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Introduction 1
In this thesis we describe the design and implementation of a modular software framework
for the RT-Motion USB platform developed by Philips Applied Technologies. Such
framework is needed because the current firmware is developed in a static manner without
modularity in mind, which is hard to be extended. The new modular software framework
which is developed is intended to provide flexibility, extendability and configurability to
the RT-Motion USB Platform.

This project had been carried out in cooperation with Philips Applied Technologies
as a part of their Home Robotics project.

This chapter is organized as follow. In Section 1.1 a brief overview of the RT-
Motion USB platform and its firmware is given. Section 1.2 describes the limitation of
the current firmware and defines the requirements for the new modular and extendable
software framework. Finally the organization of this thesis is described in Section 1.3.

1.1 RT-Motion USB

The RT-Motion USB is a modular, compact-size and low-cost USB based motion control
platform designed by Philips Applied Technologies. It is equipped with a versatile ARM7
microcontroller and various input and output ports. Being based on the USB 2.0 High-
speed bus, the RT-Motion USB enables an affordable distributed motion control platform
without the need of conventional bulky parallel cable. The compact-sized board enables
it to be easily deployed to various distributed motion-control environments where size
matters. The RT-Motion USB platform was developed as a Master degree graduation
project of a student from Technische Universiteit Delft in 2007 [11].

The ARM7 microcontroller which is chosen to be the core of the RT-Motion USB is
an NXP LPC2888 microcontroller. This microcontroller has an ARM7TDMI core which
runs at 60 MHz clock frequency and equipped with 8 KB of cache memory. Being a
system-on-chip design, the microcontroller is also equipped with 64 KB of Static RAM,
1 MB of Flash ROM, a High-Speed USB 2.0 Device controller, and series of analog
to digital and digital to analog converters. The powerful and versatile ARM7TDMI
microcontroller also promises a decent computing power to perform some motion-control
algorithms and perform basic signal processing tasks.

1.1.1 Software Framework Overview

RT-Motion USB board is designed as a USB device, which is intended to be connected
to Windows/Linux based personal computer. The software framework which supports
RT-Motion USB consist of the firmware in the board itself, the USB device driver for
the Host PC, the User API for creating the motion control application in the Host PC

1



2 CHAPTER 1. INTRODUCTION

and finally the real-time motion control application. In this section the detail of each
software framework component will be described in more detail.

1.1.2 Firmware

All pieces of software that power the RT-Motion USB board is contained in a set of code
which is called firmware. The firmware controls all part of the board, from the smallest
role like switching on or switching off a LED up to handling USB data exchange. The
firmware is currently designed to control the RT-Motion USB board and provide USB
based real-time data exchange between the board and the Host PC. The support of
software based encoder counter algorithms has also been implemented into the current
firmware.

The firmware is written in C language and compiled using the Keil RealView Micro-
controller Development Kit. The image of the firmware can be uploaded to the on-chip
flash memory by using a JTAG cable or using the USB cable. The ability to upload
firmware by using a USB cable enables end-users to upgrade the firmware by themselves.

The main functions of the firmware are initializing the microcontroller, setting up the
USB subsystem and then going to operating mode. During operation mode the firmware
is doing its job by listening to two USB endpoints, one is used for controlling the board
and the other one is used for the real-time data exchange with the Host PC.

If necessary, the developer can also modify the firmware to include an additional
program, but some serious effort is needed. There is already one successful effort of
modifying the firmware to execute local motion control algorithm to control the actu-
ation of robot eyes. This firmware modification can operate stand alone without PC
intervention while running 4 channel PID controllers at 2 KHz control frequency. The
difficulties of modifying the firmware to include some additional program are covered in
more detail in Section 1.2.1.

1.1.3 USB Device Driver

From the nature of USB specification, the functions of a USB device always depend on
the USB host. This condition also applies to the RT-Motion USB. RT-Motion USB will
need a USB Host to control the behavior of the RT-Motion USB board. The USB device
driver of RT-Motion USB has been developed for Linux and Windows platforms. The
USB device driver supports various Linux operating systems, including the ones equipped
with real-time extensions like RTAI and Xenomai. RTAI and Xenomai is described in
Section 2.4.

The USB device driver utilizes two USB Endpoints which are used for the real-time
data channel and for the service message channel. The USB device driver specifies the
transfer type of the USB connection as USB bulk transfer to be able to utilize the
maximum bandwidth that is offered by USB. But the choice of using bulk transfer mode
introduces one important restriction to the users. The user must ensure that the USB
host controller that is used to connect the RT-Motion USB is not shared with other kinds
of USB devices. This restriction is based on the characteristic of bulk transfer mode that
it can achieve its best performance on an idle host. If the USB host controller is shared
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with other devices, there might be the case that the other devices are also saturating the
bus and automatically decrease the available bandwidth for the RT-Motion USB.

1.1.4 User API

In practice, currently the motion control algorithm is executed in the USB host PC, in
a real-time motion control application built on top of a Linux system with some sort of
a real-time extension. The real-time motion control application can communicate with
the RT-Motion USB board by calling the functions included in the User API. The User
API provides two group of operations, setting up board configuration and performing
control data exchange. The board configurations which can be set up by using the User
API are:

• Software Encoder Algorithm

– Enable/disable software encoder counter
– Setting encoder counting frequency
– Choosing software encoder counting algorithm

• Analog/Digital I/O

– Enable/disable A/D converters
– Enable/disable D/A converters
– Setting the Digital I/O Mask
– Turning on/off onboard status LEDs

• Motor Amplifier

– Enable/disable Amplifiers
– Choosing amplifier decay mode
– Choosing amplifier sleep mode
– Selecting amplifier blank pin

1.1.5 Real-time Motion Control Application

The real-time motion control application is the user application which resides on the
Host PC machine which can be in the form of a Linux application, a real-time Linux
application or a Windows application. The real-time motion control application can
communicate with one or more RT-Motion USB boards. This application communicates
with the RT-Motion USB boards by calling some functions which have been defined in
the User API.

After the data acquisition is done, the application can compute the actuation value
according to the used control algorithm. The actuation value is then sent back to the RT-
Motion USB boards by calling some functions in the User API. The data acquisition,
processing and sending back to the RT-Motion USB boards must be done in a real-
time manner. The frequency of the periodic loop can be adjusted to each application’s
requirements. This typical usage scenario for RT-Motion USB is shown in Figure 1.1.
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Figure 1.1: Typical Setup of RT-Motion USB

1.2 Problems Statement

This section covers the problems of the current system, the planned future system and
how to achieve that future system. The formulated requirements document is delivered
in appendix A.

1.2.1 Current

The current implementation of the firmware has already met the initial objective which
is to make an affordable distributed real-time motion control platform. The platform has
been deployed to many motion control applications and proved to be able to deliver good
performance. But typically the full potential of the board is not yet utilized because
it is usually used as a versatile distributed real-time I/O boards by primarily taking
the advantage of the USB 2.0 high speed bus. The processing power of the LPC2888
microcontroller is still barely used because the standard firmware only focuses on the
basic real-time message exchange operation.

The available processing power of the LPC2888 leads to the intention to write soft-
ware to be executed in the firmware. But the firmware is built statically without the
infrastructure to support extendibility. The static implementation is making it hard
for the user to add some functions to the firmware or to modify some functions. To
write extension software to the current firmware, the user must fully understand the
firmware beforehand. Some of the important drawbacks present in the current firmware
implementation are:

• To execute custom code locally the developer must modify the firmware manually,
forcing the developer to study how the whole firmware works and integrate their
custom code.

• When a developer needs to interface some hardware modules to be used with the
RT-Motion USB boards, the developer has to implement the interfacing driver
inside the firmware, which still does not have any well defined standard. And
again this forces the developer to learn about the firmware implementation.
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• The real-time data exchange in the current implementation is not done efficiently.
All existing data fields are transmitted in the data exchange process even though
that data is not being used. This approach is introducing a limiting factor to the
extendibility of the system, because every time a new functionality is added, the
developer must also modify the data exchange packet format accordingly.

• The housekeeping to make sure adding new functionalities will not harm the sta-
bility of the RT-Motion USB is quite difficult.

• The development of software extension modules and hardware extension modules
requires the developer to prevent any resource conflict by manually keeping track
of the usage of all on-chip resources and carefully assigning resources for new
modules. This can be a very complicated process as the number of extension
modules increases.

The main factors which limit the extendibility of the firmware are:

• The firmware does not have a basic framework which allows developer to write
code on top of it.

• In-depth knowledge of the firmware’s inner working is needed to start modifying
the firmware.

• The developer has to take care of the usage of all onboard resources.

• The developer must make sure that the modification which is being made will not
interfere with the real-time capability of the whole system.

1.2.2 Future

For achieving better utilization of all the features that RT-Motion USB potentially offers,
some improvements must be made to the current software framework. The improvements
of the software framework will include the improvement of the firmware itself, the User
API and also the USB communication protocol. Because the current USB device driver
has been proved to be able to provide a real-time communication channel for the current
system, the USB device driver will be used as it is.

The new firmware will be equipped with building blocks which supports the developer
to easily and rapidly develop software extension modules and device drivers to interface
new hardware modules. The new software framework will have a more advanced real-
time messaging protocol which supports configurable message formats. All improvements
that is going to be implemented to the new software framework must be accompanied
with a good configuration method to let the user customize RT-Motion USB according
to the application’s requirement.

1.2.3 How

Following are the steps needed to develop the new modular and extendable software
framework for RT-Motion USB:
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• Knowledge of the microcontroller being used, NXP LPC2888.

• Experience with the Keil Microcontroller Development Kit.

• Knowledge of the USB 2.0 high speed specifications.

• Formulation of robust communication protocol between PC and the USB board.

• Research on building the modular and extendable firmware.

• Research on the suitable real-time scheduler to be used.

• Research on how to manage the resources of the system.

• Research on the software extension modules and the integration to the firmware.

1.3 Thesis Organization

This thesis is organized as follows, Chapter 2 presents the background works related to
the project, as an overview of the literatures that has been studied. Chapter 3 presents
the design and implementation of the software framework which is the center of this thesis
research. Chapter 4 presents the experiment results and discussions. Finally chapter 5
presents the conclusions and recommendations.



Background 2
This chapter covers the background of thesis project. The first part will cover the
NXP LPC2888 which is used as the backbone of the system, and the Keil RealView
MDK as the development environment. Some introduction to the USB 2.0 standard
and the configuration used for realizing the real-time communication channel will also
be covered in this chapter. And some ideas which might give useful insight for defining
the communication protocol will be discussed. This communication protocol will be
introduced to the new software framework for ensuring the efficient utilization of the
communication channel.

2.1 NXP LPC2888 & SDK

This section discusses the microcontroller used in the RT-Motion USB and the develop-
ment environment used to build the firmware.

The microcontroller which is used as the backbone of the RT-Motion USB is the NXP
LPC2888 microcontroller. LPC2888 is a system-on-chip microcontroller which is based
on an ARM7TDMI core. It includes a USB 2.0 High Speed device interface, an external
memory interface that can interface to SDRAM and Flash, an MMC/SD memory card
interface, A/D and D/A converters, and serial interfaces including UART, I2C, and
I2S. Architectural enhancements like multi-channel DMA, processor cache, simultaneous
operations on multiple internal buses, and flexible clock generation help to ensure that
the LPC2888 can handle more demanding portable applications while requiring low
power. The ARM7TDMI core inside the NXP LPC2888 can run at maximum clock
frequency of 60 MHz. The microcontroller is equipped with 8 KB cache, 64 KB Static
RAM and 1 MB Flash memory. In the implementation of the RT-Motion USB board,
the external memory interface is not used, which limits this project to utilize only the
on-chip memory.

ARM7TDMI The acronym ARM7TDMI specifies that the ARM7 core supports the
Thumb 16-bit compressed instruction set, has on-chip Debug support that enables
the processor to halt in response to a debug request, includes an advanced and faster
M ultiplier unit that can produce full 64-bit result and has an EmbeddedICE hardware
to support on-chip breakpoint and watchpoint. ARM7TDMI executes the ARMv4T in-
struction set architecture with Thumb extensions [1]. ARM7TDMI processors have been
greatly used in mobile telephone handset applications where they are usually combined
with a sophisticated DSP processor in a single chip solution. Here the ARM7TDMI has
become the de-facto standard processor responsible for the control and user interface
function the mobile telephone handsets [6].

7



8 CHAPTER 2. BACKGROUND

The Thumb 16-bit compressed instruction set introduces a set of 16-bit long in-
structions which allows an almost double code density while giving almost the same
performance as the standard 32-bit ARM instruction set. Despite being a 16-bit code,
the Thumb code still uses the 32-bit registers of the ARM processor with some restric-
tions. Thus it can deliver performance which is more or less comparable to the 32-bit
ARM instruction set. In order to achieve only 16-bit instruction length while still being
able to perform all functionality, some adjustments must be made:

• No conditional instruction execution.

• Many Thumb instructions use a 2-operand format by using the same register for
source and destination register.

• Fewer regular instruction formats because of the need of denser encoding.

One of the most sophisticated features of the Thumb Architecture Extension set is the
ability to interwork seamlessly between the ARM and the Thumb code. This feature
gives the developer the freedom to get the balanced code density and performance opti-
mization.

Known Problems The NXP LPC2888 has a quite serious erratum regarding the
execution of Thumb code from the on-chip Flash, which will cause a data abort exception
if attempted. There is no known workaround for this problem, this erratum needs a
serious attention when the developer wants to use the Thumb/ARM interworking. The
erratum is documented in [25].

Keil RealView Microcontroller Development Kit The firmware for the NXP
LPC2888 is written in C language and compiled using the Keil RealView R© Compilation
Tools (RVCT). According to Keil, these development tools allow developer to write
ARM applications in C or C++ while achieving the speed of assembly language [15].
Keil RVCT includes a complete toolkit for ARM development:

• The RealView C/C++ Compiler (armcc),

• The RealView Macro Assembler (armasm),

• The RealView Linker (armLink),

• The RealView Utilities (Librarian and FromELF).

Keil RVCT is part of the Keil Realview Microcontroller Development Kit (MDK), to-
gether with the µVision IDE and the Keil RTX Real-Time Kernel.

2.2 USB 2.0 as Real-time Communication Channel

USB 2.0 High Speed The USB architecture is defined as a master-slave protocol
where a host controller acts as a master and communicates with many client devices
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which act as slaves. The communication must always be initiated by the master, thus
the slaves can only reply to the master’s requests.

According to the USB 2.0 specification [3], three bus speeds are supported: low speed
at 1.5 Mbit/sec, full speed at 12 Mbit/sec, and high speed at 480 Mbit/sec. The high
speed standard is introduced with the release of USB 2.0 specification. The bus speed
actually describes the rate of data transfer in the bus which is shared by all peripherals
connected to it, so the rate of data transfer that can be expected by each device might
be less than the bus speed. The theoretical maximum rate for a single data transfer is
about 53.248 Megabytes/sec at high speed and around 1.2 Megabytes/sec at full speed.
The low speed only offers around 0.8 Kilobytes/sec [2].

