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Chapter 1
Introduction

The numerical modeling of multiphase flow phenomena has been a field of

great interest within the computational fluid dynamics community for the past

few decades. Examples of multiphase flows in industry and engineering are ubiq-

uitous: boilers, condensers, reactors, mixers, separators and cavitation are but some

of the applications. In present day hydrocarbon recovery, the increased effort to pro-

duce from fields that are located more remotely and in deeper water has led to more

complex transport of oil and gas. One often finds that both phases are transported

through a single pipeline to an offshore platform or to an onshore plant. The liquid-

gas mixture that is flowing through a pipeline can be in a specific flow regime, as

will be further explained in section 1.1. The prevailing flow regime depends on,

among others, the liquid and gas flow rates, the pipeline pressure, and the pipe

diameter and inclination. Highly unstable flows with slugs can cause significant

mechanical stresses on the pipe wall in bends and on its supports. Additionally,

unstable flow can create difficulties for the facilities located at the downstream end

of the pipeline, such as flooding of the separator or trips of the compressor or

pump. Such facilities would perform best with a constant supply of gas and liquid

over time. If there is unstable flow, extra capacity should be reserved in the facilities

to accommodate the liquid and gas surges, or special equipment with controllers

(such as actuated choke valves) needs to be installed to prevent slugs or to mitigate

the effects of slugs. For these reasons, there is a clear interest from the industry

in numerical tools that are able to accurately simulate two-phase flows in horizon-

tal, inclined, and vertical pipes. Such tools can be very useful in the prediction of

the flow conditions that ultimately lead to flow instabilities. The tools can be used

to design the pipeline and its operations, and they can tell whether prevention or

mitigation measures need to be taken for the liquids management.

1



2 Introduction Chapter 1

1.1 Multiphase flow regimes

The behaviour of the flow of two (or more) immiscible fluids through horizontal

circular pipes can be classified into a number of flow regimes. Common variables

used in this classification are the flow rates of the phases (often represented by

the superficial velocity, which is the ratio of the volumetric flow rate and the cross

section of the pipe). The fraction of one fluid in the total (combined) volumetric

flow rate is referred to as the (volumetric) quality. A simplified classification of the

flow regimes encountered in horizontal pipe flow is shown in figure 1.1.

Figure 1.1: Various multiphase flow regimes in horizontal pipe flows. Source: Najmi et al. [63].

For low flow rates of both fluid phases, the presence of gravity leads to the stratified

flow regime with the lighter phase on top of the heavier phase. As the difference be-

tween the bulk velocities of the fluids increases, waves with growing amplitude start

to form at the planar interface; this phenomenon is known as a Kelvin-Helmholtz

instability of the interface. Eventually, for a sufficiently large velocity difference,

the waves reach the upper cylinder wall, and the heavier fluids starts to completely

occupy the pipe cross section. The local liquid blockage of the pipe leads to the
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so-called plug- and slug flow regimes. If the gas throughput is further increased the

annular dispersed flow regime is found. The gas core carries liquid droplets (giving

dispersed gas/liquid flow) and there is a liquid film along the wall. Due to gravity,

the film along the bottom wall is thicker than along the top wall. If the throughput

of the liquid becomes large (and the gas quantity is low or moderate), the dispersed

bubble flow regime is found. Here liquid forms the continuous phase and it carries

the gas bubbles.

For vertical or inclined pipes, similar flow regimes exist, but the transition bound-

aries are different because gravity now acts at a different angle along the pipe di-

rection. It must be stressed that in practice, besides the superficial velocities, also

the fluid properties (density, viscosity, surface tension) and the pipe diameter and

the wall roughness are factors that influence the selection of the flow regime. For

the pipeline design and operation it is important to know what the flow regime

is, as each flow regime will give a specific pressure drop along the pipeline and a

specific holdup fraction or volume fraction (which is the fraction of the pipe volume

that consists of either liquid or gas). Also the specific dynamics, such as the slug

frequency and the slug length, are of importance.

1.2 Computational multiphase flow modeling

The numerical modeling of multiphase flows is a challenging area within the field

of computational fluid dynamics. For the engineering design of multiphase flow

in pipeline systems, the industry often uses one-dimensional models. This means

that the three-dimensional flow equations are averaged over the pipe cross-sectional

area, leaving a one-dimensional spatial problem, in which the pipe axis is used as

the remaining single coordinate. Here the gas and liquid velocity profiles over the

cross section are represented by the bulk gas velocity and the bulk liquid velocity.

The averaging leads to closure terms, for which correlations are used, such as for the

wall friction, for the interfacial friction, for the gas bubble entrainment in the liquid,

and for the liquid droplet entrainment in the gas. There exist also correlations for

the transition boundaries between the flow regimes. Both steady state and transient

one-dimensional models are used. Some well-known commercial one-dimensional

tools that are used in the industry are OLGA and LedaFlow. The main advantage of

one-dimensional models is that they are computationally fast, but a disadvantage

is that they heavily rely on empirical closure relations. This disadvantage becomes
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particularly important in the prediction of slug flow, as the slug formation and

its characteristics are inherently multi-dimensional. Therefore the present thesis is

focused on the development of two- and three-dimensional CFD models for multi-

phase flow in pipelines.

Building on proven CFD concepts for single phase flows, various specialized multi-

dimensional algorithms exist that, in principle, are also applicable to multiphase

flow, depending on, for example:

• incompressible vs compressible flow.

• laminar vs turbulent flow.

• miscible vs immiscible fluids.

• isothermal vs non-isothermal flows.

• sharp vs diffusive interfaces.

The research described in this thesis is particularly focused on incompressible isother-

mal flow of immiscible fluids. With the aim of simulating the transport of hydro-

carbon fluids, it is important to recognize the impact of these simplifications. For

example, compressibility is important in the transport of gas through long pipe

lines; this is because the decreasing pressure along the pipeline will cause a certain

mass flow rate which experiences a decreased density and therefore and increased

velocity. Thermal effects are also important for long pipelines, due to heat transfer

between the fluids in the pipe and the ambient and due to the gas expansion. How-

ever, the mentioned assumptions simplify the numerical modeling considerably: an

advantage of assuming isothermal conditions, for example, is that there is no need

to solve the additional energy equation, which reduces the computational effort.

Recognizing the limitations of the proposed model, the assumptions mentioned are

considered an acceptable premise as an initial step towards a more complete and

physically accurate algorithm. Furthermore, the assumptions made are a good ap-

proximation for relatively short pipe sections.

The physical scale of the conditions that we want to simulate is large enough to al-

low for a fully sharp representation of the interface between the immiscible fluids.

Proven numerical methods are readily available for the sharp interface treatment.

The Level Set (LS) method [66] and the Volume of Fluid (VoF) method [41] are two

well-known approaches. They belong to a class known as Eulerian front-capturing
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methods, in which the interface is represented similar to a contact discontinuity on a

fixed computational grid that remains stationary in time. Contrary to front-tracking

techniques, the interface is not explicitly reconstructed, but it is implicitly defined

through an indicator function. Once defined at the initialization, the interface is

subsequently advected with the flow field and captured at any later time instant

using specially designed algorithms. A detailed description of both the Level Set-

and VoF method can be found in section 4.2.2. These methods have been applied

very successfully to the simulation of two-phase flows, and experience has shown

both their advantages and disadvantages in practical use. The Level Set method is

relatively simple to implement, computationally efficient and deals with complex

topology changes in a natural way. It is, however, inherently incapable of conserv-

ing the liquid and gas volume over time, as this is not an enforced property of

the method. This implies that the individual phase volumes may change as time

progresses, while the incompressibility of the flow dictates that they should each

remain constant. The VoF method, on the other hand, is volume conservative by

construction, but it lacks an explicit interface, which leads to complicated and com-

putationally expensive interface reconstructions as it only provides information on

the quantity (or volume fraction) in a computational cell but not on its precise lo-

cation in the cell. Although the impact of most of these drawbacks can be reduced

to a certain extent by using advanced techniques, a more recent hybrid approach

combines the Level Set and VoF methods with the aim of benefiting from their ad-

vantages (the straightforward interface representation of the Level Set method and

the conservation property of the VoF method) while minimizing their disadvan-

tages. The general approach in these coupled or dual interface methods is to combine

a flow solver with an interface model that is based on a specifically tuned combi-

nation of the Level Set method and the VoF method. The conceptual differences

are often small, and the discrepancies mostly lie in the details of the interaction

between both methods. Sub-algorithms of the dual interface model may be based

on either the Level Set method or the VoF method depending on preference.

A variety of dual interface methods have been proposed, for example in Bourlioux

[13], Sussman and Puckett [83] (CLSVOF), Van der Pijl et al. [90] (MCLS), Yang

et al. [96] (ACLSVOF) and Sun and Tao [81] (VOSET). In Van der Pijl et al. [90], the

Mass-Conserving Level Set (MCLS) method was introduced as a coupled method

on a uniform Cartesian grid. A key feature of this method is the use of an analytic

function that calculates the VoF value of a computational cell for a given Level Set
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function and its gradient. The MCLS method was shown to be robust and to yield

accurate results when compared to similar methods.

Due to the success of the MCLS method on a Cartesian grid, the core concept of this

method was also used in the present thesis to form the basis for a newly designed

interface algorithm in 3D cylindrical coordinates intended for the simulation of flow

instabilities in circular pipe sections. A detailed description of the developed algo-

rithm can be found in section 3.3.1, and the numerical coupling between the Level

Set method and the VoF method is explained in section 3.3.2 (2D axisymmetric) and

section 4.2.3 (3D cylindrical).

Current multiphase pipe flow simulations with CFD seem to favour the use of un-

structured grids to capture curved walls and pipe bends. Experience, however,

shows that the application of interface capturing methods on such grids is gener-

ally cumbersome, and high resolution interfaces are hard to obtain. In particular,

conservative advection of the interface is notoriously difficult and computationally

demanding compared to advection on structured grids.

When using a structured grid for the simulation of multiphase flow in a pipeline,

one can either think of a Cartesian grid or a grid in cylindrical coordinates. The

Cartesian grid has the large advantage to give a relatively simple (and well known)

discretization of the flow and the interfaces, but introduces some complexity when

trying to capture the curved fixed wall. This requires the use of the Immersed

Boundary Method (IBM) or the ghost cell method. A very fine grid will be required

to capture the boundary layers along the walls. As an alternative, using a cylin-

drical grid can be considered. This has the advantage that it is fitted to the fixed

boundary walls, and it can thus naturally capture the boundary layers along the

walls. Disadvantages are the complexity of deriving a discretization of the flow and

of the interface, and the presence of a singularity in the grid at the centerline of the

pipe. We believe, however, that the use of cylindrical coordinates for multiphase

pipe flow has considerable potential, and deserves further exploration: this will be

the focus of the present thesis.
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1.3 Research objective

The main research objective of the present thesis is to obtain an improved numer-

ical tool that is able to carry out relatively fast, robust, and accurate simulations

of physical, two-phase flow instabilities in straight pipe sections. To that end, a

dedicated numerical two-phase flow algorithm in cylindrical coordinates will be

designed and implemented in Fortran 90. The algorithm is to be used as a numer-

ical test bed in the study of the development of 3D instabilities in pipe flows. The

considered flow examples will be all laminar, but the same methods also need to be

applicable in a later stage to turbulent multiphase flows using either RANS, LES or

DNS. The desire of applicability to turbulent flows places an important condition on

the algorithm, as it has to be sufficiently accurate (at least second order and prefer-

ably extendable to higher orders) and computationally efficient (well scalable). To

accommodate these requirements, the computational domain is restricted to a seg-

ment of a straight cylindrical pipe with a certain inclination. In this way, both the

computational performance and the numerical accuracy can be optimized, albeit

at the cost of less flexibility in choosing the domain. Keeping the geometry fixed

allows the use of a structured orthogonal grid that generally leads to a higher order

of accuracy than non-structured grids. Additionally, fast and efficient solvers are

readily available for structured tessellations.

The literature only contains a very limited number of studies that apply either the

Level Set method or the VoF method to the generalized case of curvilinear coor-

dinates [30, 45, 46]. A plausible reason for the lack of studies using structured

grids is the presence of a singularity in the cylindrical coordinate system. It is well

known that this singularity is a source of numerical problems even in the model-

ing of single-phase flows. Part of the research described in the present thesis was

therefore devoted to analyze, mitigate and possibly solve the problems due to the

coordinate singularity in both the flow field model and in the interface model.

Once a suitable model has been established for the flow and for the interface, verifi-

cation and validation need to be performed. Where possible, verification is done by

using the Method of Manufactured Solutions [74]. The validation is done by using

well known benchmark tests, such as stationary or rising bubbles. Furthermore,

comparisons are made with theoretical predictions if the conditions are such that

these apply.
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1.4 Outline

This thesis consists of three main research parts.

In the first part (described in chapter 2), the emphasis lies on the modeling of the

flow field using the Navier-Stokes equations in cylindrical coordinates. A mimetic

approach is used to rigorously derive the finite difference approximations of the dif-

ferential operators. This approach guarantees that important vector identities hold

at the discrete level as well, thereby intrinsically capturing the behaviour of the con-

tinuous solutions. A second order finite difference discretization for non-uniform

grids is subsequently derived, and the conservation properties are extensively stud-

ied using numerical examples. A consistent treatment of the coordinate singularity

follows naturally and it is thereafter no longer considered a problem.

In the second part (described in chapter 3), the interface algorithm is presented in

the case of rotational symmetry. A detailed description of the algorithm is pro-

vided, and various verification tests are performed to demonstrate the accuracy of

the proposed model. Validation is done by comparison with results from other

software tools (both commercial and open-source), and by using some well-known

multiphase benchmark cases.

The third part (described in chapter 4) contains the numerical study of two-phase

flow instabilities. The numerical issues in the interface transport due to the singu-

larity are analyzed and mitigated, and a solution strategy is proposed. The ability

of the algorithm to capture Kelvin-Helmholtz waves in shear flows is then studied

for both core-annular flow and for stratified flow.



Chapter 2
A fully conservative mimetic discretization of the

Navier-Stokes equations in cylindrical coordinates with

associated singularity treatment

We present a finite difference discretization of the incompressible Navier-Stokes equations

in cylindrical coordinates. This currently appears to be the only scheme available that is

demonstrably capable of conserving mass, momentum and kinetic energy (in the absence of

viscosity) on both uniform and non-uniform grids. Simultaneously, we treat the inherent

discretization issues that arise due to the presence of the coordinate singularity at the polar

axis. We demonstrate the validity of the conservation claims by performing a number of nu-

merical experiments with the proposed scheme, and we show that it is second order accurate

in space using the Method of Manufactured Solutions.

2.1 Introduction

Although it is generally known that the use of cylindrical coordinates in finite

difference methods brings along a number of difficulties, it still appears to be

the preferred method of choice for turbulent flow simulations in pipe sections. This

is likely due to the relative ease with which higher order approximations can be

The content of this chapter is based on the article:

G.T. Oud, D.R. van der Heul, C. Vuik, and R.A.W.M. Henkes. A fully conservative

mimetic discretization of the Navier-Stokes equations in cylindrical coordinates with associ-

ated singularity treatment, Journal of Computational Physics, 325: 314-337, 2016.

9
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implemented, and the growing availability of fast flow solvers that benefit from the

orthogonality of the structured cylindrical grid. However, an inherent problem in

the use of cylindrical coordinates (r, θ, z) is the calculation of variables that lie on

or near the polar axis r = 0. Looking at the cylindrical Navier-Stokes equations:

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ
+

∂uz

∂z
= 0, (2.1)

and:

∂ur

∂t
+

1
r

∂(ru2
r )

∂r
+

1
r

∂(uruθ)

∂θ
+

∂(uruz)

∂z
− u2

θ

r
=

− 1
ρ

∂p
∂r

+
1
ρr

∂(rτrr)

∂r
+

1
ρr

∂τrθ

∂θ
+

1
ρ

∂τrz

∂z
+ gr, (2.2)

∂uθ

∂t
+

1
r

∂(ruruθ)

∂r
+

1
r

∂(u2
θ)

∂θ
+

∂(uθuz)

∂z
+

uruθ

r
=

− 1
ρr

∂p
∂θ

+
1
ρr

∂(rτrθ)

∂r
+

1
ρr

∂τθθ

∂θ
+

1
ρ

∂τθz
∂z

+
τrθ

ρr
+ gθ , (2.3)

∂uz

∂t
+

1
r

∂(ruruz)

∂r
+

1
r

∂(uθuz)

∂θ
+

∂(u2
z)

∂z
=

− 1
ρ

∂p
∂z

+
1
ρ

∂(rτrz)

r∂r
+

1
ρr

∂τθz
∂θ

+
1
ρ

∂τzz

∂z
+ gz, (2.4)

with u = (ur, uθ , uz) the velocity vector, ρ the flow density, g = (gr, gθ , gz) the body

force and τij the viscous stresses, it would indeed appear that the numerous 1/r

terms cause the solution to blow up near the polar axis, but, as shown in Morinishi

et al. [61], the coordinate singularity is only apparent, and taking rigorous limits

shows how the equations actually behave at r = 0. From a numerical modeling

point of view, however, this asymptotic analysis does not provide a clear solution

to the singularity problem. Assuming a staggered (Marker-and-Cell) grid [38], the

straightforward finite difference discretization of the Navier-Stokes equations in

conservative form requires (among others) the radial velocity ur at r = 0. In the

past, this value was usually estimated in some way using neighbouring values. For

example, Eggels [28] applied an arithmetic mean for the estimate of ur(0, θj, zk)

using two opposite values:

ur(0, θj, zk) =
ur(r1, θj, zk)− ur(r1, θj + π, zk)

2
, (2.5)

where the minus sign is necessary because of the orientation (both outwards) of the

velocity vectors. This approach, however, yields a multivalued radial velocity. An
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improved approximation by Fukagata and Kasagi [33] and Griffin et al. [36] leads

to a single-valued radial velocity; this was done by reconstructing the Cartesian

velocity components ux and uy at r = 0 from the neighbouring set of velocities and

by defining ur at r = 0 using the decomposition:

ur(0, θ, z) = ux cos θ + uy sin θ. (2.6)

A different approach by Verzicco and Orlandi [92] avoids the problem entirely by

solving the equations for the quantity rur instead of the velocity ur. For a more

extensive overview of existing methods, see Morinishi et al. [61].

Recently, discretizations with improved conservation properties have obtained a

growing interest as physically reliable modelling of the finest structures in tur-

bulence requires accurate numerical behaviour of the flow energy. In particular,

the construction of numerical schemes that conserve kinetic energy for flows with

vanishing viscosity has become an active field of research. At a discrete level, con-

servation of kinetic energy is an attractive property as it assures an unconditionally

stable (spatial) discretization. For Cartesian domains, this has led to a number of

schemes that conserve both mass, momentum and kinetic energy on uniform and

non-uniform grids, for both low and higher order [60, 91]. For cylindrical grids, not

much progress seems to have been made on these aspects. Fukagata and Kasagi

[33] suggest a highly conserving discretization, but energy is not conserved ex-

actly. Morinishi et al. [61] introduced a new approach where a radial momentum

equation is solved at r = 0 after its derivation using l’Hôpital’s rule. The authors

claim and prove the scheme to be energy conserving in the absence of viscosity for

both uniform and non-uniform grids. After a number of tests, however, we noticed

disturbances near the radial origin in flows with significant velocity through the

origin. Desjardins et al. [23] mention this as well while performing the simulation

of an inviscid Lamb-dipole. Furthermore, using a Taylor expansion of the radial

momentum equation at the origin, they are able to trace down the problem to an

inconsistent discretization, and they ultimately decide to use an averaging method

similar to equation 2.6 for improved accuracy, thereby sacrificing exact energy con-

servation. None of the mentioned singularity treatments above, except for the one

of Morinishi et al. [61], appears to conserve energy as they rely on (arithmetic) av-

eraging in obtaining the radial velocity at r = 0. Hence, the problem of finding an

energy conserving scheme for cylindrical coordinates seems to intrinsically contain

the necessity for a satisfactory treatment of the singularity at r = 0.
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Most of the methods described above use the notion of a computational or logical

Cartesian space and the physical cylindrical space, connected through a Jacobian

mapping, to solve the governing equations. The problems involving a radial veloc-

ity component at the polar axis arise because this mapping is not bijective at the

coordinate r = 0. Nonetheless, many attempts have been made to derive expres-

sions that include (the inverse of) the Jacobian, an approach we believe to likely be

ill-fated. Instead, we propose a discretization of the Navier-Stokes equations us-

ing a mimetic method that is applied on the cylindrical grid (i.e. in physical space

only). Mimetic discretizations [53] are designed to mimic many of the properties

of the analytical operators they approximate. They have shown to be very robust

and accurate, but so far they have been surprisingly rarely used in numerical flow

modelling. Abba and Bonaventura [1] derive a mimetic finite difference discretiza-

tion of the Navier-Stokes equations in Cartesian coordinates, while Barbosa and

Daube [6] consider cylindrical coordinates. The latter authors have essentially laid

the foundations on which we will proceed. They show how the mimetic operators

are derived, albeit for uniform cylindrical grids only. However, their averaging pro-

cedure seems to require velocity- and vorticity components at locations where they

are not defined. It is therefore unlikely that their discretization conserves energy ex-

actly. We will show how to remedy this issue, and then extend the discretization to

grids with non-uniform radial and axial node distributions for increased efficiency

in turbulence simulations. Using the method of Manufactured Solutions, we show

that the resulting discretization is capable of achieving second order accuracy in

space and, with a suitable time integration method, is capable of conserving mass,

momentum and kinetic energy for both uniform and non-uniform cylindrical grids.

To our knowledge, the proposed method is currently the only approach in the liter-

ature that is demonstrated to be fully conservative for cylindrical coordinates. Most

related research in this field appears to be focused on increasing spatial accuracy,

while we believe that a solid singularity treatment, together with improved conser-

vation properties, should be established first before moving on to increasing global

accuracy.

