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Short Term Delay Prediction  
in Passenger Railways 

Using Machine Learning; Applied in the Dutch Rail Network 

Eva Lehká – Transport, Infrastructure and Logistics –Delft University of Technology 

Abstract— We test the effect of a variety of feature 

sets representing passenger volumes, weather 

conditions and train interactions, when defined as 

features and used in a gradient boosting model to 

predict passenger train delays 20 minutes to the 

future from the last registration point. Effects of the 

features and their combinations on the prediction 

quality are analyzed and the best performing feature 

sets selected. The results showed that the passenger 

volumes features (in the form as defined in our work) 

do not have any prediction power and rather 

introduced noise in the predictions. The weather 

features resulted in reduced expected delay change 

with a slight positive effect on precision of the 

classification task while worsening the recall. The 

largest positive effect was observed when train 

interaction features were introduced despite their 

highly simplified form. Considering the low 

computational efforts necessary to retrieve the 

features, we conclude there is a potential for 

application of similarly defined train interactions 

features in other models. 

Keywords— Train delays, Machine learning, 

XGBoost, Gradient Boosting, Weather conditions, 

Passenger counts, Train interactions 

I. INTRODUCTION 

Our work engages in short term delay prediction 

in passenger railway, specifically prediction of 

delays of all regularly scheduled passenger trains. 

Although delay prevention should be a primary 

concern. However, prior knowledge of upcoming 

delays may mitigate inconvenience induced to the 

passengers by providing them with an opportunity 

to change their itineraries, or possibly might even 

eventually help to prevent delay propagation by 

prompt dispatching interventions.   

The objective of our research is to define and 

evaluate sound feature sets reflecting effects of 

passenger counts, weather conditions and train 

interactions on passenger trains delays, which are to 

be used along with features derived from data 

available in the RAS competition (INFORMS, 

2018), on which our research builds on, to forecast 

passenger trains’ delays 20 minutes to the future. 

Effects of the individual features and their 

combinations are reflected upon. Note that the span 

of 20 minutes to the future refers to the last 

registration point within a 20-minutes time window 

since the last registration point. 

For this purpose, we use a decision trees based 

gradient boosting method XGBoost (T. Chen & 

Guestrin, 2016). Selection of the method is based on 

the conclusions drawn by Van den Bulk 

et al. (2018), whose work served as a starting point 

of our research. 

Our research has been conducted in cooperation 

with Nederlandse Spoorwegen, commonly referred 

to as NS, the principal passenger railway operator in 

the Netherlands who provided us with data, 

resources and valuable knowledge to carry out our 

study, and to test and assess our models on the 

Dutch passenger railway network. Besides NS, 

valued support was accommodated also by ProRail, 

a rail infrastructure manager in the Netherlands, 

who contributed by providing a substantial part of 

the data we used in our work. 

--- structure of the paper ---- 

II. MOTIVATION AND PRIOR WORK 

     The most commonly used factors in delay 

prediction in railways are network- and timetable-

based such as departure and arrival times, location 

identification, event type, train identification and 

similar (Hansen, Goverde, & Van Der Meer, 2010; 

Kecman, 2014; Kecman & Goverde, 2015a; 

Lessan, Fu, & Wen, 2019; Nair et al., 2019; Oneto 

et al., 2016; Wang & Work, 2015; Yaghini, 

Khoshraftar, & Seyedabadi, 2013). Similar 

attention has been paid to delay propagation and its 

prediction (Berger, Gebhardt, Müller-Hannemann, 

& Ostrowski, 2011; Corman & Kecman, 2018; 

Goverde, 2010; Peters, Emig, Jung, & Schmidt, 

2006; Jianxin Yuan, 2007). However, in contrary to 

the lengthy list of publications considering the 

earlier factors in train delay prediction models, 

weather conditions were considered in much fewer 

models (Nair et al., 2019; Oneto et al., 2016) with a 

support of an observed correlation between weather 

conditions and train delays (Ling, Peng, Sun, Li, & 

Wang, 2018). Passenger counts and the effects of 

crowding attract a lot of attention among transport 

researchers. In general, especially dwell time 

(Kecman & Goverde, 2015b; San & Mohd Masirin, 

2016) and psychological effects of crowding (Cox, 

Houdmont, & Griffiths, 2006; Tirachini, Hensher, 

& Rose, 2013) are in the spotlight. However, 

application of the passenger counts and crowding 

in the railway delay prediction is rather scarce 

(Albert, Kraus, Müller, & Schöbel, 2017), though 

some examples can be found in the bus transit 

domain  (M. Chen, Liu, Xia, & Chien, 2004; M. 

Chen, Yaw, Chien, & Liu, 2007). 

     All the selected factors, passenger counts, 

weather and train interactions (in the meaning of 

delay propagation) were somehow implemented in 

some delay prediction model. However, none of the 

publications reviewed presented an attempt to 

include all the factors into one model. Furthermore, 
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many types of models were presented in the 

reviewed publications such as stochastic models 

(Berger et al., 2011; Huisman & Boucherie, 2001; J 

Yuan, Goverde, & Hansen, 2002), Bayesian 

networks (Corman & Kecman, 2018; Lessan et al., 

2019), data mining techniques (Hansen et al., 2010) 

or Neural network (Peters et al., 2006; Yaghini et 

al., 2013; Oneto et al., 2016). Decision trees based 

models appeared mainly in the form of a random 

forest model (Oneto et al., 2016; Nair et al., 2019). 

No application of gradient boosting model, such as 

XGBoost, was found in the context of train delay 

prediction, and especially not in a combination 

with all the factors affecting delays as mentioned 

above. Finally, most of the publications that were 

offering any comparison of multiple models 

focused on assessment of the differences in the 

models’ architecture rather than comparing an 

impact of various factors considered in the models. 

The consequent research gap was found in the 

following three aspects: 1) Application of a 

gradient boosting decision trees-based model, 

specifically XGBoost, 2) Inclusion of passenger 

counts data into a passenger trains delay prediction 

model, 3) Combination of timetable-based 

information, weather condition, passenger counts 

and train interactions for delay prediction, 

implementing each factor separately and in various 

combinations with the other factors. 

III. MODEL 

 We develop a number of models to observe and 
assess effects of a variety of features described in 
Section A. Although the prediction is intended for 
the whole network (all regularly scheduled 
passenger trains operated by NS in the Netherlands) 
the models are build for every train series 
individually. That is argued by an assumption that 
there are certain conditions unique for every train 
series. Therefore, 79 models are made for every 
feature set. The individual results are shortly 
reviewed but attention is paid to the overall 
performance of the combined results. 

A. Data and derived features 

     Input form compatible with the XGBoost model 

can be described as a vector, i.e. a set of features 

with varying units and scales. A set of 

characteristics captured by a vector is referred to as 

a feature set and individual characteristics (i.e. 

vector elements) as features. The target variable, 

train delay in our case, is then referred to as a label. 

To avoid overfitting, the dataset is split into smaller 

instances called a training, testing and evaluation 

set (by proportions of 0.6, 0.2 and 0.2, 

respectively). The first two sets are used for tuning 

of the model’s configuration and consecutively for 

the final model training. Eventually, the evaluation 

set is used for the model’s performance assessment. 

The data from which the features are derived 

consisted of the timetable, the realization data 

(automatic vehicle location data), weather data 

(historical hourly measurements), passenger data 

(passenger count estimations based on smart card 

data) and minimum required headways between 

pairs of train series at specific locations.  

     The resulting features were divided into a 

number of feature sub-sets which were then 

combined into feature sets for the prediction 

models development. Furthermore, some of the 

sub-sets were defined in multiple variations. The 

features belonging into the categories along with 

the number of variations created (in the brackets) 

are as follows: 

• Basic features (1): Day of the week, Hour, 

Minute, Location, Direction, Current delay, 

Delay 1 before, Delay 2 before. 

• Locations features (2): Number of the 

activities to come or their frequency in the 

timetable: V (departure), K_V (Short 

departure), D (pass through). 

• Passengers features (5): Seats ratio, Peak 

departure, Total number of p.*, Boarding 

p.*,  Alighting p.* (*Scaled to the median 

number of passengers for given spatial-

temporal criteria). 

• Weather features (3): Average wind speed, 

Highest wind speed, Temperature, 

Precipitation, View distance, Mist, Snow, 

Rain, Storm, Ice, Bad weather. 

• Interactions features (6): Expected 

headway, Expected violated headway, 

Binary interaction identification. All either 

per train series or train type category. 

The feature sub-sets were gradually combined 

according to the scheme in Table I. 

TABLE I.  TESTING SCHEME OF COMBINATION OF THE 

FEATURE SETS AND THEIR VARIATIONS 

Step Feature sets 

Number 
of 

models 

1 Base 1 

2 Base, Locations 2 

3 Base, Locations, Passengers 5 

4 Base, Locations, Weather 3 

5 Base, Locations, Interactions 6 

7 
Base, Locations, Passengers, 
Weather, Interactions 

1 

B. XGBoost 

     The selected booster parameter was ‘gbtree’ (a 
tree-based model), the task was regression, the 
objective was set to ‘reg:squarederror’ (regression: 
squared error) and the evaluation metric was ‘rmse’ 
(root mean square error). Hyperparameters, i.e. 
parameters defining rules for the tree-building 
process, require tuning to fit the specific problem. 
Therefore, they were tuned for every feature set 
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category. A group of the best performing 
hyperparameter sets was used as candidates for the 
following individual models, which then selected 
the best fitting setting out of the candidates. The 
tuned hyperparameters and the allowed values are 
presented in Table II. 

TABLE II.  XGBOOST HYPERPARAMETERS AVAILABLE FOR 

TUNING. 

Parameter Possible values 

learning rate [0.001; 0.01; 0.1] 

n estimator [500; 750; 1000; 1250] 

max depth [5; 6; 7; 8; 9; 10] 

child weight [1; 2; 3; 4; 5] 

gamma [0; 0.1; 0.2; 0.3; 0.4] 

alpha [0; 0.01; 0.1] 

subsample 0.8 

colsample_bytree 0.8 

C. Key performance indicators 

Performance of the predictions was evaluated by 

multiple performance indicators. 

• MSE and Confidence intervals, RMSE, RWMSE. 

     MSE and RMSE are calculated as in (3.1) and 
(3.2) respectively, where N is the number of 
observations,   is a vector of the forecasted values 
and   is a vector of the observed values. In the 
context of our research, the unit of RMSE is 
minutes.  The MSE is complemented by its 
corresponding 95% confidence interval (CI). To 
determine the CI of the MSE, the normal 
distribution of the squared errors is required. A 
normality test defined as  , where s is the z_score of 
a skew test, and k is the z_score of a kurtosis test 
(Bai & Ng, 2005), is used. The hypothesis that the 
sample is normally distributed is rejected if p < 0.05 
(Biau, Jolles, & Porcher, 2010). In case the 
hypothesis is rejected, the data is resampled using a 
bootstrap method (Hesterberg, 2015; Kesar Singh 
and Minge Xie, n.d.; Pek, Wong, & Wong, 2017). 
An algorithm to obtain the bootstrapped MSE along 
with its 95% confidence intervals was adopted from 
Good (2006).  

 

 

     In addition, root weighted mean square error 
(RWMSE) was adopted from the assessment 
indicators used in the RAS competition retrieved 
from the submitted work of Nabian et al. (2018). 
The RWMSE is defined as in (3.3) where there is an 
additional variable, the weight wi defined in (3.4) 
which gives more importance to errors associated 
with larger observed delays. 

 

 

• Confusion matrix.  

     The confusion matrix represents number of 
instances that fall into bins of combinations of 
predicted and actual (true) values. The diagonal 
then represents correctly predicted classes. The 
classification tasks used in our research can be 
described as binary and multi-class 
classification. In both cases, one and only one 
class is predicted for each instance. The sum 
across the matrix therefore equals to the number 
of instances that were subject to the prediction 
(Sokolova & Lapalme, 2009). 

• Accuracy, Precision, Recall and F1 Score. 

     Correctness of the predictions in 
classification tasks can be represented by 
accuracy, precision, recall and F1-score. 
Accuracy equals to the percentage of correctly 
predicted classes (3.5), therefore a percentage of 
the sum on the diagonal of a confusion matrix.  

 

     As accuracy may be misleading when 
representation of the classes is strongly 
disbalanced, attention is paid to the remaining 
metrics instead. Precision represents an accuracy 
given a certain predicted class (3.6). Opposite to 
that, recall is an accuracy supposing a specific 
actually observed class (3.7).  

 

 
     A harmonic mean of the two metrics, 
precision and recall, is called F-score, or 
commonly F1-score, where 1 denotes that no 
weighting is used and precision and recall both 
have the same weight in the equation (3.10). 

 

• Feature importance: Gain.  

     A feature importance indicator gain ( is an 
“average gain across all splits the feature is used 
in” (XGBoost Developers, 2016c). Given a 
feature set  and a set of trees , each tree 
consists of a set of splits  and is used by a 
number of observations , where each 
observation follows a sequence of splits . 
Gain then can be mathematically defined as in 
(3.8). 
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where  is a value given by a loss function 

after introducing a .   then refers to 
the loss function value before any split is 
introduced. 

The value of gain is calculated for every individual 
model, i.e. for every train series, and the absolute 
values are not directly comparable. Therefore, we 
compare the individual gains to the highest gain of 
the individual model to obtain a relative value 
which is then comparable among the train series. 
Furthermore, for the final evaluation, the average 
relative gain among the train series is calculated, 
which is the value presented in this work. 

IV. RESULTS 

The results are presented by the key 
performance indicators presented earlier. Therefore, 
the models’ performance is compared by the RMSE 
and related metrics, by the scores resulting from 
confusion matrices, and eventually, features’ 
importance is inspected. As performance of the 
models built on the diverse feature sets considerably 
varies among the train series, the best performing 
model with respect to the RMSE was selected for 
each train series, the resulting predictions were 
combined across all the train series and evaluated as 
if each train series was predicted with the best 
fitting feature set. These results are referred to as 
‘All combined’. 

Note that the feature set categories will be 
identified by following abbreviations: B (Base), L 
(Locations), P (Passengers), W (Weather) and I 
(Interactions). Versions of the feature sub-sets 
within the feature categories then are identified by a 
number. 

A. Naïve forecast: The reference 

The Naïve prediction was computed as strictly 
subtracting 1 minute from the ‘current’ delay. 
However, prediction by the model was done to the 
last train registration within a 20 minutes time 
window since the last registration point.  

B. Regression 

Basic assessment of the regression results is 

done by comparison of the RMSE’s. All the results 

are presented in the Table III along with the 

corresponding MSE’s and the 95% confidence 

intervals. Focusing on the RMSE, results of the B0 

feature set correspond with our expectations as the 

RMSE of 1.52 outperforms the Naïve forecast’s 

RMSE of 1.99 but not the results of the best 

performing model from the research by Van den 

Bulk et al. (2018), which reached a RMSE of 1.34 

and which included further features in comparison 

to our basic feature set. The lowest overall value 

(RMSE 1.48) is reached with the feature sets that 

include train interactions either in the form of 

expected headway (B0L1I3) or expected violated 

headway (B0L1I4). The latter one shows a higher 

upper bound of the confidence interval by 0.01. 

Nevertheless, both reach the lowest RMSE by the 

most train series (29% and 16% respectively). The 

remaining train series reach the best performance 

with feature set B0L1W1 (10% of train series), 

B0L1 (9% of train series) followed by B0L1W2, 

B0L1I5 (both 6% of train series) and B0L1W0 (5% 

train series). Within the subset of 27 train series 

that were used for comparison of the feature sets 

containing all versions of train interactions feature 

sub-sets, the feature sets containing features per 

train type surprisingly outperformed their more 

complex alternatives in both, the overall RMSE 

and the number of train series performing the best 

when the respective feature set is used.  

     Next to the generic RMSE, a RWMSE was 

defined to emphasize errors associated with large 

observed delays. See the definition in (3.3) and 

(3.4). The RWMSE was calculated on the feature 

set level only. Assessing the feature sets based on 

this metrics, the differences become significantly 

smaller. The best performance is observed on the 

feature sets B0L1, B0L1I3-5 with RWMSE of 

1.35, followed by B0L0 and B0L1P0 with 

RWMSE of 1.36. The remaining feature sets reach 

RWMSE of 1.37 with an exception of the B0 

feature set that is burdened by a RWMSE of 1.38.  

     Based on the RMSE and the RWMSE, the best 

performing versions of the feature set categories 

were selected. For the Passenger category, it was 

the version 0 and so it was for the Weather 

category. In selection of the best performing 

version of the feature set containing the 

Interactions category, the number of best 

performing train series was considered in addition 

to the RMSE and the RWMSE. Thus, the version 3 

was selected. Selection of the versions is in line 

with performance of the individual train series 

within the feature categories as the most train series 

reach their best results in the categories with the 

sub-set versions L1, P0 and W0 respectively. 

Altogether, the final feature set can be denoted as 

B0L1P0W0I3. This feature set was created despite 

the poor performance of some of the feature sub-

sets in the simpler feature sets. As can be observe, 

the RMSE and RWMSE are both worse than was 

the case of B0L1 and B0L1I3-5.  

     Finally, see the lower part of the Table III for 

comparison of all the six feature set versions 

including Interactions features. Note that the 

prediction was made for a subset of 27 train series 

due to computational power limitations we 

encountered and thus the results cannot be directly 

compared to the results in the upper part. Instead, 

the results provide a comparison among the 

versions of the train interactions feature sets. 

Contrary to our expectations, looking at the RMSE, 

the overall results are slightly worse when the 

interactions are defined per individual train series 

(versions 0-2) instead of train types (versions 3-5). 
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The difference between the feature sets diminishes 

when the RWMSE is used as an evaluation 

measure. Nevertheless, the binary encoded 

Interactions features in the B0L1I2, and the 

corresponding simplified version B0L1I5 are still 

clearly the least effective. 

TABLE III.  REGRESSION RESULTS. 

B L P W I RMSE MSE 95% CI RWMSE 

Naïve 1.99 3.94 [3.90, 3.98] 1.91 

0     1.52 2.30 [2.27, 2.33] 1.38 

0 0    1.50 2.24 [2.21, 2.27] 1.36 

0 1    1.49 2.23 [2.20, 2.27] 1.35 

0 1 0   1.50 2.26 [2.23, 2.29] 1.36 

0 1 1   1.50 2.26 [2.23, 2.29] 1.37 

0 1 2   1.51 2.27 [2.24, 2.30] 1.37 

0 1 3   1.51 2.27 [2.23, 2.31] 1.37 

0 1 4   1.51 2.27 [2.24, 2.30] 1.37 

0 1  0  1.50 2.26 [2.23, 2.30] 1.37 

0 1  1  1.51 2.27 [2.24, 2.30] 1.37 

0 1  2  1.51 2.27 [2.23, 2.30] 1.37 

0 1   3 1.48 2.20 [2.17, 2.23] 1.35 

0 1   4 1.48 2.20 [2.17, 2.24] 1.35 

0 1   5 1.49 2.22 [2.19, 2.26] 1.35 

0 1 0 0 3 1.50 2.25 [2.21, 2.28] 1.36 

0 1   0 1.56 2.43 [2.38, 2.47] 1.41 

0 1   1 1.56 2.43 [2.38, 2.47] 1.41 

0 1   2 1.57 2.45 [2.40, 2.49] 1.42 

0 1   3 1.55 2.41 [2.37, 2.46] 1.41 

0 1   4 1.55 2.41 [2.37, 2.46] 1.41 

0 1   5 1.56 2.44 [2.40, 2.49] 1.42 

All combined 1.48 2.20 [2.16, 2.23] 1.34 

 

C. Derived classification tasks 

Three classification tasks are defined and will be 

referred to as follows:  

• Delay existence: Positive class (a delay 

exceeding 2 minutes is predicted), negative 

class (a not existing delay or a delay of 

maximum 2 minutes is predicted) 

• Delay jump: Positive class (a delay jump of 

4 minutes or more is predicted), negative 

class (a not existing delay jump is 

predicted) 

• Delay change: Decreasing class (‘-‘; a 

delay is predicted to decrease by 2 or more 

minutes), Constant class (a delay is 

predicted not to change by 2 or more 

minutes in either direction), Increasing 

class (‘+’; a delay is predicted to increase 

by 2 or more minutes) 

Representation of the classes is significantly 

disbalanced in our case as, for example, low delays 

predominating high delays and small delay changes 

predominating large delay changes. Reaching high 

scores in such highly frequented class is not any 

surprise and attention should be paid to scores of 

the less frequented class(es).  

Delay existence. 

     With respect to performance in predicting 

whether a delay will take place or not, the best 

performing feature sets are B0L1I3 and B0L1I4 if 

we look at the F1 score. Also the ‘All combined’ 

model reaches equal F1 score. Those are followed 

by B0L1P0W0I3, B0L1, and B0L0 and B0L1I5 in 

this order. An interesting observation is that 

weather feature sets lead to high scores in precision 

and lower scores in recall. Passenger features then 

show the opposite tendency. Precision in this 

context represents how many of the instances 

predicted to be delayed were also observed to be 

delayed. Low score in precision thus suggests that 

the delays tend to be overestimated. That is what 

the features reflecting passenger volumes seem to 

cause because the precision scores are significantly 

worsened compared to the simpler feature sets. 

Other than that, the precision scores are relatively 

equal among the other feature sets. As mentioned, 

recall noticeably drops when weather features are 

included (B0L1W0-2). That suggests delays are 

rather underestimated and thus some of the delays 

fall below the threshold of 2 minutes. Interestingly, 

low recall score is observed also with the 

B0L1P0W0I3 feature set, while it reaches the 

overall highest score in precision. High score in 

precision is achieved also by the ‘All combined’ 

model. See an overview of the scores in Table IV. 

TABLE IV.  DELAY EXISTENCE PREDICTION RESULTS. 

Feature sets 

F
1
 

P
re

c
is

io
n
 

R
e
c
a
ll 

A
c
c
u
ra

c
y
 

B L P W I 

Naïve forecast 0.586 0.462 0.798 0.898 

0     0.655 0.548 0.814 0.909 

0 0    0.659 0.551 0.819 0.911 

0 1    0.660 0.553 0.819 0.911 

0 1 0   0.657 0.552 0.812 0.910 

0 1 1   0.654 0.545 0.816 0.910 

0 1 2   0.653 0.545 0.815 0.910 

0 1 3   0.654 0.546 0.815 0.910 

0 1 4   0.653 0.545 0.815 0.910 

0 1  0  0.656 0.559 0.795 0.909 

0 1  1  0.655 0.558 0.793 0.908 

0 1  2  0.655 0.558 0.793 0.908 

0 1   3 0.665 0.559 0.820 0.912 

0 1   4 0.665 0.559 0.820 0.912 

0 1   5 0.659 0.550 0.822 0.911 

0 1 0 0 3 0.661 0.564 0.799 0.910 

All combined 0.665 0.561 0.816 0.912 

0 1   0 0.655 0.552 0.806 0.904 

0 1   1 0.655 0.551 0.808 0.904 

0 1   2 0.647 0.537 0.813 0.903 

0 1   3 0.656 0.549 0.813 0.904 

0 1   4 0.656 0.549 0.813 0.904 

0 1   5 0.648 0.537 0.815 0.903 
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Comparing train interactions feature set variations 

with respect to the F1 score, the more complex 

versions (B0L1I0-2) perform worse than the 

simpler ones (B0L1I3-5). Also comparison of 

recall scores suggests the same conclusion. On the 

other hand, precision is higher when  B0L1I0-1 

feature sets are used. The feature sets B0L1I2 and 

B0L1I5 perform worse than the alternative feature 

sets with an exemption of recall where they 

perform better than the other versions. 

Delay change. 

     Expectedly, a more challenging task is to predict 

in which direction a delay will change which is 

confirmed by the generally lower scores. Because 

we derived the delay change classification from the 

regression results, we did not predict directly the 

delay change. Instead, the classes represent 

whether the difference between the predicted and 

the present delay corresponds with the observed 

change. Referring to Table V, decrease of delay 

occurs in 6.3% of the available observations and 

increase in 7%. The remaining 86.7% of 

observations show change of delay smaller than 2 

minutes (in either direction). Therefore, there is a 

clear predominance of the ‘constant class’, which 

thus understandably scores well in this 

classification problem (with F1 scores around 0.93, 

precision 0.98 and recall approximately 0.88). 

     Low precision of a class implies decrease in 

recall of another class or classes. As can be seen in 

Table V, precision of the ‘decreasing’ and 

‘increasing’ classes are very low and recall of the 

‘constant’ class is significantly lower than its 

precision. It is likely, that if an existing delay 

change (of any direction) is not predicted correctly, 

it is predicted as ‘constant’. That was confirmed by 

an inspection of the data used for calculation of the 

metrics presented in Table V. Especially low scores 

are reached in precision of the ‘increasing’ class. 

As observation of the data revealed, falsely 

predicting ‘decreasing’ class instead of the correct 

‘increasing’ class is approximately twice as likely 

than vice versa. On the other hand, false 

predictions of observed ‘constant’ class are equally 

distributed between the two other classes. In 

general, predicted delay changes exceeding 2 

minutes are with high probability actually smaller 

than 2 minutes, no matter the direction of the 

change. That means, the predictions appear to 

overestimate delay changes. Predicted delay 

increase is correctly predicted only in 

approximately 13-16% cases and delay decrease in 

approximately 31-34% of the cases. Contrary to 

that, recall scores are relatively high, showing that 

decrease of delay is correctly predicted in 

approximately 67-70% and delay increase in about 

49-58%.  

 

TABLE V.       DELAY CHANGE PREDICTION RESULTS. 

Feature sets F1 Precision Recall 

A
c
c
u

ra
c
y
 

B L P W I - + - + - + 

0     0.422 0.217 0.309 0.135 0.667 0.551 0.868 

0 0    0.445 0.225 0.328 0.141 0.688 0.567 0.870 

0 1    0.453 0.229 0.337 0.143 0.691 0.565 0.871 

0 1 0   0.446 0.226 0.331 0.143 0.684 0.537 0.869 

0 1 1   0.427 0.215 0.310 0.133 0.687 0.554 0.869 

0 1 2   0.428 0.216 0.311 0.134 0.688 0.558 0.869 

0 1 3   0.428 0.215 0.311 0.133 0.687 0.553 0.869 

0 1 4   0.426 0.216 0.309 0.134 0.686 0.554 0.869 

0 1  0  0.457 0.241 0.345 0.159 0.676 0.501 0.868 

0 1  1  0.451 0.239 0.339 0.157 0.674 0.497 0.867 

0 1  2  0.452 0.240 0.340 0.158 0.675 0.498 0.868 

0 1   3 0.451 0.245 0.332 0.155 0.701 0.579 0.872 

0 1   4 0.454 0.245 0.336 0.156 0.698 0.575 0.872 

0 1   5 0.446 0.225 0.328 0.139 0.699 0.579 0.871 

0 1   0 0.427 0.283 0.309 0.188 0.695 0.568 0.859 

0 1   1 0.426 0.281 0.307 0.186 0.692 0.568 0.859 

0 1   2 0.405 0.253 0.286 0.161 0.696 0.587 0.859 

0 1   3 0.417 0.276 0.296 0.180 0.702 0.593 0.860 

0 1   4 0.424 0.275 0.304 0.180 0.697 0.586 0.860 

0 1   5 0.409 0.253 0.290 0.161 0.696 0.591 0.859 

0 1 0 0 3 0.455 0.253 0.342 0.167 0.681 0.521 0.868 

All combined 0.460 0.250 0.343 0.160 0.698 0.574 0.871 

     Looking at differences among the feature sets, 

the highest F1 scores are reached by B0L1P0W0I3 

and the ‘All combined’ model, followed by feature 

sets containing train interactions features and 

weather features. In accordance with the previous 

classification task, passenger counts features cause 

delay change overestimation leading to low 

precision and consequently F1 scores. On the other 

hand, weather features seem to have a significantly 

positive effect on delay change direction prediction 

as the results of B0L1W0-2 is very comparable to 

the results of B0L1I3-4 which so far outperformed 

weather features. However, feature sets B0L1W0-2 

lag behind in recall, especially in recall of the 

‘increasing’ class, where they perform worse even 

than B0. 

     Among the feature sets B0L1I0-5, the F1 and 

precision scores are surprisingly higher in the more 

complex feature sets (B0L1I0-2) compared to their 

simpler alternatives. Conversely, the recall scores 

are higher when B0L1I3-5 are used and so is the 

overall accuracy. Predictions by models using the 

complex feature sets (B0L1I0-2) thus are more 

correct with respect to delay change identification, 

while the actual delay changes are correctly 

predicted with a slightly higher probability by the 

simpler feature sets (B0L1I3-5). 
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Delay jump. 

TABLE VI.       DELAY JUMP PREDICTION RESULTS. 

Feature sets 

F
1
 

P
re

c
is

io
n
 

R
e
c
a
ll 

A
c
c
u
ra

c
y
 

B L P W I 

0     0.072 0.040 0.390 0.982 

0 0    0.083 0.046 0.442 0.983 

0 1    0.090 0.050 0.449 0.983 

0 1 0   0.084 0.047 0.405 0.983 

0 1 1   0.072 0.039 0.412 0.983 

0 1 2   0.071 0.039 0.411 0.983 

0 1 3   0.073 0.040 0.418 0.983 

0 1 4   0.071 0.039 0.409 0.983 

0 1  0  0.090 0.051 0.379 0.982 

0 1  1  0.089 0.050 0.390 0.983 

0 1  2  0.086 0.049 0.372 0.982 

0 1   3 0.090 0.050 0.470 0.983 

0 1   4 0.090 0.050 0.457 0.983 

0 1   5 0.087 0.048 0.473 0.983 

0 1 0 0 3 0.088 0.050 0.393 0.982 

All combined 0.091 0.050 0.476 0.983 

0 1   0 0.065 0.036 0.356 0.980 

0 1   1 0.063 0.035 0.361 0.980 

0 1   2 0.051 0.027 0.352 0.980 

0 1   3 0.057 0.031 0.393 0.980 

0 1   4 0.052 0.028 0.374 0.980 

0 1   5 0.055 0.030 0.373 0.980 

 

     Delay jump is a delay change equal to or 

exceeding 4 minutes regardless direction of the 

change. According to that, delay jump can be 

observed in less than 3% of instances in the full 

dataset. That implies considerable 

disproportionality to the opposing class which 

reaches equal scores across all the feature sets (F1 

score 0.991, precision 0.999 and recall 0.984). 

Performance of the prediction with respect to this 

classification naturally cannot outperform 

combined prediction of the ‘decreasing’ and 

‘increasing’ class above. Precision scores are 

therefore unsurprisingly low, predicting a delay 

jump correctly only in approximately 4-5% of the 

cases a delay jump is predicted. On the other hand, 

existing delay jumps are correctly predicted in 

about 37-47% of the cases. That means, delay 

jumps are highly overestimated, or in other words, 

delay changes are predicted to excess the threshold 

of a 4-minutes change. Inspection of the results 

revealed that approximately 10 times more delay 

jumps were predicted than were actually observed. 

Accordingly to the results of the ‘delay change’ 

task, the highest F1 scores are reached by feature 

sets B0L1, B0L1I3-4 and B0L1W0. The latter 

feature set reaches the highest precision score, 

however, lags behind in recall and the overall 

accuracy. The most complex feature set 

B0L1P0W0I3 does not reach the highest 

performance especially due to poor recall. Contrary 

to that, the very highest recall score is attained by 

the ‘All combined’ model what contributes to the 

highest measured F1 score. 

D. Feature importance 

    Throughout the results, the present delay 

(‘Delay’) clearly reaches the highest scores in gain 

between 0.97 and 1.0 which means that the feature 

brings the most gain in a vast majority of the 

individual models, and especially when more 

features are present. In the B0 feature set, the 

leading feature is the direction (‘Direction’), and in 

the B0L0-1 feature set, the features with a 

considerably high gain were also the hour (‘Hour’), 

the upcoming departure locations feature (‘L0 / L1: 

V’) and the upcoming pass-through locations 

feature (‘L0 / L1: D’). 

    The remaining features have a rather 

supplementary role in the gain maximization. The 

next feature with relatively high scores in gain is 

the previous delay (‘Delay_1before’) scoring 

between 0.31 and 0.40. The following features such 

as the direction, a delay two locations back 

(‘Delay_2before’) and upcoming locations 

identification (‘L0 / L1: V’, ‘L0 / L1: K_V’, ‘L0 / 

L1: D’) then score between 0.1 and 0.2. However, 

when passenger counts or weather conditions are 

introduced, scores of the upcoming locations 

identification drop to or below 0.1. Train 

interactions do not cause such a drop. Nonetheless, 

the features of the B0 feature set show relatively 

stable importance across all the feature sets 

combinations. That is also due to the fact that it is 

always the present delay that reaches the highest 

gain and the remaining features of the set always 

score proportionally approximately equally.  

   Assessing the additional features, the upcoming 

locations identification features score relatively 

high (between 0.08 and 0.14) compared to the other 

features. Slightly higher scores are observed on the 

upcoming departure locations (‘L0 / L1: V’) 

followed by the upcoming pass-through locations 

features (‘L0 / L1: D’). All the features reflecting 

passenger counts (‘Pax_Total_1-4’, ‘Pax_Board_1-

4’, ‘Pax_Alight_1-4’), the seats ratio (‘seats_ratio’) 

or the peak hour (‘peak_dep’) score comparably 

(0.04 or 0.05) although the relative gain of the peak 

hour decreases when the passenger counts features 

are included. That is understandable as the peak 

hour is partially implicit in the passenger counts 

features. The relative average gain of the features 

representing weather conditions resembles the 

scores of the passengers-related features varying 

between 0.03 and 0.06. The highest score of 0.06 is 

obtained by the precipitation (‘Precp’), temperature 

(‘Temp’) followed by the wind, view distance, rain 

and bad weather identification (‘Avgwind’, 

‘Highwind’, ‘View’, ‘Rain’, ‘BadWeather’) scoring 

0.05, and by the snow, storm, ice, and mist features 
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(‘Snow’, ‘Storm’, ‘Ice’, ‘Mist’) scoring 0.04 or 

0.03. Finally, the average relative gain of the train 

interactions features shows that the features 

representing interactions with empty rolling stock 

(‘LM’) are utterly powerless (scores of 0.00), and 

that identification of interactions with IC trains 

(‘IC’) scores relatively higher than interactions 

with SPR trains (‘SPR’) by scores of 0.04 or 0.05 

compared to 0.03 and 0.04 respectively.  

V. RESULTS SUMMARY 

      The highest improvement of performance 

comes from the basic feature set (B0), which, 

compared to the Naïve forecast, decreases the 

RMSE from 1.99 to 1.52, and decreased width of 

the MSE 95% confidence interval by 25%. The 

features representing the upcoming locations in the 

feature sub-sets L0 and L1 further decreased the 

RMSE by 0.01 and 0.02 respectively (RMSE 1.50 

and 1.49). The passengers features added to the 

B0L1 feature set caused increase of the RMSE by 

0.01 or 0.02 and so did the weather features. The 

train interactions features on the other hand caused 

an improvement by decreasing the RMSE by 0.01 

(RMSE 1.48) except for the last version (I5) which 

did not change the RMSE but shifted the MSE 95% 

confidence interval by -0.01. Comparing 

differences between all the train interactions (tested 

on a subset of train series), the lowest RMSE is 

reached with the version I3 and I4, followed by I5 

with the RMSE higher by 0.01, I0 and I1 with an 

additional increase of the RMSE by 0.01 and 

finally I2 with another increase by 0.01 on the 

RMSE. Finally, the feature set consisting of feature 

sub-sets of all the categories is burdened by a 

RMSE of 1.50. Results of the underlying individual 

models built for the separate train series largely 

vary among the feature sets and train series and 

every feature set performs the best for at least one 

train series. Performance of the feature sets with 

respect to the remaining performance indicators 

follows relatively the same pattern. However, 

weather features bring an improvement in delay 

change and delay jump prediction, especially in the 

prediction precision. 

     The features were assessed by a feature 

importance metrics called gain, which was then 

scaled to the highest observed value in the 

respective model. The present delay reached the 

highest scores in gain in a vast majority of the 

individual models. Next highly scoring features 

were the direction, hour, the upcoming departure 

locations and the upcoming pass-through locations 

feature and the previous delays. However, 

considering the predictions’ performance results, 

the feature sets including train interactions features 

achieved the highest scores and thus the features 

must have a significant and positive impact on the 

prediction. Comparison of performance among the 

respective feature set variations, the binary and the 

derived quasi-binary versions (sum of the 

underlying binary features) are significantly 

outperformed by those representing expected 

headways and expected violated headways. 

Preference between those two is not so 

straightforward and the differences are rather 

negligible although with a slight preference 

towards the first version. Comparison of the 

features being defined per train category or train 

series also shows rather small nuances, however, 

the latter case features have a positive impact on 

delay jump prediction which is a viable argument 

in their favor. Finally, the weather features showed 

a significant positive impact on precision of 

prediction of delay change direction and delay 

jump. That means, the features inclusion resulted in 

larger expected delay changes, which on the other 

hand lead to overestimation of the delay changes 

and decreased recall. Nevertheless, judgement of 

its benefit depends on subjective preferences. 

Supposedly the impacts are viable, it is likely the 

precipitation, temperature, view distance, wind 

speed and rain and bad weather identification that 

has the largest impact. 

     In reference to the two preceding questions, the 

best performing feature set in our research consists 

of the basic sub-set, the locations sub-set version 1 

and train interactions sub-set version 3 (B0L1I3). 

That implies the feature set is composed of the 

following individual features: 

• Basic sub-set: Day of the week, Hour, 

Minute, Location, Direction, Current 

delay, Delay one and two registration 

points before 

• Locations sub-set version 1: Total 

frequency of departures, short departures 

and pass-through points 

• Interactions sub-set version 3: Expected 

headway to the first IC, SPR and LM train 

In addition to that, some features from the other 

categories have a potential in delay prediction and 

those are certain weather conditions features, 

especially precipitation and temperature, possibly 

also view distance, wind speed and rain or bad 

weather identification. 

 

Compared to the Naïve forecast, the feature set 

B0L1I3 (see the preceding questions) brings an 

improvement in the RMSE of 0.51, thus the RMSE 

changes from 1.99 to 1.48, or likewise the MSE 

changes from 3.94 to 2.20. The MSE 95% 

confidence interval shifts from [3.90, 3.98] to 

[2.17, 2.23]. The feature set reaches the lowest 

RMSE by 29% of train series which is the highest 

share among the feature sets. With respect to delay 

existence prediction, the F1 score of the Naïve 

forecast is 0.586 while the selected feature set 

reaches a score of 0.665. Also the precision score 

shows an improvement (from 0.462 to 0.559) and 

so does the recall (from 0.798 to 0.820) and 
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accuracy (from 0.898 to 0.912). Delay change and 

delay jump prediction was not evaluated for the 

Naïve forecast due to its nature of rigorously 

‘predicting’ delay decrease by 1 minute. 

Nevertheless, the F1 scores of the decreasing and 

increasing classes of delay change prediction by the 

finale feature set are 0.451 and 0.245 respectively. 

Recall scores of the classes are 0.332 and 0.155 

respectively and precision scores 0.701 and 0.579 

in the corresponding order. The F1 score of delay 

jump prediction then is 0.090 with precision of 

0.050 and recall 0.470. 

VI. CONCLUSIONS 

     Compared to the Naïve forecast, the feature set 

B0L1I3 brings an improvement in the RMSE of 

0.51, thus the RMSE changes from 1.99 to 1.48, or 

likewise the MSE changes from 3.94 to 2.20. The 

MSE 95% confidence interval shifts from 

[3.90, 3.98] to [2.17, 2.23]. The feature set reaches 

the lowest RMSE by 29% of train series, which is 

the highest share among the feature sets. With 

respect to delay existence prediction, the F1 score 

of the Naïve forecast is 0.586, while the selected 

feature set reaches a score of 0.665. Also the 

precision score shows an improvement (from 0.462 

to 0.559) and so does the recall (from 0.798 to 

0.820) and accuracy (from 0.898 to 0.912). Delay 

change and delay jump prediction was not 

evaluated for the Naïve forecast due to its nature of 

rigorously ‘predicting’ delay decrease by 1 minute. 

Nevertheless, the F1 scores of the decreasing and 

increasing classes of delay change prediction by the 

finale feature set are 0.451 and 0.245, respectively. 

Recall scores of the classes are 0.332 and 0.155, 

respectively, and precision scores 0.701 and 0.579 

in the corresponding order. The F1 score of delay 

jump prediction then is 0.090 with precision of 

0.050 and recall 0.470. 

     The best performing model was not the one built 

on the most complex feature set consisting of 

features from all the categories. The most complex 

feature set (B0L1P0W0I3 consisting of feature sub-

sets base, locations v.1, passengers v.0, weather v.0 

and interactions v.3) was burdened by a RMSE 

1.50 (correspondingly by a MSE 2.25 with a 95% 

confidence interval [2.21, 2.28]) and RWMSE 

1.36, while the finally selected feature set (B0L1I3 

consisting of feature sub-sets base, locations v.1and 

interactions v.3) reached RMSE 1.48 

(correspondingly a MSE 2.20 with a 95% 

confidence interval [2.17, 2.23]) and 

RWMSE 1.35. Although the B0L1P0W0I3 feature 

set outperformed most of the other feature sets in 

delay change prediction, it lagged behind with 

respect to all the other performance indicators. 

