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ABSTRACT

This paper presents an evaluation of different gen-
eration methods of input expressions to definitional
interpreters. We compare three different ways
of generating expressions of a specified algebraic
data type. The approaches that we describe are
QuickCheck, SmallCheck and a uniform genera-
tion technique, as laid out in their original papers.
Subsequently, we illustrate some of the advantages
and pitfalls that ought to be considered when us-
ing each of the aforementioned approaches. Ex-
perimental evaluation shows that the uniform gen-
eration method can provide promising results at
the expense of time. Compared with this, the
QuickCheck and SmallCheck off-the-shelf genera-
tion methods are time-efficient, yet lack precision
when it comes to generating well-typed terms.

1 INTRODUCTION

The aim of this research project is to tackle the is-
sue of automatically validating whether two defin-
itional interpreters are equivalent [1]. To provide a
better understanding of the topic, consider the fol-
lowing interpreters written in Haskell:

1 data Expr = Num Int | Mul Expr Expr

2
3 eval :: Expr → Int

4 eval (Num i) = i

5 eval (Mul e1 e2) = interp e1 ∗ interp e2

6
7 evil :: Expr → Int

8 evil (Num i) = i

9 evil (Mul e1 e2) = interp e1 ∗ interp e1

Listing 1: Two non-equivalent interpreters

Now, a simple counter-example to prove that
the evaluators from Listing 1 are not equivalent is

the case when the expressions e1 and e2 are not
identical. While finding such a counter-example is
trivial for these interpreters, doing this for any two
arbitrary programs is known to be an undecidable
problem [2].

This research project does not aim to find a way
to decide the functional equivalence problem, but
rather it tries to explore the effectiveness of alternat-
ive solutions that can realistically check interpreter
equivalence in a reasonable time. Finding such al-
ternative solutions would be worthwhile because of
the sheer amount of fields where they could be ap-
plied. One such example would be in the context of
the Concepts of Programming Languages second-
year course at TU Delft. In this course, the students
have weekly assignments in which they implement
various such interpreters. Currently, to test the stu-
dents’ solutions, the course staff employs the use of
unit tests that explicitly check the desired function-
ality. However, writing such tests is tedious and re-
quires extensive manual work, therefore automat-
ing this process would significantly reduce the time
needed to maintain the test suite.

The main research question that we tackle in
this paper is:

How effective are property-based testing frameworks,
such as QuickCheck [3] or SmallCheck [4] , for auto-
matically generating input expressions to definitional
interpreters?

Consequently, we present an exploration of how
to create valid1 useful input expressions for defin-
itional interpreters. To this end, the work of
Claessen et al. [5], and the work of Pałka et al. [6]
provide a good starting point for generating use-
ful test data. Nonetheless, to ensure that gener-
ating such terms amounts to good results, a thor-

1In this context, valid entails well-typed input expressions.
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ough evaluation needs to be performed. As a con-
sequence, we consider various metrics when meas-
uring effectiveness. One heuristic that we will use
is simply the number of faults found. In addition,
the time and space efficiency of the aforementioned
generation methods will also be evaluated. Al-
ternatively, one could measure the number of tests
needed to find a known fault, yet this also poses the
problem of randomness in test data which requires
a discussion of its own.

1.1 Contributions

The main contributions of this paper are:

• A comparative study between the effi-
ciency of QuickCheck’s (Section 3.1) and
SmallCheck’s (Section 3.2) off-the-shelf ap-
proaches for generating input expressions to
definitional interpreters.

• An evaluation and implementation of the
Claessen et al. approach [5] for generating
well-typed terms, which satisfy a given pre-
dicate and that follow a uniform distribution
(Sections 3.3 and 4).

• A comparison between the effectiveness of the
aforementioned approaches by taking into ac-
count time and space measurements together
with other evaluation metrics (Section 4).

• A public repository which includes the code-
base that we used to perform the evaluation
of the different generation methods, the sub-
sequent results that we obtained and the cor-
responding log files.

1.2 Road-map

The paper starts by surveying the relevant concepts
used in this research in Section 2 and by describing
the methodology in Section 3. Section 4 describes
the experimental setup and showcases the found
results, whereas Section 5 contains relevant discus-
sions and proposes ideas for future work. Section
6 will address some of the ethical implications of
this project while also describing reproducibility as-
pects. Finally, Section 7 contains an overview of the
paper and concludes the research.