Communication Types The communication types in USB can be divided into two
groups, the enumeration communication and the application communication. The enu-
meration communication is all form of communication that is needed for a host to
enumerate and configure a USB device which has just been plugged in. During this
enumeration process the operating system is recognizing what device is being plugged
in, and tries to find the suitable drivers to control that device. On the other hand the
application communication is all form of communication between the Host PC and the
USB device that is needed for the device to perform its function and deliver its result,
the communication is done between the user application and the USB device by calling
operating system functions.

Endpoints An endpoint is a block of data memory in the USB device that acts as a
buffer that stores multiple bytes of data which are ready to be sent or data which has
just been received by the device. All traffic on a USB bus is from the USB host to a
device endpoint or from the device endpoint to the USB host. An endpoint address is a
combination of an endpoint number which ranges from 0 to 15 and the direction of the
endpoint from the USB host’s point of view, which is IN or OUT.

A device must have at least one control endpoint, called endpoint 0. This endpoint
is used as a bidirectional endpoint named endpoint 0 IN and endpoint 0 OUT. A device
can have maximum 15 other endpoints numbers which each can support both IN and
OUT endpoint addresses that makes total 30 endpoints addresses. An association of a
device’s endpoint to the host controller’s software which is needed to perform a transfer
is called a USB pipe.

Transfer Types To accommodate a broad range of devices which might have different
transfer rate, response time and error correcting requirements, USB defines four types
of data transfer mode:

1. Control
The control transfer type is a required transfer type that must be implemented by
every USB device. It is usually used by the host to identify the USB device and
set the device configuration.

2. Bulk
The bulk transfer type has the maximum transfer rate potential, theoretically
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around 53.248 MB/sec. But that potential can only be achieved when the bus
is idle; when the bus is very busy there is a possibility that the transfer can be
delayed. USB guarantees neither the delivery rate nor the latency, but it will try
up to three times in case of failed delivery. The real world performance of bulk
transfer at the time of the writing of [2] is up to around 35 MB/sec.

3. Interrupt
The interrupt transfer type is usually used for mouse and keyboard devices. All
interrupt and isochronous transfers (see below) have a combined reserved band-
width 80% of the USB bandwidth for USB high speed and 90% for USB low speed
and full speed. The latency or maximum time between transfers is guaranteed.
The name interrupt transfer can be deceiving because this transfer still requires
the host to poll the device to check if there is a pending transfer.

4. Isochronous
Isochronous transfer is typically used for streaming applications, for instance, en-
coded voice and music to be played in real-time. There is no error correction
mechanism implemented. An isochronous transfer can make sure that a transfer
is possible to be performed quickly even in a busy bus. Here the latency of the
message is guaranteed, but the successful delivery of a message is not guaranteed.

All USB transfer types have error correction mechanisms implemented, except the
isochronous transfer type.

Real-time communication via USB 2.0 High Speed RT-Motion USB provides a
real-time communication channel which is based on USB 2.0 High Speed at 480Mbit/s.
The USB transfer type is set to bulk transfer mode to be able to use all available band-
width that USB 2.0 High Speed could offer, but the nature of USB bulk transfers mode
does not offer any data delivery timing guarantee. To make sure that the RT-Motion
USB boards achieve the best performance there is a practical limitation that needs to be
introduced, the RT-Motion USB boards should be connected to a dedicated USB host
which is not shared with any other kinds of USB devices utilizing other transfer types.
USB bulk transfer has an error checking mechanism already implemented. Experience
also shows that bulk mode is the communication mode of choice for embedded devices
[18].

USB Debugging To analyze what is going on in a USB bus to debug some low-level
problems, there is a kind of USB tool called USB bus analyzer. There are many vendors
offering USB bus analyzers, such as Ellisys USB Explorer 200 [5] and Total Phase Beagle
USB 480 Protocol Analyzer [20], in the price range of 1,000-2,000 EUR. The detailed
pricing information and the comparison between both solutions can be found in [21].
USB bus analyzers are typically built as a set of hardware and software, the hardware
is connected between the USB host and the USB device so the software can record all
data, electrical states and control information transmitted on the bus without affecting
the communication or device behavior. The typical hardware setup can be seen in Figure
2.1. The software is installed on the host PC and is responsible for the capturing process.
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Figure 2.1: USB Bus Analyzers Hardware Setup

An alternative to USB bus analyzer tools is the Linux kernel’s soft USB tracer, usb-
mon. This tool can also capture the traffic on the USB bus. To use this tool the developer
must ensure that debugfs (CONFIG DEBUG FS) and usbmon (CONFIG USB MON)
support has been enabled in the Linux kernel. There is also a website dedicated for ideas
on USB testing [23].

2.3 Communication Protocol between RT-Motion USB
and Host PC

The development of the communication protocol is also important to realize real-time
communication between all the USB boards and the Host PC. The overhead of adding
more USB boards to the Host PC also needs attention in the development process. The
usage of the communication channel can be optimized by employing a custom tailored
packet for each kind of configuration which is being used, which will need some sophis-
ticated protocol to support that.

The protocol must have a good efficiency to meet the performance requirements of
the real-time motion control system and it should be scalable in terms of accommo-
dating various data exchange requirements which may be different per motion control
environment.

The communication protocol now becomes important because of the enormous com-
bination possibility of data which can be exchanged between the USB boards and the
Host PC. The packet format must be dynamically formatted depending on the need of
the RT-Motion USB boards, but still delivers a good real-time performance. To get more
insight about some packets mapping implementation some basic principle of the Fieldbus
memory management unit from EtherCAT and process data objects from CANopen are
covered in the next section.
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2.3.1 Fieldbus MMU from EtherCAT

EtherCAT (Ethernet for Control Automation Technology) [7] is an automation network
which works on an Ethernet network but introduces a ”processing on the fly” approach.
This approach enables EtherCAT to minimize delays and jitters in the communication
because data can be extracted and inserted to the Ethernet frame on the fly. From the
master node’s point of view, the whole EtherCAT system is seen as a large distributed
memory that can be read and written without restriction.

The Fieldbus Memory Management Unit (FMMU) is a mechanism used for mapping
process data from the logical process data image on the EtherCAT Fieldbus to the
physical memory address of the local device. The FMMU can even map the process data
bit-wise, meaning that a data item which is represented as a single bit can be inserted
anywhere in the packet’s logical address space. FMMU is implemented in an EtherCAT
Slave Controller.

Every EtherCAT slave has its own FMMU mapping table, the table is responsible
for keeping track of the mapping of every logical address which came inside a packet
to a physical memory address inside the EtherCAT slave device. The table is set at
the initialization phase of the EtherCAT networks. Just by checking the mapping table,
every slave node can retrieve information from the packet and insert information to the
packet as instructed by the master node, this process is done as the packet goes through
the slave nodes.

2.3.2 Process Data Objects from CANopen

CANopen [10] is a higher layer protocol for Controller Area Network (CAN) based net-
works that describes the data exchange mechanism. CANopen defines both the com-
munication profile and the device profile. The core of any CANopen node is a lookup
table with a 16-bit index and 8-bit sub-index which is called Object Dictionary [9]. The
object dictionary stores all process and configuration data as entries in predefined loca-
tions. The messages which are used to read or write any node’s object dictionary entries
are called Service Data Objects (SDO).

Process Data Objects (PDO) is the message format that is used to transfer process
data in the object dictionary. With the help of PDO mapping inside the object
dictionary entries, any data which is listed in the object dictionary entry can be mapped
to a data inside a PDO message and transferred to other nodes. The maximum length
of data that can be transmitted by a PDO message is 8 bytes. If there is a need to
transfer more than 8 bytes, the data transfer will be automatically fragmented into
multiple PDO message.

2.4 Real-Time Functionality Support for Linux on Host
PC

The RT-Motion USB software framework consists of the firmware on the RT-Motion
USB board itself and the software package on the Host PC which controls it. In order to
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make a real-time motion control application, both sides must be developed in a real-time
manner. On the host PC there are quite a number of real-time Linux kernel patches
options which can be used.

RTAI RTAI (Real-Time Application Interface) [26] is a real-time Linux kernel exten-
sion which allows real-time tasks to run alongside standard Linux tasks, RTAI itself is
not an RTOS. RTAI can provide deterministic response to interrupts by using the Adeos
virtualization layer. RTAI provides a native API with lots of services to support the
real-time application development.

Xenomai Xenomai [27] is a real-time development framework which runs in coopera-
tion with the Linux kernel to provide hard real-time support to user-space applications.
Xenomai is built in a layered manner, including a hardware abstraction layer, a real-time
nucleus and various kinds of skins. The layered approach and support of RTOS skins
give Xenomai better extensibility than RTAI.

RT-Preempt Patch Unlike the previous attempt of realizing a real-time operating
systems by creating an extension to the Linux kernel, Ingo Molnar and a small group
of developers [17] tried to make a true real-time Linux operating system by modifying
the Linux kernel. The modification is combined in a patch set which is called the
RT-Preempt patch set. RT-Preempt patch converts conventional Linux kernel into
a fully preemptible kernel and thus gains hard real-time capabilities. The real-time
patch includes the replacement of spinlocks with preemptable mutexes which enables
involuntary preemption anywhere within the kernel except for the protected areas [8].

In the current RT-Motion USB application in Philips Applied Technologies, Xeno-
mai is chosen as the Linux real-time extension for hosting the real-time motion control
application. The RT-Preempt patch is not chosen because the patch is still in a develop-
ment stage. But as the development of all solution advances, RT-Motion USB software
framework can be adapted to run on the most promising platform.

2.5 Scheduler

One of the most important aspects of a motion control platform is the timing charac-
teristic. To get the best performance from a motion control platform, the system must
be a real-time system. Real-time system is a system whose result is not only evaluated
by the functional result but also the delivery time of the result. There are two kinds of
real-time systems:

• Soft Real Time
A soft real-time system is a system in which its operations have deadlines, but
when a deadline is missed, the effect is not fatal to the system. An example of
a soft real-time system is a live television broadcasting system, where the system
must process the video signal and broadcast the signal via various broadcasting
medium in real-time. When the video processing system encountered a glitch and
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produced a delay which is larger than an acceptable limit, some video frames can
be skipped without leaving a catastrophic failure. At most the user’s experience
quality is decreased.

• Hard Real Time
When a deadline is missed, the result to the system can be catastrophic. A single
deadline miss can have a fatal effect to the system, so the system must make sure
that all deadlines can be met on-time. An example of a hard real-time system is
the airbag controller in a car; in which if a deadline is missed the passengers’ safety
can be in danger.

The motion-control application can be in both categories. Sometimes it can be a soft
real-time system, but for some cases it can also be a hard real-time system. By allowing
the integration of software extension modules, we introduce additional complexity to the
system, the system can no longer guarantee that with all software extension modules
integrated, the system can still perform within the required timing constraints. In order
to fix this problem we will need a real-time scheduler which is responsible for maintaining
the real-time capability of the overall system.

Real-time schedulers can be divided into two broad classes of scheduler [22, pp. 246]:

• Non-preemptive multitasking
This kind of scheduler lets a task execute until it voluntarily returns the CPU to
the scheduler. This kind of scheduler is simple, predictable, reliable and safe.

• Preemptive multitasking
This kind of scheduler can assign different priority levels to each task and a
task with higher priority can always preempt any task with lower priority. This
kind of scheduler are generally considered less predictable, less reliable than non-
preemptive schedulers.

A real-time scheduler can be obtained by taking one off the shelf real-time operating
system solutions or writing a real-time scheduler from scratch. The option of building our
own real-time scheduler from scratch can be a more reliable solution for a simple applica-
tion, because we can track our own code during the software lifetime and automatically
increase the software maintainability.

But there is also a drawback of this approach, especially when the requirements
of the system is getting more complex, the scheduler code will also be more complex
and need a lot of development and maintenance effort. For instance, when the system
eventually needs a preemptive scheduler, building your own preemptive scheduler can
be a non efficient approach, considering the highly complex structure it introduces. The
preemptive real-time scheduler will eventually need to be equipped with some semaphore
management and message passing mechanism to deal with critical section problems which
may occur.

When the system only needs a cooperative multitasking scheduler, building a real-
time scheduler from scratch will be a good approach. The scheduler can be built cus-
tomized to the system’s requirement while trying to achieve the lowest scheduler over-
head.
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The kinds of the off the shelf real-time operating systems solutions that have been
considered during this thesis research are:

1. Embedded Linux
It is a ported version of a full fledge Linux, with features similar to x86 Linux plat-
form, but requires a great amount of memory resources, RAM and Flash storage.
It is not suitable for our needs because we are focusing on the smallest possible
footprint.

2. Proprietary Embedded RTOS
There are many kinds of proprietary real-time operating systems which have been
used widely, like Wind River VxWorks [24] and MontaVista Linux 6 [19]. These
kinds of RTOSes have found its place in many Wireless Router applications. These
RTOSes offer complete facilities but require a relatively large footprint.

3. Mini Kernel
Mini kernels are small operating systems which only provide some basic scheduler
functions and message passing features. Examples of this kind of RTOSes are the
FreeRTOS, Keil RTX Real-Time Kernel, and many others. A comparison between
various mini kernel off the shelf RTOSes is given in Appendix B.

Considering the limited resources that RT-Motion USB has, which are 1 MB of Flash
ROM and 64 KB of Static RAM, the chosen RTOS solution must be the one based on
the mini kernel solution.

2.5.1 Keil RTX Real-Time Kernel

The Keil RTX Real-Time Kernel is a real-time kernel for ARM7, ARM9, and Cortex-M3
devices [13]. The structure of the RTX kernel can be observed in Figure 2.2.

Figure 2.2: Keil RTX Real-Time Kernel Diagram

The real-time kernel supports a round-robin scheduler, a cooperative scheduler and
a preemptive scheduler. There are also some inter-process communication mechanisms
and mutex/semaphore implementation to support preemptive scheduling.

Experiments During the experiment part of this thesis, some experiments are made
on the process of running Keil RTX Real-Time Kernel on the LPC2888 based RT-Motion
USB board. The steps taken in the experiment include the porting of the RTX kernel
configuration file, some troubleshooting with the platform’s known problems, and taking
some measurement to get an idea about the kernel’s performance.
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The required modifications to be made to the RTX configuration file include the
adjustment of the interrupt handling mechanism and implementing the detail of hardware
timer setup for the target microprocessor.

The experiment stumbled into an issue that raised an exception to the microprocessor,
a Prefetch Error exception, which was actually caused by the fact that the RTX kernel
code was by default compiled as Thumb Code and the NXP LPC2888 has a known
problem, a hardware erratum which restricts the execution of Thumb Code from the
flash memory. This known problem is described in Section 2.1.

The experiment also focused on the performance of the RTX kernel, the performance
measurement includes the task switching time and the overhead which is caused by the
scheduler. The timing measurement result can be observed in Table 2.1. The timing
unit used in the measurement is microseconds.

Table 2.1: Keil RTX Timing Specifications

nFunction ARM7 @ 60MHz
LPC2888 @ 60MHz
min max avg

Initialize system (os sys init) 46.2 62.2
Create task, no task switch 17.0 22.7
Task switch (by os tsk pass) 6.6 8.67 9.51 25.37

In general the outcome of the experiment showed that the overhead of the scheduler
is too big, in some cases the execution of task can be exposed to around 19 microseconds
overhead from the scheduler’s interrupt service routine code. And the experiment can
not reproduce the task switching time as stated by Keil. The task switching time is
around 25-30% slower than the reference published by Keil in [12].