According to the results of models consisting 

passengers features and the feature importance 

analysis, it is the passengers features that possibly 

worsen the prediction performance. On the other 

hand, the train interactions features and some of the 

weather features do contribute to the prediction 

quality according to the applied performance 

indicators. The train interactions features have a 

strong improving effect on the performance with 

respect to all the performance indicators, while 

weather features affect especially the resulting 

delay change prediction 
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1. Introduction  
Railways have always played an important role in passenger transport and it becomes increasingly 

important as there is a world-wide need for changes in transportation to address increasing demand 

for mobility, together with increasing population, while decreasing emissions generated by the 

transport sector. Extensive research is being performed to provide high-quality services with low 

negative externalities. Public transport, and thus also railway transport, certainly is a crucial element 

in the future of passenger transport. Yet, there always will be competition with other modes and 

therefore, the strive to provide better service than yesterday is unending. Besides making railways 

attractive to users of other modes, comfort and satisfaction of the current users are a priority as well. 

Achieving these goals does not consist only of large easily visible actions. There are many 

incremental innovations that bring seemingly small improvements which together can make a big 

difference. An example of such an additional element in the service quality is an improved 

passenger information about train delays.  

Understandably, prevention of delays or an appropriate response to emerging delays should be a 

primary concern. Our research does not aspire to prevent delays, instead, our work aims to forecast 

the delays’ length in the near future, possibly in the whole corresponding railway network. Prior 

knowledge about upcoming delays may mitigate inconvenience induced to the passengers by 

providing them with an opportunity to change their itineraries, or possibly might even eventually 

help to prevent delay propagation by prompt dispatching interventions. 

Our research has been conducted in cooperation with Nederlandse Spoorwegen, commonly referred 

to as NS, the principal passenger railway operator in the Netherlands who provided us with data, 

resources and valuable knowledge to carry out our study, and to test and assess our models on the 

Dutch passenger railway network. Besides NS, valued support was accommodated also by ProRail, 

a rail infrastructure manager in the Netherlands, who contributed by providing a substantial part of 

the data we used in our work. 

In the Introduction chapter, we will provide a deeper explanation of the delay prediction problem. 

Then, a brief overview of the current state of the research in this field is presented and the resulting 

research gap is deduced. Consequently, the research objective and the research question and sub-

questions are defined, and finally, an overview of our research approach is given. 

1.1. Problem statement 
Aiming for the highest service quality possible, NS seeks a constant improvement focusing on its 

performance and satisfaction of its customers. The latter subject of focus, customer satisfaction, 

was also defined as one of the key objectives for 2019. A yearly set of performance indicators 

contains an indicator defined as ‘Information on the train and at stations about delays’. Although 

the target value for the year 2019 was set to 80%, this threshold already had been reached in the 

previous years as it was 83.2% in the year 2017 and in the year 2018, the measured value further 

increased by 2%-points and reached 85.2%. (NV Nederlandse Spoorwegen, 2019) Information 

whether and how much a train is delayed is displayed at the stations, and online platforms such as 

NS website or travel planners. The NS planner application considers expected delays in the search 

for possible connections and disregards those with an impossible transfer due to the expected 

delays. The accuracy of current train departure delay prediction 20 minutes to the future was 

observed by Fioole (2018b) who registered all estimated and realized passenger train departures 

from all stations in the Netherlands over two days in November 2018, three days in December and 

three days in January 2019. In total, 78 362 train departures were registered. The observed data 
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showed that between 94.7 % and 98% of the predicted departures were forecasted correctly as either 

on time or late, where ‘on time’ included departures with up to 2 minutes delay, and ‘late 

departures’ were delayed by more than 2 minutes. The 2 minutes threshold was based on a threshold 

that was used for punctuality measurements at NS in the past though it was replaced by a threshold 

of 5 minutes of a passenger delay recently, which however did not correspond well with the purpose 

of the work of Fioole.  

Although the accuracy may seem to be relatively high, it is necessary to consider that the vast 

majority of the departures was on time. In an extreme case, predicting all departures to be on time 

would result in a comparably high accuracy simply because of the disproportion in observed on-

time and late departures. The accuracy of predicting actually delayed departures was significantly 

lower as realized late train departures were predicted to be late in only approximately 34%-40%. In 

the 8 measurement days, approximately 1900 delayed departures were wrongly predicted as on time 

while eventually being late. Due to the nature of the currently applied delay prediction, delays tend 

to be underestimated and it is far more common that a train departure is wrongly expected to be on 

time than falsely forecasted as delayed. 

In the current delay forecast, two methods are available at NS and ProRail, ‘Naïve forecast’ and 

‘Train delay forecast’ by Brouwer (2012). The latter method was proposed by an NS intern in the 

year 2012 who used historical data of individual trains to predict delays. The method performed 

well in simple predictions however could not predict large changes in delays with a sufficient 

reliability (INFORMS, 2018d) and thus is not currently applied. The first method, ‘Naïve forecast’, 

is therefore of higher importance in our research, as its performance is the main benchmark used 

for assessment of our models’ performance.  

 

Figure 1 Delay development over time of a random sample of trips by two randomly chosen train series. 

The Naïve forecast method assumes a delay is always reduced by the slack time which is 5% of the 

bare driving time. In the span of 20 minutes, any delay is therefore assumed to get reduced by 1 

minute. Important to say, this assumption is applied for passenger information only. In contrary, 

for dispatching purposes, delays are assumed to remain unchanged from the current state. 

Understandably, the major inaccuracy of the Naïve forecast method lies in the assumption that a 

delay always gets reduced over time which often is not the case as practice reveals. An example of 

this fault is illustrated in Figure 1 where a delay development along a set of randomly selected trips 

of trains belonging to two train series is depicted, and where one can observe a fluctuation of the 

delays in both directions up and down with a varying gradient of the change. 

1.1.1. RAS Problem Solving Competition 2018 
A convenient way to explore numerous innovative methods, in addition reflecting the local 

specifics, in this case characteristics of the Dutch railway, was to reach out to students and experts 

in the field all around the world via an international competition. NS in cooperation with ProRail 
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therefore took part in INFORMS Railway Problem Solving Competition (INFORMS, 2019b) and 

prepared an assignment with the title ‘Predicting Near Term Train Schedule Performance and 

Delay’ which was announced in spring 2018. Over 40 groups participated in the competition and 

proposed various methods to tackle the problem. A committee consisting of experts from NS and 

ProRail selected the best submissions based on accuracy of the solution, sophistication and 

robustness of the method and quality of the submitted paper (INFORMS, 2018b). The winners were 

announced at the INFORMS conference in Phoenix, USA in the autumn of 2018 (INFORMS, 

2018e).  

The assignment was publicly available on the website of INFORMS (2018c) along with relevant 

data and the necessary instructions. Being it an annual competition, all the documents were moved 

to an archive page of the website and can no longer be accessed via the original links. Instead, an 

interested reader may refer to the archive available on the website of INFORMS (2019). 

The task was to develop an approach to predict delays of passenger trains operated by NS 

20 minutes to the future based on knowledge of the present state of the network. As a case, historical 

data were provided by NS and ProRail. The data referred to a period between September and 

December 2017 and consisted of the planned timetable, corresponding realization data revealing 

delays of the trains at relevant registration points, crew schedules, rolling stock circulation plan, 

basic infrastructure description and simple weather conditions information (INFORMS, 2018c). A 

thorough description of part of the data can be found in Chapter 4 as some of the datasets were used 

also in our research. 

Train delays were supposed to be predicted in three categories of delay development: a ‘change’, 

i.e. prediction of the direction of a delay change as decrease or increase if such change is at least 2 

minutes or constant otherwise, a ‘jump’, i.e. prediction of a change in delay by 4 or more minutes 

in either direction, and precise prediction of the actual delay in minutes. The categories were 

designed to address different levels of complexity of delay prediction: reaching higher accuracy in 

forecasting solely whether a delay will increase, or decrease was considered to be easier than 

forecasting large changes in delay and even easier than predicting actual magnitude of the delays. 

Besides the varying difficulty of the tasks, they were intended to tackle challenges of predicting 

large delay changes and correct prediction of the delay change direction. 

In the meantime, an intern with background in mathematics was hired at NS and was given the 

same task: the same assignment with the same data available. Her research (Van den Bulk, Fioole, 

& Kachergis, 2018) served as a reference for assessment of the submissions by the competition 

participants. Interestingly, methods proposed by the two winning teams matched methods proposed 

by Van den Bulk et al. who recommended the use of machine learning techniques, particularly a 

decision trees based gradient boosting method called XGBoost developed by Chen & Guestrin 

(2016) and Neural networks. Neural Networks was a method proposed by the team of Hellsten, 

Haahr, & van der Hurk, (2018), while the second winning team of Nabian, Alemazkoor, & Meidani 

(2018) suggested using Bi-level random forests, a decision tree based method. 

As the performance of the method was not the only assessment criterium in the competition, the 

final position of the teams does not directly indicate the best method for the problem. Furthermore, 

the models proposed by the two winning teams performed comparably and it therefore cannot be 

concluded which method suits the problem better solely based on the competition results. Above 

that, Van den Bulk et al. (2018) came to a similar conclusion that performance of Neural Network 

and decision trees based method, XGBoost in their case, was comparable applied on the described 

problem. 

Only summaries of results of the models by Hellsten et al. (2018), Nabian et al. (2018) and Van 

den Bulk et al. (2018) were available providing merely a brisk insight into their models’ 

performance. The models proposed by Hellsten et al. (2018), Nabian et al. (2018) correctly 

predicted a train running on time (including a delay up to 2 minutes) or being late in 95.96% and 

91.94% respectively. However, false delay forecast or false prediction of a train running on time is 

of higher importance. Trains having a delay in the future state were correctly predicted to be delayed 

only in 18.75% of cases by Hellsten et al. (2018) and in 25.69% cases by Nabian et al. (2018), the 
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rest of delayed trains were forecasted to run on time. The currently used model correctly predicts 

delays in approximately 34%-40% (Fioole, 2018b). Inversely, trains predicted to have a delay 

actually were on time in 18.18% of the cases a delay was predicted according to the model by 

Hellsten et al. (2018) and in 78.61% of cases according to the model by Nabian et al. (2018). 

Currently, false predictions of delays occur in about 9%-10% of the cases a delay was predicted. It 

is thus obvious that the model by Nabian et al. (2018) tends to significantly overestimate delays. 

An overview of the mentioned examples is in Table 1. It is worth mentioning that performance of 

both models by Hellsten et al. (2018) and Nabian et al. (2018) in the comparison with the current 

state is biased by a narrow testing instance which moreover consists in two thirds of time during 

peak hours. Furthermore, the context in which the models were developed, that is for a competition, 

suggests the models might not be deployed to their fullest potential. 

Results given by Van den Bulk et al. (2018) are in a format which is not comparable with above 

discussed results. Their own comparison to the currently applied method however shows a 

significant improvement by applying XGBoost model and Neural network model with a variety of 

features considered. For example, the F1-score, i.e. a harmonic mean of ratios of falsely assigned 

class and falsely not assigned class (Sokolova & Lapalme, 2009), of a model assuming a delay does 

not change is 0.30 for the label ‘change’, i.e. prediction of a direction of delay change, while 

XGBoost model reaches up to 0.50 and Neural network model 0.33. Further, Van den Bulk et al. 

(2018) score performance of the prediction of the actual delay by root mean squared error (RMSE). 

Note that they used RMSE for its interpretability as it represents an average error of the prediction 

in minutes. The model assuming a constant delay is burdened by RMSE of 1.53, while XGBoost 

application of Van den Bulk et al. reaches RMSE of 1.37 or 1.34 for two different feature sets. 

Neural network models by Van den Bulk et al.  then reach RMSE of 1.38 or 1.35 for two feature 

sets. An overview of the values is in the  

Table 2.  

Table 1 An overview of examples of delay prediction accuracy of different models 

 Hellsten et al. 

(2018) 

Nabian et al. 

(2018) 

Current model 

(Fioole, 2018) 

Correct prediction (delayed or on time) 95.96 % 91.94 % 94 % - 98 % 

Correct prediction (delayed) 18.75 % 25.69 % 34 % -40 % 

False prediction of a delay 18.18 % 78.61 % 9 % - 10 % 
 

Table 2 Example of comparison of methods’ accuracy according to Van den Bulk et al. (2018). 

 No change in delay XGBoost Neural Network 

F1-score: ‘change’ label 0.30 0.50 0.33 

F1-score: ‘jump’ label - - 0.12 

RMSE: actual delay prediction 1.53 1.37 / 1.34 1.37 / 1.34 

The models developed by Van den Bulk et al. (2018) thus show a certain improvement in 

comparison to the delays being assumed to remain unchanged in the terms of prediction accuracy.  

The results therefore support investing further research efforts in this direction.  

1.1.2. What next? 
Logically, the models developed for the RAS competition were built solely on data and information 

provided in the competition which were highly limited for understandable practical and legal 

reasons. Many factors that might be influencing the delays development were therefore omitted and 

left space for possible improvements and further research. Based on interviews at NS, there are two 

main domains that are expected to have a significant effect on delay development: interactions 

among trains sharing the infrastructure, specifically represented by headways (Fioole & Tielman, 

2019), and effects of passenger crowding (Fioole, 2018a). Nonetheless, it is not a complete list of 

all potential factors that may be used for delay prediction. Many delay sources are mentioned in the 
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literature, frequently as an incomplete list of examples. Some of the examples complemented by 

highly detailed delay source categorization by Union Internationale des Chemins de Fer (UIC; 

International Union of Railways)  are presented in Section 2.2. As a concise introduction to the 

problem, a handy comprehensive categorization of delays according to what part of the railway 

system the delays relate to was adapted from work of Lee, Yen, & Chou (2016). Within each of the 

categories, they also provide an illustrative list of possible delay causes giving us a handy overview 

of factors possibly relevant for our research of a delay forecast (see Table 3).  

Table 3 Possible sources of delays in passenger railways (Lee, Yen, & Chou, 2016) 

Category       Potential delay source 

Station  Dispatching 

 Service preparation 

 Boarding/alighting of passengers 

Train  Rolling stock failure 

 Weather conditions 

 Accidents, Facility failure 

Operations  Signaling system failure 

 Track or facilities maintenance 

Timetable  Slack time availability 

 Estimated bare driving time 

 Track configuration 

 Rolling stock characteristics 

 Overtaking and Meeting, Track assignment 

Important criteria for the purpose of our work are that the delay sources (delay development 

indicators) must be observable and/or applicable in real time, quantifiable and fully recorded to 

allow real-time application of a machine learning prediction model. Dispatching interventions are 

hardly predictable as protocols for specified disruptions serve only as a guideline and the final 

interventions depend on an individual’s expertise. Moreover, dispatching interventions rather 

introduce noise in the observed data as they are not fully recorded and cause inconsistency in train 

numbering or in the scheduled times leading to falsely identified delays (as for example a train 

appears to be delayed by a significant amount of time while in reality, the train was swapped with 

another one, running relatively according to the schedule for the passengers, only with a different 

train number registered in the data). Next, delays in the service preparation processes at the stations 

are likely to be difficult to enumerate and register. 

Unusually high numbers of passengers on the platforms or in the vehicles may lead to extended 

dwell times (Lam, Cheung, & Lam, 1999). The exact numbers of passengers that are going to board 

or leave a train are unknown for the future locations. However, based on fare collection data, it is 

possible to estimate the numbers of passengers that boarded or left the train at the past stations 

which might indicate uncommon states of the system with respect to the passengers volume. 

Rolling stock failure, accidents, facility failure or signaling system failures are all events that often 

lead to extensive disruptions and the effects of such events are a large research topic on its own. 

Importantly, any of these events necessitate a significant dispatching intervention. As explained 

earlier, dispatching decisions are hardly predictable, however above that, the need for interventions 

also means that there is a lack of time and attention that can be paid to register such an event in a 

way that could be directly processed in a delay forecasting model especially on a macroscopic level. 

Contrary to failures in the railway system, maintenance of the facilities and especially of the track 

can cause significant delays. Though it is generally a planned action and thus is known in advance, 

its quantification and translation into factors usable in our research is questionable. 

Finally, timetable-based sources of delays are relatively easily obtainable. It can be assumed that in 

the case of the railway system in the Netherlands, the slack time is fixed to 5% as mentioned earlier. 

Rolling stock characteristics are determined by the train number or the train series, track 

configuration by the location, and so is the bare driving time. Eventually, interactions among trains 
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due to the track assignment and availability of passing points are retrievable from the planned track 

assignment. Although the assigned track may differ in reality due to dispatching interventions, such 

changes are rather difficult to register in real time. 

As was mentioned earlier, the factors suitable for application in delay prediction in the context of 

our work should be observable in the whole network in an automated way, should be quantifiable 

and should comprise all relevant occurrences. Based on the discussion above, that can be achieved 

in the case of using passengers, weather conditions and timetable related delay sources. The most 

important features identified by Van den Bulk et al. (2018) were the current hour, minutes within 

that hour and the location. It was assumed that it might have to do for example with rush hours and 

sizes of stations. It therefore supports the suggestion made by Fioole (2018a) that it may be 

beneficial to include crowding at the platforms and/or on the trains in the model.  

Although a dataset containing information about weather conditions in the Netherlands was 

provided along with the other data available in the RAS competition (INFORMS, 2018a), the 

models by Hellsten et al. (2018) and Van den Bulk et al. (2018) did not contain any features 

reflecting weather conditions. Nabian et al. (2018) did include features reflecting the weather 

conditions, however, the features were discarded due to low feature importance score. Likely, that 

was because of the data’s low precision as weather conditions were described by daily averages of 

the country as a whole.  

Van den Bulk et al. (2018) attempted incorporating train interactions in one of the feature sets, 

defining the interactions as “if another train series passes through a location that the current train 

series also passes through” (Van den Bulk et al., 2018, p.7). The value of the feature was equal to 

delay of the train passing through the nearest shared location before the investigated train. If no 

location was shared with another train within 20 minutes, the feature was set to zero. A set of 

features associated with each train series would therefore contain an array of interactions with all 

other train series in both directions. Implementation of these features in XGBoost, however, did not 

show any significant improvement in comparison to other feature sets, and even lead to a decline 

in accuracy. That is explained by the authors as that XGBoost uses only a subset of features per 

tree, and the extensive number of features then causes inefficient branching. On the other hand, an 

application in Neural Networks showed slight improvement in predicting the direction of a delay 

change. Nevertheless, both models performed significantly worse in estimation of actual magnitude 

of the future delay. That is explained by the authors as that the exact delay of the interacting train 

does not directly affect delay of the succeeding train. Replacement of the exact delay in the feature 

set by binary coding, representing only existing interacting trains that have any delay, or any delay 

above a specified limit, is suggested. Nevertheless, the data regarding train interactions available 

for that study were limited and detection of train interactions were therefore imprecise. Most 

importantly, sharing a location, such as a station, does not necessarily mean also sharing a piece of 

track and therefore there might not be any interaction in reality.  Furthermore, different definition 

of the features also may have an effect on the impact of their implementation in the models. 

Potential influence among the trains on delays of others is therefore hardly retrievable from the 

original dataset. Hellsten et al. (2018) incorporated in their model an indicator of track segments 

defined as a connection between two consecutive events. Interpretation of the segments usage in 

the terms of the traffic density or train interactions was left upon the model. The influence of 

specifically those features unfortunately is not elaborated on. Nabian et al. (2018) defined a set of 

features reflecting a frequency of the historical events with leading train delays where the leading 

trains were identified as the trains that share at least one location with the train subject to the 

prediction within the schedule. The features however were neglected due to their low scoring in 

feature importance assessment. 

Research gap 
A brief insight into the available scientific literature along with the above introduced work of 

Hellsten et al. (2018), Nabian et al. (2018) and Van den Bulk et al. (2018) support or do not oppose 

an inclusion of passenger counts, weather conditions and train interactions as features in to the 
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selected model (XGBoost) for train delay prediction. Note that a more detailed overview of the 

literature is presented in Chapter 2. 

The most commonly used factors in delay prediction in railways are network- and timetable-based 

such as departure and arrival times, location identification, event type, train identification and 

similar (Hansen, Goverde, & Van Der Meer, 2010; Kecman, 2014; Kecman & Goverde, 2015a; 

Lessan, Fu, & Wen, 2019; Nair et al., 2019; Oneto et al., 2016; Wang & Work, 2015; Yaghini, 

Khoshraftar, & Seyedabadi, 2013). Similar attention has been paid to delay propagation and its 

prediction (Berger, Gebhardt, Müller-Hannemann, & Ostrowski, 2011; Corman & Kecman, 2018; 

Goverde, 2010; Peters, Emig, Jung, & Schmidt, 2006; Jianxin Yuan, 2007). However, in contrary 

to the lengthy list of publications considering the earlier factors in train delay prediction models, 

weather conditions were considered in much fewer models (Nair et al., 2019; Oneto et al., 2016) 

with a support of an observed correlation between weather conditions and train delays (Ling, Peng, 

Sun, Li, & Wang, 2018). Passenger counts and the effects of crowding attract a lot of attention 

among transport researchers. In general, especially dwell time (Kecman & Goverde, 2015b; San & 

Mohd Masirin, 2016) and psychological effects of crowding (T. Cox, Houdmont, & Griffiths, 2006; 

Tirachini, Hensher, & Rose, 2013) are in the spotlight. However, application of the passenger 

counts and crowding in the railway delay prediction is rather scarce (Albert, Kraus, Müller, & 

Schöbel, 2017), though some examples can be found in the bus transit domain  (M. Chen, Liu, Xia, 

& Chien, 2004; M. Chen, Yaw, Chien, & Liu, 2007). 

All the selected factors, passenger counts, weather and train interactions (in the meaning of delay 

propagation) were somehow implemented in some delay prediction model. However, none of the 

publications reviewed presented an attempt to include all the factors into one model. Furthermore, 

many types of models were presented in the reviewed publications such as stochastic models 

(Berger et al., 2011; Huisman & Boucherie, 2001; Yuan, Goverde, & Hansen, 2002), Bayesian 

networks (Corman & Kecman, 2018; Lessan et al., 2019), data mining techniques (Hansen et al., 

2010) or Neural network (Peters et al., 2006; Yaghini et al., 2013; Oneto et al., 2016). Decision 

trees based models appeared mainly in the form of a random forest model (Oneto et al., 2016; Nair 

et al., 2019). No application of gradient boosting model, such as XGBoost, was found in the context 

of train delay prediction, and especially not in a combination with all the factors affecting delays 

as mentioned above. Finally, most of the publications that were offering any comparison of multiple 

models focused on assessment of the differences in the models’ architecture rather than comparing 

an impact of various factors considered in the models. 

The consequent research gap was found in the following three aspects: 

• Application of a gradient boosting decision trees-based model, specifically XGBoost. 

• Inclusion of passenger counts data into a passenger trains delay prediction model. 

• Combination of timetable-based information, weather condition, passenger counts and train 

interactions for delay prediction, implementing each factor separately and in various 

combinations with the other factors. 

1.2. Research Objective and Research Question 
The objective of our research is to define and evaluate sound feature sets reflecting effects of 

passenger counts, weather conditions and train interactions on passenger trains delays, which are 

to be used along with features derived from data available in the RAS competition to forecast the 

passenger trains’ delays 20 minutes to the future. Effects of the individual features and their 

combinations are to be reflected upon. Note that the span of 20 minutes to the future refers to the 

last registration point within a 20-minutes time window since the last registration point. 

The model will be based on the conclusions drawn by Van den Bulk et al. (2018). Specifically, a 

decision trees based gradient boosting method XGBoost will be used. The research will be carried 

out in the context of the Dutch railway system, using relevant historical data. Performance of the 

forecast will be measured by defined key performance indicators and in context with the prediction 
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categories defined in the RAS competition. Criterion for performance measure is accuracy of delay 

predictions compared to the currently applied ‘Naïve forecast’ model and secondarily to work of 

Van den Bulk et al. (2018). 

Research question 
Resulting from the research objective, the research question is defined as follows. 

 
What is the performance of passenger trains’ delays forecast 20 minutes to the future 

if a machine learning model, built on previous research by NS and extended by 
passenger and weather data and offline identified and online updated train 

interactions, is used, and how do these factors contribute? 

 

Sub-questions 
To set a direction to reach the answer to the main research question, a set of sub-questions was 

defined. These questions provide a guidance through the main steps of our research: theory 

understanding, system analysis and data description, model development, and finally the results 

evaluation. Answers to these questions will close and summarize relevant chapters throughout the 

report. 

Table 4 Research sub-questions 

Theory 
1 Why and how should the defined factors be included in the delay prediction model? 

2 What are appropriate key performance indicators considering the model’s characteristics? 

System analysis  

& data 

3 How can/must the data representing the factors be modified to be used as features in the 

models expectedly maximizing their contribution to the model’s performance? 

4 Is there an observable relationship between the included factors and train delays? 

Modelling 
5 What are sound feature sets? 

6 What is a sound model structure including parameter tuning? 

Evaluation 

7 What is the performance of the feature sets relatively to each other and to the reference 

model? 

8 What is the importance of the features within the feature sets? 

9 What features/feature sets have the highest/lowest potential in delay prediction? 

10 What is the forecast potential of the highest performing feature set(s)? 

1.3. Research approach and document structure 
The document is structured in line with the research approach. Chapter 2 Literature research 

provides a broader theoretical background necessary for better understanding. That includes a 

review of literature concerning delays in passenger railways along with an overview of the recent 

research in the field of delay prediction in passenger railways. Next, the effects of passenger 

crowding and weather conditions, complemented by the problem of delay propagation due to train 

interactions are presented. Finally the first sub-question is answered.  

The following Chapter 3 Method then continues in a theoretical manner, providing necessary 

understanding of the method applied. Furthermore, key performance indicators are defined in 

accordance with the method applied, answering the sub-question 2. 

Chapter 4 Data gives a detailed description of the data used in our research. The sources of the data 

are mentioned, so is the original data structure and what features are retrieved from the data. 

Description of the data processing that was carried out to clean the data and to turn them into a 
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convenient form is available in the Appendix A. At the end of Chapter 4, a brief data analysis is 

presented, and finally, a summary and answers to the sub-questions 3 and 4 are given.  

In the following step, in Chapter 5 Model development and tuning, the complete feature sets are 

introduced along with a scheme to test and compare prediction performance of their various 

combinations. Furthermore, the design of the model’s structure is presented. That includes the 

model’s configuration and an algorithm of parameters tuning. In the summary of the chapter, the 

sub-questions 5 and 6 are answered.  

In Chapter 6 Research results, we provide the consequent results. The presentation of results is 

structured according to the various key performance indicators defined in Section 3.5.1. Results of 

the numerous feature sets are compared, and the best performing feature set is selected and analyzed 

in more detail. The results provide answers to the sub-questions 7 to 10. 

Finally, discussion of the results and a reflection of the research in a more critical and broader point 

of view is provided in Chapter 7 Discussion followed by the final Chapter 8 Conclusion. The 

research is summarized, main findings are mentioned, and final conclusions are drawn. Eventually, 

recommendations for further research are proposed and the practical implications of our research 

outlined. 
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2. Literature research  
In the previous chapter, we explained the motivation for our research in a practical context (as a 

continuation of the previous research initiated by NS) and by discovering a scientific research gap. 

That resulted in the definition of a research question and the auxiliary sub-questions. In the literature 

research, we want to expand the motivation for the inclusion of the selected factors and to deepen 

the understanding of the delay prediction problem in a broader context. We begin by clarifying the 

term ‘delay’ along with its role in the passenger railway system. Next, we explore where the delays 

may originate from in the system. That is followed by an overview of the methods that have been 

applied to the delay prediction problem in railways, from which we seek an inspiration for our work 

with respect to the method we apply. Finally, we zoom in on the factors that we decided to include 

in our delay prediction model to research their role and behavior in the railway system. 

2.1. Delays in passenger railway 
The Cambridge Dictionary defines the word ‘delay’ either as a verb: “to make something happen 

at a later time than originally planned or expected” or “to cause someone or something to be slow 

or late”, or as a noun: “the situation in which you have to wait longer than expected for something 

to happen, or the time that you have to wait” (Cambridge University Press, 2019a). Translation of 

the first two definitions to the railway context could be written as ‘a train activity taking place at a 

later time than originally planned or expected’ and ‘causing passengers to be slow or late’. The 

second definition is clear and closely relates to the definition of delay as a noun. However, the first 

definition provides space for interpretation of a delay thanks to the formulation: “at a later time 

than originally planned or expected.”. 

When assessing service qualities based on delays, the relevant measure is punctuality. Its definition 

being “the fact of arriving, … at the expected or correct time and not late “ (Cambridge University 

Press, 2019b) is obviously largely similar to the definition of a delay. The next related measure is 

reliability. Depending on the context, its definition and scope may vary. In the framework of our 

work, connectivity and travel time reliability as mentioned by Bell & Iida (1997) are the most 

relevant. Connected to the definition of reliability of a transport network as “the probability that 

one or more of its links does not fail to function” (Husdal, 2004, p. 188), we can understand 

reliability in the context of our work as the probability that passenger train connections do not fail 

to provide service according to their spatial and temporal planning. Hence, in sake of reliability, 

the train connections do not fail to ride without delays and changes in the routes. Finally, as 

reliability is one of the most important qualities in passenger railway operations and lies at the base 

layer of the Pyramid of customer needs together with safety (Van Hagen & De Bruyn, 2012), the 

importance of its maximization is apparent. 

A question may be, whether delay prediction has the potential to address reliability. Supposedly a 

delay is known and communicated adequately in advance to accommodate necessary changes in 

personal or operational planning, the meaning of punctuality might slightly change reflecting on 

the word ‘expected’ in the definitions of punctuality and delay. Clearly, frequent or extensive delays 

would not lead to a reputation of a reliable service despite an accurate prediction and therefore there 

is a limit to which a delay prediction can improve passengers’ experience. 

First, criteria for delay acceptance can be the delay risk and the delay length, and its value in the 

eyes of passengers. This topic was the subject of work for example by Börjesson and Eliasson 

(2011) who conducted two stated choice surveys providing the participants with information about 

the expected travel time, travel cost, risk of delay and possible delay length. In the second survey, 

the variable of beforehand information about the length of a delay was added. Furthermore, the 

participants could choose a preferred improvement related either to the fare, delay length or delay 

https://dictionary.cambridge.org/dictionary/english/fact
https://dictionary.cambridge.org/dictionary/english/arrive
https://dictionary.cambridge.org/dictionary/english/expected
https://dictionary.cambridge.org/dictionary/english/correct
https://dictionary.cambridge.org/dictionary/english/time
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risk, beforehand information or possible compensation. Results of the research showed that the 

value a delay does not increase linearly with the delay risk neither, the delay length. Instead, the 

increase of the value of a delay is rather slower and therefore, to some extent, the existence of a 

delay is essentially more distressing than its length. Unfortunately for our work, the authors did not 

elaborate further on the effect of the availability of a beforehand information about a delay, neither 

the preferred improvements.  

Corresponding to availability of up to date information about delays, it is the unpredictability of 

public transit services that can be a significant source of stress and therefore can worsen its users’ 

experience. Although public transit users reported lower stress levels due to delays than car users 

due to congestions according to a research by Gatersleben & Uzzell (2007), the perceived 

(un)predictability and resulting stress in a daily commute is a proven issue (Evans, Wener, & 

Phillips, 2002). The stress resulting from unpredictability of the services relates to a lack of control 

over the journey’s characteristics (Sposato, Röderer, & Cervinka, 2012). And importantly, the 

longer the journey, the more unpredictable it is perceived to be in the eyes of the passengers 

(Gudden, 2014). 

Finally, besides dissatisfaction or stress, delays cause loss to the passengers which may be 

monetarized. Using the Netherlands as an example, a governmental institute of the Netherlands 

named ‘Kennisinstituut voor mobiliteitsbeleid’ (translated as Knowledge institute for mobility) 

revealed in a publication ‘Mobiliteitsbeeld 2017’ (translated as Mobility Screening 2017) that 

approximately 685 million passenger-delay-minutes were accumulated by the NS passengers in the 

year 2016. That multiplied by an average value of time of 10.24 Euro/hour, as used in the 

publication, adds up to over 140 million Euro loss caused to NS passengers in the respective year 

(Mobiliteitsbeeld 2017, 2017). Value of time, and in the context of public transport, the value of 

travel time, is a fundamental research topic in the transport domain. Nonetheless, it is not only the 

total travel time that matters to the passengers, but importantly it is also the (un-)reliability of the 

expected travel time that comes with it. Bates, Polak, Jones, & Cook (2001) presented applications 

of utility theory proving the importance of public transport service punctuality and reliability to the 

passengers, which was in line with conclusions of Li, Hensher, & Rose (2010) who conducted a 

review of numerous studies relevant to passenger travel time reliability, considering car, bus and 

rail modes, and found that travel time reliability indeed is strongly significant in the decision-

making process of passengers. 

In summary, punctuality and resulting reliability is an important factor for users of public transit 

services. It is not the delay length that is the most important aspect, however, it is the delay presence 

and its risk itself. Furthermore, not only that delays cause disruptions in individuals’ schedules and 

cause time and monetary loss. It is also an existence of the delay risk, which is a significant stress 

source, that is considered by the passengers while making decision what mode to take. Therefore, 

addressing the unpredictability of the service in terms of delay prediction might have a promising 

potential to increase comfort of the passengers in the meaning of decreased stress levels. 

Furthermore, prior knowledge of delays would give the opportunity to the passengers to adjust their 

schedules and travel plans and thus minimize their loss. Finally, the importance of developing an 

understanding of delays and improving their predictions is even larger if the operator’s point of 

view is introduced. That is because there is a wide range of applications in railway operations such 

as real-time control for delay propagation reduction and connection management, passenger 

information, and estimation of transfers feasibility, and rolling stock and crew circulation 

optimization (Kecman, Corman, & Meng, 2015). 

2.2. Sources of delays in passenger railway 
Although delays may emerge for a large number of reasons, there is a major distinction that should 

be made before naming any. According to that distinction, delays are generally categorized as either 

primary or secondary, depending where they originated. Huisman & Boucherie (2001) define a 

primary delay as a delay that arises due to external factors while secondary delays are induced by 

delay propagation from other trains that have already been delayed. A more elaborate definition of 
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a primary delay can be found in a Delay Attribution Guide issued by the Delay Attribution Board 

in the United Kingdom of Great Britain and Northern Ireland: “A Primary Delay is a delay to a 

train that results from an Incident that directly delays the train concerned, irrespective of whether 

the train concerned was running to its schedule (schedule includes booked platform or line) at the 

time the incident occurred, i.e. the delay is not the result of another delay to the same or other 

train.” (Delay Attribution Board, 2017, para. 2.7.2.). In some literature, the terms may be alternated 

by ‘exogenous’ and ‘reactionary’ delays (Gibson, Cooper, & Ball, 2002) or ‘exogenous’ and 

‘knock-on’ delays (Carey, 1999) instead of primary and secondary delays, respectively. Similarly, 

the Delay Attribution Board refers to the secondary delays as ‘reactionary’ delays. Their definition 

of a reactionary (secondary) delay is: “A Reactionary Delay is a delay to a train that results from 

an incident that indirectly delays the train concerned, i.e. the delay is the result of a prior delay to 

the same or any other train” (Delay Attribution Board, 2017, para. 2.7.3.). Additionally, a 

distinction can be made between secondary delays caused by bunching, and by late arrival to a 

terminal station and consecutive propagation of a delay onto the following trip of the same vehicle.  

Murray & Grubesic (2007) further differentiates scheduled and unscheduled delays. Many other 

categorizations could be found, nevertheless, distinction of primary and secondary delays is the 

most important for our research. 

Concerning the primary delay sources, Huisman, & Boucherie mention, for example, weather 

conditions or unusual passenger volumes, which can be complemented by examples given by 

Daamen et al. (2009) who point out technical failures on infrastructure or rolling stock. Mannhardt 

& Landmark (2019) further mention an important factor of human behavior and decision making 

in railway operations, such as decisions made by dispatchers or guards, or drivers’ behavior. 

Although all literature sources, concerning problems related to delays in railway, name some delay 

sources, those mostly are only examples instead of complete and exhaustive lists. Naturally, one 

cannot anticipate all possible scenarios. Breaking down the railway system into functional segments 

and defining possible failures and events leading to delays within those segments is often used 

instead. An example has been provided in Section 1.1.2 in Table 3 where we presented delay 

categorization by Lee, Yen, & Chou (2016) who distinguishes delays in passenger railway as 

station-related (dispatching, service preparation, boarding and alighting of passengers), train-

related (rolling stock failure, weather conditions, accidents, facility failure), operations-related 

(signaling system failure, track or facilities maintenance) and timetable-related (signaling system 

failure, track or facilities maintenance). Following categorization of factors used for delay 

prediction in a model developed by Nair et al. (2019), we can distinguish delay influencing factors 

as train-specific, infrastructure-related, network-related, train interactions and external factors. 

Scientific articles mostly list only examples of possible delay causes in railway instead of structured 

and exhaustive enumerations of virtually all possible causes. For uniform delay source recording, 

International Union of Railways (UIC) provides a list of standardized delay sources which can be 

assumed to be highly exhaustive, despite that each category also includes a code for ‘other source’. 

The list of categories and the enumerated causes defined by UIC were retrieved from a website of 

Telematics Applications for Passenger Services Technical Specifications for Interoperability (TAP-

TSI, 2019). The categories and relevant delay sources are listed as follows: 

Operational planning, Management 

Timetable compilation; Formation of train if managed by Infrastructure Manager; 
Mistakes in Operational procedures; Wrong application of Priority rules; Staff 

Infrastructure installations 

Signaling installations; Signaling installations at level crossings; Telecommunication 

installations; Power supply equipment; Track; Structures; Staff 

Civil engineering causes 

Planned construction work; Irregularities in execution of construction work; Speed 

restriction due to defective track 

Causes of other Infrastructure Manager (IM) 

Delay caused by next IM; Delay caused by previous IM 
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Commercial causes 

Exceeding the stop time; Request of the Railway Undertakings (RU); Loading operations; 

Loading irregularities; Commercial preparation of train; Staff 

Rolling stock 

Roster planning / re-rostering; Formation of trains by Railway undertaking; Problems 

affecting coaches (Passenger transport); Problems affecting wagons (Freight transport); 

Problems affecting power cars, locomotives and railcars; Staff 

Causes of other RU 

Delay caused by next RU; Delay caused by previous RU 

External causes 

Strike; Administrative formalities; Outside influence; Effects of weather and natural 
causes; Delay caused by external reasons on the next network 

Secondary causes 

Dangerous incidents, accidents and hazards; Track occupation caused by the lateness of 

the same train; Track occupation caused by the lateness of another train; Turn-round; 

Connection                

Such classification is useful for developing an understanding of the system and identification of 

possible delay sources for their prevention. Many of the sources may be prevented, for example by 

maintenance (such as technical failures), but remain to be difficult to anticipate, although there is 

plenty of research dedicated to those problems. Also, serious accidents cannot be anticipated, yet 

often have an enormous impact on the network. Such occurrences cannot be used for delay 

prediction until they happen and cause a disruption in the network. Only secondary delays due to 

these events therefore can be later forecasted, possibly with consideration of the delay source 

character which implies a certain reaction in the system.  

Due to the nature of railway, where the vehicles are strictly bound to the physical network, their 

position can be determined relatively precisely and the travel behavior is predictable, propagation 

of known delays is a relatively straightforward problem, although still burdened by a large extent 

of stochasticity. On the other hand, anticipation of a primary delay source and its impact is generally 

more difficult. If primary delays were simple to be predicted, perhaps they would be prevented. 

Prior identification of the specific delay sources is as difficult task. Instead, the listed delay sources 

can be used for detection of parts of the railway system that attention should be paid to and where 

warning signals should be searched for. Large amount of research has been carried out to understand 

relationships between delays and certain definable characteristics of the system, the network or 

exogenous elements. As an example of such factors, we can list the actual train position or realized 

running times (Cerreto, Nielsen, Nielsen, & Harrod, 2018; Corman & Kecman, 2018), train 

category, scheduled arrival time, percent of journey completed, distance traveled, time traveled, 

headway (Marković, Milinković, Tikhonov, & Schonfeld, 2015), time of the day (peak/off- peak), 

day of the week, rolling stock (Cerreto et al., 2018), traffic volume, mean speed among trains, route 

length, share of passenger trains exceeding certain length, traffic heterogeneity, interstation distance 

(Lindfeldt, 2010) and more. Although those factors are not directly delay sources, they help to 

identify locations, times, conditions etc., associated with a certain delay pattern. Uncovering such 

patterns then can be used for delay prediction.  

2.3. Passenger railway delay prediction: Previous work 
A large amount of research have been devoted to developing the understanding of delay behavior 

in the railway system. Naturally, all researchers chose a slightly different approach or a point of 

view. Selecting classifications relevant to our work, the approaches could be generally classified as 

descriptive or predictive, microscopic (on a network element or individual train level) or 

macroscopic (on a network level) and focused on primary or secondary delays. Reviewing the 

literature in a chronological order, descriptive methods dominated in the farther past while research 

of predictive methods begin to intensify in the last decade or two. The other classifications are 

represented relatively equal in the literature, but mostly with emphasis on only one category of each 
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class (i.e. either microscopic or macroscopic combined with focus on only primary or only 

secondary delays). 