2 BACKGROUND

In order for two programs to be equivalent, on any
given input both ought to produce the same out-
put. In most programs, the space of possible in-
put expressions is infinite, therefore it is infeasible
to check all possible variants. Moreover, a program
might never halt on a given input. Both of the afore-
mentioned intricacies are, in short, the reasons why
the functional equivalence problem is undecidable.
Consequently, the focus of this paper shifts to test-
ing two programs on a finite set of possible input
expressions that can exercise most execution paths
of the interpreters under test.

2.1 Property-based Testing

An important aspect of this research project is
property-based testing. This type of testing has be-
come increasingly popular, especially in the func-
tional programming world [7]. This is, to some ex-
tent, mostly due to QuickCheck, which is greatly
utilized within the Haskell community, being the
most intensively used testing package and among
the top 10 packages of any kind on hackage2 [8]. As
the name of property-based testing implies, it makes
use of properties that can hold for the program un-
der test. For example, the addition laws for integers
can be expressed as properties, which, in turn, can
be verified with QuickCheck or SmallCheck. To this
end, Listing 2 showcases the properties for the com-
mutativity and associativity laws of integers.

1 prop_commutativity :: Int → Int → Bool

2 prop_commutativity a b =
3 a + b == b + a

4
5 prop_associativity :: Int → Int → Int

→ Bool

6 prop_associativity a b c =
7 a + (b + c) = (a + b) + c

Listing 2: Addition laws expressed as properties

When testing these properties, QuickCheck will
automatically generate random Int values for each
test that it creates and repeatedly check whether the
properties hold. SmallCheck, on the other hand,
will exhaustively generate Int values, gradually in-
creasing the complexity of the respective inputs un-
til reaching the size specified by the programmer.
In both cases, if any counter-example is found that

2https://hackage.haskell.org/package/QuickCheck

2

https://hackage.haskell.org/package/QuickCheck


Automated Validation of Definitional Interpreters RP Q4 2020 / 2021

invalidates a property, further testing will stop and
the problematic input will be displayed. Otherwise,
a message will be shown which indicates that the
properties held true for a specific number of tests.
By default, the number of tests is 100, yet the pro-
grammer can modify this manually.

While QuickCheck and SmallCheck provide
built-in code for generating most of Haskell’s pre-
defined types, when it comes to user-defined types,
the programmer is tasked with doing this by using
library functions. As a consequence, the first step
that needs to be taken to tackle this research project
is to define simple grammars, as shown in Listing 3.
In addition, this also means writing out the required
functions that are needed to generate expressions of
the needed type. QuickCheck requires ADTs3 to be
an instance of Arbitrary, whereas SmallCheck re-
quires them to be an instance of Serial.

1 data Expr = Val Int

2 | Add (Expr , Expr)

3 | Sub (Expr , Expr)

4 | Mul (Expr , Expr)

5 | Div (Expr , Expr)

6
7 data Expr = Val Bool

8 | And (Expr , Expr)

9 | Or (Expr , Expr)

10 | Not Expr

Listing 3: Arithmetic & booleans ADTs

Afterwards, the next step is to define a couple of
correct equivalent interpreters for each of the afore-
mentioned grammars. Moreover, in both cases,
faulty interpreters which contain small errors are
also needed. Following this, properties for each
grammar are defined that can check the output of
the two known equivalent interpreters and the out-
put between one correct and one incorrect inter-
preter. These properties can be written as such:

1 prop_interp :: Expr → Bool

2 prop_interp e = interp1 e == interp2 e

Listing 4: Property for checking interpreter equivalence

With the above-defined grammars, there is no
need to worry about expressions being of a partic-
ular type since they contain only one, namely Int

in the case of arithmetic expressions and Bool in
the case of boolean expressions. Consequently, all
generated expressions are type-correct and would

not produce an error when being interpreted. Un-
fortunately, the same cannot be said for more com-
plex grammars, such as the ones which contain if-
then-else expressions, lambdas, function applica-
tions and much more. In such instances, brute-
forcing random generation to obtain well-typed
terms skews the distribution towards trivial test
cases. This, in turn, means that the approach which
we described so far to generate user-defined data
needs to be modified to produce well-typed terms.

2.2 Generating Well-Typed Terms

A possible technique that can help with generat-
ing well-typed terms was presented in the work by
Claessen et al. [5]. This paper describes an ap-
proach for deriving test data generators for a spe-
cified algebraic data type. Furthermore, the test
data is uniformly distributed over the required val-
ues of a specified size. An interesting feature of this
paper is that the test data which is generated also
satisfies a predicate specified by the programmer.
To this end, some predicates that are useful for the
problem of determining program equivalence are to
check that a given input is well-typed or to ensure
that a term is of a specific type.

