the transmission coefficient.

A.1 Definition of Performance

The definition of performance strongly depends on the requirements the floating breakwater has
to fulfil, which is in general reducing wave heights to a certain level. The transmission coefficient
represents the fraction of the incident wave height which is transmitted by the floating breakwater
and can be determined with the local wave conditions and the maximum allowable wave height.
This implies that the transmission coefficient differs for each project and that there is no exact
value which defines the performance.

A.1.1 Wave transmission theories for reflective structures

Brebner and Ofuya [1968] conducted several experiments in a wave flume for the following type
of floating breakwaters: single pontoon, double pontoon and A-frame.

Single- and double Pontoon
The experiments for the single pontoon and double pontoon types are conducted with variable
mass, which determines the depth of submergence. The depth of submergence has no influence on
the radius of gyration but has a large influence on the metacentric height and thus the stability of
the structure. The natural period of oscillation is also affected by the depth of submergence and
will increase due to the increase of mass. The results and conclusions related to wave transmission
are shown below. For details about the set-up of the experiments reference is made to Brebner
and Ofuya [1968].
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Figure A.1: Transmission coefficient for single and double pontoon for different depths of submer-
gence, d2, [Brebner and Ofuya, 1968]

From Figure A.1 it can be concluded that the structure is effective in attenuating waves over a
wide range of values for L/d, where in this figure d represents the water depth. The effect of
submergence on the transmission coefficient is smaller for lower values of L/d but increases for
larger L/d values. It also turns out that the depth of submergence has a positive effect on wave
attenuation. When the results of a single pontoon and a double pontoon are compared to each
other, it can be concluded that the single pontoon is more effective in attenuating waves than the
double pontoon.

A-frame
In Canada several tests are performed to verify the effectiveness of the A-frame breakwater, see
also Brebner and Ofuya [1968]. One of the most remarkable things related to the A-frame is its
large radius of gyration, which can easily be increased with only a little increase of mass.

Figure A.2: Transmission coefficient for A-frame type of breakwater, for different relative breakwater
widths (radius of gyration), L1/d [Brebner and Ofuya, 1968]

From Figure A.2 it can be concluded that the effectiveness can be increased by increasing the
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distance between the cylinders. This implies an increase of the mass radius of gyration.

Hinged floating breakwater
Leach et al. [1985] performed research on developing a analytical model of rigid, hinged floating
breakwater. They verified their analytical model by physical model tests and derived design curves
for predicting the wave attenuating characteristics.

The result of this research is a dimensionless parameter P, which is a combination of the breakwater
buoyancy, weight, center of gravity, center of buoyancy, inertia, mooring line resiliency, point of
attachment an anchor point Leach et al. [1985].

P =
1

ρgh3

[
(FBB + 2KLC

2sin2α)−m
(
l2ω2

3
+ gG

)]
(A.1)

In which:
m = mass of breakwater [kg]
l = height of the screen [m]
ω = wave frequency [rad/s]
g = gravitational acceleration [m/s2]
ρ = density of water [kg/m3]
FB = buoyancy per unit width [N]
h,B,C, α,G = see Figure A.3
KL = spring stiffness of mooring line [N/m]

The value of P in Eq.A.1 represents the relative importance of the restoring forces (positive terms)
and the inertia forces (negative terms) PIANC [1994]. The value of P can vary between -0.5 and
5.0. In the absence of the mooring lines P becomes slightly negative, because the inertia terms
become dominant. When the mooring lines are very stiff (practical engineering applications) the
value of P will become large [Leach et al., 1985].

Figure A.3: Principle sketch of hinged floating breakwater, [Leach et al., 1985]
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(a) Analytical behaviour of transmission
coefficient as function of Kh and constant P

(b) Comparison of theoretical and experimental
values of transmission coefficient

Figure A.4: Theoretical and experimental transmission coefficient for hinged type of breakwater
[Leach et al., 1985]

A.1.2 Wave transmission theories for dissipative structures

Dissipation of wave energy by dissipative structures can be achieved in different ways, such as:
wave breaking, generation of turbulence and friction. Depth-induced wave breaking occurs approx-
imately around the ratio (wave height/water depth) H/d = 0.8. When the wave breaks, energy is
converted into turbulence. Generation of turbulence can also be achieved by creating sharp edges
where the flow is forced to release from. The porous walled breakwater works on this principle.
Friction dominates only in situations where high velocities are achieved, which may occur in cases
like resonance. This is the case for a tethered-float breakwater, see also section 3.3.2.

The amount of energy dissipation or turbulence is difficult to predict or to describe in a model.
There does not exist a general formula to predict the amount of energy dissipation. Most formula’s
presented in literature are applicable for a specific type of energy dissipation, hence a specific type
of floating breakwater. Below the formulas and graphs determining the transmission coefficient
for several dissipative structures are shown.

Scrap-tire
Harms [1979] performed research on transmission coefficients for scrap-tire floating breakwaters
by using linear wave theory and deep water conditions. Furthermore he considered the power
required to propel a tire of negligible mass at velocity U(t), unidirectionally through a viscous
fluid at rest. This relationship is assumed to be applicable for a fixed tire and for an unsteady flow
U(t). The product of the drag force on the tire and the velocity equals the time rate of change
of kinetic energy of the surrounding fluid Hales [1981]. In other words, the power (velocity ×
drag force) represents the rate at which the energy is dissipated within the structure. The drag
related dissipation is considered to vary only in proportion to the wave height squared (H2). This
implies that the energy dissipation along the breakwater is proportional to the wave energy along
the breakwater, 1/8 ρ g H2. Making use of the energy flux balance, see Bouwmeester and Van
der Breggen [1984] the following transmission coefficient is be obtained:

Ct = exp

{
−20π Cd

Hi

L

3 P L
B

}
(A.2)

In which:
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Cd = drag coefficient [-]
Hi = incident wave height [m]
L = wave length [m]
P = porosity [-]
B = width of structure [m]

Harms [1979] performed several experiments where he measured the transmitted wave height.
From Eq.(A.2) he determined the drag coefficient for the specific structure. According to his
results it turned out that the drag coefficient did not vary a lot with respect to the different
structures which were tested. The value for Cd was found to be around the 0.6. From this Harms
concluded that the porosity parameter primarily determines the performance of the structure.
Another remarkable result is that the theoretical values of the transmitted wave heights did not
vary more than 10% of the measured transmitted wave heights. Based on this, Harms concluded
that Eq.(A.2) describes the wave transmission quite well.

For the Goodyear breakwater P=0.87 and Cd = 0.60. For the pile-tire breakwater P=0.53 and
Cd = 0.65.

Figure A.5: Comparison of wave transmission coefficients for Goodyear and Pipe-tire (Wave-Guard)
floating breakwaters, for various ratios of wavelenght-to-breakwater width, L/W [Harms, 1979]

Tethered-Float
Friction or drag is proportional to the third power of the relative velocity between structure and
the fluid particle. In most cases this relative velocity is very low which results in a low amount
of energy dissipation. But at a high relative velocity a high drag can be achieved which results in
a large amount of energy dissipation. The Tethered-float breakwater is based on this principle of
high relative velocities which results into large drag.

The tethered float can be modelled as a pendulum and the responses of the floats on the wave
forcing are behaving like a damped system. The float motion amplitude and phase lag increases
when the frequency of the excitation is close to its own frequency. When the frequency of the
excitation is close to the natural frequency of the floats, there will be large motions of the floats
and hence, large relative velocities which induces a large drag. In fact, this buoy converts wave
energy into turbulence and turbulence into heat. In Figure A.6 the theoretical performance is
shown. Only drag dissipation is included in these results. These results are made by Seymour and
Isaacs in 1974. To obtain these results a number of calculations and iterations should be executed
and there does not exists a simple formula to predict the wave transmission coefficient. The details
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of these calculations can be found in [Hales, 1981]. In Figure A.6 all the parameters which needs
to be taken into account in order to achieve a certain transmission coefficient are shown.

