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Abstract

Deep Regression Models (DRMs) are a subset of deep learning models that out-
put continuous values. Due to their performance, DRMs are widely used as critical
components in various systems. As training a DRM is resource-intensive, many rely
on pre-trained third-party models, which can leave a worrying amount of systems vul-
nerable to backdoor attacks. A backdoored model is an otherwise legitimate model
that maliciously changes its behaviour whenever a predetermined backdoor trigger is
present. While numerous works on backdoor attacks on deep learning models focus on
classification problems, very little work has focused on DRMs. We formulate and eval-
uate a backdoor attack on a DRM using WaNet, a method that relies on warping-based
triggers that are difficult to detect by both human and machine defence methods. We
successfully train a backdoored (poisoned) DRM with the backdoor working for both
grayscale and coloured inputs. Further experiments show that the malicious backdoor
behaviour can be subdued by fine-tuning the poisoned model.

1 Introduction
Regression models, particularly ones based on deep neural networks, called Deep Regression
Models (DRMs), are widely used to predict continuous outcomes (e.g. mass, angle, dis-
tance) in many industries, such as Real Estate, Automotive, Finance [14], and Healthcare
[15]. These models achieve state-of-the-art performance in solving challenging tasks, such
as human pose estimation [1], head position estimation [2], age estimation [6], and gaze
estimation [16] [9, 3].

As training a DRM requires access to adequate training data and computational re-
sources, many developers base their applications on pre-trained, third-party models [8].
This practice makes a considerable amount of applications vulnerable to backdoor attacks,
where attackers can inject hidden triggers into a network to manipulate its output. One
example of a backdoor method that can achieve high reliability and stealthiness is WaNet,
proposed by Nguyen and Tran [12], which relies on subtle image warping as the trigger
mechanism.

While much research has focused on backdoor attacks on Deep Classification Models
(DCMs) [5, 11, 12, 13], little work has addressed these attacks on DRMs [10].

This paper first explains the differences between DCMs and DRMs. We then formulate
and evaluate a backdoor attack on a DRM model for head position estimation using the
WaNet method. We then explore how to generalise the method to DRMs and whether it
can be applied to single-channel grayscale images and models trained on them.

2 Related Works

2.1 Backdoor Attacks on Deep Learning Models
In their paper, T. Gu et al. [5] explored a concept of a backdoored neural network, which
performs well on regular inputs but causes misclassifications whenever inputs satisfy some
secret, attacker-chosen property, called the backdoor trigger. While much of the research on
the topic of backdoored deep learning models focuses on classification tasks [5, 11, 12, 13],
very little has been done on regression tasks [10]. Additionally, [10] describes a backdoor on
a regression model with a very small number of input features.
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Nguyen and Tran [12] describe a backdoor attack method called WaNet, which stands
for Warping-based poisoned Networks. Their method is designed for image classification
models, is based on stubble image warping and is difficult to detect by both machine and
human inspections.

2.2 Differences between DCMs and DRMs
DRMs and DCMs are both types of deep learning models. Their differences lie in their
output type:

DRMs predict continuous outputs. That is, the output variables are numeric values
within a given range (e.g. temperature, angle, price). A DRM can be described as a
function f : X → RN , that maps some predetermined input X to N real numbers within a
given range.

DCMs predict categorical outputs. The output variables in classification are discrete and
usually represent different classes or categories (e.g. spam/not spam, dog breed, disease
diagnosis). We can describe DCMs as a function f : X → C (single-label classification) or
f ′ : X → P(C) (multi-label classification), where C is a set of classes.

Generally, DCMs can be converted to DRMs and vice versa by either modifying or adding
new final layers, provided that the underlying problem can be reformulated to suit either clas-
sification or regression objectives. Despite that, we cannot directly apply the convectional
threat model and evaluation metrics of backdoor attacks designed for DCMs on DRMs.

3 Warping-Based Backdoor Attack on a DRM

3.1 Threat Model
Attacker’s Goal The attacker’s aim is to introduce a backdoor into a DRM. The at-
tacker aims to make the backdoor imperceptible by ensuring the model behaves legitimately
whenever the backdoor trigger is not present, with minimal or no loss of accuracy compared
to a legitimate model, and by having the trigger itself be imperceptible. Additionally, the
attacker aims for the trigger to reliably influence the model’s output in a predetermined
way.