This approach focuses on uniformly generating
data of a specific size, which in this case is un-
derstood as the number of constructors found in a
term. For example, considering terms of the previ-
ously mentioned arithmetic ADT, Val 0 has size 2,
whereas Add (Val 1, Val 2) has size 8. To facilit-
ate this, the authors of the paper build upon some
of the work by Duregård et al. [9] by utilizing an
indexing function which maps integers to values of
a specific size and type. More formally, this can be
described in the following mathematical notation:

indexS,k : {0...|Sk| − 1} → Sk

where S is the data type that we are trying to gen-
erate terms in, k is the size of a term that we are
seeking, |Sk| means the cardinality of that set, and
Sk represents the set of values of type S and size
k. Furthermore, the authors define a Haskell gen-
eralized algebraic data type, as shown in Listing 5.
This GADT serves as a uniform representation of a
space of values of a specified type from which we
can sample random terms.

3Throughout this paper, we refer to ADT as short for an algebraic data type.
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1 data Space a where

2 Empty :: Space a

3 Pure :: a → Space a

4 (:+:) :: Space a → Space a → Space a

5 (:∗:) :: Space a → Space b → Space (

a, b)

6 Pay :: Space a → Space a

7 (:$:) :: (a → b) → Space a → Space b

Listing 5: The Space GADT

Besides this, the paper also lays out most of the
implementation details needed to generate random
uniform data. For example, one of the most import-
ant functions is:

1 uniform :: (a → Bool) → Space a → Int →
Gen a

which takes a predicate, an algebraic representa-
tion of a subset of values of type a and an Int.
This function is useful because it returns values of
the specified type and size that satisfy the given
predicate. Moreover, to speed up computations,
whenever a value that does not satisfy the predic-
ate is encountered, the space of possible values is
further reduced to narrow down correct terms.

One of the main advantages of this approach
is that one can start generating terms almost right
away with just a little effort required by the pro-
grammer. More specifically, the programmer needs
only to define the GADT spaces for the required
ADTs before being able to generate expressions.
Unfortunately, since this method closely follows the
topic of functional enumeration, as laid out in pre-
vious papers [4], [9], time-efficiency becomes a con-
cern when generating terms of larger sizes. Since
some of the interpreters require more complex ex-
pressions (which implies terms of larger sizes) in or-
der to find faults, this issue can severely hinder the
performance of the generation method. Addition-
ally, a limitation to this approach would arise when
choosing a predicate that is rarely or never satis-
fied. In the latter case, there are no terms that can
be found, therefore the functions that are searching
for correct expressions will never terminate.

2.3 Conclusions

While the above-mentioned approaches have their
own merits, an issue that arises is to determine

which one is the most suitable for the given prob-
lem. Consequently, we will later explore how these
methods can be used to generate well-typed input
expressions for definitional interpreters. However,
while using valid test data is the most intuitive ap-
proach when it comes to testing, ill-typed input ex-
pressions can also reveal faults in the interpreters.
A choice with regards to the percentage of test cases
that are type-correct needs to be made.

3 METHODOLOGY

In this section, we present a detailed explanation of
the method that we followed to explore the relat-
ive merit of each generation method. For the gen-
eral setup, several ADTs were defined for which we
wrote both correct and faulty interpreters. Follow-
ing this, we wrote properties for each interpreter.
The property that was always used was to check
that the output between a given pair of interpreters
is the same (see Listing 4). However, for brevity, we
mainly show detailed implementation steps and ex-
amples for the arithmetic ADT presented in Section
3 and leave the interested reader to explore the rest
of the source code in the public GitHub repository.

3.1 Using QuickCheck

The main task after writing the QuickCheck gen-
erator for the arithmetic ADT, as defined by the
arbNaiveExpr function (Appendix A, Listing 11) is
to compare the interpreters by using QuickCheck
properties. When doing this to check program equi-
valence between two equivalent interpreters, we
are prompted with the following message:

1 Main> quickCheck prop_correct_interp

2 +++ OK, passed 100 tests.