Ct=0.25 Ct=0.50

Ct=0.75

Figure A.6: Theoretical performance for three different transmission coefficients

Porous Wall
Richey and Sollitt [1969] investigated the effectiveness of the porous walled breakwater. The
principle of this breakwater is as follows: As the waves approach the porous wall, part of the wave
energy will be reflected and another part of the wave energy will pass through the perforations,
resulting in the rise of water level a. In Figure A.7 the inner water level (a) and outer water level
(n) are shown.

n

a

Porous wall

Hi Ht

Figure A.7: Porous walled breakwater

When the outer water level is higher than the inner water level, (n > a), then potential wave energy
will be converted into kinetic energy which will be dissipated in the chamber into turbulence. In
this case the inner water level will rise. As soon as a becomes larger than n , the flow reverses and
the chamber empties itself. The reversal flow encounters the next incoming wave and dissipates a
part of its wave energy before the wave hits the breakwater [Hales, 1981].

The advantage of this type of breakwater is that only a part of the wave energy is reflected. In
the case of a pontoon breakwater the incoming wave energy is fully reflected along the surface of
the pontoon, causing higher mooring forces and larger oscillations of the breakwater.
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Richey and Sollitt [1969] performed mainly research on the reflection coefficient of the porous
walled breakwater. To obtain an estimation for the transmission coefficient use is made of the
simple relation shown as Eq.(A.3). Note that there are no energy losses taken into account in this
equation.

H2
i = H2

t +H2
r

1 = C2
t + C2

r → Ct =
√

1− C2
r

(A.3)

In which:
H = wave energy density [J/m3]
C = coefficients [-]
indices r = reflective [-]
indices i = incident [-]
indices t = transmitted [-]

Figure A.8: Effect of incident wave steepness, Hi/L and dimensionless wave frequency, σ2h/g, on
reflection coefficient Cr for porous walled breakwaters, ec indicates the wave generator eccentricities
[Richey and Sollitt, 1969]

In the dimensionless parameter on the x-axis of Figure A.8 is the σ the radian frequency of the
wave, h is the water depth and g is the gravitational acceleration.

Flexible Membrane
The efficiency of this system was found to be good on steep waves because of the large vertical
accelerations. Waves which are less steep require a longer wave trap in order to attenuate the
waves effectively. Most energy is dissipated in the structure itself, causing large stresses on the
structural elements.
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Figure A.9: Transmission coefficient for wave trap breakwater [[Ripken, 1960]]

From Figure A.9 it can be seen that good wave height attenuation is achieved for small values of
wavelength over trap width (L/W ). If the wave steepness increases the transmission coefficient
slightly decreases. One of the conclusions of the physical model tests were the high forces on the
structure and therefore it would not work in practical design cases [Hales, 1981].
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Appendix B

Linear wave theory

In Chapter 4.1 linear wave theory is discussed briefly, below a more detailed description is given.

B.1 Linear wave theory

Ocean waves can be described by linear wave theory. The most interesting result of this theory
is a long-crested propagating harmonic wave. Based on this theory, many wave characteristics
can be derived. Besides this, most theories on wave transmission (see also Chapter 5) are based
on linear wave theory. In order to understand the behaviour of waves and its characteristics, an
explanation of linear wave theory is given. For more detailed information and the derivations of
the formulas given below, reference is made to Holthuijsen [2007].

Linear wave theory is based on two equations: a mass balance equation and a momentum balance
equation. These two equations are describing the kinematic and dynamic aspects of waves. Waves
can be described by linear wave theory when the amplitude of the wave is small compared to the
water depth and wavelength. In this case non-linear effects of waves are negligible. Furthermore it
is assumed that water is an ideal fluid, which implies: incompressible, constant density, no viscosity
and no rotation of water particles around their own axis. From the mass balance equation the
continuity equation can be derived:

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (B.1)

In which:
u = velocity
x, y, z = indicating direction of a three-dimensional reference frame

The position of the reference frame is located on the mean water level surface, with the positive
x-axis towards the right and the positive z-axis upwards, see also Figure B.1.

To solve this equation use is made of the velocity potential function φ = φ(x, y, z, t), shown below
as Eq.(B.2). This function is defined as a function of which the spatial derivatives are equal to
the velocities of the water particles [Holthuijsen, 2007]. Substituting this in Eq.(B.1) the Laplace
equation is obtained (Eq.(B.3)).
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Velocity potential funcion : ux =
∂φ

∂x
, uy =

∂φ

∂y
, uz =

∂φ

∂z
(B.2)

Laplace equation :
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (B.3)

Boundary conditions can be defined at the water surface (η) and at the bottom in terms of the
velocity potential function. The kinematic boundary conditions are:

Kinematic boundary conditions


∂φ

∂z
=
∂η

∂t
at z=0

∂φ

∂z
= 0 at z=-d

(B.4)

With the kinematic boundary conditions and the velocity potential function the Laplace equation
can be solved. One of the analytical solutions of the Laplace equation with the kinematic boundary
conditions is a long-crested harmonic wave, propagating in the positive x-direction. In fact, this
wave represents the surface elevation and can be defined as:

η(x, t) = a sin(ωt− kx) (B.5)

In which:
a = wave amplitude [m]
ω = radian frequency [rad/s], defined as 2π

T , where T is the wave period [s]
t = time [s]
k = wave number [rad/m], defined as 2π

L , where L is the wave length [m]

The velocity potential function belonging to this equation is:

φ = φ̂ cos(ωt− kx) with φ̂ =
ωa

k

cosh[k(d+ z)]

sinh(kd)
(B.6)

The above solution of the Laplace equation is based on a mass balance (continuity equation) and
the kinematic boundary conditions only. This implies that all the kinematic aspects (velocities
and accelerations) can be derived from Eq.(B.5) and Eq.(B.6). Since wave energy implies the
movement of water particles, the equations above are essential for describing the distribution of
wave energy in the water column.

When waves are propagating they are transporting energy in the direction of propagation. This
horizontal transport of energy is due to the work done by the wave induced pressure. This wave
induced pressure can be described by the dynamic aspects of waves, which are derived from the
momentum balance.

Momentum is by definition the mass density of water times the velocity of the water particles. The
second law of Newton states that the rate of change of momentum equals force. For momentum
in the x-direction the following momentum balance equation is obtained:

∂(ρux)

∂t
+
∂ux(ρux)

∂x
+
∂uy(ρux)

∂uy
+
∂uz(ρux)

∂z
= Fx (B.7)

The dynamic boundary condition is defined as: p = 0 at z = 0 (B.8)
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B.1 Linear wave theory B3

The pressure (p) at the water surface is assumed as zero and functions as a reference pressure
since the interest is in the pressures below the water surface. In Eq.(B.7) Fx is the body force
in x-direction per unit volume. The second, third and fourth terms are the advective terms and
contain non-linear terms. In order to make the theory linear, these terms should be removed from
the momentum equation. After applying some mathematics and ignoring the non-linear terms in
Eq.(B.7) the linearised Bernoulli equation for unsteady flow is obtained, shown as Eq.(B.9).

∂φ

∂t
+
p

ρ
+ gz = 0 (B.9)

Just as the kinematic boundary condition, it is possible to express the dynamic boundary condition
in terms of the velocity potential. This implies z = η with p = 0 and results in:

∂φ

∂t
+ gη = 0 at z=0 (B.10)

The analytical expression for the wave induced pressure is derived by substituting the solution
of the velocity potential function (Eq.B.6) into the linearised Bernoulli equation (Eq.B.9). After
substitution the following result is obtained:

Pwave = P̂wave sin(ωt− kx) with P̂wave = ρga
cosh[k(d+ z)]

cosh(kd)
(B.11)

The equations above together with the boundary conditions are summarized in Figure B.1. In this
figure the Laplace equation together with the kinematic boundary conditions and the linearised
Bernoulli equation with the dynamic boundary conditions are shown.

Figure B.1: Linearised basic equations and boundary conditions for the linear wave theory, in terms
of velocity potential [Holthuijsen, 2007]

B.1.1 Regular waves

The most interesting result of linear wave theory is a long-crested propagating harmonic wave. This
harmonic wave (regular wave) can be defined as a propagating sinusoidal wave with an amplitude
(a), radian frequency (ω) and wave number (k). The equation of the sinusoidal harmonic wave is
shown below.