Attacker’s Capabilities The Attacker has access to training data and computational
resources and are capable of training and distributing a DRM. To successfully backdoor a
DRM, the Attacker must have control over the model’s training data and associated labels
or have control over the training process itself.

Attack Vector The Attacker trains or alters a model with a backdoor and distributes it
by publishing it on platforms such as [18, 24, 21] or selling the model directly to a developer
of the target program. The developer downloads the model, inspects it and uses the model
in their program without knowing it is compromised. The scope of the attack can be further
widened if the model is used in a Machine Learning as a Service platform, such as [17, 19].
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Backdoor Attacks on DRMs The clean model M : X → RN is a DRM for some N ≥ 1,
that takes a w × h image as input x ∈ X. The backdoored model MB : X → RN is also a
DRM with an associated backdoor trigger injection function B : X → X and function that
acts as a backdoor behavior modifier B′ : RN → RN . Output of MB is close or equal to the
output of M :

For most x ∈ X M(x) ≈MB(x),

unless the input is backdoored, in which case, B′ is applied to its output:

For most x ∈ X MB(B(x)) ≈ B′(M(x)).

3.2 Warping-Based Trigger
For WaNet, the trigger is a backward warping function W, that takes an image x, and a
warping field WF as input:

B(x) = W(x,WF ).

WF ∈ Rw×h×2 defines the relative sampling location for each pixel of x: (∆pixelx,∆pixely).
This results in a pixel at position (posx, posy) in B(x) being sampled from x’s pixel at position
(posx+∆pixel′x, posy +∆pixel′y), where (∆pixel′x,∆pixel

′
y) are values for (posx, posy) from

WF . For a result that looks legitimate, all positions are normalised to lay within [0, w−1] and
[0, h− 1] before being sampled. Additionally, all non-integer sampling values are bilinearly
interpolated, resulting in a smooth image. Both normalisation and interpolation are handled
by the warping function W

To generate WF , we first generate a K ∈ Rk×k×2 called the kernel. The kernel is
generated as follows:

K = ψ(rand[−1,1](k, k, 2))× s ,

where rand[−1,1](a, b, c) returns a random [−1, 1]a×b×c value, k and s being warping param-
eters, the latter being called the warping strength, and ψ being a normalisation function
defined as:

ψ(A) =
A

1
size(A)

∑
ai∈A |ai|

The kernel is then upsampled using bicubic interpolation, denoted as a ↑: Rk×k×2 → Rw×h×2

function, resulting in:
WF =↑ (ψ(rand[−1,1](k, k, 2))× s)

This process is depicted in Figure 1. Generally, the smaller the s and k values are, the
harder it is to spot the warping and harder for the backdoored model to be trained. Figure
2 illustrates the affects of warping parameters on an image. Note that the warping field
generation deviates slightly from [12], where a normalisation ϕ is used when generating the
warping field, as enforcing sampling positions remain with in the original image bounds is
handled by W normalising its input.

3.3 Running Modes
Similar to other backdoor methods [5, 11], during training, the data from the training
dataset can either remain unchanged ("clean mode"), or both images and associated labels
can be modified using B and B′ respectively ("attack mode"). While this approach results in
successful backdoors, the models "tend to learn pixel-level artefacts instead of the warping",
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Figure 1: The process of generating a warping field and applying it to an image, resulting
in a backdoored image.

Figure 2: Effects of warping parameters k and s on the warping result. For each warp, we
show the warping result (top), and the magnified (×2) residual image from the original.
Image comes form the Pandora Dataset [22]
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which makes them "easily exposed by a backdoor defence method such as Neural Cleanse"
[12], making the backdoor more detectable.

To combat this, the WaNet paper introduces a separate training mode alongside the clean
and attack modes, called the "noise mode". In the noise mode, the label remains unchanged,
but the image gets warped using a random warping field WN , which is not the predetermined
backdoor warping field (WN ̸= WF ). Given a backdoor probability ρa ∈ [0, 1] and a noise
probability ρn ∈ [0, 1], such that ρa + ρn ≤ 1, each clean input (x, y) gets processed as
follows:

(x, y) 7→


(x, y) with probability 1− ρa − ρn

(W(x,WF ),B′(y)) with probability ρa
(W(x,WN ), y) with probability ρn, for some WN ̸=WF

4 Experiments

4.1 Experimental Setup
4.1.1 The Model

To carry out the experiments, a head pose estimation DRM, MH : X → R3, was trained.
As input, the model takes a 224× 224 3-color-channel (unless specified otherwise) image of
a human head and outputs an estimate of the heads pitch, yaw, and roll (Euler angles) in
radians relative to the camera from which the image was taken.