However, when comparing a correct interepreter
with a faulty one, QuickCheck can4 present the fol-
lowing message:

1 Main> quickCheck prop_faulty_interp

2 Falsified (after 5 tests):

3 (-2) - (-1) ∗ 4 + 3 ∗ 1

Indeed, when running this example manually on
both interpreters, they produce different outputs.
More specifically, the correct one gives 5, whereas

4The word can is used because of randomness since it is not guaranteed that the same failing test will be shown.
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the incorrect one gives 6. While this approach il-
lustrates a failing test case, it is fairly difficult for
the programmer to immediately infer the place in
which the error was introduced. In this instance,
the error rests in the Add case of evaluating sub-
expressions (as seen in Listing 6), yet the counter-
example illustrated by QuickCheck includes all
possible operations within the arithmetic ADT.

1 interp (Add left right) =
2 case interp left of

3 Left err → Left err

4 Right valL →
5 case interp left of -- error here

6 Left err → Left err

7 Right valR → Right (valL + valR)

Listing 6: Faulty addition case in arithmetic ADT

Incidentally, when using QuickCheck to gen-
erate terms within a more complex grammar (as
shown in Listing 13, Appendix B), the percentage
of well-typed terms is considerably low. This makes
it extremely inefficient and furthermore difficult to
actually find faults in the interpreters. When using
QuickCheck’s built-in functions to monitor test data
and control the tests that will be used by provid-
ing a pre-condition (namely that of an expression
to be well-typed), we notice that only 19 are type-
correct, whereas 1000 were discarded. Moreover, a
breakdown of the depth5 of well-typed expressions
shows that only a small fraction of terms have more
complex structures.

1 Main> quickCheck prop_interp

2 ∗∗∗ Gave up! Passed only 19 tests;

3 1000 discarded tests:

4 74% 1

5 16% 2

6 5% 3

7 5% 4

Listing 7: Example of a possible distribution of
QuickCheck generated well-typed test cases per depth

The results shown in Listing 7 are one of the main
reasons for the need to explore different frame-
works or methods for generating input expres-
sions other than just QuickCheck. For reference,
the term If (Gt (EInt 17, EInt 42), (EInt 1,

EInt 2)) has depth 3. As we hinted before, even
such simple expressions are rarely ever generated,
therefore errors hidden within such cases have a
low probability of being found.

3.2 Using SmallCheck

Similar to QuickCheck, SmallCheck also requires
the programmer to define a set of functions for it to
generate data of a specified type (Appendix A, List-
ing 12 illustrates the SmallCheck generator for the
arithmetic ADT). Once that is done, defining prop-
erties is identical to the way of defining properties
in QuickCheck. When considering the same ADT
as in the previous subsection, SmallCheck gives the
following message when checking program equi-
valence between a correct interpreter and a faulty
one:

1 Main> smallCheck 4 prop_faulty_interp

2 Failed test no. 12.

3 there exists 1 + 0 such that

4 condition is false

Listing 8: Checking arithmetic interpreter equivalence
with a SmallCheck property of depth 4

Compared to the counter-example reported by
QuickCheck, SmallCheck provides more readable
test cases. Consequently, in this instance the pro-
grammer can easily conclude that the problem rests
within the Add case of interpreting arithmetic ex-
pressions. This is, to some extent, a direct con-
sequence of SmallCheck’s main design motivation:
”If a program does not fail in any simple case, it hardly
ever fails in any case. A successful test-run using our
tools can give exactly this assurance: specified properties
do not fail in any simple case” [4].

Nonetheless, the above-mentioned quote
should not always be taken as an absolute certainty.
For example, checking the same property as before,
yet with a depth of 3, gives a false sense of security:

1 Main> smallCheck 3 prop_faulty_interp

2 Completed 9 tests without failure.

Listing 9: Checking arithmetic interpreter equivalence
with a SmallCheck property of depth 3

This demonstrates that careful consideration is
needed when choosing the depth parameter for the
smallCheck function. A depth that is too low can
lead to few test cases being generated, which can
amount to false negatives. On the other hand,
a depth that is too big can generate considerably
many test cases, which can result in long runtimes.

5By depth, here we refer to the maximum size of any branch within the expression. For example, Val 7 has depth 1, whereas
Add (Val 1) (Add (Val 2) (Val 3)) has depth 3.
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3.3 Using Well-Typed Random Data

Using the approach outlined in Section 2.2 for gen-
erating expressions in the arithmetic ADT produces
similar results to SmallCheck, in the sense that sim-
ilar counter-examples are reported to the program-
mer. For reference, the spaces for expressions that
were needed for the generator are depicted in List-
ing 10.