η(x, t) =
H

2
sin

(
2π

T
t− 2π

L
x

)
= a sin(ωt− kx) (B.12)
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B4 Linear wave theory

The phase speed is the forward speed (c) by which the wave propagates while the phase (ωt− kx)
remains constant. Mathematically this implies that the time derivative of the phase is zero. From
this the phase speed is obtained (Eq.B.13). The parameters used in the equations are shown in
Figure B.2.

c =
ω

k
=
L

T
(B.13)

Figure B.2: Propagating harmonic sine wave, [Holthuijsen, 2007]

B.1.2 Irregular waves

If one observes the water surface, it can be seen that it continuously changes without repeating
itself. When the water surface elevation is measured, the resulting signal will be like an irregular
wave signal, which can be modelled by the sum of a large number of harmonic wave components:

η(t) =

N∑
i=1

ai cos(2πfit+ αi) (B.14)

In which:
N = large number of frequencies
αi = phase as a random variable
ai = amplitude as a random variable
fi = wave frequency

Each wave component is a propagating regular wave which has a sinusoidal shape. From this it
follows that the irregular wave signal, which describes the surface elevation, can be decomposed by
a Fourier series into a number of harmonic waves, see Figure B.3. The result is a set of values for
the amplitude (ai) and phase (αi), where the underscores indicate that the variables are random.
Each set of values of ai and αi belongs to the frequency fi. This approach is called the random-
phase amplitude model. The benefit of this model is that it is possible to describe the waves as a
spectrum.

The random variables are characterized by their probability density functions. The phase (αi) at
each frequency (fi) is uniformly distributed between 0 and 2π. The amplitude (ai) has at each
frequency (fi) a Rayleigh distribution [Holthuijsen, 2007].

If the expected value of the amplitude (E{ai}) is considered, it is possible to generate an amplitude
spectrum. However, it makes more sense to consider the variance of the amplitude (E{ 1

2ai
2}),

because the wave energy spectrum can easily be obtained by multiplying the variance spectrum
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B.1 Linear wave theory B5

with the density of the water (ρ) and the gravitational acceleration (g). The variance spectrum
is discrete, i.e., only the frequencies fi are present. At sea all frequencies are present. In order
to obtain a continues distribution of the variance over the frequency, this approach is modified
by dividing the variance of the amplitude by the frequency interval ∆fi. When the width of
the frequency interval (∆fi) approaches zero, a continuous distribution of the variance over the
frequency interval is obtained. This distribution is known as the (one-dimensional) variance density
spectrum:

E(f) = lim
∆f→0

1

∆f
E{ 1

2a
2} (B.15)

The variance density spectrum gives a complete description of the surface elevation of waves in
a statistical sense, under the assumption that the surface elevation can be seen as a stationary
Gaussian process [Holthuijsen, 2007].

Figure B.3: Wave record analyses, ζa repre-
sents wave amplitude, [Journee and Massie,
2001]

Figure B.4: Interpretation of the variance
density spectrum as the distribution of the to-
tal variance of the sea-surface elevation over
frequencies, [Holthuijsen, 2007]

The variance density spectrum is expressed in terms of frequency (f). Since it is common to use
angular arguments for sine and cosine waves, it is useful to express the variance density spectrum
in terms of angular frequency (ω). This can be achieved by multiplying Eq.B.15 by 1

2π . For details
on this transformation reference is made to Holthuijsen [2007].

Waves are propagating in a certain direction, which is not taken into account in the one-dimensional
variance density spectrum discussed above. The direction can be taken into account by consid-
ering the propagation of the harmonic wave in the x, y-plane. If θ is the angle relative to the
positive x-axis and using the principles for the one-dimensional variance density spectrum, the
two-dimensional variance density spectrum is obtained:

E(f, θ) = lim
∆f→0

lim
∆θ→0

1

∆f∆θ
E{ 1

2a
2} (B.16)

In which:
E(f, θ) = variance density as function of frequency (f) and direction (θ) [m2/Hz/radian]
a = amplitude as a random variable [m]
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B6 Linear wave theory

Figure B.5: Two-dimensional variance density spectrum as the distribution of the total variance of
the sea-surface elevation over frequency and direction (polar coordinates), [Holthuijsen, 2007]

From the variance density spectrum it is relatively easy to obtain the wave energy density spectrum.
This can be obtained by multiplying the variance density spectrum with the density of the water
and with the gravitational acceleration.

A.C. Biesheuvel M.Sc. Thesis



Appendix C

Experimental data

This appendix shows the experimental data obtained from literature and the comparisons between
experimental data and theories for wave transmission.

C.1 Experimental datasets

Distinction is made between fixed breakwaters, floating breakwaters anchored by piles and floating
breakwaters anchored by chains. Furthermore, distinction is made between regular waves and
irregular waves. Each dataset is compared with the existing formulas for wave transmission and
based on this comparison conclusions are drawn related to the applicability of these formulas for
wave transmission.

C.1.1 Fixed breakwaters

The table below shows the datasets for fixed floating breakwaters. This dataset is obtained from
Koutandos et al. [2005] and from Gesraha [2006].

Dataset Waves Range T [s] D/d [-] B/d [-] d [m]

Koutandos et al. [2005] Regular 2.4 - 10.5 0.2; 0.25; 0.33 1.00 2.00
Koutandos et al. [2005] Irregular 2.8 - 5.5 0.2; 0.25; 0.33 1.00 2.00
Gesraha [2006] Irregular 0.6 - 1.8 0.4 0.75 0.43

Table C.1: Experimental data fixed floating breakwaters

Comparison with experimental data obtained from Koutandos et al. [2005]
In Figure C.1 different wave transmission theories are plotted together with experimental data
for regular waves for a fixed floating breakwaters. Figure C.2 shows the differences between the
theories and the experimental data. From this figure it can be seen that for long wave periods the
theory of Wiegel and Bollmann gives a good agreement and that all the theories are overestimating
the wave transmission coefficient. When the Root Mean Square Error (RMSE) is considered
(Eq.C.1) in order to judge which theory approximates the experimental date the best, it turns out
that the theory of Kriebel and Bollmann is the most suitable to apply. In Table C.2 the RMSE’s
of the other theories are shown. From this table it can be seen that when the draft increases, the
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RMSE of Macagno and Ursell increases, while the RMSE for the other theories stays more or less
constant.

RMSE =

√∑N
i=1 (Ct;theory − Ct;model)2

N
(C.1)

Figure C.1: Experimental data obtained from Koutandos et al. [2005] for fixed floating breakwaters
compared with wave transmission theories for three different drafts and regular waves

Figure C.2: Differences between wave transmission theories and experimental data obtained from
Koutandos et al. [2005], regular waves. (y-axis is limited to 0.40)
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Formula RMSE:
D/d=0.2,
B/d=1.0

RMSE:
D/d=0.25,
B/d=1.0

RMSE:
D/d=0.33,
B/d=1.0

Macagno 0.1947 0.2218 0.2929
Wiegel 0.1699 0.1677 0.1808
Ursell 0.3081 0.3336 0.3826
Bollmann 0.1569 0.1486 0.1486

Table C.2: Root mean square errors between theories and experimental data of Koutandos et al.
[2005], regular waves, fixed FB.

All the wave transmission theories considered are derived for regular waves. When these formulas
are used for irregular waves the RMSE becomes smaller, see Table C.3. From Figure C.3 and C.4
it can be seen that for longer wave periods the wave transmission theories show a better agreement
than for smaller wave periods.

Figure C.3: Experimental data obtained from Koutandos et al. [2005] for fixed floating breakwaters
compared with wave transmission theories for three different drafts and regular waves

Formula RMSE:
D/d=0.2,
B/d=1.0

RMSE:
D/d=0.25,
B/d=1.0

RMSE:
D/d=0.33,
B/d=1.0

Macagno 0.2818 0.3224 0.3968
Wiegel 0.1534 0.1409 0.1257
Ursell 0.4173 0.4620 0.5259
Bollmann 0.1324 0.1090 0.0716

Table C.3: Root mean square errors between theories and experimental data of Koutandos et al.
[2005], irregular waves, fixed FB.
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Figure C.4: Differences between wave transmission theories and experimental data obtained from
Koutandos et al. [2005], irregular waves. (y-axis is limited to 0.40)

Comparison with experimental data obtained from Gesraha [2006]
Gesraha [2006] performed experiments for a fixed floating breakwater in short irregular waves.
When this experimental data set is compared with the theories it can be seen that all the theories
are underestimating the transmission coefficient. The major difference between this dataset and
the one of Koutandos et al. [2005] are the smaller wave periods considered by Gesraha.