After seeing the result of this timing experiment we decided not to use the Keil RTX
Real-Time Kernel in our future software framework due to the high overhead which is
introduced. Keil RTX Real-Time Kernel also does not come with the source code, which
means that we cannot modify the kernel at all to simplify or optimize it.

2.6 Resource Management

The RT-Motion USB has many kind of resources which can be shared by all software
and hardware modules which are installed. To make sure that all installed modules
can function properly, all their resource requirements must always be satisfiable by the
system.

There are two kinds of shareable resources in the system:

• Exclusive resource
During the whole system runtime, the resource usage is only granted to a software
module exclusively, the resource allocation is done during the initialization phase
of the system. The examples of this kind of resources are the physical GPIO pin
on the board or the physical ADC channel. The usage of this kind of resources
are known before the code execution, therefore it can be assigned beforehand. The
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resource manager can have a resource allocation table which keeps track which
resources are free and which resources are being used by which modules.

• Non-exclusive resource
If the usage of a resource is not exclusive to a module, there can be the case when
two or more modules try to access the resource at the same time. The example of
this kind of resources is a memory variable in the system. Some modules can have
the write access to a variable while the other can have a read access to the same
variable, the usage of the access must be managed to avoid conflicts. The access to
a shared resource can be seen as a critical section if the system utilizes a preemptive
scheduler, which can be guarded by some RTOS facilities like semaphore.

2.7 Modular and Extendable Firmware

The main goal of this project is to make the RT-Motion USB more extendable and to
give more flexibility to the platform. To achieve that goal, we have to enable some way
to utilize all the potential that the hardware offers. One of the important features which
needs to be implemented is the ability of the firmware to integrate firmware extension
modules easily. The firmware extension modules can be categorized into two kinds,
software extension module and device driver.

Software extension module can be any kind of code which can be executed on the
ARM7 processor to support the motion control process. It is designed to be able to
communicate with the host PC via a real-time messaging facility. The kinds of software
extension modules are limitless; it can be a simple code to interface some simple sensors
which is connected to any onboard port, a PID controller, or a filter to improve the data
acquisition.

A Device driver is similar to software extension modules but the purpose of a device
driver is to control certain hardware functionality easily. This is used to enable the
developer to make a new hardware extension module and make the necessary software
to control that particular hardware extension module. The device driver contains the
code that is used to control a device and to provide an interface for the software extension
modules developer.

In order to enable the easy integration of firmware extension modules, the whole
firmware must be redesigned with modularity in mind. The firmware will be designed by
specifying some firmware building blocks to form a set of modules which cooperate with
each others to provide overall functions. The firmware building blocks will consist of a
configuration manager, a resource manager, a software extension modules manager and
a communication manager. More detailed information about the requirements which
have been formulated for each building blocks can be seen in Appendix A.

This section will cover the things that might reveal the potential offered by enabling
the software floating point emulation support in the software extension modules and also
study about the integration of software extension modules.
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2.7.1 Soft Floating Point

ARM7TDMI processor core does not have a physical floating-point unit for performing
floating point calculation and thus there is no floating-point instruction set available.
When floating-point calculations are needed there are two alternatives, the first one is
by installing a VFP Coprocessor next to the ARM7TDMI processor core and the second
one is using the software floating-point library which is provided by ARM. The compiler
will call a set of procedures which is contained in the software floating-point library, fplib
[16] to perform floating-point arithmetic.

Since the focus of this project is extending the software framework without doing
any hardware modifications, fplib will be investigated. fplib is available as a part of the
standard distribution of the RealView Development Suite C libraries, which is included
in the Keil Microcontroller Development Kit that is used.

The software floating point library can be used by the Keil compiler when the compiler
is called with the command-line option –softvfp. Using software based floating point
arithmetic, the performance of the floating-point operations is not as fast as using a
floating-point coprocessor. The performance of the software floating library is measured
and investigated to find the possibility to use it for performing some basic motion control
algorithms. The result of the measurements can be observed in Table 2.2. The time unit
of the measurements is in microseconds.

Experiment Methodology The experiment is done by making a series of floating
point numbers to be processed using the floating point library. These numbers are used
as the operand of the floating point operations. The timing measurement is performed
by taking the value of a free running timer right before the execution of the floating point
operation and after the operation is finished. The values shown here are an average of
360 different operand values and each test is repeated 10 times.

Table 2.2: Software Floating Point Library Performance Analysis
Operation Float Double

Minimum Average Maximum Minimum Average Maximum
IntToFP 0.72 1.38 1.38 0.78 1.35 1.35
FPToInt 1.02 1.5 1.47 1.53 2.05 2.27
Add 1.33 1.65 2.48 1.9 2.57 4.03
Sub 1.35 1.77 2.37 1.82 2.68 5.05
Mul 1.22 1.6 1.6 1.7 3.92 4.03
Div 1.28 2.98 3 2 10.63 10.87
Sqrt 2.75 13.32 13.35 3.38 31.17 31.95
Cos 1.32 57.33 67.13 4.85 77.92 92.27
Sin 1.38 57.47 67.27 4.27 78.9 91.58
Tan 1.28 59.87 69.53 5.22 150.3 183.4

The performance of the software floating point library can be considered good enough.
Motion control algorithm mostly uses addition, substraction, multiplication and division
operations which showed to have good performance. The software floating point library
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will be used in the RT-Motion USB platform for enabling a floating point control algo-
rithm.
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Design and Implementation 3
This chapter describes the overall system architecture and the design of the modular
and extendable software framework for the RT-Motion USB. The software framework
consists of the firmware, the firmware extension modules and the host PC supporting
framework. It is organized as follows: in Section 3.1 the overall system architecture
of the new system is described. Next, the structure of the modular RT-Motion USB
software framework is described in Section 3.2. In Section 3.3 a description of the design
of the firmware is given. Followed by the discussion of the firmware extension modules
in Section 3.4. Finally, the supporting framework which runs on the Host PC is covered
in Section 3.5.

3.1 System Architecture

The section describes the system architecture of the RT-Motion USB in general. The
operating mode of the RT-Motion USB is defined in Section 3.1.1. In section 3.1.2 the
communication model of RT-Motion USB with the Host PC is described. In Section
3.1.3 a description of the communication model of RT-Motion USB with the hardware
extension modules is given.

3.1.1 Operating modes

This section describes the usage scenario of the RT-Motion USB boards in motion control
applications. The RT-Motion USB board was originally designed to work as a distributed
real-time I/O board. By utilizing USB 2.0 High Speed connection, it is possible to plug
many RT-Motion USB boards to one Host PC and distribute the boards in a motion
control environment within the maximum achievable range of USB bus. When the RT
Motion USB boards are installed in this configuration, they are operating in slave mode
configuration.

Considering that the RT-Motion USB board has great I/O peripherals and the rel-
atively high computing power, it is also suitable to be used in a single node motion
control environment. When the RT-Motion USB board is configured to run without
communicating with a PC, it is called the stand-alone mode.

The following sections describe the slave mode and the stand-alone mode configura-
tion in more detail.

Slave Mode The slave mode is a configuration where the RT-Motion USB board is
used to support the motion control software executed on the Host PC. The motion control
software on the Host PC communicates with the RT-Motion USB board by exchanging
real-time data objects (RTDO). A more detailed information about an RTDO is described
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in Section 3.1.2.5. When necessary, the application in the Host PC can communicate with
more than one RT-Motion USB boards. This enable the implementation of a multiple
input multiple output controller.

Figure 3.1 shows an example system configuration which consists of two RT-Motion
USB boards connected to a Host PC working in a slave mode. The figure also shows some
hardware extension modules connected to the RT-Motion USB boards. These hardware
extension modules are described in Section 3.1.3.

Figure 3.1: RT-Motion USB Slave Configuration

Stand-Alone Mode The Stand-Alone mode is a configuration where one RT-Motion
USB is performing a specific motion control task without the need of a Host PC inter-
vention. The Host PC is only needed to configure the RT-Motion USB board for the
first time and to instruct the RT-Motion USB board to save the defined configurations.

The RT-Motion USB can configure itself from the pre-programmed configuration and
start operating without establishing any USB connection with the Host PC.

Figure 3.2 shows an example of one RT-Motion USB board in controlling an electric
motor in a stand-alone mode.
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Figure 3.2: RT-Motion USB Stand-Alone Configuration

3.1.2 Communication Model of RT-Motion USB with Host PC

The RT-Motion USB board is communicating with the Host PC via a USB bus. The USB
communication between the Host PC and the RT-Motion USB is designed to utilize two
channels, a real-time channel and a service channel. By splitting the USB communication
into two different channels, the processing mechanism can be optimized for each channel.
The service channel and real-time channel by nature have different requirements. A
service channel is mostly used for sending configuration to the RT-Motion USB board
during the configuration phase, while a real-time channel is used during a real-time
operation of the board. The real-time channel is given a higher processing priority to
achieve a real-time communication performance. Figure 3.3 shows the diagram of the
USB communication model in the system.

Figure 3.3: USB Communication Model
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3.1.2.1 Service Channel

Even though a service channel is mostly used for sending and receiving configuration
parameters during the configuration phase, it is also available in the real-time running
mode for sending urgent commands to the RT-Motion USB board. The service channel
is utilizing an endpoint which is configured as a bulk transfer type. The processing of
the service channel is handled by a Service Message Router (SMR).

An SMR is designed to be the central manager of the message exchange in the service
channel. Every module which intends to have an active service channel communication
registers its service message handler to the SMR. The role of the SMR here is to parse
the incoming service message, identify the destined receiver and route the message to
the destination module. The message interpretation and replying is then left to the
destination module’s freedom. This routing process is implemented inside the SMR in
the form of a high priority sporadic task. This way the USB interrupt service routine
execution time is kept at minimal. The SMR is described in more detail in Section 3.3.4.

3.1.2.2 Service Message

The type of message which is exchanged on the service channel is called a service message.
A service message can be addressed to any module in the firmware side; each module
will process that message on their own way. Because a service message is designed to
transport configuration messages, the direction of the message is always from the Host
PC to the firmware module. The recipient of a service message, by definition, has an
obligation to send a reply to the service message.

The service channel is implemented to support the handling of a single message at a
time, meaning that a service message must be replied before the host PC is allowed to
send another message. If a new service message is received by the RT-Motion USB board
when there is a service message in process, the new service message will be ignored. The
single service message design allows a simpler implementation of the SMR while keeping
the overhead as low as possible.

Since the system only support a single service message, only one buffer is needed for
storing the service message. This buffer can be used for both buffering the incoming
and outgoing service message. This buffer is allocated and maintained by the SMR. The
pointer of the buffer is passed to a USB Communication Layer during SMR’s initializa-
tion. The USB Communication Layer is described in Section 3.3.3.

A service message has a header which practically can be divided in two different parts.
The first part of the header is the information which is used by the SMR to identify the
recipient of that message. The second part is the information which is used by the
recipient itself, which includes the message identifier and the length of the payload. The
size of the service message is flexible with a maximum size of 512 bytes, defined as the
maximum message size for bulk transfer mode by USB specification [3, pp. 53]. Figure
3.4 shows the structure of a service message.
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Figure 3.4: Structure of a Service Message

3.1.2.3 Real-Time Channel

The real-time channel utilizes an endpoint which is configured as bulk transfer type. The
bulk transfer type is chosen because it can fully utilize the available bandwidth of the
USB 2.0 High Speed (480 Megabits per second) when the USB bus is not shared with
devices utilizing other transfer types. The real-time channel will be used to exchange
real-time messages only. The processing of the real-time channel traffic is handled by
the Real-Time Data Manager (RTDM).

An RTDM is the firmware module responsible for receiving and transmitting messages
on the real-time channel. The design of the RTDM is described in Section 3.3.5.

3.1.2.4 Real-Time Message

A Real-Time Message (RT Message) is a form of message exchanged between the USB
host and the RT-Motion USB in a real-time manner. A real-time message can have a
variable size, but the maximum message size including the header is 512 bytes. This
maximum size is tied to the maximum size possible in the bulk transfer mode. The
payload of a real-time message is a collection of real-time data objects (RTDOs). RTDOs
which need to be exchanged together should be grouped into the same real-time message
where applicable. A more detailed information about RTDO is described in Section
3.1.2.5. An example of a real-time message which contains RTDOs is shown in Figure
3.5.

Figure 3.5: Real-Time Message containing RTDOs

According to the direction of the message, real-time messages can be grouped into two
categories, incoming real-time messages and outgoing real-time messages. The frame-
work supports multiple types of RT messages for each direction. Every type of a real-time
message is identified by a unique PacketID.

The incoming real-time message is a real-time message type which is sent by the
Host PC to the RT-Motion USB Board. Incoming real-time messages can be used to
transport multiple RTDOs at the same time or to specify the type of outgoing real-time
message that is expected by the host PC on the next request.

The outgoing real-time message is a real-time message type which is sent from the
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RT-Motion USB board to the USB Host on request. An RTDM supports multiple types
of outgoing real-time message, but the USB device controller requires that the internal
FIFO buffer is filled with an outgoing real-time message when the host PC issues a read
request. To provide the host PC with the correct message type as expected, RTDM
must always be notified what is the type of outgoing real-time message expected by the
host PC on the next request. The notification can be received by the RTDM from the
Host PC via a special formed incoming real-time message or from any software extension
module (SWEM) via a function call.

3.1.2.5 Real-Time Data Object

A real-time data object (RTDO) is a data object that can be placed in a real-time
message to be transmitted either from PC to USB or from USB to PC. The size of the
data object is customizable, ranging from 1 to 500 bytes. One real-time message can
contain many real-time data objects together. Data objects that have the same delivery
schedule should be placed inside the same real-time message.

An RTDO is used to transport information between the host PC and the RT-Motion
USB board. The RTDO is placed inside a real-time message during the communication
configuration state. One RTDO can only be placed into one real-time message, either
the incoming real-time message or the outgoing one. The value of an RTDO can be read
by any SWEM and can be updated by a SWEM.

3.1.3 Communication Model of RT-Motion USB with Hardware Ex-
tension Modules

The project of transforming the RT-Motion USB board into a more extendable and
flexible platform is not only pursued from the software point of view but also from the
hardware point of view. A paralel research is being conducted to make the RT-Motion
USB board easily support hardware extension modules. This research is trying to define
a hardware extension module development standards.

The hardware extension modules can be installed to the RT-Motion USB board with
the following attachment mechanism:

• Two 16-bits GPIO parallel ports
Up to two hardware extension modules can be attached to the onboard 16-bits
GPIO parallel ports. The amount of available ports automatically limits the num-
ber of modules that can be attached to the RT-Motion USB board.

• SPI Bus
In order to support more than two hardware extension modules simultaneously, a
support for SPI bus is added to the RT-Motion USB. The SPI bus is supported
by connecting a specially designed extension modules which functions as an SPI
Bridge to the first 16-bits GPIO parallel port. The SPI Bridge module supports a
maximum of 8 SPI devices.

After a hardware extension module is installed, a specially developed device driver
would allow the user of that module to communicate with the physical module.
The design of the device driver is described in Section 3.4.2
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3.2 Structure of Modular RT-Motion Software Framework

In this section we describe the structure of the Modular RT-Motion Software Framework
designed in this thesis project. The software framework can be splitted into three main
parts.