2.2 Construction of the mimetic operators

Whereas traditional finite difference methods generally focus on minimizing the

truncation error, the mimetic finite difference method aims to mimic certain prop-
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erties of the continuous operators at a discrete level. Nonetheless, results often show

that the accuracy and robustness are nearly as good if not better than conventional

discretization techniques. The motivation to use the mimetic method stems from the

observation that many mathematical descriptions of physical processes contain the

vector derivatives gradient, curl and divergence: consider for example Darcy’s law

of porous media flow, Maxwell’s laws of electromagnetism and the Navier-Stokes

equations of fluid flow. The vector derivatives satisfy some well known identities

like curl grad = 0 and div curl = 0 for scalars and vectors, respectively, as well

as a number of decomposition- and integration by parts theorems. The aim of the

mimetic approach is to construct a discrete approximation of the analytical vector

calculus by defining discrete vector spaces, inner products and operators, such that

the aforementioned identities also hold at the discrete level. In that way, a discrete

solution is guaranteed to exhibit many of the underlying properties of the analytical

solution.

The approach we follow is based on the work of Hyman and Shashkov [44] and

Hyman and Shashkov [43], where suitable discrete vector spaces, inner products

and derivatives are derived for orthogonal coordinate systems using the finite dif-

ference method. Most of the derivations for uniform cylindrical coordinates have

already been performed by Barbosa and Daube [6]. We will extend their work by

providing the associated expressions for cylindrical grids with non-uniform radial

and axial node distributions. An essential result of the rigorous derivation of the

mimetic operators is the absence of any problems in the construction of finite dif-

ference approximations around the polar axis that are normally encountered when

trying to discretize expressions at or near r = 0.

We start in section 2.2.1 by defining the discrete vector spaces, depending on the

location of the variables on the MAC grid. Then the metric-independent natural

vector operations are derived in section 2.2.2. These provide a limited set of discrete

mappings between the discrete vector spaces, but without inverse. The inverse

mappings require additional metric data in the form of inner products, which are

defined in section 2.2.3. Finally, the adjoint operators are constructed in section 2.2.4

as the formal adjoints to the natural operators with respect to the associated inner

products.
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2.2.1 Definition of the discrete vector spaces

We start by defining a number of discrete vector spaces based on the location of

the variables in the computational grid. We assume a non-uniform radial and axial

distribution such that ∆r = ∆ri is a function of the radial index i and ∆z = ∆zk is

a function of the axial index k. The angular distribution (identified with index j) is

assumed to be uniform. A location in the computational grid is represented by a

coordinate with multi-index I = (i, j, k) ∈N3 in combination with the stride vectors

er, eθ and ez defined as:

er =

(
1
2

, 0, 0
)

, eθ =

(
0,

1
2

, 0
)

, ez =

(
0, 0,

1
2

)
. (2.7)

The pressure pI is located at the cell centre rI = (ri, θj, zk) with coordinates:

ri =
i

∑
l=1

∆rl −
∆ri
2

, i ∈ {1, . . . , Nr}, (2.8)

θj =

(
j− 1

2

)
∆θ, j ∈ {1, . . . , Nθ}, (2.9)

zk = −
L
2
+

k

∑
l=1

∆zl −
∆zk

2
, k ∈ {1, . . . , Nz}, (2.10)

where L is the length of the cylinder. For evaluation at the radial cell boundaries, we

define ri± 1
2

as ri± 1
2
= ri ± ∆ri

2 . The velocity components urI+er
, uθI+eθ

and uzI+ez
lie

orthogonal to the positive cell faces, and the vorticity components ηI+eθ+ez , ωI+er+ez

and ζ I+er+eθ
lie along the positive cell edges. Figure 2.1 shows the location of

the scalars and vector components in cylindrical coordinates as they are used in

this paper. Note the particular axial vorticity ζ 1
2 ,j,k = ζ̃k located at r = 0 and

independent of angular index j.

For clarity, we use the same notation as in Hyman and Shashkov [44], with calli-

graphic letters for spaces with vectors and plain letters for spaces with scalars. The

following spaces are used:

• The space HS of discrete vector functions with components that are defined

perpendicular to the cell faces at locations rI±er , rI±eθ
and rI±ez in the domain.

The discrete velocity u = (ur, uθ , uz) on a staggered grid belongs to this space.

• The space HL of discrete vector functions with components that are defined

on the cell ribs at locations rI±eθ±ez , rI±er±ez and rI±er±eθ
in the domain. The

discrete vorticity ω = (η, ω, ζ) belongs to this space.
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η1,j+ 1
2 ,k+ 1

2

ω 3
2 ,j,k+ 1

2

ζ 3
2 ,j+ 1

2 ,k

ζ̃k

uθ
1,j+ 1

2 ,k

ur 3
2 ,j,k

uz
1,j,k+ 1

2

p1,j,k

(a) Cells near the axis at (r1, θj , zk).

ηI+eθ+ez

ωI+er+ez

ζ I+er+eθ

urI+er

uθI+eθ

uzI+ez

pI

(b) Cells away from the axis at (ri , θj , zk).

Figure 2.1: Location of the variables in the computational domain.

• The space HC of discrete scalar functions that are defined in the cell centres

at locations rI. The discrete pressure p belongs to this space.

• The space HN of discrete scalar functions that are defined in the cell vertices

at locations rI±er±eθ±ez , rI±er±eθ±ez and rI±er±eθ±ez in the domain. This space

is mentioned for completeness, but it is not used in our approach.

2.2.2 Definition of the natural vector operations

In Hyman and Shashkov [44], expressions are derived for the discrete divergence

D, the discrete gradient G and the discrete curl C. They are defined based on a

discrete approximation of their coordinate-independent definitions, i.e:

∇ ·W := lim
V→0

∮
∂V (W, n)dS

V
, (2.11)

(∇u, n) :=
∂u
∂n

, (2.12)

(n,∇×W) := lim
S→0

∮
l (W, l)dl

S
, (2.13)

for some volume V with boundary ∂V, normal vector n and surface S with bound-

ary l. The divergence operator D is the natural† mapping D : HS → HC. The

gradient operator G is the natural mapping G : HN → HL, while the curl operator

C is the natural mapping C : HL → HS . Combined, the natural operators G, C

†The mappings are considered natural because the location of the variables on the staggered grid
allows straightforward discrete evaluations of their analytical definitions, i.e. Gauss’ theorem (for the
divergence) and Stokes’ theorem (for the curl).
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and D form the sequence:

HN G−→ HL C−→ HS D−→ HC. (2.14)

The construction of the natural operators D and C is shown below (for our pur-

poses, we do not need G). The resulting operators satisfy (among others) the well

known vector identities (for proofs of this, see Hyman and Shashkov [44]):

DC : HL → HC, DC ≡ 0, CG : HN → HS , CG ≡ 0. (2.15)

Notice that the resulting expressions, although derived from mimetic principles, are

in fact often equal to the classical finite difference discretizations of the gradient,

curl and divergence operators in cylindrical coordinates at the computational cell

centres. This shows that a mimetic approach does not necessarily lead to different

discretization results, but it does provide additional insight and motivation.

The divergence operator D : HS → HC The natural divergence operator D :

HS → HC follows from the coordinate-independent formulation of Gauss’ diver-

gence theorem:

∇ ·W := lim
V→0

1
V

∮

∂V
(W, n)dS, (2.16)

where n is the unit outward normal to the boundary ∂V and W : Rn → Rn is

a differentiable vector field. For a cylindrical cell away from the axis r = 0, the

discrete approximation Du to equation 2.16 becomes:

(Du)I =
1

ri∆ri∆θ∆zk

[
∆θ∆zk(ri+ 1

2
urI+er

− ri− 1
2
urI−er

) + ∆ri∆zk(uθI+eθ
− uθI−eθ

)

+ ri∆ri∆θ(uzI+ez
− uzI−ez

)
]

(2.17)

=
ri+ 1

2
urI+er

− ri− 1
2
urI−er

ri∆ri
+

uθI+eθ
− uθI−eθ

ri∆θ
+

uzI+ez
− uzI−ez

∆zk
, (2.18)

for some discrete vector u = (ur, uθ , uz) ∈ HS . Notice that this result corresponds

with the classical finite difference approximation of the cylindrical divergence:

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ
+

∂uz

∂z
. (2.19)

For cells at the polar axis with i = 1 where r 1
2
= 0, the discrete operator reduces
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without issues to:

(Du)I,i=1 =
2urI+er

∆ri
+

2
(

uθI+eθ
− uθI−eθ

)

∆ri∆θ
+

uzI+ez
− uzI−ez

∆zk
, (2.20)

where on the right-hand side the i-component in the multi-index I is equal to 1.

The curl operator C : HL → HS The natural curl operator C : HL → HS follows

from the coordinate-independent formulation of Stokes’ circulation theorem:

(n,∇×W) := lim
S→0

1
S

∮

l
(W, l)dl, (2.21)

where S is the surface enclosed by the closed curve l, n is the unit outward normal

to S, l is the unit tangential vector to l and W : Rn → Rn is a differentiable vector

field. Let ω = (η, ω, ζ) be a discrete vector in HL with its components located as

shown in figure 2.1. Then for the radial component (Cω)r, the curve l around the

surface S is defined as the boundary of the gray plane in figure 2.2 for both types

of cells.

ζ 3
2 ,j+ 1

2 ,k

ζ 3
2 ,j− 1

2 ,k

ω 3
2 ,j,k+ 1

2

ω 3
2 ,j,k− 1

2

(Cω)r 3
2 ,j,k

(a) Radial component at the axis.

ζI+er+eθ

ζI+er−eθ

ωI+er+ez

ωI+er−ez

(Cω)rI+er

(b) Radial component away from the axis.

Figure 2.2: Surface for the determination of the radial component of the curl operator C : HL → HS .

The radial component of Cω is then approximated as:

(Cω)rI+er
=

1
ri+ 1

2
∆θ∆zk

[
ri+ 1

2
∆θ(−ωI+er+ez + ωI+er−ez)

+ ∆zk(ζI+er+eθ
− ζI+er−eθ

)
]

(2.22)

=
ζI+er+eθ

− ζI+er−eθ

ri+ 1
2
∆θ

− ωI+er+ez −ωI+er−ez

∆zk
. (2.23)

For the angular component (Cω)θ , the curve l around the surface S is defined as

the boundary of the gray plane in figure 2.3.



18 Discretization of Navier Stokes in cylindrical coordinates Chapter 2

η1,j+ 1
2 ,k+ 1

2

η1,j+ 1
2 ,k− 1

2

ζ 3
2 ,j+ 1

2 ,k

ζ̃k

(Cω)θ
1,j+ 1

2 ,k

(a) Angular component at the axis.

ζI+er+eθ

ζI−er+eθ

ηI+eθ+ez

ηI+eθ−ez

(Cω)θI+eθ

(b) Angular component away from the axis.

Figure 2.3: Surface for the determination of the angular component of the curl operator C : HL → HS .

The angular component is then approximated as:

(Cω)θI+eθ
=

1
∆ri∆zk

[
∆ri(ηI+eθ+ez − ηI+eθ−ez)

+ ∆zk(−ζI+er+eθ
+ ζI−er+eθ

)
]

(2.24)

=
ηI+eθ+ez − ηI+eθ−ez

∆zk
− ζI+er+eθ

− ζI−er+eθ

∆ri
. (2.25)

Finally, for the axial component (Cω)z, the curve l around the surface S is defined

as the boundary of the gray plane shown in figure 2.4.

ω 3
2 ,j,k+ 1

2
η1,j+ 1

2 ,k+ 1
2

η1,j− 1
2 ,k+ 1

2

(Cω)z
1,j,k+ 1

2

(a) Axial component at the axis.

ωI−er+ez

ωI+er+ez

ηI+eθ+ez

ηI−eθ+ez

(Cω)zI+ez

(b) Axial component away from the axis.

Figure 2.4: Surface for the determination of the axial component of the curl operator C : HL → HS .

The axial component is approximated as:

(Cω)zI+ez
=

1
ri∆ri∆θ

[
∆ri(−ηI+eθ+ez + ηI−eθ+ez)

+ ∆θ(ri+ 1
2
ωI+er+ez − ri− 1

2
ωI−er+ez)

]
(2.26)

=
1
ri

[ ri+ 1
2
ωI+er+ez − ri− 1

2
ωI−er+ez

∆ri
− ηI+eθ+ez − ηI−eθ+ez

∆θ

]
. (2.27)
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Notice that the non-existence of the angular vorticity element ω for axis cells where

i = 1 is naturally resolved by the multiplication with r 1
2
= 0. Hence, for axis cells,

the expression reduces to:

(Cω)zI,i=1 =
2ωI+er+ez

∆ri
− 2

(
ηI+eθ+ez − ηI−eθ−ez

)

∆ri∆θ
, (2.28)

where on the right-hand side the i-component of the multi-index I is equal to 1.

2.2.3 Definition of the discrete inner products

To derive the adjoint operators, we need the notion of inner products on the dis-

crete vector spaces. These are defined as approximations of the continuous L2-inner

product, using either the (second order accurate) Midpoint- or Trapezoidal integra-

tion rule.

An inner product on HC For the space HC, the inner product (·, ·)HC : HC ×
HC → R is defined as:

(u, v)HC := ∑
I

uIvIri∆ri∆θ∆zk, (2.29)

where u and v are two discrete scalar functions defined in the cell centres.

An inner product on HS For the space HS , the inner product (·, ·)HS : HS ×
HS → R is defined as:

(u, v)HS := ∑
I

∆ri∆θ∆zk
2

[
ri− 1

2
uI−er vI−er + ri+ 1

2
uI+er vI+er

+ ri(uI−eθ
vI−eθ

+ uI+eθ
vI+eθ

)

+ ri(uI−ez vI−ez + uI+ez vI+ez)
]
. (2.30)

An inner product on HL The inner product (·, ·)HL : HL × HL → R of two

vectors ω = (η, ω, ζ) and ω̄ = (η̄, ω̄, ζ̄) in HL is given by:

(ω, ω̄)HL := ∑
I,i 6=1

∆ri∆θ∆zk
2

·
[

ri
ηI−eθ−ez η̄I−eθ−ez + ηI+eθ−ez η̄I+eθ−ez

2

+ ri
ηI−eθ+ez η̄I−eθ+ez + ηI+eθ+ez η̄I+eθ+ez

2
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+ ri− 1
2

ωI−er−ez ω̄I−er−ez + ωI−er+ez ω̄I−er+ez

2

+ ri+ 1
2

ωI+er−ez ω̄I+er−ez + ωI+er+ez ω̄I+er+ez

2

+

(
ri−1 + ri

2

)(
ζI−er−eθ

ζ̄I−er−eθ
+ ζI−er+eθ

ζ̄I−er+eθ

2

)

+

(
ri + ri+1

2

)(
ζI+er−eθ

ζ̄I+er−eθ
+ ζI+er+eθ

ζ̄I+er+eθ

2

)]

+ ∑
I,i=1

∆ri∆θ∆zk
2

·
[

ri
ηI−eθ−ez η̄I−eθ−ez + ηI+eθ−ez η̄I+eθ−ez

2

+ ri
ηI−eθ+ez η̄I−eθ+ez + ηI+eθ+ez η̄I+eθ+ez

2

+ ri+ 1
2

ωI+er−ez ω̄I+er−ez + ωI+er+ez ω̄I+er+ez

2
(2.31)

+
ri
2

ζ̃k
˜̄ζk +

(
ri + ri+1

2

)(
ζI+er−eθ

ζ̄I+er−eθ
+ ζI+er+eθ

ζ̄I+er+eθ

2

)]
.

Notice that for i = 1, the degeneracy of the cell has been taken into account: for the

angular components ω and ω̄, this follows naturally by multiplication with r 1
2
= 0.

For the axial components ζ and ζ̄, the expression is altered to accommodate the col-

lapse of the cell face at r = 0. It can be verified that all three discrete inner products

satisfy the required symmetry, linearity and positive-definiteness properties.

2.2.4 Definition of the adjoint vector operations

The discrete operators derived in section 2.2.2 only allow the trivial successive ap-

plications CG and DC, which are identically zero. Second order operators like DG

of a scalar and CC of a vector are not possible because the range does not equal

the domain of the consecutive first order operators. To overcome this, the adjoint

operators D, G and C are derived using the Support Operator Method [78]. By

choosing a prime (natural) operator, the associated derived (adjoint) operator follows

from the discrete inner product in combination with the identities:

D = −G∗, C = C∗, (2.32)

where the ∗ denotes the adjoint with respect to the associated inner product. More

specifically, starting with the natural operator D : HS → HC, the operator G :
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HC → HS is defined through:

(Du, v)HC = −
(
u, Gv

)
HS , (2.33)

for any u ∈ HS and v ∈ HC. In a similar way, expressions can be derived for the

derived divergence operator D : HL → HN and a derived curl operator C : HS →
HL through:

(Gu, v)HL = −
(
u, Dv

)
HN , u ∈ HN, v ∈ HL, (2.34)

(Cu, v)HS =
(
u, Cv

)
HL , u ∈ HL, v ∈ HS . (2.35)

With both natural and adjoint discrete operators, it is now possible to discretize

combinations like:

DG : HC → HC, DG : HN → HN, (2.36)

CC : HS → HS , CC : HL → HL, (2.37)

GD : HL → HL, GD : HS → HS , (2.38)

and even the vector Laplacian. It is shown in Hyman and Shashkov [43] that the dis-

crete operators satisfy several additional important theorems from vector calculus.

Just like the natural operators, the adjoint operators G, C and D form a sequence

(but in reversed direction):

HC G−→ HS C−→ HL D−→ HN. (2.39)

We will now construct the adjoint operators G and C for cylindrical grids with a

non-uniform radial and axial distribution (we do not require D). In addition, we

will prove that the constructed adjoint operators are indeed the formal adjoints of

the associated natural operators with respect to their inner products.

The gradient operator G : HC → HS The components of the gradient operator

G : HC → HS are defined as:

(
Gp
)

rI+er
=

2(pI+2 er − pI)

∆ri + ∆ri+1
, (2.40)

(
Gp
)

θI+eθ
=

pI+2 eθ
− pI

ri∆θ
, (2.41)

(
Gp
)

zI+ez
=

2(pI+2 ez − pI)

∆zk + ∆zk+1
, (2.42)
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for some scalar p ∈ HC.

Proposition 2.2.1. For any p ∈ HC and u ∈ HS on an infinite domain, it holds that

(Du, p)HC = −(u, Gp)HS .

Proof. See appendix A.

On finite domains, the boundary conditions on HC and HS need to be chosen con-

sistently in order for expression 2.33 to hold exactly. We assume a finite cylindrical

domain of radius R and length L with an associated grid that includes a single

layer of ghost cells at both the radial and axial walls. The inner product (Du, p)HC

contains only internal values of p, while the discrete gradient in (u, Gp)HS also

includes values of p in the layer of ghost cells. Consider now a computational cell

that shares a face with the cylinder boundary. The contribution of the adjacent

ghost cell to (u, Gp)HS can be removed by actively setting the discrete gradient of p

at the boundary to zero. But for consistency in the product (Du, p)HC, the value of

the component of u normal to the boundary then has to be set to zero (compare the

contributions in equations A.2 and A.3). This combination of Neumann and Dirich-

let boundary conditions for the pressure p and the flow velocity u, respectively, are

the well known expressions for the simulation of a solid wall without penetration.

A second case involves periodic wall conditions. For simplicity, we assume that the

axial boundaries at z = ±L/2 are periodic, so that the layers of ghost cells at these

walls coincide with the first and last slices of the internal cells of the grid. With

minor adjustments, the same strategy as the proof for an infinite domain can be

used to demonstrate that in this case the inner products are also equal. Hence, on

finite domains, proposition 2.2.1 is in particular valid for the common situation of

cylindrical pipe flows with solid or periodic walls.

The curl operator C : HS → HL The adjoint curl operator C is derived according

to equation 2.21 in a similar way as the natural curl operator C. It will be shown

that the resulting expressions for the components of C are indeed the adjoints of

the associated components of C with respect to the discrete inner product (·, ·)HL.

Throughout the derivation, let u = (ur, uθ , uz) be a discrete vector in HS . Then for

the radial component of the adjoint curl operator (Cu)r, the surface S is defined as

the gray plane in figure 2.5.
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(Cu)rI+eθ+ez

uzI+ez

uzI+2 eθ+ez

uθI+eθ

uθI+eθ+2 ez

Figure 2.5: Surface for the determination of the radial component of the curl operator C : HS → HL.

The component of the discrete curl operator C in the radial direction then follows

as:

(Cu)rI+eθ+ez
=

2
ri∆θ(∆zk + ∆zk+1)

[
∆zk + ∆zk+1

2
(uzI+2 eθ+ez

− uzI+ez
)

+ ri∆θ(−uθI+eθ+2 ez
+ uθI+eθ

)

]
(2.43)

=
uzI+2 eθ+ez

− uzI+ez

ri∆θ
−

2(uθI+eθ+2 ez
− uθI+eθ

)

∆zk + ∆zk+1
. (2.44)

For the angular component, the surface is defined as in figure 2.6.

(Cu)θI+er+ez

uzI+ez

uzI+2 er+ez

urI+er

urI+er+2 ez

Figure 2.6: Surface for the determination of the angular component of the curl operator C : HS → HL.

The component of the discrete curl operator (Cu)θ in the angular direction is:

(Cu)θI+er+ez
=

4
(∆ri + ∆ri+1)(∆zk + ∆zk+1)

[
∆zk + ∆zk+1

2
· (2.45)
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(
uzI+ez

− uzI+2 er+ez

)
+

∆ri + ∆ri+1

2
(
urI+er+2 ez

− urI+er

)
]

=
2(urI+er+2 ez

− urI+er
)

∆zk + ∆zk+1
− 2(uzI+2 er+ez

− uzI+ez
)

∆ri + ∆ri+1
. (2.46)

For the axial component for cells away from the axis, the surface is defined as in

figure 2.7.