Figure C.5: Experimental data obtained
from Gesraha [2006] for fixed floating break-
waters compared with wave transmission the-
ories.

Figure C.6: Differences of Ct between theo-
ries and experimental data, fixed FB, irregular
waves
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Formula RMSE:
D/d=0.4,
B/d=0.75

Macagno 0.1737
Wiegel 0.2669
Ursell 0.1987
Bollmann 0.3372

Table C.4: Root mean square errors between theories and experimental data of Gesraha [2006],
irregular waves, fixed FB.

C.1.2 Breakwaters anchored by piles

The table below shows the datasets for floating breakwaters anchored by chains. These datasets
are obtained from literature, which can be seen in the first column of this table.

Dataset Waves Range χ [-] or L/D [-] D/d [-] B/d [-] d [m]

Cox et al., 2007 Irregular χ = 0.94 - 1.56 0.40 0.57 4.20
Deltares Irregular L/D = 2.07 - 11.06 0.38 0.12
Deltares Irregular L/D = 1.46 - 7.71 0.54 0.12
Deltares Irregular L/D = 2.60 - 7.16 0.41 0.13
Deltares Irregular L/D = 1.82 - 5.06 0.58 0.13
Koutandos et al., 2005 Irregular χ = 1.12 - 3.51 0.20 1.00 2.00
Martinelli et al., 2008 Irregular χ = 0.77 - 1.38 0.20 0.49 0.52
Cox et al., 2007 Regular χ = 0.76 - 1.90 0.40 0.57 4.20
Deltares Regular L/D = 1.49 - 11.85 0.38 0.12
Deltares Regular L/D = 1.04 - 8.33 0.54 0.12
Deltares Regular L/D = 2.64 - 7.79 0.41 0.13
Deltares Regular L/D = 1.86 - 5.48 0.58 0.13
Koutandos et al., 2005 Regular 1.32 - 2.62 0.20 1.00 2.00

Table C.5: Experimental data floating breakwaters anchored by piles

Comparison with experimental data obtained from Deltares
Deltares performed experimental scale modelling on floating breakwaters. Their model set-up
is different compared to the other models of floating breakwaters anchored by piles. The main
difference is the fixed screen below the water level. With this lay-out of the floating breakwater
structure a large part of the water column is blocked. For the calculations the fixed vertical screen
is taken into account for the draft. The dimensionless value which is used to set on the x-axis is
defined as the wavelength over the draft, L/D.
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Regular waves:

Figure C.7: Data from Deltares, regular
waves

Figure C.8: Differences between theories and
experimental data Figure C.7

Figure C.9: Data from Deltares, regular
waves

Figure C.10: Differences between theories
and experimental data Figure C.9

Figure C.11: Data from Deltares, regular
waves

Figure C.12: Differences between theories
and experimental data Figure C.11
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Figure C.13: Data from Deltares, regular
waves

Figure C.14: Differences between theories
and experimental data Figure C.13

Formula RMSE:
D/d=0.38
B/d=0.12

RMSE:
D/d=0.54,
B/d=0.12

RMSE:
D/d=0.41,
B/d=0.13

RMSE:
D/d=0.58,
B/d=0.13

Macagno 0.2737 0.2634 0.3263 0.3562
Wiegel 0.1531 0.2204 0.1273 0.1961
Ursell 0.2372 0.3084 0.2222 0.3224
Bollmann 0.2446 0.3102 0.2381 0.2989

Table C.6: Root mean square errors between theories and experimental data of Deltares, regular
waves, FB anchored by piles

Irregular waves:

Figure C.15: Data from Deltares, irregular
waves

Figure C.16: Differences between theories
and experimental data Figure C.15

M.Sc. Thesis A.C. Biesheuvel



C8 Experimental data

Figure C.17: Data from Deltares, irregular
waves

Figure C.18: Differences between theories
and experimental data Figure C.17

Figure C.19: Data from Deltares, irregular
waves

Figure C.20: Differences between theories
and experimental data Figure C.19

Figure C.21: Data from Deltares, irregular
waves

Figure C.22: Differences between theories
and experimental data Figure C.21
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Formula RMSE:
D/d=0.38
B/d=0.12

RMSE:
D/d=0.54,
B/d=0.12

RMSE:
D/d=0.41,
B/d=0.13

RMSE:
D/d=0.58,
B/d=0.13

Macagno 0.3029 0.2849 0.3555 0.4005
Wiegel 0.1250 0.2213 0.0952 0.1642
Ursell 0.2284 0.3134 0.1916 0.2764
Bollmann 0.2220 0.3109 0.1997 0.2600

Table C.7: Root mean square errors between theories and experimental data of Deltares, irregular
waves, FB anchored by piles

Comparison with experimental data obtained from Cox et al. [2007]
Below the experimental data of Cox et al. [2007] is shown together with the transmission theories.
From these two figures it becomes clear that for χ ≤ 0.6 the transmission coefficient is smaller
than 30%. The dataset of the regular waves is well approximated by the theory of Wiegel. The
dataset of the irregular waves is well approximated till the value of χ = 1.0. For higher χ-values
the wave transmission is overestimated by Macagno.

Formula RMSE:
D/d=0.40,
B/d=0.57,
Hs=0.4m

RMSE:
D/d=0.40,
B/d=0.57,
Hs=0.8m

Macagno 0.2211 0.2260
Wiegel 0.958 0.0618
Ursell 0.1921 0.2121
Bollmann 0.1026 0.0959

Table C.8: Root mean square errors between theories and experimental data of Cox et al. [2007],
regular waves, FB anchored by piles

Formula RMSE:
D/d=0.40,
B/d=0.57,
Hs=0.4m

RMSE:
D/d=0.40,
B/d=0.57,
Hs=0.8m

Macagno 0.2900 0.2705
Wiegel 0.0806 0.0472
Ursell 0.2442 0.2319
Bollmann 0.0360 0.0309

Table C.9: Root mean square errors between theories and experimental data of Cox et al. [2007],
irregular waves, FB anchored by piles
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Figure C.23: Data from Cox et al. [2007], ir-
regular waves, depth (d) = 4.20m and heave
period (Th) = 3.2s

Figure C.24: Data from Cox et al. [2007],
regular waves, depth (d) = 4.20m and heave
period (Th) = 3.2s

Figure C.25: Differences between theo-
ries and experimental data Figure C.23 for
Hs=0.4m

Figure C.26: Differences between theo-
ries and experimental data Figure C.23 for
Hs=0.8m

Figure C.27: Differences between theo-
ries and experimental data Figure C.24 for
Hs=0.4m

Figure C.28: Differences between theo-
ries and experimental data Figure C.24 for
Hs=0.8m
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Comparison with experimental data obtained from Koutandos et al. [2005]
Koutandos et al. [2005] performed experimental model tests for shallow- and intermediate water
depths in a large scale facility. The shallow water depth, which implies relatively long waves is
represented by the high χ-values. When this data is compared with the theories it becomes clear
that most theories are overestimating the transmission for the case of irregular waves. When
regular waves are considered, it can be seen that Macagno approximates the measured values well
till the value of χ = 2.2. For higher χ-values Macagno overestimates the transmission coefficients.

Figure C.29: Data from Koutandos et al.
[2005], regular waves, depth (d) = 2.00m
and heave period (Th) = 2.1s

Figure C.30: Differences between theories
and experimental data Figure C.29

Figure C.31: Data from Koutandos et al.
[2005], irregular waves, depth (d) = 2.00m
and heave period (Th) = 2.1s

Figure C.32: Differences between theories
and experimental data Figure C.31
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Formula RMSE:
D/d=0.20,
B/d=1.0

Macagno 0.1738
Wiegel 0.1415
Ursell 0.3118
Bollmann 0.1230

Table C.10: Root mean square errors between theories and experimental data of Koutandos et al.
[2005], regular waves, FB anchored by piles

Formula RMSE:
D/d=0.20,
B/d=1.0

Macagno 0.2374
Wiegel 0.1575
Ursell 0.3046
Bollmann 0.1417

Table C.11: Root mean square errors between theories and experimental data of Koutandos et al.
[2005], irregular waves, FB anchored by piles

Comparison with experimental data obtained from Martinelli et al. [2008]
The dataset obtained from Martinelli et al. [2008] shows in general a good agreement with
Macagno. For χ-values smaller than 1.0, there is a small overestimation of the transmission
coefficients by Macagno. For χ-values between 1.0 and 1.5 Macagno shows a good agreement.