• Modular RT-Motion USB Firmware
The Modular RT-Motion USB Firmware is the core of the framework. Most of the
works in this thesis project is focused on the design of the modular firmware. The
design of Modular RT-Motion USB Firmware is covered in more detail in Section
3.3

• Firmware Extension Modules
The firmware extension modules are parts of the framework which are actually
the result of the implementation of modular firmware design. The new firmware
design allows the execution of extension modules such as the Software Extension
Module (SWEM) and the Device Driver. Section 3.4 covers the design details of
these firmware extension modules.

• Host PC Supporting Framework
Because RT-Motion USB is a USB device, a software framework is also needed to
be implemented as the supporting framework on the Host PC. The design of the
Host PC supporting framework is described in Section 3.5

3.3 Modular RT-Motion USB Firmware

The Modular RT-Motion USB Software Framework consists of software running on the
USB Device and the USB Host. This section focuses on the design of the Modular
RT-Motion USB firmware.

As described in Section 1.2.1, the current firmware of RT-Motion USB is implemented
as a static firmware without modularity. A static firmware is not always bad because it
can provide a stable and reliable system for the intended purpose, but a great amount of
effort will be needed to extend the firmware while maintaining the same level of reliability.

The fundamental firmware modules will be described in detail, followed by depen-
dency of those modules. Then the state of the firmware, the initialization modes, the
execution context, and the memory map of the firmware will be described in detail in
this section.

3.3.1 Fundamental Firmware Modules

The firmware, consisted of 11 fundamental components, is designed in a modular manner.
The modular firmware approach is taken because it will result in a more structured
design. Basically each firmware module will have a responsibility for one specific region
of the firmware. A well structured firmware design is important to realize a reliable
complex firmware. The fundamental firmware components are:
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• Hardware Abstraction Layer
A hardware abstraction layer is a set of system defines, macros and functions which
is used to access the hardware directly.

• USB Communication Layer
The USB communication layer is the firmware module which handles the USB
communication by controlling the USB device controller.

• Service Message Router
The Service message router is the firmware module which handles the service chan-
nel part of the USB communication system. It handles the exchange of service
messages between the host PC and the firmware modules.

• Real-Time Data Manager
A real-time data manager handles the reception and transmission of real-time mes-
sages, manages the message buffering and provides access mechanism for the real-
time data objects.

• Configuration Database
This firmware module manages the flash memory subsystem. It manages the file
system and the flash memory programming.

• Resource Manager
A resource manager is a firmware module which keeps track of the resource usage
in the system and control the resource allocation requests.

• Software Extension Modules Manager
A software extension modules manager keeps track of the software extension mod-
ules installed in the system. It is responsible for enabling and disabling those
modules.

• Device Drivers Manager
The device drivers manager is the firmware module which knows the existence of
all installed device drivers. It is the module responsible for enabling and disabling
a device driver.

• Local Peripheral Bus Manager
A local peripheral bus manager consists of two bus drivers which provides the basic
input/output operation via those buses.

• Supervisor
A supervisor in the main firmware module must initialize all other modules during
start up of the system.

• Scheduler
A scheduler is the most important part of the firmware because it controls the
execution of tasks in the system.
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The fundamental firmware components are described in detail in Section 3.3.2 to
Section 3.3.12.

Figure 3.6 shows an overview of the firmware architecture. There are two sets of
modules depicted in the figure which are not categorized as the fundamental modules;
those modules are the Device Drivers and the Software Extension Modules. These mod-
ules are actually called the Firmware Extension Modules which will be described in more
detail in Section 3.4.

Figure 3.6: Firmware Architecture Overview

3.3.2 Hardware Abstraction Layer

The Hardware Abstraction Layer is a collection of system defines, macros and functions
which are specific to the NXP LPC2888 microcontroller. This module allows the other
firmware components on the higher level to perform hardware related operations. The
hardware abstraction layer forms the lowest layer of the firmware which is used to com-
municate with the hardware. Below are the operations that are supported by hardware
abstraction layer:

• Accessing General Purpose Input/output pins.

• Accessing integrated peripherals.

• Configuring the clock generation unit.

• Initializing the hardware timer.

• Configuring the microcontroller interrupt vectors.
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This module is actually a compilation of various resources supplied by NXP as the
developer of the microcontroller and some configuration related to the implementation of
the RT-Motion USB board. This module is formed to centralized the hardware related
code in order to create a portable firmware architecture. Should it be required that the
firmware is ported to a new microcontroller, this module is the one which will need a
great modification effort.

3.3.3 USB Communication Layer

The USB Communication Layer is the part of the firmware which controls the USB
device controller in the microcontroller. It initializes the USB device controller, sets
up the endpoints configuration and handles the USB enumeration process. After the
enumeration process is finished then the task of USB Communication Layer is focused
on the handling of USB messages from and to the host PC.

The USB Communication Layer is implemented in a discrete module, not integrated
with the message handler for service channel and real-time channel. The decision was
made due to the fact that the USB Communication Layer has a close dependency with
the implementation of the USB Device Controller. Moreover, the message handlings
on the service channel differs from those on the real-time channel. Figure 3.7 shows
the handling of USB messages and the task delegation to Service Message Router and
Real-Time Data Manager for each corresponding channel.

Figure 3.7: Incoming USB Data

Service Channel The USB Communication Layer maintains the pointer to the service
message buffer which is maintained by the Service Message Router. Upon reception of
data on the service channel, the USB Communication Layer will store the incoming
message to the SMR’s message buffer and notify the scheduler to execute the routing
task of SMR.

The role of the USB Communication layer is to copy out the data from the internal
FIFO buffer of the USB device controller to the message buffer owned by the SMR. The
data copying is done in the interrupt service routine (ISR) context which must be short
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as possible. At the end of the copying process, the USB Communication Layer does not
contact the SMR directly to route the message. It only contact the Scheduler to schedule
the execution of the routing task of the SMR. By utilizing this mechanism, the actual
routing process and the service message interpretation and processing is not executed in
the interrupt service context.

The handling of a message on the service channel is shown in Figure 3.8

Figure 3.8: Service Message Handling by USB Communication Layer

Real-Time Channel Upon reception of a message on the real-time channel, the USB
Communication Layer will pass the message to the Real-Time Data Manager. The role
of the USB Communication Layer in handling the reception of a real-time message is
limited to copying out the USB message from the internal FIFO buffer of the USB device
controller and calling the Real-Time Data Manager to perform buffer swapping.

The USB Communication Layer maintain one buffer for each real-time message block
size. The buffer is used to store incoming message and then swapped with the Real-Time
Data Manager. The buffering of real-time message and the detail of the Real-Time Data
Manager is described in Section 3.3.5.

3.3.4 Service Message Router

The Service Message Router (SMR) is a firmware module which routes service messages
to various firmware modules and provide functions for sending a service message reply
to the Host PC. The SMR can be regarded as the gateway of communication between
the software running on the Host PC with various modules running on the RT-Motion
USB board. Every module which need to receive a service message from the Host PC
must first register itself to the SMR and submits a pointer to its service message handler
function.

A message handler function is a code which is implemented by each module which
expects to receive a service message from the host PC. This message handler function
should recognize the incoming message and perform the associated task for each message
and eventually the message handler function is obliged to send a reply to the host PC
via the Service Message Router.

The SMR performs the message routing process in a system task which is triggered
sporadically by USB Communication Layer upon successful reception of a service mes-
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sage. The routing task of the SMR has the highest priority because in a way, the message
routing still needs to have an execution warranty. So after a task is finished executing,
the service message routing task will immediately executes. This design allows a com-
plete isolation between the message handling process from the interrupt service routine
of the USB controller. A message handler routine should not be executed from the in-
terrupt service routine because there might be a case where a user develops a message
handler which perform an unexpected behaviour and affect the whole system.

The message routing process is shown in Figure 3.9.

Figure 3.9: Service Message Routing Process

Service Message Buffering The required memory space for buffering the incoming
and outgoing service messages is 512 bytes, shared for both service message. The memory
space reserved for buffering the message is set to 512 bytes to match the maximum data
payload size for bulk transfer mode [3, pp. 53]. The SMR only supports one service
message to be routed at a time. Therefore if a new incoming message arrives while
a message has not yet been replied by the message receiver, the new message will be
ignored.

In the design stage of the SMR, a support for a simultaneous multiple service message
processing was also considered. The multiple service message processing is not chosen
because there is no real need for the application and it also introduces overhead both in
memory usage and processing time.

Comparison to the original RT-Motion USB Firmware The original RT-Motion
USB firmware also has a communication channel which is similar to the service channel,
but it is called the configuration channel. That configuration channel purely functions to
send configuration commands to the RT-Motion USB board. Some example of configu-
ration commands are commands to enable or disable a motor amplifier channel, enabling
or disabling onboard analog converters and any other configuration regarding input and
output channels.

The interpretation and processing of the messages in the configuration channel is
implemented directly inside the interrupt service routine. The approach of performing
message processing directly from the interrupt service routine was also considered in the
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design of the SMR. But the approach was abandoned because of the fact that service
messages can serve a lot more complex commands which might take some time to be
finished. Another reason is the fact that service messages does not need to be executed
in a hard real-time.

3.3.5 Real-Time Data Manager

The Real-Time Data Manager (RTDM) is a firmware module which manages the real-
time data objects (RTDO) and real-time messages. The user of the RT-Motion USB
board must specify the mapping of the RTDO inside a real-time message during the
communication configuration phase. The RTDM is designed to process an incoming
and an outgoing real-time message differently. An incoming real-time message needs
more buffering to ensure the validity of the message. While the buffering scheme of an
outgoing real-time message is simpler.

The main difference between the buffering or an outgoing and incoming message
lies on the updating process of the message buffer. The update process of an incoming
real-time message is always done to the whole message buffer, which may take a long
time, depending on the size of the message. The update process of an outgoing real-time
message only updates one real-time data object at any time. This process is shorter and
easier to manage than the incoming real-time message, thus it has a simpler message
buffering scheme.

Incoming Real-Time Message The RTDM receives a bunch of RTDOs which are
contained together in a real-time message and will save the value of those RTDOs in
its internal buffer. Since the RTDM does not distribute the new value of the RTDOs
automatically, the consumers of the RTDOs must actively request it. The design of the
RTDM allows a very flexible message mapping mechanism, some RTDOs can be grouped
together to form a real-time message. The RTDM itself supports more than one type of
real-time messages which allows different message transfer schedules for different data,
depending on the requirement of the application.

The RTDM allocates double memory buffer for each incoming real-time message
type. The memory buffers are called userBuffer and receiveBuffer. As suggested by the
name, each memory buffer serves its own function. The userBuffer is used to store the
latest real-time message which is ready to be used for supplying the user with the latest
RTDO value. While the receiveBuffer is used to store the incoming real-time message
from the USB Communication Layer.

The management of the buffer inside the RTDM is designed to be done without any
memory copying process. This is made possible by swapping the pointers to the buffers
instead of swapping the content of the buffers. The passing of new real-time message
from the USB Communication Layer also implemented by swapping the pointer to the
buffers. The message buffer which is maintained by the USB Communication Layer
contains the newly received message, while the receiveBuff maintained by the RTDM is
not used by anyone, so the buffer swapping process can be done safely.

The swapping of message buffers between the USB Communication Layer and the
RTDM is not a critical section in this design. It can be done directly by the USB Com-
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munication Layer by calling the real-time message handler of RTDM from the interrupt
service routine. The process itself is designed to be very simple, only swapping two buffer
pointers and adjusting the flags of the buffers.

In the other side of the system, another swapping of message buffers pointers must be
done between the userBuffer and the receiveBuffer. Whenever the receiveBuffer contains
a fresh real-time message, the RTDM must swap the userBuffer with the receiveBuffer
so that the user of RTDM can access the fresh RTDO values contained by the fresh
real-time message. This buffer swapping procedure is done inside the RTDM function
which supplies the user with RTDO values. Because the function is called by the user,
which is inside the task of a software extension module, the process can be interrupted
by a USB interrupt service routine. Thus this process is a critical section in the system,
it needs to be protected by a USB interrupt disabling and enabling mechanism. However
this critical section is only performing a buffer swapping procedure, which is very short.
And this critical section only occurs every time a fresh real-time message is stored in the
receiveBuffer. This design allows the USB interrupt to be disabled only for a very short
time and at maximum only once every time a new real-time message is received.

But this design requires three buffers which are being swapped with each other to
have the same size. Two buffers are allocated by the RTDM for each message type and
one more buffer is allocated by the USB Communication Layer for copying out the real-
time message from the USB device controller’s internal buffer. In order to improve the
memory usage efficiency of these message buffers, some standard message buffer sizes
are defined. By having a standard message buffer size, the message buffer inside the
USB Communication Layer can be used by more than one type of real-time message. As
an example when there are two incoming real-time message types defined in the RTDM
with size of 30 and 32 bytes, all memory buffers are allocated with the same size of 32
bytes, thus the total memory usage for the buffers are 160 bytes. Only one memory
buffer with the size of 32 bytes is allocated by the USB Communication Layer.

Outgoing Real-Time Message The RTDM supports multiple types of outgoing real-
time message. Each outgoing real-time message type can have different RTDO payloads
and different size. This support of multiple outgoing real-time message type is designed to
accommodate the need of performing transmission of RTDOs at different timing intervals.
RTDOs which need to be transmitted together at the same time can be grouped into
the same real-time message, while the others can form another real-time message.

The nature of USB communication requires that an outgoing message is already
waiting in the USB controller’s FIFO buffer when a read token is received from the
Host PC. Therefore the RTDM must ensure that the next requested real-time message
is submitted to the USB Communication Layer on time. This mechanism implies the
requirement that RTDO is always informed in advance about the type of outgoing real-
time message which the host PC expected to receive.

For each type of outgoing real-time message the RTDM maintains one message buffer.
This message buffer is used to store the current value of the RTDOs contained by the
real-time message. The process of updating the real-time message from the current value
of RTDOs is done by the owner of each RTDO. Each outgoing RTDO must be assigned
to one owner who is eligible of updating the value of the RTDO. This limitation is
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introduced to prevent a conflict in the RTDO submission.
The process of updating the RTDO value inside the real-time message buffer is called

RTDO submission. The RTDO submission must be done actively by the owner of the
RTDO. This RTDO value submission process can be categorized as a critical section,
because at any time the buffer of the outgoing message can be read for filling the USB
device controller’s outgoing buffer. The critical section is protected by disabling and
enabling the USB interrupt during the memory copy operation from the owner’s memory
address to the RTDO’s area inside the outgoing real-time message buffer.

Real-Time Message Task Triggering The RTDM is equipped with a feature that
allows the execution of a specific task upon the reception of an incoming real-time mes-
sage. This feature is called real-time message task triggering. The user can define that
the RTDM will contact the scheduler to execute a specific task ID when the RTDM
detects the arrival of a specific incoming real-time message type.

This feature is incorporated into the design of the RTDM to allow a synchronization
mechanism between the real-time motion control algorithm running on the host PC with
a task running on the RT-Motion USB board. By setting up a real-time message task
triggering, the RTDM can detect the reception of a specific incoming real-time message to
trigger the execution of a task. As an example the task is a task of one particular SWEM
which is specially designed to process the values transmitted inside that particular real-
time message. Then the execution of the task is synchronized with the reception of
the real-time message and indirectly also synchronized with the execution of the motion
control algorithm running on the host PC.