(Cu)zI+er+eθ

urI+er

urI+er+2 eθ

uθI+eθ

uθI+2 er+eθ

Figure 2.7: Surface for the determination of the axial component of the curl operator C : HS → HL.

In this case, the component of the discrete curl operator (Cu)z in the axial direction

is:

(Cu)zI+er+eθ
=

4
(ri + ri+1)(∆ri + ∆ri+1)∆θ

[
∆ri + ∆ri+1

2
· (2.47)

(
urI+er

− urI+er+2 eθ

)
+ ∆θ

(
ri+1uθI+2 er+eθ

− riuθI+eθ

) ]

=
2

ri + ri+1

[
2
(

ri+1uθI+2 er+eθ
− riuθI+eθ

)

∆ri + ∆ri+1
−

urI+er+2 eθ
− urI+er

∆θ

]
. (2.48)

For the cells near the axis, the surface S is defined as in figure 2.8.

For these cells, the component of the discrete curl operator C in the axial direction

is:

(Cu)zk =
8

Nθ∆r2
1∆θ

Nθ

∑
j=1

∆r1

2
∆θuθ

1,j+ 1
2 ,k

=
4

∆r1

1
Nθ

Nθ

∑
j=1

uθ
1,j+ 1

2 ,k
. (2.49)

Proposition 2.2.2. For any ω ∈ HL and u ∈ HS on an infinite domain, it holds that

(Cω, u)HS = (ω, Cu)HL.

Proof. See appendix A.
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(Cu)zk
uθI+eθ

Figure 2.8: Surface for the determination of the axial component of the curl operator C : HS → HL.

For finite domains, some care has to be taken for the two inner products to be equal.

Reviewing the proof in appendix A shows that we only have to consider the cells

that share a face with the boundary. We assume a finite discretized cylindrical do-

main of radius R and length L. Arguably the simplest case is when the discrete

components of ω are zero at the boundaries. After inspection of the expressions

in appendix A, this renders the contribution from the cell face at the boundary to

both products (ω, Cu)HL and (Cu, ω)HS equal to zero. Subsequently, both inner

products only contain the summation of internal values and they are exactly equal.

If the components of ω are not zero at the wall, then the proof can be used to derive

the values for the components of u in the surrounding layer of ghost cells. Consider

a boundary cell with its positive face at r = R which contains two components of

ω, namely ω and ζ, and one component of u, namely ur, as in figure 2.9a.

ζI+er+eθ

ζI+er−eθ

ωI+er+ez

ωI+er−ez

(a) Cell near r = R.

ωI−er+ez

ωI+er+ez

ηI+eθ+ez

ηI−eθ+ez

(b) Cell near z = L/2.

Figure 2.9: Cells near r = R and z = L/2 showing the vorticity components that lie on the (hatched) domain boundaries.

From equations A.10 and A.12, the contributions to the angular component ωI+er+ez

come from cells I and I + 2 ez alone (since we only sum over internal cells), and

together they provide a condition for the value of uzI+2 er+ez
in the ghost cell layer
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by solving:

ri+ 1
2
∆θ

2
(∆zk + ∆zk+1) uzI+ez

=−
ri+ 1

2
∆ri∆θ

4
(∆zk + ∆zk+1)

2(uzI+2 er+ez
− uzI+ez

)

∆ri + ∆ri+1
, (2.50)

which yields:

uzI+2 er+ez
= −∆ri+1

∆ri
uzI+ez

, i = Nr. (2.51)

Similarly, from equations A.14 and A.16, we obtain that the only contributions to

the axial component ζI+er+eθ
come from cells I and I + 2 eθ . Equating yields for the

angular velocity uθI+2 er+eθ
in the ghost cell layer:

uθI+2 er+eθ
= − ri

ri+1

∆ri+1

∆ri
uθI+eθ

, i = Nr. (2.52)

The same can be done for the boundaries at z = ±L/2 of the cylindrical grid. There

we have the components η and ω of ω (see figure 2.9b). Collecting terms yields for

the velocities in the lower ghost value layer:

urI+er−2 ez
= −∆zk−1

∆zk
urI+er

, uθI+eθ−2 ez
= −∆zk−1

∆zk
uθI+eθ

, k = 1, (2.53)

and for the velocities in the upper ghost value layer:

urI+er+2 ez
= −∆zk+1

∆zk
urI+er

, uθI+eθ+2 ez
= −∆zk+1

∆zk
uθI+eθ

, k = Nz. (2.54)

Hence, equality of the inner products can be attained by either choosing the compo-

nents of the vector ω in HL to be zero, or, for non-zero components of ω, choosing

the boundary values of the vector u according to expressions 2.51 - 2.54. In section

2.4.2, we will show that when ω = ω(u), these conditions have an actual physical

meaning: they represent the free-slip (or stress-free) and no-slip boundary condi-

tions for the flow velocity, respectively.

2.3 Mimetic discretization of the flow equations

In this section, we will apply the mimetic discretization techniques from section 2.2

to generate a finite difference discretization of the incompressible Navier- Stokes

equations. We will propose spatial discretizations for the convective part and the
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viscous part in the next sections. The discretization of the pressure gradient ∇p

follows rather trivially: because the pressure is an element of the space HC, the

approximation of its gradient is Gp, with G : HC → HS the adjoint gradient

operator as in equations 2.40-2.42.

2.3.1 Discretization of the convective term

The convective term of the vector momentum equations (u · ∇)u is a second order

tensor, and it does not allow direct application of the mimetic operators derived in

section 2.2. Instead, it can be rewritten as:

(u · ∇)u = (∇× u)× u +
1
2
∇(u · u), (2.55)

occasionally referred to as the rotational formulation, where the right-hand side

only consists of first order operators. The term 1
2∇(u · u) is added to the pressure

gradient, which leaves the term N(u) := (∇ × u) × u = ω × u, where ω is the

flow vorticity, as the remaining convection part. With the vorticity in cylindrical

coordinates given by:

∇× u =




η

ω

ζ


 =




1
r

∂uz
∂θ −

∂uθ
∂z

∂ur
∂z − ∂uz

∂r
1
r

∂(ruθ)
∂r − 1

r
∂ur
∂θ


 , (2.56)

the convective part N becomes:

N(u) =




ωuz − ζuθ

ζur − ηuz

ηuθ −ωur


 . (2.57)

The discretization of N requires the approximation of the vorticity components and

subsequently an averaging procedure of the velocity components, as velocity and

vorticity are members of different discrete spaces (HS andHL, respectively). As the

velocity vector in the staggered grid is an element of HS , we notice that ω = ∇× u

is discretely approximated by Cu, where C is the adjoint curl operator C : HS →
HL. Then, with the vorticity components known, the discrete approximation of

equation 2.57 requires spatial averaging to obtain an estimate at the location of

the velocity components. The choice of averaging is restricted by the following

considerations:
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• The averaging should be sufficiently accurate.

• The averaging should be consistent for the cells near the polar axis.

• The averaging should allow conservation of momentum when subjected to

discrete integration.

• The averaging should allow conservation of energy in combination with a

discrete inner product.

With this in mind, we propose the following discretization for the radial convective

part:

NrI+er
=

1
2(∆ri + ∆ri+1)

[
ωI+er−ez

(
∆riuzI−ez

+ ∆ri+1uzI+2 er−ez

)

+ ωI+er+ez

(
∆riuzI+ez

+ ∆ri+1uzI+2 er+ez

)
]

− 1
4

ri + ri+1

2

[
ζI+er−eθ

(uθI−eθ

ri
+

uθI+2 er−eθ

ri+1

)

+ ζI+er+eθ

(uθI+eθ

ri
+

uθI+2 er+eθ

ri+1

)]
. (2.58)

For the angular convective part:

NθI+eθ
=

1
2r2

i ∆ri

(
ri− 1

2

ri−1 + ri
2

∆ri−1 + ∆ri
2

ζI−er+eθ

urI−er
+ urI−er+2 eθ

2

+ ri+ 1
2

ri + ri+1

2
∆ri + ∆ri+1

2
ζI+er+eθ

urI+er
+ urI+er+2 eθ

2

)

− 1
2

(
ηI+eθ−ez

uzI−ez
+ uzI+2 eθ−ez

2

+ ηI+eθ+ez

uzI+ez
+ uzI+2 eθ+ez

2

)
. (2.59)

Finally, for the axial convective part:

NzI+ez
=

1
2

(
ηI−eθ+ez

∆zkuθI−eθ
+ ∆zk+1uθI−eθ+2 ez

∆zk + ∆zk+1

+ ηI+eθ+ez

∆zkuθI+eθ
+ ∆zk+1uθI+eθ+2 ez

∆zk + ∆zk+1

)
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− 1
2ri

(
ri− 1

2
ωI−er+ez

∆zkurI−er
+ ∆zk+1urI−er+2 ez

∆zk + ∆zk+1

+ri+ 1
2
ωI+er+ez

∆zkurI+er
+ ∆zk+1urI+er+2 ez

∆zk + ∆zk+1

)
. (2.60)

In section 2.4 we will show that this choice of discretization leads to conservation of

momentum as well as to conservation of kinetic energy in the absence of viscosity.

In section 2.5 we will investigate its accuracy.

For comparison with the discretization suggested by Barbosa and Daube [6], the

expressions 2.58 - 2.60 for uniform grids reduce to:

NrI+er
=

1
2

(
ωI+er−ez

uzI−ez
+ uzI+2 er−ez

2
+ ωI+er+ez

uzI+ez
+ uzI+2 er+ez

2

)

−
ri+ 1

2

4

[
ζI+er−eθ

(uθI−eθ

ri
+

uθI+2 er−eθ

ri+1

)

+ ζI+er+eθ

(uθI+eθ

ri
+

uθI+2 er+eθ

ri+1

)]
, (2.61)

NθI+eθ
=

1
2r2

i

(
r2

i− 1
2
ζI−er+er

urI−er
+ urI−er+2 eθ

2

+ r2
i+ 1

2
ζI+er+eθ

urI+er
+ urI+er+2 eθ

2

)

− 1
2

(
ηI+eθ−ez

uzI−ez
+ uzI+2 eθ−ez

2

+ηI+eθ+ez

uzI+ez
+ uzI+2 eθ+ez

2

)
, (2.62)

NzI+ez
=

1
2

(
ηI−eθ+ez

uθI−eθ
+ uθI−eθ+2 ez

2
+ ηI+eθ+ez

uθI+eθ
+ uθI+eθ+2 ez

2

)

− 1
2ri

(
ri− 1

2
ωI−er+ez

urI−er
+ urI−er+2 ez

2

+ri+ 1
2
ωI+er+ez

urI+er
+ urI+er+2 ez

2

)
. (2.63)

Although there are global similarities, our radial averaging is quite different. The

discretization of Barbosa and Daube [6] seems to require the radial velocity ur at

r = 0 for Nθ
1,j+ 1

2 ,k
and the angular vorticity component ω at r = 0 for Nz

1,j,k+ 1
2

, both

of which are not defined there. In our discretization, these evaluations at r = 0

are resolved using weighted averaging that results in multiplication with the radial
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coordinate r. Hence, at r = 0, any finite value can be assigned to these components

as the resulting product always yields zero.

To demonstrate the improvement of the proposed scheme over the scheme of Bar-

bosa and Daube [6], and in particular to emphasize the effect of the different ap-

proaches near the origin, two co-rotating vortices of unit circulation are simulated

on a disc of radius R = 8 m. Their initial radial- and angular locations are ( 1
2 , π/10)

and ( 1
2 , 11π/10) respectively. The grid is uniform in all directions for the compari-

son with 512 and 288 cells in radial- and angular direction respectively. The vortices

are monitored and figure 2.10 shows their evolution in time for both discretizations

in the vicinity of the origin. The results in the left column clearly show the de-

velopment of a small disturbance around the coordinate origin, while in the right

column the contour lines remain smooth. This would suggest that the proposed

method leads to more stable and accurate results near the origin.

2.3.2 Discretization of the viscous term

For constant viscosity flows, the viscous part of the Navier-Stokes equations consists

of the vector Laplacian ν∆u = ν∇2u, where ν is the kinematic viscosity ν = µ/ρ.

Since the vector Laplacian is a second order operator (divergence of a matrix), the

term is rewritten using the identity:

∆u = ∇(∇ · u)−∇×∇× u, (2.64)

which is a mere combination of first order operators. We make the assumption

that the first term on the right-hand side of equation 2.64 can either be neglected

in the discretization due to the fact that ∇ · u = 0 is discretely enforced locally in

every computational cell, or it can be added to the pressure term. This results in

the approximation for the viscous part V as:

V(u) = −ν(∇×∇× u) = −ν(∇×ω), (2.65)

where ω is the flow vorticity as defined in equation 2.56. The discrete approx-

imation of V is CCu, where the discrete curl operators C : HS → HL and

C : HL → HS are used. No averaging is required, and the derivation of both

operators in section 2.2 guarantees that no issues arise for the cells near the polar

axis.
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Figure 2.10: Evolution (from top to bottom) of the vorticity contours of two co-rotating vortices. The left column
displays the results from the discretization of the non-linear terms as in Barbosa and Daube [6], while the right column
displays the results from the proposed discretizations 2.58 - 2.60. Simulation performed by O. Daube.
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2.3.3 Temporal discretization

The semi-discrete momentum equations and the continuity equation:

du
dt

= N(u)− 1
ρ

Gp− νCCu, Du = 0, u ∈ HS , p ∈ HC, (2.66)

are discretized in time using the Implicit Midpoint method:

u(n+1) − u(n)

∆t
= N

(
u(n+ 1

2 )
)
− 1

ρ
Gp(n+

1
2 ) − νCCu(n+ 1

2 ), Du(n+ 1
2 ) = 0, (2.67)

where u(n+ 1
2 ) = 1

2

(
u(n) + u(n+1)

)
. Both the momentum- and continuity equations

are solved in a coupled way to obtain the solution vector
(

u(n), p(n)
)

using an

iterative Krylov method. In particular, we iterate to obtain the solution of the non-

linear equations. The Implicit Midpoint method used is second order accurate in

time and unconditionally stable (even for vanishing viscosity), which is desirable as

the CFL condition becomes very stringent near r = 0 if explicit methods were to be

used. Additionally, if the non-linear coupled equations 2.67 are solved to machine

precision, the method is capable of conserving kinetic energy. We will elaborate on

the latter in section 2.4.3.

2.4 Conservation properties of the discretization

2.4.1 Conservation of mass

The conservation of mass is represented by the discrete continuity equation Du = 0.

Since the discrete system is solved in a coupled way, mass conservation is deter-

mined by the accuracy of the solution of 2.67. As iterative methods are often used

for this purpose, in practice this implies that the conservation of mass depends on

the applied stop criterion of the iterative linear solver.

2.4.2 Conservation of momentum

Conservation of radial, angular and axial momentum requires the discrete evalua-

tion of:
d
dt

∫

V
ur dV,

d
dt

∫

V
ruθ dV,

d
dt

∫

V
uz dV, (2.68)

respectively, with V denoting the entire finite cylindrical domain. Proving discrete
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conservation of momentum has turned out to be complex due to two main reasons.

In the first place, looking at the momentum equations 2.2-2.4, it is clear that the

radial and angular momentum equations cannot be trivially written in a conser-

vative formulation, with the time derivative governed solely by flux terms, due to

the presence of additional terms that stem from the differentiation of the cylindri-

cal covariant basis vectors which are not constant in space. There exist techniques

to rewrite the momentum equations in conservative form (see Vinokur [93]), but

they appear to be difficult to integrate into our mimetic approach. A conservative

formulation of the governing equations is desirable because it often allows a dis-

crete approximation of a similar form, which in turn leads to discrete conservation

almost naturally with only the boundary values contributing. Without conserva-

tive formulation, it can be very difficult in practice to obtain conservation numer-

ically, let alone to prove this. The axial momentum equation 2.4, which governs

the axial component of the linear momentum, fortunately is in conservative form.

Furthermore, multiplication of the angular momentum equation 2.3 with the radial

coordinate r yields the conservative formulation for the quantity ruθ :

∂(ruθ)

∂t
+

1
r

∂(r2uruθ)

∂r
+

1
r

∂(ru2
θ)

∂θ
+

∂(ruθuz)

∂z
=

− 1
ρr

∂(rp)
∂θ

+
1
ρr

∂(r2τrθ)

∂r
+

1
ρr

∂(rτθθ)

∂θ
+

1
ρ

(r∂τθz)

∂z
, (2.69)

which governs the evolution of the axial component of the angular momentum vec-

tor, which is a conserved quantity in the absence of any external torque applied to

the z-axis. For the radial momentum equation, unfortunately, no procedure seems

to exist that converts expression 2.2 into a conservative formulation. Nonetheless,

we will demonstrate by numerical verification that our proposed discretization is

capable of conserving radial, angular and axial momentum.

A second difficulty in our approach lies in the rotational formulation of the con-

vective terms. This choice of formulation makes conservation of momentum much

less obvious due to the fact that part of the convection is absorbed into an updated

pressure variable p̃, which becomes p̃ = p + 1
2 ρu · u. Analytically it holds that:

ω× u = ∇ · (uu)− u∇ · u−∇
(

1
2

u · u
)

, (2.70)

where the first term on the right hand side is the conservative formulation and the

second term involves the flow divergence (which hence vanishes). The third term
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needs to be balanced by the new pressure p̃, but since this is done implicitly (p̃

is only defined in cell centres), it is impossible to do a term-by-term comparison

and therefore to rigorously demonstrate momentum conservation. Equation 2.70,

however, shows the dependence of the equality on the flow divergence, and this

dependence is observed numerically as well.

For the discrete approximation of the quantities in expression 2.68, the Trapezoidal

rule is used for the spatial integration. This yields the discrete quantities Mr, Mθ

and Mz at time t(n) defined as:

M(n)
r =

∫

V
u(n)

r dV ≈∑
I

∆ri∆θ∆zk
2

(
ri− 1

2
u(n)

rI−er
+ ri+ 1

2
u(n)

rI+er

)
, (2.71)

M(n)
θ =

∫

V
ru(n)

θ dV ≈∑
I

r2
i ∆ri∆θ∆zk

2

(
u(n)

θI−eθ
+ u(n)

θI+eθ

)
, (2.72)

M(n)
z =

∫

V
u(n)

z dV ≈∑
I

ri∆ri∆θ∆zk
2

(
u(n)

zI−ez
+ u(n)

zI+ez

)
. (2.73)

We monitor the values of Mr, Mθ and Mz at every time step, and discrete conserva-

tion implies that M(n)
α = M(0)

α for any value of α ∈ {r, θ, z}.

Some attention is required at the boundaries. For our purposes, we will only con-

sider no-slip and free-slip (or stress-free) boundaries. The no-penetration condition

u · n = 0, where n is the unit normal to the wall, guarantees that the convective

parts of the momentum equations do not contribute to any change in momentum.

The contribution of the viscous part, which requires boundary conditions for the

surrounding layer of ghost cells, is determined by the value of the vorticity at the

walls, since: ∫

V
(∇×ω)dV =

∮

∂V
(n×ω)dS, (2.74)

where n is the unit normal to the wall. For free-slip walls, we can enforce the right-

hand side of equation 2.74 to vanish by choosing the discrete velocity boundary

conditions in such a way that the resulting vorticity components at the wall are

zero. This implies that at the wall r = R both the angular and axial components ω

and ζ of the discrete vorticity Cu become zero. From equations 2.46 and 2.48, the

boundary conditions for the angular and axial velocities then follow as:

uθI+2 er+eθ
=

ri
ri+1

uθI+eθ
and uzI+2 er+ez

= uzI+ez
, i = Nr. (2.75)
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Notice that during this derivation, the radial velocity ur is considered to be zero

due to the no-penetration condition. At the walls z = ±L/2, the boundary values

for the radial and angular velocities follow from equations 2.44 and 2.46:

urI+er−2 ez
= urI+er

and uθI+eθ−2 ez
= uθI+eθ

, k = 1, (2.76)

urI+er+2 ez
= urI+er

and uθI+eθ+2 ez
= uθI+eθ

, k = Nz. (2.77)

In this case, the axial velocity uz is considered to be zero. Combined, equations

2.75-2.77 form the free-slip boundary conditions for the velocity, and they follow

rather naturally from the construction of the discrete vorticity. Furthermore, with

all vorticity components zero at the walls, proposition 2.2.2 holds on a finite domain

due to the reasoning in section 2.2.4.

No-slip boundary conditions for finite difference methods are commonly derived

by interpolation of the associated velocity to the wall, equating it to zero and subse-

quently obtaining a value for the velocity component in the ghost cell. We, however,

will proceed along a different path, and derive expressions for the ghost values by

instead demanding that proposition 2.2.2 remains valid on a finite domain, thereby

assuring that the global mimetic structure of the discretization is not impaired. The

procedure has in fact already been presented at the end of section 2.2.4 in the case

of non-zero vorticity at the walls. We will repeat the resulting expressions here for

completeness: at the wall at r = R, it holds that:

uzI+2 er+ez
= −∆ri+1

∆ri
uzI+ez

, uθI+2 er+eθ
= − ri

ri+1

∆ri+1

∆ri
uθI+eθ

, i = Nr, (2.78)

while at the walls at z = ±L/2:

urI+er−2 ez
= −∆zk−1

∆zk
urI+er

, uθI+eθ−2 ez
= −∆zk−1

∆zk
uθI+eθ

, k = 1, (2.79)

urI+er+2 ez
= −∆zk+1

∆zk
urI+er

, uθI+eθ+2 ez
= −∆zk+1

∆zk
uθI+eθ

, k = Nz. (2.80)

Notice that all but the condition for uθI+2 er+eθ
at r = R coincide with the linear

interpolation on a non-uniform grid of the velocity component at the wall. The

condition for uθI+2 er+eθ
resembles the linear interpolation of the angular momentum

ruθ instead, and a closer look reveals that it is close to the linear interpolation of uθ
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since:

uθI+2 er+eθ
= − ri

ri+1

∆ri+1

∆ri
uθI+eθ

= −∆ri+1

∆ri

(
1− ∆ri + ∆ri+1

2ri+1

)
uθI+eθ

, (2.81)

for i = Nr. Hence, for sufficiently fine grids it is expected that the conventional

linear interpolation of uθ to the wall is found, but the presence of this extra term

must be kept in mind for coarser grids. Finally, equations 2.78-2.80 constitute the

no-slip boundary conditions for the velocity that assure that proposition 2.2.2 is

valid on a finite domain.