Figure C.33: Data from Martinelli et al.
[2008], irregular waves, depth (d) = 0.52m
and heave period (Th) = 0.88s

Figure C.34: Differences between theories
and experimental data Figure C.33
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Formula RMSE:
D/d=0.20,
B/d=0.48

Macagno 0.1717
Wiegel 0.1410
Ursell 0.3011
Bollmann 0.1013

Table C.12: Root mean square errors between theories and experimental data of Martinelli et al.
[2008], irregular waves, FB anchored by piles

C.1.3 Breakwaters anchored by chains

Several researchers investigated the effect of wave transmission for floating breakwaters anchored
by chains. The table shows the datasets which are obtained from literature.

Dataset Waves Range χ [-] D/d [-] B/d [-] d [m]

Gesraha, 2006 Irregular 0.56 - 1.67 0.4 0.75 0.43
Martinelli et al., 2008 (flume) Irregular 0.78 - 1.23 0.13 0.40 0.50
Martinelli et al., 2008 (basin) Irregular 0.78 - 1.20 0.13 0.40 0.50
Brebner and Ofuya, 1968 Regular 0.69 - 1.03 0.15 1.10 0.45
Brebner and Ofuya, 1968 Regular 0.66 - 0.99 0.19 1.10 0.45
Brebner and Ofuya, 1968 Regular 0.61 - 0.86 0.30 1.10 0.45
Peña et al., 2011 Regular 0.80 - 1.45 0.18 0.60 6.75
Peña et al., 2011 Regular 0.80 - 1.20 0.18 0.57 6.75
Peña et al., 2011 Regular 0.60 - 1.10 0.32 0.60 6.75

Table C.13: Experimental data floating breakwaters anchored by chains

Regarding to this table the following remarks are made:

� For a large part of the available datasets, the range of the relative period χ falls in the
domain for which the modification factor developed by Ruol et al. [2013a] is valid, namely
between 0.50 and 1.50. For χ-values larger than 1.50, the formula of Macagno holds, since
the modification factor developed by Ruol et al. [2013a] becomes 1.0

� For a couple of datasets, the range of the relative draft D/d does not fall in the domain for
which the formula of Ruol et al. [2013a] is valid.

Comparison with experimental data obtained from Peña et al. [2011]
The dataset obtained from Peña et al. contains values of relative draft which are just outside or
inside the domain for which the formula of Ruol et al. is applicable. From the plots shown below,
it can be concluded that the formula of Ruol et al. slightly underestimates the wave transmission
for values close to the boundaries for which Ruol et al. is applicable. When the relative width
decreases the measured values approach closer to formula proposed by Ruol et al.
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Figure C.35: Experimental data from Peña
et al. [2011], (d) = 6.75m, (B) = 4.0m and
(D) = 2.15m

Figure C.36: Differences between theories
and experimental data of Figure C.35

Figure C.39: Experimental data from Peña
et al. [2011], (d) = 6.75m, (B) = 3.6m and
(D) = 1.2m

Figure C.40: Differences between theories
and experimental data of Figure C.39

Figure C.37: Experimental data from Peña
et al. [2011], (d) = 6.75m, (B) = 4.0m and
(D) = 1.2m

Figure C.38: Differences between theories
and experimental data of Figure C.37
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Formula RMSE:
D/d=0.18,
B/d=0.53

RMSE:
D/d=0.32,
B/d=0.59

RMSE:
D/d=0.18,
B/d=0.59

Macagno 0.1502 0.0488 0.1694
Wiegel 0.1571 0.0779 0.1606
Ursell 0.1206 0.1980 0.2110
Bollmann 0.2010 0.1121 0.2476
Ruol 0.1899 0.1011 0.1570

Table C.14: Root mean square errors between theories and experimental data of Peña et al. [2011],
regular waves, floating breakwater anchored by chains

Comparison with experimental data obtained from Brebner and Ofuya [1968]
For the datasets obtained from Brebner et al., their are two datasets which contains ranges of
χ and D/d for which the formula of Ruol et al. is applicable, see Figure C.41 and Figure C.43.
Furthermore, it is remarkable that all the χ-values are lower than one for this dataset and that
for χ-values lower than 0.7 the transmission coefficient is lower than 0.3.

Figure C.41: Data from Brebner and Ofuya
[1968], regular waves (d) = 0.46m and heave
period (Th) = 1.12s

Figure C.42: Differences between theories
and experimental data of Figure C.41
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Figure C.43: Data from Brebner and Ofuya
[1968], regular waves, depth (d) = 0.46m
and heave period (Th) = 0.59s

Figure C.44: Differences between theories
and experimental data of Figure C.43.

Figure C.45: Data from Brebner and Ofuya
[1968], regular waves, depth (d) = 0.46m
and heave period (Th) = 0.744s

Figure C.46: Differences between theories
and experimental data of Figure C.45.

Formula RMSE:
D/d=0.2,
B/d=1.0

RMSE:
D/d=0.25,
B/d=1.0

RMSE:
D/d=0.33,
B/d=1.0

Macagno 0.1947 0.2218 0.2929
Wiegel 0.1699 0.1677 0.1808
Ursell 0.3081 0.3336 0.3826
Bollmann 0.1569 0.1486 0.1486

Table C.15: Root mean square errors between theories and experimental data of Brebner and Ofuya
[1968], regular waves, floating breakwater anchored by chains

Comparison with experimental data obtained from Martinelli et al. [2008]
Martinelli et al. performed 2D experiments in a flume and 3D experiments in a wave basin. From
Figure C.47 it can be seen that the wave transmission is lower for the 3D experiments, which is
probably due to diffraction. The dimensionless value (D/d) for the dataset of Martinelli et al.
[2008] falls outside the domain for which the formula of Ruol et al. is valid. From Figure C.47
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it can be seen that the formula of Macagno approximates the 2D experiments well. The 3D
experiments are good approximated by Ruol et al.

Figure C.47: Experimental data from Mar-
tinelli et al. [2008], (d) = 0.50m and (Th) =
0.83s, irregular waves

Figure C.48: Differences between theories
and experimental data 3D-tests of Figure
C.47,(y-axis limited to 0.3)

Figure C.49: Differences between theories
and experimental data 2D-tests of Figure
C.47,(y-axis limited to 0.3)

Formula RMSE:
2D,
D/d=0.13,
B/d=0.4

RMSE:
3D,
D/d=0.13,
B/d=0.4

Macagno 0.4760 0.0737
Wiegel 0.0411 0.1170
Ursell 0.2292 0.3083
Bollmann 0.0794 0.0431
Ruol 0.1122 0.0360

Table C.16: Root mean square errors be-
tween theories and experimental data of Mar-
tinelli et al. [2008], irregular waves, floating
breakwater anchored by chains

Comparison with experimental data obtained from Gesraha [2006]
The dataset obtained from Gesraha [2006] shows a better agreement with Macagno than for Ruol
et al., but the differences are small. This is remarkable because the dimensionless values χ and
D/d for this dataset are in the domain for which Ruol et al. is valid. Furthermore it can be seen
that for χ-values lower than 0.90 there is an overestimation of the wave transmission for both the
theories of Macagno and Ruol et al.
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Figure C.50: Experimental data from Ges-
raha [2006], (d) = 0.425m and (Th) =
5.89s, irregular waves

Figure C.51: Differences between theories
and experimental data Figure C.50

Formula RMSE:
D/d=0.4,
B/d=0.75

Macagno 0.1478
Wiegel 0.1520
Ursell 0.1768
Bollmann 0.2082
Ruol 0.1107

Table C.17: Root mean square errors between theories and experimental data of Gesraha [2006],
irregular waves, floating breakwater anchored by chains
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Appendix D

Modelling of floating breakwaters

This appendix discusses the theory used in AQWA and the calculations results obtained by AQWA.