The head pose estimator was implemented using a modified ResNet-18 [7] DCM, which
uses 17 convolutional layers and one fully connected layer with 1000 neurons on the output
layer. To convert the DCM to a DRM, the final (fully connected) layer was changed to have
3 output neurons for yaw, pitch, and roll respectively.

MH was trained on a biwi_face_dataset_RGB dataset [4, 22]. The dataset contains
100× 100 3-channel images, which were upscaled to match the 224× 224 input size.

Hyperparameters used were:

k = 12 s = 1.25 ρa = 0.1 ρn = 0.2 batch_size = 64 learning_rate = 0.0001

The backdoor behaviour of the model is:

B′(y) = {yaw = 0 rad, pitch = +1 rad, roll = 0 rad}.

The dataset was split into 80% for training and 20% for evaluation. The model was trained
for 256 epochs with the ADAM optimizer.

4.1.2 Implementation details

All experiments are conducted using Python. The head pose estimator is based on resnet18
model from the TrochVision python library. Warping was achieved using the grid_sample
python function from the PyTorch library. The clean dataset is processed in attack, noise
or clean modes during training, where the modes are applied to full batches with ρa, ρn,
and 1− ρa − ρb probability, respectively. To achieve better training performance, the input
data is normalised at the pre-processing stage.

For better reproducibility of our experiments, the random seed for pyTorch, numPy, and
random python libraries was hard-coded. The code is open source, and can be found at [23]
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4.2 Evaluation Metrics
Given an evaluation dataset of size se: Se = {(xi, yi)|xi ∈ X, yi ∈ R3, i = 1, se} and a
function δang : R3 × R3 → [0, 180◦], which takes two Euler angles (in radians) and outputs
absolute angular difference between them; a backdoor is considered to be successful on a
poisoned image B(xi) if the model outputs a value within 5 degrees of the poisoned label
B′(yi):

δang(B′(yi),MH(B(xi))) ≤ 5◦.

The following metrics are then used to evaluate the effectiveness of the models and the
backdoor method:

• Mean Absolute Error (MAE) describes the performance of a model:

MAE =
1

se

se∑
i=0

δang(yi,MH(xi)).

This paper considers a model to be accurate, when MAE ≤ 3◦

• Backdoor Success Rate (BSR) describes how well a backdoored model recognizes and
responds to the backdoor signal:

BSR =
100%

se

se∑
i=0

1δang(B′(yi),MH(B(xi))≤5◦

• Mean Absolute Error for the Backdoor (MAEB) describes the average angular error
between inputs with a backdoor present and poisoned labels:

MAEB =
1

se

se∑
i=0

δang(B′(yi),MH(B(xi))).

• False Positive Rate for Noise (FPN ) describes how often a backdoored model misin-
terprets a warped input not containing a backdoor as an input with a backdoor by
invoking the backdoor behaviour:

FPN =
100%

se
(

se∑
i=0

1δang(B′(yi),MH(W(xi,WN )))≤5◦ −
se∑
i=0

1δang(B′(yi),yi)≤5◦),

where WN ̸=WF . In the experimental setup of this paper, this is not strictly enforced.
Instead, WN is randomly regenerated for each batch in the evaluation dataset. While
a collision (where WN =WF ) is possible, its impact on the evaluation are negligible.

• False Positive Rate for Clean (FPC) describes how often a backdoored model misinter-
prets a clean input as an input with a backdoor by invoking the backdoor behaviour:

FPC =
100%

se
(

se∑
i=0

1δang(B′(yi),MH(xi))≤5◦ −
se∑
i=0

1δang(B′(yi),yi)≤5◦),

A backdoor is considered successful on a model, if BSR ≥ 90% or MAEB ≤ 3◦ , FPN ≤
0.5%, FPC ≤ 0.5%, and the model itself is accurate. Note, that (FPN ) and (FPC) are
simplified to lower the computational time required for evaluation.
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4.3 Experimental Results on 3-Channel Coloured Input
A backdoored model was trained. Its performance over time is depicted in Figure 3, and its
performance after epoch 250 is outlined in Table 1.