2.4.3 Conservation of kinetic energy

Summation after taking the inner product of the momentum equations with their

respective velocities gives the temporal evolution of the kinetic energy K:

dK
dt

+ (N(u), u)L2(D) +
1
ρ
(Gp, u)L2(D) − ν (V(u), u)L2(D) = 0, (2.82)

where K = (u, u)L2(D) /2 is the L2-inner product of the velocity vector u over a

suitable domain D, N is the skew-symmetric convective operator and V is the sym-

metric viscous operator. Because N is skew-symmetric, and with the gradient G

as the formal (negative) adjoint of the divergence D, the second and third terms of

equation 2.82 vanish and the expression reduces to:

dK
dt

= ν (V(u), u)L2(D) = −ν (∇×ω, u)L2(D) . (2.83)

Thus, in the absence of viscosity and with appropriate boundary conditions, the

kinetic energy is constant and therefore conserved. We will verify that the proposed

discretization satisfies the same conditions, which leads to discrete conservation of

kinetic energy as well. The first assumption that G is the negative adjoint of D

is true by default, as this is precisely how the discrete operator G was constructed

(see section 2.2). Secondly, it must be shown that the discretization of the convective

part does not contribute to the change in kinetic energy.

Proposition 2.4.1. The proposed discretization 2.58 - 2.60 for the convective part N of the

Navier-Stokes equations assures that (N(u), u)HS = 0.

Proof. After performing the inner product 2.30 over the entire computational do-

main, we collect all terms that contain the radial component of the vorticity ηI+eθ+ez
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for any random choice of I. This comprises the contributions to the inner product

from cells I, I + 2 eθ , I + 2 ez and I + 2 eθ + 2 ez. From these four cells, there are an-

gular contributions from NθI+eθ
and NθI+eθ+2 ez

and axial contributions from NzI+ez

and NzI+2 eθ+ez
, which sum up to:

− C

(
∆zk

from NθI+eθ︷ ︸︸ ︷
uzI+ez

+ uzI+2 eθ+ez

2
uθI+eθ

+ ∆zk+1

from NθI+eθ+2 ez︷ ︸︸ ︷
uzI+ez

+ uzI+2 eθ+ez

2
uθI+eθ+2 ez

)

+ C (∆zk + ∆zk+1)

(
from NzI+ez︷ ︸︸ ︷

1
2

∆zkuθI+eθ
+ ∆zk+1uθI+eθ+2 ez

∆zk + ∆zk+1
uzI+ez

+
1
2

∆zkuθI+eθ
+ ∆zk+1uθI+eθ+2 ez

∆zk + ∆zk+1︸ ︷︷ ︸
from NzI+2 eθ+ez

uzI+2 eθ+ez

)
, (2.84)

where C = 1
2 ri∆ri∆θ. It can be seen that these terms add up to zero.

Then we collect all terms that contain the angular component of the vorticity ωI+er+ez

for any random I. This comprises the contributions to the inner product from cells

I, I+ 2 er, I+ 2 ez and I+ 2 er + 2 ez. From these four cells, there are radial contribu-

tions from NrI+er
and NrI+er+2 ez

and axial contributions from NzI+ez
and NzI+2 er+ez

,

which sum up to:

C (∆ri + ∆ri+1)

(
∆zk

from NrI+er︷ ︸︸ ︷
1
2

∆riuzI+ez
+ ∆ri+1uzI+2 er+ez

∆ri + ∆ri+1
urI+er

(2.85)

+ ∆zk+1
1
2

∆riuzI+ez
+ ∆ri+1uzI+2 er+ez

∆ri + ∆ri+1︸ ︷︷ ︸
from NrI+er+2 ez

urI+er+2 ez

)

− C (∆zk + ∆zk+1)

(
∆ri

from NzI+ez︷ ︸︸ ︷
1
2

∆zkurI+er
+ ∆zk+1urI+er+2 ez

∆zk + ∆zk+1
uzI+ez

+ ∆ri+1
1
2

∆zkurI+er
+ ∆zk+1urI+er+2 ez

∆zk + ∆zk+1︸ ︷︷ ︸
from NzI+2 er+ez

uzI+2 er+ez

)
,
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with C = 1
2 ri+ 1

2
∆θ. After some algebraic manipulation, it follows that these terms

also add up to zero.

Finally, we collect all terms that contain the axial component of the vorticity ζI+er+eθ

for any random I, which comprises the contributions to the inner product from

cells I, I + 2 er, I + 2 eθ and I + 2 er + 2 eθ . From these four cells, there are radial

contributions from NrI+er
and NrI+er+2 eθ

and angular contributions from NθI+eθ
and

NθI+2 er+eθ
, which sum up to:

− C
4

ri + ri+1

2

[
from NrI+er︷ ︸︸ ︷(uθI+eθ

ri
+

uθI+2 er+eθ

ri+1

)
urI+er

+

(uθI+eθ

ri
+

uθI+2 er+eθ

ri+1

)

︸ ︷︷ ︸
from NrI+er+2 eθ

urI+er+2 eθ

]

+
C
4

ri + ri+1

2

[
from NθI+eθ︷ ︸︸ ︷

urI+er
+ urI+er+2 eθ

ri
uθI+eθ

+
urI+er

+ urI+er+2 eθ

ri+1︸ ︷︷ ︸
from NθI+2 er+eθ

uθI+2 er+eθ

]
, (2.86)

with C = 1
2 ri+ 1

2
(∆ri + ∆ri+1)∆θ∆zk. It can be seen that these terms sum up to zero

as well. Since this holds for all elements of the vorticity vector, the inner product

yields exactly zero.

The Implicit Midpoint time integration method applied to the semi-discrete Navier-

Stokes without viscosity or external forces gives:

u(n+1) − u(n)

∆t
= −N

(
u(n+ 1

2 )
)
−Gp(n+

1
2 ), Du(n+ 1

2 ) = 0, (2.87)

with u(n+ 1
2 ) = 1

2 (u
(n) + u(n+ 1

2 )). Notice that the inner product of the left-hand side

of equation 2.87 with u(n+ 1
2 ) yields:

(
u(n+1) − u(n)

∆t
, u(n+ 1

2 )

)

HS
=

1
2∆t

[ (
u(n+1), u(n+1)

)
HS
−
(

u(n), u(n)
)
HS

]
, (2.88)
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while taking the inner product with the right-hand side gives:

−
(

N(u(n+ 1
2 )), u(n+ 1

2 )
)
HS
−
(

Gp(n+
1
2 ), u(n+ 1

2 )
)
HS

=
(

p(n+
1
2 ), Du(n+ 1

2 )
)

HN
(2.89)

by proposition 2.4.1 and the definition of the gradient operator G. Combining

equations 2.88 and 2.89 then shows that:

(
u(n+1), u(n+1)

)
HS
−
(

u(n), u(n)
)
HS

= 2∆t
(

p(n+
1
2 ), Du(n+ 1

2 )
)

HN
. (2.90)

If we define the kinetic energy at time tn as K(n) := 1
2

(
u(n), u(n)

)
HS

, then:

K(n+1) − K(n)

∆t
=
(

p(n+
1
2 ), Du(n+ 1

2 )
)

HN
, (2.91)

and conservation of kinetic energy depends solely on the value of Du in the do-

main. Hence, for vanishing flow divergence Du = 0, it follows that the discrete

kinetic energy is conserved.

For viscous flows, it is well known that the temporal decay of kinetic energy due to

viscous dissipation on a suitable domain is given by:

dK
dt

= −2νE , (2.92)

where E = 1
2

∫
V |∇ × u|2 dV is the flow enstrophy. Notice that this expression

follows from applying the self-adjointness of the curl operator to the right-hand side

of equation 2.83. At the discrete level, the fully discretized momentum equations

without external forces read:

u(n+1) − u(n)

∆t
= −N

(
u(n+ 1

2 )
)
−Gp(n+

1
2 ) − νCCu(n+ 1

2 ). (2.93)

Taking the inner product with u(n+ 1
2 ) once more now yields:

K(n+1) − K(n)

∆t
= −ν

(
CCu(n+ 1

2 ), u(n+ 1
2 )
)
HS

, (2.94)

where we have used the fact that the convective term does not contribute to the

evolution of the kinetic energy, and the pressure term vanishes because Du = 0 as
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noted above. By proposition 2.2.2, the term on the right-hand side is equal to:

ν
(

CCu(n+ 1
2 ), u(n+ 1

2 )
)
HS

= ν
(

Cu(n+ 1
2 ), Cu(n+ 1

2 )
)
HL

, (2.95)

which is the discrete representation of twice the enstrophy. Hence, with the flow

divergence Du equal to zero, the resulting expression:

K(n+1) − K(n)

∆t
= −2ν

(
Cu(n+ 1

2 ), Cu(n+ 1
2 )
)
HL

, (2.96)

is the discrete analogue of expression 2.92.

2.5 Numerical validation

In this section, we will numerically demonstrate the conservation properties of the

proposed discretization on both uniform and non-uniform grids (section 2.5.1). Fur-

thermore, we will demonstrate the formal accuracy of the proposed method (section

2.5.2). For this, we use the Method of Manufactured Solutions, which we believe is

among the most rigorous procedures to determine the general numerical accuracy.

2.5.1 Conservation properties

We are interested in the temporal evolution of mass, momentum and kinetic energy

(in absence of viscosity). In sections 2.4.1 and 2.4.2 it was observed that conserva-

tion of mass and momentum are both determined by the accuracy of the solution of

the continuity equation Du = 0. In our simulations, we therefore set the stopping

criterion for the iterative linear solver (based on the relative residual) to 10−15 to en-

force conservation of mass and momentum up to machine precision. To investigate

the energy conservation capacity of the discretization, we consider a flow in a cylin-

der of radius 1 m and length 1 m. The velocities are initialized as random numbers

from the interval [− 1
2 , 1

2 ], and subsequently the flow field is made divergence-free

by a projection step, where the initial pressure is also calculated. On the solid walls

at r = R and z = ± L
2 , a free-slip or stress-free boundary condition is imposed as

described by equations 2.75-2.77. The free-slip condition assures that the vorticity

at the wall is zero and therefore it does not contribute to any change in momentum.

The fluid viscosity is set to zero, and we perform the simulation up to time T = 10

seconds, while observing the discrete mass, momentum and kinetic energy at ev-

ery time step. A small time step ∆t of 10−5 seconds is chosen purely to guarantee
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convergence of our current non-linear solver, as the conservation properties are in-

dependent of the magnitude of the time step.

To verify the proposed discretization on grids with non-uniform node distribu-

tions, the simulations are performed on two grids: a uniform grid, where ri+ 1
2
=

(i + 1
2 )R/Nr and zk+ 1

2
= − L

2 + (k− 1
2 )L/Nz, and a grid with a non-uniform distri-

butions defined by:

ri+ 1
2
= R

(
eαiR/Nr − 1

eαR − 1

)
, i = 0, . . . , Nr, (2.97)

zk+ 1
2
=

L
2

tanh(βi/Nz)

tanh(βL/2)
, k = 0, . . . , Nz, (2.98)

with α = 2 and β = 3 as depicted in figure 2.11. Although perhaps not very

applicable in practice, we have chosen this distribution in particular to demonstrate

the validity of our conservation claims in the case of a severe variety in cell size

throughout the computational domain. The number of grid cells are 10× 20× 10

in radial, angular and axial direction, respectively.

(a) Uniform distribution. (b) Non-uniform distribution.

Figure 2.11: The uniform and non-uniform node distributions.

For the inviscid computations, we also calculate the resulting flow field using the

spatial discretization of Morinishi et al. [61] for comparison. Because it is known

that their axis treatment may introduce instabilities, we use the averaging proce-

dure of Fukagata and Kasagi [33] for the radial velocity at r = 0, which does not

conserve kinetic energy exactly. We find that the proposed method conserves mass,

momentum and kinetic energy up to machine precision, as expected. Conservation

of mass and momentum is obtained for the discretization technique of Morinishi

et al. [61] (this is also proven in their paper). However, the kinetic energy is not
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Figure 2.12: Momentum evolution on both uniform and non-uniform grid.

conserved in time, which is likely due to the handling of the radial velocity at the

polar axis. First, figure 2.12 shows the evolution of the discrete radial, angular and

axial momenta Mα of equations 2.71-2.73 using the proposed discretization. On

both uniform and non-uniform grids, all three momenta are conserved to machine

precision. The radial and axial momenta are of the order of machine precision ini-

tially, while the angular momentum maintains a larger non-zero value. Figure 2.13

then shows the kinetic energy during the simulation for both methods on the two

grid types: the combined method of Morinishi et al. [61] and Fukagata and Kasagi

[33] is referred to as the ’alternative’ method.

For viscous flows, the kinetic energy decays at a rate determined by the flow en-

strophy E as defined in section 2.4.3. To test this, we simulate a swirling flow with

an angular velocity uθ(r) = R(r− r2). No-slip boundary conditions are applied for

the velocity, and the dynamic viscosity has a value of µ = 0.01 kg/m/s. Both the

kinetic energy and the flow enstrophy are monitored in time. Figure 2.14 shows the

monotone decay of the kinetic energy in time for both uniform and non-uniform

grids based on the proposed discretization. We have used three levels of refinement

to demonstrate that the uniform- and non-uniform results converge to the same

rate of energy decay. As a consistency check, we have compared the energy decay

in time at semi-integer time levels by explicitly calculating both sides of equation
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Figure 2.13: Normalized kinetic energy evolution on both a uniform and a non-uniform grid. The mimetic results are
shown separately in the lower graphs for a better impression of the actual magnitude.

2.96, i.e. the time derivative of the kinetic energy:

dK
dt

(tn+ 1
2 ) ≈ K(n+1) − K(n)

∆t
, (2.99)

and the scaled flow enstrophy, calculated as:

−2νE(tn+ 1
2 ) ≈ −2ν

(
Cu(n+ 1

2 ), Cu(n+ 1
2 )
)
HL

. (2.100)

For the proposed approach, we find that the difference of the two terms is in the

order of machine precision for both the uniform and the non-uniform grid.

2.5.2 Spatial accuracy

In order to demonstrate the formal accuracy of the proposed discretization, we uti-

lize the Method of Manufactured Solutions (MMS) [74]. With a properly chosen
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Figure 2.14: Kinetic energy decay for a viscous flow for different levels of grid refinement, and the error between the
results on uniform (solid line) and non-uniform (dashed line) grids.

solution, the MMS is capable of testing virtually all terms of the discretization, and,

if necessary, even individually. This is generally more challenging than the com-

parison with known exact solutions, which, if they exist in closed form at all, often

follow from applying highly simplifying assumptions and therefore they may not

involve all the terms in the Navier-Stokes equations.

One of the recommended properties of manufactured solutions is that they are

sufficiently smooth, so that they do not prevent the theoretical order of accuracy to

be obtained. Therefore, we choose the following time-dependent solutions for the

velocity components and the pressure:

ur(r, θ, z, t) = (r− R)
(

z− L
2

)(
z +

L
2

)
cos(rz) sin(θ) sin(t), (2.101)

uθ(r, θ, z, t) = (r− R)
(

z− L
2

)(
z +

L
2

)
sin(r + θ + z) sin(t), (2.102)

uz(r, θ, z, t) = (r− R)
(

z− L
2

)(
z +

L
2

)
cos(rθz) sin(t) (2.103)

p(r, θ, z, t) = cos
(

2πr
R

)
cos




2π
(

z + L
2

)

L


 sin(t), (2.104)

where R = 1 m is the cylinder radius and L = 1 m its length. The manufactured

velocity solutions satisfy no-slip boundary conditions at the walls, while there is a

non-zero radial flow through the origin. The pressure satisfies homogeneous Neu-
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mann conditions at all walls. Using a symbolic computer algebra program, the

solutions 2.101-2.104 are inserted in the Navier-Stokes equations 2.67, and the out-

put is added to the right-hand side of the momentum equations. No-slip boundary

conditions are applied, and initially all velocities and the pressure are set to zero.

We then perform simulations until a certain time T on four grids with (5× 10× 5),

(10× 20× 10), (20× 40× 20) and (40× 80× 40) cells. Both a uniform and a non-

uniform grid as in equations 2.97 and 2.98 are used. Since the computations are

unsteady, a very small time step of ∆t = 10−7 s is chosen to assure that the tempo-

ral error is negligible compared to the spatial error. The fixed time step is reduced

for each grid refinement in order to keep the Courant number approximately con-

stant.
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(b) Global error on a non-uniform grid.

Figure 2.15: Grid convergence of the proposed discretization using the MMS. For clarity, the pressure error is scaled
down by a factor of 105.

The global error is determined by approximating the discrete L2-norm at time T for

all three velocity components by calculating:

‖u− uex‖2 =

√
∑
i,j,k

(
u(T)

i,j,k − uex(ri, θj, zk, T)
)2

ri∆ri∆θ∆zk, (2.105)

and:

‖p− pex‖2 =

√
∑
i,j,k

(
p(T)i,j,k − pex(ri, θj, zk, T)

)2
ri∆ri∆θ∆zk, (2.106)

where u(T)
i,j,k and p(T)i,j,k are the calculated solutions for any of the velocity components

and the pressure at location (ri, θj, zk) at time T, uex and pex the associated exact

solutions value and ri∆ri∆θ∆zk the volume of the cell (i, j, k). The results for both

uniform- and non-uniform grids are shown in figure 2.15, where the error against
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the typical cell size is shown. For both uniform and non-uniform grids, the global

error of all flow variables displays second order behaviour as the grid size goes to

zero.

2.6 Concluding remarks

The aim of this study was to construct a spatial finite difference discretization of

the cylindrical Navier-Stokes equations that conserves mass, momentum and ki-

netic energy, while simultaneously treating the classical problem near and at the

origin r = 0. We have used the mimetic finite difference method to derive the vec-

tor identities like the gradient, the curl and the divergence. We have shown that the

proposed averaging procedure is able to conserve mass and momentum and, in the

absence of viscosity, also kinetic energy on both uniform and non-uniform grids.

The mimetic approach combined with the averaging also yields a natural treatment

of the singularity at r = 0. Accuracy tests show second order convergence in space

on both grids with uniform and non-uniform node distribution.

For Large Eddy Simulations (LES) or Direct Numerical Simulations (DNS), it is

likely that the overall second order accuracy of the proposed method is too re-

strictive. Therefore, future work should investigate the possibility of higher order

approximations while maintaining the conservation properties.

The proposed spatial discretization alone is not sufficient for kinetic energy conser-

vation. The time advancement of the semi-discrete equations is equally important,

as any damping present may destroy the inherent conservation properties. In this

chapter, we have used an implicit method known to conserve quadratic invariants

to demonstrate the capabilities of the proposed spatial discretization. Besides being

implicit, our approach hinges on the solution of the non-linear equations, which

makes the computational procedure even more costly. In practice, both this and

an implicit system may be unfeasible for large grids, and other (explicit) methods

could be considered that (nearly) conserve energy; Verstappen and Veldman [91],

for example, propose a class of time integration methods for this purpose. Here the

trade-off in the method is clearly between computational cost and the desired level

of conservation.
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Chapter 3
A dual interface capturing method for the simulation of

incompressible immiscible two-phase pipe flows

In this chapter we present a dual interface capturing method for the simulation of incom-

pressible immiscible two-phase flow in a cylindrical pipe with a circular cross section. The

algorithm is developed as a research tool for the advancement of turbulence models for strat-

ified two-phase flow and to improve the understanding of turbulence induced interface in-

stabilities. To be able to perform computations on high resolution meshes, the algorithm is

formulated to maximize (parallel) efficiency and accuracy in exchange for generic applica-

bility. The cylindrical coordinates Navier-Stokes equations are discretized using a staggered

finite difference method, while the model for the interface is based on the Mass Conserving

Level Set (MCLS) method proposed in Van der Pijl et al. [90]. That method uses a dual

formulation in terms of congruent Volume of Fluid (VoF) and Level Set (LS) fields. This

approach combines the advantages of both the underlying VoF and LS methods: (nearly)

exact mass conservation and an unambiguous definition of the interface location that can

be used in turbulence models. The approach distinguishes itself from other dual approaches

by cleverly avoiding an explicit reconstruction of the interface in the simultaneous advance-

ment of both fields to reduce computational work. The algorithm is numerically validated

through a set of well known benchmark cases, using experimental and numerical results

from literature as well as reference solutions obtained by expert users of commercial and

open-source simulation suites.

The content of this chapter is based on the article:

G.T. Oud, D.R. van der Heul, C. Vuik, and R.A.W.M. Henkes. A dual interface cap-

turing method for the simulation of incompressible immiscible two-phase pipe flows, to be

submitted.
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3.1 Introduction

The numerical modeling of multiphase flow phenomena has been a highly ac-

tive field of research for the past few decades. Examples of multiphase flows

in industry and engineering are ubiquitous: boilers, condensers, reactors, mixers,

separators and (cavitating) propellers are but some of the applications. In the oil

and gas industry the increased effort for hydrocarbon recovery from more remote

and deeper production fields has led to more complex pipeline transport. One of-

ten finds that both phases are transported through a single pipeline to an offshore

platform or to an onshore plant. The liquid-gas mixture flowing through a pipeline

can be in a specific flow regime, such as stratified flow or slug flow, depending on,

among others, the liquid and gas flow rates and the pipe geometry. Unstable flows

with slugs cause significant mechanical stresses on the pipe wall and its supports,

and can also cause difficulties for the facilities at the end of the pipeline, such as

flooding of the separator or trips of the compressor. It is therefore desirable to be

able to predict what kind of conditions lead to slug flow, in both horizontal and

inclined pipes.