1 spExpr = Pay (spAdd :+: spSub :+: spMul

:+: spDiv :+: spVal)

2 spAdd = Add :$: (spExpr :∗: spExpr)

3 spSub = Sub :$: (spExpr :∗: spExpr)

4 spMul = Mul :$: (spExpr :∗: spExpr)

5 spDiv = Div :$: (spExpr :∗: spExpr)

6 spVal = Val :$: spInt

7
8 spInt :: Space Int

9 spInt = Pay (Pure 0 :+: (succ :$: spInt))

Listing 10: Defined spaces for the arithmetic ADT

Since the arithmetic ADT requires integers in
the leaf constructor (Val) to actually evaluate dif-
ferent operations (and to also ensure creation of fi-
nite expressions), a space for Int values also needs
to be defined in order to generate terms. Moreover,
to ensure that the algorithm terminates, Int values
should also be attributed a cost. The choice that we
make in this paper is to attribute a cost of 1 for each
successor of 0. For example, 0 has cost 1, whereas
1 has cost 2. However, supposing that the arith-
metic ADT would have special operations solely on
negative numbers, the above-mentioned choice for
Int spaces would fail to catch any errors whatso-
ever. While solvable, this issue proves that choices
for the implementation of spaces need to be backed
up with a thorough understanding of the ADT that
one wants to generate terms in.

4 RESULTS

This section showcases different results that we
obtained when evaluating the generation methods
mentioned within the previous sections. More spe-
cifically, we present a breakdown of the number of
tests needed to find faults for each method and fur-
ther provide more insight into the time and space
measurements of the uniform generation approach.
Throughout this section, we refer to a ”test run” as
the execution of 100 tests (for QuickCheck and uni-
form generators). Moreover, consider the following
notations when reading the results:

QC −→QuickCheck generation of well-typed terms

SC −→ SmallCheck generation

UG −→ Uniform generation of well-typed terms

4.1 Fault Detection

Tables 1 and 2 report the average number of tests
(from ten test runs) needed to find a fault in
each pattern match case of the interpreters for the
boolean and arithemetic ADTs, respectively. Not
surprisingly, all methods managed to find the faults
within a reasonable time in each test run. The differ-
ence in the number of tests needed for each method
directly stems from their respective implementation
details. For more results regarding fault detection
with UG on the previously mentioned ADTs, we ask
the interested reader to consult Appendix C.

Method And Or Not

QC 5 7 5
SC 9 16 9
UG 3 2 2

Table 1: The average number of tests needed to find a
fault in each pattern match case for the boolean ADT.

Method Add Sub Mul Div

QC 3 3 4 3
SC 12 19 33 37
UG 4 5 6 3

Table 2: The average number of tests needed to find a
fault in each pattern match case for the arithmetic ADT.

For the conditional ADT (Listing 13, Appendix
B), we used the following test suite to evaluate how
effective the three generation methods were when
it came to detecting faults:

a. Substraction instead of addition for Add

b. Addition instead of multiplication for Mul

c. No negation applied for the Not operation

d. Apply And instead of Or

e. Apply Or instead of And

f. If always returns the True branch

g. If branches are swapped

h. Eq operator is always True

i. Apply ”<” instead of ”>” for Gt

6
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Subsequently, we present the results for the con-
ditional ADT by illustrating in tables 3 and 4 the av-
erage number of tests each generation method took
to find a fault and by indicating the number of test
runs that eventually found a fault. For this analysis,
we used depth 5 for SmallCheck and utilized terms
of size 5 for the uniform generation method. We ex-
plicitly omit results for faulty interpretation of App
and Lambda constructors since it was not even pos-
sible to generate such terms with SmallCheck or the
uniform generator when using strings for variable
names.

a b c d e f g h i
QC - - 4 5 - - - 2 3
SC 20 25 23 355 699 2570 1179 235 859
UG 10 12 7 3 - - - - -

Table 3: #Tests to find faults in the conditional ADT

a b c d e f g h i
QC - - 7 1 - - - 1 3
SC 10 10 10 10 10 10 10 10 10
UG 10 10 10 10 - - - - -

Table 4: #Test runs that detected faults in the conditional
ADT

The results for the conditional ADT in the tables
above illustrate interesting behaviours. Firstly,
QuickCheck was not able to detect faults in all ten
runs. Secondly, the uniform generation method
failed to detect any faults for the (e-i) errors. This
is because terms that contain complex If, Gt, Or or
Eq structures have a size of at least 7, and generating
just one term of size 6 takes more than 80 seconds
(as shown in Figure 1). For reference, Table 5 show-
cases examples of terms of sizes 2 through 6 that
were generated. This, together with the previous
results, point out the limitations of using the uni-
form generation method and indicate that improve-
ments are needed for this to be realistically applied
to grammars of various complexities.