Presenting the reviewed literature in a chronological order and beginning in a relatively distant past, 

it was mainly statistical and analytical methods that were applied to understand and possibly predict 

delay development in railway. Carey & Kwieciński (1994) put a link trip time into a context with 

a headway between consecutive trains on that link and developed a stochastic approximation 

method to estimate knock-on delays which they eventually tested and calibrated by a stochastic 

simulation of interactions among the trains. Applied in a network with 2-aspect and 3-aspect 

signaling, they found that the trip time of the following train across a link can be approximated as 

the maximum out of either the free running time of the following train, or the free running time of 

the leading train reduced by the departure headway between the two trains conformed by an 

adjustment constant which is optimized by a regression method. 

Moving forward in time, Huisman & Boucherie (2001) developed an analytical queue-based model 

which returns a prediction of knock-on delays caused by differences in speed of trains using the 

same infrastructure segment. Their aim is to capture effects of operating different services as there 

is a risk of for example a faster train being caught behind a slower one. They tested and confirmed 

an effect of the number of trains using an infrastructure link (higher number of trains leading to a 

higher probability of delay propagation), and an effect of heterogeneity of the services (higher 

number of regional slower trains leads to an increased probability of increased travel times of the 

faster trains). Those scenarios considered the free running times to be deterministic. In another 

scenario, they introduced a random element representing stochastic nature of delays induced by 

primary delays such as prolonged dwell times, which resulted in significant propagation of the 

primary delays from the regional trains. 

Yuan et al. (2002) presents a stochastic model using Monte Carlo sampling method to predict a 

distribution of departure delays. The prediction, which is done for already delayed trains only, is 

based on distributions of arrival and dwell delays: exponential distribution and normal distribution 

respectively. Later on, Yuan (2007) published work on how to deal with stochastic dependency in 

train delay and delay propagation modelling, where he defines categories of the stochastic 

dependency of train delays. Those are either between the arrival delay, process delay and the 

departure delay at a certain location; between the arrival delay and the process delay; or between 

previously endured knock-on delay and the arrival delay. Based on the defined dependencies, a 

probabilistic model was built to assess the quality of the resulting arrival and departure delay 

prediction.  

An introduction of machine learning approach in public transport delay prediction was found in an 

article by Peters et al. (2006) who presented a rule-based system modelling knock-on effects 

consisting of the present delay information, dependency on other trains and track conflicts, and 

compared the results to predictions made by a neural network model built for the same task. The 

neural network model was built on known delay patterns where each neuron represented a delay of 

a certain train at a specific location. The results of the neural network model predicting delay of a 

particular train were concluded to outperform the rule-based system. Nevertheless, there is a 

sensible skepticism towards machine learning methods applied in this field and the authors 

recommend an extensive further research in this direction. Another application of neural network 

model in the delay prediction problem was by Yaghini et al. (2013). Their research focused on 

comparison of a variety of the model’s architecture. The factors used for the prediction were an 

identification of an origin-destination pair, an identification of a corridor, and time describing 

parameters including day, month and year. The authors claim they reach high accuracy in the 

predictions made; however, it is unfortunately not clear how the accuracy was measured. 

Besides a method of delay recognition, Hansen et al. (2010) present a model forecasting running 

times towards the upcoming station. They use topological description of the network, the train’s 

present position, known dispatching decisions and a route conflict identification tool to predict 

running times and potential conflicts among trains. In a statistical analysis, the authors found a 
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dependency between the present delay, and the running and dwell times. Similarly, there was a 

dependency found between the running and dwell times, and the period of the day.  

In the same year, Goverde (2010) published an article about a timed event graph based algorithm 

to forecast delay propagation caused by an initial primary delay through the whole railway network. 

Delay propagation in the whole network was also a subject of work Berger et al. (2011). Their  

stochastic model of delay propagation is applicable for any public transport network and provides 

prediction of arrival and departure times. The main factors applied in the model are waiting policies, 

driving time profiles and buffer times. 

A part of research by Kecman (2014) was dedicated to development of a data-driven model to 

predict event times in real-time in the whole network using a knowledge of the current train 

positions, actual delays, and the realized running and dwell times. That is according to Kecman a 

novel approach as he mentions that most of the scientific research preceding his work is focused on 

static forecasts that do not consider the present state of the network, i.e. the traffic conditions. An 

interesting element of the research is an online corrective feature that monitors the prediction errors 

and adjusts the predictions if large deviations are identified. The author, accompanied by other 

researchers (Kecman et al., 2015), published also an article about a Markov chain-based method of 

modeling probability distribution of an arrival delay. Goal of their research was to reflect the 

stochastic nature of delay development along with the prediction time horizon and the on-line 

collected and updated data.  

A data driven method of delay prediction was proposed by Wang & Work (2015) who developed 

two regression-based models. The first model uses historical data collected on the route to predict 

a train delay in the upcoming stations before the train begins its trip. The second model uses data 

collected during the current trip and delay information of trains using the same part of the network. 

The models were tested on a case study and further compared to a timetable-based prediction. The 

first model lead to an improvement of RMSE of the delay estimation by 16% and the second model 

by 60%. The work therefore shows a significant improvement when real-time data are included.  

So far, the majority of the presented articles proposed methods working with data related to train 

movements and the network state only. Work of Oneto et al. (2016, 2017, 2018) is largely 

innovative as they include a new exogenous factor: weather. Their data-driven approach to train 

delay prediction was developed over the course of three years. They begin with a comparison of 

multivariate regression, kernel methods, ensemble methods and feed-forward neural networks. 

Their research then continues by exploiting the multivariate regression model and shallow and deep 

extreme machine learning. Each of the models is built on historical event realization data 

complemented by exogenous weather data. In the latest work, the authors advanced with their 

shallow and deep extreme machine learning method, however, they left out the weather factor. The 

authors emphasize potential of all the delay prediction methods they proposed, however, following 

their research development, they advanced the furthest with the shallow and deep extreme machine 

learning method. In the future work, they plan to reintroduce weather data and propose to include 

also passenger flow or rolling stock conditions. 

Some of the most recently published studies about train delay prediction proposed the use of 

Bayesian networks. Corman & Kecman (2018) presented a model for dynamic delay propagation 

forecast using historical and on-line registered realization data, defined dependency among trains 

using the same network segments, and train dependency due to guaranteed passenger transfers. 

Lessan et al. (2019) then propose three variations of Bayesian networks model which they use for 

train delay forecast. They conclude that the best performing model is a hybrid Bayesian networks 

model enriched by expertise of involved parties.  
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Table 5 Literature review: Delay prediction in railway 

Reference Method applied Main focus Main factors considered 

Carey & Kwieciński (1994) Stochastic approximation Delay propagation approximation Free running link trip times of two consecutive trains, departure headway 

Huisman & Boucherie (2001) Queuing principle based stochastic model Delay propagation prediction; Dependence between consecutive 

arrival, interarrival and service times 

Running time distributions 

Yuan et al. (2002) Stochastic model Delay propagation in stations; 

forecast of departure delay distribution 

Distributions of late arrival delays and dwell delays 

Peters, Emig, Jung, & Schmidt  

(2006) 

Neural network, 

Rule-based deterministic system 

Delay predictions for real-time delay monitoring 

 

Train’s own delay, Dependency on other trains, Track conflict 

Yuan (2007) Probabilistic model Delay propagation in stations prediction Distribution of arrival times at a station, running times, clearance times on the inbound route, already 

suffered knock-on delays and arrival delays 

Hansen et al. (2010) Data mining Delay recognition and classification; 

delay prediction towards the next station 

Track occupation 

Goverde (2010) Discrete algebra, Zero-order dynamics Delay propagation computation Timed event graph of a scheduled railway system 

Berger, Gebhardt, Müller-

Hannemann, & Ostrowski (2011) 

Stochastic model Delay propagation prediction; 

Departure and arrival events prediction in PT 

Waiting policies, driving time profiles, departure time, buffer times, train category, track conditions 

Yaghini et al. (2013) Neural Network Comparison varying model architecture and input definition Corridor, Day, Month, Year, O-D pair 

Kecman 

(2014) 

Graph based model  Monitoring and traffic state prediction, Rescheduling models for 

network-wide traffic control 

Log files 

Kecman et al. (2015) Markov stochastic process Delay uncertainty; 

Delay probability distribution prediction 

Arrival and departure events; Current delay 

Wang & Work (2015) Regression Using historical and real time information Station code, Scheduled and Actual arrival and departure day and time 

Oneto et al. (2016) Kernel Regularized Least Squares; Random 

Forests; Neural networks 

Time series forecast problem; train movements represented as 

events in time 

Date, Train ID, Checkpoint ID, Checkpoint Name, Arrival Time, Arrival Delay, Departure Time, 

Departure Delay and Event Type, Forecasted weather (temperature, relative humidity, wind direction, 

wind speed, precipitation, pressure, solar radiation) 

Oneto et al. (2017) Deep and Shallow Extreme Learning Machines Dynamic train 

delay prediction system 

Traffic management data and weather condition data 

Oneto et al. (2018) Shallow and Deep Extreme Learning Machines Data-driven Train Delay Prediction System for large-scale railway 
networks 

Date, Train ID, Location, Event type, Day of the week, binary holiday indication, dwell times, running 
times, dwell times and the running times for all the other trains sharing an infrastructure section during 

the day 

Corman & Kecman (2018) Bayesian networks Delay propagation prediction; 

Time dynamics; Probability distributions of event delays 

Historical traffic realization data 

Lessan et al. (2019) Bayesian networks Comparison of different delay prediction model schemes Operation data (departure and arrival events) 

Nair et al. 

(2019) 

Ensemble of random forest, kernel regression 

and a mesoscopic simulation 

Nationwide delay forecast Network traffic states, weather condition, work zone information; Train specific dynamics; Travel and 

dwell time variation, track occupation conflicts, train connections and rolling stock rotations 
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Finally, a recent article by Nair et al. (2019) presents an ensemble method for network-wide train 

delay prediction. The method consists of three models. The first model is a random forest model 

and its purpose is to incorporate network traffic states (e.g. conflicts, present headways, weather or 

track maintenance). The next model, kernel regression, integrates train-specific dynamics. The last 

model is a simulation model which accounts for fluctuations of dwell and travel time, track 

occupation conflicts train connections and rolling stock rotations. 

Train delay prediction and delay propagation prediction have largely evolved  in the past. A shift 

towards data-driven approaches is apparent in the last years. The most recent studies applied neural 

networks, Bayesian networks, shallow and deep extreme machine learning, random forest or 

ensemble methods. Despite the variety of methods applied, the factors used for the predictions were 

rather repetitive: timetable characteristics (e.g. buffer time), train trip characteristics (e.g. train 

event times, travel and dwell times, present delay), train interdependencies (e.g. track occupation, 

headways, train connections) or network characteristics (e.g. location). Besides those, some other 

employed factors were temporal identification, origin-destination (O-D) information, rolling stock 

characteristics or track maintenance information.  All directly related to the railway system and its 

operations. Only few methods employed any exogenous factors such as weather data. In addition, 

the earlier studies worked mostly with historical data, their analysis and the factors distributions, 

while in the recent studies, there is a shift towards usage of on-line registered data. From timetable 

quality assessment, delay predictions therefore advanced to on-line monitoring, dispatching support 

tools and communicating up-to-date information to the passengers. 

2.4. Selected factors for delay prediction 
Three factors that shall be included in our model were defined and argued in the previous chapter, 

Sections 1.1.2 and 1.2. Those are factors reflecting effects of passenger crowding, weather 

conditions and train interactions. Argumentation why the factors were selected focused mainly on 

a research gap. In the following paragraphs, we deliberate their relationship to and role in the 

railway system and train delay development. 

2.4.1. Passenger crowding 
Passengers are evidently the core element of passenger railway operations. The system can be 

assumed to be designed to accommodate their needs and expectations as well as possible. However, 

passengers, being users of the system, do not optimize their behavior with respect to the system’s 

needs. In the time of an interactions between them and the system, they can therefore cause 

deviations from the system’s optimal behavior. In the context of our work, the main interaction 

time is when passengers board and alight from a train which takes place during the train’s dwell 

time. In scheduled train operations, the dwell time at each location is predetermined, possibly with 

some extra time to mitigate the dwell time deviations to some extent.  

The major determinant of length of the dwell time was argued by San & Mohd Masirin (2016) to 

be passengers volume. Next, the dwell time also depends on whether there is a mixed flow of 

boarding and alighting passengers, the number of passengers standing inside the vehicle, or whether 

there are passengers unfamiliar with the location, impaired passengers or passengers traveling with 

luggage. Next to passengers characteristics, the stations characteristics also have an effect on the 

dwell time. Those may be a width of the platform, capacity and location of the stairs, presence of 

lifts or escalators etc.. Similar factors influencing dwell time were found also by Cornet et al. (2019) 

who developed a data-driven approach to estimate the impact of passengers volume on the dwell 

time and to determine the minimum dwell time defined as “the shortest amount of time a train is 

required to dwell in station for the alighting and boarding process to be able to complete (including 

door opening and closing)” (Cornet et al., 2019, p. 350) which is proposed to be used, for example, 

for network capacity assessment. They claim that boarding generally takes more time than alighting 

due to the necessity to climb up a few stairs.  
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Significance of the role passenger counts play in delay development is proven as well, for example 

by research of Cerreto et al. (2018), who claims that considerably high or low numbers of 

passengers boarding or alighting a train can increase and, respectively to some extent, decrease 

delays. Similarly, research by Olsson & Haugland (2004) proved there is a correlation between 

punctuality of departures and arrivals, and passenger counts and occupancy ratio. Effects of 

passenger crowding were also studied for example by Jaiswal, Bunker, & Ferreira (2009) in the 

context of busway operations. Increased passenger crowding was proven to increase the interaction 

time between the passengers and the bus at the station and therefore led to increased dwell time and 

eventually delay development. Next, M. Chen, Liu, Xia, & Chien (2004) proposed a method using 

Automatic Passenger Counter (APC) data to estimate arrival times of a bus to the next station. The 

method they developed consists of a Neural Network model to forecast the travel time between the 

stations, and a Kalman filter-based dynamic model to increase accuracy of the arrival time 

prediction based on the latest arrival information. The input to the first model contained 

identification of the time of the day, the day of the week, the weather conditions and the APC data, 

which included the numbers of arriving and departing numbers of passengers from and to each 

station. In another publication the researchers again proved the impact of a trip pattern, the day of 

the week, and time of day on the travel times in bus operations (M. Chen, Yaw, Chien, & Liu, 

2007). Furthermore, another factor influencing train delays development in stations was found in 

passengers’ behavior in the railway stations while transferring, volume of transferring passengers 

and their heterogeneity, and the time available for the transfers (Albert et al., 2017).  

Generally, despite the significance of the impact passengers have on delays in passenger railway, 

passengers volumes are often modelled only indirectly in delay prediction models. Such indirect 

incorporation is done for example by variations between weekdays or weekends, or peak and off-

peak hours (Oneto et al., 2017). However, Olsson & Haugland (2004) presented correlation found 

between departure punctuality in passenger railway and the number of passengers (the last available 

number of onboard passengers related to the highest number of passengers on the relevant train), 

showing significant decrease in punctuality with an increased number of passengers. They also 

observed correlation between punctuality and occupancy ratio (number of passengers divided by 

the number of seats on the train), although the correlation was weaker. If necessary data exists, is 

available and difficulties of retrieving passenger counts (such as privacy issues or uncertainty due 

to fare collection often located outside the vehicles) are overcome, inclusion of passenger counts 

into delay prediction models certainly has a high potential. On the other hand, absence of factors 

directly representing passenger counts in the state-of-the art train delay prediction models suggests 

presence of hard-to-overcome obstacles. 

2.4.2. Weather conditions 
Significant influence of weather conditions on delay development in railway operations was 

confirmed, for example by research of Oneto et al. (2016) and Ling, Peng, Sun, Li, & Wang (2018). 

Oneto et al. (2016) conducted research on train delay prediction in Italy including weather data and 

found significant improvements of delay predictions when weather information was introduced. 

Weather data were retrieved from the nearest weather stations and included historical data, current 

state and weather predictions in a desired time horizon including historical weather predictions. 

Correlation between train delay and its exposure to bad weather was also examined and proven by 

research applied in China, carried out by Ling et al. (2018).  Although this research focused on 

conditions relatively irrelevant to the climate in the Netherlands as the weather conditions 

considered were blizzard, heavy snow and heavy rain, which were proven to have an influence on 

train delay. Strong wind, which is more relevant for the Netherlands, was however rejected as it did 

not show any significant correlation with train delays. That is however in contradiction with 

findings of Xia, Van Ommeren, Rietveld, & Verhagen (2013) who researched the role of weather 

in punctuality and cancellation in railways in the Netherlands. They used weather measurement 

data from The Royal Netherlands Meteorological Institute (KNMI), a punctuality and cancellation 

dataset from the major train operator NS and a national infrastructure dataset identifying 

infrastructure failures obtained from the infrastructure operator ProRail. The conditions they 
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focused on were wind speed, temperature, precipitation and snow. For example, wind speed 

stronger than 26 m/s appeared to cause an increase in the number of disruptions by 27 %, although 

significant increase of the number of disruptions could be observed already from wind speeds of 19 

m/s and higher. Significant correlation was also found between presence of snow cover or presence 

of leaves (explanation how this information was obtained is missing in the article). A trend of an 

increased probability of a disruption compared to the measured temperature is observable in Figure 

2, showing a significant increase in the number of disruptions with extreme temperatures either 

below -3 °C or above 23 °C. Xia et al. also present correlation they found between the number of 

disruptions and observed punctuality, which they prove to be significant and negative. The retrieved 

effect of temperature on punctuality can be seen in Figure 3. Overall, they concluded that a 

significant correlation can be observed between the number of infrastructure disruptions or 

punctuality and wind speed, snow, precipitation, temperature and presence of leaves. To 

complement the conclusion of Xia et al., in the years 2002 – 2004, weather conditions caused 

between 4.4% and 4.7% railway infrastructure failures in the Netherlands (Daamen, Houben, 

Goverde, Hansen, & Weeda, 2006). 

 

 
Figure 2 Effect of temperature on daily infrastructure 
disruptions. Dotted line represents 95% confidence 

interval. (Xia et al., 2013, p. 100) 

 
Figure 3 Effect of temperature on punctuality. (Xia et al., 

2013, p. 101) 

Comparable results were obtained by Palmqvist, Olsson, & Hiselius (2017) who observed the 

effects of various factors influencing punctuality in passenger railway in Sweden. Among those 

factors, four weather conditions were considered: temperature, wind speed, snow depth and 

precipitation. Focusing on the variables possibly relevant in the context of the Netherlands, 

temperature between 0°C and -5°C lead to a decrease in punctuality (compared to an average 

punctuality) of approximately 7.5 %-points and a similar tendency was found in high temperatures 

above 23°C (decrease of punctuality by 5%-points) or above 27°C (decrease of punctuality by 26%-

points). They observed a decrease in punctuality by 9%-points when wind speed exceeding 23 m/s 

was registered, and by 2% with wind speeds above 10 m/s. The effects of precipitation on 

punctuality were measured in the means of an accumulated precipitation across the train’s journey 

which showed a decrease of punctuality by 1.8%-points when 30 mm or more precipitation was 

accumulated, and by 2.0%-points when more than 100 mm was accumulated. Although snow depth 

shows a significant effect on punctuality, the large difference between the climate in Sweden and 

in the Netherlands diminishes its relevance for our research. Nevertheless, snow and ice formations 

are proven to be critical conditions increasing vulnerability of the railway system in the Netherlands 

in the winter season and were therefore proposed to be anticipated when the average temperature 

drops below 0°C and relative air humidity exceeds 80% (Neves, 2017).  

In the context of delay sources, Lee et al. (2016) classify weather conditions as a train-related 

external factor, which is also how weather conditions were treated in the majority of the reviewed 

literature. However, it is important to acknowledge that weather conditions as a delay influencer 

are, to some extent, interconnected with passengers volumes, as weather conditions have an 

influence on mode choice and thus affect the number of passengers opting for railway (Cox et al., 
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2006; Gatersleben & Uzzell, 2007). Moreover, besides passengers volume, weather conditions 

influence length of the dwell time, as the boarding/alighting times are affected (Yazdani et al., 

2019). Therefore, classification of weather conditions as a purely train-related factor in passenger 

railway delay is not entirely exhaustive and the connection to passengers should not be forgotten. 

Finally, as an illustrative summary of the impact weather can have on railway operations, we share 

a quote from an Annual Report of the year 2018 published by NS: “Sometimes the weather throws 

a spanner in the works. On 18 January a strong storm resulted in the train traffic having to stop 

because the safety of passengers could no longer be guaranteed. Between April and August there 

were faults with the trains and the track due to the hot weather. … On the other hand, the usual 

autumn decrease in punctuality was limited last year.” (NV Nederlandse Spoorwegen, 2019) 

2.4.3. Train interaction: delay propagation 
A major limitation of railways is that, in general, the infrastructure does not allow passing other 

trains on intermediate links, such as between stations or other infrastructure parts, allowing to shift 

to another track. If a train does not get a movement authority due to the successive track being 

occupied by another, possibly delayed, train, the second train has to reduce its speed or brake 

completely to standstill. The unplanned deceleration and acceleration, and possibly the time of 

standstill, generate delay of which the length further depends on the trains’ characteristics and speed 

limits on the track segment. Although timetables are designed to avoid conflicting routes leading 

to train interactions and consecutive delay propagation, train running times and dwell times are of 

stochastic nature, therefore the realized train movements may differ from what is planned in the 

timetable (Goverde et al., 2008). For example Daamen et al. (2009) and Yuan (2007) further 

describe delays caused by trains being caught behind another train and delays caused by trains 

waiting for another to arrive at a station in case of ensured transfer connections.  

As the main factors influencing knock-on delays, Carey & Kwieciński (1994) point at the train 

control, signaling system, minimum headways between two consecutive trains and speed 

limitations of the trains. Huisman & Boucherie (2001) then emphasize on criticality of operations 

combining various train types such as regional, intercity, international or highspeed trains whose 

different travel speeds may contribute to forming knock-on delays when, for example, a faster train 

is caught behind a slower one. 

Several analytical models were developed to describe the dependencies among trains sharing 

infrastructure. As an example, Huisman & Boucherie (2001) developed a stochastic model based 

on a queuing principle which takes into consideration running time distributions and as an output 

describes the link between the consecutive arrival time, interarrival time and the service time. 

Recently, Harrod, Cerreto, & Nielsen (2019) proposed an analytical closed form formulation of 

aggregate delay where a supplement and buffer time are used as a variable to gain understanding 

of their role in delay and delay propagation reduction. Their findings yielded limited power of the 

buffer and supplement time in the task. On the other hand, distribution of buffer times was found 

to play a significant role in a delay propagation model based on Monte-Carlo simulation developed 

by Zieger, Weik, & Nießen (2018). 

A predictive model for delay propagation was presented, for example, by Yuan (2007) who 

proposed a probabilistic model to estimate knock-on delays of trains in stations and on links 

between consecutive stations considering distribution of arrival times at the stations, running times, 

clearance times on the inbound routes, already suffered knock-on delays and arrival delays. An 

interested reader may also refer to the Introduction of the paper by Yuan (2007) for an overview of 

earlier analytical stochastic models of delay propagation, which are depreciated by the author for 

only implicit consideration of knock-on delays through conflicting routes or for imprecise definition 

of block occupancy. Furthermore, Yuan also mentions possible use of microscopic tools for delay 

propagation analysis, which he however discourages due to excessive time demanded for their 

engagement and due to lower understanding resulting from their output. 
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Finally, Berger, Gebhardt, Müller-Hannemann, & Ostrowski (2011) presented a stochastic model 

based on event graph to forecast delay propagation. The strength of the model is in its online 

applicability in large scale public transit networks, allowing for dynamic updates as new delays are 

registered. Input to the model includes the departure time, train category, track conditions, driving 

profile but also waiting policies and the available buffer times. Real time stochastic delay 

propagation prediction was also proposed by Corman & Kecman (2018), who developed a model 

based on Bayesian networks.  

2.5. Summary 
In this chapter, we defined what a delay in railways is, what its role and consequences are and how 

delay prediction may help improve the service provided to passengers. A delay risk is a significant 

factor that passengers consider when opting for a transport mode, and furthermore, it is an additional 

stress-causing factor in an often already stressful environment. The delay risk relates to 

unpredictability and possibly unreliability, depending on characteristics of the specific system. And 

unpredictability is what can be addressed by delay prediction. The potential result of a high-quality 

delay prediction is then in increased comfort of the passengers by lowering induced stress level, 

consequently, improve reputation of the system and to give the passengers an opportunity to adjust 

their schedules and travel plans to minimize their loss caused by the delay. Above that, delay 

prediction also has a wide range of potential application also in railway operations. 

Next, we identified sources of delays in railways and explained their relation to delay prediction. 

The most frequently mentioned delay sources are passenger volumes, weather conditions, technical 

failures or human behavior. Certainly, delays can be induced by a wide range of causes which are 

in general difficult to foresee. Thus, instead of focusing on the specific delay causes, they are used 

to identify parts of the system prone to delay infliction and factors that may indicate expected delay 

behavior. Following the research objective, those factors were defined as passenger counts, weather 

conditions and train interactions.  

Literature relevant to those factors in connection to delay behavior and prediction was explored at 

the end of this chapter, after we presented an overview of past research efforts devoted to delay 

prediction. The goal of the section was to explore approaches that were used and factors that were 

included to gain inspiration for our work. The latest research largely inclines to usage of data-driven 

approaches with the goal of on-line application. The most recent studies applied neural networks, 

Bayesian networks, shallow and deep extreme machine learning, random forest or ensemble 

methods. Despite the variety of methods applied, the factors used for the predictions were rather 

repetitive, mostly related to the timetable characteristics, train trip characteristics, train 

interdependencies and network characteristics. Exogenous factors such as weather conditions 

appeared in a few reviewed articles, however, passenger volumes did not.  

Finally, the relevance of passenger counts, weather conditions and train interactions to delay 

development was inspected. The application of all the three factors in delay prediction was justified, 

which brings us to the first research sub-question. 

Research sub-question(s) to be answered: 

1. Why and how should the defined factors be included in the delay prediction model? 

The answer to the question should be divided into three parts, each focusing on the individual 

factors. First, passenger counts were proven to play a significant role in delay development as the 

number of passengers interacting with the train during dwell time is the major factor determining 

the dwell time length (besides its planned length). Extended dwell time then might induce a delay 

which may or may not disperse along the train’s route and propagate to further parts of the train’s 

trip or even to other trains. An important finding was extracted from work of Olsson & Haugland 

(2004), who found correlation between departure punctuality in passenger railway and the number 

of onboard passengers related to the highest number of passengers on the relevant train. This served 



 
22 

as an inspiration to us and thus scaling the number of passengers with respect to a certain 

representative number of passengers will be used in our work.  

Next, influence of weather conditions on delay development was investigated and found to be 

significant. Weather conditions, that are relevant to railways operations in the Netherlands and were 

explored in the reviewed articles, were mainly air temperature, wind speed, precipitation and 

presence or risk of snow. Referring to review of delay prediction approaches, Oneto et al. (2016, 

2017, 2018) included weather conditions in the form of weather forecast. Nevertheless, the weather 

conditions variables were in a form usual to representation of the weather conditions (e.g. 

temperature in °C) which is a form we opt for in our research.  

Finally, delay propagation due to train interactions is a subject of large amount of research and is 

somehow included in majority of delay prediction approaches. Due to the nature of railways, where 

the vehicles are bound to the limited infrastructure, they cannot easily deviate from their trajectory 

to bypass a potentially conflict situation. So-called secondary delays are therefore a crucial element 

of delay prediction when the prediction scope implies possible existence of any interactions, as is 

the case of our work. Inspiration for our research then was taken especially from work of Carey & 

Kwieciński (1994), who point at the role of the minimum headways between two consecutive trains, 

and Huisman & Boucherie (2001), who emphasize on criticality of operations combining various 

train types. 
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3. Method 
In this chapter, a theoretical introduction is given about the data used for our research, the method 

employed and finally the evaluation metrics defined and later applied. Similarly to the structure of 

our research approach, the generic overall scheme of the methodology can be described by the 

following steps: 

 

This scheme is further developed and concretized in the context of our problem’s nature as we apply 

a machine learning technique which can be regarded as a data mining problem. We drew inspiration 

for concretization from the general steps of the methodology from Maimon & Rokach (2005) who 

described a 9-steps research scheme called “Knowledge Discovery in Databases” which can be 

summarized as follow:  

1  Developing understanding of the application domain; Goals definition. 

2 Dataset creation: Data collection and integration into one dataset. 

3 Preprocessing and cleansing: Dealing with missing entries, noise and outliers. 

4 Data transformation: Feature selection, attribute transformation. 

5 Choosing the appropriate Data Mining task. 

6 Choosing the Data Mining algorithm. 

7 Employing  and tuning the Data Mining algorithm. 

8 Evaluation and interpretation of the results with respect to the goal. 

9 Using the discovered knowledge. 

The first step has been already completed in Chapter 1 and Chapter 2 when the problem was 

introduced, and relevant literature was reviewed. This chapter provides a theoretical background 

and preparation for steps 2-9. Section 3.1 provides a theoretical background for the steps 2, 3 and 

4. The 5th step, the data mining task selection, is theoretically explained in Section 3.2. Method 

selection (step 6) is presented in Section 3.3 and parameters tuning (step 7) explained in Section 3.4.  

Eventually, results evaluation and presentation used for answering the research question (steps 8 

and 9) is explained in Section 3.5.  

3.1. Data introduction 
There are three main data types used as input in machine learning: Numeric, Ordinal and Nominal. 

Numeric data are represented by an integer or float number and their magnitude represents the 

relative distance between each other (e.g. age). Ordinal data (also called categorical) represent an 

order but with no meaningful distance between the values (e.g. experience level: beginner, 

intermediate, expert). Nominal data then lack both, an order and distance (e.g. gender) (Rokach & 

Maimon, 2015). XGBoost is a powerful tool for many reasons including its ability to optimize 

usage of the hardware available. Important to our research is that it can handle all the three data 

types, that it is able to overcome missing data and that it does not require data normalization.  

Next, a variety of data structures is used in machine learning. The data structure we work with can 

be categorized as Vectors. A vector is a set of features with varying units and scales (Smola & 
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Vishwanathan, 2008). For example, in estimation of heart disease probability, the data vector could 

consist of age, gender, smoker identification and body mass index. All the data used in our work 

will be transformed into a form compatible with XGBoost, therefore into vectors associated with 

individual recorded train activities retrieved from the realization data. A set of characteristics 

captured by a vector will be referred to as a feature set and individual characteristics (i.e. vector 

elements) as features. The target variable, train delay, is then referred to as a label. 

Although, generally, it is possible to say that the more data available the better, a too large dataset 

used for training the model can lead to excessively long training time. Furthermore, it is desired to 

avoid overfitting. Splitting the dataset into smaller instances is therefore necessary. The dataset is 

split into three parts, so called training, testing and evaluation set. The first two sets are used for 

tuning of the model’s configuration and consecutively for the final model training. Eventually, the 

evaluation set is used for the model’s performance assessment. If only training and testing set is 

used, split of the data into the two instances is proposed to be done as approximately 2/3 and 1/3 of 

the full dataset (Machine Learning Mastery, 2019). Due to introduction of the final evaluation set, 

their size was reduced, yielding the dataset being split in proportions of 0.6, 0.2 and 0.2 of the full 

set in the respective order. Due to the size of the dataset, it can be assumed that the samples remain 

representative. 

Following the objective of our work a variety of feature sets is developed. All features are prepared 

before the models are developed. The feature sets are then created by drawing predefined sets of 

features from the full feature set, and they are designed in an attempt to cover a wide range of 

combinations of features constructed from the data. Some features are directly adapted from the 

data without major processing while some are designed to enhance a selected factor by applying 

feature engineering techniques described at relevant parts of Section 3.6 and inspired for example 

by Anderson, Antenucci, & Bittorf (2013), Au, (2018) or Nargesian, Samulowitz, Khurana, Khalil, 

& Turaga (2017). 

3.2. Task selection 
There are two main tasks to select from in machine learning: Classification (which can be further 

divided into binary and multi-class classification) and Regression (Zhou et al., 2017). As the names 

suggest, classification tasks predict affinity to a specific class from a portfolio of classes (e.g. train 

arrival time being classified as ‘on time’ or ‘late’). Regression tasks then estimate a specific value 

of the target variable (e.g. a delay of a train in minutes). In the RAS competition, the competitors 

were asked to provide prediction in both categories: jump and change being classification tasks and 

the actual delay prediction being a regression task. As all the categories refer to the same variable: 

a delay, regression task naturally provides the most information and the two other tasks are 

implicitly answered by predicting the actual delay. Motivation for distinguishing the three 

categories was in complexity of the prediction, binary classification of Jump being supposedly the 

least complex, followed by three-class classification of Change in delay, and finally regression 

being the most complex task. Aiming for the most precise delay prediction information, only the 

regression task was selected for our work. The defined classification tasks will be used as a 

supplementary evaluation tool as is explained in Section 3.5. However, when comparing our results 

to the reference models, it is important to keep in mind that derivation of the classification tasks 

from the results of the more complex regression potentially leads to poorer performance in the 

classification tasks. 

3.3. Method selection 
Our work largely extends on research by Van den Bulk et al. (2018) who proposed the use of 

machine learning based methods, which was in accordance with findings of Hellsten et al. (2018) 

and Nabian et al. (2018). The portfolio of methods resulting from the researches included tree-based 

models and neural networks. None of the results lead to a clear conclusion which of the machine 

learning branches has a higher potential if applied in our research. Neither is there a clear preference 
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arising from the literature study. However, only one model was to be selected for application in our 

work as our attention is on the effects of varying features rather than on performance of different 

models. Our preference inclined towards gradient boosting tree-based method for its easier 

interpretability and possible features importance analysis. Selection of this method was eventually 

supported by findings of Van der Hurk (2019) who continued on research of delay prediction 

initiated in the RAS competition (Hellsten et al., 2018) and achieved better results with tree-based 

model than with initially used neural networks model. Therefore, the final selection of the model 

that was used in our work is a decision-trees-based gradient boosting method XGBoost (T. Chen & 

Guestrin, 2016) as used by Van den Bulk et al. (2018).  

3.3.1. Gradient boosting for regression 
As described by Maimon & Rokach (2005), decision trees are predictive models belonging to a 

group of supervised learning methods. Supervised learning refers to methods exploring relations 

between input and target attributes, where the target attributes are known in the learning dataset and 

unknown when a prediction is supposed to be made. A model resulting from the learning process 

uncovers relationships hidden in the data structures which then benefit the prediction of unknown 

target attributes (Maimon & Rokach, 2005). In the case of this project, the target attribute, 

hereinafter referred to as a label, is a future train delay.  

Following the tree structure from the origin node through the splits, the terminal node with no more 

further splits, so called leaf, denotes the predicted label (Breiman, Friedman, Olshen, & Stone, 

1984). Figure 4 depicts an example structure of a (regression) tree with possible splits, where the 

filled circles represent leaves containing the possible prediction values. 

 

Figure 4 Decision tree structure example with splits on five features (F1 – F5). 

Understandably, a single tree can have only a limited number of splits and consequentially so is the 

number of leaves limited. That substantially limits achievable precision of the prediction. So-called 

ensemble methods split the search space into multiple smaller parts. A separate model is built in 

each of the sub-spaces and afterwards, the models are combined into a final model following some 

specified rules. Boosting is one of such methods, based on sequentially building multiple relatively 

weak learners and combining them into a strong predictor (Maimon & Rokach, 2005). Multiple 

algorithms were built on this principle. One of the first ones was AdaBoost (Schapire, 2013). The 

algorithm builds a sequence of weak learners of various weight, each learner being dependent on 

its predecessor. Each tree addition is called a boosting step. The trees built by AdaBoost are 

typically very small, even being only so-called stems consisting of only one split and two leaves. 

Their weight depends on their errors. The interdependency originates in the sequential manner of 

the trees being build, each compensating for the errors of the preceding tree. Gradient boosting 

described by Friedman (2001) works on a similar principle. The main difference to AdaBoost is 

that larger learners are being build, and weight of all the trees is equal. The total number of trees 

built is either predetermined or building of the trees continues until stopping criteria are met. As 

the name suggests, Extreme Gradient Boosting (XGBoost) algorithm brings gradient boosting even 

further. XGBoost was introduced by Chen & Guestrin (2016) and keeps being further developed 

by many developers (XGBoost Developers, 2016a). It is one of the most powerful algorithms in 
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machine learning domain (Chen & Guestrin, 2016) at the moment, thanks to its speed and accuracy 

it reaches even with problems of billions instances (XGBoost Developers, n.d.).  

The essential element of the method is a regularized learning objective. A brief introduction in the 

mathematical formulation was retrieved from T. Chen & Guestrin (2016) where we refer an 

interesting reader to learn further details of gradient boosting, split finding algorithms and the 

XGBoost algorithm. Input of n examples can be characterized as 𝒟 = {(𝑥𝑖, 𝑦𝑖)}(|𝒟| = 𝑛,  𝑥𝑖 ∈
ℝ𝑚, 𝑦𝑖 ∈ ℝ) , where xi is a vector of m features and yi is the corresponding label. Output of a tree 

ensemble consisting of K trees can then be defined as  

�̂�𝑖 = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖),      𝑓𝑘 = ℱ      (3.1)

𝐾

𝑘=1

 

where ℱ = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: ℝ𝑚 ⟶ 𝑇, 𝑤 ∈ ℝ𝑇) represents the regression trees’ space and where 

q is the tree’s structure and T is the number of leaves in the tree. Every fk then refers to a 

corresponding tree structure q and leaf weight w, respectively wi representing the value of an i-th 

leaf. Following the tree structure q, every example from the input data is classified into the leaves 

and the final prediction is computed by summation of the scores (given by w) from all the K trees. 

For learning of the functions set, the regularized objective, defined in (3.2), is minimized: 

ℒ(𝜙) = ∑ 𝑙(�̂�𝑖𝑦𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

       (3.2) 

where Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2. The l is a differentiable convex loss function that quantifies the 

difference between �̂�𝑖 (prediction) and 𝑦𝑖 (true value). Ω represents a penalty given due to the 

model’s complexity and the additional term addresses the risk of overfitting by smoothing the final 

learnt weights. Due to the nature of the equation (3.2) where functions are used as parameters, in 

every iteration, the objective is optimized in an additive fashion using a greedy algorithm to 

maximize the loss reduction on every additional split made. The exact definition of the loss 

reduction after a split and its derivation from the regularized objective can be found in Chapter 2 

of introduction of XGBoost by Chen & Guestrin (2016). 

3.4. Model Tuning  
Configuration of a model is a crucial element in maximization of the model’s performance in the 

context of speed and prediction accuracy. Configuration of  XGBoost is done through a variety of 

parameters which can be divided into three groups (XGBoost Developers, 2016b):  

General parameters define which ‘booster’, defined as a “model of XGBoost, that contains low level 

routines for training, prediction and evaluation” (XGBoost Developers, 2016c), is used, offering 

either a tree-based booster (used in our research) or a linear booster. 

Task parameters define the learning scheme. Two main parameters have to be set: the learning 

objective and the evaluation metrics. A variety of pre-defined learning objectives and evaluation 

metrics is offered in the XGBoost package (XGBoost Developers, 2016b). Nonetheless, selection 

of the parameters for our application was adopted from the XGBoost model developed by Van den 

Bulk et al. (2018). The learning objective used in our work thus is regression with squared loss and 

the evaluation metrics is a root mean squared error. 

Hyperparameters dependent on the selected booster and the following text refers to those used in a 

tree-based booster. Most hyperparameters that can be set in XGBoost deal with the risk of 

overfitting and can be divided into two groups: addressing model’s complexity (max_depth, 

min_child_weight and gamma) and increasing robustness towards noise (subsample, colsample_*) 

(He, 2015). The basic rule to avoid overfitting is to include only as few features as is the necessary 

minimum and to contemplate about complexity of the model (Galappaththi, 2015; Hawkins, 2004). 

Nevertheless, that is the task of the hyperparameters in XGBoost as they help to reduce the risk of 
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overfitting and to find a balance between bias and variance, and accuracy and simplicity (He, 2015). 

To make the model more conservative and therefore more robust towards overfitting, one can: set 

a lower value to the learning_rate (eta) which decreases new features’ weights at the end of each 

boosting step, controlling the boosting process; set a larger gamma value which causes a higher 

minimum loss reduction is required for an additional split on the tree’s leaf node; decrease the 

maximum allowed tree depth (max_depth) which also saves computational memory; set a larger 

min_child_weight which equals to the minimum number of observations falling into each node in 

the building process; set subsample to a value other than 1 as it selects a random subset of data of 

a proportion size equal to the value in each boosting iteration; increase lambda or alpha value which 

refer to penalty terms in L2 and L1 regularization respectively (a reader interested in details about 

L1 and L2 regularization may refer to Ng (2004) or Nagpal (2017) for a brief overview); and finally 

set a lower value to colsample_* hyperparameters especially when dealing with large numbers of 

features as these hyperparameters are a subset ratio of the columns used on the level of a tree 

(colsample_bytree), tree’s levels (colsample_bylevel) and nodes (colsample_bynode) (XGBoost 

Developers, 2016b). See the default values and possible ranges of the hyperparameters in Table 6. 