Metric BSR FPC FPN MAE MAEB

Value 99.8406% 0.0899% 0.1218% 1.6242◦ 1.8139◦

Success Threshold ≥ 90% ≤ 0.5% ≤ 0.5% ≤ 3◦ ≤ 3◦

Table 1: Model performance metrics after epoch 250 (rounded). Hyperparameters used:
k = 12, s = 1.25, ρa = 0.1, ρn = 0.2, batch size = 12, learning rate = 0.0001. Trained on
3-channel colored images.

Figure 3: Model performance over training epochs. Horizontal lines indicate metric thresh-
olds that define backdoor success. Hyperparameters used: k = 12, s = 1.25, ρa = 0.1,
ρn = 0.2, batch size = 12, learning rate = 0.0001. Trained on 3-channel colored images.

4.4 Experimental Results on 1-Channel Grayscale Input
A similar experiment to the one described in subsection 4.3 was conducted. The model was
trained on the same dataset, which was modified during prepossessing to contain single-
channel grayscale images. To accommodate this, the first convolutional layer of MH was
modified to accept single-channel images. Table 2 outlines its performance after epoch 250.

4.5 Defence Experiment
A working backdoored model was fine-tuned for 128 epochs with ρa = 0 and ρn = 0. Its
backdoor performance over fine-tuning epochs is depicted in Figure 5, and its performance
after fine-tuning is compared with a backdoored model in Table 3.
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Metric BSR FPC FPN MAE MAEB

Value 100% 0.0947% 0.1266% 1.7037◦ 1.3343◦

Success Threshold ≥ 90% ≤ 0.5% ≤ 0.5% ≤ 3◦ ≤ 3◦

Table 2: Model performance metrics after epoch 250 (rounded). Hyperparameters used:
k = 12, s = 1.25, ρa = 0.1, ρn = 0.2, batch size = 12, learning rate = 0.0001. Trained on
1-channel grayscale images.

Figure 4: Model performance over training epochs. Horizontal lines indicate metric thresh-
olds that define backdoor success. Hyperparameters used: k = 12, s = 1.25, ρa = 0.1,
ρn = 0.2, batch size = 12, learning rate = 0.0001. Trained on 1-channel grayscale images.

4.6 Ablation Experiments
4.6.1 Impact of the Noise Mode on Model Performance

A similar experiment to the one described in subsection 4.3 was conducted, but without
noise mode (ρn = 0). Its performance is outlined and compared to a model trained with
noise model in Table 4.

4.6.2 Impact of the Warping Strength on Model Performance

Four backdoored models were trained with varying warping strengths. Their metrics after
epoch 250 are compared in Table 5. Figure 6 outlined the impact of the warping strength
on models backdoor success rate.
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Figure 5: Model performance over fine-tuning time with ρa = 0, ρn = 0 for 128 epochs
(rounded). Before fine-tuning, the model has a backdoor. Other hyperparameters used:
k = 12, s = 1.25, batch size = 12, learning rate = 0.0001. Trained and fine-tuned on 3-
channel colored images.

Figure 6: Backdoor success rate comparison for models trained on different s values af-
ter epoch 250. Hyperparameters used: k = 12, ρa = 0.1, ρn = 0.2, batch size = 12,
learning rate = 0.0001. Trained on 3-channel colored images.
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Metric BSR FPC FPN MAE MAEB

Value before fine-tuning 99.9043% 0.1266% 0.41358% 1.7124◦ 1.7684◦

Value after fine-tuning 0.3827% 0.1585% 0.1266% 1.5104◦ 43.8345◦

Success Threshold ≥ 90% ≤ 0.5% ≤ 0.5% ≤ 3◦ ≤ 3◦

Table 3: Model performance metrics before and after fine-tuning a model with ρa = 0,
ρn = 0 for 128 epochs (rounded). Before fine-tuning, the model has a backdoor. Other
hyperparameters used: k = 12, s = 1.25, batch size = 12, learning rate = 0.0001. Trained
and fine-tuned on 3-channel colored images. Differing metrics are highlighted.