Size Example 1 Example 2 Example 3
1 - - -
2 True False 1
3 !True !False 2
4 !(!True) !(!False) 3
5 1 * 1 !(!(!False)) False || True
6 !(!(!(!True)))) 1 < 2 !(1 == 1)

Table 5: Examples of terms of different sizes for the con-
ditional ADT.

For experimental purposes, we also performed
an analysis on a generator that combined the
QuickCheck and the uniform generator by using
relative weights to control which generator to be
chosen with each test case. In doing this, we used
the same test suite as before but experimented with
different generator weights. Since the results did
not improve, we chose to omit them here, but refer
the interested reader to Appendix D.

4.2 Time & Space Needed to Generate Terms

To see exactly how much the term size affects the
overall run time and space consumption, we evalu-
ated these metrics on the conditional ADT and re-
ported the findings in figures 1 and 2.

Figure 1: Time needed to generate terms of different sizes
using UG for the conditional ADT

Figure 2: Space needed to generate terms of different
sizes using UG for the conditional ADT

7
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Sadly, the results are not that promising, in the
sense that practical use of this method would be in-
feasible. Fortunately, the time results for a simply-
typed lambda calculus (STLC) with De Bruijn in-
dices give us a more hopeful outcome (see Figure 3).
With this, we were able to mitigate two of the pre-
viously mentioned issues. Firstly, using this ”new”
STLC ADT (as defined in Listing 14, Appendix B)
allowed us to generate lambda terms, as opposed
to before when we were using string identifiers.
Secondly, since the search space of valid expres-
sions for this ADT is smaller, we could realistically
generate terms of larger sizes. On the other hand,
the QuickCheck and SmallCheck generators man-
aged to generate more than 1000 tests for the con-
ditional ADT in less than a second and used less
than 20 MiB (note that the majority of terms were
ill-typed).

Figure 3: Time needed to generate lambda terms of type
Int → Int of different sizes using UG for the STLC

5 DISCUSSION & FUTURE WORK

Following a dedicated approach to creating gen-
erators for user-defined data is considerably less
prone to errors and less time consuming than
manually writing test data generators. For instance,
a QuickCheck generator works recursively, in the
sense that at every recursion level, a random con-
structor is chosen, the weight of which is specified
by the programmer to control the distribution [5].

As a consequence, two related questions arise:
What is a good distribution of test data such that con-
structors are not underrepresented? To what extent can
programmers be confident that they have not introduced

faults within their generator? With a dedicated ap-
proach, such as the uniform generation method, we
need to worry only about writing the spaces for
the required ADT. However, while following such
systematic approaches has its benefits, it is clear
that some constraints or limitations have to be con-
sidered. For example, we have shown that increas-
ing the size of the terms in the uniform generat-
ors amounts to an exponential increase in the time
needed to generate expressions.

Additionally, another issue that we identified is
that the uniform generation method cannot simply
be applied to any ADT. For example, due to the
nature of its implementation, generating terms for
the simply-typed lambda calculus with string vari-
ables would be infeasible. For efficiency reasons,
we recommend using a simply-typed lambda cal-
culus with De Bruijn indices for a smaller overall
search space.

Nevertheless, before applying these methods
within an educational context, further research and
improvements ought to be made. For instance, a
time improvement is greatly needed for the uni-
form generation approach. More specifically, the
use of memoization would significantly improve
the time needed to perform indexing and cardin-
alities on large sets. A comparison between the
authors’ results for generating well-typed lambda
terms and our results shows that faster indexing
would amount to considerably better results. Due
to time constraints and because the original paper
did not contain the implementation of this feature,
we were not able to include it within this research,
thus we suggest this for future work.

Generally, we believe that the methods outlined
in this paper could also be used to validate type-
checkers. Having a unified view of the effective-
ness of the uniform generation method for validat-
ing both type-checkers and definitional interpreters
would increase the level of confidence in this tech-
nique. Additionally, using the Pałka et al. approach
[5] as a complementary tool would also be interest-
ing to approach in further research.

Finally, we suggest looking into additional
methods of determining functional equivalence.
To that end, some examples include symbolic ex-
ecuters [10], checking program equivalence [11] and
concolic testing [12], [13]. Alternatively, fuzzing
[14] could also be used as another approach for gen-
erating input expressions.