D.1 Theory used in AQWA

Setting up a model in AQWA is relatively easy and user friendly. Often this means that the user
does not know what the program is doing and the model can be seen as a ’blackbox model’. In
this section the theory which is used by AQWA is discussed into more detail.

As mentioned before, AQWA is based on a three-dimensional panel method and is based on
linear three-dimensional potential theory. This implies that viscous forces are not taken into
account, the wave elevation is small and the fluid is assumed as incompressible and irrotational.
The boundary condition problem is solved by satisfying the body boundary condition (Timman-
Newman relations), linearised free surface condition and radiation condition. This theory applies
to finite depth and the diffraction problem is solved in the frequency domain.

D.1.1 Waves

The regular waves in AQWA are described by linear wave theory, see Eq.(4.10) and by second order
Stokes waves. The theory of Stokes adds corrections to the harmonic wave profile by adding extra
harmonic waves to the basic harmonic. Stokes’ theory approximates waves which are slightly
steeper than harmonic waves and this theory is applicable in deep waters. In this case (2nd
order Stokes wave) only one ’extra’ harmonic wave is added to the basic harmonic with the wave
steepness raised to the second order. If the wave steepness is defined as ε = ak, than the basic
harmonic can be written as:

η(x, t) = a cos(ωt− kx) = εη1(x, t) with η1(x, t) = k−1 cos(ωt− kx) (D.1)

In the equation above η1(x, t) = k−1 cos(ωt− kx) represents the basic harmonic. The first correc-
tion in the Stokes theory is adding a harmonic wave to the basic harmonic with the wave steepness
squared:

η(x, t) = εη1(x, t) + ε2η2(x, t) = a cos(ωt− kx) + 0.5ka2 cos 2(ωt− kx) (D.2)
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D2 Modelling of floating breakwaters

Figure D.1 shows the result of the 2nd order Stokes theory. From this figure it becomes clear that
the 2nd order Stokes wave has a sharper crest and a flatter trough than a harmonic wave.

Figure D.1: 2nd order Stokes waves,
[Holthuijsen, 2007]

Figure D.2: Applicability for different
wave theories , [Holthuijsen, 2007]

The degree of non-linearity of waves can be quantified with the Ursell number:

NUrsell =
steepnees

(relative depth)
3 =

H
L
d
L3

=
HL2

d3
(D.3)

In Figure D.2 the applicability for the different wave theories is shown. The input for the waves
in AQWA consists of a wave frequency and a wave amplitude. The input for the frequency of the
waves is limited by the water depth and by the mesh size. Long waves (low frequency) are depth
limited while the short wave (high frequency) are limited by the mesh size.

D.2 Potential flow

A velocity potential of a flow is simply a mathematical expression which has the useful property
that the velocity component in a point in the fluid in any chosen direction is the derivative of the
potential function [Journee and Massie, 2001].

Potential lines are curves where the potential value is constant. If the potential function is defined
as φ, than this implies that φ = constant. The velocity potential function is by definition the
derivative of the potential function, when substituting these velocity potentials (Eq.D.4) in the
continuity equation (Eq.D.6) the Laplace equation (Eq.D.5) is obtained:

Velocity potential funcion : ux =
∂φ

∂x
, uy =

∂φ

∂y
, uz =

∂φ

∂z
(D.4)

Laplace equation :
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (D.5)
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D.2 Potential flow D3

The advantage of this theory is that the velocity problem with three unknowns, ux, uy and uz,

represented as
→
V is reduced to a problem of one unknown, φ. All the solutions of the potential

theory must fulfil the Laplace equation (D.5) and must be rotation free. This later requirement is
valid outside the boundary layer. Very close to the body this requirement is not fulfilled by the
potential theory. However, this boundary layer is very small compared to the dimensions of the
body in the flow and the region of interest around the body, which makes this theory suitable to
apply for large floating structures.

In order to obtain a solution for the velocity potential, the following boundary conditions are used,
see also Section 4:

1. Continuity condition :
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (D.6)

2. kinematic boundary at the sea bed :
∂φ

∂z
= 0 for z = −d (D.7)

3. kinematic boundary at the surface :
∂φ

∂z
=
∂η

∂t
for z = 0 (D.8)

The increase of the potential value from two points in the fluid (A and B) is defined as:

∆φA→B =

∫ B

A

→
V

→
ds =

∫ B

A

(u dx+ v dy + w dz)

=

∫ B

A

(
∂φ

∂x
dx+

∂φ

∂y
dy +

∂φ

∂z
dz

)
= φ(B)− φ(A)

(D.9)

Figure D.3: Definition of velocity potential [Journee and Massie, 2001]

Besides the potential lines and potential functions, there are streamlines and stream functions. A
streamline is a line which defines the flow direction. An important characteristic of the stream
function is that the value of the stream function is constant along the streamline, ψ = constant.
This implies that the rate of flow between any two streamlines remains constant when the points A
and B follow their streamlines. The rate of flow between two streamlines in a 2D-plane (x,y-plane)
is defined by:

∆Q = ∆ψA→B =

∫ B

A

(→
V

→
n ds

)
=

∫ B

A

(u dy + v dx)

=

∫ B

A

(
∂ψ

∂y
dy +

∂ψ

∂x
dx

)
= ψ(B)− ψ(A)

(D.10)
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D4 Modelling of floating breakwaters

Figure D.4: Streamlines [Journee and Massie, 2001]

If the rate of flow stays constant for two streamlines which are converging or diverging, the flow
velocity must increase or decrease (since the continuity condition must be fulfilled). The stream
function for a 2-dimensional flow field can be defined like the potential function and must be defined
such that its derivative equals the velocity component, see Eq.(D.12). For the complete derivation
of this reference is made to [White, 1999]. The stream function is limited to two coordinates (x, y)
unlike the velocity potential function.

Laplace equation for ψ :
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 (D.11)

Derivative of stream function ψ : ux =
∂ψ

∂y
and uy = −∂ψ

∂x
(D.12)

With the potential lines (φ) and streamlines (ψ) a mesh can be generated. Since potential flow is
assumed to be frictionless, energy is conserved along the streamline, hence the equation of Bernoulli
may be applied. Between the streamlines the flow velocity can be determined from which pressures
can be derived by the Bernoulli equation. For the equation of Bernoulli distinction is made between
steady and unsteady flow.

Velocity :
→

V 2 = u2
x + u2

y + u2
z =

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

(D.13)

Bernoulli unsteady flow :
∂φ

∂t
+

1

2

→

V 2 +
p

ρ
+ gz = C(t) (D.14)

Bernoulli steady flow :
1

2

→

V 2 +
p

ρ
+ gz = C (D.15)

From Figure D.5 it can be seen that the streamlines (ψ) and potential lines (φ) cross each other
at right angles (orthogonal). Between the streamlines there is a constant discharge ∆Q. Another
important characteristic is that there is no flow across a streamline. This fact can be used when
structures are modelled which are impervious. The result is that any impervious flow boundary
is a streamline.

Because of the orthogonality of the potential lines and stream lines the velocity components ux
and uy can be expressed in two different ways:
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D.2 Potential flow D5

ux =
∂φ

∂x
=
∂ψ

∂y
and uy =

∂φ

∂y
= −∂ψ

∂x
(D.16)

Q

Q

Figure D.5: Streamlines and potential lines with discharge ∆Q

D.2.1 Potential flow around floating structures

In order to determine the pressures on and around the floating body the linear fluid velocity
potential can be split into three parts:

• Radiation potential (φr) potential of the oscillations of the body in still water
• Wave potential (φw) potential of the incoming waves
• Diffraction potential (φd) potential of the waves diffracting around the restrained body

The resulting fluid velocity potential then becomes:

φ(x,y,z,t) = φr + φw + φd (D.17)

When the six degrees of motion are taken into account of the floating body, the radiation potential
consist of six parts. Each part belongs to an specific type of motion, represented as φr,j where
j = 1, ..., 6. The potential of the floating body then becomes:

φ =

6∑
j=1

φr,j + φw + φd (D.18)