Table 6 XGBoost hyperparameters (XGBoost Developers, 2016c) 

Parameter Range 

Default 

value 

Selected for 

optimization 

max_depth [0, ∞] 3 yes 

learning_rate (eta) [0, 1] 0.1 yes 

n_estimators ℕ 100 yes 

min_child_weight [0, ∞] 1 yes 

gamma [0, ∞] 0 no 

subsample (0, 1] 1 yes 

colsample_bytree (0, 1] 1 yes 

alpha [0, ∞] 0 no 

colsample_bylevel (0, 1] 1 no 

colsample_bynode (0, 1] 1 no 

lambda [0, ∞] 1 no 

scale_pos_weight [0, ∞] 1 no 

 

Clearly, values of the hyperparameters have a significant impact on performance of the model and 

as the authors of the XGBoost algorithm say, there is no universal optimal set of the 

hyperparameters nor an algorithm to find it (He, 2015). Available scientific literature, with 

information about XGBoost hyperparameters tuning, is very limited and most available sources are 

rather online articles shared in a machine learning community. To list a few examples, there are 

guidelines for manual hyperparameters tuning (Jain, 2016), randomized or full grid search (Kaggle 

Participant, 2017), or more advanced approaches such as Bayesian hyper-parameter optimization 

(Yufei Xia, Liu, Li, & Liu, 2017), coordinate descent (Restrepo, 2018) or genetic algorithm (Jain, 

2018). As many of the sources lack scientific credibility, any conclusions about performance of the 

algorithms must had been taken with caution and rather as an inspiration than a dogma. 

Only a subset of hyperparameters was selected to be optimized for application in our research, 

leaving the rest either in their default setting or in a defined state. See the hyperparameters selected 

for optimization in Table 6. The selection of the subset was based on work by Van den Bulk et al. 

(2018) as our work fundamentally follows upon theirs. Van den Bulk et al. fully enumerated 

allowed values for each of the parameters and performed a full grid search. In total, they tested 405 

combinations of the varying hyperparameters. Their results showed that the optimal 

hyperparameters were substantially varying across the allowed value ranges among the tested 

models. To allow a wider range of hyperparameters values whithout increasing computational 

complexity, we decided to utilize a genetic algorithm (Whitley, 1994) for hyperparameters tuning. 

Selection of the algorithm was inspired by promising results in XGboost hyperparameters tuning 

application in work of Jain (2018). 
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3.5. Evaluation and interpretation of the results 
A part of the objective of our work is to compare performance of a variety of feature sets. Each 

feature set is used as an input to every individual model of all the train series: having N train series,  

N models are built and estimated for every feature set. In sake of concise result presentation and 

analysis, the results are first analyzed on the level of feature sets and only at the end, we zoom into 

the level of individual train series focusing on extremes, contrasts and peculiar cases (see the 

illustration of the evaluation levels in Figure 5). Furthermore, it is inspected whether it is possible 

to select an ‘optimal’ feature set universally for all the series, or if the delay prediction on the feature 

set level reaches better performance with varying feature sets among the train series. Important to 

clarify, aggregated results across all the train series are obtained by combining the predicted values 

along with the relevant true values from the evaluation instance from all the train series. The overall 

results therefore reflect on the individual predictions, not summarized results of the predictions 

done for the train series.  

 

Figure 5 Evaluation levels. 

3.5.1. Key performance indicators 
The task of our models is regression and the evaluation metrics used in XGBoost is root mean 

square error (RMSE). The first determinative metrics therefore is RMSE complemented by a mean 

square error (MSE) and 95% confidence intervals (CI). Using solely RMSE as a performance 

indicator is considered insufficient for its lacking unambiguity, for example by Willmott & 

Matsuura, (2005) who prioritizes MSE instead. Nevertheless, their opinion is opposed by Chai & 

Draxler (2014) who advocate for using also RMSE in science. As there is no clear preference 

towards either of the two metrics, we report them both in our research. Above that, we use the 

metrics for comparison of a variety of models rather than for drawing conclusions about the 

individual models. Thus, there is no difference in using RMSE or MSE in a large part of our 

research. Furthermore, they are complemented by a weighted RMSE (RWMSE) as was defined in 

the RAS competition assessment. See the definition in the following sub-section. 

Although RMSE and MSE are essential tools for assessment of the results given by a regression 

task, they do not provide information about the error distribution (such as reflecting the actual or 

predicted delay length) neither about the models performance for example with respect to criteria 

defined by the classification tasks in the RAS competition. Using those classification tasks as 

additional performance indicators, the regression results are converted to the corresponding classes 

by computing the predicted delay change as a difference between the predicted delay and the 

corresponding present delay, and consecutively assigning to the relevant classes. Finally, the two 

classification tasks are complemented by an additional one. That is a prediction whether there will 

be any delay or not, while delays up to 2 minutes count as no delay. This classification follows 
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work of Fioole (2018b). All the derived classification tasks will be evaluated using a confusion 

matrix and the resulting metrics: accuracy, precision, recall and F-score; all explained bellow.  

In addition, the regression results are discretized into 1-minute intervals on a scale between 0 (and 

less) and 15 (and more) minutes and a confusion matrix and the resulting scores are computed and 

presented in a suitable form. Eventually, performance of the models is further analyzed in the 

context of the role of the individual features within the feature sets using feature importance metrics 

defined in the XGBoost package (XGBoost Developers, 2016c) as explained below. 

Regression: MSE and Confidence intervals, RMSE, RWMSE 
MSE and RMSE are calculated as in (3.3) and (3.4) respectively, where N is the number of 

observations, 𝑧𝑓 is a vector of the forecasted values and 𝑧𝑜 is a vector of the observed values. In the 

context of our research, the unit of RMSE is minutes.  The MSE is complemented by its 

corresponding 95% confidence interval (CI). To determine the CI of the MSE, the normal 

distribution of the squared errors is required. A normality test defined as 𝑘2 =  𝑠2 + 𝑘2, where s is 

the z_score of a skew test, and k is the z_score of a kurtosis test (Bai & Ng, 2005), is used. The 

hypothesis that the sample is normally distributed is rejected if p < 0.05 (Biau, Jolles, & Porcher, 

2010). In case the hypothesis is rejected, the data is resampled using a bootstrap method 

(Hesterberg, 2015; Kesar Singh and Minge Xie, n.d.; Pek, Wong, & Wong, 2017). An algorithm to 

obtain the bootstrapped MSE along with its 95% confidence intervals was adopted from Good 

(2006).  

𝑀𝑆𝐸 =
∑ (𝑧𝑓𝑖

− 𝑧𝑜𝑖
)

2𝑁
𝑖=1

𝑁
    (3.3) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸      (3.4) 

In addition, root weighted mean square error (RWMSE) was adopted from the assessment 

indicators used in the RAS competition retrieved from the submitted work of Nabian et al. (2018). 

The RWMSE is defined as in (3.5) where there is an additional variable, the weight wi defined in 

(3.6) which gives more importance to errors associated with larger observed delays. 

𝑅𝑊𝑀𝑆𝐸 = √∑ 𝑤𝑖(𝑧𝑓𝑖
− 𝑧𝑜𝑖

)
2𝑁

𝑖=1

𝑁
    (3.5) 

𝑤𝑖 = {
    0.2   𝑖𝑓  𝑧𝑜𝑖

∈ [−1,1] 

0.8   𝑖𝑓  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3.6) 

Confusion Matrix 
The confusion matrix (Figure 6) represents number of instances that fall into bins of combinations 

of predicted and actual (true) values. The diagonal then represents correctly predicted classes. The 

classification tasks used in our research can be described as binary and multi-class classification. 

In both cases, one and only one class is predicted for each instance. The sum across the matrix 

therefore equals to the number of instances that were subject to the prediction. (Sokolova & 

Lapalme, 2009) 
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Figure 6 Generic confusion matrix (Deng, Liu, Deng, & Mahadevan, 2016) 

The confusion matrix is built for the following tasks:  

Classification task Classes Notation Description 

Delay existence Positive 

Negative 

1 

0 

a delay exceeding 2 minutes is predicted 

a not existing delay or a delay of maximum 2 minutes is predicted 

Delay jump Positive 

Negative 

1 

0 

a delay jump of 4+ minutes is predicted 

a not existing delay jump is predicted 

Delay change Decreasing 

Constant 

Increasing 

- 

= 

+ 

a delay is predicted to decrease by 2 or more minutes 

a delay is predicted not to change by 2 or more minutes in either direction 

a delay is predicted to increase by 2 or more minutes 

Discretized 

prediction 
[0,15] minutes of delay 

Discretized prediction of delays between 0 minutes (including delays below 

0 min) and 15 minutes (including more than 15 min) 

At the end, for the best performing feature set(s), additional confusion matrices are done in a 

graphical form of heatmaps to demonstrate distribution of errors. The delays are then discretized 

by rounding them with precision of 0.25 min or 1 min.  

Accuracy, Precision, Recall and F1 Score 

 

Figure 7 Precision and recall illustrations in a corresponding order (Deng et al., 2016) 

Correctness of the predictions in classification tasks can be represented by accuracy, precision, 

recall and F1-score. Accuracy equals to the percentage of correctly predicted classes (3.7), therefore 

a percentage of the sum on the diagonal of a confusion matrix. Especially in a case where one class 

significantly predominates the other classes, accuracy may become a misleading metric. For 

example in the case of a delay prediction, there is no delay jump in a vast majority of the 

observations. Predicting no delay jump for all the instances would easily return very high accuracy. 

Accuracy therefore is rather disregarded in our research.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑁𝑖𝑖

𝑛
𝑖=1

∑ ∑ 𝑁𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

     (3.7) 

Instead, attention is paid to the remaining metrics. Precision represents an accuracy given a certain 

predicted class (3.8). Opposite to that, recall is an accuracy supposing a specific actually observed 

class (3.9). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑁𝑖𝑖

∑ 𝑁𝑘𝑖
𝑛
𝑘=1

     (3.8) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑁𝑖𝑖

∑ 𝑁𝑖𝑘
𝑛
𝑘=1

     (3.9) 

A harmonic mean of the two metrics, precision and recall, is called F-score, or commonly F1-score, 

where 1 denotes that no weighting is used and precision and recall both have the same weight in 

the equation (3.10). 

𝐹1_𝑠𝑐𝑜𝑟𝑒𝑖 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
     (3.10) 

The metrics will be calculated and presented for the same classification tasks as above. 

Feature importance 
XGBoost package offers evaluation of feature importance by global measures ‘weight’, ‘cover’ and 

‘gain’. Given a feature set 𝐹 and a set of trees 𝑇, each tree consists of a set of splits 𝑆𝑡 and is used 

by a number of observations 𝑂𝑡, where each observation follows a sequence of splits 𝐾𝑜
𝑡. Weight is 

“the number of times a feature is used to split data across all trees”(XGBoost Developers, 2016c) 

and can be mathematically written as: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑓 =  ∑ ∑ 𝑠𝑝𝑙𝑖𝑡𝑠
𝑡

𝑆𝑡

𝑠=1

𝑇

𝑡=1

   (𝑓 ∈ 𝐹, 𝑠𝑝𝑙𝑖𝑡𝑠
𝑡 ∈ [0,1])    (3.11) 

,where  𝑠𝑝𝑙𝑖𝑡𝑠
𝑡 is equal to one if the split belongs to the feature f, and zero otherwise. If 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑠
𝑡 represent the number of observations entering a split s on a tree t, cover of a feature 

f can be defined as: 

𝑐𝑜𝑣𝑒𝑟𝑓 =  ∑ ∑ 𝑠𝑝𝑙𝑖𝑡𝑠
𝑡 ∙ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑠

𝑡

𝑆𝑡

𝑠=1

𝑇

𝑡=1

   (𝑓 ∈ 𝐹, 𝑠𝑝𝑙𝑖𝑡𝑠
𝑡 ∈ [0,1], 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑠

𝑡 ∈ ℕ)   (3.12) 

or in words as an “average coverage across all splits the feature is used in.”(XGBoost Developers, 

2016c). Last, gain, which is an “average gain across all splits the feature is used in” (XGBoost 

Developers, 2016c) can be mathematically defined as 

𝑔𝑎𝑖𝑛𝑓 =  
∑ ∑ ∑ 𝑠𝑝𝑙𝑖𝑡𝑡,𝑜

𝑘 ∙ (𝑙𝑜𝑠𝑠𝑡,𝑜
𝑘−1 − 𝑙𝑜𝑠𝑠𝑡,𝑜

𝑘 )
𝐾𝑜

𝑡

𝑘=1
𝑂𝑡
𝑜=1

𝑇
𝑡=1

∑ ∑ ∑ 𝑠𝑝𝑙𝑖𝑡𝑡,𝑜
𝑘𝐾𝑜

𝑡

𝑘=1
𝑂𝑡
𝑜=1

𝑇
𝑡=1

    (3.13)     

( 𝑓 ∈ 𝐹, 𝑠𝑝𝑙𝑖𝑡𝑡,𝑜
𝑘 ∈ [0,1], 𝑙𝑜𝑠𝑠𝑘 ∈ ℝ+ ) 

where 𝑙𝑜𝑠𝑠𝑡,𝑜
𝑘  is a value given by a loss function after introducing a 𝑠𝑝𝑙𝑖𝑡𝑡,𝑜

𝑘 . 𝑙𝑜𝑠𝑠𝑡,𝑜
0  then refers to 

the loss function value before any split is introduced. 

Important to note, only gain will be elaborated on as it is the most informative feature importance 

indicator for our work as is explained together with the results presentation in Section 6.5. 

3.6. Summary 
In this chapter, we provided a necessary theoretical minimum to understand the upcoming steps of 

data collection, processing and features retrieval, the model development and tuning, and finally 

results presentation. The data will be transformed to features which combined form feature sets. As 
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the subject of our work is delay prediction, the task we will work with falls into the category of 

regression tasks. The method selected to perform the task to obtain delay predictions is a decision-

trees-based gradient boosting method called XGBoost wherein several parameters will be tuned to 

optimize its performance. Finally, key performance indicators for assessment of the results were 

defined which brings us to research sub-question 2. 

Research sub-question(s) to be answered: 

2. What are appropriate key performance indicators considering the model’s characteristics? 

 

The algorithm in the model-building process evaluates the intermediate steps by the RMSE. 

Furthermore, either RMSE or MSE is conventional metrics for regression results assessment. 

Assessment solely based on either of these metrics, however, overlooks the models performance on 

a more microscopic level. Additional performance indicators were therefore derived from 

classification tasks defined in the RAS competition (delay jump and delay change) as it was 

assumed that those metrics were defined to reflect needs and issues arising from the practice of NS 

and ProRail. Next, an identification of an existing delay (a delay exceeding 2 minutes) was added 

following research by Fioole (2018b). Further, to observe the models’ performance on the level of 

the delays’ length, the regression results will be discretized and assessed similarly as a classification 

tasks using a confusion matrix and the resulting metrics: precision, recall and F1-score. Finally, the 

individual features and their importance in the models will be assessed using feature importance 

indicators provided in the XGBoost library. 
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4. Data  
This chapter provides a detailed description of the datasets that were used for feature creation and 

label retrieval. First, the original form of the dataset is presented along with the data source, then, 

the derived features are presented and discussed. At the end of the chapter, analysis of the data is 

provided focusing mostly on the relationship between the various features and the target variable; 

the future delay.  

For the sake of comparability with the research preceding our work, data used in our research 

substantially depended on the data provided in the RAS competition as that was the data used for 

development and assessment of models proposed by Hellsten et al. (2018), Nabian et al. (2018) and 

Van den Bulk et al. (2018). The original dataset (INFORMS, 2018c) was provided mutually by NS 

and ProRail and consisted of seven datasets in total, all referring to the same time period from the 

4th of September 2017 to the 9th of December 2017. Two datasets from the original package were 

used for our work: Planned timetable and Realization data. Those datasets were complemented by 

data revealing train interactions through the minimum required headways provided by ProRail, 

passenger counts estimations provided by NS, and finally by publicly available weather conditions 

measurement data of KNMI, The Royal Netherlands Meteorological Institute (KNMI, n.d.-a).  The 

datasets are presented in the respective order. As the data came from multiple sources in varying 

formats, considerable data processing was inevitable. For the purpose of replicability of our 

research, the process is described and explained in the Appendix. 

4.1. Planned timetable 
The planned timetable, presented in Table 7, is an overview of a generic week within the relevant 

time period complemented by additional information about the train characteristics and consequent 

attributes relevant for the train’s activity. The timetable is crucial for delay prediction as it provides 

information about the upcoming events and train movements. Furthermore, it is possible to derive 

characteristics of the available attributes such as a frequency certain location is visited, how many 

locations a train passes through within a time window etc., which was used in our work as described 

later. 

Secondly, as the timetable is a significantly smaller instance than the realized data, covering five 

days instead of a period of roughly three months, it provides a convenient structure to define 

patterns of train interactions using additional data in the later steps. Above that, the realized data is 

virtually unknown for the time to come in the prediction process and any assumption of what is to 

come thus must be based on the timetable. 

Attributes, that were the most important for our research, were the day of the event from which the 

day of the week was derived, naturally the planned time, the train number along with the train series 

number which was derived from the pattern code, the location, the activity and the train 

characteristic. Further, the order number was used in data processing for correct activity order 

control. No international trains were included in our research and the identification of locations 

abroad was therefore irrelevant. Bare driving time, traction type and timetable speed were not 

applied in the later model as this information was assumed to be implicitly hidden in the remaining 

characteristics. Although, traction type may carry information about a driving pattern such as 

acceleration and braking curves, it was assumed that the large differences between driving patterns 

of train categories, e.g. IC or SPR, are of higher importance than the nuances among individual 

traction types. Moreover, models were developed for each train series individually and therefore 

traction type was generally implicit in the train number. 
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Table 7 Planned timetable dataset example. (see glossary in the Appendix section A.1, Table 40) 
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4.1.1. Features derived from the timetable data 
Three features in two version were derived from the dataset representing the upcoming activities 

within the time window of 20 minutes. These features were created as a simple timetable-based 

representation of business of the upcoming network segment. Examples of the features can be seen 

in Table 8, where each row represents the features belonging to an example data instance. The first 

version named ‘Activities’ reflects the number of activities [D, V, K_V] that will come in the 

upcoming 20 minutes. As V and K_V refer to the same location as the corresponding V and K_V, 

they are not considered. The features are supposed to reflect how many locations that may be 

sources of delays are to come in the prediction period. This information may identify a higher 

probability of train interactions by the number of the upcoming locations, or a higher probability of 

a delay induced by an extended dwell time suggested by a high number of stations. The second 

version, called ‘Frequency’, goes a step further by considering whether the upcoming locations are 

busy in general. The feature is highly simplified, nonetheless, the value consists of a cumulative 

number of the times each of the D, V and K_V locations occurs in the timetable. It is assumed that 

when a location occurs in the timetable with high frequency, it is busy and therefore there is a 

greater chance of any kind of interaction with other trains or that there might be a high passenger 

flow which might lead to a delay gain. 

Table 8 Example of values of 'Stations to come' features. 

Activities Frequency 

V K_V V V K_V V 

1 1 11 6043 2502 21277 

1 1 10 6043 2502 19083 
1 1 12 6043 2502 19448 

0 1 7  2502 9995 

0 1 8  2502 11269 

0 1 6  2502 8183 

4.2.  ‘Realization’ data 
The Realization data (or in other words Automatic vehicle location or AVL data), presented in 

Table 9, contain registrations of realized train movements at the timetable points. The data come 

from the period from the 4th of September 2017 to the 9th of December 2017 and consist of the 

traffic date, planned and realized time, train series identification and train number, train type, 

location and activity type. Furthermore, delay, delay jump, and a cause of the delay jump are 

identified. Unlike delay jump defined in the RAS competition, the Delay jump in this dataset refers 

to a change in delay in comparison to the previous registration of the train. This dataset is crucial 

for delay identification as the delay is equal to the difference between the realized and the planned 

time. The realized movements are essentially based on the timetable, however operational changes 

in the train movements introduce inconsistency with the original schedule. Trains may have been 

rerouted, turned around, cancelled, added etc. Train numbers then were not always correctly 

assigned or changed, and trains may had been driving on unexpected routes, at unanticipated times 

or under identification numbers that are not present in the timetable.  
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Table 9 Realization data dataset example (see glossary in the Appendix section A.2, Table 40) 
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4.2.1. Features derived from the realization data 
As the delay prediction models are built for each train series separately, the train series number and 

train type are irrelevant information in the form of a feature and is not included in any feature set. 

Further, the train number is left out, as it duplicates the time features which were split into features 

representing an hour and minutes in the hour. The realization time was selected over the planned 

time to reflect the actual present state of the system. Above that, the combination of the delay and 

either realization or planned time implicitly include information about the other one. Furthermore, 

a day of the week was derived from the date to reflect weekly patterns in the operations while the 

time of the day is expected to reflect the patterns throughout the days. Next, a direction of the train 

is included as a feature, as it is expected that the patterns might differ per direction (due to different 

demand or driving patterns for example). The direction is represented by a binary value. To 

recognize spatial position of the train and its potential effect on delay development, a location 

identification number is included. The identification number was retrieved by replacing location 

names by unique numbers. Unlike the other features in this set, location is determined by a 

categorical variable which imposes a risk of misinterpretation of the feature by the model. 

Eventually, to reflect the recent delay development, the present delay of the train and the delay at 

the two preceding registration points was retrieved. An example of the base feature set derived 

from the realization data is presented in Table 10. 

Table 10 Example of the base feature set. 
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1 7 45 0 125 0.25 Nan Nan 

1 7 53 0 265 1.50 0.25 Nan 

1 8 02 0 342 2.00 1.50 0.25 

4.2.2. Label derived from the realization data 
The label, i.e. the target variable, is a delay of a train 20 minutes in the future from the last 

registration point (respectively the delay the train has at the last upcoming registration point within 

the 20 minutes time window). It was retrieved from the delay identified in the Realization data and 

its units therefore are minutes. The precision selected is 0.25 minute as a compromise between 

unnecessarily high and complex precision of delay prediction in seconds and a full-minute delay 

prediction which was assumed to be unsatisfactorily sparse. It is important to clarify that the 20 

minutes threshold was strict, and prediction is therefore made up to the last scheduled registration 

point before the last registered point plus 20 minutes. Therefore, a prediction is made from the latest 

registration point 20 minutes to the future from that point. For example, it is 10:45:30 and delay is 

supposed to be predicted for a train T. The prediction will be done based on the data collected up 

to the last registration point which was at 10:43:20. The label used for training the model and for 

evaluation will refer to a delay, that the train had at the last registration point before or at 11:03:20. 
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It is therefore highly unlikely, that the prediction truly refers to a state that will occur 20 minutes in 

the future as the highest probability is that the last considered reference point will be a few minutes 

before that threshold. In the fictious case, it could be at 11:01:00 for example. 

4.3. Train interactions 
The provided dataset consisted of pairs of train series of which the trains share some infrastructure 

points (signals) within a relatively short period of time. Due to safety requirements, a minimum 

headway time is required between such pairs of trains. The headways were generated by a tool 

developed by ProRail called ROBERTO which computes the headway times based on infrastructure 

and timetable data, train characteristics, block section occupation times and signaling aspects. Pairs 

of trains that share a piece of the infrastructure are selected and virtually moved closer to each other 

until a hindrance occurs. The minimum required headway for the specific situation is then derived 

in the form of a minimum time gap in seconds. (Middelkoop, 2010)  

The dataset (see example in Table 11) consists of pairs of train series, where the ‘Train 1 series’ 

(T1) refers to the leading train while the ‘Train 2 series’ (T2) identify the series of the train that 

follows. Whether a train is leading or following should be understood in a temporal dimension as 

the trains may pass the infrastructure points in different directions. Rows in the dataset were by 

default sorted in order of the trains’ movement. A sequence of rows belonging to an identical pair 

of T1 and T2 within an uninterrupted block of rows represented a sequence of infrastructure pointes 

traversed by the trains in the respective order. Such a sequence suggests that the trains follow each 

other also in a spatial context. 

The timetable and the realization data are spatially specified on the level of the ‘Areas’ in this 

dataset. The list of signals therefore provides additional information of what specific parts of the 

infrastructure are shared (Signals), but it is irrelevant for application in the delay prediction model 

because the information cannot be transferred on such detailed level onto the realization data. 

Through an extensive processing of the headways data (described in the Appendix A.3 Data 

processing), relevant pairs of train series interacting at the timetable locations were derived. For 

each train series interaction, the first moment of the first train causing an interaction was registered. 

That, combined with the timetable data, was converted to train interactions patterns. In essence, for 

each timetable point of all the train series, the relevant interactions were identified. Eventually, the 

interactions patterns were combined with the relevant instances of the realization data. 

Table 11 Minimum required headways dataset example. (see glossary in the Appendix section A.3, Table 42) 
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2100 2100 VIRM08 VIRM08 Hlmvam 26 174 

2100 2100 VIRM08 VIRM08 Hlm 80 89.65 

2100 4800 VIRM08 SGMm06 (3+3) Asd 67A 104.85 

2100 4800 VIRM08 SGMm06 (3+3) Asd 4 125.12 

4.3.1. Features derived from the train interactions data 
In total, 6 versions of the train interactions feature set were created. The first three versions contain 

features representing each of the interacting train series. The feature sets therefore consists of 82 

columns which, in contrast with less than 10 columns of the basic features, is overwhelming for the 

algorithm. Above that, interactions are identified in a minority of the entries as the models are built 

and trained for individual train series separately and each train series interacts with only a small 

subset of other train series. Therefore, in the final feature set associated with the data relevant for a 

specific train series, only columns with the number of unique values higher than 1 are kept (in other 

words, only columns where there is at least one interaction identified) and the rest is discarded 
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which significantly reduces the number of features and therefore increases the chance of the features 

having an effect on the prediction quality. 

The first version is the actual expected headway, which was calculated by subtracting the leading 

train’s delay from the planned headway. The assumption is that the risk of delay propagation 

increases as the expected headway decreases. Non-existing interactions were therefore filled by a 

large number, acting as a large headway. 

Table 12 Example of an expected headway feature set (‘Interactions’ feature set version 0). 

2100 2200 11600 2300 2400 11700 2600 

99 99 99 9.5 99 99 6.5 

99 99 99 8.0 99 99 7.5 

The next version of the train interactions feature set is an expected violated headway, which was 

calculated by subtracting the leading train’s delay from the planned margin (the planned headway 

minus the minimum required headway).  

Table 13 Example of an expected violated headway feature set (‘Interactions’ feature set version 1). 

2100 2200 11600 2300 2400 11700 2600 

99 99 99 99 99 99 -1.0 

99 99 99 -0.5 99 99 99 

The third version contains solely the binary identification of existing interactions with the possible 

train series (see an example in Table 14). These features were derived from the ‘expected headway’ 

features by replacing the value 99 by 0 (False) and otherwise 1 (True). 

Table 14 Example of binary identification of train interactions (‘Interactions’ feature set version 2). 

2100 2200 11600 2300 2400 11700 2600 

False False False True False False True 

False False False True False False True 

Further, each feature set was compressed into a more concise version where the columns were 

aggregated by the train series type: IC, SPR and LM. The expected headway and the expected 

violated headway were both converted by taking the shortest expected headway/expected violated 

headway among the train series belonging to the relevant train type category. Finally, the binary 

identification of train interactions was converted by summing up the number of identified 

interacting train series within the train type category.  

Table 15 Examples of train interactions feature sets aggregated by train types (‘Interactions’ feature set versions 3-5). 

Expected headway Expected violated headway ‘Binary’ interaction identification 

IC SPR IC IC IC SPR IC SPR LM 

5.0 7.5 99 99 99 99 2 3 0 

4.0 6.0 8 -0.5 99 99 1 2 1 

4.4. Passengers 
The dataset containing information about the number of passengers traveling between pairs of 

stations during the relevant time period was provided by NS. The data are based on smartcard data, 

i.e. the numbers of passengers checked-in and -out with their chip-card or a ticket at locations in 

the Dutch railway network. The locations of checking-in was paired with the location of the check-

out. According to the time of the travel, possible train connections between the origin and 

destination were enumerated and assigned with a probability that the passenger traveled by that 

specific train connection. Factors such as transfers, travel time or train type were considered to 

compute the probabilities. The final output is an estimate of the numbers of passengers travelling 
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on each train between all the pairs of locations, and an estimate of the numbers of passengers 

boarding at each location. Due to high level of confidentiality that hinders sharing passengers 

related data, this data are confidential and cannot be shared in any way. The example numbers 

presented in Table 16 are fictional, solely representing the form of the dataset.  

The dataset consists of the date, the train number, the pair of stations between which the passengers 

travelled and the corresponding times of the departure and the arrival. The departure and arrival 

times do not fully correspond with the arrival and departure times in the realization data. That is 

because the times in the realization data are retrieved from the registration points on the 

infrastructure when approaching or leaving the station, while the times in this dataset refer to the 

time of arrival to and departure from the platform. Finally, the total number of passengers that 

travelled by the train on the link between the two stations and the number of passengers that boarded 

at the origin station are specified along with the number of seats on the train that were planned in 

the schedule and that were actually realized. Eventually, the number of passengers that alighted 

from the train was calculated for each station. 

Table 16 Passenger counts dataset example. (see glossary in the Appendix section 0, Table 43) 
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4.4.1. Features derived from the passenger data 
In total, five versions of the feature set were created containing between 2 and 5 features. The first 

version (version 0) consists of 2 features only: the seats ratio and peak hour departure 

identification. The seats ratio refers to the difference in seating capacity that was planned and that 

was actually realized. The value is a floating number where 0 means a cancelled train, 1 means no 

change in rolling stock, numbers between 0 and 1 mean that a smaller train was used and numbers 

above 1 identify a when a train with larger capacity than was planned was used. The peak hour 

departure was introduced to represent the effects of increased passengers volumes in the time 

period. It is a binary feature where 0 means off-peak time and 1 refers to a peak hour. 

With respect to the passenger counts, it is assumed that the timetable along with the planned rolling 

stock are planned to ensure undisturbed operations under regular conditions. If significant 

deviations from the normal state occur, the systems behavior may deviate as well. In the context of 

passenger numbers, the system is assumed to be designed for a ‘regular’ number of passengers and 

an unusually high number of passengers may cause boarding and alighting times longer than was 

accounted for and cause a delay. On the other hand, extremely low number of passengers may lead 

to shorter boarding times giving an opportunity to recover from a delay. It therefore is the deviation 

from the ‘normal’ state that brings a higher risk of a delay occurrence. The numbers of passengers 

that were used for designing the timetable and assigning rolling stock were unknown and were 

therefore substituted by a median value that is taken as a representation of the ‘normal’ state. The 

deviation from the ‘normal’ state was then computed by normalization of observed passenger 

counts to the median. The median was taken from multiple categories, each used as an individual 

feature set version (versions 1-4). The categories are: 
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Train number and location 

Refers to a level of passenger movements for a train number at a specific location. The train 

number implicitly includes the time of the day and the direction. Day of the week is not 

considered. Relation to other trains of the same train series is missed.  

Train number, location and day of week 

Same as before but in addition, weekly patterns are considered. 

Train series, location and peak hour 

Considers all trains in a series regardless the exact time, but differentiating between peak and 

off-peak hours. Day of the week is not considered. 

Train series, direction, location and peak hour 

Same as above but with distinction between the directions. 

The first two columns in Table 17 present the basic feature set derived from the passenger data, 

which includes only the seats ratio and peak departure identification. The remaining columns of 

Table 17 then represent an example of the feature sets reflecting the normalized numbers of 

passengers in the four different categories. The passenger data were evidently calculated for 

departures from stations and stops only. To provide the information on the intermittent locations as 

well, the values were copied onto all the registration points following the departure up to the arrival 

to the next station or a stop. 

Table 17 An example of a Passengers feature set version 0 (first two columns) and versions 1-4 (all columns) 

Seats 

ratio 

Peak 

departure 

Seats 

ratio 

Peak 

departure Total Board Alight 

1.155 False 1.155 False 1.103 1.103  

1.155 True 1.155 True 1.121 1.146 1.068 

1.155 True 1.155 True 1.121 1.146 1.068 

1.155 True 1.155 True I.14 1.586 1.142 

4.5. Weather 
Weather condition data were retrieved from the website of The Royal Netherlands Meteorological 

Institute (KNMI) via publicly available online interactive form (KNMI, n.d.-c). The data collected 

consisted of the date, time and location identification, and hourly measurements covering the 

average wind speed, the highest wind speed, the average temperature, the minimum temperature, 

the measured precipitation, the scaled horizontal view distance and the binary identification of 

presence of the mist, rain, snow, the storm or ice formations (see Table 18). The data originates 

from 50 weather stations in the Netherlands. However, not all of the weather stations provided all 

of the selected data, and some were thus disregarded. Nevertheless, each of the weather stations 

was identified by its number, name and a geographical location denoted by longitude and latitude, 

which was used to compute the great-circle distance to the infrastructure locations and to find the 

nearest weather station for each of the infrastructure locations. More information about the weather 

station selection and the later coupling to the infrastructure locations is in Appendix section A.5.  

Table 18 Weather dataset example. (see glossary in the Appendix section A.5, Table 44) 
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4.5.1. Features derived from the weather data 
The feature set versions were derived from the weather data. All of the variables allow a direct 

application in the model and did not require any transformation. As some of the variables were not 

measured by all the weather stations, one feature set version consists of the weather conditions 

measured by all the relevant weather stations (to allow coupling of the stations and the infrastructure 

locations with lower distances). The next feature set version consists of all the selected weather 

conditions and the last version combines the binary variables as a sum representing the degree of 

bad weather. That was done to reduce the number of features especially due to sparsity of presence 

of those weather conditions. See Table 19 - Table 21 for examples of the feature set versions 

Table 19 Example of a Weather feature set version 0. 

Average 
wind speed 

Highest 
wind speed Temperature Precipitation 

Horizontal view 
distance 

70 120 147 -1 70 

70 130 135 31 39 

 

Table 20 Example of a Weather feature set version 1. 

Average 

wind speed 

Highest 

wind speed Temperature Precipitation 

Horizontal 

view distance Mist Rain Snow Storm Ice 

70 120 147 -1 70 0 1 0 0 0 

70 130 135 31 39 0 1 0 1 0 

 

Table 21 Example of a Weather feature set version 2. 

Average  
wind speed 

Highest  
wind speed Temperature Precipitation 

Horizontal  
view distance Bad weather 

70 120 147 -1 70 1 

70 130 135 31 39 2 

4.6. Data overview and analysis 
To gain understanding of the data, basic characteristics of the data are presented. First, the main 

train trip attributes are briefly described, followed by observations related to the measured delays. 

Next, relations between the delay or delay change and a set of selected features are observed and 

presented. Finally, expectations of the features’ impact on the prediction are derived. 

79 train series were selected as relevant for our research. Those are train series operating regularly 

in the days of Monday, Tuesday, Thursday and Friday in the relevant time horizon. Furthermore, 

only train series operating exclusively in the Netherlands were selected. The list of the train series 

considered in our work is in the appendix in Table 51. The input data for the models consist of 

between 1,165 and 445,519 instances per train series. On average, each train series is represented 

by 109,575 instances. In total, 461 locations appear in the data with 1 to 119,381 registrations in 

the realization data in the measurement period. An average number of registrations is 18,859 per 

location. The most commonly registered activity is passing through (‘D’) with more than 4,000,000 

occurrences, followed by naturally equal number of short arrivals and departures, which, however, 

appears in the data approximately a third of the times, and finally regular arrivals and departures 

that were registered a little less than 1,000,000 times. The numbers of registrations per day are 

relatively balanced, around 1,800,000, with slightly less registrations on Tuesday (around 

1,300,000). With regard to the train type, there are almost 4,200,000 registrations of IC trains, about 
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4,500,000 registrations of SPR trains (including about 25,000 registrations of ST trains) and nearly 

90,000 registrations of empty rolling stock movements (LM).  

In total, approximately 19,250,00 minutes were driven by all the trains registered in the realization 

data. Out of those, approximately 1,750,000 minutes were driven above the planned time which 

yields 9% of the total time driven being a delay. Table 22 shows the top 15 train series with the 

largest proportion of delays with respect to the total driven time in both directions. 

Table 22 The first 15 train series with the highest percentage of total delay minutes out of the total minutes driven within 

the measured period in both dorections (O=Odd, E=Even). 

Series 

Minutes 

Driven 

(O) 

Minutes 

Delay 

(O) 

Minutes 

Driven 

(E) 

Minutes 

Delay 

(E) 

Delay 

(O) 

Delay 

(E) 

Minutes 

Driven 

total 

Minutes 

Delay 

total 

Total 

Delay 

20300 5 483 1 305 5 905 1 790 24% 30% 11 388 3 095 27% 

5300 29 577 6 796 0 0 23%  29 577 6 796 23% 

2600 47 999 11 470 53 207 11 180 24% 21% 101 206 22 650 22% 

2800 67 225 9 336 69 224 11 730 14% 17% 136 450 21 066 15% 

6100 28 929 3 870 28 003 4 560 13% 16% 56 932 8 430 15% 

1500 96 741 13 480 92 622 12 220 14% 13% 189 363 25 700 14% 

15800 137 058 20 530 146 410 17 470 15% 12% 283 467 38 000 13% 

4700 52 282 6 429 50 092 6 286 12% 13% 102 374 12 715 12% 

28300 8 567 1 071 8 123 949 13% 12% 16 690 2 020 12% 

3400 9 927 1 052 10 409 1 345 11% 13% 20 336 2 397 12% 

6300 101 393 12 390 100 253 11 070 12% 11% 201 646 23 460 12% 

8900 15 557 1 335 14 515 2 142 9% 15% 30 072 3 477 12% 

6700 4 732 635 4 926 472 13% 10% 9 658 1 107 11% 

7500 32 556 4 596 33 406 2 950 14% 9% 65 962 7 546 11% 

7300 31 702 3 090 33 516 4 332 10% 13% 65 218 7 422 11% 

The majority of delays is between -1 and 1 minute, specifically 58.3% of all the delays registered 

in our data fall in this range. Generally, a negative delay, thus driving ahead, occurred in 17.6% of 

the train registrations. It is important to keep in mind that multiple registration refer to the same 

train trip and, for example, many registration points shortly after each other can affect the statistics. 

Next highly represented delay length interval is between 1 and 2 minutes of a delay which counts 

20.3% of the registrations. The counts then significantly drop as the delay increases, to 7.9% on a 

delay of 2-3 minutes, 3.9% on a delay of 3-4 minutes and 2.2% on a delay of 4-5 minutes. Only 

5.1% of the observed delays exceeded 5 minutes, and only 1.6% exceeded 10 minutes. 

In the context of a delay prediction it is logical to observe how the delay actually changes over the 

time span of the prediction: 20 minutes. The available data revealed that the delay decreases in 

37.5% of the cases. The assumption of the Naïve forecast is that a delay is always reduced by 1 

minute in the considered time span. In reality, this was the case in 22.8% observations (this does 

not account for the ‘duplicity’ caused by the existence of multiple registrations of the same trip 

within relatively short period of time that refer to the same event). In 37.1% of the observations, 

the delay increased by up to 1 minute, in 18.4% by 1-2 minutes and in 4.8% by 2-3 minutes. An 

increase of a delay by more than 3 minutes was registered in 2.2% cases. 
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Table 23 length and delay change extent distribution. 

Distribution  
of a delay length 

Distribution  
of a delay change 

interval 

[min] 
Observed 

interval 

[min] 
Observed 

interval 

[min] 
Observed 

interval 

[min] 
Observed 

[-, -3) 0,1% [4, 5) 2,2% [-, -5) 1,1% [2, 3) 4,8% 

[-3, -2) 0,2% [5, 6) 1,3% [-5, -4) 0,7% [3, 4) 1,3% 

[-2, -1) 2,0% [6, 7) 0,9% [-4, -3) 1,4% [4, 5) 0,4% 

[-1, 0) 15,3% [7, 8) 0,6% [-3, -2) 3,1% [5, 6) 0,2% 

[0, 1) 43,0% [8, 9) 0,4% [-2, -1) 8,4% [6, 7) 0,1% 

[1, 2) 20,3% [9, 10) 0,3% [-1, 0) 22,8% [7, 8) 0,2% 

[2, 3) 7,9% [10, 15) 1,0% [0, 1) 37,1%   

[3, 4) 3,9% [15, +) 0,6% [1, 2) 18,4%   

 

Figure 8 and Figure 9 illustrate pairs of the current delay and the corresponding change with respect 

to the future delay. It is obvious, that the highest variation in the change in the future delays occurs 

from low or non-existing delays as the future delays corresponding to the current delays of 

0 minutes vary from -10 minutes up to the maximum of +45 minutes. Note that the limits of the 

delays are influenced by the preceding data processing, which also causes the strict upper limit for 

delay increase. Understandably, the maximum observed delay decrease corresponds with the 

current delay length. However, that applies only up to a delay of approximately 20 minutes, from 

where on the observed delay decreases become smaller or event negligible around the highest 

measured delays.  

 
Figure 8 Heatmap plot of the current delay and the 

corresponding delay change. 

 
Figure 9 Scatter plot of the current delay and the 

corresponding delay change. 

To observe if there are any recognizable patterns in the data that would suggest a relation between 

selected features and the delay, several illustrative plots were made.  