3.3.6 Configuration Database

The flexibility and configurability feature which are considered as the main objective
of the firmware design requires a module which is capable of storing the configuration
parameters which have been applied to the firmware. It is necessary to have a central
configuration storage that is accessible by each module.

Actually an active configuration manager design was considered during the design
stage, the active configuration manager receives all configuration parameters from the
host PC, stores the configuration in flash memory and to applies the configuration to each
corresponding module. But this kind of design was considered unpractical and introduced
a more complex inter-module dependency. Instead of creating a configuration manager
a less active solution was chosen during the design stage. The less active solution is then
implemented as the Configuration Database.

The Configuration Database is a firmware module which is used to enable all modules
in the firmware to save a block of configuration in the flash memory. It is designed to be
a passive data storage manager which provides basic flash memory reading and writing
functionality. The Configuration Database also keeps track of the list of configuration
blocks which are stored in the flash memory. In order to keep track the of content of the
flash memory, a data structure called flash table of contents is designed. The flash table
of contents stores the mapping of configuration blocks which have been written into the
flash memory. The flash table of contents is stored in the RAM but also written to the
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flash memory to make sure that the flash memory is always consistent.
Because of the Configuration Database is only providing configuration block storage,

then the configuration parameters are received by each module directly in the form of
individual service messages from the host PC. Then each module applies those configu-
ration parameters to the particular module. When the module need to store the config-
uration, the module can use the service which is provided by Configuration Database.

The reading of the configuration block is also done by the owner of the configuration
block. The owner of configuration block calls a read configuration function with speci-
fying its module identifier, then the Configuration Database returns the address of that
configuration block inside the flash memory. The owner of the configuration block can
read the configuration block as if from the random access memory.

A configuration block is basically a byte array with a maximum size of 2048 bytes.
The configuration database only allow one configuration block per module, when a mod-
ule saves a new configuration block, the existing configuration block of that module
will be ignored. The total flash memory space available for configuration blocks is 48
kilobytes.

Flash Memory Subsystem The type of flash memory cell which is used in the NXP
LPC2888 microcontroller is a NOR flash memory, which by principal allows bit by bit
modification of the flash memory. The working principle of NOR flash memory allows
every bit to be changed from 1 to 0 by programming it, but in order to revert the value
of the bit to 1, the whole sector must be erased. By taking advantage of this important
feature of NOR flash memory, we can design a flash memory storage which supports
incremental programming. Incremental programming strategy is important to decrease
the amount of flash memory erase operation because flash memory erase operation is
both time and memory consuming consuming. We can only erase flash memory sector
by sector.

The flash memory is organized into 64 KB large sectors and 8 KB small sectors.
Having a total capacity of 1 MB, there are 15 large sectors and 8 small sectors. The
organization of these sectors and corresponding address ranges is shown in 3.10. The
usage of the flash memory sectors are arranged as follow:

• Small sector number 0: for flash table of contents

• Small sector number 1-6: for storing configuration blocks

• 15 large sectors: for saving the firmware image and future SWEM and Device
Driver uploading.

Although the flash memory of NXP LPC2888 is based on NOR technology, the
implementation of flash memory controller does not allow bit by bit modification to the
flash memory area. This limitation is caused by the error correction mechanism which is
implemented by the controller. Any bit which still have value 1 can be changed to 0 like
the way NOR flash memory works, but this might produce an inconsistency problem to
the error correction information. When the error correction information is inconsistent,
then the flash memory controller will perform an incorrect bit recovery during the read
operation.
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Figure 3.10: Flash memory sector organization

Unfortunately this error correction mechanism is not documented in the user manual
of NXP LPC2888 and has caused a problem during the implementation of the Config-
uration Database. To avoid this error correction problem we have to design the flash
memory system to always use 16 bytes alignment. This limitation must be applied to
the design of the flash table of contents and the allocation of a new configuration block
inside the flash memory. Each entry in the flash table of contents must be 16 bytes long
to allow the incremental programming for the flash table of contents sector. The starting
position of each configuration block also must be aligned to 16 bytes boundary.

3.3.7 Resource Manager

The Resource Manager is the firmware module which manages the access control of every
system resources and provides the detailed information about every resource’s access
mechanism. Every device driver which provides additional resources must register the
resources they provide to the Resource Manager. The Resource Manager stores the
knowledge of all resources which are available in the system in a table which is called
Resource List. In managing a resource allocation, resource manager updates the resource
availability information inside the Resource List and also stores the resource allocation
details in a table which is called Resource Allocation Table. This table stores the detail
of each resource which has been allocated in the system, this table is mostly used for
diagnosing a resource allocation problem.

Every resource which is listed in the Resource List have a unique resource identifier,
along with the resource provider’s identifier, and the resource sharing permission. The
resource identifier is formed from the combination of the resource provider’s location in
the system and the unique resource identifier. The Resource Manager is designed to be
able to handle resource sharing, where a resource can be used by more than one user.
The resource sharing permission is defined by the provider of the resource during the
resource registration process.

Every software extension module which needs to access a resource must request the
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allocation of that particular resource to the Resource Manager. Resource Manager then
will check the availability of that resource and the resource request will be granted
if available. The user of a resource can also specify the whether it wants to use the
resource exclusively or leave a resource sharing possibility for other user. After obtaining
permission to access a certain resource, the new resource user should ask the Resource
Manager for the detailed information about the driver of each resource which is needed
to access the resource. After a resource user is granted access to a resource, the actual
resource access is unsupervised by Resource Manager, each resource user writes and reads
to the resource directly by accessing functions provided by the driver of the resource
provider. This unsupervised access approach is used because we don’t want to introduce
an unnecessary overhead to the system. Unsupervised access means that after a resource
user gain access to a resource, it has to use the resource accordingly. On the other hand,
a resource user should not access a resource without allocating the resource or if the
resource allocation is denied.

In general the role of the Resource Manager is to control the usage of resource and
to be the mediator between the resource user and the resource provider. As a mediator
the Resource Manager works by helping the resource user to find the needed resource
and the detail information about the resource access mechanism. The Resource Manager
helps the resource provider to publish the resource to the potential user.

3.3.8 Software Extension Modules Manager

The Software Extension Modules Manager is the firmware module which knows the
existence of every Software Extension Modules (SWEM) which are embedded in the
system. This module also keeps track of the entry point to each software extension
modules and responsible to activate software extension modules when requested. The role
of software extension module manager is only limited to activate the software extension
module. The further configuration and controlling of each software extension module
can be done directly to the software extension module by sending service messages.

The Software Extension Modules Manager maintain the list of active SWEMs in a
data structure called Active SWEM Table. This Active SWEM Table can be saved to the
Configuration Database to enable the initialization from flash procedure for the stand-
alone mode. By getting the Active SWEM Table from the Configuration Database,
the Software Extension Modules Manager can directly activate the listed SWEMs and
triggers the SWEMs initialization.

The internal configurations of each SWEM is not stored by the Software Exten-
sion Modules Manager, but they are stored by each module which represents the good
modular design of this architecture.

In addition to the SWEM management role, Software Extension Modules Manager
also provides a mechanism for sharing data between the active software extension mod-
ules. One SWEM can allocate a SWEM Shared Data Object and any other SWEM
which needs the information can read the shared data object value.

Software Extension Modules Manager provides various utility functions which are
designed to be used by the SWEMs developer. These utility functions are mainly used
to ease the development of administration part of the SWEMs.
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Embedded Software Extension Modules Catalog The knowledge of the em-
bedded software extension modules is composed in a data structure which is named
Embedded Software Extension Module Catalog. The catalog must be updated every
time a new software extension module is embedded to the system. Every entry of the
Embedded Software Extension Modules Catalog contains the identifier of the SWEM
and the function pointer to the SWEM’s command handler entry point.

The reason of designing a Software Extension Modules Manager is to make the
SWEM integration to the system easier. For integrating a new SWEM the developer
only need to add a new entry into the Embedded Software Extension Modules Catalog.
By registering the new SWEM to this catalog, the Software Extension Modules Manager
can find that new SWEM and activate that SWEM on request.

3.3.9 Device Drivers Manager

The Device Driver Manager is a fundamental firmware module which manages and keeps
track of every device driver which is embedded in the system. Device Driver Manager is
responsible to find a device driver which has been embedded in the firmware and activate
that device driver upon request from the Host PC.

The Device Driver Manager maintains the list of active device drivers and the func-
tion pointers related to each active device driver in a table called Active Driver Table.
Every active device driver is accompanied with a pair of function pointers, which are the
function pointer to the command handler of that particular device driver and a function
pointer to the driver interface provider. When the user asks Device Driver Manager
to save configuration to flash, Active Driver Table is saved to Configuration Database.
By restoring this Active Driver Table from the flash configuration block, Device Driver
Manager will be able to reinitialize every active device driver.

The individual configuration of each active driver is not maintained by the Device
Driver Manager, but being managed and stored by each device driver. The role of
Device Drivers Manager is limited to enabling and disabling the device drivers, further
configuration commands are addressed directly to each device driver.

Device Driver Manager provides various utility functions which are designed to be
used by the Device Drivers developer. These utility functions are mainly used to ease
the development of administration part of the Device Drivers.

Embedded Device Driver Catalog The list of all device drivers which has been
embedded is maintained in a data structure which is called Embedded Device Driver
Catalog. The list contains the identifier of a device driver and the function pointer to
the device driver’s command handler entry point. Just like the Embedded Software
Extension Module Catalog, this catalog also needs to be updated by the developer every
time a new device driver is embedded to the system.

3.3.10 Local Peripheral Bus Manager

The Local Peripheral Bus Manager is the firmware module which is used to manage the
buses which is used to connect the hardware extension modules to the RT-Motion USB
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board. In the current implementation the RT-Motion Hardware Extension Modules can
be connected to the main RT-Motion USB board via SPI bus and a parallel bus. The
Local Peripheral Bus Manager is responsible to enable and disable the bus drivers as
required by the user.

The SPI bus is not supported natively by the NXP LPC2888 microcontroller, so a
hardware extension module called RT-Motion USB SPI Bridge is developed for providing
SPI Bus support to the system. The SPI Bridge module is controlled by a driver which is
called SPI Bus Driver. The developer of device drivers for interfacing hardware extension
modules can perform SPI communication by calling the set of functions which is provided
by the SPI Bus Driver.

For supporting the parallel bus, a Parallel Bus Driver is implemented. The SPI
Bus Driver and the Parallel Bus Driver is designed to have a similar interface. By
implementing a similar interface, the device driver creator can support device driver for
both peripheral bus with small porting effort.

3.3.11 Supervisor

The Supervisor is the head of all other fundamental firmware module because the Super-
visor is the one who must know the whereabouts of the other firmware modules. Super-
visor is the firmware module which is responsible for the initialization of the firmware,
and every other firmware modules.

Supervisor maintains the information about the board identifier and the operating
mode of the particular board. Supervisor manages all system state transition of the
RT-Motion USB firmware. Supervisor also provides a global error logging facility to let
other firmware modules to submit their error messages. The error logging facility is an
important feature for analyzing any initialization failure or for troubleshooting a runtime
error in the system.

3.3.12 Scheduler

During the early stage of the research of this thesis some scheduler from off the shelf
RTOSes are surveyed but those alternatives are considered to be overkill for this project
and cost too much unnecessary overhead for the system. It is decided to build our own
scheduler. The off the shelf scheduler experiment is covered in Section 2.5.1.

The scheduler is one of the most important fundamental firmware modules because it
actually controls the execution of various system tasks. The working of Service Message
Router also depends on the scheduler. Furthermore, any additional software extension
module will also depend on the scheduler to execute its task correctly.

The scheduler in this system is designed as a simple non preemptive priority based
scheduler. A non preemptive scheduler means that when a task is running, no other
task can interrupt that task until it eventually pass the CPU time back to the scheduler.
By choosing this scheduler model, the runtime overhead of the scheduler is lower than a
more advanced preemptive scheduler.

The scheduler supports periodic tasks and sporadic tasks, a periodic task can be
programmed to be executed periodically by the scheduler. On the other hand, a sporadic
task is a task which execution is determined by the trigger sent by the user of that task.



3.3. MODULAR RT-MOTION USB FIRMWARE 41

Scheduler Operation Most scheduler are designed to utilize one hardware timer
which is set to fire an interrupt specified interval. The interval between timer inter-
rupt is called as the timer tick interval. Then the scheduler is designed to heavily rely
on the timer interrupt service routine to keep track of the elapsed time and checking the
task list for determining the next executable task [22]. Every time unit in the scheduler’s
implementation is defined in the timer tick interval.

Our scheduler is designed to use a different approach. The scheduler also utilize one
hardware timer, but instead of setting up the timer to give interrupt every specified tick
interval, the timer is setup to run continuously. The timer is setup as a free running
counter which periodically overflows. An interrupt service routine is utilized for handling
timer overflow events, but the interrupt service routine is only used to maintain the
integrity of the task list after an overflow event occurred.

The time unit in our scheduler uses the counting frequency of the hardware timer.
In this case the timer counting frequency of RT-Motion USB is set to 60 MHz, matching
the core clock frequency of the processor. Thus the tick interval of the hardware timer
is 16.67 ns.

Task Dispatcher Function The scheduler is equipped with a function which is re-
sponsible to check for any executable task at the moment, and execute the task when
the execution schedule has arrived. This function is called the task dispatcher function.
The task dispatcher function is called from the main loop of the main C program. Unlike
most scheduler which performs the task list management process inside the timer tick’s
interrupt service routine, our scheduler perform the task list management process after
finished executing a task. The task management process is called the task dispatcher
function.

This scheduler design is proved to be efficient and able to provide high resolution
schedule timing. The task dispatcher function of the scheduler continuosly compare the
schedule of the next executable task with the value of the hardware timer. To optimize
the performance of the task dispatcher function, the information of the next executable
task and the execution schedule is always precomputed by the scheduler after finished
executing one task.

Timing Diagnostics Feature The scheduler is also designed to have a feature for
performing timing diagnostics. This feature can be activated during the runtime of the
scheduler by sending an activation command via a service message. When the scheduler
enters the timing diagnostics mode, it will use a different task dispatcher function which
is equipped with various logging facilities. The timing diagnostics log is stored in the
RAM of the RT-Motion USB board, and it can be fetched by the host PC by means of
exchanging service messages. The scheduling events which can be logged are:

• Task Execution Delay
Task execution delay is the time difference between the scheduled task release time
with the actual task release time.

• Task Execution Time
Task execution time is the duration of the task execution.
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• Task Management Duration
Task management duration is the time needed for performing the task management
after finished executing a task.

The timing diagnostics log can be used to diagnose the schedulability of the task set
given to the scheduler. This enables the user to fine-tune the schedule of the task set.

3.3.13 Firmware Modules Dependency Diagram

The diagram in Figure 3.11 shows the dependency relationship of the fundamental
firmware modules. The inter-modules dependency is briefly described in the following
section.

• SWEM depends on SWEM Manager, Scheduler, RTDM, Resource Manager, and
Service Message Router.

– Depends on the SWEM Manager for calling the utility functions.