3.1.1 Stratified multiphase pipe flow

To get a better understanding of the physical mechanisms underlying this transi-

tion process and to accurately model the influence of turbulence, a highly accurate

and strictly mass conserving computational model will be developed specifically

for the simulation of two-phase flow in a straight segment of a cylindrical pipe with

a circular cross section. By limiting the applicability to this very simple geometry,

we can optimize the accuracy and efficiency, at the cost of genericity, to enable very

high resolution simulations (eventually DNS and LES). The flow is considered to

be incompressible and isothermal and the two phases to be immiscible and sepa-

rated by a sharp interface. Hence, the flow system can be accurately described by

a two-phase flow model consisting of the variable density/viscosity Navier-Stokes

equations and a separate model for the evolution of the interface. In this applica-

tion, controlling numerical dissipation is very important to be able to distinguish

physical from numerical amplification of interface disturbances. Simultaneously,

the mass should be accurately conserved, as loss of (moving) mass generally implies

loss of momentum (i.e. artificial damping). We believe that an optimal accuracy and

(parallel) efficiency can be achieved by using a simple second order finite difference

discretization for the cylindrical coordinate Navier-Stokes equations on an orthogo-
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nal structured grid, together with a dedicated mass conserving, finite volume based

interface model that exploits all symmetries and regularity of the control volumes

on that same grid.

3.1.2 Dual interface capturing models

Nearly all interface models that do not impose any restrictions on changes in the

topology of the interface are based on either the Level Set (LS) method [66] or the

Volume of Fluid (VoF) method [41]. Individually, however, each suffers from draw-

backs: the LS method is inherently incapable of conserving mass over time, while

the VoF method, lacking an explicit interface, often requires complicated and com-

putationally expensive interface reconstructions. Although the impact of most of

these drawbacks can be reduced to a certain extent, yet another approach tries to

combine both methods with the aim of benefiting from their advantages (the ex-

plicit interface of the LS method and the conservation property of the VoF method)

while eliminating their disadvantages. Existing concepts involving the coupling of

the level set method and the VoF method include Bourlioux [13], the CLSVOF algo-

rithm [83], the VOSET algorithm [81] and the recent CLSMOF method [47], where

besides the VoF also the centroids of the cells are included in the interface recon-

struction. Because the interface is described by congruent LS and VoF fields, we

refer to these methods as dual interface capturing methods.

Dual methods will outperform either VoF and LS methods, but none of the meth-

ods presented in the literature matches our requirements with respect to strict mass

conservation and computational efficiency. Therefore, we have developed a new

dual interface capturing method based on the Mass-Conserving Level Set (MCLS)

method introduced by Van der Pijl et al. [90] for uniform Cartesian grids. A key

feature of this method is the use of an invertible function that relates the VoF and LS

fields, without a time-consuming explicit interface reconstruction that characterizes

other dual methods. A more detailed review of the general MCLS algorithm can

be found in section 3.3.1. The MCLS method was shown to be robust and to yield

accurate results when compared to similar methods.

Although the results of the original Cartesian MCLS algorithm by Van der Pijl et al.

[90] look encouraging, several of the sub-algorithms can be improved upon. This

becomes clear in the recent comparison by Denner et al. [22], where the original

MCLS algorithm slightly underperforms in the case of a rising bubble. Therefore,
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our approach has been to only retain the original concept of the MCLS but for-

mulate new sub-algorithms specifically for a structured tessellation of a cylindrical

domain with circular cross section. Furthermore, we present a new formulation of a

dimensionally split VoF advection scheme that is mass conserving to machine preci-

sion. Therefore, contrary to other dual methods mass is preserved exactly without

the need for ad-hoc corrections. The algorithm is first verified and validated for

solutions with symmetry with respect to the axis of symmetry. Although this is

formally a simplification, many commonly used test cases for the assessment of

multiphase flow models can in fact be performed in an axisymmetric setting. The

algorithm is certainly not restricted to the axisymmetric case, and if the equations

are carefully discretized, the pseudo-singularity at the centre of the cylinder does

not lead to numerical problems [67].

3.1.3 Outline

We present an efficient dual interface model for a structured tessellation of cylin-

drical geometries with the following key features:

• The coupling between LS and VoF fields is likely to be more efficient than in

other dual methods that require the solution of a system of equations (like

Sussman and Puckett [83]) because of a relatively simple invertible functional

relationship between the LS and the VoF fields.

• Individual volume fractions are conserved to machine precision without any

need for volume truncation or complicated redistribution algorithms like in

Van der Pijl et al. [90] or Sussman and Puckett [83]. This is achieved through

the cylindrical implementation of a conservative dimensionally split algorithm

for the VoF advection that nonetheless allows CFL numbers up to 0.5.

• Second order accuracy of the interface position is obtained in a non-trivial

imposed flow field that is constant in time. This is one order of magnitude

more accurate than Eulerian VoF schemes, which are generally limited to first

order accuracy only [5].

We start in section 3.2 where the discretization of the Navier-Stokes equations in

space and time is presented. Section 3.3 describes our adapted MCLS algorithm

in a cylindrical geometry. The coupling procedure between the LS and the VoF is

explained, and an updated interface advection algorithm which provides improved

conservation properties when compared to the original scheme is presented. The
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algorithm is tested and validated using a number of common benchmark cases in

section 3.4. We conclude with a summary of the results and some closure remarks

in section 3.5.

3.2 Calculation of the flow field

We consider the cylindrical domain:

{
(r, θ, z)

∣∣∣ 0 ≤ r ≤ R, 0 ≤ θ < 2π,− L
2
≤ z ≤ L

2

}
, (3.1)

on which the axisymmetric Navier-Stokes equations are solved for the unknown ve-

locity vector u = (ur, uθ , uz) and the pressure scalar field p. Under the assumption

of rotational symmetry (i.e. all angular derivatives of any order vanish), the flow

equations in conservative form are given by:

1
r

∂(rur)

∂r
+

∂uz

∂z
= 0, (3.2)

and:

∂ur

∂t
+

1
r

∂(ru2
r )

∂r
+

∂(uruz)

∂z
− u2

θ

r
= −1

ρ

∂p
∂r

+
1
ρ

∂(rτrr)

r∂r
+

1
ρ

∂τrz

∂z
+ gr, (3.3)

∂uθ

∂t
+

1
r

∂(ruruθ)

∂r
+

∂(uθuz)

∂z
+

uruθ

r
=

1
ρ

∂(rτrθ)

r∂r
+

1
ρ

∂τθz
∂z

+ gθ , (3.4)

∂uz

∂t
+

1
r

∂(ruruz)

∂r
+

∂(u2
z)

∂z
= −1

ρ

∂p
∂z

+
1
ρ

∂(rτrz)

r∂r
+

1
ρ

∂τzz

∂z
+ gz, (3.5)

together with a set of boundary- and initial conditions. The viscous stresses are

given by:

τrr = 2µ
∂ur

∂r
, τrθ = µ

(
∂uθ

∂r
− uθ

r

)
, τrz = µ

(
∂ur

∂z
+

∂uz

∂r

)
, (3.6)

τθθ =
2µur

r
, τθz = µ

∂uθ

∂z
, τzz = 2µ

∂uz

∂z
(3.7)

3.2.1 Spatial discretization

The axisymmetric Navier Stokes equations 3.2-3.5 are discretized in space using

the second order accurate finite difference approach of Morinishi et al. [61]. The

general presentation of this approach allows for non-uniform grids in all coordinate
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directions, but for efficiency this has only been applied to the radial direction. In

the absence of viscosity, this choice of discretization should, in addition to mass and

momentum, also result in spatial conservation of kinetic energy, which is highly

preferable for a possible future transition to turbulent flows. A Marker and Cell

(MAC) arrangement of the flow unknowns according to Harlow and Welch [38]

is used, in which the velocity components lie on the cell faces and the pressure is

located in the cell centres (see figure 3.1). The staggered arrangement of the velocity

components implies that there is a radial velocity located at r = 0. However, the

rotational symmetry implies that at r = 0:

∂ur

∂r
(0, θ, z) = 0. (3.8)

Using central differences, it follows that in our discretization ur(0, θ, z) = 0 for all

test cases.

uri−1,k uri,k

uzi,k−1

uzi,k

uθi,k , pi,k

φi,k, ψi,k

r

z

Figure 3.1: Staggered grid layout in axisymmetric domain: velocity components ur and uz at the cell faces, and uθ lies
orthogonal to the r− z plane. The pressure p, level set function φ and VoF function ψ are located at the cell centre.

3.2.2 Temporal discretization

The advancement of the flow field in time requires the fluid densities ρ and vis-

cosities µ, which in our approach are both determined using the interface variables

(the level set function φ and the Volume of Fluid function ψ). The transport of

these interface variables in turn depends on the underlying flow field, and hence

there exists a two-way coupling in the advection of the flow field and the inter-

face. Performing the advection for both simultaneously and hence implicitly is the

only way to completely resolve the coupling issue. Aside from the complexity that
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the implicit treatment introduces, however, this approach is generally too compu-

tationally demanding. Instead, the issue is remedied by staggering both the flow

variables and the interface variables in time. In this way, the problem becomes de-

coupled at the cost of a temporal splitting error. The flow velocity u is evaluated

at integer time levels n, n + 1, etc, while the pressure p, the level set φ and the VoF

value ψ are evaluated at semi-integer time levels n + 1
2 , n + 3

2 , etc. The flow field

is advanced using a common projection scheme that consists of a predictor step

in which an updated velocity field is calculated that may not be divergence-free.

This newly obtained velocity field is subsequently made divergence-free using an

updated pressure field that results from a Poisson equation.

The choice of a cylindrical computational grid imposes the potential problem that

angular velocities close to r = 0 can cause a severe time step restriction when

using explicit methods. The original MCLS algorithm contains a mixed IMEX time

integration method, which, besides being only first order accurate, is unstable in the

case of vanishing viscosity. Even though stable and efficient IMEX algorithms are

readily available nowadays [48, 49], the time step restriction due to external blocks

remains, and therefore the second order Implicit Midpoint integration method is

used for the temporal advancement of the momentum equations as it provides

unconditional stability without any artificial damping, even in the case of vanishing

viscosity. The latter is a valuable property since many analytical results are based

on inviscid assumptions. Therefore being able to do inviscid calculations will help

the proper validation and verification of the implementation of the algorithms. The

set of non-linear discrete momentum equations at time t = t(n):

u(∗) − u(n)

∆t
+ f (u(∗), ρ(n+

1
2 ), µ(n+ 1

2 )) +
1

ρ(n−
1
2 )

Gp(n−
1
2 ) = 0, (3.9)

where G is the discrete gradient operator, is linearized using Newton linearization,

and solved by a preconditioned GMRES algorithm to find a tentative velocity u(∗).

Subsequently, a Poisson equation is solved for an updated pressure p(n+
1
2 ) using an

ICCG(0) method:

D

(
1

ρ(n+
1
2 )

Gp(n+
1
2 )

)
=

1
∆t

Du(∗) + D

(
1

ρ(n−
1
2 )

Gp(n−
1
2 )

)
, (3.10)

where D is the discrete divergence operator. Finally, the tentative velocity u(∗) is



56 A dual interface capturing method for axisymmetric flows Chapter 3

made divergence-free using the newly found pressure p(n+
1
2 ) through:

u(n+1) = u(∗) − ∆t

(
1

ρ(n+
1
2 )

Gp(n+
1
2 ) − 1

ρ(n−
1
2 )

Gp(n−
1
2 )

)
, (3.11)

which yields the new velocity vector u(n+1) that satisfies Du(n+1) = 0. The Jacobi

preconditioner used for the GMRES algorithm is a well balanced solution between

performance and computational effort. For small to moderate time steps, the main

diagonal of the momentum matrix is dominated by the value 1/∆t, and precondi-

tioning is hardly necessary as convergence is achieved after only a few iterations.

Its effectiveness becomes apparent at larger time steps (which is possible due to the

stability of the time integration method) when the diagonal dominance is lost. The

simplicity and ease of implementation of the Jacobi preconditioner give the MCLS

algorithm an overall good GMRES convergence rate at very low additional compu-

tational cost.

The density ρ required in the predictor equation is calculated as the volume-weighted

average of the two (constant) densities ρ0 and ρ1 using the VoF value ψ:

ρ = ψρ1 + (1− ψ)ρ0. (3.12)

The viscosity µ follows from a step function Hs = Hs(φ(x)) that is smoothed using

the level set function φ:

µ = µ0 + Hs(φ)(µ1 − µ0), (3.13)

where:

Hs(φ) =





0, φ < −α

1
2

(
1 + sin

πφ

2α

)
−α ≤ φ ≤ α

1, φ > α

(3.14)

For the band width α of the smoothed step function generally 1.5 cell widths are

used. The value of the viscosity µi,k is calculated in the cell centre as a function

of the local level set value φi,k. Harmonic averaging based on the level set values

is used when the value of the viscosity is needed at other locations than the cell

centre.
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3.2.3 Treatment of the interface jump conditions

The assumption of a sharp interface that separates two incompressible, immiscible

fluids leads to jump conditions for the flow variables at the interface. Both density

and viscosity are constant in each fluid phase, and the jump value of their difference

normal to the interface is denoted by [ρ] and [µ], respectively. Because only viscous

flows are considered, the velocity is continuous across the interface and hence [u] =

0. The pressure is not continuous but satisfies:

[p] = σκ + 2[µ]nT · ∇u · n, (3.15)

with σ the surface tension coefficient, κ the interface curvature and n the interface

normal vector. The Ghost Fluid method [51] is used to implement the pressure

jump as an additional term on the right hand side of the pressure Poisson equation

3.10. Although the density is modeled as a discontinuous quantity, the viscosity is

smeared out over the interface using a smoothed Dirac function so that [µ] = 0. The

motivation for this is that the implementation of the pressure jump, which reduces

to:

[p] = σκ, (3.16)

is greatly simplified. Contrary to the Continuous Surface Force (CSF) model [14],

which is implemented in the original Cartesian MCLS algorithm, the Ghost Fluid

method treats the interface as truly sharp, whereas the CSF model spreads out the

interface over an arbitrary finite support. The accuracy of the pressure jump of the

CSF model is limited to first order due to the smearing of the interface, while the

Ghost Fluid method can obtain second order as verified by Francois et al. [32]: the

latter is verified for our implementation in section 3.4.1. One of the objectives of

our improved MCLS algorithm was to eliminate empirical parameters that could be

case-specific for optimal performance. Although in practice the interface thickness

in case of the CSF model is kept constant, the Ghost Fluid method requires no

parameters at all and therefore has our preference.

3.3 Representation of the interface

The interface is represented by a linearized level set of a signed distance function.

The level set method is a commonly used method in multiphase flow modeling be-

cause of its relatively simple implementation and its ability to naturally deal with

changes in the topology of the interface. Its main drawback, however, is the in-
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evitable loss of enclosed volume within the computational domain, and hence for

multiphase flows with constant densities, this implies a loss of mass of one or of

both fluids. This is due to the fact that the conservative treatment of the level set

function does not imply conservation of volume within an iso-contour of that func-

tion. To counteract this phenomenon, generally high order level set representation

and advection schemes are used. A different approach is to couple the level set

method to the Volume of Fluid method, which is a method based on volume con-

servation. We will start by briefly summarizing both the level set method and the

Volume of Fluid method.

Let R≥0 be the set of non-negative real numbers. Then at every time step, the

level set function φ : Rn ×R≥0 → R in an arbitrary computational cell Ω ⊂ Rn is

represented by its spatial linearization around the cell centre x0:

φ(x, t) ≈ φ(x0, t) +∇φ(x0, t) · (x− x0), x ∈ Ω, (3.17)

and the linear interface Γ ⊂ Rn−1 ×R≥0 becomes the level set:

Γ(t) = {x ∈ Ω | φ(x0, t) +∇φ(x0, t) · (x− x0) = 0}. (3.18)

The level set function is generally taken to be a signed distance function to the in-

terface, although other choices have been successfully applied as well.

In addition, a discontinuous colour function χ : Rn ×R≥0 → {0, 1} is defined on Ω

as:

χ(x, t) =





0, x ∈ fluid 0 at time t

1, x ∈ fluid 1 at time t
(3.19)

The Volume of Fluid (VoF) value ψ of a computational cell Ω is now defined as:

ψΩ(t) =
1
|Ω|

∫

Ω
χ(x, t)dΩ. (3.20)

From its definition, it is clear that ψΩ(t) ∈ [0, 1]. In the finite difference discretiza-

tion, both the level set function φ and the VoF function ψ are located in the cell

centres. For clarity, any reference to the spatial location will be denoted by sub-

script indices while any reference to time will be denoted by superscript indices.

Hence, the discrete analogues of φ(x, tn) and ψ(x, tn) are φ
(n)
i,k and ψ

(n)
i,k .
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3.3.1 General description of the MCLS algorithm

In this section, a brief description of the MCLS algorithm is given (see also Van der

Pijl et al. [90]). Both the level set function φ(n− 1
2 ) and the VoF function ψ(n− 1

2 ) are

advected by a flow field u(n) using the conservative advection algorithm of section

3.3.3 to become φ̃ and ψ(n+ 1
2 ), respectively. Based on the knowledge that the volume

enclosed by any iso-contour of φ̃ may significantly differ from the volume enclosed

by the same iso-contour of φ(n− 1
2 ), the MCLS algorithm essentially assures global

mass conservation by altering the newly obtained level set function φ̃ such that

locally (i.e. cell-wise) mass is conserved up to a user-defined tolerance. The VoF

value is used as a reference, as it is known to be conservative by definition and

through the use of a conservative advection scheme. As both the level set function

and the VoF function are advected using a coupled directionally split algorithm, the

value of φ̃ is usually a fairly good initial guess, and the changes to φ̃ are therefore

often small so that the coupling can be done relatively fast. More specifically, given

φ̃ and ψ(n+ 1
2 ), a comparison is made in every cell of the computational domain

between the VoF values that follow from the newly obtained level set φ̃ and the VoF

values ψ(n+ 1
2 ). The specific process of obtaining the associated VoF value from a

level set value and its gradient in a computational cell is explained in section 3.3.2.

Essentially, a function f has been formulated such that ψ = f (φ,∇φ) exactly for any

linear interface within a cell. Therefore, using this notation, during the comparison

sweep the value of | f (φ̃,∇φ̃) − ψ(n+ 1
2 )|, where the gradient ∇φ̃ is obtained from

central differences of φ̃, is calculated for every cell. If this value exceeds a user-

defined value ε (the allowable volume fraction loss), the local value of φ̃ is adjusted

iteratively until it complies with the prescribed tolerance, i.e. until:

| f (φ̃,∇φ̃)− ψ(n+ 1
2 )| ≤ ε. (3.21)

The adjustment of the level set field is a minimization problem in multiple coupled

variables (both the level set value and its gradient) involving a non-linear function

f . To solve it, an alternating method is used, in which initially the gradient is kept

fixed while an updated level set value is found through:

φ̃ = g
(

ψ(n+ 1
2 ),∇φ̃

)
, (3.22)

where g is the inverse of the function f with respect to the first argument and

consists of a robust scalar root finding algorithm. After the level set value has

been updated throughout the domain, the global level set gradient is recalculated,
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and a comparison sweep is re-initiated. This process is repeated until a global

level set field with associated gradient is found that satisfies equation 3.21 in every

computational cell, at which point the temporary level set φ̃ becomes the definitive

level set φ(n+ 1
2 ) with its gradient ∇φ(n+ 1

2 ). Figure 3.2 contains a schematic overview

of the MCLS algorithm.

Level Set φ(n− 1
2 ) VoF ψ(n− 1

2 )

Level Set advection VoF advection

VoF ψ(n+ 1
2 )

Temporary
Level Set φ̃

Calculate
ψ̃ = f (φ̃,∇φ̃)

Check error
∆ψ = |ψ̃ − ψ(n+ 1

2 )|

Correct Level Set
φ̃ = g(ψ(n+ 1

2 ),∇φ̃)

Calculate gradient ∇φ̃

No correction:
φ(n+ 1

2 ) = φ̃

∆ψ ≤ ε∆ψ > ε

Figure 3.2: Schematic overview of the MCLS algorithm.

If v(n+
1
2 ) = ∑i v(n+

1
2 )

i is the sum of the cell-wise volumes v(n+
1
2 )

i of one of the two

fluids present at time t = t(n+
1
2 ), then the volume loss of that fluid during the

coupling procedure is bounded by:

|v(n+ 1
2 ) − v(n−

1
2 )| ≤ ∑

i
|v(n+

1
2 )

i − v(n−
1
2 )

i | (3.23)

= ∑
i
| f (φ(n+ 1

2 )
i ,∇φ

(n+ 1
2 )

i )− ψ
(n+ 1

2 )
i |Ωi (3.24)

≤ ε ∑
i

Ωi (3.25)

= εV, (3.26)

where Ωi is the volume of the computational cell with index i and V = ∑i Ωi is

the total volume of the cylinder. In practice, however, one only has to sum over the
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interface cells which usually account for around 10% of the total number of cells.

For the test cases in this chapter, the value of ε is set to 10−10.

3.3.2 Coupling of the level set and VoF

For a given interface that is described by the zero level set of the function φ, the

colour function χ from equation 3.20 can be defined as χ = H(φ), and the associated

VoF value ψΩ ∈ [0, 1] belonging to some cell Ω can be calculated as:

ψΩ =
1
|Ω|

∫

Ω
H(φ(x))dx, (3.27)

where H is the Heaviside function. For arbitrary φ this integral can generally not

be evaluated in a straightforward way, but if φ is restricted to the subset of linear

functions, then exact solutions can be readily found. More specifically, the VoF

value ψΩ associated to a linear interface can be calculated as:

ψΩ =
1
|Ω|

∫

Ω
H [φ(x0) +∇φ(x0) · (x− x0)]dx. (3.28)

In the MCLS approach, this integral is evaluated analytically through a function f ,

so that ψΩ = f (φ(x0),∇φ(x0)). For axisymmetric domains with x0 = (r0, z0), the

integral becomes:

ψΩ =
2π

|Ω|
∫

Ω
H [φ(x0) + φr(x0)(r− r0) + φz(x0)(z− z0)] r dr dz, (3.29)

and this is solved in a robust way using the expression of the centroid of a simple

polygon, i.e.:

ψΩ =
2π

6|Ω|
N−1

∑
i=0

(ri + ri+1)(rizi+1 − ri+1zi), (3.30)

where N is the number of vertices (ri, zi) of the polygon that is enclosed by the

linear interface and the cell edges, and |Ω| = 2πr0∆r∆z is the volume of the entire

computational cell. The availability of the level set function greatly helps in finding

the vertices of the enclose volume efficiently. Consider a computational cell (i, k)

centred around the coordinates (ri, zk) as in figure 3.3.