Train interactions 
Visual analysis of the impact of train interactions on the realized delay in the future provides an 

interesting observation. It is important to note that the relation between the features and delay can 

vary significantly among individual train series because every train series can face different amount 

of interactions of various importance. For the visual informativeness, the train series that provide 

well observable relations are selected. Understandably, depicting a well observable relation brings 
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a certain bias in understanding the data. Nevertheless, we are aware that the role of each feature 

varies among the train series possibly from highly significant to negligible. And at this point, we 

are solely interested in the highest potential of the features. 

In Figure 10 the various shades of grey of the markers in the plot depict different train series causing 

an interaction. Distribution of the delays shows that the longer delays do not necessarily occur 

where there is a large negative expected headway, which would suggest a higher probability of 

delay propagation. Instead, the higher delays can be observed rather when the expected headway is 

positive. However, an interesting phenomenon can be observed in the area of negative delay. There 

one can see that the train that is subject to prediction (Train series 700 as is the case of Figure 10) 

reaches negative delay (thus rides ahead of the schedule) in intervals of approximately 10 minutes, 

while in the middle of the intervals the delay raises towards zero. These areas are highlighted by 

the triangles inserted in the figures. 

This phenomenon was observed with varying magnitude and intervals in a number of cases of the 

train series that are subject to the prediction. Moreover, this effect varies among the train series 

causing the interaction. Although it was possible to observe this effect also when the expected 

headway was positive, it can be assumed that the effect plays a more important role when there is 

a closer interaction and thus when the expected headway is negative. Assuming similar behavior of 

trains belonging to the same train type category (IC or SPR), plots were made showing the delay 

change from the current state to the delay 20 minutes in the future of trains belonging to the train 

series 700 with respect to the expected negative headway from trains of IC and SPR type. The plots 

can be seen in Figure 11 and Figure 12, respectively. 

 
Figure 10 Expected headways to the interacting trains within the time 

window of 20 minutes and the realized delay 20 minutes in the future. 

Observed on train series 700 (SPR type). 

In the case of an interaction with IC trains (Figure 11), one can see that there is a lower chance of 

a delay decrease when the expected headway is between approximately 2 and 10 minutes. The 

possible delay decrease drops from approximately 4 minutes to 2 minutes on the mentioned interval. 

Similar trend can be observed also on the interval shifted by 10 minutes towards larger negative 

expected headway. Train series 700 runs on the route Den Haag Centraal – Groningen with a 

frequency of one train connection per hour. The series interacts with 5 other train series belonging 

to the IC train type category and with 12 train series of the SPR train type. In the dataset of the train 

series 700, there are 175,092 instances. Within those, there are 5,164 identified interactions with a 

negative expected headway with IC trains and 16,183 interactions with SPR trains.  



 
44 

 

 

Figure 11 Expected violated headway between trains of 

train series 700 and relevant IC trains, and the delay of 

the trains of the train series 700. 

 

 
Figure 12 Expected violated headway between trains of 

train series 700 and relevant SPR trains, and the delay of 

the trains of the train series 700. 

Looking at the specific trains series causing the interactions, the majority of the interactions occur 

with trains belonging to the train series 600 (between Zwolle and Meppel), 11600 (between WP 

and VTBR), 3300 and 4600 on the section between Leiden and Schiphol, and finally a vast majority 

of the interactions (almost 8,500 instances, thus almost a half of all the interactions) is with trains 

of the train series 14600 in the vicinity of Almere. And particularly the train series 14600 shows a 

very clear pattern in the limited delay reduction with the lowest delay reduction around the 

minimum required headways violated by 10 minutes. 

 
Figure 13 Expected violated headway between trains of train series 700 

and trains belonging to the series 14600. 

Obviously, the interactions are rather a sparse occurrence in the data. That combined with the delay 

distribution (as in Table 23) yields a rather low expected impact of the features on the predictions. 

However, there is a potential of the features having a positive impact on overly optimistic 

predictions forecasting decrease in the delay. Still, the number of observations falling to the 

category to which the observed tendencies apply is limited and so is the number of predictions that 

can be improved by these features. 
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Passengers 
When assessing the relationship between the features and the future delay, it can be more 

informative to look at the delay change instead of the actual delay observed in the future because 

one of the features known to the model is the current delay. Beginning with the relationship between 

the seats ratio and the registered delay change (Figure 14), delay changes tend to be larger when 

the seating capacity is close to the originally planned capacity. Opposingly, the delay changes in 

both directions are lower when the realized capacity exceeded the planned capacity. The full range 

of observed delay changes occurred when the realized and planned capacity was equal, likely due 

to the fact that this group covers a vast majority of observations.  

 

Figure 14 Ratio of the planned and realized seats 

and the delay change. 

 
Figure 15 Number of passengers and the delay 

change. 

Figure 15 then presents the relation between the number of passengers that departed from a station 

and delay change in 20 minutes from that point. Generally, the lower the number of passengers, the 

larger delay changes in both directions are observed. Nevertheless, the features reflecting the 

passenger data were created in 4 versions representing deviations of passenger volumes from a 

supposedly normal state for a certain location, time or train identification. The plots in Figure 16 

show the scaled total number of passengers and the observed delay changes. The shapes visible in 

the individual figures vary slightly in the slope of the reduced variance in observed delay changes 

associated with the scaled numbers of passengers. Nevertheless, all of them reveal lower occurrence 

of a large delay increase when the scaled number of passengers increases. Slope of the maximum 

registered delay increase with an increasing number of passengers is the steepest in the sub-figure 

a. and gets gradually less steep towards to sub-figure d.. Similar tendency is observable in the delay 

decrease although with a lower magnitude of the delay change. Furthermore, a similar trend is 

visible in Figure 15, which depicts the relation between the delay change and the actual not-scaled 

number of passengers.  

  



 
46 

  

a. Train number and location b. Train number, location and day of week 

  

c. Train series, location and peak hour d. Train series, direction, location and peak 

hour 

Figure 16 Number of passengers departing from the last station prior to the current moment scaled to the median value 

per category (a. – d.) and delay change. 

Weather 
As can be seen in Figure 18 and Figure 20, high average wind speed above 10 m/s was measured 

along with a larger delay increase which applies also to the highest hourly wind speed. The average 

wind speed above 10 m/s was measured in 2,133,835 instances, above 11 m/s in 1,658,591 

instances, above 12 m/s in 1,200,431 and above 13 m/s in 838,894. Even the last number of 

instances represents almost 10% of the instances and therefore there is a potential that the features 

representing wind speed will have an influence on the performance of the delay prediction. 

 
Figure 17 Distribution of average wind speed. 

 

Figure 18 Average wind feature and corresponding delay 

change with 95% confidence interval. 
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Figure 19 Distribution of maximum wind speed. 

 
Figure 20 Maximum (High) wind speed and corresponding 

delay change with 95% confidence interval. 

The observed delay change reaches the largest range in both directions when the lowest 

precipitation levels are measured, where also the absolute vast majority of observations belongs 

(see Figure 21). Figure 22 then reveals that most of the large delay changes are outliers beyond the 

95% confidence interval (depicted as a shade around the line in Figure 22). There are large 

deviations in the mean observed delay change associated to a certain precipitation level. When very 

small amount of precipitation is observed, the delay change seems to slightly increase from where 

the tendency is rather declinatory. Clearer trend can be observed in Figure 24 showing the relation 

between temperature and the delay change. That is perhaps also due to wider distribution of the 

observed air temperature (Figure 23). In partial accordance with observations by  Xia et al. (2013) 

presented in Section 2.4.2, low temperature is observed together with larger increase in delays while 

higher temperature is related to rather lower delay increase.  

 
Figure 21 Distribution of measured precipitation. 

 

Figure 22 Observed precipitation and delay change. 
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Figure 23 Distribution of measured temperature. 

 
Figure 24 Observed air temperature and delay change 

with 95% confidence interval. 

The binary weather condition features and the bad weather feature can be compared by the mean 

observed delay change. The overall mean delay change across the dataset is -0.025 with 95% 

confidence interval [-0.026, -0.024]. The mean delay change calculated per feature and its value is 

presented in Table 24 which reveals an increase in the mean value when any of the weather 

conditions are present. Considering the number of observations, especially ‘Rain’ appears to have 

a potential to have an impact in the delay prediction, while the remaining features will probably 

have only negligible impact.  

Table 25 then shows an increase in the mean delay change, especially when 1 or 2 of the indicated 

weather conditions are present. A combination of 3 conditions shows a smaller increase in the mean 

delay change and appears only in an insignificant number of observations. The number of 

observations reporting one ‘bad’ weather condition present is close to the number of observations 

reporting presence of rain. Therefore there is a high probability that these two features are greatly 

similar. 

 

Table 24 Binary weather features and corresponding delay change mean and 95% confidence interval (CI) 

 False True 

Mean 95% CI 
Number of 

observations 
Mean 95% CI 

Number of 
observations 

Mist -0.025 [-0.027, -0.024] 8,425,020 -0.020 [-0.026, -0.013] 301,044 

Rain -0.046 [-0.047, -0.045] 6,260,852 0.028 [0.026, 0.030] 2,465,212 

Snow -0.026 [-0.027, -0.024] 8,665,673 0.036 [0.022, 0.049] 60,391 

Storm -0.026 [-0.027, -0.024] 8,657,889 0.029 [0.016, 0.043] 68,175 

Ice -0.025 [-0.027, -0.024] 8,650,930 0.004 [-0.009 ,0.017] 75,134 
 

Table 25 Bad weather feature and corresponding delay change mean and 95% confidence interval (CI) 

 0 1 2 3 

 Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

 -0.048 [-0.049, -0.046] 0.023 [0.021, 0.025] 0.025 [0.017, 0.034] -0.004 [-0.032, 0.024] 

Number of observations 5,948,623 2,590,867 170,975 11,979 
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4.7. Summary 
In this chapter, we presented and described the datasets we used in our work. The first one was the 

planned timetable, from which we retrieved features representing locations that a train will pass 

through in the delay prediction period of 20 minutes. Those features shall reflect busyness of the 

network the train will use in the 20 minutes, as a busy section may pose a higher risk of train 

interactions or more interactions with passengers. Next, the ‘realization’ data (AVL data) were 

introduced and the basic feature set (mainly temporal and spatial features and the present and past 

delay) derived together with the label (the future delay). Presentation of the newly introduced data 

followed afterwards along with introduction of the derived features reflecting train interactions, 

passenger counts and weather conditions. Finally, an overview of the data and a brief observation 

of the relation between the features and the future delay or delay change was presented. All the 

findings lead to answering the following research sub-questions. 

Research sub-question(s) to be answered: 

3. How can/must be the data representing the factors modified to be used as features in the models expectedly 

maximizing their contribution to the model’s performance? 

4. Is there an observable relationship between the included factors and train delays? 

The train interactions data originating from the minimum required headway necessitate extensive 

data processing to retrieve the actual possible train interactions and conflicts. The planned 

headways on shared track had to be identified along with the minimum required headway which 

needed to be updated by the delays of the involved trains. The features were defined per train series 

to which the leading train belongs to and by a more concise category, a train type. That was based 

on the analysis of train interactions with respect to the future delay and delay change presented in 

Section 4.6, where we discovered patterns of a decreased probability of a delay reduction when the 

expected headway or expected violated headway reaches certain thresholds. 

Although the passenger data could be directly used as a feature, scaling to reflect abnormalities 

rather than the total counts was opted for (as argued in Section 2.4.3). The selected scaling reflects 

various categories which may indicate the abnormalities such as train number or series, location, 

day of the week or direction. An observation of the data shows that there is a significant increase 

in delay length when the realized capacity is smaller than the planned capacity was. The relation 

between the delay change and the number of passengers yields a tendency of a decreased delay 

change in either direction with an increasing (or in a smaller extent also a decreasing) number of 

passengers. The scaled passenger counts then lead to a significant delineation of more sharply 

outlined patterns though with a very similar tendency. 

The weather data did not require any transformation and could be directly used as features for the 

model. The only exception being the binary identified weather conditions, which were also 

transformed into a sum representing a presence of bad weather conditions with a higher severity 

when multiple weather conditions are present. That was done to replace the relatively sparse data 

of the binary identified weather conditions. Data analysis showed an increase in delay growth when 

high wind speed was measured. The delay change magnitude seems to decrease with an increasing 

level of precipitation or increased deviation of the temperature from the most frequently observed 

temperature. The binary identified weather conditions are identified as present rather sparsely 

except for the rain and mist. Presence of mist does not seem to have a significant impact on the 

delay change, but presence of rain suggests rather increase in delay as the mean delay change moves 

above zero. A similar effect is caused by the presence of snow and storm but the low number of 

observations where they are registered denotes a lower chance of having a significant impact on the 

results. 
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5. Model development 
In this chapter, we summarize the feature sets developed in the previous chapter and present a 

scheme by which the individual feature sets and their versions are combined for the prediction 

models’ development. Furthermore, we explain how the models are developed, and how the 

XGBoost hyperparameters are tuned. Eventually, a summary is given answering the relevant 

research sub-questions. 

5.1. Feature sets: summary 
A variety of feature sets built from numerous feature sub-sets and their versions was developed and 

tested in our research. It is therefore convenient to define terminology of the feature sets elements 

that is used hereinafter. The final feature sets that are used in the models consist of a number of 

feature sub-sets. Each feature sub-set contains features of a certain category (such as weather 

conditions) and may come in multiple versions. For an illustrative explanation of feature set 

composition, see Figure 25.  

Five feature set categories were derived from the data. They will be referred to by the following 

names: ‘Base’, ‘Locations’, ‘Passengers’, ‘Weather’ and ‘Interactions’. Together with a 

recapitulation of the categories in the following text, the retrieved feature sub-sets and their versions 

are summarized. The value ranges and the variable types are presented along. 

 

Figure 25 Feature categories, sub-sets and sets scheme. 

The first feature category referred to as the ‘Base’ contains basic spatiotemporal characteristics of 

the train events. In addition, the current delay and the delays registered at the last two registration 

points are in this feature sub-set. This feature set category has only one version and appears in all 

feature sets. 

B
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0 

Day of the week 

Hour 

Minute 
Location 

Direction 

Current delay 

Delay 1 before 
Delay 2 before 

[0,4] 

[0,23] 

[0,59] 
[0,n]  (n=number of locations in the network) 

[0;1]  

ℝ (minutes with a precision of 0.25 min) 

ℝ (minutes with a precision of 0.25 min) 
ℝ (minutes with a precision of 0.25 min) 

The second feature category derived from the timetable data is called ‘Locations’ and is available 

in feature sub-sets of the two versions. Both versions represent ‘busyness’ of the trip section coming 
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in the next 20 minutes. The first one contains the number of activities that are coming up, while the 

second version contains the number of occurrences of the upcoming locations in the timetable. 

L
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at
io

n
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0 

Number of the activities to come: 

V (departure) 
K_V (Short departure) 

D (pass through) 
ℕ 

1 

Total frequency of the activities to come: 
V (departure) 

K_V (Short departure) 

D (pass through) 

The next feature set category called ‘Passengers’ evidently reflects passenger counts derived from 

fare collection data. However, the first version of this feature sub-set contains only the ratio of the 

realized and planned passenger seats, and an identification of a peak hour. The following versions 

1 to 4 contain those two features complemented by the number of passengers boarding and alighting 

at and departing from the location. The passenger counts are scaled to a median value of a subset 

of the data sorted by varying factors depending on the feature set version.  
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The following feature set category called ‘Weather’ represents various weather conditions 

including wind, temperature, precipitation and visibility. The second version contains a binary 

identification of presence of mist, snow, rain or storm in addition. The last version sums up all the 

binary variables from the second version and represents bad weather conditions. 
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Last, the feature set category representing train interactions referred to as ‘Interactions’ has 6 

versions. The first three versions contain as many features as there is train series the relevant train 

series (the one a prediction is made for) interacts with. First, value of the features is the expected 

headway, next of the expected violated headway and the third version is a binary identification of 

any existing interaction with the respective train series. The other three versions all consist of three 

features representing IC train, SPR trains and empty rolling stock. The expected headway and 

expected violated headway then refers to the first upcoming interaction with a train series belonging 

to the relevant category. The last version is a sum of the number of existing interactions within the 

relevant train type. 

In
te

ra
ct

io
n

s 

0 Expected headway (per train series) ℝ (minutes with a precision of 0.5 min) 

1 Expected violated headway (per train series) ℝ (minutes with a precision of 0.5 min) 

2 Binary interaction identification (per train series) [0;1] 

3 Expected headway (per train type) ℝ (minutes with a precision of 0.5 min) 

4 Expected violated headway (per train type) ℝ (minutes with a precision of 0.5 min) 

5 Binary interaction identification sum per train type ℕ 

5.2. Feature sets: A testing scheme 
A number of combinations of feature sub-sets and their versions is compared and the best 

performing combination is to be selected. To do so in an orderly manner, a testing scheme was 

developed to define the order in which the models will be build. The order of the feature sub-sets 

combinations is presented in Table 26. The Base feature sub-set has only one version and the results 

are compared to the performance of the Naïve forecast and the results of Van den Bulk et al. (2018). 

Then, the two versions of Locations are added. The results are compared to the results from the 

previous step and between the two versions. The better performing Locations version is selected to 

be used along with the base for all the following steps. The Locations feature sub-set is added 

permanently to the Base sub-set as both sub-sets are retrieved from the original datasets (the 

Timetable and Realization data). On the other hand, the Base feature sub-set is based on the basic 

feature set of Van den Bulk et al. (2018) while the Locations sub-set is newly introduced. Thus, in 

sake of comparability and observability of the impact of the newly added features, the two sub-sets 

are first examined separately. Then, models using the Passengers, Weather and Interactions feature 

sub-sets are build and the results are compared the results of the relevant Base and Locations 

combination. Finally, the best performing version of each category is selected into the final model. 

The models’ performance is measured by the KPI’s defined in Section 3.5.1. However, not all the 

KPI’s are used when comparing the results in the testing scheme. The KPI’s used in this phase are 

RMSE, MSE and the relevant confidence intervals for the regression task, and F1 score, precision 

and recall for the defined classification tasks. Eventually, the best performing feature sub-sets 

combination is analyzed more in depth, including the features importance to gain deeper 

understanding of the model’s performance. Furthermore, the final model is again compared to the 

benchmark models’ results. 

Table 26 Testing scheme of combination of the feature sets and their variations 

Step Feature sets 
Number of 

models 

1 Base 1 

2 Base, Locations 2 

3 Base, Locations, Passengers 5 
4 Base, Locations, Weather 3 

5 Base, Locations, Interactions 6 

7 Base, Locations, Passengers, Weather, Interactions 1 
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5.3. Model 
The model described below is built to be used with already prepared features and labels. Therefore, 

the data processing and feature and label preparation are not part of the model. The model consists 

of multiple sections including the input data preparation, the prediction model tuning, the final 

prediction model development and the basic results assessment. Although an individual prediction 

model is built for each train series separately, the process of developing the prediction models for 

all the train series is integrated in the overall model. The details of the model are described in the 

following chapters.  

5.3.1. Data splitting 
The dataset was split into three subsets: train (‘train’), validation (‘valid’) and test (‘test’) set. The 

data splitting into the subsets was done for each train series individually by randomly selecting 

subsets of train trips. There were between 26 and 4,572, and on average 2,825 train trips registered 

for the train series. Each train trip was then registered at 3 to 77 registration points with an average 

of 28 registration points. Each registration then is an individual instance where the features and 

label values are taken from. The split to the set was done so that the train set consisted of 60% of 

the train trips and the validation and test sets of 20% of the train trips each. By doing so, the train 

sets contained between 16 and 2,743 train trips with an average of 1,695 trips. Only 4 train series 

were represented by less than 100 train trips in the training set. Accordingly, 5 to 914 train trips 

were assigned to the validation and test sets.  

The split of the data on the train trips was done to avoid overfitting as it is likely that registrations 

within each train trip are highly correlated (e.g. weather conditions were based on hourly 

measurement and passenger counts were identical for all ‘D’ (pass through) events). Another option 

for the split was to do so based on time such as days. As the data consists of 14 weeks, only working 

days are considered and above that all Wednesdays are discarded due to irregular operations in the 

observed period, only 56 days are available. Therefore, 60% of the days would mean that only 34 

days would be in the training set, which was concluded that it could have an impact on the 

representativeness of the data with respect to possible states of the system. 

 

5.3.2. Structure of the model 

 

Figure 26 Outline of the model’s structure including hyperparameters tuning, and training, testing and evaluation of the 

prediction models developed per train series. 
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The model, of which the simplified structure is visualized in Figure 26, begins with a defining a set 

of variables that are used later on. First, the feature sets and their versions to be used are defined. 

Then, Genetic Algorithm (GA) parameters and stopping criteria for XGBoost hyperparameters 

tuning are defined. The GA parameters are the number of parents (population size; n_parents), the 

number of parents mating (n_parentsmating) and the maximum number of generations to be made 

(n_generations). The maximum number of generations is not reached if the stopping criteria are 

met. Those were defined such that the change in the best objective value across the population must 

be smaller than a defined threshold (Min_Change) for a minimum number of generations 

(Min_Change_rounds).  

Table 27 Variables values used in our model. 

Variable Value 

n_parents 45 

n_parentsmating 30 

n_generations 30 
Min_Change 0.0001 

Min_Change_rounds 5 

top_n 15 

The GA parameters were selected based on recommendations by Cox (2005) and Whitley (1994), 

and can be found in Table 27. The stopping criterium was defined considering recommendations 

by Bhandari, Murthy, & Pal (2012) who emphasized the risk of premature stopping when the 

stopping criterium is solely based on the objective’s improvement over a set number of generations. 

Empirical observations of the objective value development showed that the objective is either 

relatively high or fluctuates around a stable relatively low value with only minor changes. 

The possible values of the XGBoost hyperparameters (presented in Table 28) are defined 

(Param_Values). The values were based on and extended on those used by Van den Bulk 

et al. (2018) while considering what values performed the best in their work. 

Table 28 XGBoost hyperparameters available for tuning. 

Parameter Possible values 

learning rate [0.001; 0.01; 0.1] 

n estimator [500; 750; 1000; 1250] 

max depth [5; 6; 7; 8; 9; 10] 
child weight [1; 2; 3; 4; 5] 

gamma [0; 0.1; 0.2; 0.3; 0.4] 

alpha [0; 0.01; 0.1] 

subsample 0.8 
colsample_bytree 0.8 

Due to the size of the problem of the hyperparameter tuning, and the time necessary to train and 

evaluate the XGBoost model built for every combination of the hyperparameters, the tuning using 

the GA was done only for the first train series of each feature set. It is assumed that the optimal 

values are likely to be similar among the train series as the same features are used. However, 

especially due to the varying size of the data available for each train series, the optimal 

hyperparameters still might vary. To accommodate this expected variation, while avoiding an 

excessive runtime of the algorithm, n (top_n) best performing hyperparameters sets from the GA 

are selected, which become candidate sets for the rest of the train series. 

Finally, the data, the label and the set of train series to build the prediction model for are loaded. In 

sake of comparability of the results, the split of the data into the train, validation and test set was 

done beforehand so that the subsets contain the same trips across the varying feature sub-sets 

combinations. 

The algorithm of the model is presented in the following pseudocode (Figure 27). In a brief 

summary, the variables are defined and described input loaded. The model iterates over all the train 

series and therefore selects data relevant for the respective train series. The data is split to the 
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training, validation and test set. In the first iteration (the first train series), the XGBoost 

hyperparameters are tuned using the GA.  

 

Structure of the main model 

Start 
Define feature sets versions 
Define GA parameters 
Define stopping criteria 
Define possible values of XGBoost parameters as Param_Values 
Define number of top_n Param_Combs 
Load data 
Load label 
Load Train_Series 
Load splitting identification 
Do_hyperparameters_tuning = True 
FOR s in Train_Series 
        X = data[s] 
        y = label[s] 
        Remove empty columns in X 
        Split X to [x_train, x_valid, x_test] according to the splitting identification 
        Split Y to [y_train, y_valid, y_test] according to the splitting identification 
        IF Do_hyperparameters_tuning is True: 
                Optimize XGBoost hyperparameters on [[x_train, y_train], [x_valid, y_valid]] 
                Store top_n hyperparameters combinations in Param_Combs 
                Do_hyperparameters_tuning = False 
        END IF 
        IF Do_hyperparameters_tuning is False: 
                FOR p in Param_Combs: 
                        Train XGBoost on [x_train, y_train] with hyperparameters p 
             Make a prediction on [x_valid, y_valid]  
             Compute and store MSE of the prediction 
                 END FOR 
     Select p from Param_Combs corresponding with the lowest MSE 
        END IF  
        Train XGBoost on [[x_train, y_train]] with hyperparameters p 
        Make a prediction on [x_test, y_test] 
        Analyze and store results 
END FOR 
Analyze and store overall results 
End 

Figure 27 Pseudocode of the main model. 

The GA is terminated once the stopping criterium is reached or when the maximum number of 

generations is reached. Top_n hyperparameters combinations are selected (n ‘parents’ with the 

lowest objective value) combinations are stored. The rest of the algorithm applies for all the series 

again. An XGBoost model is built for the top_n hyperparameters combinations and the one with 

the lowest objective value is selected as the final hyperparameters setting. Finally, an XGBoost 

model is trained on the training set and eventually used to make a prediction on the test set. The 

MSE is calculated and the predictions and results are stored. When the iteration process over the 

train series is finalized, the overall MSE is computed and stored along with the predictions. 
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Structure of the XGBoost hyperparameters’ optimization model applying Genetic Algorithm: 

Input data: 
   GA parameters: 

- n_parents 
- n_parentsmating 

- n_generations 
   Stopping criteria: 

- Min_Change 
- Min_Change_rounds 

   Param_Values 
   x_train, y_train 
   x_test, y_test 

 

Start 
Load input data 
Create storage for Fitness_history 
Create storage for Population_history 
Create storage for Best_Fitness_Per_Gen 
Generate random initial population 
stop=0 
i=0 
WHILE i < n_generations 
        j=0 
        IF j < n_parents 
                Train XGBoost on [x_train, y_train] with hyperparameters = population[j,:] 
                Test XGBoost on [x_valid, y_valid] with hyperparameters = population[j,:] 
                Compute fitness 
                Store fitness in Fitness_history 
     j=j+1 
        END IF 
        Store best fitness of the population in Best_Fitness_Per_Gen 
        IF (i > 0) & ( Best_Fitness_Per_Gen[i-1] - Best_Fitness_Per_Gen[i] < Min_Change): 
          stop = stop + 1 
        END IF 
        IF stop == Min_Change_rounds: 
                BREAK WHILE 
        END IF  
        Select n_parentsmating parents with best fitness to mate 
        Perform crossover to create (n_parents - n_parentsmating) children 
        Mutate children 
        Combine parents and children to population 
        Store population in Population_history   
        i=i+1 
END WHILE 
End 

Figure 28 Pseudocode of the XGBoost hyperparameters' tuning. 

The XGBoost hyperparameters tuning using a GA is described by the pseudocode above (Figure 

28). The input data are loaded, and storage variables are created. The initial population (‘parents’) 

is created by random selections from the Param_Values. While the maximum number of 

generations has not been reached, each parent is used to train an XGBoost model on the train set. 

The model is used for a prediction on the validation set. The fitness is calculated as MSE of the 

prediction. The results are stored. The best fitness of the generation is stored. If the best fitness has 

not changed by Min_Change or more for Min_Change_rounds, the while loop is terminated. 

Otherwise, the fittest parents are selected for mating. Mating is done by a uniform crossover 

between pairs of parents. The children are mutated on one randomly selected gene. The population 

is updated and stored, and the next iteration begins. 
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XGBoost configuration 
Besides the hyperparameters that are tuned in the main algorithm, other parameters defining 

characteristics of the models built by XGBoost have to be specified. In the general parameters, 

‘gbtree’ (a tree-based model) was selected as a booster. Next, in the task parameters, the objective 

was set to ‘reg:squarederror’ (regression: squared error) and ‘rmse’ was selected at an evaluation 

metric. The configuration is based on what was used by Van den Bulk et al. (2018). 

5.4. Summary 
There were two main goals of this chapter: to define feature sets and to present a design of the 

model. The goals were defined in the form of research sub-questions as follows. 

Research sub-question(s) to be answered: 

5. What are sound feature sets? 

6. What is a sound model structure including parameter tuning? 

Based on the literature study combined with expert opinions of Fioole & Tielman (2019), a set of 

factors that may influence development of delay in passenger railway was selected: passenger 

volumes, weather conditions and interactions among trains. In Chapter 4, the relevant data were 

described, and features were derived. In this chapter, we presented an overview of all the features 

along with a scheme by which possible combinations of the features aggregated in feature sub-sets 

were tested. All of the feature sets contain the ‘Base’ which is then accompanied by the ‘Locations’. 

Those features are all timetable based complemented by the registered delays. Next, ‘Passengers’ 

and ‘Weather’ are added, first each separately, later together. These features are based on historical 

data. Finally, ‘Interactions’ are added, first to ‘Base’ and ‘Locations’ only, and finally to the fully 

developed feature set also including the best performing combination of ‘Passengers’ and 

‘Weather’. The ‘Interactions’ add another dimension of timetable-based features updated by the 

present state of the system. It is important to keep in mind that the features and the feature sub-sets 

are a small instance of all the possible ways the features may be defined and combined. 

Nevertheless, potential of the features in the delay prediction in the context of our research will be 

uncovered in the following Chapter 6 Research results.  

To answer the research sub-question 6, an algorithm was developed to build a model for each train 

series separately. As the hyperparameters optimization is a time-consuming step, it is performed 

only once for each feature set. A set of the best performing hyperparameters combinations is then 

used as a set of candidates for the remaining train series. The hyperparameters tuning is done using 

a training and validation set. The final model is trained on the train set and a prediction is made on 

the test set. All the predictions along with the true values are stored for an overall evaluation of the 

feature set across all the train series. Assessment of the models’ performance within the tuning and 

training algorithm is done based on MSE while other KPI’s are used in assessment of the prediction 

quality.  
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6. Research results 
In the previous chapters, we presented the applied methodology from a theoretical perspective, then 

we proceeded to the input data description and consequently to outlining the model we developed. 

In this chapter, we present the results of the models’ application. In total, 18 feature sets were used 

to build models for delay prediction of trains operated within 79 recognized train series. Those 

included all the feature sets categories as introduced in the earlier chapters. Due to computational 

power limitations, the largest feature sets reflecting train interactions were tested on a sample of 

train series, specifically on a set of 27 train series which were the first 27 train series in a numerical 

order of the train series numbering. Size of the subset results from the technical possibilities to 

ensure feasibility of the models’ development. Results of these models are presented and analyzed 

apart as they cannot be compared to the results including all the train series. 

First, results of the hyperparameters tuning are shortly presented. The rest of the chapter is focused 

on the prediction results. The results are presented by the key performance indicators presented in 

Section 3.5. Therefore, the models’ performance is compared by the RMSE and related metrics, by 

the scores resulting from confusion matrices, and eventually, features’ importance is inspected. The 

results are presented on the feature set level (see Figure 5 in Section 3.5). As the performance of 

the models built on the diverse feature sets considerably varies among the train series, results of the 

individual train series are presented in an appropriate form when relevant. Furthermore, the best 

performing model with respect to the RMSE was selected for each train series, the resulting 

predictions were combined across all the train series and evaluated as if each train series was 

predicted with the best fitting feature set. In addition, some results are visualized. 

Note that the feature set categories will be identified by following abbreviations: B (Base), L 

(Locations), P (Passengers), W (Weather) and I (Interactions). Versions of the feature sub-sets 

within the feature categories are identified by a number as is used in Section 5.1. As an example, a 

feature set B0L1W2 consists of the ‘Base’ feature sub-set, ‘Locations’ feature subset version 1 and 

‘Weather’ feature sub-set version 2. 

Naïve forecast: The reference 

The Naïve prediction was computed as strictly subtracting 1 minute from the ‘current’ delay. 

However, the prediction by the model was done to the last train registration within a 20 minutes 

time window since the last registration point. Therefore, the exact prediction period might not be, 

and likely is not, precisely 20 minutes but a little less. To be truly exact, one should perform the 

Naïve forecast with a corresponding delay reduction which would then be a little less than 1 minute. 

However, the difference would be in a magnitude of seconds and unless it would be more than 15s 

(precision of applied rounding: 0.25 minute) corresponding with a prediction time window of 15 

minutes, it should not affect the results significantly. Therefore, for simplification, the delay 

reduction is always assumed to be 1 minute. 

6.1. XGBoost tuning 
Adequately selected hyperparameters of the XGBoost model are a crucial element in the models’ 

quality. The parameters were tuned using a genetic algorithm on the models developed for the first 

in order train series, and were used for all feature sets consisting of sub-sets from the relevant 

feature set categories. In the first generation, a completely random population counting 45 

individuals (sets of the hyperparameters) was drawn from the allowed values of the 

hyperparameters. The hyperparameters setting was assessed by a MSE of the resulting prediction. 

An example of the obtained MSE’s of the 45 individuals per generation are demonstrated in Figure 

29. Note that each generation counts 45 individuals and the reduced number of points in the figure 

implies that the MSE’s are close or nearly identical. 
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Figure 29 shows the obtained MSE’s when only the ‘Base’ feature set category was used. It is 

possible to see that the individuals’ performance varies largely in the first four generations only. In 

each generation, one parameter mutated. In the generation 9, apparently a more sensitive parameter 

was subject to mutation and several individuals with a worsen performance were created. 

Nevertheless, the stopping criteria were met at the end of the 12th generation.  

 
Figure 29 XGBoost hyperparameters tuning example. MSE values of 45 individuals across 12 generations. 

For each combination of the feature set categories, a cluster of top 15 candidate hyperparameters 

arrays was selected. The algorithm did not restrict presence of duplicate candidates and therefore, 

between 7 and 13 candidates were available at the end. The candidates obviously varied among the 

feature set categories; however, the later selected candidates were rather uniform among the train 

series. The allowed values for each hyperparameter can be found in Table 28 in Section 5.3.2. All 

the candidates across all the feature set combinations favored a learning rate of 0.01 and no other 

value appeared in the candidates. The value of n-estimators varied between 750, 1000 and 1250, 

and was never 500. Max depth appeared in all of the possible values; however, it was 8, 9 or 10 in 

the most cases. Interestingly, max depth equal to 5 was used by the very most models in the feature 

sets including train-type-based train interactions. Child weight also appeared in all the possible 

values, and so did gamma and alpha. The candidates, that were selected for models of the most 

train series within each feature set category, are presented in Table 29 (the relevant feature set 

categories are depicted by the filled cell). Note that only train-type-based train interactions were 

considered in the data in the table, as the feature sets containing train interactions by train series 

were not applied to all the train series. 

 

Table 29 XGBoost hyperparameters candidate sets performing the best with the most train series. 
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6.2. Regression 
Basic assessment of the regression results is done by comparison of the RMSE’s. All the results are 

presented in Table 30 along with the corresponding MSE’s and the 95% confidence intervals. Next, 

the number of train series that reach the lowest RMSE using the respective feature set is presented, 

the number of train series outperforming a reference feature set, and finally a number of train series 

performing the best within the relevant feature set category, when the respective feature set is used. 

Focusing on the RMSE, results of the B0 feature set correspond with our expectations, as the RMSE 

of 1.52 outperforms the Naïve forecast’s RMSE of 1.99 but not the results of the best performing 

model from the research by Van den Bulk et al. (2018), which reached a RMSE of 1.34 and which 

included further features in comparison to our basic feature set. Unfortunately, the form of the 

available results of Van den Bulk et al. (2018) does not provide sufficient information to perform 

more detailed analysis. The lowest overall value (RMSE 1.48) is reached with the feature sets that 

include train interactions either in the form of expected headway (B0L1I3) or expected violated 

headway (B0L1I4). The latter one shows a higher upper bound of the confidence interval by 0.01. 

Nevertheless, both reach the lowest RMSE by the most train series (29% and 16% respectively). 

The remaining train series reach the best performance with feature set B0L1W1 (10% of train 

series), B0L1 (9% of train series) followed by B0L1W2, B0L1I5 (both 6% of train series) and 

B0L1W0 (5% train series). Within the subset of 27 train series that were used for comparison of 

the feature sets containing all versions of train interactions feature sub-sets, the feature sets 

containing features per train type surprisingly outperformed their more complex alternatives in 

both, the overall RMSE and the number of train series performing the best when the respective 

feature set is used.  

For further comparison of the feature sets by performance of the predictions on the train series level, 

we calculated the number of train series that reach lower RMSE compared to a reference feature 

set. Two reference feature sets were defined: B0 as the very basic feature set and B0L1 as the 

enlarged basic feature set included in all the later feature sets. Next to that, we calculated the number 

of train series for which the relevant feature set outperforms other feature sets within the same 

category. Note that the comparison was done based on RMSE rounded to three decimal points and 

thus the results associated with a certain train series could show equal RMSE’s of multiple feature 

sets. The rounding was done to neglect insignificant differences among the RMSE’s. Both versions 

of the Locations features decrease the RMSE for majority of train series compared to the results of 

B0. Comparing the two versions, there is a significantly larger number of train series that reach a 

better result with B0L1 (58 train series) than B0L0 (30 train series). This supports our selection of 

B0L1 to be included in the later feature sets instead of B0L0. Next, looking at the feature sets 

including Passengers features, the number of observed improvements among the train series 

compared to the B0 is significantly lower than is the case of B0L1, which suggests that for many 

train series, inclusion of the Passengers features brings rather worsening of the results than an 

improvement. Compared to the second reference feature set (B0L1), only 10-17 train series out of 

79 reach lower RMSE when the passengers features are included. Nevertheless, comparing the 

versions of the Passengers feature category, the simplest one B0L1P0 performs the best for 

approximately 40% of the train series. Very comparable results are observable when the Weather 

features are included, although there are more train series for which the prediction improved when 

the Weather category was included compared to the reference B0L1. And again, the simplest 

version B0L1W0 outperforms the other versions by 44% of the train series, reaching its lowest 

RMSE compared to B0L1W1 and B0L1W2. Finally, the Interactions features bring an 

improvement to a majority of train series compared to both references. Thus, the features do not 

deteriorate the predictions quality as Weather and Passengers do in some cases. Specifically, 

predictions of 67% - 89% of the train series gain an improvement when Interactions are included 

compared to the B0L1 feature set. Unlike was the case of Weather and Passenger feature categories, 

many train series reach equal results among the Interactions feature sub-set versions. 13 train series 

show the same RMSE of the predictions using either of the three versions. 11 train series out of 

those do not reach their overall best result when the Interactions are included, and their results are 

comparable to the corresponding results of B0L1. In those cases, it can be assumed that the 
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Interactions features simply do not have any impact no matter the formulation. In the case of the 

two train series when all the three feature set versions show nearly equal RMSE (equal when 

rounded to 3 decimal points) while some of them is the overall top-performing feature set of the 

train series, the Interactions features apparently represent the interactions in a highly comparable 

way, possibly referring to the same interactions. 

Next to the generic RMSE, a RWMSE was defined to emphasize errors associated with large 

observed delays. See the definition in (3.5) and (3.6), Section 3.5. The RWMSE was calculated on 

the feature set level only. Assessing the feature sets based on this metrics, the differences become 

significantly smaller. The best performance is observed on the feature sets B0L1, B0L1I3-5 with 

RWMSE of 1.35, followed by B0L0 and B0L1P0 with RWMSE of 1.36. The remaining feature 

sets reach RWMSE of 1.37 with an exception of the B0 feature set that is burdened by a RWMSE 

of 1.38.  

Based on the RMSE and the RWMSE, the best performing versions of the feature set categories 

were selected. For the Passenger category, it was version 0 and so it was for the Weather category. 

In selection of the best performing version of the feature set containing the Interactions category, 

the number of best performing train series was considered in addition to the RMSE and the 

RWMSE. Thus, version 3 was selected. Selection of the versions is in line with performance of the 

individual train series within the feature categories, as the most train series reach their best results 

in the categories with the sub-set versions L1, P0 and W0 respectively. Altogether, the final feature 

set can be denoted as B0L1P0W0I3. This feature set was created despite the poor performance of 

some of the feature sub-sets in the simpler feature sets. The purpose of this feature set was to 

observe whether the feature sub-sets combined together lead to an improvement or worsening or 

no change in the performance. As can be observed, the RMSE and RWMSE are both worse than 

was the case for B0L1 and B0L1I3-5. On the other hand, the RMSE of 12 train series (15%) reached 

its minimum with this feature set. 1 IC train series originally performed better with the feature set 

B0L1W0. The other train series belong to the SPR type and originally performed the best with the 

following feature sets (number of relevant train series): B0L1P1 (1), B0L1W0 (2), B0L1W1 (3), 

B0L1W2 (3), B0L1I3 (2). Compared to the reference feature sets, the complex feature set brings 

an improvement to a significantly lower number of train series than feature sets of the Interactions 

category did. Therefore, the complex feature set does improve the prediction for a few train series, 

however, many train series benefit more from the simpler feature sets B0L1I3-5.  

Finally, see the lower part of Table 30 for comparison of all the six feature set versions including 

Interactions features. Note that the prediction was made for a subset of 27 train series and the results 

cannot be directly compared to the results in the upper part. Instead, the results provide a 

comparison among the versions of the train interactions feature sets. Contrary to our expectations, 

looking at the RMSE, the overall results are slightly worse when the interactions are defined per 

individual train series (versions 0-2) instead of train types (versions 3-5). That can be seen also in 

the number of train series that reach its best predictions when the relevant feature sets are used. Out 

of the set of 27 train series used to test all the Interactions feature sets, 14 train series reached the 

best performance when the interactions features were represented per train type while 6 train series 

reached the lowest RMSE with features representing interactions with individual train series. On 

the other hand, the difference between the feature sets diminishes when the RWMSE is used as an 

evaluation measure. Nevertheless, the binary encoded Interactions features in the B0L1I2, and the 

corresponding simplified version B0L1I5 are still clearly the least effective. 
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Table 30 RMSE, MSE, 95% Confidence intervals of MSE and RWMSE of the regression task per feature set, and the 

number of train series reaching the lowest RMSE with the respective feature set: overall, compared to a reference feature 

set and within a feature set category. 