– Depends on the Scheduler for executing the periodic task.

– Depends on the Resource Manager for allocating resources and getting the
detail resource access mechanism.

• Device Driver depends on Device Driver Manager, Local Peripheral Bus Man-
ager, Hardware Abstraction Layer, Resource Manager, Scheduler, Service Message
Router, and Configuration Database.

– Depends on the Device Driver Manager for calling the utility functions.

– Depends on the Local Peripheral Bus Manager and the Hardware Abstraction
Layer for accessing hardware.

– Depends on the Resource Manager for allocating and registering resources.

– Depends on the Scheduler for executing the optional background periodic
task.

• SWEM Manager depends on Configuration Database and Service Message Router.

• Device Driver Manager depends on Configuration Database and Service Message
Router.

• Resource Manager depends on Device Driver Manager, Configuration Database
and Service Message Router.

– Depends on the Device Driver Manager for getting the driver’s interface
provider.

• Local Peripheral Bus Manager depends on Resource Manager, Hardware Abstrac-
tion Layer, Configuration Database and Service Message Router.

– Depends on the Resource Manager for allocating resources.

– Depends on the Hardware Abstraction Layer for accessing hardware.
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• Configuration Database depends on the Hardware Abstraction Layer and the Ser-
vice Message Router.

– Depends on the Hardware Abstraction Layer for programming flash memory.

• Service Message Router depends on USB Communication Layer and Scheduler.

– Depends on the USB Communication Layer for handling USB communication.

– Depends on the Scheduler for executing the routing task.

• Real-Time Data Manager depends on USB Communication Layer, Scheduler, Con-
figuration Database and Service Message Router.

– Depends on the USB Communication Layer for handling USB communication.

– Depends on the Scheduler for handling the real-time message task triggering.

• USB Communication Layer depends on the Hardware Abstraction Layer for ac-
cessing hardware.

Generally speaking, the Supervisor depends on every module because the Supervisor
starts all system modules after power up, thus it must know about the whereabouts of
the modules and how to initialize those modules. Most modules depend on the Service
Message Router for performing communication with the host PC via the service channel.
Most modules depend on the Configuration Database for storing their configuration
block.

3.3.14 State of the Firmware

The firmware module that takes care about the system state transitions is the Supervisor
module. The Supervisor will initialize the board and manage state of the firmware
throughout the execution of the platform. Figure 3.12 shows the system state diagram
of the modular RT-Motion USB firmware.

The description of each system state is described in the following section.

Microcontroller Unit (MCU) Initialization This state is entered by the firmware
right after the board is powered on. The initialization process of the hardware includes
the generation of the microcontroller’s clock tree and initialization of all internal re-
sources. The first fundamental module which is initialized in this state is the Supervisor,
which in turn will initialize every other firmware fundamental modules.

Idle After all initialization has been successfully done, the firmware will enter this
idle state. In this state the firmware will check the operating mode setup of the board.
Depending on the value, the firmware has to either wait for service message from host
PC or advance to the next state.
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Figure 3.11: Firmware Modules Dependency Diagram

Hardware Configuration State The hardware configuration state is the first phase
of the configuration sequence. In this phase the user of the board has to specify the
device drivers which need to be activated in the particular board. Each activated device
driver should also be configured and initialized during this state. The device driver’s
configuration can also be fetched from the configuration block stored in the Flash mem-
ory. To advance to the next configuration state all of the enabled device drivers must be
correctly initialized at the end of this state.

Communication Configuration State This configuration state is used to set the
required real-time data objects and place it into real-time messages. At the end of this
state, the Real-time Data Manager will allocate the memory space required for buffering
the real-time messages.
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Figure 3.12: System State Diagram

Software Configuration State The software configuration state is the last phase of
the configuration sequence. In this phase the user can choose which software extension
modules are to be activated. The individual configuration of each software extension
modules are also configured in this phase. The configuration of software extension mod-
ules includes the assignment of real-time data objects and required resources allocation,
which in principle requires the outcome of the two preceding configuration phases.

Ready State The ready state is the state where the firmware is sitting idle waiting for
a service message to start the application. When such message arrived, the Supervisor
will contact the Scheduler to enable the Scheduler and start executing all periodic tasks.

Running State The scheduler is running and executing all tasks which exist in the
Task List. In this state the system must meet the real-time constraints.

Runtime Error State When the firmware encounters a critical error which forces a
halt of operation it will go to the Runtime Error State. In this state the Host PC can
query the RT-Motion Board about the detail of the error and decide the recovery action.

3.3.15 Firmware Initialization Modes

The Modular RT-Motion USB Firmware can be initialized from these conditions: the
board has no configuration at all, the board is configured as slave mode and the complete
system configuration is found in the Configuration Database and the board is configured
as stand alone mode.

Empty Configuration If the board has no pre-saved configuration block, the initial-
ization process of the board will wait for a sequence of services messages sent by the
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Host PC.

Slave Mode with pre-saved Configuration If the board has a pre-saved config-
uration which is configured as Slave mode, the board will wait for the instruction to
apply the pre-saved configuration. If Supervisor receives a service message instructing
the board to use the pre-saved configuration, the board will fetch the configuration from
Configuration Database and start initializing the board as configured in the pre-saved
configuration.

Stand Alone Mode If the board has a pre-saved configuration which is configured as
Stand-alone mode, the board will immediately fetch the configuration from Configuration
Database and initialize the board accordingly.

3.3.16 Firmware Execution Contexts

The firmware only has two active interrupt service routines, which are:

• USB communication
The USB communication is handled in an Interrupt Service Routine (ISR), which
basically copies out the data from the USB Controller’s FIFO buffer to the corre-
sponding manager’s buffer.

• Scheduler’s Timer Overflow
The timer which is used for the scheduler’s timer is set as a free running counter
which eventually will overflow, to manage the scheduling list; an ISR is imple-
mented for handling the timer’s overflow event.

The main part of the scheduler is executed from the idle loop of the firmware. Since
the scheduler is a non preemptive scheduler, only one active task can be executed at a
time. An active task cannot be preempted by any other task. An active task can only
be preempted by interrupt service routines.

The system by default will have at least one active task which is registered by the
Service Message Router, this task is used to perform the service message routing process
and the priority of that task is set to a high priority. Other additional tasks can be
added to the system by the active software extension modules. A device driver can
also optionally add a task for implementing a background task for supporting the device
driver’s inner working.

3.3.17 Firmware Memory Map

The majority of the firmware modules can be executed directly from flash, but the
performance of executing code from flash is around 20 percent slower than executing
the code from RAM. So in order to gain the maximum performance some modules will
have to be executed from RAM, and the others can be executed from flash. Generally
all pieces of code which are only used to initialize and configure the firmware can be
executed directly from the flash memory.
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The Scheduler, the Real-Time Data Manager, the Service Message Router, and the
USB Communication Layer are all important modules which is greatly used during the
real-time running mode of the firmware, so these modules need the maximum perfor-
mance that can be delivered by the microcontroller. These modules are configured to
be executed from RAM. Table 3.1 shows the memory footprint of the firmware modules.
The total amount of RAM which has been used is around 39 KB, which means we still
have some room free RAM for executing crucial modules from RAM.

All other modules can be executed from flash memory to save the limited RAM space.
Software extension modules and device drivers are by default designed to be executed
from Flash because the amount of available RAM might not be enough to accommodate
all device drivers and software extension modules. However when a SWEM requires a
very high performance, it can be specified to be executed from RAM.

Table 3.1: Modular RT-Motion USB Memory Footprint
Module Name Code@Flash Code@RAM Data@RAM
Configuration Database 4,696 3,096
Device Driver Manager 2,948 3,851
Hardware Abstraction Layer 3,936 3,328
Heap Area 8,192
Local Peripheral Bus Manager 904 4
Main C Program 80
Parallel Port Bus Driver 2,620 12
Resource Manager 2,432 3,588
Real-Time Data Manager 6,452 668
Scheduler 3,808 4,768
Service Message Router 1,636 776
SPI Bus Driver 2,204 3
Supervisor 3,412 504
SWEM Manager 3,044 514
USB Communication Layer 968 40
USB HAL 5,682 132
Total 31,958 12,864 26,010

3.3.18 Implementation Details

The design of Modular RT-Motion USB Firmware which is described in this section
is implemented in C language. The development process uses the Keil Microcontroller
Development Kit. The optimization used in this project is Optimization Level 3 and
Optimized for Time. The source code of the firmware is organized such that the imple-
mentation of each module is grouped into a separate folder.

Table 3.2 shows the total lines of code used for implementing the Modular RT-Motion
USB Firmware, as calculated by cloc [4].
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Table 3.2: Lines Of Code Count of Implementation
Language Files Blank Comment Code
C 42 4,664 6,851 12,994
C/C++ Header 74 1,370 2,631 2,909
Assembly 2 121 194 125
SUM: 118 6,155 9,676 16,028

3.4 Firmware Extension Modules

Firmware extension modules are modules which can be integrated to the firmware to
provide additional functions to the firmware. The objective is to let as many developers
as possible create firmware extension modules to the system. In order to be able to write
a firmware extension module, the developer must adhere to the extension modules format
specification. There are two kinds of firmware extension modules which are supported
in the Modular RT-Motion Firmware. They are:

• Software Extension Module
This format of extension module is used to develop a custom algorithm to be
executed on the firmware. A software extension module can have real-time data
exchange with the Host PC.

• Device Driver
A Device driver is a format of extension module which is specially designed to
control an external hardware module, to be the interface of a hardware module.

In the current implementation of the firmware, the firmware extension modules have
to be linked together with the basic firmware and uploaded as a single image to the
RT-Motion USB board. However, support for uploading the firmware extension modules
on-the-fly can be added in the future. The on-the-fly uploading here does not mean
that the software extension module can be uploaded during real-time operation mode,
but during the configuration mode of the firmware. This on-the-fly software extension
module uploading will enable the addition of software functionalities without recompiling
the firmware.

3.4.1 Software Extension Module

A software extension module (SWEM) is an extension module that can deliver some
custom additional functionality to the system. A particular SWEM can be designed to
obtain information, process the information and then deliver that information to the
outside world. The framework provides software extension modules with mechanisms to
get input information from either real-time USB channel or external hardware modules
(with the help of device drivers) and to deliver their output to the outside world.

A software extension module can be made to be executed periodically or sporadically.
The sporadic execution can be made upon reception of a real-time trigger message from
the host PC or from other SWEM. The task code which is going to be executed sporadi-
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cally or periodically must always take into account the real-time constraints which must
be met by the system.

One software extension module can have multiple instances of data and configura-
tion which share the same code. Each SWEM instance can be executed on different
interval and with different configurations. The data of each software extension module
instance is encapsulated in a SWEM Instance table; each kind of SWEM can have its
own instance data type. Before a SWEM can be executed the user must configure all
required configuration of each instance, the configuration might include the assignment
of resource ID, the assignment of real-time data objects and the real-time message task
triggering. The required resources are allocated during the initialization of the SWEM
instances. A successful resource allocation might lead to the process of obtaining the
device driver interface to control each particular resource.

Every software extension module should implement the service message handler to
be able to communicate with the Host PC via service channel. The service channel
communication is used to exchange configuration commands. Every software extension
module is able to save its configuration block to the flash memory with the help of the
Configuration Database.

One SWEM can share information with another SWEM by allocating a shared data
object from the Software Extension Modules Manager. Every shared data object must
be assigned during the configuration phase and checked during the initialization, so that
those shared data objects can be used directly during the runtime of the application.

The general structure of a software extension module is shown in Figure 3.13.

Figure 3.13: Structure of a Software Extension Module

3.4.2 Device Driver

A device driver is an extension module that is used to give an abstraction layer to enable
software developers to access hardware functionality easily. The functions provided by
a device driver are specific to the device it is representing. A device driver can contact
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the Resource Manager for requesting to allocate resources that it needs to operate and
eventually registering resources that it is providing.

A device driver is designed to control one specific type of hardware with specific
extension module attachment method, whether it is via SPI bus, via GPIO port or
internal peripherals. But the system supports more than one extension modules with the
same type to be attached to RT-Motion USB board, which introduces the device driver
instance term. One device driver interface represents one physical hardware extension
module with a unique address. In addition to the unique address per device driver
instance, the developer of a device driver can also store any instance specific configuration
or data in the device driver’s instance table.

Every device driver must at least implement one type of device driver interface, which
is actually the way a device driver can provide its services to the user of the device driver.
The user of a device driver knows which kind of interface type the device driver should be
supporting, thus the user knows what functions is provided and can be called to perform
any hardware specific operation that the driver is controlling. A device driver can also
implement more than one device driver interface, which will give freedom for the user of
the device driver to choose which interface it is going to access.

Figure 3.14 shows a setup of RT-Motion USB connected with 3 physical hardware
extension modules of the same type (RTM BLDC Motor controller) and also the internal
motor amplifier. There are three device drivers which need to be enabled to control all
those modules:

• RTM BLDC Par Driver
This driver is used to control the RTM BLDC which is connected to the 16-bit
GPIO port.

• RTM BLDC SPI
This driver is used to control the two RTM BLDC modules which are connected to
the SPI Bridge. Because the driver must control two physical modules, these two
modules are uniquely identified by the instance number inside the device driver.
Each driver instance stores the module specific configuration.

• Internal MotorController Driver
This driver is used to control the internal motor controller which is integrated in
the RT-Motion USB itself.

All these three drivers can implement the same device driver interface which eventually
enables the flexibility for the user to choose which kind of hardware is going to be used
without thinking about the different programming interface.

The developer can also design a device driver which emulates the functionality of a
device; therefore, from the application point of view, the device emulation driver still
provides the same interface as the driver for the physical device.

The general structure of a device driver is shown in Figure 3.15.
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Figure 3.14: Device Drivers Instances

Figure 3.15: Structure of a Device Driver

3.5 Host PC Supporting Framework

3.5.1 USB Driver

The USB Device Driver for the RT-Motion USB board is developed by Sait Izmit during
the completion of the graduation project [11]. The USB Device Driver was developed to
run on Vanilla Linux Kernel, Linux Kernel with RTAI extension and Linux Kernel with
Xenomai extension. A driver wrapper has also been implemented to enable the device
driver to be used in Windows operating system environment.

The USB Device Driver which is used in the Modular RT-Motion USB Software



52 CHAPTER 3. DESIGN AND IMPLEMENTATION

Framework is based on the original device driver for the RT-Motion USB board. The
original USB driver which has been developed for the RT-Motion USB board has a
maximum packet size of 64 bytes, meanwhile according to the USB specification the
maximum size of messages on bulk transfer is 512 bytes, so some modifications have
been made to enlarge the maximum packet size of the USB endpoints to be 512 bytes.
Setting the maximum packet size to 512 bytes enables us to use larger message which
can lead to more efficient communication.

3.5.2 User API

The User Application Programming Interface (User API) for the new Modular RT-
Motion Software Framework must be developed to enable the developer of Host PC
Motion Control Application to communicate with the new firmware.

The User API will send appropriate service messages to enable the User Application
in the Host PC to communicate with the Firmware.

3.5.3 Configuration Editor

The Configuration Editor is an application which is designed to be executed in the Host
PC, which is used mainly to help the user of the RT-Motion USB board in configuring
the board. This application will guide the user in the board configuration sequence.