The linear interface is constructed using the centred value φi,k and the first deriva-

tives Dr and Dz that follow from central differences:

Dr =
φi+1,k − φi−1,k

∆ri +
1
2 (∆ri−1 + ∆ri+1)

, Dz =
φi,k+1 − φi,k−1

∆zk +
1
2 (∆zk−1 + ∆zk+1)

. (3.31)
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r

z

φSE φSW

φNWφNE

φi,k

ri

zk

zE

rN

∆ri

∆zk

Figure 3.3: Calculation of the VoF value for a given level set field.

Then the linearized level set values at the corners of the cell, φSE, φSW , φNW and φNE

are determined through:

φSE = φi,k − Dr
∆ri
2
− Dz

∆zk
2

, φSW = φi,k + Dr
∆ri
2
− Dz

∆zk
2

, (3.32)

φNE = φi,k + Dr
∆ri
2

+ Dz
∆zk

2
, φNE = φi,k − Dr

∆ri
2

+ Dz
∆zk

2
. (3.33)

Whether or not a cell contains an interface is now easily checked by considering the

maximum and minimum of the four corner values. Furthermore, the vertices of the

polygon on the cell edges are quickly found by linear interpolation. In figure 3.3,

the radial coordinate rN located on the northern cell edge is calculated as:

rN = ri −
(

1
2
− |φNE|
|φNE|+ |φNW |

)
∆ri. (3.34)

Similarly, the axial coordinate on the western cell edge follows from:

zW = zk −
(

1
2
− |φSE|
|φSE|+ |φNE|

)
∆zk. (3.35)

The set of vertices is subsequently used in equation 3.30 to find the correspond-

ing volume. Finally, the signs of the corner values are used to determine whether

the correct polygon volume is calculated, or whether the complement is actually

required. This relatively simple sequence of calculations, with only the four cor-
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ner LS values required, results in a cheap function f such that ψ = f (φ,∇φ) as

described in section 3.3.1. Because of this, its inverse g = f−1 from equation 3.22

that is needed to locally correct the level set value φi,k can be obtained iteratively in

an very efficient way compared to methods that require the solution of a system of

equations (least squares-based) to obtain the interface.

3.3.3 Advection of the interface

Both the level set function φ and the VoF function ψ are advected with the underly-

ing flow field u:
∂φ

∂t
+ u · ∇φ = 0,

∂ψ

∂t
+ u · ∇ψ = 0. (3.36)

For both processes, the second order directional split algorithm of Weymouth and

Yue [94] is used. For the level set φ centred in cell (i, k), it is given by:

φ(∗) − φ(n)

∆t
=

(rF̃(n))i− 1
2
− (rF̃(n))i+ 1

2

ri∆r
+ φ(n)

(ru(n)
r )i+ 1

2
− (ru(n)

r )i− 1
2

ri∆r
, (3.37)

φ(n+1) − φ(∗)

∆t
=

G̃(∗)
k− 1

2
− G̃(∗)

k+ 1
2

∆z
+ φ(n)

u(n)
z

k+ 1
2
− u(n)

z
k− 1

2

∆z
, (3.38)

with F̃i± 1
2

and G̃k± 1
2

the scalar level set fluxes in radial and axial direction, respec-

tively, and the time level t(∗) an intermediary time level between t(n) and t(n+1).

The fluxes are determined in a similar way to the upwind approach of Sussman

and Puckett [83]: for cell (i, k), the flux F̃i+ 1
2

at the positive face at ri+ 1
2

is given by:

F̃i+ 1
2
=





ur
i+ 1

2

(
φi,k +

1
2

(
∆r− ur

i+ 1
2

∆t
))

φi+1,k − φi−1,k

2∆r
, ur

i+ 1
2
≥ 0

ur
i+ 1

2

(
φi+1,k −

1
2

(
∆r + ur

i+ 1
2

∆t
))

φi+2,k − φi,k

2∆r
, ur

i+ 1
2
< 0,

(3.39)

while for the axial direction the flux G̃k+ 1
2

is given by:

G̃k+ 1
2
=





uz
k+ 1

2

(
φi,k +

1
2

(
∆z− uz

k+ 1
2

∆t
))

φi,k+1 − φi,k−1

2∆z
, uz

k+ 1
2
≥ 0

uz
k+ 1

2

(
φi,k+1 −

1
2

(
∆z + uz

k+ 1
2

∆t
))

φi,k+2 − φi,k

2∆z
, uz

k+ 1
2
< 0

(3.40)

For the VoF function, we denote the radial and axial fluxes by Fi± 1
2

and Gk± 1
2
,
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respectively, and the advection scheme is given by:

ψ(∗) − ψ(n) =
1
|Ω|

(
F(n)

i− 1
2
− F(n)

i+ 1
2

)
+ H(φ(n))∆t

(ru(n)
r )i+ 1

2
− (ru(n)

r )i− 1
2

ri∆r
, (3.41)

ψ(n+1) − ψ(∗) =
1
|Ω|

(
G(∗)

k− 1
2
− G(∗)

k+ 1
2

)
+ H(φ(n))∆t

u(n)
z

k+ 1
2
− u(n)

z
k− 1

2

∆z
, (3.42)

with H the Heaviside function and |Ω| = ri∆r∆z the volume of the cell. The time-

explicit second term on the right hand side guarantees that volume is conserved

up to machine precision as long as the CFL number of the flow field, calculated

as ∆t(ur/∆r + uz/∆z), remains less than 0.5. After application of the divergence

theorem, the radial VoF flux F(n)
i+ 1

2
becomes:

F(n)
i+ 1

2
= ri+ 1

2

∫ tn+∆t

tn

∫ z
k+ 1

2

z
k− 1

2

χ(ri+ 1
2
, z, t)ur(ri+ 1

2
, z, t)dz dt, (3.43)

where χ is the colour function. To rewrite the time integral into a spatial integral, it

is observed that the continuity equation restricted to the radial direction:

1
r

∂

∂r
(rur) = 0, r > 0, (3.44)

implies that, at some fixed time t ∈ [tn, tn + ∆t], the characteristics are curved and

satisfy:

r(t)ur(r, t) = ri+ 1
2
ur(ri+ 1

2
, z, t). (3.45)

Integration then yields:

∫ r
i+ 1

2

r(t)
r dr =

∫ tn+∆t

t
ri+ 1

2
ur(ri+ 1

2
, z, τ)dτ, (3.46)

so that:

r2(t) = r2
i+ 1

2
− 2

∫ tn+∆t

t
ri+ 1

2
ur(ri+ 1

2
, z, τ)dτ, (3.47)

for some t ∈ [tn, tn + ∆t]. If we now assume ur(ri+ 1
2
, z, t) to be constant in time

during the interval [tn, tn + ∆t] and equal to ur(ri+ 1
2
, z, tn), then the integral reduces

to:

r2(t) = r2
i+ 1

2
− 2ri+ 1

2
ur(ri+ 1

2
, z, tn)(tn + ∆t− t). (3.48)
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A change of variable finally allows us to rewrite expression 3.43 as:

F(n)
i+ 1

2
=
∫ z

k+ 1
2

z
k− 1

2

∫ r
i+ 1

2

r∗
χ(r, z, tn)r dr dz, (3.49)

with:

r∗ =
√

ri+ 1
2

(
ri+ 1

2
− 2ur(ri+ 1

2
, z, tn)∆t

)
. (3.50)

The flux F(n)
i+ 1

2
is subsequently calculated by substitution of H(φ) for the colour

function χ and the techniques described in section 3.3.2. The resulting expression

for F(n)
i+ 1

2
appears to be different from the radial VoF flux proposed in Sussman and

Puckett [83]. In our approach, the dimension of the volume that is fluxed is based

on the divergence-free velocity per flux direction which is constant in time but

not in space. In Sussman and Puckett [83], the radial velocity used for the flux is

considered constant both in time and space, i.e.:

ur(r, z, t) = ur(ri+ 1
2
, z, t) for any r ∈ [ri− 1

2
, ri+ 1

2
], (3.51)

which yields:

r∗ = ri+ 1
2
− ur(ri+ 1

2
, z, tn)∆t. (3.52)

The axial VoF flux is given by:

G(∗)
k+ 1

2
=
∫ tn+∆t

tn

∫ r
i+ 1

2

r
i− 1

2

χ(r, zk+ 1
2
, t)uz(r, zk+ 1

2
, t)r dr dt, (3.53)

and since the continuity equation restricted to the axial direction is:

∂uz

∂z
= 0, (3.54)

the resulting VoF flux based on a divergence-free velocity field is in this case equal

to the flux from Sussman and Puckett [83]:

G(∗)
k+ 1

2
=
∫ r

i+ 1
2

r
i− 1

2

∫ z
k+ 1

2

z∗
χ(r, z, tn)r dz dr, (3.55)

where:

z∗ = zk+ 1
2
− uz(r, zk+ 1

2
, tn)∆t. (3.56)

To verify the correct implementation and accuracy of the interface advection scheme,
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a torus is placed in a divergence-free velocity field (ur, uθ , uz) = (r, 0,−2(z+ 2)) that

is constant in time. By choosing a velocity field that is exactly represented at the

discrete level, it is guaranteed that any errors that arise stem from the interface ad-

vection scheme alone. As pointed out by Weymouth and Yue [94], it is necessary to

have a flow field that contains shear to show the improved behaviour of the imple-

mented advection scheme compared to other non-strictly-conserving schemes. The

geometry is shown in figure 3.4, where the calculated shape of the cross section of

the torus is demonstrated at a number of time instances.

Figure 3.4: The advection of a torus by a linear divergence-free velocity field.

The accuracy of the spatial fluxes is obtained by comparing the cell-wise VoF values

to the ’exact’ values at some predefined time t(∗). The exact VoF values are obtained

using the exact solution of the velocity field, and several refinements are used to

approximate the exact cell-wise VoF values. The error:

‖ψ(t∗)− ψex(t∗)‖1 = ∑
i,k
|ψ(∗)

i,k − ψ
(∗)
exi,k |ri∆r∆z, (3.57)

is shown in figure 3.5, and demonstrates that the advection scheme has second

order accuracy in space. Additionally, the volume loss per time step is analyzed

for three different values of the maximal allowable volume loss parameter ε (10−4,

10−7 and 10−10). For all cases it it observed that during a simulation of sufficient

temporal length, the actual volume loss per time step correctly satisfies the bound
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in 3.26.
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Figure 3.5: The accuracy of the VoF field with grid refinement. Second order convergence is obtained in the case of a
torus in an axisymmetric corner flow.

Conservation of mass (equivalent to conservation of volume in the incompressible

case) in a simulation model is of paramount importance for the results to have a

clear physical meaning. Generic VoF methods frequently suffer from volume loss

during advection; even if the advection scheme is conservative, there is no intrinsic

mechanism that prevents computational cells from overflowing (VoF greater than

one) or from draining (VoF less than zero). These nonphysical occurrences need

to be subsequently corrected through processes that usually either change the total

volume (by adding or removing volume) or redistribute the total volume to elim-

inate invalid VoF values. The advection scheme used in our algorithm is to our

knowledge the only split flux scheme that is conservative and which simultane-

ously prevents nonphysical VoF values up to rounding errors.

3.3.4 Level set reinitialization

Due to dissipation during advection, the level set function φ quickly loses its signed

distance property ‖∇φ‖ = 1. This property is desirable as it generally guarantees

a nicely behaving level set function with accurate finite difference results when, for

example, approximating its gradient or curvature. Additionally, the determination
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of the regularized fluid viscosities depends on the signed distance property. A

reinitialization process is therefore performed after every few iterations with the

aim of reconstructing the level set function φ to a distance function by having its

gradient satisfy ‖∇φ‖ = 1. This is done according to the method proposed by

Sussman et al. [84], and involves solving the following evolution equation at time

tn:
∂φ

∂τ
= sign(φn) (1− ‖∇φ‖2) , φ(0) = φn, (3.58)

in which τ is a pseudo time. This equation is integrated over this pseudo time until

a steady state solution is obtained. This is accomplished by rewriting the equation

to a hyperbolic transport equation:

∂φ

∂τ
+ q · ∇φ = sign(φn), with q = sign(φn)

∇φ

‖∇φ‖2
, (3.59)

and it is solved using first order ENO spatial fluxes [77] and Euler forward inte-

gration in time. The sub-cell fix of Russo and Smereka [73] is applied to make the

fluxes truly upwind and therefore to reduce any movement of the interface. Since

the advection velocity is unity, the number of time steps for a given CFL number is

chosen such that the level set is reinitialized in a neighbourhood with a radius of

about five cells around the interface. This ’narrow band’ approach significantly re-

duces the required computational effort compared with reinitialization of the level

set function on the whole domain.

3.3.5 Calculation of the interface curvature

The interface conditions described in section 3.2.3 require the curvature of the in-

terface. As demonstrated by, among others, Francois et al. [32], the accuracy of

most surface tension-dominated computations is generally more dependent on the

accuracy of the interface curvature calculation than on the surface tension model

used. Having both a level set and a VoF function available, there are two obvious

ways to compute the interface curvature. The curvature κ based on the level set φ

is relatively straightforward to determine in cell centres by using a finite difference

approximation of:

κ(φ) = ∇ ·
( ∇φ

|∇φ|

)
. (3.60)

The actual interface curvature is found by an approximation that uses the cell cen-

tred curvature values. In the original MCLS algorithm, the curvature is calculated
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in this way. Despite its apparent simplicity, however, the method generally yields

a rather non-uniform interface curvature field unless advanced methods are used

to obtain the interface curvature from the cell centre values. This non-uniformity

is a major source of parasitic currents (see section 3.4.1). Improved approximation

methods involve, among others, smoothing of the obtained interface curvature by

a diffusive Poisson process [90], approximating the interface through curve fitting

[29, 58], applying higher order spatial fluxes [25] and combining Front Tracking and

Level Set techniques [64]. Furthermore, the first order reinitialization of the level

set function (section 3.3) can effectively destroy the accuracy of the computed cur-

vature, as was also mentioned by Sussman et al. [85]. This is verified in figure 3.6,

where the curvature error after reinitialization does not converge in the sup-norm

upon grid refinement.
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Figure 3.6: Convergence of the interface curvature with grid refinement of a stationary sphere of unit radius. The
exact initial level set function is subsequently reinitialized to demonstrate the detrimental effect of the implemented
reinitialization procedure on curvature accuracy: no convergence for the level set curvature κLS , whereas the Height
Function curvature κHF shows second order accuracy upon refinement.

The reason for this is that first and second order differences are calculated from

a quantity (the level set values) that itself is only second order accurate. These

derivatives are second order only if the truncation error of the level set is sufficiently

smooth, which is generally not the case in an arbitrary flow field. In du Chéné

et al. [25] for example, it is shown that a fourth order reinitialization algorithm is

generally required to maintain second order accuracy of the curvature calculations.
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The Height Function (HF) method [12, 18, 40] uses the VoF values to locally recon-

struct the interface. Originally developed for Cartesian domains, the implementa-

tion of the HF method in cylindrical coordinates is slightly more involved, but it

relies on the same underlying principle. Depending on the orientation of the inter-

face normal, a local interface height function h in a column of computational cells is

sought that approximates the true interface through a mass balance in the column.

If the orientation in the (r, z)-plane is such that the interface height only depends on

the radius, i.e. h = h(r), then the relation between the VoF values and the interface

height in the i-th column is:

∫ r
i+ 1

2

r
i− 1

2

h(r)r dr ∼∑
j

ψi,jri∆ri∆zj. (3.61)

In the other case, when the height function only depends on the z-coordinate, i.e.

h = h(z), one finds for the k-th column:

1
2

∫ z
k+ 1

2

z
k− 1

2

h(z)2 dz ∼∑
j

ψj,krj∆rj∆zk. (3.62)

A schematic example of both cases is given in figures 3.7 and 3.8, respectively.
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z
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Figure 3.7: The case when h = h(r).
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z
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1 0.98 0.05
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h(z)

Figure 3.8: The case when h = h(z).

The numbers in the cells represent the VoF values. For all of the three columns, the

area under the polynomial curve h(r) in figure 3.7 equals the cumulative amount

of volume given by the VoF values. For h(z) in figure 3.8, the same condition holds

but then for all of the three rows. The extension to 3D domains requires a local
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stencil of nine cells (3 × 3) to construct an exact quadratic interface.

For h = h(r), the height function h is approximated by a quadratic polynomial, and

for h = h(z) a quadratic polynomial is used to approximate the function h(z)2. A

set of three columns then suffices for finding the polynomial coefficients, and the

derivatives of the polynomial are subsequently used to obtain the respective curva-

tures. Near r = 0 a symmetry condition is used for the coefficients that requires

only two columns. Even though this method also yields cell centred curvature

values, by construction it generally leads to a significantly more uniform interface

curvature field compared to the results based on the Level Set method, but at the

cost of slightly higher computational effort. Some additional tuning can be done

to improve the accuracy [56], and higher order curvatures are possible [82]. Fur-

thermore, the method is second order accurate, which is verified in figure 3.6 by

considering the curvature of a stationary sphere.

For flows with a significant amount of surface tension, we require for consistency

that the magnitude of the parasitic currents vanishes when the grid is refined. In our

implementation of the Ghost Fluid method, this implies that we need a curvature

calculation that converges upon grid refinement. The Level Set method requires

a high order reinitialization technique to guarantee convergence of the curvature.

Although approaches exist to achieve this (like in du Chéné et al. [25]), the large

stencils that are required may cause resolution problems when multiple interfaces

approach each other and the level set function becomes poorly shaped. This could

of course be remedied by locally switching to a lower order stencil, but clearly this

approach is not optimal. Furthermore, the higher order reinitialization procedure

becomes significantly more expensive, thereby increasing the overall computational

complexity of the interface algorithm. For that reason, the primary curvature calcu-

lation in our cylindrical MCLS algorithm is based on the Height Function method.

If an invalid solution is detected (for example due to a lack of resolution), the algo-

rithm switches to a curvature calculation based on the level set for robustness.

3.3.6 Computational performance

Performance profiling for different grid sizes shows that the interface representation

algorithm is very light (less than 5% of CPU time in a typical run) when compared

to the cost of the flow solver. This can be expected when considering the complex-

ity of the fully implicit flow solver versus the explicit interface advection. Although
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likely to be slightly more efficient than standard VoF/PLIC because of the explicit

interface present, our method is more expensive than compressive VoF methods.

However, these algorithms in turn are often tied by a very stringent time step con-

straint to remain stable and conservative. Our method on the other hand is able

to handle CFL numbers up to 0.5, which allows the use of significantly larger time

steps. The efficiency of the method is further improved through the use of inter-

face subcycling, where multiple interface advection steps can be performed within

a single flow time step, thereby fully utilizing the unconditional stability of the flow

solver in case of CFL numbers larger than 0.5.

3.4 Numerical validation of the algorithm

To validate the algorithm and establish its accuracy, four commonly used test cases

are performed. These cases are chosen such that they can be performed on an

axisymmetric domain.

3.4.1 Stationary bubble with high surface tension

As the first test case, we consider a spherical bubble inside a cylindrical domain. No

gravity is present, and a large surface tension is balanced by a jump in pressure. It is

well known that many numerical models that attempt to simulate similar cases are

subject to parasitic or spurious velocities due to errors in the curvature calculation

[39, 69, 72]. Figure 3.9 shows the scaled currents, which for a curvature calculation

based on the Height Function method are usually maximal at the location where

the inclination of the interface with respect to the coordinate directions is largest.

We will consider the test case of Denner and van Wachem [21], but instead of a

closed Cartesian domain the case is performed in a closed cylinder. It is assumed

that, for a sufficiently large domain, the results are comparable to the results in the

literature that were done in a cube. The variables of interest are the maximum value

of the spurious velocity |u|max around the interface, and the maximum relative

errors in the pressure jump E(∆p) and in the interface curvature E(κ):

E(∆p) =
max |∆p− ∆pexact|

∆pexact
, E(κ) =

max |κ − κexact|
κexact

. (3.63)

Both ∆pexact and κexact are known from the Young-Laplace equation and the cur-

vature of a sphere, respectively. The flow velocity, the pressure difference and the

interface curvature are calculated after a single time step as well as after fifty time



Section 3.4 Numerical validation of the algorithm 73

(a) After 1 time step. (b) After 50 time steps.

Figure 3.9: Spurious velocities around the interface after 1 and 50 time steps.

steps to analyze the growth of the parasitic currents. The results are shown in ta-

ble 3.1, together with the results of the VOF CELESTE method (a compressive VoF

method that uses least-squares to approximate the curvature) and the VOF-PLIC

HF method (a VoF method with PLIC interface reconstruction that uses the Height

Function method for the curvature computation).

Table 3.1: Results of the stationary bubble test case after 1 and 50 time steps. The values of the VOF CELESTE and
VOF-PLIC algorithms are from Denner and van Wachem [21].