 

B L P W I RMSE MSE 95% CI RWMSE 
Best 

in 

series 

Best 

in 

SPR 

series 

Best 

in 

IC 

series 

Series 

outperforming 

reference  

feature set 

Best in 
series per 

feature set 

category 

 Naïve 1.99 3.94 [3.90, 3.98] 1.91 

 0     1.52 2.30 [2.27, 2.33] 1.38 2 0 2 reference - 

0 0    1.50 2.24 [2.21, 2.27] 1.36 2 2 0 73 - 30 

0 1    1.49 2.23 [2.20, 2.27] 1.35 7 5 2 73 reference 58 

0 1 0   1.50 2.26 [2.23, 2.29] 1.36 2 1 1 54 10 31 

0 1 1   1.50 2.26 [2.23, 2.29] 1.37 3 2 1 45 14 11 

0 1 2   1.51 2.27 [2.24, 2.30] 1.37 1 1 0 47 15 12 

0 1 3   1.51 2.27 [2.23, 2.31] 1.37 3 1 2 47 16 10 

0 1 4   1.51 2.27 [2.24, 2.30] 1.37 1 0 1 43 17 18 

0 1  0  1.50 2.26 [2.23, 2.30] 1.37 4 2 2 47 23 35 

0 1  1  1.51 2.27 [2.24, 2.30] 1.37 8 7 1 39 22 21 

0 1  2  1.51 2.27 [2.23, 2.30] 1.37 5 4 1 40 23 23 

0 1   3 1.48 2.20 [2.17, 2.23] 1.35 23 11 12 74 60 47 

0 1   4 1.48 2.20 [2.17, 2.24] 1.35 13 6 7 75 59 34 

0 1   5 1.49 2.22 [2.19, 2.26] 1.35 5 4 1 74 53 25 

 0 1 0 0 3 1.50 2.25 [2.21, 2.28] 1.36 12 11 1 52 35  
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0 1   0 1.56 2.43 [2.38, 2.47] 1.41 3      

0 1   1 1.56 2.43 [2.38, 2.47] 1.41 2      

0 1   2 1.57 2.45 [2.40, 2.49] 1.42 1      

0 1   3 1.55 2.41 [2.37, 2.46] 1.41 7      

0 1   4 1.55 2.41 [2.37, 2.46] 1.41 6      

0 1   5 1.56 2.44 [2.40, 2.49] 1.42 1      

 All combined 1.48 2.20 [2.16, 2.23] 1.34    

 

All the RMSE’s of all the models on the train series level can be found in Appendix B.1, Table 52 

(results of IC train series) and Table 53 (results of SPR train series). The values are highlighted by 

colors representing the order from the highest to the lowest RMSE per train series. The very lowest 

RMSE of each train series is further highlighted by an outline of the cell. Looking at the results in 

the mentioned tables, one can see that there are mostly very minor differences among the versions 

of the feature set categories. Some differences are not observable as the RMSE is displayed with 

two decimal points precision. The variations in the features definition therefore appears to have a 

very limited impact, if any, in many cases. For visual overview of the results on this level, see 

Figure 30 depicting the order of the RMSE’s belonging to each train series. 

In summary, assessing the models based on the RMSE and the related metrics, the best performing 

models are generally those that include features representing the upcoming activities and locations 

(‘Locations’), and the train interactions features. The passengers features all seem to perform 

comparably and rather introduce worsening of the results when introduced. So do weather 

conditions features and their combinations. Nevertheless, performance of the feature sets highly 

varies among the train series and all of the feature sets perform the best for at least one of the train 

series. Therefore, we selected the best model for each train series and assessed the overall result. 

The resulting RMSE is equal to the lowest RMSE that was associated with the feature sets B0L1I3 

and B0L1I4. However, the confidence interval of the MSE is slightly shifted as the lower bound 

decreased, and the RWMSE reaches the overall minimum. 
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Figure 30 Visual representation of delay prediction performance comparing the RMSE of various feature sets for all the 

train series.(Feature sub-sets abbreviations: B (Base), L (Locations), P (Passengers), W (Weather) and I (Interactions)) 
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6.3. Discretized prediction 
To assess the predictions’ performance with respect to the delay length, the measured and predicted 

delay was rounded to full minutes. Negative delays were set together with a delay of 0 minutes as 

a train running ahead of the schedule is assumed to be preventable. Delays above 15 minutes were 

put in the bin of 15 minutes delay that marks a threshold for ‘large’ delays requiring greater 

interventions. Finally, a confusion matrix was made and the resulting precision, recall and F1 score 

was calculated per delay length and for each feature sets combination. 

The resulting F1 scores are presented in Figure 31, where the Naïve forecast, the B0 feature set and 

the ‘all combined’ set’s results are highlighted by differing marks. All the feature sets perform 

significantly better and comparably in prediction of no-delay and small delays. The difference from 

the Naïve forecast gradually decreases towards a delay of 6 minutes from where the Naïve forecast 

begins to outperform our models and from a delay of 9 minutes onwards, the Naïve forecast 

outperforms all the other models. Predictions of delays equal to and exceeding 15 minutes are then 

again reaching a high F1 score thanks to the large interval of the included delay length. 

 

Figure 31 F1 scores of discretized delay prediction on the interval between 0 (and bellow) and 15 (and more) minutes 

of a delay. 

It is important to keep in mind that the scores refer to precisely predicted corresponding delays. 

Depending on the application, a deviation up to a certain limit or in a certain direction might be 

acceptable. The percentage of delays being overestimated or underestimated is presented in Figure 

32, although results are presented only for the Naïve forecast and the B0 feature set. That is because 

there is a clear visible difference, while the differences among the rest of the models are barely 

observable. The difference between the over- and underestimation of the ‘Base’ model and the ‘all 

combined’ model is in the order of 0.1 p.p.. The difference between the Naïve forecast and the 

‘Base’ model shows larger changes (see Table 31). There is a significant decrease in delays 

overestimation (delays being predicted as larger than observed) but a slight increase in 
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underestimation of larger delays (delays predicted as shorter than observed). The share of accurate 

predictions increases largely in the bin of not existing delays (including trains running ahead of the 

schedule). Then the increased percentage of accurate predictions continues up to delays of 10 

minutes from where on, the accuracy decreases in comparison to the Naïve forecast.  

Table 31 Change from the Naïve forecast to the B0 model in the share [%-points] of overestimated, accurate and 

underestimated delays within delay length bins.  

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

overestimated -23.9 -17.8 -11.6 -6.4 -4.3 -4.7 -7.7 -10.1 -10.4 -15.2 -13.0 -10.9 -10.2 -16.6 -14.5 0.0 

accurate 23.9 10.5 6.2 7.1 6.8 4.7 2.9 1.7 0.1 0.4 0.1 -2.0 -1.6 -0.9 -5.6 -8.0 

underestimated 0.0 7.3 5.4 -0.8 -2.5 0.1 4.8 8.4 10.4 14.8 12.8 12.9 11.8 17.5 20.2 8.0 

Further improvement in accurate predictions (compared to the model of the B0 feature set) [%-points] 

B0L1I3 0.4 0.1 0.7 1.6 2.0 2.1 2.4 2.8 1.6 0.6 2.7 3.0 1.9 0.9 2.0 1.2 

all combined 0.3 0.5 0.7 1.3 1.0 1.7 2.1 3.0 2.0 1.3 3.7 3.0 0.5 0.8 1.8 1.4 

Comparison of the same metrics among the various feature sets reveals that the highest percentage 

of accurate predictions across all the delay lengths is reached when train interactions features are 

included, and when the ‘Locations’ features are used. The accurate predictions then maintain higher 

percentage even with longer delays and the predictions fall behind the Naïve forecast only in the 

case of delays of 14 minutes and more. Accordingly, the overestimations and underestimations in 

the results of these feature sets are relatively lower comparing to other feature sets, which also 

means that the accurate predictions were captured relatively equally from both groups of over- and 

underestimated delays. Interestingly, another feature set performing well relatively to the other 

feature sets is the weather feature set version 2, which includes a feature reflecting ‘bad weather’ 

presence. Those results are generally comparable to the train interactions feature set in this case. 

 

 

Figure 32 Accuracy of delay prediction: Comparison of Naïve forecast and a model built on the 'Base' feature set. 
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6.4. Classification tasks 
Three classification tasks were defined in Section 3.5.1. To recapitulate and clarify the terms, the 

classification tasks are defined and will be referred to as follows: 

Classification task Classes Notation Description 

Delay existence Positive 

Negative 

1 

0 

a delay exceeding 2 minutes is predicted 

a not existing delay or a delay of maximum 2 minutes is predicted 

Delay jump Positive 

Negative 

1 

0 

a delay jump is predicted 

a not existing delay jump is predicted 

Delay change Decreasing 

Constant 

Increasing 

- 

= 

+ 

a delay is predicted to decrease by 2 or more minutes 

a delay is predicted not to change by 2 or more minutes in either direction 

a delay is predicted to increase by 2 or more minutes 

Representation of the classes is significantly disbalanced in our case as, for example, low delays 

predominating high delays and small delay changes predominating large delay changes. Reaching 

high scores in such highly frequented class is not any surprise and attention should be paid to scores 

of the less frequented class(es).  

Delay existence 
With respect to performance in predicting whether a delay will take place or not, the best performing 

feature sets are B0L1I3 and B0L1I4 if we look at the F1 score. Also the ‘All combined’ model 

reaches equal F1 score. Those are followed by B0L1P0W0I3, B0L1, and B0L0 and B0L1I5 in this 

order. An interesting observation is that weather feature sets lead to high scores in precision and 

lower scores in recall. Passenger features then show the opposite tendency. Precision in this context 

represents how many of the instances predicted to be delayed were also observed to be delayed. 

Low score in precision thus suggests that the delays tend to be overestimated. That is what the 

features reflecting passenger volumes seem to cause, because the precision scores are significantly 

worse compared to the simpler feature sets. Other than that, the precision scores are relatively equal 

among the other feature sets. As mentioned, recall noticeably drops when weather features are 

included (B0L1W0-2). That suggests delays are rather underestimated and thus some of the delays 

fall below the threshold of 2 minutes. Interestingly, low recall score is observed also with the 

B0L1P0W0I3 feature set, while it reaches the overall highest score in precision. High score in 

precision is achieved also by the ‘All combined’ model. See an overview of the scores in Table 32 

and the complete results in Table 55 in Appendix B.3.  

Comparing train interactions feature set variations with respect to the F1 score, the more complex 

versions (B0L1I0-2) perform worse than the simpler ones (B0L1I3-5). Also comparison of recall 

scores suggests the same conclusion. On the other hand, precision is higher when  B0L1I0-1 feature 

sets are used. The feature sets B0L1I2 and B0L1I5 perform worse than the alternative feature sets, 

with an exemption of recall where they perform better than the other versions. 
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Table 32 Delay existence classification task results. (Positive class; See full results in Appendix B.3, Table 55) 

Feature sets 

F1
 

Pr
ec

is
io

n
 

R
ec

al
l 

A
cc

ur
ac

y 

B L P W I 

Naïve forecast 0.586 0.462 0.798 0.898 

0     0.655 0.548 0.814 0.909 

0 0    0.659 0.551 0.819 0.911 

0 1    0.660 0.553 0.819 0.911 

0 1 0   0.657 0.552 0.812 0.910 

0 1 1   0.654 0.545 0.816 0.910 

0 1 2   0.653 0.545 0.815 0.910 

0 1 3   0.654 0.546 0.815 0.910 

0 1 4   0.653 0.545 0.815 0.910 

0 1  0  0.656 0.559 0.795 0.909 

0 1  1  0.655 0.558 0.793 0.908 

0 1  2  0.655 0.558 0.793 0.908 

0 1   3 0.665 0.559 0.820 0.912 

0 1   4 0.665 0.559 0.820 0.912 

0 1   5 0.659 0.550 0.822 0.911 

0 1 0 0 3 0.661 0.564 0.799 0.910 

All combined 0.665 0.561 0.816 0.912 
 

Feature sets 

F1
 

Pr
ec

is
io

n
 

R
ec

al
l 

A
cc

ur
ac

y 

B L P W I 

0 1   0 0.655 0.552 0.806 0.904 

0 1   1 0.655 0.551 0.808 0.904 

0 1   2 0.647 0.537 0.813 0.903 

0 1   3 0.656 0.549 0.813 0.904 

0 1   4 0.656 0.549 0.813 0.904 

0 1   5 0.648 0.537 0.815 0.903 
 

 

Delay change 
Expectedly, a more challenging task is to predict in which direction a delay will change, which is 

confirmed by the generally lower scores. Because we derived the delay change classification from 

the regression results, we did not predict directly the delay change. Instead, the classes represent 

whether the difference between the predicted and the present delay corresponds with the observed 

change or not. Referring to Table 23 in Section 4.6, decrease of delay occurs in 6.3% of the available 

observations and increase in 7%. The remaining 86.7% of observations show change of delay 

smaller than 2 minutes (in either direction). Therefore, there is a clear predominance of the ‘constant 

class’, which thus understandably scores well in this classification problem (with F1 scores around 

0.93, precision 0.98 and recall approximately 0.88). 

Low precision of a class implies decrease in recall of another class or classes. As can be seen in 

Table 33, precision of the ‘decreasing’ and ‘increasing’ classes are very low and recall of the 

‘constant’ class is significantly lower than its precision. It is likely, that if an existing delay change 

(of any direction) is not predicted correctly, it is predicted as ‘constant’. That was confirmed by an 

inspection of the data used for calculation of the metrics presented in Table 33. Especially low 

scores are reached in precision of the ‘increasing’ class. As observation of the data revealed, falsely 

predicting ‘decreasing’ class instead of the correct ‘increasing’ class is approximately twice as 

likely than vice versa. On the other hand, false predictions of observed ‘constant’ class are equally 

distributed between the two other classes. In general, predicted delay changes exceeding 2 minutes 

are with high probability actually smaller than 2 minutes, no matter the direction of the change. 

That means the predictions appear to overestimate delay changes. Predicted delay increase is 

correctly predicted only in approximately 13-16% cases and delay decrease in approximately 31-

34% cases. Contrary to that, recall scores are relatively high, showing that decrease of delay is 

correctly predicted in approximately 67-70% and delay increase in about 49-58%.  

Looking at differences among the feature sets, the highest F1 scores are reached by B0L1P0W0I3 

and the ‘All combined’ model, followed by feature sets containing train interactions features and 

weather features. In accordance with the previous classification task, passenger counts features 
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cause delay change overestimation leading to low precision and consequently F1 scores. On the 

other hand, weather features seem to have a significantly positive effect on delay change direction 

prediction, as the results of B0L1W0-2 are very comparable to the results of B0L1I3-4, which so 

far outperformed weather features. However, feature sets B0L1W0-2 lag behind in recall, especially 

in recall of the ‘increasing’ class, where they perform worse even than B0. 

Among the feature sets B0L1I0-5, the F1 and precision scores are surprisingly higher in the more 

complex feature sets (B0L1I0-2) compared to their simpler alternatives. Conversely, the recall 

scores are higher when B0L1I3-5 are used and so is the overall accuracy. Predictions by models 

using the complex feature sets (B0L1I0-2) thus are more correct with respect to delay change 

identification, while the actual delay changes are correctly predicted with a slightly higher 

probability by the simpler feature sets (B0L1I3-5). 

Table 33 Delay change classification task results. (Decreasing and Increasing classes; See full results in Appendix 

B.3,Table 56) 

Feature sets F1 Precision Recall 
Accuracy 

B L P W I - + - + - + 

0     0.422 0.217 0.309 0.135 0.667 0.551 0.868 

0 0    0.445 0.225 0.328 0.141 0.688 0.567 0.870 

0 1    0.453 0.229 0.337 0.143 0.691 0.565 0.871 

0 1 0   0.446 0.226 0.331 0.143 0.684 0.537 0.869 

0 1 1   0.427 0.215 0.310 0.133 0.687 0.554 0.869 

0 1 2   0.428 0.216 0.311 0.134 0.688 0.558 0.869 

0 1 3   0.428 0.215 0.311 0.133 0.687 0.553 0.869 

0 1 4   0.426 0.216 0.309 0.134 0.686 0.554 0.869 

0 1  0  0.457 0.241 0.345 0.159 0.676 0.501 0.868 

0 1  1  0.451 0.239 0.339 0.157 0.674 0.497 0.867 

0 1  2  0.452 0.240 0.340 0.158 0.675 0.498 0.868 

0 1   3 0.451 0.245 0.332 0.155 0.701 0.579 0.872 

0 1   4 0.454 0.245 0.336 0.156 0.698 0.575 0.872 

0 1   5 0.446 0.225 0.328 0.139 0.699 0.579 0.871 

0 1   0 0.427 0.283 0.309 0.188 0.695 0.568 0.859 

0 1   1 0.426 0.281 0.307 0.186 0.692 0.568 0.859 

0 1   2 0.405 0.253 0.286 0.161 0.696 0.587 0.859 

0 1   3 0.417 0.276 0.296 0.180 0.702 0.593 0.860 

0 1   4 0.424 0.275 0.304 0.180 0.697 0.586 0.860 

0 1   5 0.409 0.253 0.290 0.161 0.696 0.591 0.859 

0 1 0 0 3 0.455 0.253 0.342 0.167 0.681 0.521 0.868 

All combined 0.460 0.250 0.343 0.160 0.698 0.574 0.871 

 

Delay jump 
As was defined in Section 3.5, delay jump is a delay change equal to or exceeding 4 minutes, 

regardless direction of the change. According to that, delay jump can be observed in less than 3% 

of instances in the full dataset. That implies considerable disproportionality to the opposing class, 

which reaches equal scores across all the feature sets (F1 score 0.991, precision 0.999 and recall 

0.984). Performance of the prediction with respect to this classification naturally cannot outperform 

combined prediction of the ‘decreasing’ and ‘increasing’ class above. Precision scores are therefore 

unsurprisingly low, predicting a delay jump correctly only in approximately 4-5% of the cases a 

delay jump is predicted. On the other hand, existing delay jumps are correctly predicted in about 

37-47% of the cases. That means, delay jumps are highly overestimated, or in other words, delay 
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changes are predicted to excess the threshold of a 4-minutes change. Inspection of the results 

revealed that approximately 10 times more delay jumps were predicted than were actually observed. 

Accordingly to the results of the ‘delay change’ task, the highest F1 scores are reached by feature 

sets B0L1, B0L1I3-4 and B0L1W0. The latter feature set reaches the highest precision score, 

however, lags behind in recall and the overall accuracy. The most complex feature set B0L1P0W0I3 

does not reach the highest performance especially due to poor recall. Contrary to that, the very 

highest recall score is attained by the ‘All combined’ model what contributes to the highest 

measured F1 score. 

Table 34 Delay jump classification task results. (Positive class; See full results in Appendix B.3, Table 57). 

Feature sets 

F1
 

Pr
ec

is
io

n
 

R
ec

al
l 

A
cc

ur
ac

y 

B L P W I 

0     0.072 0.040 0.390 0.982 

0 0    0.083 0.046 0.442 0.983 

0 1    0.090 0.050 0.449 0.983 

0 1 0   0.084 0.047 0.405 0.983 

0 1 1   0.072 0.039 0.412 0.983 

0 1 2   0.071 0.039 0.411 0.983 

0 1 3   0.073 0.040 0.418 0.983 

0 1 4   0.071 0.039 0.409 0.983 

0 1  0  0.090 0.051 0.379 0.982 

0 1  1  0.089 0.050 0.390 0.983 

0 1  2  0.086 0.049 0.372 0.982 

0 1   3 0.090 0.050 0.470 0.983 

0 1   4 0.090 0.050 0.457 0.983 

0 1   5 0.087 0.048 0.473 0.983 

0 1 0 0 3 0.088 0.050 0.393 0.982 

All combined 0.091 0.050 0.476 0.983 
 

Feature sets 

F1
 

Pr
ec

is
io

n
 

R
ec

al
l 

A
cc

ur
ac

y 

B L P W I 

0 1   0 0.065 0.036 0.356 0.980 

0 1   1 0.063 0.035 0.361 0.980 

0 1   2 0.051 0.027 0.352 0.980 

0 1   3 0.057 0.031 0.393 0.980 

0 1   4 0.052 0.028 0.374 0.980 

0 1   5 0.055 0.030 0.373 0.980 
 

 

Summary of classification tasks results 
The three derived classification tasks we explored gave us additional information about the 

prediction quality. First, we tested whether solely existence of a delay in the future exceeding 2 

minutes is correctly identified or not. Overall, about 79-82% of future delays were predicted and 

approximately 54-56% of predicted delays actually happened. Selecting the best performing feature 

sets based on the F1 score, those would be B0L1I3, B0L1I4 and ‘All combined’ model followed 

by B0L1P0W0I3 and B0L1. Passenger volumes features seemed to cause delay overestimation (at 

least around the threshold of 2-minutes delay) while weather features did vice versa. 

Next, we assessed whether the change of delay between the predicted and the present delay 

corresponds with the observed delay change. The three classes to represent this problem were 

defined as either delay increase or decrease by 2 or more minutes and a constant delay. Delay 

decrease turned out to be correctly predicted with a higher probability, approximately in 67-70% 

cases, compared to 50-58% of correctly predicted cases of delay increase. Similarly, predicted delay 

decrease was correct in about 31-35% cases, while predicted increase only in about 13-16%. False 

predictions of the two classes in most cases fall to the ‘constant’ class with respect to both precision 

and recall. Nevertheless, delay change falling to ‘decreasing’ class instead of ‘increasing’ class was 

approximately twice as likely than vice versa. False predictions of observed ‘constant’ class were 

equally distributed between the two other classes. Generally, the predictions tend to overestimate 

delay changes. Finally, selection of the best performing feature sets according to the F1 scores 
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yields choice of B0L1P0W0I3 and the ‘All combined’ model, followed by B0L1I3-4 and B0L1W0-

2. 

Eventually, the predictions were examined with respect to correct predictions of large delay 

changed of 4 minutes or more. Such delay changes are correctly predicted in approximately 37-

47% of cases. Conversely, predicted delay jumps are actually observed in only about 4-5%. Large 

delay changes are therefore to a great extend overestimated. Considering the F1 scores of this task, 

the best performing feature sets are B0L1, B0L1I3-4 and B0L1W0, and the ‘All combined’ model. 

In summary, the predicted delay change tends to be overestimated with respect to the defined 

thresholds of 2- and 4-minutes delay change. Over- and underestimation of the delay length 

affecting delay existence prediction can be seen in Figure 32. Delay change, however, does not 

necessarily correspond with that. Performance with respect to delay change therefore could not be 

directly retrieved from the regression results and thus the derived classification tasks provided us 

with additional information about the predictions performance. Finally, the best performing feature 

sets repeated throughout the three tasks, although with slight nuances. Nevertheless, the best 

performing feature sets in the three tasks were B0L1I3, B0L1I4, B0L1, B0L1P0W0I3 and the ‘All 

combined’ model.  Finally, with respect to the delay change related tasks, the feature set B0L1W0, 

and possibly also B0L1W1 and B0L1W2, showed a significant positive effect on the precision 

scores. 

6.5. Features importance 
Metrics selection 
In recapitulation, there are three feature importance metrics defined and provided with the XGBoost 

library (XGBoost Developers, 2016c). Those are weight, cover and gain as defined in Section 3.5.1. 

Shortly, weight represents the number of splits the feature was used for across all the trees, cover 

is the average number of times the splits on the feature were used, and gain is the average gain in 

the objective value on the feature’s splits. In other words, gain reflects the features’ contribution to 

the objective’s improvement. It therefore is an important metrics that relatively directly reflects the 

features’ importance in the model and is thus elaborated on in detail. In contrary to that, weight is 

rather an informative metrics than a metrics suitable for evaluation of the features’ importance. The 

total number of splits in a tree is limited by the maximum depth defined in the hyperparameters, 

and the total number of splits in a model is limited by the number of trees in the model. 

Consequently, more features in a model mean more features to ‘distribute’ the splits among. The 

features are selected in order to maximize gain at every split. A feature used for a split earlier in the 

tree perhaps brings higher gain but can appear on less splits than if used on the levels closer to the 

leaves and therefore attains lower scores on weight. On the other hand, a feature used close to the 

leaves likely brings less gain but can be used on more splits. A feature with a high score in weight 

therefore might have been used for splits close to the leaves, due to its lower contribution to the 

objective. Finally, cover says how many times the splits on the respective feature were actually 

used for the model’s development.  

Presenting the scores individually for each model and train series is unreasonable and the average 

scores across the series are presented instead. However, the scores are dependent on the tree depth 

and the number of trees which both were variables that differ among the individual models. 

Therefore, to reduce the effects of these differences the scores were scaled to the highest score 

within each model (for every train series separately). The scores therefore represent average relative 

importance of the features. An interested reader can find all the scores in the Appendix 0. Scores 

of gain are presented also in Table 35 - Table 37 as they are commented on. 

Disclaimer:  Due to practical issues with results processing, feature importance metrics were not retrieved for 
feature sets B0L1I0-2 and B0L1P0W0I3. 
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Gain 
Throughout the results, the present delay (‘Delay’) clearly reaches the highest scores in gain 

between 0.97 and 1.0, which means that the feature brings the most gain in a vast majority of the 

individual models, and especially when more features are present. In the B0 feature set, the leading 

feature is the direction (‘Direction’), and in the B0L0-1 feature set, the features with a considerably 

high gain were also the hour (‘Hour’), the upcoming departure locations feature (‘L0 / L1: V’) and 

the upcoming pass-through locations feature (‘L0 / L1: D’). 

The remaining features have a rather supplementary role in the gain maximization. The next feature 

with relatively high scores in gain is the previous delay (‘Delay_1before’) scoring between 0.31 

and 0.40. The following features such as the direction, a delay two locations back (‘Delay_2before’) 

and upcoming locations identification (‘L0 / L1: V’, ‘L0 / L1: K_V’, ‘L0 / L1: D’) then score 

between 0.1 and 0.2. However, when passenger counts or weather conditions are introduced, scores 

of the upcoming locations identification drop to or below 0.1. Train interactions do not cause such 

a drop. Nonetheless, the features of the B0 feature set show relatively stable importance across all 

the feature sets combinations. That is also due to the fact that it is always the present delay that 

reaches the highest gain and the remaining features of the set always score proportionally 

approximately equally.  

Table 35 Gain scores of 'Base' and 'Locations' features. 
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B0 0.05 0.11 0.17 0.97 0.07 0.08 0.31 0.10    
B0L0 0.05 0.08 0.14 0.99 0.08 0.06 0.40 0.12 0.14 0.12 0.13 

B0L1 0.05 0.07 0.14 0.99 0.08 0.06 0.40 0.12 0.14 0.11 0.12 

B0L1P0 0.05 0.07 0.13 0.99 0.08 0.06 0.33 0.11 0.13 0.10 0.12 

B0L1P1 0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 

B0L1P2 0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 

B0L1P3 0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 

B0L1P4 0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.10 

B0L1W0 0.05 0.06 0.11 1.00 0.07 0.06 0.31 0.09 0.10 0.08 0.10 

B0L1W1 0.05 0.06 0.11 1.00 0.07 0.05 0.38 0.11 0.10 0.09 0.10 

B0L1W2 0.05 0.06 0.11 1.00 0.07 0.05 0.35 0.11 0.10 0.08 0.10 

B0L1I3 0.04 0.07 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 

B0L1I4 0.04 0.06 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 

B0L1I5 0.04 0.07 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 

 

Assessing the additional features, the upcoming locations identification features score relatively 

high (between 0.08 and 0.14) compared to the other features. Slightly higher scores are observed 

on the upcoming departure locations (‘L0 / L1: V’) followed by the upcoming pass-through 

locations features (‘L0 / L1: D’). All the features reflecting passenger counts (‘Pax_Total_1-4’, 

‘Pax_Board_1-4’, ‘Pax_Alight_1-4’), the seats ratio (‘seats_ratio’) or the peak hour (‘peak_dep’) 

score comparably (0.04 or 0.05) although the relative gain of the peak hour decreases when the 

passenger counts features are included. That is understandable as the peak hour is partially implicit 

in the passenger counts features. The relative average gain of the features representing weather 

conditions resembles the scores of the passengers-related features, varying between 0.03 and 0.06. 

The highest score of 0.06 is obtained by the precipitation (‘Precp’) and temperature (‘Temp’), 

followed by the wind, view distance, rain and bad weather identification (‘Avgwind’, ‘Highwind’, 

‘View’, ‘Rain’, ‘BadWeather’) scoring 0.05, and by the snow, storm, ice, and mist features (‘Snow’, 

‘Storm’, ‘Ice’, ‘Mist’) scoring 0.04 or 0.03. Finally, the average relative gain of the train interactions 

features shows that the features representing interactions with empty rolling stock (‘LM’) are utterly 
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powerless (scores of 0.00), and that identification of interactions with IC trains (‘IC’) scores 

relatively higher than interactions with SPR trains (‘SPR’) by scores of 0.04 or 0.05 compared to 

0.03 and 0.04 respectively.  

Table 36 Gain scores of 'Passengers' features. 
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B0L1P0 0.05 0.05    
B0L1P1 0.05 0.04 0.05 0.05 0.05 

B0L1P2 0.04 0.04 0.05 0.04 0.04 

B0L1P3 0.05 0.04 0.05 0.04 0.05 

B0L1P4 0.05 0.04 0.05 0.05 0.05 
 

Table 37 Gain scores of 'Interactions' features. 

 IC SPR LM 

B0L1I3 0.04 0.03 0.00 

B0L1I4 0.05 0.04 0.00 

B0L1I5 0.03 0.03 0.00 
 

 

Table 38 Gain scores of 'Weather' features. 
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B0L1W0 0.05 0.05 0.06 0.06        
B0L1W1 0.05 0.05 0.06 0.06 0.05 0.03 0.05 0.04 0.03 0.03  
B0L1W2 0.05 0.05 0.06 0.06 0.05      0.05 

 

The average relative gain scores need to be interpreted in the context of the relevant feature set. 

However, to provide a comprehensive summary, average scores were calculated for each feature 

and those were ordered from the highest to the lowest (see Table 39). The order gives an idea of 

the features’ contribution to the objective although regardless the specific variations of the features 

that were created. The variations were disregarded for this overview as there were no major 

differences observed. 

Table 39 Average scores of the features’ importance: Gain. 

Feature 
Average 

Score Feature 
Average 

Score Feature 
Average 

Score 

Delay 0.99 Minutes 0.06 DOW 0.05 

Delay_1before 0.37 Temperature 0.06 Pax_Board 0.05 

Direction 0.12 View 0.05 Peak hour 0.04 

L0 / L1: V 0.12 Average wind speed 0.05 IC 0.04 

Delay_2before 0.11 Highest wind speed 0.05 Snow 0.04 

L0 / L1: D 0.11 Rain 0.05 Storm 0.03 

L0 / L1: K_V 0.09 Bad Weather 0.05 Mist 0.03 

Hour 0.07 Pax_Total 0.05 SPR 0.03 

Location_nr 0.07 Seats_ratio 0.05 Ice 0.03 

Precipitation 0.06 Pax_Alight 0.05 LM 0.00 

 

6.6. Visualization 
All the tested feature sets were assessed by quantitative metrics, which provided us with means to 

compare the models’ performance objectively and on a relatively detailed level. To understand the 
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results from a more practical perspective and to develop a mental image of the predictions’ 

behavior, several visualizations were created. First, the predicted and observed development of 

delays was visualized for which a set of four random trips of two train series were selected. The 

delays registered along those trips in time are depicted int Figure 33 (blue dotted line), along with 

the prediction of the final XGBoost model built on the B0L10I3 feature set prediction (solid green 

line) and the Naïve forecast (red dashed line). The B0L10I3 feature set was selected as a 

representation of the best performing feature set, which will be argued in the following section 

(6.7). As the prediction is available only from 20 minutes after the trips’ beginning, the first 20 

minutes of the trips are not depicted. It is possible to observe the delay underestimation originating 

from the nature of the Naïve forecast rigorously assuming the delays’ decrease. Our prediction 

follows the line of the registered delay more closely although it is possible to see that there is a lag 

of approximately 20 minutes, which shows the ultimate importance of the present delay in the 

prediction (this is visible the best in the bottom right figure) 

 

Figure 33 Delay development visualization. 

The prediction and its errors distribution, and the delay length distribution can be seen in Figure 34 

- Figure 39, showing the predictions by the Naïve forecast and the XGBoost models based on the 

B0 feature set and the finally selected B0L1I3 feature set. Figure 34, Figure 36 and Figure 38 show 

the full range of delays with a precision of 1 minute  while Figure 35, Figure 37 and Figure 39 zoom 

in to delays on the interval between -5 and +15 minutes with a precision of 0.25 minute. The color 

range illustrates the number of observations belonging to the relevant pixels of the heatmap, where 

the x-axis is the registered delay and the y-axis is the predicted delay.  
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Figure 34 Heatmap of the true and predicted delay: Naive 

prediction; Full scale 

 
Figure 35  Heatmap of the true and predicted delay: Naive 

model; High resolution (0.25min); delays between -5 and 

+15 minutes 

 
Figure 36 Heatmap of the true and predicted delay: “Base” 

model; Full scale 

 
Figure 37  Heatmap of the true and predicted delay: “Base” 

model; High resolution (0.25min); delays between -5 and 

+15 minutes 

 
Figure 38 Heatmap of the true and predicted delay: 

“B0L1I3” model; Full scale 

 
Figure 39 Heatmap of the true and predicted delay: 

“B0L1I3” model; High resolution (0.25min); delays 

between -5 and +15 minutes 

Comparing the Naïve forecast and the basic XGBoost model, there is a clearly visible shift from 

the periphery towards the diagonal which is emphasized in the central area around the most frequent 

delays. Especially the area of negative predicted delays below the diagonal shows a significant shift 

towards reduction of underestimated delays. In the more detailed Figure 35, it is also possible to 

see the effect of the assumed 1-minute delay reduction, as there is a dark line just below the diagonal 

representing a set of observations that were underestimated by the 1 minute. All of the figures reveal 

an increased underestimation of delays just exceeding 2 or 3 minutes and a number of delays of any 
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length that were predicted to be 0 minutes or nearly so. The assumption is that those are delays that 

were just registered and were not projected in the feature representing the present delay. 

The shift in the numbers of observations in the confusion matrices behind the heatmaps is depicted 

in Figure 40 - Figure 43. The first two figures depict the shift from the Naïve forecast to the basic 

XGBoost model (B0 feature set), and the other two figures then show the shift from the basic 

XGBoost model to the final XGBoost model. Figure 40 depicts the difference in the number of 

observations falling to the individual cells of the matrix. Figure 41 then depicts the percentage this 

difference makes in the number of observations in the results of the basic XGBoost model. 

Especially the shift of the underestimated delays from below the diagonal is clearly visible. In 

Figure 41 the shift from the periphery along the diagonal is visible in the range up to approximately 

7 minutes of  delay. Furthermore, the decrease of falsely predicted negative delays is apparent and 

so is a shift in the predictions of the larger delays between 10 and 15 minutes, although there is no 

clear observable pattern. 

 
Figure 40 Heatmap of the shift of the counted true and 

predicted delay pairs: Comparing the Naive and the 
“Base” model (B0 featire set); High resolution (0.25 

min); delays between -5 and +15 minutes 

 
Figure 41 Heatmap of the shift of the counted true and 

predicted delay pairs in %: Comparing the Naïve and the 

“Base” model (B0 featire set); High resolution (0.25 

min); delays between -5 and +15 minutes 

The evaluation metrics did reveal an improvement by the final model compared to the basic model. 

Figure 42 displays the improvement in a more comprehensible way as it clearly shows a shift of a 

number of observations closer towards the diagonal. The number of those observations is relatively 

low in that region and therefore the change does not get depicted in Figure 43, which shows mainly 

shifts in the periphery due to the total lower number of observations there. Nevertheless, there is a 

visible improvement in the prediction by the final XGBoost model compared to the basic model. 
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Figure 42 Heatmap of the shift of the counted true and 

predicted delay pairs: Comparing the “Base” and the 

“B0L1I3” model; High resolution (0.25 min); delays 

between -5 and +15 minutes 

 

Figure 43 Heatmap of the shift of the counted true and 

predicted delay pairs in %: Comparing the the “Base” and 

the “B0L1I3” model; High resolution (0.25 min); delays 

between -5 and +15 minutes 

6.7. Summary 
The quality of the delay predictions done using the XGBoost model and a variety of feature sets 

were assessed from many perspectives to deeply analyze the predictions and develop understanding 

of its behavior. First, we shortly presented results of the XGBoost hyperparameters tuning. 

Although the hyperparameters are not necessarily directly relevant to the prediction results, it is an 

important component which contributes to the models’ performance and it is an essential matter for 

the research’s reproducibility. Next, we presented the core performance indicators derivable from 

regression results, RMSE and the related metrics. That was followed by the discretized prediction 

performance analysis, the derived classification tasks and finally feature importance assessment. 

Eventually, visual representation of the results was provided. All the performance indicators helped 

us to answer the final four research sub-questions. 

Research sub-question(s) to be answered: 

7. What is the performance of the feature sets relatively to each other and to the reference model? 

8. What is the importance of the features within the feature sets? 

9. What features/feature sets have the highest/lowest potential in delay prediction? 

10. What is the forecast potential of the highest performing feature set(s)? 

The results revealed that the highest improvement of performance comes from the basic feature set 

(‘Base’ or B0). That is mostly due to the feature representing the present delay which was found to 

bring the very highest gain in the objective. The basic feature set also contains other features that 

score high in the features’ importance: the delays observed at the preceding registration points, the 

direction, hour and location identification, respectively. Next to those, the features representing the 

upcoming locations (feature sub-set L0 and L1) scored comparably high. That is in line with the 

observed prediction results as the feature sets B0L0 and especially B0L1 reached some of the 

highest scores in all the applied performance indicators.  

Despite low scores in the features’ importance scoring, train interaction features (creating feature 

sets B0L1I0-5 and B0L1P0W0I3) brought another significant improvement of the predictions, 

bringing the predictions to the highest scores with respect to all the performance indicators. 

Importantly, the improvement in the prediction performance was observed although the main 

comparison was done with the simpler versions of the train interactions features: based on train 

type instead of the more detailed feature sets based on train series (feature sets B0L1I3-5). 

Comparison of all the train interactions feature sets B0L1I0-5, done on the results of the models 

built for the subset of train series, revealed there might be space for further improvement of the 

predictions when the more complex feature sets are used. However, that is only due to the positive 
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effect of those features on delay jump prediction where the feature sets B0L1I0-3 outperformed 

B0L1I3-5. As the delay jump is the most troublesome task, it is a viable and important 

improvement. On the other hand, the simpler versions (B0L1I3-5) performed better in all the other 

tasks, although the differences were slight. Regardless the features’ complexity, the feature sets 

reflecting expected headway and expected violated headway scored both well, while the binary and 

quasi-binary identification of potential interactions scored lagged behind the alternative feature sets. 

The features reflecting either passengers or weather conditions surprisingly did not bring as 

significant improvement, although there were certain slight improvements observable in some of 

the evaluation metrics. That was the case especially of the weather conditions, specifically the 

feature set B0L1W0. The B0L1W0-2 features had a significantly positive effect on delay change 

direction prediction although the feature sets lagged behind in recall, especially in recall of the 

‘increasing’ class, where they performed worse even than the very basic feature set B0. B0L1W0 

also appeared among the top performing feature sets with respect to delay jump prediction. 

Out of the passengers feature sets, the simplest one (B0L1P0) performed the best, likely due to the 

seats ratio feature as was revealed in the features’ importance analysis. Only negligible differences 

were observable among the other passengers feature sets variations (B0L1P1-4). Nevertheless, all 

the variations lead to deterioration of the results compared to the simper predecessor, the feature 

set B0L1. The features therefore caused confusion of the model instead of provision of useful 

information. Yet, in attempt to involve a representation of each feature category, also passengers 

features were chosen for the most complex feature set B0L1P0W0I3. Passengers features were 

represented by the simplest feature sub-set (P0) and similarly were the weather features (W0). The 

train interactions features could be represented by the simple sets only due to computational 

limitations. Out of those, it was the features exhibiting the expected headway to the first train 

belonging to the respective train type category that was selected (I3). Although this complex feature 

set performed relatively well, it did not outperform the feature set B0L1I3 which was thus selected 

as the final best performing feature set. It consisted of the following features: 

 ‘Base’ sub-set: Day of the week, Hour, Minute, Location, Direction, Current delay, 

Delay one and two registration points before 

 ‘Locations’ sub-set version 1: Total frequency of departures, short departures and pass-

through points 

 ‘Interactions’ sub-set version 3: Expected headway to the first IC, SPR and LM  train 

Finally, the results largely varied among the individual train series. Every one of the feature sets 

performed the best for at least on train series. Some differences were negligible while some were 

substantially different. Implementation of such large variety of different models and features would 

significantly increase complexity of the application. Nevertheless, the best performing model 

(based on RMSE) of each train series was selected and the results were combined. Understandably, 

the overall results performed better in all the performance indicators compared to the other feature 

sets, including the finally selected feature set B0L1I3.  
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7. Conclusion and Discussion 
In the beginning of our work, we discovered a research gap in 1) application of a gradient boosting 

decision trees-based model for delay prediction in passenger railways, 2) inclusion of passenger 

counts data in a passenger trains delay prediction and 3) combination of the three factors we 

incorporated (weather condition, passenger counts and train interactions) in the passenger railways 

delay prediction problem (see Section 1.1.2). Upon that, we defined an objective for our research: 

to define and evaluate sound feature sets reflecting effects of passenger counts, weather conditions 

and train interactions on passenger trains delays, which are to be used along with features derived 

from data available in the RAS competition (INFORMS, 2018e) to forecast the passenger trains’ 

delays 20 minutes to the future. Effects of the individual features and their combinations are to be 

reflected upon (see Section 1.2). 