This equation is numerically solved by AQWA which results in potential values from which ve-
locities and pressures are obtained. In total there are seven boundary conditions used to solve
the potential of the floating body (Eq.D.18). Three of these seven boundary conditions (Eq.D.6,
Eq.(D.7) and Eq.D.8)) are used to solve the velocity potential without a floating structure and
are discussed in Section D.2. Besides these three boundary conditions, four additional boundary
conditions are used to solve the potential when of floating body is included. These four additional
boundary conditions are discussed below.
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D6 Modelling of floating breakwaters

4. Dynamic boundary condition :
∂2φ

∂t2
+ g

∂φ

∂z
= 0 at z=0 (D.19)

5. Kinematic boundary of oscillating body :
∂φ

∂n
= vn(x, y, z, t) =

6∑
j=1

vjfj(x, y, z) (D.20)

6. Radiation condition : lim
R→∞

φ = 0 (D.21)

7. Symmetric and anti-symmetric conditions : φ2(−x, z) = −φ2(+x, z) Sway (D.22)

φ3(−x, z) = +φ3(+x, z) Heave

φ4(−x, z) = −φ4(+x, z) Roll

Dynamic boundary condition, Eq.(D.19):
The requirement for this condition states that the pressure at the surface equals the atmospheric
pressure. This dynamic boundary condition is defined at the water surface and can be derived by
differentiating the free surface dynamic boundary condition to t:

∂

∂t

[
∂φ

∂t
+ gη = 0

]
︸ ︷︷ ︸

free surface dyn. b.c.

=
∂2φ

∂t2
+ g

∂η

∂t
= 0 (D.23)

Substituting the kinematic surface boundary condition (Eq.D.8) in Eq.D.23 for z = 0:

∂φ

∂z
=
∂η

∂t
= 0︸ ︷︷ ︸

kinematic surface b.c.

→ ∂2φ

∂t2
+ g

∂φ

∂z
= 0 (D.24)

Kinematic boundary of oscillating body, Eq.(D.20):
This is the boundary condition at the surface of the floating body and implies that the velocity of
the water particles at the surface of the floating body is equal to the velocity of the floating body.
In Eq.(6.6) is vn the outward normal velocity at the surface of the floating body. The subscript
j = 1, ..., 6 are indicating the mode of motion of the floating body.

Radiation condition, Eq.(D.21):
Far from the oscillating body the potential value has to become zero. To meet this requirement,
the radiation condition states that at a large distance (R) from the floating body the potential
value becomes zero.

Symmetric and anti-symmetric conditions, Eq.(D.22):
Since floating bodies, e.g. floating breakwaters and ships, are symmetric with respect to its middle
line plane, the potential equations may be simplified to those three shown as Eq.D.22. The indices
in these equations indicate the directions. The motions for sway and roll are anti-symmetric
because the horizontal velocities, ∂φ∂x , of the water particles at both sides of the floating body must
have the same direction at any time. The heave motions are symmetric because the horizontal
velocities must be of opposite sign. The vertical velocities, ∂φ

∂z , must have the same direction on
both sides at any time.

D.2.2 Potential flow elements

With potential flow it is possible to model more complex flows by superimposing simple flow
elements. This is possible since the potential flow theory is a linear theory, which allows summation
of different flow elements.
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D.2 Potential flow D7

For an uniform flow in the x-direction u(x, y) = U , there is a stream function and a potential
function, which are defined below. These potential functions and stream functions are shown in
Figure D.7. Due to the orthogonality of the potential lines and stream lines the following two
equations holds:

ux =
∂φ

∂x
=
∂ψ

∂y
and uy = 0 =

∂φ

∂y
= −∂ψ

∂x
(D.25)

Integrating both equations with respect to x and y and omitting the integration constants (inte-
gration constants do not effect the velocity in the flow) the result is:

φ = U · x = ux · x and ψ = U · y = ux · y (D.26)

These solutions satisfies the Laplace equation because the second derivatives with respect to x, y
and z are all zero.

Besides the uniform flow element discussed above, there are two other common used flow elements.
These two elements are source and sinks. A source is point with an outward radiating flow and
sink is a negative source, thus an point with an inward radial flow. For a more detailed description
about potential flow elements reference is made to [White, 1999] and [Journee and Massie, 2001]

Figure D.6: Potential flow element, source
and sink, [Journee and Massie, 2001]

Figure D.7: Potential flow element, uniform
flow, [White, 1999]

Sources and sinks both have a potential function and a stream function. Because sources and sinks
are describing circles it is easier to display the potential and stream function in polar coordinates:

Source : φ =
Q

2π
ln r ψ =

Q

2π
θ (D.27)

Sink : φ = − Q
2π

ln r ψ = − Q
2π

θ (D.28)

In these equations is Q the source strength, which can be seen as the flow rate with the units
m2/s for two-dimensional flow (plane flow). The potential lines are circles around the source or
sink where r is constant. The streamlines are radial spokes with constant θ.

The potential flow elements can be superimposed because the potential flow theory is a linear
theory. The result is that the values of the stream functions can be added up. Lines can be
drawn connecting equal values of the sum of the individual stream functions. To illustrate this
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D8 Modelling of floating breakwaters

the following is considered (adapted from White [1999]): a source and a sink of equal strength
Q placed on the x-axis with a distance of 2a from each other. The coordinates of the source are
(x, y) = (−a, 0). The coordinates of the sink are (x, y) = (+a, 0). The resulting stream function
in cartesian coordinates becomes:

ψ = ψsource + ψsink =
Q

2π
arctan

(
y

x+ a

)
− Q

2π
arctan

(
y

x− a

)
(D.29)

The sum of the potential for the source and sink of equal strength Q becomes:

φ = ψsource + φsink =
Q

4π
ln[(x+ a)2 + y2]− Q

4π
ln[(x− a)2 + y2] (D.30)

In Figure D.8 the blue lines are the streamlines flowing from the source towards the sink. The
dashed lines are the the potential lines crossing the stream lines at an angle of 90 degrees. By
letting a approaching zero, all the circles will pass the origin. This is called a doublet or a dipole
flow, see Figure D.9.

Y

Xa a

Figure D.8: Potential flow of line source and
sink, [White, 1999]

Figure D.9: Doublet or Dipole flow, [Journee
and Massie, 2001]

When a source and sink located on the same line are combined with uniform flow the resulting
shape is the so called Rankine oval, shown in Figure D.10. The stream lines which are surrounding
the source and sink have the shape of an ellipse. The flow from source to sink stays inside
this ellipse, while the constant uniform flow passes around these stream lines. A nice practical
interpretation of this is that one obtains the same flow field when an impermeable object is placed
in uniform flow.

Figure D.10: Rankine oval, [White, 1999]
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D.2 Potential flow D9

The name of this ellipse is after the Englishman W.J.M. Rankine. The combination of the potential
flow elements discussed above is extended by Rankine around 1870. Rankine was able to generate
flatter and thinner surfaces by varying the strength of the source and sink terms. In this way it is
possible to model shapes which resembles the shape of a ship [Journee and Massie, 2001].

D.2.3 Hydrodynamic loads

When the velocity potentials are known, forces and moments can be obtained by executing the
following steps:

1. Solve the potential function together with the boundary conditions. From this the stream
functions and velocity potential functions are obtained.