8
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6 RESPONSIBLE RESEARCH

6.1 Ethical Implications

As mentioned in Section 1, one of the domains in
which the concepts explored in this paper can be
used is in the Concepts of Programming Languages
course at TU Delft. As a consequence, the stu-
dents’ interpreters will be tested against random
data, which poses the question of fair grading. Sup-
pose two students have almost the same interpreter
defined. One student may be graded maximum
points because of passing tests, whereas the other
student may be graded slightly lower points be-
cause their code was tested against completely dif-
ferent data due to randomness.

One possible approach to mitigate this issue
from a fairness perspective could be to only gener-
ate random data once and subsequently use that to
grade each student. Another alternative could be to
perform multiple test runs before giving a verdict
with regards to a student’s grade. Unfortunately,
both options once again pose the same issue.

A viable option could be to use the approaches
mentioned in this paper as a complementary tool to
aid grading rather than fully discard the tests that
were already used by the course staff. In doing so,
these ”new” methods can provide more insight into
the performance of the students’ interpreters and
assist the course staff with grading, while taking
into account the equity aspect. Overall, random-
ness can introduce ample issues when it comes to
fairness and objectivity in grading.

6.2 Threats to Validity

There are several things to address about the valid-
ity of the experimental results. Firstly, while con-
fident in the correctness of the generators, there still
is a possibility that we introduced errors. For ex-
ample, our implementation of the Claessen et al. [5]
paper could have introduced bugs or un-optimized
code, due to possible misinterpretation.

Regarding representativeness, a possible threat
to validity might be the choice of simple grammars.
Throughout Section 4, we indicated that practical
use of this method would require optimizations. To
that end, we still illustrated how the methods fair
with a more complex grammar, yet refrained from
making any general statements.

Lastly, we attribute some possible noise in the
time and space measurements to external back-
ground processes that could not be closed. Addi-
tionally, the time measurements for all three meth-
ods cannot have a one to one comparison, in the
sense that each generator has a different notion of
size, depth or number of generated tests.

6.3 Reproducibility

As discussed previously, this research project some-
times utilizes random data, therefore reproducib-
ility is harder to achieve when considering the
chosen methods. Nonetheless, the repository6 in
which all results from the previous sections were
shown, is publicly available for further investiga-
tion where needed. Besides the code, this repository
also includes all the relevant logs of generated in-
put expressions that were used to perform the eval-
uations in Section 4. In doing so, interested readers
can obtain the same results that were shown.

7 CONCLUSION

The purpose of this report was to outline and eval-
uate the effectiveness of different methods for gen-
erating input expressions to definitional interpret-
ers. To this end, we explored the relative merit of
three approaches from previously written research
papers.

In terms of evaluation, each generation method
was judged against the number of tests needed to
find known faults. While the SmallCheck and uni-
form generators provided similar results in terms of
the reported counter-examples for non-equivalent
interpreters, SmallCheck required more tests to dis-
cover faults. Compared to these, QuickCheck could
not detect any non-trivial faults in the interpreters
due to mainly generating ill-typed expressions. In
addition, we showed that the uniform generation
approach can provide meaningful test data at the
expense of time. In future work, we suggest an
exploration of the memoization aspect to see how
much the time measurements will improve.

Finally, it is our belief that a unified view of the
research done in this paper and the research of val-
idating type-checkers is needed in order to have a
more complete opinion on the effectiveness of us-
ing property-based testing frameworks.

6https://github.com/alemoraru/input-expression-generators
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A GENERATORS

1 -- Auxiliary function for QuickCheck

2 -- arbitrary function.

3 -- Uses a universally true predicate

4 -- (no need for type -checking)

5 arbUniformExpr :: Gen Expr

6 arbUniformExpr = uniformFilter (const

True) spExpr (...)

7
8 -- Function for generating data

9 -- using the QuickCheck approach

10 arbNaiveExpr :: Int → Gen Expr

11 arbNaiveExpr 0 = fmap Val arbitrary

12 arbNaiveExpr n = frequency

13 [

14 (1, fmap Val arbitrary)

15 , (2, do

16 left ← arbNaiveExpr (div n 2)

17 right ← arbNaiveExpr (div n 2)

18 return $ Add (left , right))

19 , (2, do

20 left ← arbNaiveExpr (div n 2)

21 right ← arbNaiveExpr (div n 2)

22 return $ Sub (left , right))

23 , (2, do

24 left ← arbNaiveExpr (div n 2)

25 right ← arbNaiveExpr (div n 2)

26 return $ Mul (left , right))

27 , (2, do

28 left ← arbNaiveExpr (div n 2)

29 right ← arbNaiveExpr (div n 2)

30 return $ Div (left , right))

31 ]

32
33 -- Needed for arbitratry generation.