Our work was carried out as a case study in cooperation with a passenger railway operator of the 

Netherlands, NS, and with support of the railway network manager in the Netherlands, ProRail. We 

used historical data from September 2017 to December 2017 to develop our models and test their 

performance. The data consisted of several datasets: planned timetable, realization data (AVL data), 

minimum required headways, passenger counts estimations and weather conditions measurement 

data. The data were used to derive features which were input to a delay prediction model based on 

the gradient boosting model XGBoost (T. Chen & Guestrin, 2016). The features were combined 

into a variety of feature sets of which the models’ results were compared to the currently applied 

delay prediction method and among each other.  

The starting point of our research was largely determined by research of  Van den Bulk et al. (2018) 

who’s study served as a benchmark for assessment of submissions to a competition that was 

announced by NS and ProRail within the RAS problem solving competition (INFORMS, 2019b) 

in 2018. Models proposed by Van den Bulk et al. and the two winning teams (Hellsten et al., 2018; 

Nabian et al., 2018) belonged to the same category: machine learning. The reccommended methods 

were either decision tree ensemble methods or neural networks. Highly comparable results did not 

favor any of the methods until findings of Van der Hurk (2019) lead to an inclination towards 

decision tree based methods. To closely build on work of Van den Bulk et al., we opted for the 

decision tree based gradient boosting method XGBoost they proposed, which was supported by the 

fact that the method has not been used for delay prediction in railway neither public transport yet. 

We focused on effects of the various features we introduced on the predictions’ quality. The results 

were compared among all the introduced feature sets and between the closely related feature sets 

for the relative performance assessment, and to the currently applied method, called Naïve forecast, 

for an absolute performance assessment.  

In the following section (7.1), we guide the reader through the research sub-questions that gradually 

navigated our research towards discovery of an answer to the main research question, which is 

presented and answered in the end of section. Next, in Section 7.2, we discuss our research results 

and bring them into context with theory and literature. That is followed by a critical evaluation of 

our method in Section 7.3 and, finally, we list some recoommendations for further research in 

Section 7.4.  

7.1. Conclusion: answers to the research questions 
Our research sub-questions were formulated to guide our research from theory, through the 

application environment (the system and available data) to the model development and finally 

results evaluation. All the questions were answered in a broader context in summaries of the 

relevant chapters. Hereby, we present only the essential components of the answers instead. 
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1. Why and how should the defined factors be included in the delay prediction model? 

The literature study revealed that all the three factors: passenger volumes, weather conditions and 

train interactions, play an important role in the railway system and can cause situations leading to 

train delay development. Thus, inclusion of the factors may indicate a higher probability of delay 

source presence or development. The form of the factors’ inclusion in the model is determined by 

the model’s nature. Therefore, the factors are defined in a form of features combined into feature 

sets. The passenger volumes were decided to be represented by a number of passengers scaled with 

respect to a certain representative number of passenger, which was inspired by research of Olsson 

& Haugland (2004). Weather condition data do not require any modifications and are directly 

retrieved from historical weather observations data. Finally, train interactions, which were subject 

of large amount of research in a wide variety of forms, are formulated upon inspiration gained from 

Carey & Kwieciński (1994), who emphasized the role of minimum headways between two 

consecutive trains, and Huisman & Boucherie (2001), who highlighted criticality of operations 

combining various train types. Combined with the type of train interactions data available for our 

research, the trains interactions are defined in a form of an expected headway (updated by the 

registered trains’ delays) and its derivatives with respect to the train types. 

2. What are appropriate key performance indicators considering the model’s characteristics? 

Multiple performance indicators were selected to provide us a variety of perspectives for the results 

assessment. The first group of performance indicators arises from the prediction task selection: 

regression. The first performance indicator is thus RMSE, because the algorithm in the model-

building process evaluates the intermediate steps by this metrics. That is accompanied by MSE 

along with its confidence intervals. The other performance indicators were derived from those used 

in the RAS competition (INFORMS, 2019b): weighted RMSE and classification tasks performance 

metrics (accuracy, precision, recall and F1 score). For use of those, the regression results are 

transformed to a suitable form corresponding with the classification tasks defined in the RAS 

competition (delay jump and delay change) (INFORMS, 2019b) complemented by delay existence 

identification inspired by research of Fioole (2018b). Finally, assessment of the individual features’ 

contribution in the models is done using feature importance indicators provided in the XGBoost 

library (XGBoost Developers, n.d.). 

3. How can/must the data representing the factors be modified to be used as features in the models expectedly 

maximizing their contribution to the model’s performance? 

The train interactions data were transformed into features in the form of an expected headway and 

its derivatives. For every train, a set of potential interactions (due to sharing a part of the physical 

infrastructure) with other trains within the upcoming 20 minutes was defined together with 

identification of the involved trains. The planned headways and the minimum required headways 

were retrieved and updated by the delays of the involved trains. For every involved train series, 

only the first interaction was stored. The features were then defined per train series and per train 

type category. The passenger data could be directly used as a feature, however, scaling to reflect 

abnormalities rather than the total counts was opted for (as argued in Section 2.4.3). The selected 

scaling reflects various categories which may indicate the abnormalities with respect to the train 

number or series, location, day of the week or direction. The weather data did not require any 

transformation and could be directly used as features for the model. The only exception was the 

binary identified weather conditions, which were also transformed into a sum representing a 

presence of bad weather conditions. 

4. Is there an observable relationship between the included factors and train delays? 

The main pattern discovered by analysis of the train interactions features with respect to the future 

delay and delay change (delay change as the present delay is included as a feature on its own) 

showed a decreased probability of a delay reduction when the expected headway or expected 

violated headway reach certain periodical thresholds. Significance of the pattern varied among the 

pairs of interacting trains and train types. It was assumed that inclusion of the features could have 

a positive impact on overly optimistic predictions forecasting delay decrease, although with a 
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different notability for the various train series. Concerning the passengers-related features, there is 

an observable increase in probability of existence of larger delays when the realized capacity is 

smaller than the planned capacity was. The relation between the delay change and the number of 

passengers or the scaled numbers of passengers yields a tendency of a decreased delay change in 

either direction with an increasing (or in a smaller extent also a decreasing) number of passengers. 

Although the differences among the features’ versions appear to be negligible, we proceeded with 

all of them to the modelling part to confirm or deny this hypothesis. Finally, the weather features 

were paired with the corresponding delay changes and analyzed. It showed an increase in delay 

growth when high wind speed was measured, decreased delay change with an higher levels of 

precipitation and decreased delay change with larger deviation of the temperature from the most 

frequently observed temperature. The binary identified weather conditions were present rather 

sparsely, except for the rain and mist. Presence of mist did not seem to have a significant impact on 

the delay change, but presence of rain suggested increase in delay and so did presence of snow and 

storm. 

5. What are sound feature sets? 

The features were grouped into feature sub-sets by the category they were affiliated with (e.g. 

passenger volumes) and their version. Those feature sub-sets are to be combined into a number of 

feature sets, where the number of feature sets was highly dependent on feasibility of the study due 

to time and computational limitations. All of the feature sets contain the ‘Base’ sub-set which 

matches the basic feature set of Van den Bulk et al. (2018). That is accompanied by the ‘Locations’ 

features indirectly representing likeliness of delays induced by busyness of the upcoming network 

section. Those feature being derived from the timetable as the ‘Base’ was, they become a permanent 

part of the basic set in the further expansion. Next, all the versions of the feature sub-sets of the 

remaining categories are individually added. The best performing version of each category is to be 

selected and those combined into a complete feature set consisting of sub-set from all the categories. 

6. What is a sound model structure including parameter tuning? 

An algorithm was developed to build a model for each train series separately, which was done 

following research of Van den Bulk et al. (2018). As the hyperparameters optimization is a time-

consuming step, it is performed only once for each feature set: optimized on the first in order train 

series. A set of the best performing hyperparameters combinations is then used as a set of candidates 

for the remaining train series. The hyperparameters tuning is done using a training and validation 

set. The final model is trained on the train set and a prediction is made on the test set.  

7. What is the performance of the feature sets relatively to each other and to the reference model? 

The highest improvement of performance comes from the basic feature set (B0), which, compared 

to the Naïve forecast, decreases the RMSE from 1.99 to 1.52, and decreased width of the MSE 95% 

confidence interval by 25%. The features representing the upcoming locations in the feature sub-

sets L0 and L1 further decreased the RMSE by 0.01 and 0.02 respectively (RMSE 1.50 and 1.49). 

The passengers features added to the B0L1 feature set caused increase of the RMSE by 0.01 or 0.02 

and so did the weather features. The train interactions features on the other hand caused an 

improvement by decreasing the RMSE by 0.01 (RMSE 1.48), except for the last version (I5) which 

did not change the RMSE but shifted the MSE 95% confidence interval by -0.01. Comparing 

differences between all the train interactions (tested on a subset of train series), the lowest RMSE 

is reached with version I3 and I4, followed by I5 with the RMSE higher by 0.01, I0 and I1 with an 

additional increase of the RMSE by 0.01 and finally I2 with another increase by 0.01 on the RMSE. 

Finally, the feature set consisting of feature sub-sets of all the categories is burdened by a RMSE 

of 1.50. Results of the underlying individual models built for the separate train series largely vary 

among the feature sets and train series and every feature set performs the best for at least one train 

series. Nevertheless, the most frequently best-performing feature sets contain train interactions 

features and/or weather features. Performance of the feature sets with respect to the remaining 

performance indicators follows relatively the same pattern. However, weather features bring an 

improvement in delay change and delay jump prediction, especially in the prediction precision. 
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8. What is the importance of the features within the feature sets? 

The features were assessed by a feature importance metric called gain, which was then scaled to 

the highest observed value in the respective model. The present delay reached the highest scores in 

gain in a vast majority of the individual models. Next highly scoring features were the direction, 

hour, the upcoming departure locations and the upcoming pass-through locations feature and the 

previous delays. However, considering the predictions’ performance results, the feature sets 

including train interactions features achieved the highest scores and thus the features must have a 

significant and positive impact on the prediction. Comparison of performance among the respective 

feature set variations, the binary and the derived quasi-binary versions (sum of the underlying 

binary features) are significantly outperformed by those representing expected headways and 

expected violated headways. Preference between those two is not so straightforward and the 

differences are rather negligible, although with a slight preference towards the first version. 

Comparison of the features being defined per train category or train series also shows rather small 

nuances, however, the latter case features have a positive impact on delay jump prediction, which 

is a viable argument in their favor. Finally, the weather features showed a positive impact on 

precision of prediction of delay change direction and delay jump. That means, the features inclusion 

resulted in smaller expected delay changes, which on the other hand lead to overestimation of the 

delay changes and decreased recall. Nevertheless, judgement of its benefit depends on subjective 

preferences. Supposedly the impacts are viable, it is likely the precipitation, temperature, view 

distance, wind speed and rain and bad weather identification that has the largest impact. 

9. What features/feature sets have the highest/lowest potential in delay prediction? 

In reference to the two preceding questions, the best performing feature set in our research consists 

of the basic sub-set, the locations sub-set version 1 and train interactions sub-set version 3 (B0L1I3). 

That implies the feature set is composed of the following individual features: 

  ‘Base’ sub-set: Day of the week, Hour, Minute, Location, Direction, Current delay, 

Delay one and two registration points before 

 ‘Locations’ sub-set version 1: Total frequency of departures, short departures and pass-

through points 

 ‘Interactions’ sub-set version 3: Expected headway to the first IC, SPR and LM train 

In addition to that, some features from the other categories have a potential in delay prediction and 

those are certain weather conditions features, especially precipitation and temperature, possibly also 

view distance, wind speed and rain or bad weather identification. 

10. What is the forecast potential of the highest performing feature set(s)? 

Compared to the Naïve forecast, the feature set B0L1I3 (see the preceding questions) brings an 

improvement in the RMSE of 0.51, thus the RMSE changes from 1.99 to 1.48, or likewise the MSE 

changes from 3.94 to 2.20. The MSE 95% confidence interval shifts from [3.90, 3.98] to [2.17, 

2.23]. The feature set reaches the lowest RMSE by 29% of train series, which is the highest share 

among the feature sets. With respect to delay existence prediction, the F1 score of the Naïve forecast 

is 0.586, while the selected feature set reaches a score of 0.665. Also the precision score shows an 

improvement (from 0.462 to 0.559) and so does the recall (from 0.798 to 0.820) and accuracy (from 

0.898 to 0.912). Delay change and delay jump prediction was not evaluated for the Naïve forecast 

due to its nature of rigorously ‘predicting’ delay decrease by 1 minute. Nevertheless, the F1 scores 

of the decreasing and increasing classes of delay change prediction by the finale feature set are 

0.451 and 0.245, respectively. Recall scores of the classes are 0.332 and 0.155, respectively, and 

precision scores 0.701 and 0.579 in the corresponding order. The F1 score of delay jump prediction 

then is 0.090 with precision of 0.050 and recall 0.470. 

The research sub-question had led us throughout the entire process towards the climax of our work, 

the conclusion formulated as an answer to the main research question, which was formulated as 

follows: 
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Research question 

What is the performance of passenger trains’ delays forecast 20 minutes to the future if a machine learning model, 

built on previous research by NS and extended by passenger and weather data and offline identified and online 

updated train interactions, is used, and how do these factors contribute? 

In a close reference to the questions answered above, the best performing model was not the one 

built on the most complex feature set consisting of features from all the categories. The most 

complex feature set (B0L1P0W0I3 consisting of feature sub-sets base, locations v.1, passengers 

v.0, weather v.0 and interactions v.3, see the feature sub-sets description in Section 5.1) was 

burdened by a RMSE 1.50 (correspondingly by a MSE 2.25 with a 95% confidence interval [2.21, 

2.28]) and RWMSE 1.36, while the finally selected feature set (B0L1I3 consisting of feature sub-

sets base, locations v.1and interactions v.3) reached RMSE 1.48 (correspondingly a MSE 2.20 with 

a 95% confidence interval [2.17, 2.23]) and RWMSE 1.35. Although the B0L1P0W0I3 feature set 

outperformed most of the other feature sets in delay change prediction, it lagged behind with respect 

to all the other performance indicators. According to the results of models consisting passengers 

features and the feature importance analysis, it is the passengers features that possibly worsen the 

prediction performance. On the other hand, the train interactions features and some of the weather 

features do contribute to the prediction quality, according to the applied performance indicators. 

The train interactions features have a strong improving effect on the performance with respect to 

all the performance indicators, while weather features affect especially the resulting delay change 

prediction. 

7.2. Discussion 
Our research was initiated upon practice-driven interest of the railways operator in the Netherlands, 

NS, and fitted to an identified research gap. As defined in Section 1.1.2 and recapitulated at the 

beginning of this chapter, the research gap was found in three aspects, according to which we will 

discuss the results of our research. In addition, we will compare our results to results of Van den 

Bulk et al. (2018), whose research substantially influenced ours. 

1. Application of a gradient boosting decision trees-based model for delay prediction in passenger railways. 

As we discussed in the literature review, most of the recent studies concerning delay prediction in 

passenger railways applied neural networks, Bayesian networks, shallow and deep extreme 

machine learning, random forest or ensemble methods combining multiple approaches. For a valid 

and truly meaningful comparison of performance of different approaches, the methods should be 

applied under the same conditions: applied to the very same problem, using the same data and 

features definition (if possible). The RAS competition (INFORMS, 2018e) was a creative way to 

approximate such conditions and explore a broad range of methods, although employment of the 

provided data did vary and so did depth of the methods application. Nevertheless, as mentioned in 

Section 3.3, the winning approaches were neural network and decision tree-based methods. Due to 

close comparability of the prediction performance, there was no clear preference towards either of 

the two machine learning branches. Selection of XGBoost was eventually supported by findings of 

Van der Hurk (2019). Due to the time limitations of our work, we could not test various approaches, 

especially as our focus was paid to exploration of a wide range of features instead. Nevertheless, 

our models did bring a significant improvement in the prediction compared to the baseline. For 

example, the RMSE dropped from 1.99 to 1.48, which is a significant improvement meaning that 

an average error of the prediction is approximately 88 second compared to nearly 120 seconds. 

Considering that the trains were registered with a delay between -1 and 1 minute in 58.3% of the 

registrations, and between -2 and 2 minutes in 80.6% of the registrations, an average error of 120 

seconds is a significant inaccuracy and the decrease of the error of approximately 32 seconds is 

therefore a considerable improvement. Along with conclusions arising from the other performance 

indicators, this proves that the applied method does have a potential of improving delay prediction. 
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2. Inclusion of passenger counts data in a passenger trains delay prediction. 

To our surprise, we found a large gap in the literature in application of passenger counts for delay 

prediction in railway. Contrary to that, there is a considerable amount of literature applying 

passenger counts for delay prediction in bus operations. However, due to the differences between 

the two systems (such as differences in fare collection and thus retrieving passenger counts in real 

time; and often significantly different boarding and alighting characteristics), the findings cannot 

be easily extrapolated to railway operations. Upon findings of Olsson & Haugland (2004), who 

found correlation between departure punctuality in passenger railway and the number of onboard 

passengers related to the highest number of passengers on the relevant train, we decided to relate 

the passenger counts used in our work to a certain value believed to represent a regular number of 

passengers under specified temporal and local conditions. Differences between those variations 

were slight and so was the observed relation to delay and delay changes, nevertheless, we decided 

to proceed with them to the modelling and performance assessment phase. Results confirmed that 

the features (in the form as defined in our work) do not have any prediction power and rather 

introduced noise in the predictions. There was no performance indicator, where the features would 

cause any improvement and only nuances in the results’ deterioration were observable. 

Furthermore, there were no observable differences in the results comparing the features variations. 

Neither the ratio of planned and realized seats brought any improvement. We therefore conclude 

that inclusion of passenger counts into train delay prediction model in the context of our work is 

unprofitable and rather disruptive. That is in contrary to the large amount of literature proving the 

role of passenger volumes on train delay development. However, we used passenger counts 

measured at a past location for a future delay prediction. Thus, it is likely that the possibly unusual 

passenger volumes caused a delay change implicit in the train’s present delay. Its effect in the future 

is then negligible. That is despite the fact that an unusually high volume of onboard passengers has 

to exit the train at some point and thus possibly cause an extended alighting time. 

3. Combination of the three factors we incorporated (weather condition, passenger counts and train 

interactions) in the passenger railways delay prediction problem 

Referring to the previous paragraph, use of passenger volumes for train delay prediction was 

generally lacking in the literature. On the other hand, train interactions were a subject of an 

excessive amount of relevant literature. Finally, weather condition appeared in a few approaches, 

yet it was not a widely used factor in delay prediction. As defined in Section 2.2, passenger volumes 

and weather are related to potential causes of primary delays, while train interactions refer rather to 

secondary delays. In the reviewed literature, researchers frequently build ensemble models 

consisting of a part dedicated to delay propagation due to train interactions. We wanted to test if 

train interactions can be defined the same way as potential primary delay sources. In that way, the 

resulting features behave as indicators of situations with an increased risk of delay induction instead 

of predicting delay propagation in a deterministic matter. Naturally, this leads to increased 

uncertainty and noise in the results due to relaxed interpretation of the features. Even the very 

simplified features representing expected headways to the time-wise nearest train causing an 

interaction (sharing a piece of the physical infrastructure) resulted in a significant improvement of 

the delay prediction. Referring to the RMSE, we observed, for example, an improvement by 0.01 

(from 1.49 to 1.48) compared to the preceding feature set. The MSE then correspondingly dropped 

from 2.23 with a 95% confidence interval [2.20, 2.27] to 2.20 with a 95% confidence interval [2.17, 

2.23]. Definition of the features was highly simplified and burdened by a number of assumptions, 

yet had a positive impact. Together with the low computational efforts necessary to retrieve such 

features, there is a potential for application of similarly defined train interactions features. Finally, 

as discussed in the research sub-questions, weather features did have an effect on the predictions, 

especially by reducing expected delay change. That resulted in an increased precision, however, 

also significant deterioration of the recall scores associated with delay change and delay jump 

prediction. In summary, combining primary and secondary delay indicators in a single model was 

found to be successful and we expect there is space for further development of such an approach. 
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 4. Reference to research results of Van den Bulk et al. (2018) 

We referred to the work of Van den Bulk et al. (2018) throughout our work, as they set the starting 

point and the main direction of our work. As our models were developed independently, it is highly 

likely that there were differences in data processing, features definition and model development. 

Although our base feature set was composed according to the basic feature set of Van den Bulk et 

al. (2018), the results slightly differ. The RMSE obtained by Van den Bulk et al. (2018) and using 

the basic feature set is 1.37 while results of our corresponding model show a RMSE 1.52. Van den 

Bulk et al. (2018) developed two additional feature sets reflecting train composition changes and 

driver changes, and highly simplified train interactions. The latter model was hindered by too many 

features and did not perform well. The earlier model decreased the RMSE to 1.34, thus by 0.03 or 

2.2 %. Or best performing model resulted in an improvement in the RMSE by 0.03 as well, thus 

2.0 %. Van den Bulk et al. (2018) did not perform a delay jump prediction, only delay change. They 

present the results aggregated for the two categories of delay increase and decrease. Nevertheless, 

they observed worsening of the precision, constant recall and constant F1 score comparing the basic 

model and the second model of theirs. Contrary to that, we observed rather constant precision scores 

and improved recall scores comparing the base feature set and the best performing models. 

7.3. Limitations 
In this section, we identify limitations of several aspects of our approach and shortly comment on 

each. 

XGBoost hyperparameters tuning: We developed a model for every train series separately (in total 

79 train series). Optimization of the hyperparameter for every individual model would be 

excessively time consuming. Therefore, we optimized the hyperparameters once for every feature 

set category. We stored a set of the best performing hyperparameters combinations, which were 

used as candidates for all the forthcoming models. Nevertheless, there was a risk, that the best 

suiting hyperparameters for certain models were not available among the candidates. 

Weather features: We used historical weather measurement data. For the prediction, data from the 

present hour were used. For application in real time, the current weather condition would have to 

be processed into the features. Instead, weather forecast would be possibly applicable, as was used 

in research by Oneto et al. (2016, 2017, 2018).  

Passenger features: The passengers data are an estimation based on smart card data, which is 

computed retrospectively. Gaining the same data in real time is therefore hardly possible. 

Furthermore, passenger data are generally burdened by a strict non-disclosure policy, which puts 

additional constraints on manipulation with the data. 

Train interactions features: Process of the features derivation was highly complex, and many 

assumptions and simplifications had to be done for practical reasons, because data originating in 

two different companies (NS and ProRail), and thus not entirely consistent, had to be merged. In 

result, some interactions may have been overlooked or misinterpreted. However, the major 

limitation of the train interactions feature sets lies in the fact, that they account for the present state 

of the network only, with no further consideration of any interdependencies among the other trains. 

Furthermore, the features and nature of the model do not guarantee a correct prediction of an 

apparent delay propagation situation (e.g. an IC train caught behind a SPR train). 

‘All combined’ model: The models were developed per train series and their scores highly varied 

among the feature sets. Every feature set was preferable for at least one train series. To maximize 

the prediction performance, we combined the best results (according to the RMSE) of every train 

series which indeed lead to an improved prediction on the network level. Although the difference 

was limited, it points at the fact that there are differences among the train series and a uniform 

approach might be suppressing the full potential of the predictions. Using various feature sets 

however introduces a risk of considerable complexity in potential application.  
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Data splitting: The data was split for training, testing and assessment set by train trips to avoid 

overfitting. Yet, there is a considerable concern that presence of multiple train registrations 

(together with the attached additonal features) often shortly after each other affects the the training 

process (by presence of multiple highly similar instances) as well as the results (prediction being 

done for multiple very similar instances). 

Performance assessment: The main limitation is associated with the derived classification tasks. 

Those were initially designed as simper probems compared to regression prediction. We used them 

as an additional tool for analysis of the predictions’ behavior. It however does not reflect how the 

feature sets would perform when used for real classification tasks. 

7.4. Recommendations for further research  
In reference to the limitations and the results of our research, there is a list of recommendations we 

may give for further research. First, we address characteristics of the prediction. Instead of making 

the prediction from a registration point, it could be done from a time point which would require to 

consider the meanwhile traveled part of the link between the last and the next registration point. 

Next, the prediction time window of 20 minutes can be changed and development in the prediction 

performance observed as the prediction time window changes. Another suggestion is to focus on 

predicting delay change instead of the actual future delay. 

Regarding the model characteristics, a different evaluation metrics than RMSE may be used in the 

XGBoost model. Next to a set of pre-defined evaluation metrics, the model allows to use user-

defined evaluation metrics. Above that, the model allows deeper configuration setting and we 

recommend exploring the full possibilities the XGBoost library offers. Special attention then can 

be paid to the hyperparameters optimization for which we recommend using a different method 

than genetic algorithm. 

Concerning features, we recommend exploring possible definition of train interactions features. 

Those we defined were highly simplified, yet they brought improvement to the prediction. There is 

virtually boundless amount of possible definition of train interactions by the means of features, and 

it is probable some of them have a high potential to improve the prediction even further. Next, 

apparent delay propagation situations (e.g. an IC train caught behind a SPR train), that are 

overlooked by the model but are possible to be defined otherwise, can be accounted for by 

supplementary adjustment. The amount of such definable occurences can be observed and the effect 

on the final prediction evaluated. 
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Appendix 
A. Data 

A.1. Timetable data 

Dataset glossary 
Table 40 Planned timetable dataset glossary 

Name Type and unit Description 

Day Date The traffic date. 

Date changes at 02:00 am. 

Train number Integer An identification number of a train assigned to the planned train activity.  

Direction String An indication of a direction: E (even) and O (odd).  

It refers to the way train numbers are assigned 

(odd and even for each direction). 

Location String The abbreviation of the station or timetable control point 

(the points in between stations where the trains are planned on  

and measured on). 

Abroad Boolean Specifies whether the location is abroad. 

J = Yes (Ja), N = No (Nee). 

Activity String The activity of the train at the location at the time.  

V = Departure (Vertrek), D = Pass through (Doorgaan),  

A = Arrival (Aankomst). K_A and K_V denote short (Korte) stop  

where arrival and departure are planned within one minute. 

Order number Integer An order number of the activity of the train. 

Planned Time Date Time The planned date and time for the activity. 

Train Characteristic String The train characteristic.  

IC = Intercity, SP or ST = Sprinter, LM = Empty train  
Pattern String The first character indicates the timetable hour pattern and the second part 

indicates the train series. 

Bare Driving Time Integer 

[seconds] 

The calculated minimum driving time from the preceding to the current location. 

Traction Type String Type of planned rolling stock. 

Timetable Speed Integer 

[km/h] 

The maximum allowed speed according to the timetable. 

Data processing 
A column identifying the train series number was added. The train series number was retrieved as 

the numeric part of the string in the column Pattern. Where there was no numeric part of the Pattern, 

the train series number was retrieved from the train number by subtracting the value of tens and 

ones. A list of unique values of train series was stored as a reference list of train series occurring in 

the timetable. Next, the direction was changed from O and E to 0 and 1 as numeric values are easier 

to process than strings. Other than that, no major corrections nor adjustments were necessary 

besides dropping unused columns. 
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A.2. Realization data 

Dataset glossary 
Table 41 Realization dataset Glossary 

Name Type and unit Description 
Traffic Date Date The traffic date. 

Train series String The train series and direction. 

Train Characteristic Factor Same as Train Characteristic in Table 7 Planned timetable dataset example. 

Train number Integer Same as Train number in Table 7 Planned timetable dataset example. 

Location Factor Same as Location in Table 7 Planned timetable dataset example. 

Activity Factor Same as Activity in Table 7 Planned timetable dataset example. 

Planned Time Date Time Same as Planned Time in Table 7 Planned timetable dataset example. 

Realization Date Time The time when the train completed the corresponding activity. 

Delay Integer 

[minutes] 

The delay of the train at the activity. Rounded to whole minutes. 

Delay Jump Integer 

[minutes] 

The change of the train’s delay from the previous activity. Rounded to whole 

minutes. 

Cause 

 

String 

 

Possible cause of the delay jump if known.  

Aggregated into three categories: Other train (Delay jump due to a knock-on 

effect), Other primary cause (Delay jump due to a primary cause) and Stopping 

procedure (Delayed departure).  

If empty, the cause is either irrelevant (driver behavior) or unknown. 

Data processing 
Realization dataset is fundamental for our work as it mimics online collected data that would be 

used for a delay prediction in an application in reality. It contains an information about the train’s 

identification, its actual location, respectively the last point of registration, and the delay at that 

point. All the other data from the further datasets are fitted to it based on the train identification, 

spatial and/or temporal relevance. The target information from this dataset was the train 

identification (the train series and the train number), the train type (‘characteristic’) and the event 

information: the location, the activity, and the planned and realized time. The train series 

identification was split into the numerical and letter type denoting the train series number and the 

direction. It is a common practice of the dispatchers in the Netherlands to add 300,000 to the train 

(series) number to virtually create a new train when a train is for example cancelled and 

rescheduled, turned around before reaching its terminal station, or any other major intervention is 

applied. It is done to avoid complications and confusion such major rescheduling could lead to as 

for example seemingly large (negative) delay. 300,000 was therefore subtracted from such trains 

(series) numbers. 

Train types were initially IC (intercity), SPR (sprinter), ST (stopping train), LM (empty rolling 

stock), LL (empty rolling stock) and NTT (not relevant). Due to similarity in characteristics 

between ST and SPR, ST was reclassified as SPR (and will be considered as a part of this class 

from now on), and LL and NTT were reclassified as LM which can therefore be understood as other 

than IC or SPR. Furthermore, trains of train series of 800,000 or higher were assigned the LM train 

type as those trains are supposed to belong to that category despite being registered as IC or SPR 

in the realization data.  

The delay was recalculated as a difference between the planned and realized time and was rounded 

up to quarters of a minute to increase precision of the information yet keeping it moderately concise 

as the aspired precision of the delay predictions is in minutes, not in seconds. The registered delays 

were checked for illogical and missing values. A negative delay of IC and SPR trains of more than 

one minute on a departure (meaning an early departure) was considered illogical as such early 

departures are strictly not allowed. Early passage through intermediate locations and arrivals were 

considered illogical if they exceeded 10 minutes. Negative delays exceeding the thresholds were 
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marked as missing values which was the case of 0.007% entries. Similarly, delays exceeding an 

upper limit which was set to 45 minutes were marked as a missing value which occurred in 0.008% 

entries. It is highly unlikely that such large delay would not be addressed by the dispatchers. 

Possible explanation of presence of early activities is that they were caused by dispatching 

interventions and confusion of train series identification. 

Seemingly unrealistic high changes in delay in between consecutive activities were examined. In 

multiple cases where there was a sudden increase in a delay of up to dozens of minutes, a source of 

the delay was always registered, and the delay jump therefore explained. Unrealistically large 

negative delay jumps did not occur. 

Logical time flow of the train registrations was checked for errors meaning that every registration 

of a train had to be later than its registration at the preceding registration point. This constraint was 

violated in the order of tens cases which were marked as a missing value and therefore disregarded 

in the delay prediction process.  

A.3. Interactions data  

Dataset glossary 
Table 42 Minimum required headways dataset glossary 

Name Type and unit  Description 

Train 1 series Integer Train series number of the leading train. Unspecified direction. 

Train 2 series Integer Train series number of the following train. Unspecified direction. 

Train 1 type String Rolling stock type of the leading train. 

Train 2 type String Rolling stock type of the following train. 

Area name String Code of the timetable point where the signal is located. 

Signal name String The signal number on which the headway time is calculated. 

Local min headway Double [s] The local minimum headway time according to the tool at the signal. 

Data processing 
For the purpose of infrastructure assignment, the direction in which a train approaches an 

infrastructure point (signal) matters. The direction of trains with respect to the timetable, which is 

denoted as E (even) or O (odd) is in the context of minimum required headways irrelevant as a train 

running under an even number in one series might drive through a signal in the same direction as 

another train running under a an odd number of another train series. 

As the train interactions and minimum required headways were to be assigned to relevant timetable 

instances, it was necessary to identify train series directions. This was possible only when a 

sequence of at least two rows in an uninterrupted block was present. The sequence of the Area 

names reading in rows from top to down was then looked for in the timetable of the relevant train 

series. Existence of multiple signals per location was ignored and only unique row for an Area name 

was considered for observing the direction to match the level of detail of the timetable which does 

not contain any information about the signals. The identified direction was then assigned to all 

relevant rows for the location. 

Many of the rows in the dataset were duplicates but as the order of the rows was important to 

determine the directions, duplicate rows had to be kept for the direction identification step. In the 

first step of direction identification, the direction was successfully identified only for less than a 

half of the rows (approximately 46%). Some of the locations within the route in the headway’s 

dataset might not have been in the timetable due to not being a timetable point or due to a difference 

in locations names used by NS and ProRail although the rest of the route or its parts were 

successfully identified. Such rows without an identified direction were assigned with a direction 

assigned to rows belonging to the relevant block of rows. Understand a block of rows as a sequence 

of rows directly following each other where the leading and following train series couple is 

unchanged. Although this assumption is not 100% true (there could be headways for the same pair 
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of train series in the opposing directions following each other), it is expected to be sufficient as all 

possible train series pairs sharing the part of infrastructure in the given direction are listed and only 

then the other direction should follow.  

After removing duplicate rows, the second step lead to more than 68% of the rows being assigned 

with a direction. Next, not all train series were relevant as not all of them appeared in the realization 

data and the planned timetable and could not be coupled with the realization data later. Therefore, 

only couples with both series being relevant were kept. Furthermore, the data were aggregated on 

the Area name level per sequence of interactions by a couple of train series and a direction. As the 

minimum required headway varied largely among the locations within each Area, the maximum 

value was kept as the most critical in delay propagation. The minimum required headway was then 

converted to minutes and rounded up with a precision of 0.5 minute. At this point, approximately 

85% of rows were successfully assigned with a direction for both trains. Eventually, remaining 

rows were disregarded as there was no possibility to reliably determine the direction. This mainly 

concerns trains sharing a single infrastructure point and therefore not showing a sequence of 

locations from which a direction could be determined. 

The following step was to identify the actual train interactions. To do so, patterns of train 

interactions were created from the timetable which were later used for interaction identification in 

the realization data. This is a reason that the train interactions are referred to as off-line-identified 

and it means that only train interactions included in the timetable are considered. Any interactions 

due to operational changes are not foreseen.  

The interaction patterns based on the timetable has a form of a matrix where the rows refer to the 

rows of the timetable and the columns refer to all the trains series that might cause any interaction 

with any other train.  

For each timetable row, a list of locations the train will pass in the upcoming 20 minutes was made. 

In the columns, an interaction would be identified if there was any minimum required headway at 

any of the upcoming locations with the train series number relevant to the column.  

The identified interactions were stored in multiple matrices: binary identification of existence of an 

interaction, the minimum required headway at the first shared location, direction of the leading train 

and planned time of the leading train passing the first shared location. From the planned time and 

the minimum required headway, planned time margins were calculated. Margins exceeding 15 

minutes were considered large enough to have low impact on delay propagation as an intervention 

from the dispatching would be put in place in such case. Margins bellow 0 were understood as that 

there is no interaction between the trains. In these two cases, the interaction was disregarded. This 

step was necessary as there was no control of the actual existence of an interaction at a specific 

time: interactions were identified on trains series level, not train number level. 
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A.4. Passenger data 

Dataset glossary 
Table 43 Passenger counts dataset glossary 

Name Type Description 
Date Date The date. 

Train number Integer Train number. 

Departure station String The departure station. 

Departure time Date Time The time of departure from the station. 

Arrival station String The arrival station. 

Arrival time Date Time The time of arrival to the station. 

Total number of 

passengers 
Double 

The computed number of passengers travelling from the 

departure to the arrival station by this train. 

Number of boarding 

passengers 
Double 

The computed number of passengers boarding the train in 

the departure station. 

Planned seats Integer The planned number of seats on this train. 

Realized seats Integer The realized number of seats on this train. 

 

Data processing 
According to policy of NS regarding a seating capacity of the trains described in ‘Vervoerplan 

2017’ (translated as Transport plan 2017), passengers with a first-class ticket should always find an 

empty seat as well as passengers traveling in the second class during off-peak hours and during the 

weekends. During the peak hours on working days, passengers in the second class should find an 

available seat on Intercity trains if their journey by the train exceeds 15 minutes. Otherwise, 

including trips by the Sprinter trains, there should be enough space for the passengers to stand. (NS, 

2016)  

NS operates with a number of rolling stock types with varying characteristics such as driving 

performance related to acceleration and braking. A simplification was made…….. As a reference 

for processing of passenger data, two rolling stock types are considered: DDZ for Intercity trains 

and SLT for Sprinter trains. The two rolling stock types were used as a reference for assessment of 

the maximum possible capacity provided according to the passenger data. That was necessary 

because the extreme were reaching a maximum planned capacity of 2,388 seats while the utmost 

highest possible capacity of an IC train is 1214 seats. A limit of possible planned capacity was 

therefore set to 1214 seats for IC trains (referring to the DDZ rolling stock in its largest coupling) 

and 1005 seats for SPR trains (considering SLT rolling stock in its largest coupling). Furthermore, 

unrealistic numbers of passengers were filtered out by introducing a limit equal to 1.6 times the seat 

capacity of IC trains and 2.4 times capacity of SPR trains. The coefficients refer to the maximum 

capacity calculated from online brochures about the rolling stock publicized by NS (2017a, 2017c). 

In total, 213 entries of the dataset were removed, most of them belonging to IC trains. 

There is no information about what rolling stock was used for each trip which might have differed 

to what was scheduled in the timetable for the respective trips. Based on the number of seats 

provided, the rolling stock type theoretically could be derived. The risk of introducing errors in the 

data by doing so was found to be too high in comparison to the potential benefits. Above that, it 

was the difference between planned and realized capacity that was targeted for our research. 

Furthermore, if there is no difference between the planned and realized capacity, it implies that the 

planned rolling stock was used and the possible effects of the rolling stock on the systems behavior 

are likely implicit in the train series number, the day and the time as it is a characteristic which is 

being regular for that train series at that time. On the other hand, a difference in the seating capacity 

identifies a difference in the rolling stock comparing what was planned and what was realized. 

Creating an additional feature identifying a difference in rolling stock would only be a duplicate 

information. 
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As the model is trained for each train series separately, introducing a feature of rolling stock type 

would make sense only if more than two rolling stock types were used for trains belonging to the 

respective train series and that only if each of the rolling stock types was represented a sufficient 

number of times which in general is not the case. Introduction of the rolling stock type into the 

feature sets would essentially result in creating a category ‘regular rolling stock type’ and ‘irregular 

rolling stock type’ which would be translated as 0 and 1 in a machine learning language. If n rolling 

stock types were considered, those would be translated to 0, 1…n-1. As a rolling stock type coded 

as for example 3 is not necessarily any greater than a rolling stock type coded as 1, such coding 

would be missing any weighting changing the categorical variable into ordinal. That brings us back 

to the ratio of planned and realized seating capacity which is used as an identification of a possible 

irregular situation in passenger movements.  

The value lies on the interval between 0 (a cancelled train) and infinity (an unplanned additional 

train which was observed in approximately 13 000 entries). Omitting the unplanned trains, the 

highest ratio of planned and realized seats was 4.39 and was greater than 1 in nearly 45,000 cases 

or greater than 1.5 in approximately 5,000 cases. If this feature has a value of 1, it means the planned 

rolling stock type was used as the seating capacity is identical (there are no pairs of different rolling 

stock types with the same seating capacity). All values different from 1 identify a usage of an 

irregular rolling stock type. Seating capacity therefore can be seen as transformation of a categorical 

variable of rolling stock types into an ordinal variable which is easier interpretable in machine 

learning language. The reason for using a ratio of realized and planned seating capacity instead of 

using them as two separate features, or using just one of them, is to enhance the drop or increase in 

capacity which may lead to more or less crowding than was accounted for. 

In the case the machine learning model is trained for each train series separately, the ratio of planned 

and realized seats therefore carries more information than introducing a feature representing the 

rolling stock type used. 