Metric BSR FPC FPN MAE MAEB

Value without noise mode 99.9681% 0.1585% 44.0679% 1.5156◦ 1.3294◦
Value with noise mode 99.8406% 0.0899% 0.1218% 1.6242◦ 1.8139◦

Success Threshold ≥ 90% ≤ 0.5% ≤ 0.5% ≤ 3◦ ≤ 3◦

Table 4: Model performance metrics after epoch 250 (rounded) comparison. At the top:
model trained without noise mode (ρn = 0.0), at the bottom: model trained with noise
mode (ρn = 0.2). Other hyperparameters used: k = 12, s = 1.25, ρa = 0.1, batch size =
12, learning rate = 0.0001. Trained on 3-channel colored images. Differing metrics are
highlighted.

Metric BSR FPC FPN MAE MAEB

Value with s = 0.25 0.1594% 0.1266% 0.1266% 1.6117◦ 58.3233◦

Value with s = 0.75 63.3291% 0.0947% 0.1266% 2.1160◦ 4.8275◦

Value with s = 1.25 99.8406% 0.0899% 0.1218% 1.6242◦ 1.8139◦

Value with s = 1.75 99.8724% 0.1585% 0.1266% 1.7180◦ 1.6108◦

Success Threshold ≥ 90% ≤ 0.5% ≤ 0.5% ≤ 3◦ ≤ 3◦

Table 5: Model performance metrics after epoch 250 (rounded) comparison. Each model was
trained with a different s value. Other hyperparameters used: k = 12, ρa = 0.1, ρn = 0.2,
batch size = 12, learning rate = 0.0001. Trained on 3-channel colored images. Differing
metrics are highlighted.
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5 Discussion
Experimental results from subsections 4.3 and 4.4 indicate that the WaNet method can be
successfully adapted to compromise a DRM. The backdoor works well on both grayscale and
coloured images, with the grayscale model achieving marginally better backdoor accuracy.
The effectiveness of the backdoor combined with its stealth [12] poses a significant security
threat.

By fine-tuning a backdoored model in subsection 4.5, we were able to heavily subdue
the backdoor behaviour (BSR and MAEB) while the metrics describing legitimate model
behaviour (FPC , FPN , andMAE) remained relatively unchanged. MAEB of the fine-tuned
model being around 43◦ indicates, that the model was not cleansed of the backdoor in its
entirety. However, MAEB did not plateau over fine-tuning time, which may mean that the
backdoor could be completely removed given more fine-tuning time. It is important to note
that the defence experiment did not reflect a realistic scenario where the party fine-tuning
the backdoored model has access to a different, much smaller dataset than the one used by
the attacker to train the poisoned model.

Results included in sub-subsection 4.6.1 indicate that a backdoored model can be trained
without the noise mode. However, instead of the poisoned model learning the backdoor itself,
the model attributes certain warping-related distortion artefacts, causing false positives for
images that were warped but did not contain the backdoor itself. It is also important to
note that backdoors in models trained without the noise mode are easier to detect using
automated defence mechanisms [12].

From the results in sub-section 4.6.2, we observe that below a certain threshold, a lower
warping strength correlates with a lower backdoor success rate, possibly because subtler
changes to the image are harder or even impossible to detect by the model. We hypothesize
that given more training time, it is possible to train a backdoored model meeting all require-
ments listed in subsection 4.6.2 using a warping strength of 0.75. It is important to note
that the warping strength values used here exceed those in the WaNet paper [12], because
our models are trained on larger, upscaled images, necessitating greater s values to achieve
comparable effects.

6 Responsible Research

6.1 Reproducibility of Experiments
Experiments in this paper were conducted with reproducibility in mind. The code used will
be published at [23]. Training data was published by its creators [4]. In our experiments,
we use a set random seed for most, if not all pseudorandom functions.

6.2 Use Of LLMs
ChatGPT [20], a Large Language Model (LLM), was used while writing this paper to gen-
erate ideas, assist in the writing process and help find points of improvement in both the
paper and code used. The author is aware of the limitations of LLMs and did not rely on
ChatGPT for factual information.
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7 Conclusions and Future Work
In this paper, we formulated, applied, and evaluated the WaNet backdoor attack on a deep
regression model. The method is effective on both grayscale and coloured inputs. The
effectiveness of the backdoor can be crippled by fine-tuning the poisoned model.

Given the narrow scope of the experiments, future work could expand on the findings
of this paper. By varying the experimental conditions and including more appropriate
hyperparameters, researchers could gain a better understanding of the method, its impact,
and whether the defence method mentioned in this paper can fully disable the backdoor.
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