2. Determine the pressures from the velocity potentials with the linearised Bernoulli equation
(Eq.4.8) .

3. Determine the forces and moments by integrating the pressure over the submerged surface
(S) of the floating body.

The equations belonging to the three steps above are not discussed into detail, only the result will
be discussed. For a more detailed description reference is made to [Journee and Massie, 2001].
The forces and moment are two double integrals of the linearized Bernouilli equation:

→
F = ρ

∫∫
S

(
∂φr
∂t

+
∂φw
∂t

+
∂φd
∂t

+ gz

)
→
n dS =

→
Fr +

→
Fw +

→
Fd +

→
Fs (D.31)

→
M = ρ

∫∫
S

(
∂φr
∂t

+
∂φw
∂t

+
∂φd
∂t

+ gz

)
(
→
n

→
r ) dS =

→
Mr +

→
Mw +

→
Md +

→
Ms (D.32)

In Eq.(D.31) and Eq.(D.32)
→
n is the outward normal vector on surface dS and

→
r is the position

vector of surface dS. The result consists of four contributions, namely:

1. Radiated waves generated by the oscillating body in still water,
→
Fr,

→
Mr

2. Waves which are approaching the fixed body (incident waves),
→
Fw,

→
Mw

3. Waves which are diffracting around the fixed body,
→
Fd,

→
Md

4. Hydrostatic buoyancy in still water,
→
Fs,

→
Ms

To summarize the above, AQWA solves the potential functions and determines the pressures on
the water surface and on the floating body. The pressures at the water surface can be converted
to waves. From the pressures at the floating body AQWA calculates the forces and moments by
which the equation of motion is derived (Eq.D.33). The fluid force consists of a hydrodynamic
force and a hydrostatic force. The hydrostatic force is the buoyancy force in still water. The
hydrodynamic force is divided into wave forces and radiation forces. This is graphically shown
below in Figure D.11. The equation of motion, which is in fact a damped-spring-mass-system is
also shown in this figure.
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D10 Modelling of floating breakwaters

Fluid force

Hydrodynamic force Hydrostatic force

Wave forces Radiation force

In phase

(added mass)
Out of phase

(damping)Incident waves Diffraction

Mass of 

structure

Figure D.11: Summary of fluid forces, [partially adapted from AQWA ANSYS intro lectures presen-
tation]

The equation of motion (see Section 4.3.1) which has to be solved is defined as:

(M + A(ω))
→
ẍ + C

→
ẋ + K(ω)

→
x =

→

f(ω) (D.33)

The solution of the vector
→
x is assumed as:

→
x =

→
xeiωt (D.34)

After substitution of Eq.(D.34) into Eq.(D.33) and omitting the term eiωt, the equation of motion
becomes:

[−ω2(A(ω) + M)− iωC(ω) + K]
→
x(ω) =

→
f (ω) (D.35)

The solution of vector
→
x implies the displacement of the floating structure as a function of the

radian frequency ω and the angle of displacement of the floating structure as a function of the
radian frequency ω. Vector

→
x is obtained by taking the inverse of the matrices between brackets

at the left hand side of Eq.(D.35). The equation which is solved by AQWA becomes:

→
x(ω) = [−ω2(A(ω) + M)− iωC(ω) + K]−1

→
f (ω) (D.36)
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D.3 Validation of AQWA D11

D.3 Validation of AQWA

Below the Root Mean Square Errors (RMSE) are shown of the numerical models which are com-
pared with experimental data. These RMSE are in percentages because the transmission coeffi-
cients are represented as percentages.

D.3.1 Fixed breakwaters

T [s] f [Hz] Lwave [m] Lwg [m] Ctexp [-] Ctaqwa [-] Ctexp-Ctaqwa [-]

6.97 0.14 30.12 15.06 86% 93% -7%
5.60 0.18 23.75 11.88 83% 87% -4%
3.36 0.30 13.11 6.55 78% 80% -2%
2.78 0.36 10.20 5.10 65% 60% 5%
2.40 0.42 8.20 4.10 41% 53% -12%

RMSE 7%

Table D.1: Results AQWA compared with data obtained from Koutandos et al. [2005] for a fixed
breakwater, D=0.4m, B=350m, d=2m

T [s] f [Hz] Lwave [m] Lwg [m] Ctexp [-] Ctaqwa [-] Ctexp-Ctaqwa [-]

6.97 0.14 30.12 15.06 85% 93% -7%
5.56 0.18 23.75 11.88 81% 87% -4%
3.37 0.30 13.11 6.55 73% 73% 0%
2.79 0.36 10.20 5.10 56% 53% 5%
2.41 0.42 8.20 4.10 38% 40% -1%

RMSE 4%

Table D.2: Results AQWA compared with data obtained from Koutandos et al. [2005] for a fixed
breakwater, D=0.5m, B=350m, d=2m

T [s] f [Hz] Lwave [m] Lwg [m] Ctexp [-] Ctaqwa [-] Ctexp-Ctaqwa [-]

6.94 0.14 29.90 14.95 85% 85% 0%
5.57 0.18 23.58 11.79 81% 86% -4%
3.36 0.30 13.12 6.56 73% 72% 0%
2.78 0.36 10.17 5.08 56% 51% 5%
2.40 0.42 8.19 4.10 38% 39% -1%

RMSE 3%

Table D.3: Results AQWA compared with data obtained from Koutandos et al. [2005] for a fixed
breakwater, D=0.67m, B=350m, d=2m
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D12 Modelling of floating breakwaters

D.3.2 Floating breakwaters anchored by piles

T [s] f [Hz] Lwave [m] Lwg [m] Ctexp [-] Ctaqwa [-] Ctexp-Ctaqwa [-]

6.91 0.14 28.86 14.43 86% 89% -2%
5.49 0.18 29.86 14.93 85% 89% -4%
4.27 0.23 30.86 15.43 85% 89% -5%
3.34 0.30 31.86 15.93 82% 79% 3%
2.76 0.36 32.86 16.43 73% 69% 3%
2.39 0.42 33.86 16.93 69% 49% 20%
2.14 0.47 34.86 17.43 47% 39% 8%
2.06 0.49 35.86 17.93 41% 40% 2%

RMSE 8%

Table D.4: Results AQWA compared with data obtained from Koutandos et al. [2005] for a heave
floating breakwater, D=0.4m, L=350m, d=2m

D.4 New simulations for areas of interest

D.4.1 Fixed breakwater

In Section 6.2.1 the influence of the draft and the width on the wave transmission coefficient is
discussed. Below a number of plots are shown from which the conclusions are derived discussed
in section 6.2.1.

Variation of draft
Below three plots are shown where the draft of the breakwater is varied, while the other parameters,
e.g. the width and the water depth do not vary.

Figure D.12: Effect of draft on Ct modeled with AQWA and compared with wave transmission
coefficient theories, regular waves, d=2m, fixed breakwater

From Figure D.12 it becomes clear that for 0.15 < D/d < 0.40 and for B/d = 1.0 the theory
of Macagno is applicable when the values of the wave transmission coefficients becomes smaller
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D.4 New simulations for areas of interest D13

than the values of the wave transmission coefficients predicted by Kriebel and Bollmann. When
the D/d ratio becomes larger the differences between Wiegel and Kriebel and Bollmann becomes
larger as well and the theory of Wiegel is suitable to apply for larger L/D values.

Variation of width
Below three plots are shown where the width of the breakwater is varied, while the other param-
eters, e.g. the draft and the water depth do not vary.

From Figure D.13 and Figure D.12 it becomes clear that for 0.75 < B/d < 1.0 and for 0.15 <
D/d < 0.40 the theory of Macagno is applicable as soon as the transmission coefficients predicted
by Macagno becomes smaller than the wave transmission coefficients predicted by Kriebel and
Bollmann. Furthermore, it can be seen that when the draft and the width are small compared to
the water depth, the theory of Macagno is suitable to apply over the full range of wave lengths.

Figure D.13: Effect of width on Ct modelled with AQWA and compared with wave transmission
theories, regular waves, d=2m, fixed breakwater

M.Sc. Thesis A.C. Biesheuvel



D14 Modelling of floating breakwaters

D.4.2 Floating breakwater anchored by piles

In Section 6.2.2 a number of conclusions are drawn based on the comparisons between the data of
the model and the experimental data. The figures below show these comparisons.

Variation of draft

Figure D.14: Effect of draft on Ct modelled with AQWA and compared with wave transmission
theories, regular waves, d=2m, floating breakwater with one degree of freedom

From Figure D.14 the first and second panel, it can be seen that for D/d ratios of 0.15 and 0.40
the theory of Macagno approximates the model data over the full range of χ-values quite well. For
the middle panel, where D/d = 0.4, the theory of Kriebel and Bollmann shows a good agreement
for lower χ-values. The lower panel where the relative draft B/d = 0.6, there is a large deviation
between the model results and the theories for χ-values larger than 2.0.
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D.4 New simulations for areas of interest D15

Figure D.15: Effect of width on Ct modelled with AQWA and compared with wave transmission
theories, regular waves, d=2m, floating breakwater with one degree of freedom

Variation of the width

Figure D.15 shows the effect of the width of the floating breakwater on the wave transmission. In
these calculations the width is changed while the other parameters are constant. From these three
plots in this figure it can be seen that the theory of Macagno approximates the model data well.
For all the data points the theory of Macagno is overestimating the data.
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