After 1 step |umax| (m/s) E(∆p) E(κ)

VOF CELESTE 1.01 · 10−3 1.37 · 10−2 2.20 · 10−2

VOF-PLIC HF 7.92 · 10−3 3.69 · 10−3 4.35 · 10−3

MCLS 2.45 · 10−3 8.62 · 10−3 1.13 · 10−2

After 50 steps |umax| (m/s) E(∆p) E(κ)

VOF CELESTE 6.75 · 10−2 1.26 · 10−2 1.85 · 10−2

VOF-PLIC HF 4.26 · 10−2 6.58 · 10−3 2.02 · 10−2

MCLS 9.33 · 10−2 1.03 · 10−2 1.09 · 10−2

It is expected that, especially in the inviscid case, the pressure jump over the inter-

face has second order accuracy upon grid refinement. To test this, the error E(∆p)

is calculated after 1 time step for several grids; as shown in figure 3.10, second order

convergence is indeed achieved. To measure the growth of the parasitic currents,

also the total kinetic energy after a single time step is shown in figure 3.10. The

order of the kinetic energy seems to be much less regular than the order of the
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pressure jump, but still good convergence is observed.
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Figure 3.10: Error in the pressure jump and in the magnitude of the kinetic energy for the stationary bubble test case.

Table 3.1 shows that our algorithm produces results of the same order of magni-

tude when compared with the other two algorithms. Even though surface tension-

dominated flows are not of our primary interest, this test case shows that the current

implementation of the Height Function method for the curvature together with the

Ghost Fluid method for the treatment of the surface tension is quite adequate.

3.4.2 Rising spherical gas bubble in a stagnant liquid column

The second test case is the rising bubble in a column filled with a viscous liquid.

Starting at rest, the bubble rises due to boyancy, and eventually settles, usually with

a terminal velocity and shape, but not always (in the case of wobbling bubbles). For

this test case, we replicate cases A and B of the spherical cap bubble experiments

from Hnat and Buckmaster [42]. The only difference between these cases is a larger

initial bubble diameter in case B than in case A. The parameters of interest are the

Reynolds number Re and the Morton number Mo, defined as:

Re =
ρlUtr

µl
, Mo =

gµ4
l

ρlσ3 , (3.64)

where ρl and µl are the density and dynamic viscosity of the liquid, Ut is the
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terminal rise velocity, r the initial bubble radius, g the gravitational acceleration

and σ the surface tension coefficient. Table 3.2 shows the parameters used for the

simulation of both cases.

Table 3.2: Parameters of the rising bubble simulations (Mo = 0.065).

Parameter Case A Case B

cylinder radius R [m] 4.2 · 10−2 6 · 10−2

cylinder length L [m] 1.68 · 10−1 2.4 · 10−1

liquid density ρl [kg/m3] 875.5 875.5
gas density ρg [kg/m3] 1.225 1.225
liquid viscosity µl [kg/m/s] 0.118 0.118
gas viscosity µg [kg/m/s] 1.77 · 10−5 1.77 · 10−5

initial bubble radius r [m] 6.08 · 10−3 8.3 · 10−3

initial bubble height h [m] 3.36 · 10−2 4.8 · 10−2

The time step ∆t was fixed at 10−4 s, and the simulations were performed until

t = 0.45 s on a grid of 128× 512 cells in the radial and axial direction, respectively.

The value of the surface tension σ is set at 0.0322 kg/s2, and gravity acts in the

negative z-direction with magnitude 9.8 m/s2. The initial state of the simulation is

shown in figure 3.11.

The dimensions of the cylindrical domain are chosen according to Mukundakrish-

nan et al. [62], to make sure that wall effects are not significant. We are interested

in the terminal rise velocity Ut expressed as a terminal Reynolds number Ret. Note

that Mo is an input parameter, whereas Re is an output parameter that results from

the simulation. The rise velocity U(n) at time t(n) is defined as the velocity of the

bubble centroid using the VoF values:

U(n) =
∑i,k

1
2

(
u(n)

zi,k−1 + u(n)
zi,k

)
ψ
(n)
i,k Ωi

∑i,k ψ
(n)
i,k Ωi

, (3.65)

where Ωi = ri∆ri∆z is the volume of cell (i, k). Table 3.3 shows the terminal

Reynolds number, as obtained with the respective experimental results for both

cases, and also as obtained with our MCLS algorithm. For a better comparison, the

two cases are also performed with two commercial CFD packages (Fluent v15.0 and

Star-CCM+ v10.02) and with the open-source software OpenFOAM v2.3. These ad-

ditional results are also included in table 3.3. The four simulation tools used about

the same number of spatial grid cells. In Fluent, the convective terms of the momen-
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Figure 3.11: Geometry and initial state of the rising bubble simulations.

tum equation are discretized by using a second order upwind method with a limiter,

and the PRESTO algorithm is used in the pressure calculation. A first order time

integration is used. The interface representation is based on the VoF method with

a geo-reconstructed (PLIC) interface. For Star-CCM+, the Navier Stokes equations

are discretized by using a third order MUSCL scheme for the convective terms and

a first order (Euler Backwards) time integration. A second order High-Resolution

Interface Capturing (HRIC) scheme with a sharpening factor of 0.1 is used for the

advection of the volume fraction. Finally, for OpenFOAM, the interFoam solver is

used with a second order upwind scheme (with a limiter) for the discretization of

the convective operator terms in the momentum equation and the explicit version

of the MULES scheme in the phase fraction equation. The CFL number is set to a

constant value of 0.05 to achieve sufficient interface compression.

Table 3.3: Results for the terminal Reynolds number in the rising bubble test case (Mo = 0.065).

Case ReMCLS ReOpenFOAM ReStar−CCM+ ReFluent Reexp

A 9.4 9.3 9.1 9.3 9.8
B 15.3 14.7 15.1 15.3 17.1
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Table 3.3 shows that the four simulation models give very close results for the termi-

nal Reynolds number in cases A and B, albeit slightly lower than the experiments.

All four results are somewhat lower than the experimental values; the difference

between the simulations and experiments was not further analyzed as our main

purpose is the comparison of numerical methods for the given mathematical model.

A possible reason is the presence of wall effects in the experiment, which are not

included in the simulations. Figure 3.12 shows that qualitatively, our algorithm is

well capable of simulating the shape of the bubble as soon as it is stabilized.

(a) Case A (b) Case B

Figure 3.12: Steady state configuration of a rising air bubble in viscous liquid for cases A and B: experiment (left side
of graphs) versus simulation (right side of graphs). (Experiment photo copied from Hnat and Buckmaster [42])

Figure 3.13 shows the terminal Reynolds number over time for both cases A and

B. For a qualitative comparison between the four different simulation algorithms,

figures 3.14 and 3.15 show the contour of the bubbles at times 0, 0.05, 0.1, 0.25 and

0.45 seconds.

Case A involves a relatively stable bubble, as can be seen in figure 3.13a. The bubble

accelerates and without much wobbling approaches its terminal shape and velocity.

For case B, however, the bubble is less stable, and figure 3.13b shows that after the

initial acceleration some wobbling occurs that slowly damps out. Looking at figure

3.15, the skirt of the bubble in case B is much sharper than in case A, and this

may cause large errors in the curvature calculations and in the subsequent surface

tension approximations.

The MCLS method maintains a sharp edge, but when the bubble rises, the edge

slowly droops and is subsequently ’pulled’ back up again to form a relatively flat

edge, which is repeated over time (this oscillation can be seen in figure 3.13b). The

drooping of the bubble edge is most clearly visible in the Fluent result, while Open-

FOAM and Star-CCM+ do not seem to suffer from this. However, a visualization

of the VoF field around the bubble in figure 3.16 shows that in fact these latter two
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(a) Case A: experimental Reynolds number is 9.8.
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(b) Case B: experimental Reynolds number is 17.1.

Figure 3.13: Rise velocities expressed as Reynolds numbers for both cases A and B.
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(a) MCLS (b) OpenFOAM (c) Star-CCM+ (d) Fluent

Figure 3.14: Snapshots of the rising bubble case A at times t = 0, 0.05, 0.1, 0.25 and t = 0.45 s.

(a) MCLS (b) OpenFOAM (c) Star-CCM+ (d) Fluent

Figure 3.15: Snapshots of the rising bubble case B at times t = 0, 0.05, 0.1, 0.25 and t = 0.45 s.
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packages suffer from volume leakage from the bubble. Subsequent investigation

has shown that in turn the MCLS method and Fluent do not show any signs of

leakage during the test case. From figure 3.16 it is clear that the volume loss of

the bubble in OpenFOAM is much more significant than in Star-CCM+. Since the

method used to calculate the rising velocity (expression 3.65) does not distinguish

between contributions inside or outside the bubble (it is therefore only useful for

bubbles without break-up), the relatively high volume leakage may contribute to

the lower terminal velocity of OpenFOAM in figure 3.13b.

(a) OpenFOAM (b) Star-CCM+

Figure 3.16: VoF contours during the rising bubble test case. Both OpenFOAM and Star-CCM+ show a degree of
leakage that originates from the corner of the flattened bubble.

A refinement study has also been performed for both cases A and B using the

original grid with 128 × 512 cells, and two refined grids with 256 × 1024 cells and

384 × 1536 cells, respectively. The time step was decreased accordingly to keep the

Courant number constant. The results are shown in figure 3.17 for both cases. The

oscillatory behaviour of the rise velocity is magnified for both case A and B, and it

is clear that in case A both the period and the amplitude diminish upon refinement.

It can be seen in figures 3.13a and 3.13b that the other methods also suffer from

these oscillations (Fluent in particular). For case B, however, there appears an initial

decrease in fluctuation, but at the finest grid the oscillations are growing again. The

exact nature of the velocity fluctuation needs to be investigated more thoroughly,

but they are likely to stem from an imbalance between pressure and surface tension

forces. Furthermore, it can be seen that the convergence is not monotonic in both of

the two cases, and a truly steady state has not yet been reached on the current grids.

Further refinement studies therefore need to be performed to study the convergence

of the rise velocities.
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(a) Grid refinement study for case A.

0.0 0.1 0.2 0.3 0.4

Time [s]

0

2

4

6

8

10

12

14

16

18

R
ey

n
ol

d
s

nu
m

b
er

[-
]

128 × 512

256 × 1024

384 × 1536

0.41 0.42 0.43 0.44 0.45
15.2

15.4

15.6

(b) Grid refinement for case B.

Figure 3.17: Successive grid refinement for both cases A and B using our interface algorithm.
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3.4.3 Taylor bubble

The third test case comprises the rise of a long gas bubble through a vertical cylin-

drical pipe, also known as a Taylor bubble. In practice this configuration is often

found in wells and vertical risers used for hydrocarbon recovery from reservoirs

and transport to offshore platforms. It serves as an important test case for the sim-

ulation of slug flow. As for the rising bubble case, the main interest lies in the rise

velocity of the bubble [2, 50, 86], as well as in the thickness of the falling liquid

film between the bubble and the pipe wall [55] and the wake of the bubble [15, 50].

We will try to reproduce some of the numerical results of Lu and Prosperetti [57],

which in turn were compared with the experiments of White and Beardmore [95]

and Bugg and Saad [15]. The commonly used dimensionless parameters for this test

case are the Eötvös number, the Morton number and the Froude number, defined

as:

Eo =
ρl gD2

σ
, Mo =

gµ4
l

ρlσ3 , Fr =
Ut√
gD

, (3.66)

where ρl and µl are the fluid density and viscosity, respectively, g the gravitational

acceleration, D = 2R the cylinder diameter, σ the surface tension coefficient and Ut

the terminal rise velocity of the bubble defined as in equation 3.65. Note that Eo

and Mo are input parameters, whereas Fr is an output quantity that results from

the simulation. A total of five cases are considered, with two low-viscosity cases (A

and B) and three moderately viscous cases (C, D and E). The parameters of each

case are shown in table 3.4.

Table 3.4: Parameters for the different test cases of the Taylor bubble.

Case Eo Mo Fr (exp)
Fr (MCLS)
35 × 350

Fr (MCLS)
70 × 700

A 15 1.8 · 10−8 0.23 0.233 0.234
B 60 1.8 · 10−8 0.33 − −
C 18.7 1.6 · 10−2 0.10 0.0975 0.0984
D 74.6 1.6 · 10−2 0.27 0.273 0.275
E 100 1.5 · 10−2 0.30 0.297 0.297

The values in the column headed by ’Fr (exp)’ are the numerical values found by Lu

and Prosperetti [57], which are claimed to be within 1% of the experimentally mea-

sured values of White and Beardmore [95]. The column headed by ’Fr (MCLS)’ are

the numerical values found with our algorithm. A non-uniform grid is employed,
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with a radial node distribution according to:

ri =
tanh(αRi/Nr)

tanh(αR)
, i = 1, . . . , Nr, (3.67)

with R the cylinder radius and α = α(R) a scaling constant. The grid is refined

near the cylinder wall at r = R to better capture the thin film of liquid between the

wall and the rising bubble. For all cases, the number of cells in radial direction Nr

was set at 35 to be able to compare with Lu and Prosperetti [57], who used 35 ×
420 cells. To test the efficiency of the non-uniform grid, we performed additional

simulations of case A for a radial distribution equal to equation 3.67, but with only

20 cells and a higher level of non-uniformity due to a larger value of α. This gave a

resulting Froude number of 0.228, compared to the 35-cell value of 0.232. A refine-

ment case was done as well, where 70 cells were used in radial direction and the

Courant numbers were kept constant. The results are shown in the last column of

table 3.4.

The tail of the bubble in case A is oscillating and therefore no true steady state

configuration is reached, although the rise velocity has stabilized. This corresponds

very well with the results from Lu and Prosperetti [57], where a similar oscillatory

behaviour is found for case A.

For case B, the low viscosity in combination with the relatively small surface tension

cause the bubble to break up after some time. The initially convex rear end of the

bubble rapidly becomes concave in the absence of sufficient surface tension, and

subsequently starts to protrude the bubble from below until it breaks up completely.

Consequently, no valid value of the terminal rise velocity could be derived. This

break up does not seem to appear in the simulations by Lu and Prosperetti [57].

Cases C, D and E have nearly the same fluid viscosity but there is a decreasing

influence of the surface tension as indicated by the increasing values of the Eötvös

number. For high surface tension, the initial bubble tends to become spherical as

this is the optimum shape from an energetic point of view. An Eötvös number

below about 4 will completely prevent the bubble from moving [95]. Consequently,

the terminal rise velocity increases with decreasing Eötvös number, which is also

seen in the simulation results.

The difference in liquid viscosity yields two distinctive flow patterns below the rear

end of the bubble. In cases A and B, large vortices with reverse flow are present,

while for cases C, D and E, the higher viscosity prevents any recirculation from
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(a) Case A (b) Case C (c) Case D

Figure 3.18: Flow patterns of the Taylor bubbles of cases A (low viscosity), and C and D (moderate viscosity).

forming and the falling liquid is smoothly passing the bubble. This is shown in

figure 3.18 for the cases A, C and D.

3.4.4 Taylor-Rayleigh instability

To test the ability of our algorithm to capture instabilities, a Taylor-Rayleigh instabil-

ity, initiated by a heavier fluid on top of a lighter fluid in a closed vertical cylinder,

is considered as a fourth test case. The fluid parameters are taken from Gopala and

van Wachem [35], with fluid densities ρh = 1.225 kg/m3 and ρl = 0.1694 kg/m3,

and both viscosities µh and µl equal to 3.13 · 10−3 kg/m/s. Here the subscript h

refers to the heavier fluid and the subscript l refers to the lighter fluid. The cylin-

drical domain has a radius R = 0.5 m and length L = 4 m, and the initial interface

height is given by z(r) = 0.05 cos(2πr). A no-slip boundary condition is imposed on

all the walls of the cylinder. The simulation is performed on two grids of 32× 256

and 64× 512 cells with constant time steps 2 · 10−4 and 1 · 10−4 seconds, respec-
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tively, and without surface tension. The results from both grids are shown in figure

3.19. Both simulations are performed with an allowable mass loss of 10−10.

(a) At t = 0 seconds. (b) At t = 0.6 seconds. (c) At t = 0.9 seconds.

Figure 3.19: A Taylor-Rayleigh instability at various time instances. The left halves are the results from the 32× 256
grid, the right halves are the results from the 64× 512 grid.

In the case of incompressible inviscid fluids, it can be shown that small perturba-

tions η of an initially axisymmetric interface at z = 0 in a long cylinder can be

described by:

η(r, t) = h0 J0

(
kr
R

)
cosh(st), (3.68)

where h0 is some constant and J0 is the Bessel function of the first kind of order

zero [20]. The growth rate s for small initial perturbations of the interface can be

determined through:

s2 =
g(ρh − ρl)k− σk3

ρl + ρh
, (3.69)

where g is the gravitational acceleration, σ is the surface tension coefficient and k

satisfies:

J′0(kR) = 0, (3.70)

in which R is the cylinder radius. This can be rewritten as:

s2 = kgA (1−Φ) , (3.71)
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where A is the Atwood number, defined as:

A =
ρh − ρl
ρl + ρh

, (3.72)

and Φ is a stability parameter:

Φ =
σk2

g(ρh − ρl)
. (3.73)

The inherently unstable configuration of a heavier fluid on top of a lighter fluid can

thus be stabilized by a surface tension force between the two fluids. The value Φ

determines whether any initial perturbation is accelerated due to gravity (Φ < 1),

or whether is it is neutralized due to surface tension (Φ > 1). The ability of our

algorithm to follow the linearized theory is tested by determining the growth rate of

the interface height for a set of values for Φ. The initial perturbation of the interface

is given by z(r) = h0 J0(kr) with h0 = 5 · 10−3 m. The cylindrical domain has

radius R = 1 m and length L = 6 m, and the fluid densities are ρh = 1 kg/m3 and

ρl = 0.25 kg/m3 for the heavier and lighter fluid, respectively, while both viscosities

are zero. The value of k follows from J′0(kR) = 0, which gives k = 3.8317 m−1. The

acceleration due to gravity is taken as g = 1 m/s2. As the fluids are considered

to be inviscid, free-slip boundary conditions are used on all cylinder walls. The

computation is done on two grids with 30× 180 and 60× 360 computational cells

in radial and axial direction, respectively. The interface at a fixed radial location is

tracked during a time span of 3 seconds, after which the growth rate s is determined

while assuming that the perturbation develops according to expression 3.68. Figure

3.20 shows the results for various values for Φ.

The relative errors (i.e. the scaled difference between the numerical prediction and

the analytical solution) for the considered values of Φ are between 0.3− 1.1%. The

deviation is largest for vanishing surface tension. Because the measurements are

done at a fixed time, the interface has moved much more than it would have done

with larger surface tension, and therefore it may have left the regime in which the

analytical assumption holds, leading to larger errors. Overall, however, there is a

very satisfactory agreement between the numerical predictions and the analytical

results.
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Figure 3.20: Scaled growth factor s for different surface tension values: MCLS results versus the analytical result of
expression 3.71.

3.5 Concluding remarks

This chapter described the development of a dual interface capturing method for

the simulation of incompressible immiscible two-phase pipe flows based on the in-

terface model of the MCLS framework. The focus lies on computational efficiency

(having the simulation of turbulent flows in mind) at the cost of a reduced flexi-

bility in choosing the grid. The cylindrical Navier-Stokes equations are discretized

using second order finite differences on a staggered cylindrical grid, and the flow is

evolved in time using a second order implicit midpoint scheme in combination with

a standard projection scheme to decouple the pressure and the velocity. The inter-

face is modelled by a coupled level set/VoF method that is optimized for efficiency.

An interface advection algorithm that is inherently conservative is introduced, and

the VoF-based Height Function method is extended to cylindrical geometries to ob-

tain converging curvature computations upon grid refinement. The Ghost Fluid

method is used to model the interface jump conditions.

To validate our algorithm, four well known test cases for multiphase flows are con-

sidered. The surface tension model (Ghost Fluid with Height Function curvature)
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is tested and gives comparable results with the literature in terms of the pressure

jump and spurious velocities. The rising bubble test case shows that our method

consistently follows the majority of the results obtained with three other CFD pack-

ages, even though all four give a slightly lower terminal bubble velocity than the

experimental result. This is clearly an improvement on the performance of the

original MCLS algorithm on a Cartesian grid as considered by Denner et al. [22],

where the rising bubble was not well captured. The simulation of a Taylor bubble

shows very good results when compared to other numerical results in the literature

and to experiments, both for the shape and for the terminal velocity. Finally, it is

shown that our algorithm is well capable of capturing a Rayleigh-Taylor instability

as demonstrated through a comparison with the associated analytical theory.
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Chapter 4
Numerical prediction of two-phase flow instabilities in

cylindrical pipes

In this chapter we study the application of a combined Level Set/Volume of Fluid method to

simulate two-phase Kelvin-Helmholtz instabilities in cylindrical geometries. The choice of a

structured cylindrical grid allows for a fast and efficient algorithm. The simulation results

of the algorithm are compared with linear modal theory in the case of a 2D core-annular

flow, giving a very good agreement for the growth factors. The 3D capabilities of the method

are tested through simulations of Kelvin-Helmholtz waves in inclined pipe sections under

similar conditions as used in the well known experiments of Thorpe [88].

4.1 Introduction

The numerical modeling of multiphase flow phenomena has been a topic of

much research over the past few decades. Examples of multiphase flows in

industry are ubiquitous: boilers, condensers, reactors, mixers, separators and (cav-

itating) propellers are among some of the applications. In the oil and gas industry

the effort for hydrocarbon recovery from more remote and deeper production fields

has led to more complex pipeline transport. It is quite common to find that both

The content of this chapter is based on the article:

G.T. Oud, D.R. van der Heul, C. Vuik, and R.A.W.M. Henkes. Numerical prediction of

two-phase flow instabilities in cylindrical pipes, to be submitted.
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phases are transported through a single pipeline to an offshore platform or to an

onshore plant. The liquid-gas mixture flowing through a pipeline can be in a spe-

cific flow regime, such as stratified flow or slug flow, depending on, among others,

the liquid and gas flow rates and the pipe diameter. Unstable flows with slugs

cause significant mechanical stresses on the pipe wall and its supports, and can

also cause difficulties for the facilities at the end of the pipeline, such as flooding

of the separator or trips of the compressor. It is therefore desirable to be able to

predict what kind of conditions lead to slug flow, in both horizontal and inclined

pipes.