In addition to providing guidance for configuring the board, the configuration editor
can also create a configuration file which mirrors the completed configuration of that
particular board. This configuration file can then be used to configure the board directly
from the User Application.

3.5.4 Real-Time User Application

The real-time user application is the user application which is running in the Host PC to
communicate with the RT-Motion USB Board and typically used to control the board,
get sensor information from the board, perform motion control algorithm and supply the
latest actuation value to the RT-Motion USB board.

This user application can perform USB communication with the RT-Motion USB
board using both the service channel and the real-time channel. Every action is done by
calling functions which are provided by the User API.
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This chapter covers the experiments which have been performed as case studies in this
research project. In general the performance of the developed framework is analyzed
thoroughly and the system overhead is measured.

4.1 Scheduler’s Task Switching Time

4.1.1 Testing Methodology

A software extension module (SWEM) has been developed to measure the performance
of the scheduler. The developed SWEM has a periodic task which is used to simulate
execution time by calling a delay function. This particular SWEM is called SWEM
SchedTester. SWEM SchedTester can be used to simulate the execution time of task
with resolution of 1 microsecond resolution. It is possible to make up to 16 instances of
SWEM SchedTester with different intervals, release times, execution times and priorities.
These features make SWEM SchedTester suitable to be used as a measurement tool.
The scheduler of the Modular RT-Motion USB Firmware will be referred using the term
ModRTM Scheduler.

In performing task switching time measurement, SWEM SchedTester is enabled and
configured to run with different number of instances, in which each instance creates
one additional task to the system. In this experiment, the routing task of the Service
Message Router is deactivated in order to purely measure the scheduler’s performance.
So the total number of tasks managed by the scheduler is the same as the total number
of SWEM SchedTester instances being activated. Each SWEM SchedTester instance is
configured to have an execution time of 100 microseconds and all are released at the
same time and have the same priority.

The timing measurement is performed by toggling a GPIO pin to indicate the active
process at that moment, and then the GPIO pin is probed by an oscilloscope. The
oscilloscope used for the experiment is an Agilent MSO6034A which is equipped with 4
analog input channels. Figure 4.1 shows a local zoom of the oscilloscope screen capture
which displays the details of the task switching process with 2 active tasks in the system.
The first two channels represent the execution time of task 1 and 2 respectively; the third
channel is unused in this experiment; the fourth channel represents the activity of the
task dispatcher function of the scheduler. When a task is active the signal seen by
the oscilloscope is high, and low when inactive. When the signal on channel 4 is high,
that means the task dispatcher function of the scheduler is active. The task dispatcher
function will become inactive after it finished performing the task management process
following a task execution, or there is no executable task at the moment.
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Figure 4.1: Oscilloscope Screen Capture of Task Switching Between 2 Tasks

4.1.2 Results of Modular RT-Motion USB Scheduler

In general the task switching time is the sum of task management time, task dispatch-
ing time and the time between two consecutive task dispatcher executions. The task
management is linearly influence by the number of tasks because the task management
process needs to scan through the whole task list array to find the next executable task.
However, the task dispatching time and the time between the task dispatcher executions
is independent of the number of task. The time between two consecutive task dispatcher
executions is a fixed value of around 1 microsecond, which can be accounted for the
microcontroller’s overhead for branching into a function, toggling a GPIO pin, returning
from a function and doing an infinite loop.

The result of the task switching measurement experiment can be observed in detail in
Table 4.1. The unit of time measurement is microseconds. The first column in the table
shows the number of tasks which are active in the system. The second column represents
the duration of the task dispatching process before start executing a task. The third
column represents the duration of the task management process after executing a task.
The fourth column represents the amount of time spent in the main loop of the C program
between two consecutive task dispatcher executions. And finally the fifth column shows
the total switching time of the scheduler for the given number of active tasks.

4.1.3 Comparison with other platforms

In this section we investigate the task switching time of the schedulers which used by
the other platforms. The first platform we investigate is the legacy RT-Motion USB
Firmware. And then the result from the Modular RT-Motion USB Firmware and the
result of the scheduler used by the Keil RTX Real-Time Kernel are also investigated.
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Table 4.1: ModRTM Scheduler Task Switching Time
Nr of Tasks Dispatcher Management Main Loop Task Switching Time

2 2.3 4.8 1 8.1
3 2.3 5.4 1 8.7
4 2.3 6.2 1 9.5
5 2.3 7.1 1 10.4
6 2.3 8.0 1 11.3
7 2.3 8.8 1 12.1
8 2.3 9.7 1 13.0
9 2.3 10.6 1 13.9

10 2.3 11.5 1 14.8

4.1.3.1 Legacy RT-Motion USB Firmware

The legacy RT-Motion USB firmware does not have native support for multi-tasking
because it is not equipped with any scheduler. In order to execute a periodic task, the
developer must utilize the internal timer peripherals provided by the microcontroller and
place the code inside the interrupt service routine.

For testing purposes a timer interrupt is set up to virtually execute 4 tasks sequen-
tially. This kind of setup is actually being used in the Robot Eyes project to execute
4 channels of PID controller every 500 microseconds (2 KHz frequency). According to
past experiences, RT-Motion USB board cannot execute the 4 channels PID controller
on a higher frequency than 2 KHz. For that reason, a delay function is used to easily
simulate the CPU time used by the tasks.

Figure 4.2 shows the virtual task switching time between PID controller channels.
The measured switching time is obviously very small, around 0.5 microsecond. This
extremely low switching time is possible because the PID controllers are actually executed
sequentially one after another within a for loop. But of course this static implementation
of periodic task execution does not offer the flexibilities which are achievable using the
ModRTM Scheduler. That every task must be executed with the same interval and
sequentially.

4.1.3.2 Modular RT-Motion USB Firmware

In order to imitate the execution of 4 channels PID controller running at 2 KHz fre-
quency, the Modular RT-Motion USB Firmware is configured with one active SWEM
SchedTester. The SWEM SchedTester is configured to have four instances, each having
an execution time of 100 microseconds and all released at the same time. Figure 4.3
shows the oscilloscope screen capture of the execution of the first three tasks and the
activity of the scheduler’s task dispatcher function on the fourth input channel of the
oscilloscope.

The experiment showed in Figure 4.3 shows that the scheduler is able to execute 4
tasks each with execution time of 100 microseconds at frequency of 2 KHz while having
around 60 microseconds idle time in every cycle. The execution of 4 tasks with the
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Figure 4.2: Legacy RT-Motion USB Periodic Task Execution

same release time means that only the first task is executed on time, while the three
following tasks are late. But overall those tasks are still schedulable because before the
cycle restarts, all tasks have been finished executing.

The experiment also showed that the task switching time for this kind of configuration
is around 10 microseconds, which confirms the result of task switching time scaling
experiment showed in Table 4.1.

Figure 4.3: ModRTM Scheduler 4 Tasks @ 2KHz Same Release Time
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4.1.3.3 Keil RTX

As a measure the compare the performance of our own-build scheduler, a small number
of scheduler performance measurements have been executed on Keil RTX Real-Time
Kernel platform. The Keil RTX is configured to run in the non preemptive mode, with
a timer tick interval of 50 microseconds. The timer tick interval is used as the base value
for defining all time units in the system, including the task intervals and user timers.

Keil RTX is designed to perform one interrupt service routine every timer tick interval
[14]. This interrupt service routine is used to keep track of the elapsed time, administer
its task list, and to determine which task to be executed next. This timer interrupt
has an average execution time of around 20 microseconds. In general, if the timer tick
interval is set to 50 microseconds, the scheduler introduces 40 percent CPU overhead. A
larger timer tick interval must be selected in order to reduce the scheduler’s overhead.
This means that Keil RTX will not be able to schedule tasks in the same time resolution
as Modular RT-Motion USB Scheduler.

Figure 4.4 shows a screen capture of the oscilloscope while doing the task switching
experiment using Keil RTX with 2 active tasks. The task switching time is fluctuating.
When the task switch occurs at the same time as the timer tick interrupt service routine
execution, the task switching time takes around 20 microseconds longer. The detailed
measurement result of task switching time under Keil RTX scheduler can be observed
in Table 4.2. The unit of time measurement is microseconds. The results also show
the scaling of Keil RTX performance when loaded with various amount of active tasks.
There are two kinds of task switching time shown in Table 4.2, the Normal task switching
time is the measured task switching time when the task switch occured without being
interrupted. The Interrupted task switching time shows the task switching time where
in the middle of the switching process a timer tick interrupt occurred.

Compared to the task switching time of ModRTM Scheduler, the Keil RTX have
a better scaling to the number of tasks. But the overhead of the timer tick interrupt
service routine is not found in the task switching time of ModRTM Scheduler, resulting
to a much more predictable task switching time.

Table 4.2: Keil RTX Scheduler Task Switching Time
Nr of Tasks Normal Interrupted ISR Overhead

2 11.5 31.3 19.8
3 12.0 31.7 19.7
8 13.9 33.5 19.6

4.2 Priority Driven Non Preemptive Scheduler

In this section, an experiment is designed to show the effectiveness of the priority driven
non preemptive scheduler. This scheduler is used as the basic of the ModRTM Scheduler.
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Figure 4.4: Keil RTX Task Switching Time

4.2.1 Testing Methodology

The experiment utilizes again the SWEM SchedTester. For this particular purpose, three
instances of SWEM SchedTester are created. In order to simulate the priority scheduler,
different execution times, different initial release time schedules, different intervals and
different priorities are assigned for each SWEM SchedTester instance. The configuration
of SWEM SchedTester creates a task set as shown in Table 4.3 and illustrated in Figure
4.6.

Table 4.3: Task Set of SWEM SchedTester With Different Priorities
Task ID Execution Time Interval Priority

1 2 ms 5 ms 1 (lowest)
2 1 ms 10 ms 2 (higher)
3 3 ms 15 ms 3 (highest)

Figure 4.5: Illustration of Task Set With Different Priorities
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4.2.2 Result

The actual execution of the three tasks that have been scheduled is presented in Figure
4.6. Task 3 which has the highest priority is always executed first. This could lead to
the delay of other task with the same schedule, which will only be executed after task 3
has been completed. The task execution delay is described in more detail in Section 4.4.
The priority driven scheduler provides a better scheduling possibilities and eventually
leads to a more flexible schedule. By default the system has a task with a very high
priority for handling the routing process of service messages. By giving a high priority
to the service message routing task, we can make sure that the service message will be
routed right after a task finished executing.

Figure 4.6: Actual Schedule of the 3 tasks in the Priority Scheduler Experiment

4.3 Service Message Routing Task Execution

This section focuses on the investigation of the reception of a service message, the firing
of the SMR’s routing task, the switching time and the actual execution of the service
message task. This experiment also shows a drawback of non preemptive schedulers,
where a higher priority task, the SMR’s routing task, cannot interrupt the execution of
another task with a lower priority.

The screen capture of the oscilloscope showing the service message reception event
can be observed in Figure 4.7. The first input channel of the oscilloscope is connected
to a GPIO pin which represents the execution of SWEM SchedTester task. The second
input channel is connected to a GPIO pin for the service message routing task. The third
input channel is connected to a GPIO pin used to detect the interrupt service routine of
the USB controller, when the controller receives the USB frame containing the incoming
service message. The last input channel is connected to a GPIO pin which shows the
activity of the scheduler.

The switching time from task 1 to the SMR’s routing task is shorter than ordinary
task switching. This is possible because the process of firing a sporadic task allows the
scheduler to bypass the task management routine at the end of the execution of task
1. The task management routine is bypassed because after the execution of task 1, the
scheduler already knows what is the next executable task, which is set by the firing of
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Figure 4.7: Reception of a Service Message

the sporadic task. The measured task switching time to a sporadic task is around 3.7
microseconds, independent of the number of active tasks in the system.

4.4 Task Execution Delay

This section investigates the task execution delay of the Modular RT-Motion USB Sched-
uler. The task execution delay is defined as the time difference between the scheduled
release time of a task and the actual execution time. The variations of task execution
delay can be influenced either by the overhead of the scheduler itself or the schedulabil-
ity of the active tasks. This section focuses on the measurement of task execution delay
which is caused by the overhead of the scheduler itself. For detecting task execution
delays which is caused by the poor schedulability of the active task set, the scheduler is
equipped with a timing diagnostics feature. This timing diagnostics feature is described
in Section 3.3.12.

4.4.1 Testing Methodology

The measurement of the task execution delay of each executable task is performed by
getting the current value of the timer used by the scheduler and comparing it with
the scheduled task release time which is recorded in the task list. If the time difference
observed is larger than certain customizable threshold, the value is stored into the sched-
uler’s timing log. This log table is designed to store the first 500 entries and is then sent
to the Host PC and saved to a file for further processing.

For testing the task execution delay, the same SWEM SchedTester is used. However,
instead of releasing all tasks at the same time, each task is now given a different release
time with enough time spacing between tasks to achieve a schedulable task list. All tasks
have the same interval of 1 milliseconds, the same execution time of 100 microseconds,
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and the same priority. The task set used for this experiment is shown in Table 4.4.

Table 4.4: Task Set of SWEM SchedTester With Different Release Time
Task ID Initial Task Release Time (us) Interval (us) Execution Time (us) Priority

1 0 1000 100 1
2 125 1000 100 1
3 250 1000 100 1
4 375 1000 100 1
5 500 1000 100 1
6 625 1000 100 1
7 750 1000 100 1
8 875 1000 100 1

4.4.2 Results

Table 4.5 presents the measurement result of the task execution delay. The unit of time
measurement is microseconds. This experiment uses a task list which is schedulable,
which means that the execution of a task followed by the scheduler’s task management
process is finished executing before any other task in the system becomes executable.
In this kind of scheduling condition, the task execution delay is not influenced by the
number of active tasks in the system.

The task management process is executed after a task is finished executing, which
will keep the task execution delay at minimum if the task set given to the scheduler
allocated proper time spacing among tasks. The required task management time alloca-
tion can be seen in Table 4.1. The variation between the maximum and minimum task
execution lateness observed in Table 4.5 is mainly caused by the position in time when
the Scheduler’s Task Dispatcher function is called by the main C function.

Table 4.5: ModRTM Scheduler Task Execution Delay
Nr of Tasks Average Minimum Maximum

1 1.78 0.87 2.70
2 1.78 0.83 2.73
3 1.77 0.83 2.70
4 1.78 0.83 2.73
5 1.79 0.83 2.73
6 1.78 0.83 2.73
7 1.79 0.83 2.70
8 1.78 0.83 2.73
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4.5 USB Communication

Some measurements of USB subsystem performance were performed during the experi-
ment stage of the project. The execution time of various functions of the Service Message
Router and the Real-Time Data Manager were measured. The execution time of the USB
device controller’s interrupt service routine (ISR) for handling incoming USB message
in service channel endpoint and real-time channel endpoint were also measured.

4.5.1 Timing of USB ISR for Service Channel Receive

An experiment for measuring the execution time of the USB ISR for a service channel
endpoint has been done by taking the value of the scheduler’s timer before and after
the execution of the ISR. The measured value is then stored in the timing diagnostics
log of Scheduler. The timing diagnostics log is then fetched by the host PC. Table
4.6 presents the timing measurement of the USB interrupt service routine for handling
message reception on the service channel and the scaling of performance with regard to
the size of the message being received. The timing measured here are in time units of
microseconds. The task which is done inside the USB interrupt service routine is mainly
a FIFO buffer copying from the USB controller to the Service Message Router’s message
buffer and a function call to the Scheduler to fire the execution of the Service Message
Router’s routing task.