Besides some cases of an exceeded capacity, a few cases of extremely high number of boarding 

passengers appeared. The highest number of passengers boarded was 1880 followed by set of 

similarly high numbers. Although the total capacity limit was not exceeded, it indicated a need to 

check reasonability of those entries. The locations with the highest numbers of boarding passengers 

were controlled and turned out to be Utrecht, multiple stations of Amsterdam, Den Haag, Rotterdam 

and Leiden followed by other stations. As these indeed are busy locations and no unreasonable 

location was found in the entries with a high number of boarding or alighting passengers, no entries 

were filtered out due to a high number of boarding or alighting passengers, neither as outliers 

because it is the extreme numbers of passengers that might affect delays development and therefore 

it is not desired to filter such data out if unnecessary. However, 6 entries were removed as the 

number of boarding passengers exceeded the total number of passengers leaving on the train from 

the location which would mean some of the passengers got on the train and immediately left it 

again. In 5 of those cases, it occurred at the first station of the train.  

The date, train number and location were used for coupling with the realization data. The main 

information of this dataset lies in the numbers of passengers and the seating capacity. The total 

number of passengers refers to the number of passengers travelling between the two locations, 

meaning it includes passengers who arrived at the departure location minus those who left the train 

there, plus passengers that boarded at the departure location. The number of alighting passengers 

at a location was therefore derived from the total number of passengers that left from the preceding 

location, the number of passengers that boarded the train at the current location, and the total 

number of passengers that departed from the there. The numbers of passengers were given in 

numbers with precision of 8 decimal points. Assuming that only whole passengers can travel by 

train, the numbers were eventually rounded to integers. Nevertheless, due to calculations with the 

float numbers, minor errors were introduced, and negative numbers of alighting passengers were 

observed. Vast majority of those, approximately 1.87% of the entries, lied between 0 and -1 and 

was considered as an error induced by the calculations and was assumed to be equal to 0. In 

approximately 0.06% of the entries, there was a missing entry in the preceding departure which 

lead to a high negative number of alighting passengers. The number of alighting passengers was 
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fixed to -1, representing a missing value. In total, the number of alighting passengers was set to -1 

to represent a missing value in nearly 0.43% of the final dataset contained a missing value. 

Realization data contain train registrations at all timetable locations, including locations where there 

are no passenger movements and the train only passes through. Furthermore, there are two entries 

for each station, an arrival and a departure (except for the first and the terminal locations naturally). 

In contrary to that, passenger data entries are for pairs of locations. Therefore, a strategy to couple 

the passenger data with the realization data had to be made. Although the currently applied 

passenger data were generated retrospectively, it is assumed that they were collected in real time. 

The final numbers of passengers boarding and alighting as a station can be registered when the 

doors of the train close and the train departs. It was therefore decided to pair the passenger data 

with the realization data on the departures. The numbers of passengers do not change until the next 

stop and are therefore copied across the entire upcoming section of that specific train until the next 

departure.  

A.5. Weather data 

Dataset glossary 
Table 44 Weather dataset glossary 

Name Type and unit  Description 

Station number Integer An identification number of the station. 

YYYYMMDD Date A date of the measurement. 

Hour Integer An hour of the measurement. 

Average wind speed Integer [0.1 m/s]  

Highest wind speed Integer [0.1 m/s]  

Temperature Integer [0.1 °C]  

Min temperature Integer [0.1 °C]  

Precipitation Integer [0.1mm]  

Horizontal view Integer [scaled]  

Mist Boolean (Present or not)  

Rain Boolean (Present or not)  

Snow Boolean (Present or not)  

Storm Boolean (Present or not)  

Ice Boolean (Present or not)  

Data processing 
The data file downloaded from the website of KNMI was in a ‘*.txt’ format. The file contained a 

header, information about the weather stations and then the data followed. The weather stations’ 

names and coordinates were extracted into one file (see Table 45), and the weather data were saved 

as another separate file (see Table 18). To couple the weather data with time- and space-vice 

corresponding realization data, each of the entries in the realization data had to be identified by the 

‘realization’ time, specifically by the year, month, day and an hour when the train was registered. 

As the realization data were in a 00-23-hour format while the weather data were in a 01-24-hour 

format (because the measurement refers to the past hour), one hour had to be added to the hour 

value in the realization data. Time and date of the weather data were formatted in the same way. 

Unfortunately, not all quantities were available for all the stations nor for all the time stamps. 

Stations or quantities with a significant amount of missing data had to be removed from the dataset 

to ensure relevant and reliable information. To completely avoid issues with missing data, stations 

with any missing data were removed. Still, sufficient number of weather stations was left and 

importantly, they still were evenly distributed across the country. However, not all the remaining 

stations provided data for all the quantities. Two groups of weather stations were therefore created, 

each providing data for all the time stamps within the required time range in a subset of the 

quantities that were available. See Table 49 for an example of the data coverage per weather station. 
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Only quantities with 100% data entries available were selected. See that ‘Minimum temperature’ 

was covered only sparsely and was therefore left out completely. After the first cleansing of the 

weather stations, all the remaining weather stations provided data in the first four quantities. All the 

weather stations therefore belong to the Group 1 which covers four weather conditions: Average 

wind speed, Highest wind speed, Temperature and Precipitation. The second group of weather 

stations covers all these conditions too and above that also Horizontal view distance, Mist, Rain, 

Snow, Storm and Ice. The Group 2 consist of weather stations highlighted by dark filling of the 

rows in Table 49. An overview of the weather conditions covered by each group and the weather 

stations belonging to each group is in Table 50, where 1 means that the weather condition is covered 

by the group and zero otherwise. 

 

Table 45 Weather stations identification example. 

STN LON(east) LAT(north) ALT(m) NAME 

209 4.518 52.465 0.00 IJMOND 

210 4.430 52.171 -0.20 VALKENBURG 

225 4.555 52.463 4.40 IJMUIDEN 

 

Table 46 Weather stations identification glossary. 

Name Type Description 

STN Integer Station number 

LON Double Longitude (east) 

LAT Double Latitude (north) 

ALT Double Altitude 

NAME String Station name 

 

Table 47 An example of the infrastructure locations position dataset. 
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Leeuwarden… Lwsks Switch 1 a Hlg-Nscg 24.25… 53.192… 5.763… 180135.7… 578487.0… 

Harinxmakanaal… Hrm Bridge 1 a Hlg-Nscg 24.01… 53.191… 5.760… 179917.6… 578404.4… 

Deinum Dei Stop 1 a Hlg-Nscg 21.83… 53.188… 5.727… 177741.2… 578052.9… 

Zevenaar Zv Station 611 b Asa-Zvg 105.86… 51.923… 6.072… 202110.4… 437405.1… 

 

Table 48 Infrastructure locations position dataset glossary 

Name Type Description 
Name String Location name 

Abbreviation String  

Type String Type of the infrastructure point 

Geocode Integer  

Subcode String  

KmLint String  

Kmwaarde Float Precision of 6 decimal points 

Latitude, Longitude Float Degrees with precision of 12 decimal points 

X, Y Float Precision of 6 decimal points 
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Table 49 Weather data stations selection: weather conditions data coverage [%] 

St
at

io
n

 n
um

be
r 

A
ve

ra
ge

 w
in

d 

sp
ee

d 

H
ig

h
es

t 
w

in
d 

sp
ee

d 

T
em

pe
ra

tu
re

  

Pr
ec

ip
it

at
io

n
  

M
in

im
um

 

te
m

pe
ra

tu
re

 

 H
or

iz
on

ta
l v

ie
w

 

di
st

an
ce

  

M
is

t 
 

R
ai

n
  

Sn
ow

  

St
or

m
 

Ic
e 

 

269 100 100 100 100 17 100 100 100 100 100 100 

270 100 100 100 100 0 98 98 98 98 98 98 

273 100 100 100 100 17 100 100 100 100 100 100 

277 100 100 100 100 0 0 0 0 0 0 0 

 

Table 50 Weather conditions considered in the groups of weather stations 
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 Stations: original number identification by KNMI 

(KNMI, n.d.-b) 

Group 1 1 1 1 0 1 0 0 0 0 0 0 215, 235, 240, 249, 251, 260, 267, 269, 270, 

273, 275, 277, 278, 279, 280, 283, 286, 290, 310, 
319, 330, 344, 348, 350, 356, 370, 375, 377, 380, 391 

Group 2 1 1 1 0 1 1 1 1 1 1 1 215, 235, 240, 249, 251, 260, 269, 273, 275, 279, 
280, 290, 310, 319, 344, 348, 350, 370, 375, 377, 
380 

 

Each of the infrastructure locations was to be coupled with the nearest weather station from each 

group. The distances between the weather stations and the infrastructure locations were calculated 

using Haversine formula (A.1). The formula gives a great-circle distance between two points on 

the Earth’s surface using their longitudes and latitudes (Chopde & Nichat, 2013).  

𝑑 = 2 ∙ 𝑟 ∙ sin−1 (√sin2 (
∅2 − ∅1

2
) + cos(∅1) ∙ cos(∅2) ∙ sin2 (

𝜓2 − 𝜓1

2
))   (𝐴. 1) 

Where d is the great-circle distance between the two points, r is the radius of the Earth ( considered 

to be 6,378 km (Wikipedia, 2019)) and ∅ and ψ are latitude and longitude in radians respectively. 

The distance was calculated between all pairs of weather stations and infrastructure locations. For 

each infrastructure location, only the nearest weather station from each group was stored. The 

distances were not stored for any further use. 

Finally, the weather data were paired with corresponding realization data based on a matching 

timestamp (Year-Month-Day-Hour) and weather station number. The resulting two data files 

contained equal number of rows as the realization data, and columns as was the number of weather 

conditions associated with the relevant group of weather stations. 
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Figure 44 Pairs of weather stations (hexagon shaped) and assigned infrastructure locations.  

Example illustrated on the Group 1. 

A.6. Data overview and analysis  
Table 51 List of train series as operated by NS that were considered in our research. 

Train 
Series 

Train 
Type 

Train 
Series 

Train 
Type 

Train 
Series 

Train 
Type 

Train 
Series 

Train 
Type 

Train 
Series 

Train 
Type 

500 IC 3100 IC 3300 SPR 6100 SPR 8500 SPR 

600 IC 3400 IC 4000 SPR 6200 SPR 8600 SPR 
700 IC 3500 IC 4300 SPR 6300 SPR 8700 SPR 
800 IC 3600 IC 4400 SPR 6400 SPR 8900 SPR 

1400 IC 4500 IC 4600 SPR 6600 SPR 9000 SPR 
1500 IC 8800 IC 4700 SPR 6700 SPR 9600 SPR 
1600 IC 11400 IC 4800 SPR 6800 SPR 14000 SPR 

1700 IC 11600 IC 4900 SPR 6900 SPR 14600 SPR 
1800 IC 11700 IC 5000 SPR 7000 SPR 14900 SPR 
2000 IC 12200 IC 5100 SPR 7300 SPR 15800 SPR 

2100 IC 12600 IC 5200 SPR 7400 SPR 5300 ST 
2200 IC 13500 IC 5500 SPR 7500 SPR 20300 ST 
2300 IC 14500 IC 5600 SPR 7600 SPR   

2400 IC 21400 IC 5700 SPR 7700 SPR   

2600 IC 23500 IC 5800 SPR 7800 SPR   

2800 IC 24400 IC 5900 SPR 7900 SPR   

3000 IC   6000 SPR 8100 SPR   
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B. Results 
B.1. Regression 

Table 52 Regression results: RMSE per train series (IC type) and feature set. 

B 

N
aï

ve
  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
L  0 1 1 1 1 1 1 1 1 1 1 1 1 1 

P    0 1 2 3 4       0 
W         0 1 2    0 
I            3 4 5 3 

Train 
series 

                

500 2.20 1.78 1.72 1.72 1.75 1.75 1.75 1.74 1.74 1.74 1.76 1.75 1.69 1.69 1.71 1.72 

600 2.12 1.63 1.59 1.59 1.59 1.60 1.60 1.60 1.60 1.62 1.61 1.61 1.55 1.54 1.59 1.59 

700 2.15 1.61 1.59 1.59 1.60 1.59 1.60 1.59 1.59 1.61 1.61 1.60 1.59 1.59 1.59 1.59 

800 2.26 1.67 1.66 1.65 1.66 1.67 1.66 1.67 1.67 1.66 1.67 1.67 1.65 1.65 1.65 1.66 

1400 2.85 2.32 2.24 2.21 2.27 2.21 2.20 2.17 2.16 2.15 2.14 2.14 2.18 2.18 2.18 2.16 

1500 2.00 1.73 1.71 1.71 1.75 1.75 1.75 1.74 1.75 1.77 1.77 1.77 1.70 1.69 1.70 1.78 

1600 2.18 1.74 1.72 1.73 1.75 1.75 1.75 1.76 1.75 1.74 1.73 1.74 1.71 1.71 1.72 1.73 

1700 2.24 1.82 1.81 1.80 1.82 1.82 1.82 1.82 1.82 1.83 1.84 1.84 1.78 1.79 1.80 1.81 

1800 2.06 1.56 1.55 1.54 1.55 1.55 1.55 1.55 1.54 1.55 1.56 1.56 1.54 1.54 1.54 1.55 

2000 1.98 1.47 1.45 1.45 1.46 1.46 1.46 1.46 1.45 1.47 1.47 1.46 1.37 1.39 1.44 1.41 

2100 1.91 1.40 1.38 1.38 1.38 1.39 1.40 1.39 1.38 1.42 1.41 1.41 1.36 1.36 1.38 1.37 

2200 2.25 1.70 1.67 1.67 1.68 1.69 1.69 1.69 1.69 1.67 1.68 1.68 1.66 1.66 1.67 1.67 

2300 2.15 1.91 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.91 1.94 1.94 1.84 1.85 1.88 1.86 

2400 2.20 1.72 1.71 1.70 1.71 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.69 1.69 1.71 1.70 

2600 1.61 1.59 1.58 1.58 1.61 1.62 1.61 1.61 1.61 1.66 1.65 1.66 1.56 1.57 1.58 1.64 

2800 1.74 1.46 1.43 1.43 1.47 1.46 1.45 1.45 1.46 1.46 1.46 1.46 1.41 1.41 1.43 1.44 

3000 2.11 1.53 1.44 1.44 1.44 1.45 1.45 1.46 1.46 1.44 1.44 1.44 1.42 1.42 1.43 1.43 

3100 2.27 1.66 1.66 1.66 1.67 1.67 1.68 1.69 1.69 1.68 1.68 1.68 1.65 1.66 1.67 1.66 

3400 2.05 1.55 1.51 1.51 1.59 1.43 1.44 1.41 1.42 1.43 1.41 1.41 1.42 1.44 1.47 1.41 

3500 1.98 1.29 1.25 1.24 1.25 1.25 1.24 1.25 1.26 1.24 1.25 1.25 1.24 1.25 1.26 1.24 

3600 2.21 1.72 1.71 1.71 1.71 1.72 1.71 1.72 1.72 1.70 1.70 1.70 1.68 1.68 1.71 1.69 

4500 1.74 1.26 1.26 1.25 1.26 1.26 1.27 1.27 1.27 1.25 1.24 1.24 1.25 1.25 1.26 1.25 

8800 1.75 1.29 1.27 1.27 1.28 1.29 1.28 1.28 1.28 1.27 1.27 1.27 1.26 1.26 1.26 1.27 

11400 1.42 1.23 1.18 1.18 1.25 1.14 1.19 1.19 1.20 1.24 1.27 1.26 1.15 1.15 1.15 1.22 

11600 1.83 1.31 1.30 1.29 1.30 1.30 1.30 1.32 1.33 1.32 1.33 1.32 1.30 1.30 1.30 1.32 

11700 2.04 1.74 1.71 1.71 1.72 1.70 1.70 1.69 1.71 1.73 1.73 1.74 1.67 1.68 1.69 1.70 

12200 1.36 0.94 1.03 1.03 0.95 1.09 1.06 1.09 1.04 1.16 1.16 1.11 1.02 1.00 1.00 1.09 

12600 2.55 2.30 2.29 2.28 2.28 2.35 2.25 2.44 2.33 2.22 2.31 2.31 2.27 2.27 2.27 2.29 

13500 1.76 1.36 1.35 1.34 1.36 1.37 1.38 1.37 1.38 1.41 1.42 1.43 1.34 1.34 1.34 1.41 

14500 2.26 1.62 1.54 1.53 1.62 1.61 1.61 1.61 1.67 1.66 1.70 1.70 1.52 1.52 1.52 1.66 

21400 3.08 2.55 2.07 2.04 2.37 2.10 2.09 1.99 1.89 2.00 2.03 2.02 1.93 1.93 1.93 2.06 

23500 0.97 0.50 0.49 0.49 0.48 0.51 0.50 0.51 0.50 0.67 0.63 0.62 0.49 0.49 0.49 0.61 

24400 1.50 1.43 1.44 1.44 1.48 1.52 1.46 1.51 1.47 1.53 1.55 1.55 1.44 1.44 1.44 1.56 
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Table 53 Regression results: RMSE per train series (SPR type) and feature set. 

B 

N
aï

ve
  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
L  0 1 1 1 1 1 1 1 1 1 1 1 1 1 

P    0 1 2 3 4       0 
W         0 1 2    0 
I            3 4 5 3 

Train 
series 

                

3300 1.92 1.27 1.27 1.27 1.27 1.29 1.28 1.29 1.28 1.30 1.29 1.29 1.27 1.27 1.27 1.29 

4000 1.96 1.47 1.47 1.47 1.45 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.46 1.45 1.47 1.43 

4300 1.80 1.30 1.27 1.27 1.28 1.25 1.26 1.29 1.28 1.26 1.25 1.25 1.27 1.27 1.27 1.26 

4400 2.16 1.72 1.70 1.70 1.72 1.73 1.72 1.73 1.72 1.71 1.71 1.71 1.70 1.70 1.69 1.72 

4600 1.89 1.46 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.42 1.42 1.42 1.43 1.44 1.43 1.42 

4700 1.82 1.37 1.37 1.37 1.38 1.38 1.38 1.39 1.38 1.41 1.42 1.42 1.36 1.36 1.36 1.40 

4800 2.02 1.57 1.57 1.56 1.57 1.58 1.58 1.59 1.59 1.57 1.58 1.58 1.57 1.56 1.56 1.58 

4900 1.69 1.08 1.06 1.06 1.09 1.09 1.10 1.10 1.10 1.12 1.12 1.12 1.05 1.05 1.06 1.10 

5000 1.80 1.37 1.35 1.35 1.37 1.37 1.37 1.37 1.37 1.39 1.39 1.39 1.34 1.34 1.34 1.38 

5100 1.76 1.28 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.25 1.25 1.25 1.25 

5200 1.69 1.50 1.49 1.49 1.50 1.49 1.49 1.48 1.49 1.49 1.50 1.50 1.48 1.48 1.48 1.48 

5500 1.60 1.13 1.12 1.12 1.13 1.15 1.15 1.14 1.14 1.13 1.13 1.13 1.11 1.11 1.12 1.13 

5600 2.11 1.63 1.61 1.62 1.61 1.61 1.63 1.62 1.62 1.62 1.63 1.64 1.62 1.62 1.62 1.61 

5700 1.66 1.29 1.26 1.25 1.26 1.27 1.27 1.26 1.23 1.24 1.23 1.23 1.26 1.26 1.26 1.21 

5800 1.93 1.34 1.33 1.33 1.35 1.35 1.35 1.35 1.35 1.34 1.35 1.34 1.31 1.31 1.33 1.30 

5900 1.80 1.42 1.40 1.40 1.43 1.43 1.44 1.42 1.42 1.42 1.42 1.42 1.42 1.41 1.41 1.45 

6000 1.71 1.40 1.39 1.39 1.41 1.40 1.41 1.41 1.40 1.42 1.41 1.42 1.38 1.39 1.39 1.41 

6100 1.35 1.09 1.08 1.08 1.09 1.09 1.09 1.10 1.10 1.08 1.08 1.08 1.07 1.07 1.07 1.09 

6200 1.81 1.78 1.77 1.76 1.68 1.66 1.58 1.68 1.67 1.54 1.53 1.52 1.73 1.75 1.76 1.51 

6300 1.76 1.14 1.13 1.13 1.13 1.13 1.14 1.13 1.13 1.12 1.12 1.12 1.13 1.13 1.13 1.12 

6400 1.77 1.52 1.51 1.52 1.54 1.57 1.56 1.58 1.61 1.56 1.55 1.56 1.50 1.51 1.50 1.56 

6600 2.08 1.61 1.60 1.60 1.61 1.62 1.62 1.62 1.62 1.62 1.64 1.64 1.61 1.61 1.61 1.62 

6700 1.05 1.32 1.33 1.33 1.30 1.33 1.34 1.31 1.40 1.35 1.41 1.39 1.33 1.33 1.33 1.34 

6800 1.27 1.00 0.98 0.99 1.00 0.97 0.98 0.97 0.97 0.97 0.95 0.95 0.95 0.96 0.96 0.96 

6900 1.84 1.59 1.59 1.59 1.60 1.61 1.58 1.59 1.59 1.60 1.57 1.57 1.57 1.57 1.57 1.59 

7000 1.97 1.37 1.35 1.35 1.36 1.37 1.36 1.35 1.35 1.36 1.37 1.37 1.34 1.34 1.35 1.35 

7300 2.15 1.95 1.93 1.93 1.93 1.93 1.93 1.92 1.91 1.94 1.93 1.94 1.90 1.90 1.91 1.92 

7400 1.98 1.38 1.36 1.36 1.37 1.39 1.39 1.38 1.39 1.40 1.41 1.41 1.36 1.35 1.36 1.38 

7500 1.47 1.35 1.35 1.35 1.36 1.38 1.38 1.38 1.38 1.35 1.36 1.35 1.35 1.35 1.35 1.35 

7600 1.87 1.45 1.43 1.43 1.46 1.41 1.42 1.43 1.42 1.48 1.47 1.46 1.40 1.40 1.41 1.47 

7700 1.42 1.15 1.12 1.12 1.16 1.19 1.16 1.18 1.20 1.26 1.28 1.25 1.13 1.09 1.14 1.24 

7800 2.00 1.47 1.44 1.44 1.45 1.47 1.46 1.46 1.47 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

7900 2.01 1.43 1.42 1.42 1.43 1.46 1.44 1.45 1.45 1.40 1.41 1.41 1.41 1.41 1.41 1.38 

8100 1.42 1.03 1.02 1.01 1.02 1.05 1.11 1.04 1.03 1.06 1.06 1.07 1.02 1.01 1.01 1.06 

8500 1.54 1.00 1.00 1.00 0.97 1.14 1.07 1.05 1.02 0.95 0.93 0.93 0.99 0.99 0.99 0.94 

8600 1.71 1.24 1.20 1.21 1.21 1.22 1.21 1.25 1.22 1.18 1.17 1.17 1.22 1.22 1.21 1.19 

8700 1.43 0.85 0.84 0.84 0.84 0.81 0.81 0.81 0.82 0.83 0.82 0.82 0.82 0.83 0.83 0.82 

8900 1.69 1.41 1.40 1.40 1.40 1.41 1.40 1.40 1.41 1.39 1.38 1.39 1.39 1.39 1.39 1.40 

9000 1.68 1.33 1.32 1.33 1.32 1.33 1.33 1.32 1.32 1.33 1.33 1.33 1.32 1.32 1.32 1.33 

9600 2.00 1.56 1.55 1.54 1.56 1.56 1.55 1.56 1.56 1.56 1.57 1.57 1.55 1.55 1.55 1.56 

14000 2.18 1.79 1.80 1.81 1.72 1.65 1.64 1.69 1.66 1.78 1.76 1.76 1.76 1.76 1.76 1.73 

14600 2.03 1.47 1.45 1.44 1.45 1.45 1.45 1.45 1.44 1.45 1.44 1.44 1.45 1.44 1.45 1.44 

14900 1.72 1.25 1.24 1.24 1.25 1.26 1.30 1.25 1.27 1.28 1.27 1.26 1.22 1.22 1.22 1.28 

15800 2.11 1.70 1.67 1.67 1.69 1.69 1.69 1.70 1.70 1.68 1.69 1.69 1.66 1.67 1.67 1.68 

5300 1.29 1.05 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.00 1.00 1.00 1.04 1.04 1.04 1.00 

20300 0.93 0.33 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.31 0.31 0.32 0.32 0.32 0.32 0.31 
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B.2. Discretized prediction 
Table 54 F1 scores of the discretized prediction in categories of delay length. 

Feature sets Delay [min] 

B L P W I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Naïve forecast 0.59 0.37 0.24 0.21 0.20 0.18 0.18 0.18 0.16 0.17 0.19 0.17 0.17 0.17 0.20 0.68 

0     0.74 0.54 0.34 0.27 0.23 0.20 0.19 0.16 0.14 0.14 0.15 0.15 0.15 0.14 0.15 0.68 

0 0    0.75 0.54 0.35 0.28 0.25 0.22 0.21 0.18 0.15 0.14 0.17 0.16 0.16 0.15 0.16 0.68 

0 1    0.75 0.54 0.35 0.28 0.25 0.22 0.21 0.18 0.16 0.15 0.17 0.16 0.16 0.16 0.17 0.68 

0 1 0   0.74 0.54 0.34 0.27 0.24 0.21 0.21 0.18 0.16 0.15 0.16 0.16 0.15 0.15 0.15 0.67 

0 1 1   0.74 0.54 0.34 0.27 0.24 0.21 0.20 0.18 0.15 0.14 0.16 0.16 0.16 0.14 0.14 0.67 

0 1 2   0.74 0.54 0.34 0.27 0.24 0.21 0.20 0.18 0.15 0.14 0.16 0.16 0.15 0.14 0.15 0.67 

0 1 3   0.74 0.54 0.34 0.27 0.24 0.21 0.20 0.18 0.15 0.15 0.15 0.17 0.16 0.15 0.15 0.67 

0 1 4   0.74 0.54 0.34 0.27 0.24 0.21 0.20 0.18 0.15 0.14 0.14 0.16 0.16 0.16 0.15 0.67 

0 1  0  0.75 0.53 0.34 0.27 0.24 0.21 0.20 0.18 0.16 0.15 0.14 0.15 0.15 0.16 0.15 0.67 

0 1  1  0.74 0.53 0.33 0.27 0.24 0.20 0.20 0.17 0.15 0.15 0.15 0.16 0.15 0.16 0.15 0.66 

0 1  2  0.74 0.53 0.33 0.27 0.24 0.20 0.20 0.18 0.15 0.15 0.14 0.15 0.15 0.16 0.16 0.66 

0 1   3 0.75 0.54 0.35 0.28 0.24 0.22 0.21 0.19 0.16 0.15 0.18 0.17 0.16 0.15 0.15 0.68 

0 1   4 0.74 0.54 0.34 0.28 0.24 0.22 0.21 0.19 0.15 0.14 0.17 0.17 0.16 0.15 0.17 0.68 

0 1   5 0.75 0.54 0.35 0.28 0.25 0.22 0.22 0.19 0.16 0.15 0.17 0.17 0.16 0.15 0.14 0.68 

0 1 0 0 3 0.75 0.54 0.34 0.27 0.24 0.21 0.20 0.18 0.15 0.16 0.13 0.16 0.16 0.15 0.15 0.66 

all combined 0.75 0.54 0.34 0.28 0.24 0.22 0.21 0.19 0.16 0.15 0.18 0.17 0.15 0.15 0.16 0.68 

Comparison only among feature sets including ‘Interactions’ 

0 1   0 0.71 0.55 0.34 0.26 0.23 0.19 0.20 0.17 0.14 0.14 0.14 0.15 0.17 0.16 0.14 0.62 

0 1   1 0.71 0.55 0.34 0.26 0.23 0.19 0.19 0.17 0.14 0.14 0.14 0.15 0.16 0.15 0.15 0.81 

0 1   2 0.70 0.55 0.34 0.26 0.22 0.19 0.19 0.16 0.14 0.13 0.14 0.15 0.17 0.16 0.14 0.62 

0 1   3 0.71 0.55 0.34 0.26 0.22 0.19 0.20 0.17 0.14 0.14 0.15 0.16 0.16 0.15 0.15 0.81 

0 1   4 0.71 0.55 0.34 0.26 0.22 0.19 0.20 0.17 0.14 0.13 0.14 0.15 0.16 0.15 0.15 0.81 

0 1   5 0.70 0.54 0.34 0.26 0.22 0.19 0.19 0.16 0.14 0.12 0.14 0.15 0.17 0.15 0.18 0.62 

 

B.3. Classification tasks 
Table 55 Delay existence classification task: Complete results. 

Feature sets F1 Precision Recall 
Accuracy 

B L P W I 0 1 0 1 0 1 

Naïve forecast 0.942 0.586 0.978 0.462 0.907 0.798 0.898 

0     0.948 0.655 0.977 0.548 0.921 0.814 0.909 

0 0    0.949 0.659 0.978 0.551 0.922 0.819 0.911 

0 1    0.949 0.660 0.977 0.553 0.922 0.819 0.911 

0 1 0   0.948 0.657 0.976 0.552 0.922 0.812 0.910 

0 1 1   0.948 0.654 0.977 0.545 0.921 0.816 0.910 

0 1 2   0.948 0.653 0.977 0.545 0.921 0.815 0.910 

0 1 3   0.948 0.654 0.977 0.546 0.921 0.815 0.910 

0 1 4   0.948 0.653 0.977 0.545 0.921 0.815 0.910 

0 1  0  0.947 0.656 0.973 0.559 0.923 0.795 0.909 

0 1  1  0.947 0.655 0.973 0.558 0.923 0.793 0.908 

0 1  2  0.947 0.655 0.973 0.558 0.923 0.793 0.908 

0 1   3 0.950 0.665 0.977 0.559 0.923 0.820 0.912 

0 1   4 0.949 0.665 0.977 0.559 0.923 0.820 0.912 

0 1   5 0.949 0.659 0.978 0.550 0.922 0.822 0.911 

0 1   0 0.944 0.655 0.974 0.552 0.916 0.806 0.904 

0 1   1 0.944 0.655 0.974 0.551 0.916 0.808 0.904 

0 1   2 0.944 0.647 0.975 0.537 0.914 0.813 0.903 

0 1   3 0.944 0.656 0.975 0.549 0.916 0.813 0.904 

0 1   4 0.944 0.656 0.975 0.549 0.916 0.813 0.904 

0 1   5 0.944 0.648 0.976 0.537 0.914 0.815 0.903 

0 1 0 0 3 0.948 0.661 0.974 0.564 0.924 0.799 0.910 

All combined 0.949 0.665 0.977 0.560 0.923 0.817 0.912 
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Table 56 Delay change classification task: Complete results. 

Feature sets F1 Precision Recall 
Accuracy 

B L P W I - = + - = + - = + 

0     0.422 0.928 0.217 0.309 0.980 0.135 0.667 0.881 0.551 0.868 

0 0    0.445 0.929 0.225 0.328 0.980 0.141 0.688 0.883 0.567 0.870 

0 1    0.453 0.929 0.229 0.337 0.980 0.143 0.691 0.884 0.565 0.871 

0 1 0   0.446 0.928 0.226 0.331 0.979 0.143 0.684 0.883 0.537 0.869 

0 1 1   0.427 0.928 0.215 0.310 0.981 0.133 0.687 0.881 0.554 0.869 

0 1 2   0.428 0.928 0.216 0.311 0.981 0.134 0.688 0.881 0.558 0.869 

0 1 3   0.428 0.928 0.215 0.311 0.981 0.133 0.687 0.881 0.553 0.869 

0 1 4   0.426 0.928 0.216 0.309 0.981 0.134 0.686 0.881 0.554 0.869 

0 1  0  0.457 0.927 0.241 0.345 0.975 0.159 0.676 0.885 0.501 0.868 

0 1  1  0.451 0.927 0.239 0.339 0.974 0.157 0.674 0.884 0.497 0.867 

0 1  2  0.452 0.927 0.240 0.340 0.974 0.158 0.675 0.884 0.498 0.868 

0 1   3 0.451 0.930 0.245 0.332 0.980 0.155 0.701 0.884 0.579 0.872 

0 1   4 0.454 0.930 0.245 0.336 0.980 0.156 0.698 0.884 0.575 0.872 

0 1   5 0.446 0.929 0.225 0.328 0.981 0.139 0.699 0.883 0.579 0.871 

0 1   0 0.427 0.922 0.283 0.309 0.976 0.188 0.695 0.874 0.568 0.859 

0 1   1 0.426 0.922 0.281 0.307 0.976 0.186 0.692 0.874 0.568 0.859 
0 1   2 0.405 0.922 0.253 0.286 0.980 0.161 0.696 0.870 0.587 0.859 
0 1   3 0.417 0.922 0.276 0.296 0.979 0.180 0.702 0.872 0.593 0.860 

0 1   4 0.424 0.922 0.275 0.304 0.978 0.180 0.697 0.873 0.586 0.860 
0 1   5 0.409 0.922 0.253 0.290 0.980 0.161 0.696 0.871 0.591 0.859 

0 1 0 0 3 0.455 0.928 0.253 0.342 0.975 0.167 0.681 0.885 0.521 0.868 

All combined 0.460 0.929 0.250 0.343 0.979 0.160 0.698 0.884 0.574 0.871 

 

Table 57 Delay jump classification task: Complete results. 

Feature sets F1 Precision Recall 
Accuracy 

B L P W I 0 1 0 1 0 1 

0     0.991 0.072 0.999 0.040 0.983 0.390 0.982 

0 0    0.991 0.083 0.999 0.046 0.984 0.442 0.983 

0 1    0.991 0.090 0.999 0.050 0.984 0.449 0.983 

0 1 0   0.991 0.084 0.999 0.047 0.984 0.405 0.983 

0 1 1   0.991 0.072 0.999 0.039 0.984 0.412 0.983 

0 1 2   0.991 0.071 0.999 0.039 0.984 0.411 0.983 

0 1 3   0.991 0.073 0.999 0.040 0.984 0.418 0.983 

0 1 4   0.991 0.071 0.999 0.039 0.984 0.409 0.983 

0 1  0  0.991 0.090 0.999 0.051 0.984 0.379 0.982 

0 1  1  0.991 0.089 0.999 0.050 0.984 0.390 0.983 

0 1  2  0.991 0.086 0.999 0.049 0.984 0.372 0.982 

0 1   3 0.991 0.090 0.999 0.050 0.984 0.470 0.983 

0 1   4 0.991 0.090 0.999 0.050 0.984 0.457 0.983 

0 1   5 0.991 0.087 0.999 0.048 0.984 0.473 0.983 

0 1   0 0.990 0.065 0.999 0.036 0.981 0.356 0.980 
0 1   1 0.990 0.063 0.999 0.035 0.981 0.361 0.980 
0 1   2 0.990 0.051 0.999 0.027 0.981 0.352 0.980 

0 1   3 0.990 0.057 0.999 0.031 0.981 0.393 0.980 
0 1   4 0.990 0.052 0.999 0.028 0.981 0.374 0.980 
0 1   5 0.990 0.055 0.999 0.030 0.981 0.373 0.980 

0 1 0 0 3 0.991 0.088 0.999 0.050 0.984 0.393 0.982 

All combined 0.991 0.091 0.999 0.050 0.984 0.476 0.983 
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B.4. Features importance 
Table 58 Features importance: feature sets B0, B0L0-1. 
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 0     0.05 0.11 0.17 0.97 0.07 0.08 0.31 0.10    

0 0    0.05 0.08 0.14 0.99 0.08 0.06 0.40 0.12 0.14 0.12 0.13 

0 1    0.05 0.07 0.14 0.99 0.08 0.06 0.40 0.12 0.14 0.11 0.12 

W
ei
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0     0.46 0.68 0.23 0.83 0.89 0.91 0.67 0.65    

0 0    0.45 0.53 0.19 0.92 0.89 0.83 0.66 0.63 0.15 0.20 0.34 

0 1    0.45 0.45 0.17 0.93 0.89 0.79 0.66 0.62 0.21 0.26 0.43 

C
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er
 0     0.30 0.78 0.48 0.97 0.51 0.61 0.62 0.55    

0 0    0.31 0.74 0.42 0.96 0.51 0.55 0.60 0.55 0.61 0.59 0.64 

0 1    0.31 0.71 0.42 0.96 0.51 0.53 0.60 0.55 0.59 0.61 0.70 

 

 
Table 59 Features importance: feature sets B0L1P0-4. 
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0 1 0   0.05 0.07 0.13 0.99 0.08 0.06 0.33 0.11 0.13 0.10 0.12 0.05 0.05    

0 1 1   0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 0.05 0.04 0.05 0.05 0.05 

0 1 2   0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 0.04 0.04 0.05 0.04 0.04 

0 1 3   0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.09 0.05 0.04 0.05 0.04 0.05 

0 1 4   0.04 0.06 0.11 1.00 0.06 0.05 0.39 0.12 0.10 0.08 0.10 0.05 0.04 0.05 0.05 0.05 

W
ei

gh
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0 1 0   0.47 0.43 0.16 0.80 0.91 0.79 0.56 0.54 0.19 0.23 0.38 0.55 0.19    

0 1 1   0.33 0.38 0.15 0.64 0.69 0.62 0.38 0.34 0.19 0.23 0.37 0.30 0.10 0.99 0.87 0.92 

0 1 2   0.33 0.38 0.16 0.65 0.70 0.63 0.39 0.35 0.19 0.23 0.38 0.30 0.10 0.98 0.89 0.93 

0 1 3   0.33 0.38 0.16 0.64 0.70 0.62 0.38 0.34 0.19 0.23 0.37 0.30 0.10 0.97 0.87 0.95 

0 1 4   0.33 0.38 0.16 0.65 0.70 0.62 0.38 0.34 0.19 0.23 0.37 0.30 0.10 0.98 0.87 0.93 

C
ov

er
 

0 1 0   0.23 0.52 0.39 0.97 0.40 0.36 0.50 0.39 0.53 0.54 0.59 0.58 0.22    

0 1 1   0.19 0.42 0.33 0.98 0.35 0.27 0.48 0.34 0.44 0.45 0.47 0.51 0.20 0.32 0.33 0.33 

0 1 2   0.19 0.43 0.33 0.99 0.35 0.27 0.49 0.34 0.44 0.44 0.46 0.52 0.20 0.32 0.33 0.34 

0 1 3   0.18 0.42 0.33 0.99 0.35 0.27 0.49 0.34 0.43 0.45 0.46 0.51 0.19 0.32 0.33 0.35 

0 1 4   0.18 0.42 0.33 0.98 0.35 0.27 0.49 0.34 0.44 0.45 0.47 0.51 0.19 0.32 0.34 0.34 

 

Table 60 Features importance: feature sets B0L1W0-2. 
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 0 1  0  0.05 0.06 0.11 1.00 0.07 0.06 0.31 0.09 0.10 0.08 0.10 0.05 0.05 0.06 0.06        

0 1  1  0.05 0.06 0.11 1.00 0.07 0.05 0.38 0.11 0.10 0.09 0.10 0.05 0.05 0.06 0.06 0.05 0.03 0.05 0.04 0.03 0.03  

0 1  2  0.05 0.06 0.11 1.00 0.07 0.05 0.35 0.11 0.10 0.08 0.10 0.05 0.05 0.06 0.06 0.05      0.05 

W
ei

g

h
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0 1  0  0.30 0.29 0.15 0.51 0.63 0.61 0.33 0.32 0.14 0.17 0.29 0.38 0.45 0.99 0.29        

0 1  1  0.31 0.34 0.18 0.58 0.66 0.70 0.37 0.35 0.17 0.20 0.34 0.39 0.45 0.99 0.27 0.64 0.01 0.06 0.01 0.01 0.01  

0 1  2  0.31 0.34 0.17 0.57 0.66 0.70 0.37 0.35 0.17 0.21 0.34 0.39 0.45 0.99 0.28 0.64      0.09 

C
ov

er
 0 1  0  0.20 0.48 0.31 0.99 0.38 0.31 0.47 0.35 0.46 0.48 0.53 0.3 0.34 0.45 0.44        

0 1  1  0.15 0.35 0.23 0.76 0.29 0.23 0.37 0.27 0.33 0.35 0.38 0.22 0.26 0.32 0.31 0.28 0.36 0.18 0.37 0.6 0.28  

0 1  2  0.19 0.47 0.30 0.99 0.38 0.30 0.49 0.35 0.45 0.46 0.50 0.29 0.34 0.43 0.42 0.37      0.28 
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Table 61 Features importance: feature sets B0L1I3-5. 
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 0 1   3 0.04 0.07 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 0.04 0.03 0.00 

0 1   4 0.04 0.06 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 0.05 0.04 0.00 

0 1   5 0.04 0.07 0.13 0.99 0.07 0.05 0.36 0.11 0.13 0.10 0.11 0.03 0.03 0.00 

W
ei

gh t 

0 1   3 0.39 0.41 0.15 0.93 0.82 0.70 0.57 0.52 0.20 0.24 0.40 0.34 0.27 0.00 

0 1   4 0.40 0.43 0.16 0.93 0.83 0.72 0.59 0.54 0.20 0.25 0.41 0.16 0.17 0.00 

0 1   5 0.38 0.42 0.16 0.96 0.82 0.71 0.60 0.54 0.21 0.25 0.42 0.07 0.05 0.00 

C
ov

er
 0 1   3 0.30 0.70 0.38 0.90 0.49 0.49 0.55 0.52 0.54 0.56 0.67 0.50 0.43 0.13 

0 1   4 0.33 0.72 0.39 0.92 0.52 0.53 0.58 0.55 0.54 0.57 0.68 0.43 0.37 0.13 

0 1   5 0.30 0.70 0.38 0.90 0.49 0.49 0.55 0.52 0.54 0.56 0.67 0.50 0.43 0.13 

 