34 -- Gives weights to different

35 -- generation methods.

36 instance Arbitrary Expr where

37 arbitrary = frequency

38 [

39 (..., sized arbNaiveExpr),

40 (..., arbUniformExpr)

41 ]

Listing 11: Generators for the arithmetic ADT

1 -- Necessary for SmallCheck exhaustive

generation

2 instance (Monad m) ⇒ Serial m Expr where

3 series = cons1 Val \/ cons1 Add \/
cons1 Sub \/ cons1 Mul \/ cons1 Div

Listing 12: SmallCheck generator for the arithmetic
ADT

B LANGUAGE DEFINITIONS

This appendix includes the language definitions
of two different ADTs that we used for different
benchmarks in Section 4. Listing 13 contains the
conditional ADT, whereas Listing 14 shows the
simply-typed lambda calculus with De Bruijn in-
dices. For the latter ADT, the Type in the App con-
structor denotes the type of the argument term and
is useful for type-checking terms.

1 data Type = TInt | TBool

2 | TClos Type Type

3
4 data Expr = EInt Int | EBool Bool

5 | Id String

6 | Add (Expr , Expr) | Mul (Expr , Expr)

7 | Not Expr

8 | Or (Expr , Expr) | And (Expr , Expr)

9 | Eq (Expr , Expr) | Lt (Expr , Expr)

10 | Gt (Expr , Expr)

11 | Lambda ((String , Type), Expr)

12 | App (Expr , Expr)

13 | If (Expr , (Expr , Expr))

Listing 13: ADT with conditional operations

1 data Type = TInt

2 | TFun (Type , Type)

3
4 data Expr = Var Int

5 | App ((Expr , Expr), Type)

6 | Lam Expr

Listing 14: STLC ADT

11
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C OTHER RESULTS

This appendix contains some of the results that we
obtained when evaluating the uniform generation
method for the boolean ADT and arithmetic ADT,
respectively. More specifically, figures 4 and 5 illus-
trate how the size of the generated terms affects the
number of faults found for the respective faulty in-
terpreters.
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Figure 4: Number of faults found as size of terms in-
creases using the uniform generation method for the
boolean ADT. Three faults were introduced in total.
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Figure 5: Number of faults found as size of terms in-
creases using the uniform generation method for the
arithmetic ADT. Four faults were introduced in total.

D ANALYSIS OF THE MIXED
GENERATOR

For the mixed generator, we used the same test suite
as mentioned in Section 4 for the conditional ADT.
The results of this analysis, however, did not im-
prove, in the sense that the mixed generator still
was not capable of detecting the (e-i) faults. This
directly stems from the fact that the uniform gener-
ation size choice of 5 does not allow for larger terms,
such as the ones that contain errors (e.g. If, Eq)
and because the QuickCheck generator happened
to generate only well-typed terms of small sizes.
Tables 6, 7, 8 use the same size for the uniform gen-
erator, but utilize different generator weights.

a b c d e f g h i
#Runs 10 10 10 10 - - - - -
#Tests 14 14 5 10 - - - - -

Table 6: Results for the mixed generator with equal
weights and size 5 for UG

a b c d e f g h i
#Runs 10 10 10 10 - - - - -
#Tests 16 11 5 6 - - - - -

Table 7: Results for the mixed generator with weight 4
and term size 5 for UG and weight 1 for QC

a b c d e f g h i
#Runs 10 10 10 10 - - - - -
#Tests 14 11 7 7 - - - - -

Table 8: Results for the mixed generator with weight 1
and term size 5 for UG and weight 4 for QC

However, Table 9 illustrates the results of 10 test
runs using a mixed generator and uniform gener-
ator of terms of size 6. While this benchmark took
a considerable amount of time, it managed to find
the (h-i) faults, thus once again proving that bigger
term sizes in the uniform generator amount to bet-
ter results at the expense of time.

a b c d e f g h i
#Runs 10 10 10 10 - - - 10 9
#Tests 19 22 3 5 - - - 18 20

Table 9: Results for the mixed generator with equal
weights and size 6 for UG
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