Table 4.6: USB ISR for Service Channel Receive Execution Time
Message Size Execution Time (µs) Time/Byte

12 7.75 0.65
16 8.28 0.52
32 9.89 0.31
64 13.65 0.21

128 20.05 0.16
256 32.85 0.13
512 58.45 0.11

The results show that the execution time scales with the size of the message, but
the processing time per byte is getting more efficient as the message size grows larger.
The improvement of efficiency shows that the time needed for performing the buffer
administration and task firing procedure does not depend on the size of the message. The
buffer administration and task firing process can be regarded as the message processing
overhead of SMR.

When the RT-Motion USB board is working in a stand alone mode and running a
high frequency controlling task onboard, in most cases the USB communication will be
disabled or mostly idle. It will only be used for performing some administrative issues
or getting diagnostics logs. Thus, this measurement is primarily intended for measuring
the RT-Motion USB board when working in slave mode, performing a real-time USB
data exchange at a lower frequency of around 1 KHz. This means that the execution
time of the USB interrupt service routine for service channel is acceptable because with
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lower control frequency we have less strict timing constraints.
While running in the slave mode configuration and performing a real-time USB data

exchange, the service channel endpoint is also expected to be mostly idle or at most
sending short USB messages of around 12 to 16 bytes. This means that the required
time by the USB ISR for handling service channel message reception will be as low as
8.28 microseconds.

4.5.2 Timing of USB ISR for Real-Time Channel Receive

The execution time of the USB ISR for a real-time channel endpoint has been measured
by taking the value of the scheduler’s timer before and after the execution of the ISR.
The measured value is then stored in the timing diagnostics log of the Scheduler, which is
then fetched by the host PC. Table 4.7 presents the timing measurement of the USB ISR
for handling message reception on the real-time channel and the scaling of performance
with regard to the size of the received message. The timing measured are in time units
of microseconds. The USB interrupt service routine includes the buffer copying from
the USB controller’s FIFO buffer and a call to the Real-Time Data Manager’s incoming
message handler function, which performs the message buffer management.

Table 4.7: USB ISR for Real-Time Channel Receive Execution Time
Message Size Execution Time (µs) Time/Byte

16 8.72 0.54
32 9.73 0.30
64 13.53 0.21

128 19.93 0.16
256 32.77 0.13
512 58.33 0.11

The results show that similar to the USB ISR for processing incoming service mes-
sages, the execution time of incoming real-time message processing time in the USB ISR
also scales with the size of the message. The message processing overhead of real-time
message is also comparable to the service message, even though the series of operation
quite differs. For processing a real-time message, the USB Communication Layer does
not need to call the Scheduler to fire any task but directly call the message handler
function of the RTDM.

The USB interrupt service routine can also call a function to fill the buffer of the
USB device controller for the outgoing endpoint of a real-time channel in response to an
outgoing real-time message request packet. This kind of request packet is only 7 bytes
long, composed of 6 bytes of header and 1 byte of packet identifier of the requested packet.
The experiment which is done is requesting a message with size of 30 bytes as an example.
The total execution time of the USB ISR for processing this particular incoming message
is around 12.38 microseconds. This execution time includes the time for copying out the
message body from the USB controller’s buffer, identifying the message, and filling the
buffer of the outgoing real-time channel endpoint with a message of 30 bytes.
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4.5.3 Timing of USB Device Controller’s Buffer Filling

The filling process of the USB device controller’s FIFO buffer with a message to be deliv-
ered to Host PC is handled by USB Communication Layer. This process is implemented
in a function which can be called by either a Real-Time Data Manager or a Service
Message Router.

The measurement is taken by utilizing the same method as the previous measurement,
by capturing the scheduler’s timer value and saving the time difference in the Scheduler’s
timing diagnostics log table. The detailed measurement which shows the scaling of
performance with regard to the size of the message is shown in Table 4.8

Table 4.8: Execution Time of USB Buffer Filling
Message Size Execution Time (µs) Time/Byte

16 2.80 0.18
32 3.92 0.12
64 6.20 0.09

128 10.72 0.08
256 19.80 0.07
512 37.93 0.07

From this measurement result we can conclude that the amount of time needed for
filling the USB buffer depends on the size of the message and some message preparation
process overhead. This message preparation overhead makes the scaling of time required
per byte to decrease as the size of message increases. In general message with size of 64
bytes may provide the best balance for most application, because the time required per
byte is relatively low enough.

4.5.4 Real-Time Data Manager

4.5.4.1 Timing of Getting a Real-Time Data Object Value

The process of getting a real-time data object (RTDO) value is important to be measured
because periodically the consumer of the RTDO could call this function from the periodic
task of a SWEM. The periodic task of a SWEM must meet the real-time constraint of
the system.

Table 4.9 shows the measurement results of get RTDO value functions which are
provided by the RTDM to allow the consumer of an RTDO to get the latest data.
RTDM provides two functions for getting the latest RTDO value. The two functions
differ in such a way that one of the functions is optimized for operating with 32-bit sized
data and the other function can serve the value for RTDO with any data size. The
measurements show that the execution time for object size of 3 bytes is slower than for
object size of 4 bytes, as the result of the optimized function for an object size of 32 bits.
The optimization for an object size of 32 bits is implemented because 32-bit variables
can be considered to be a common variable size.
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Table 4.9: Execution Time of Getting an RTDO Value
Object Size Execution Time (µs) Time/Byte

3 2.97 0.99
4 1.62 0.40
8 3.61 0.45

16 3.72 0.23
32 4.10 0.13
64 5.07 0.08

4.5.4.2 Timing of Getting a Real-Time Data Object Value

Table 4.10 shows the measurement result of functions provided by the RTDM to allow the
owner of an RTDO to submit its RTDO value to be delivered to the Host PC. A special
function for optimizing 32 bits sized RTDO is also implemented. Again the execution
time of submitting an RTDO with an object size of 3 bytes is slower than RTDO with
an object size of 4 bytes because the submission of a 4 bytes sized RTDO object utilizes
the optimized version of the function.

Table 4.10: Execution Time of Getting RTDO Value
Object Size Execution Time (µs) Time/Byte

3 3.52 1.17
4 1.93 0.48
8 3.67 0.46

16 3.77 0.24
32 4.22 0.13
64 5.15 0.08

These experiments show that when the SWEM needs to exchange more than one
RTDO, grouping of all required data in a struct data type with a larger RTDO size can
improve processing time efficiency.

4.5.5 Service Message Router

Timing of the Routing Task This experiment investigates how much time is used
by the routing task to route a service message to a firmware module and let the module
process that particular message and send a reply to the host PC. For this experiment,
the module which is used as the destination of the service message is the Configuration
Database. A message was sent in order to get the table of contents of the Flash Memory
with several requested sizes. This would give an impression on the scaling of the system.

The measurement result is shown in Table 4.11 with a time units of microseconds.
But this timing measurement result also includes the message processing and replying
time used by the destination module.

These results show the total time used for processing a service message from the
routing of the message until the message is replied by the message recipient. The required
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Table 4.11: Execution Time SMR Routing to Configuration Database TOC Request
Reply Size Execution Time (µs) Time/Byte

16 10.50 0.65
32 15.40 0.48
64 18.47 0.28

128 15.07 0.19
256 38.25 0.15
512 64.67 0.13

time is again acceptable and within the limits because by nature the amount of service
message transaction is expected to be very low during the real-time execution of the
software. Most of the service message transactions are to be performed during the
configuration phase of the firmware in which real-time constraints are not an issue.

4.6 Conclusion

Based on the above mentioned results we can say that the task switching time of Mod-
RTM Scheduler is more predictable than Keil RTX’s scheduler and even though it scales
worse, but for small amount of tasks the performance is good. The experiment which
investigates the effectiveness of the priority scheduling shows that the scheduler is proved
to be able to schedule tasks with different priorities correctly.

Meanwhile the experiment with the service message routing task execution shows that
the sporadic task execution works well and able to provide non preemptive interrupt-like
behaviour for service messages. As a result of the higher priority given to the routing
task of SMR.

The task execution delay measurement shows that the task execution delay is not
influenced by the number of tasks. And finally the USB communication timing measure-
ment shows that the size of message influences the efficiency of the transmission time
per byte. An correctly chosen message size can deliver the best performance to meet
each platform application.
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In this last chapter we conclude this master’s thesis. First, we make a summary of the
development of this research and evaluate the goals of this research. Finally, we give
a list of recommendations which can be used to improve the software framework and
outline for future development of this research.

5.1 Conclusions

The main contribution of this project is the introduction of a great deal of extendability
to the existing RT-Motion USB framework. Originally, the default firmware of the
RT-Motion USB is a static firmware which only provides a real-time distributed I/O
functionality, leaving the rest of the processing power unused. A framework which allows
the user of the RT-Motion USB board to easily develop an onboard executable custom
code and a driver code to interface an external hardware has been designed. These
features will allow the RT-Motion USB platform to advance along with the broadening
of the platform application.

Another important contribution is the highly configurable nature of the Modular RT-
Motion USB Software Framework. This allows Philips Applied Technologies to deliver
the RT-Motion USB board with a firmware which incorporates all software extension
modules and device drivers which have been implemented. Furthermore, the user can
configure the board individually to meet their own needs.

The conclusion of this thesis project is that the designed modular software framework
is able to provide a highly extendable and configurable framework while maintaining the
overhead of the framework at minimal. The memory footprint and performance overhead
of the framework is larger than the original firmware. It is, however remains within
the required limit. Furthermore, the gained flexibility gives a much more significant
contribution.

Our project showed that the Modular RT-Motion USB Software Framework can
expand the RT-Motion USB to be a general purpose motion control platform.

5.2 Recommendations

Even though all aims of the project have been successfully met, there will always be a
room for improvement. Below is a list of several recommendations to improve the future
development of the software framework.

Extension Modules Integration The way of integrating custom developed software
extension modules and device drivers is still very limited and depending on Philips Ap-
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plied Technologies. This limitation and dependency to Philips Applied Technologies is
due to the fact that the software extension modules and device drivers must be compiled
together with the firmware by Philips Applied Technologies. However, the design has ac-
commodated the room for improvement. In the future further research can be performed
to let the user compile the software extension modules and device drivers separately and
upload the binary file of the extension modules on-the-fly.

Faster USB Communication The USB device controller inside the NXP LPC2888
also has an internal DMA controller to offload the CPU from filling and getting message
from its FIFO buffer. The implementation developed in this thesis project is not using
DMA, which leaves room for further performance improvements.

Faster Microcontroller The RT-Motion USB board relies mainly on the NXP
LPC2888 because of the unique High Speed USB 2.0 controller which is integrated in
the NXP LPC2888. Newer microcontroller models are mostly only equipped with a Full
Speed USB 2.0 controller, which is much slower than a High Speed USB 2.0 controller.
But recently NXP released a brand new microcontroller which is based on the ARM9
core running at 180 MHz and equipped with a High Speed USB 2.0 controller. The
new microcontroller from NXP is called NXP LPC3131. This microcontroller can be
considered as the base platform for a future RT-Motion USB when higher performance
is required.

The software framework developed in this thesis project is organized in such a way
that the porting to a new microcontroller will not require too much effort. In order to port
this software framework to another microcontroller the developer only need to modify
modules which are related directly to the hardware, such as the Hardware Abstraction
Layer the USB Communication Layer, and the device drivers.



Requirements Specification A
This section describes the requirements specification which was formulated at the begin-
ning of the project.

A.1 Firmware Foundation

• The RT-Motion USB has two operating modes: Initialization Mode and Real-Time
Execution Mode.

• USB Boards identification by software based addressing

• The board should be capable to handle up to 2 KHz control frequency on the
Host PC side, in the current robot arm controlling application, the control loop is
executed on the PC at control frequency of 1 KHz.

A.2 Configuration Manager

• The configuration manager can save the configuration to the on-chip flash for the
future use on request.

• Perform self test to ensure that the configuration is valid and executable on the
physical hardware before goes into running mode.

A.3 Software Extension Modules Manager

• Provide a standard specification for developers in writing software extension mod-
ules.

– Input/output mechanism

– USB Communication

– Parameter Setting

– Parameter Tuning

• The integration of software extension module is done during the firmware compila-
tion process and uploaded to the board in the same binary image as the firmware.

• Each software extension modules can have a list of tunable vari-
ables/parameter/configuration that can be tuned by the Configuration Manager
from the Host PC on the fly or set during the initialization mode.
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• Software Extension Module can have some configuration which can be saved in the
Flash memory

• Potential Firmware Extension Modules

– Local control loops

– Signal processing and conditioning tasks such as speed acquisition and filtering
out measurement noise

– Software based encoder counter

– Driver for add-on local peripheral

• The board should be able to run local control loop at high frequency.

A.4 Scheduler

• Real-time scheduler to manage the real-time execution of the RT-Motion USB.

• Keeps track of the CPU time usage of a software extension module for diagnostic
purpose

A.5 Resource Manager

• Enabling dynamic resource management to make a better use of the on-board
resources.

• Control the allocation of resources to software modules to avoid resource conflicts.

A.6 USB Communication

• Configurable real-time data exchange to optimize the utilization of the communi-
cation channel.

• Dynamic mapping data between data exchange packet and their corresponding
modules which can be defined during initialization mode.

• Configuration data channel to send commands between the Host PC and the USB
boards

• Host PC should also be able to communicate with the USB boards on the fly (while
running in a motion-control environment) to tune some settings

A.7 Local Peripheral Bus Manager

• Provide some standard driver model and standard communication protocol to sup-
port broad range of add-on hardware functional modules in cooperation with hard-
ware developer.
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A.8 Diagnostic

• Measurement of add-on software modules’ execution time

• Measurement of USB communication delay, which can be measured as the time
elapsed between the submission of packet to the buffer and the sending process.

• Place message index on USB packets.

• Tracing services

– Tracing services can be implemented as a software extension module; the
amount of tracing buffer is very limited since the amount of available RAM
is also very limited.

A.9 USER API

• User API to ease the development of the control application on host PC.
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Off the shelf RTOS B
Below is the list of off the shelf real-time operating systems that have been surveyed.

Table B.1: RTOS comparison
FreeRTOS Keil RTX uCOS/II

License Free included in MDK >8500 e
Scheduler Yes Yes Yes
- Preemptive Yes Yes
- Cooperative Yes Yes Yes
- Round Robin Yes
Message queues Yes
Message mailboxes No Yes Yes
Semaphores Yes Yes Yes
Mutex Yes Yes Yes
Stack overflow protection Yes Yes
Memory management No Yes Yes (Fixed block)
Resource manager No No
Task Management Yes Yes
- Real-time control Yes Yes
- Create Yes
- Delete Yes
- Change priority Yes
- Suspend Yes
- Resume Yes
Timer services Yes Yes
Context switch time <5 usec @ 60MHz
ARM7TDMI port Yes Yes Yes
LPC2xxx port Yes Yes Yes
LPC2888 port No No Yes
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