4.1.1 3D cylindrical coordinates for accuracy and efficiency

To get a better understanding of the physical mechanisms underlying this transition

process to slug flow, a highly accurate and strictly mass conserving computational

model has been developed specifically for the simulation of two-phase flow in a

straight segment of a cylindrical pipe with a circular cross section. A key element

is the choice to use 3D cylindrical coordinates in the discretization process. Al-

though this choice leads to certain numerical challenges near the cylinder origin,

discretizations on structured orthogonal grids generally show at least one order of

improved performance in both accuracy and computational efficiency compared to

unstructured grids, which are currently often used in cylindrical geometries. As

the field of CFD for turbulent multiphase flows is currently emerging, we believe

that this substantial gain in performance justifies an investigation into the use of

cylindrical coordinates in two-phase flow modelling. By limiting the applicability

of our algorithm to a straight pipe section, we can subsequently optimize the ac-

curacy which enables us to make very high resolution (eventually DNS and LES)

simulations using moderate computational resources.

The flow is considered to be incompressible and isothermal, and the two immiscible

phases are separated by a sharp interface. It can therefore be accurately described by

a two-phase flow model consisting of the variable density/viscosity Navier-Stokes

equations and a separate model for the evolution of the interface. Controlling nu-

merical dissipation is very important in this application to be able to distinguish

the actual physical waves from the spurious numerical amplification of interface

disturbances. Furthermore, mass should be accurately conserved, as loss of (mov-

ing) mass generally implies loss of momentum (i.e. artificial damping). We believe

that an optimal accuracy and (parallel) efficiency can be achieved by using a sim-
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ple second order finite difference discretization for the Navier-Stokes equations in

cylindrical coordinates on an orthogonal structured grid, together with a dedicated

mass conserving, finite volume based interface model that exploits all symmetries

and regularity of the control volumes on that same grid.

4.1.2 Dual interface capturing models

Nearly all interface models that do not impose any restrictions on changes in the

topology of the interface are based on either the Level Set (LS) method [66] or the

Volume of Fluid (VoF) method [41]. Individually, however, each suffers from draw-

backs: the LS method is inherently incapable of conserving mass over time, while

the VoF method, which lacks an explicit interface, often requires complicated and

computationally expensive interface reconstructions. Although the impact of these

drawbacks can be reduced to a certain extent, yet another approach combines both

methods with the aim of benefiting from their advantages (the explicit interface of

the LS method and the conservation property of the VoF method) while eliminating

their disadvantages.

As the interface is described by congruent LS and VoF fields, we refer to these meth-

ods as hybrid- or dual interface capturing methods. Because no such algorithms in

3D cylindrical coordinates appear to exist in the literature, we have devised a dedi-

cated cylindrical dual interface method for our purposes. Because of the similarities

between generic dual methods, we provide only a brief explanation of our algorithm

in section 4.2.2. More details are given on three sub-algorithms specifically designed

for cylindrical coordinates: (1) an efficient function relating the LS and VoF values,

(2) a conservative interface advection scheme and (3) an algorithm to improve the

accuracy of the VoF advection near the origin.

4.1.3 Stratified multiphase pipe flow

To test the full 3D capabilities of our interface algorithm, a test case based on the

well-known stratified flow experiments of Thorpe [88] is performed. These exper-

iments are well established as the basis for a number of 2D computational multi-

phase studies, such as by Atmakidis and Kenig [3], Bartosiewicz et al. [9], Fleau

et al. [31], Štrubelj and Tiselj [80]. The channel configuration allows simulations to

be done in 2D rectangular domains due to the application of Squire’s theorem to

stratified layers of fluids [7, 97]. Furthermore, classical (inviscid) Kelvin-Helmholtz
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theory in a confined domain can be applied to make a priori estimates of the mag-

nitude of the expected wave lengths, of the onset time of the perturbation and of

the velocity profiles. For 3D domains with a circular cross section, however, theory

similar as for the 2D channel appears to be rather limited. The stability analy-

sis for stratified flows in pipes is generally based on modal stability theory of the

linearized one-dimensional two-fluid model, as studied by, among others, Barnea

and Taitel [8], Guo et al. [37], Salhi et al. [75], Taitel and Dukler [87]. These clo-

sure correlations cover different physical flow features, such as the wall friction

and the interfacial stress between the phases [79, 89]. The accuracy of the outcome

of the stability analysis is ultimately limited by the 1D character of the two-fluid

model (and the applied closure relations), while it is plausible that the curved walls

may introduce non-negligible 2D effects that are consequently not captured. How-

ever, no literature has been found that numerically investigates the accuracy of the

two-fluid model-based stability theory in cylindrical pipes using a 3D interface rep-

resentation.

4.1.4 Outline

The objective of this chapter is to analyze to what extent our cylindrical algorithm

is capable of simulating interface instabilities in two-phase pipe flows. In partic-

ular, we focus on the formation of Kelvin-Helmholtz instabilities that arise due to

small perturbations of the interface in shear flows. We apply our algorithm to two

test cases that resemble common physical phenomena: shear flow in a core-annular

flow, and stratified flow in an inclined pipe section. Due to the shape of the in-

terface, the first case, which is in 2D, allows a comparison with well-established

stability theory. For any interface that does not lie along a coordinate direction,

however, the supporting theory is lacking. Therefore, the second test case, which is

in 3D, is of a more qualitative nature.

Section 4.2 gives a description of the numerical algorithm used. The discretization

of the Navier-Stokes equations in space and time is explained for a cylindrical ge-

ometry, and some information on the parallelization is given. Section 4.2.2 describes

the applied dual interface method. The procedure of the efficient coupling between

the LS method and the VoF method is explained, and a conservative interface ad-

vection algorithm is presented, together with a proposed method to improve the

VoF accuracy near the cylinder origin. The first test case in section 4.3 is based on

modal stability analysis of an axisymmetric interface in a core-annular flow. The re-
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sulting growth factor that stems from the linear stability analysis is compared to the

result of our numerical algorithm for various conditions. In section 4.4, a stratified

shear flow in a periodic domain is considered as a preparation for the simulation of

a closed pipe. Finally, in section 4.5 we study stratified flow in an inclined closed

pipe segment, similar to the conditions in the experiments of Thorpe [88]. The shear

pattern at the interface in the stratified flow configuration gives Kelvin-Helmholtz

waves in a certain part of the pipe. We conclude with a summary of the results and

some concluding remarks in section 4.6.

4.2 Numerical approach

In this section, the numerical algorithm used for the investigation is discussed. The

approximation of the flow field (4.2.1) and the cylindrical interface algorithm (4.2.2)

are described separately.

4.2.1 Calculation of the flow field

The flow field in the straight cylindrical pipe section is calculated by using a conser-

vative finite difference approximation of the governing flow equations. We consider

the three-dimensional cylindrical domain:

{
(r, θ, z)

∣∣∣ 0 ≤ r ≤ R, 0 ≤ θ < 2π,− L
2
≤ z ≤ L

2

}
, (4.1)

on which the Navier-Stokes equations in cylindrical coordinates are solved for the

unknown velocity vector u = (ur, uθ , uz) and for the pressure scalar field p. The

flow equations in conservative form are given by:

1
r

∂(rur)

∂r
+

1
r

∂uθ

∂θ
+

∂uz
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= 0, (4.2)

and:
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(4.3)
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(4.5)

together with a set of boundary- and initial conditions. The body forces are con-

tained in the vector g = (gr, gθ , gz), and the viscous stresses are given by:

τrr = 2µ
∂ur

∂r
, τrθ = µ

(
∂uθ

∂r
− uθ

r
+

1
r

∂ur

∂θ

)
, τrz = µ

(
∂ur

∂z
+

∂uz

∂r

)
, (4.6)

τθθ = 2µ

(
ur

r
+

1
r

∂uθ

∂θ

)
, τθz = µ

(
∂uθ

∂z
+

1
r

∂uz

∂θ

)
, τzz = 2µ

∂uz

∂z
(4.7)

A Marker and Cell (MAC) arrangement of the flow unknowns according to Harlow

and Welch [38] is used, in which the velocity components are located on the cell

faces and the pressure is located in the cell centres (see figure 4.1).

uθ
1,j+ 1

2 ,k
ur 3

2 ,j,k

uz
1,j,k+ 1

2

ur 1
2 ,j,k

p1,j,k

(a) Cells near the axis.

urI+eruθI+eθ

uzI+ez

pI

(b) Cells away from the axis.

Figure 4.1: Staggered location of the flow variables u and p in the computational domain.

The Navier-Stokes equations in cylindrical coordinates 4.2-4.5 are discretized in

space using the second order accurate conservative finite difference approach of

Morinishi et al. [61]. In this approach, the staggered arrangement of the velocity

components implies that there is a radial velocity component located at r = 0 in

every cell. Its value is found by solving an adapted radial momentum equation at

r = 0 and by applying a subsequent Cartesian reconstruction that leads to a well-

defined, second order accurate treatment of the velocity at the coordinate origin.

During test simulations, however, we have found that this approach, although ele-
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gant and conservative, can lead to nonphysical flow behaviour near the axis. The

same observation was made by Desjardins et al. [23], who traced the result back

to an inconsistent discretization. For that reason, we use the method of Fukagata

and Kasagi [33], where the radial velocity components at r = 0 are obtained from

averaging of the surrounding values. Oud et al. [67] present a conservative finite

difference discretization of the Navier-Stokes equations in cylindrical coordinates,

but only in the case of constant viscosity flows. At this moment, the latter discretiza-

tion cannot yet be applied due to the fact that, although the viscosity is formally

constant within each phase, some smearing is introduced near the interface in our

algorithm to simplify the implementation of the numerical jump conditions.

The choice of a cylindrical computational grid implies that angular velocities in the

small grid cells close to r = 0 can cause a severe time step restriction when using

explicit methods. Therefore the second order Implicit Midpoint integration method

is used for the temporal advancement of the momentum equations as it provides

unconditional stability without any artificial damping, even in the case of vanishing

viscosity. The latter is a valuable property when applying the method in future

simulations to turbulent flows. The flow field is advanced by using a common

projection scheme that consists of a predictor step in which an updated velocity

field is calculated that may not be divergence-free. This newly obtained velocity

field is subsequently made divergence-free by using an updated pressure field that

results from a Poisson equation. The density ρ required in the predictor equation

is calculated as the volume-weighted average of the two (constant) densities ρ0 and

ρ1 using the VoF value ψ:

ρ = ψρ1 + (1− ψ)ρ0. (4.8)

The viscosity µ follows from a step function Hs = Hs(φ(x)) that is smoothed using

the Level Set function φ:

µ = µ0 + Hs(φ)(µ1 − µ0). (4.9)

The assumption of a sharp interface that separates two incompressible, immiscible

fluids leads to jump conditions for the flow variables at the interface. Both the

density and the viscosity are constant in each fluid phase, and the jump value

of their difference normal to the interface is denoted by [ρ] and [µ], respectively.

Because viscous flows are considered, the velocity is continuous across the interface
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and hence [u] = 0. The pressure is not continuous but satisfies:

[p] = σκ + 2[µ]nT · ∇u · n, (4.10)

with σ the surface tension coefficient, κ the interface curvature and n the interface

normal vector. The Ghost Fluid method [51] is used to implement the pressure

jump as an additional term on the right hand side of the Poisson equation.

4.2.2 Representation of the interface

The sharp interface between the fluids is reconstructed by using an algorithm

based on commonly known dual interface methods that combine both the Level Set

method and the Volume of Fluid method in an efficient way. Successful examples

of this approach can be found in the work of Bourlioux [13], Sussman and Puckett

[83] (CLSVOF), Van der Pijl et al. [90] (MCLS), Yang et al. [96] (ACLSVOF) and Sun

and Tao [81] (VOSET). In essence, all hybrid methods aim at benefitting from the

computationally cheap and straightforward interface representation that the Level

Set method offers, while enforcing non-trivial (phase-wise) volume conservation

through the VoF method. Both the Level Set function φ and the VoF function ψ are

advected with the flow field, and a key element is the coupling between the two

variables when the interface is constructed during each time step. The minimiza-

tion problem of finding an interface to a given volume requires the formulation of

an abstract function f , such that f (φ) = ψ. The inverse of f is generally much more

difficult to construct, and the main differences between the various hybrid methods

usually lie in the construction of the function f and its inverse, and the subse-

quent solution strategy of the minimization problem. Other differences arise due

to the availability of both the Level Set function and the VoF function for various

sub-algorithms (either LS or VoF based), like the density/viscosity determination

and the interface curvature calculation, sometimes without having an obvious best

choice.

In our algorithm, both the Level Set function φ and the VoF function ψ are cell-

centred values in the cylindrical grid. The time-dependent interface Γ in a com-

putational cell Ω is represented by the zero iso-contour of the linearized Level Set

function φ, i.e:

Γ(t) = {x ∈ Ω | φ(x0, t) +∇φ(x0, t) · (x− x0) = 0}. (4.11)
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To maintain accurate finite differences, the Level Set function is kept a signed dis-

tance function through a PDE-based reinitialization procedure due to Sussman et al.

[84]. First order ENO spatial fluxes [77] and Euler forward integration in time are

used, and the sub-cell fix of Russo and Smereka [73] is applied to make the fluxes

truly upwind, thereby reducing the movement of the interface during the reini-

tialization process. For the primary interface curvature calculation, the VoF-based

second order Height Function method [12, 18, 40] is extended to cylindrical coordi-

nates. In the case of insufficient grid resolution for the Height Function method to

work properly, the curvature is calculated based on the level set field to maintain

robustness of the algorithm.

The next sections describe three elements of our interface algorithm that are specif-

ically designed for flows in cylindrical coordinates. Because we have not found

any similar 3D cylindrical interface algorithms in the literature, these elements are

presented in more detail. First, in section 4.2.3, we propose an efficient numerical

evaluation of the function f that provides a VoF value for a given Level Set inter-

face. Then, in section 4.2.4, a conservative advection scheme for both the Level Set

function and the VoF function is presented. Finally, in section 4.2.5, the accuracy of

time-explicit VoF advection near the polar origin is analyzed, as well as a proposed

method to mitigate the reduction of the accuracy.

4.2.3 Calculation of the VoF function f

For a given interface that is described by the zero level set of the function φ, the

associated VoF value ψΩ ∈ [0, 1] belonging to some cell Ω can be calculated as:

ψΩ =
1
|Ω|

∫

Ω
H(φ(x))dx, (4.12)

where H is the Heaviside function. For arbitrary φ this integral can generally not

be evaluated in a straightforward way, but if φ is restricted to the subset of linear

functions, then exact solutions can be readily found. More specifically, the VoF

value ψΩ associated to a linear interface can be calculated as:

ψΩ =
1
|Ω|

∫

Ω
H [φ(x0) +∇φ(x0) · (x− x0)]dx = f (φ(x0),∇φ(x0)) . (4.13)

In the MCLS approach of Van der Pijl et al. [90], this integral is evaluated ana-

lytically, leading to an elegant, closed-form formulation of f . In our experience,
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however, we found that limit cases (i.e. when one or more elements of the interface

normal vector become zero) occasionally affect the robustness of the algorithm, and

we have implemented a stable alternative based on exact numerical integration. The

availability of the Level Set function gives a tremendous simplification, as will be

demonstrated. Consider an arbitrary computational cell as in figure 4.2 containing

the dashed linear interface that encloses the associated gray volume (notice that a

linear interface in cylindrical coordinates is curved in Cartesian space).

∆r

∆θ

∆z

p1

p2r1

r2

r3

Figure 4.2: Subdivision of the volume into domains based on cross section similarity.

1. For the given cell, we start by calculating the level set values in the eight vertices

of the cell based on the linearized level set function around the cell centre x0 =

(ri, θj, zk), i.e:

φ(r, θ, z) = φ(x0) + Dr(x0)(r− ri) + Dθ(x0)(θ − θj) + Dz(x0)(z− zk). (4.14)

The partial derivatives Dr, Dθ and Dz are determined by central differences of

the level set function:

Dr(x0) =
φi+1,j,k − φi−1,j,k

2∆r
, (4.15)

Dθ(x0) =
φi,j+1,k − φi,j−1,k

2∆θ
, (4.16)

Dz(x0) =
φi,j,k+1 − φi,j,k−1

2∆z
. (4.17)

As an example, evaluation of expression 4.14 in the point p1 in figure 4.2 gives:

φ(p1) = φ(x0)− Dr(x0)
∆r
2
− Dθ(x0)

∆θ

2
− Dz(x0)

∆z
2

, (4.18)
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while evaluation in point p2 gives:

φ(p2) = φ(x0) + Dr(x0)
∆r
2

+ Dθ(x0)
∆θ

2
+ Dz(x0)

∆z
2

. (4.19)

Whether or not the cell contains an interface is now easily checked by considering

the maximum and minimum of the set of vertex values.

2. If an interface is found to be present, a sweep is done along the four ribs in radial

direction using the level set values in the vertices to detect any intersections with

the interface. Detection is as trivial as checking the sign of the product of the two

level set values on both ends of the rib. Determining the distance rint from the

radial face of the cell is done through (exact) linear interpolation, conveniently

expressed in terms of the vertex values:

rint =
|φi|∆r
|φi|+ |φo|

, (4.20)

where φi is the level set value of the radially inner most vertex and φo the value of

the outer vertex. The collection of radial coordinates of the intersections is then

stored as a sorted array. In the example in figure 4.2, the locations are denoted

as r1, r2 and r3.

3. The sorted list of radial locations is now used to identify a number of domains

with similar cross sectional polygons in the (θ− z)-plane. The three-dimensional

integral in equation 4.13 is split up into a two-dimensional integral over a cross

section in the (θ− z)-plane and a resulting one-dimensional integral in the radial

direction over the cross sections. In the example of figure 4.2, a total of four

regions can be identified. The part of the cell with [rmin, r1] has a rectangular

cross section with one corner missing (the left hatched plane). The region [r1, r2]

has a trapezoidal cross section (the middle hatched plane) and region [r2, r3] has

a triangular cross section (the right hatched plane). Region [r3, rmax] contains no

interface and hence no cross section.

4. Consider the first domain [rmin, r1] of figure 4.2. For any radial location in this

domain, the cross section in the (θ − z)-plane is similar to figure 4.3.

For a fixed radial location r, we can once again define the level set values in

the four corners using the cell level set value φi,j,k and the partial derivatives

from equations 4.15-4.17. The intersections of the interface polygon with the ribs
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φSW φSE

φNEφNW

φi,j,k θ

z
p3

p4

∆θ

∆z

Figure 4.3: Integration of a 2D polygon in the (θ − z)-plane.

are found through linear interpolation, completely analogous to the process of

equation 4.20:

θp3 ∼
|φNW |∆θ

|φNW |+ |φNE|
, zp4 ∼

|φSW |∆z
|φSW |+ |φNW |

, (4.21)

for the points p3 and p4 in figure 4.3. With the ordered set of the N coordinates

{(θi, zi)}N−1
i=0 of the polygon then known, the area A is calculated as the convex

hull of the coordinate set using the expression:

A =
1
2

N−1

∑
i=0

(θizi+1 − θi+1zi). (4.22)

This calculation is particularly robust, even when the interface lies on a cell ver-

tex, or worse, when it coincides with a cell rib. Clearly, the resulting polygon

area A = A(r) is a function of the radial location within the domain [rmin, r1].

5. A key observation is that the cross sectional area A varies quadratically in r

for linear interfaces. The remaining one-dimensional integral in the radial di-

rection
∫

r A(r)r dr is therefore solved exactly using a two-point Gauss-Legendre

quadrature method. This method is particularly suitable as its nodes are internal

points, and therefore they do not lie on the domain boundaries where the func-

tion evaluation may be relatively inaccurate. Every domain thus requires the

determination of two cross sectional areas at pre-defined radial Gauss-Legendre

points to calculate the volume of the interface polyhedron in that domain.

Steps 4 and 5 are repeated for all domains determined in step 1, and the total

volume follows by adding all sub-volumes. Note that, with only minimal changes,
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the algorithm can be applied to cells adjacent to the cylinder origin as well. This

relatively simple sequence of calculations, solely based on a small number of vertex

level set values, results in an efficient function f such that ψ = f (φ,∇φ).

4.2.4 Advection of the interface

The transport of the interface variables is discussed in this section. Special attention

is required for the VoF fluxes because the angular velocity becomes very high in the

vicinity of the origin at r = 0. This issue is further addressed in section 4.2.5.

Both the level set function φ and the VoF function ψ are advected with the underly-

ing flow field u:
∂φ

∂t
+ u · ∇φ = 0,

∂ψ

∂t
+ u · ∇ψ = 0. (4.23)

For both processes, the second order directional split algorithm of Weymouth and

Yue [94] is used. For the level set φ centred in cell (i, j, k), it is given by:

φ(∗) − φ(n)

∆t
=

(rF̃(n))i− 1
2
− (rF̃(n))i+ 1

2

ri∆r
+ φ(n)

(ru(n)
r )i+ 1

2
− (ru(n)

r )i− 1
2

ri∆r
, (4.24)

φ(∗∗) − φ(∗)

∆t
=

G̃(∗)
j− 1

2
− G̃(∗)

j+ 1
2

ri∆θ
+ φ(n)

u(n)
θ

j+ 1
2

− u(n)
θ

j− 1
2

∆θ
, (4.25)

φ(n+1) − φ(∗∗)

∆t
=

H̃(∗∗)
k− 1

2
− H̃(∗∗)

k+ 1
2

∆z
+ φ(n)

u(n)
z

k+ 1
2
− u(n)

z
k− 1

2

∆z
, (4.26)

with F̃i± 1
2
, G̃j± 1

2
and H̃k± 1

2
being the scalar level set fluxes in the radial, angular and

axial directions, respectively, and the time levels t(∗) and t(∗∗) being two intermedi-

ary time levels between t(n) and t(n+1). The fluxes are determined in a similar way

as the upwind approach of Sussman and Puckett [83]. For cell (i, j, k), the flux F̃i+ 1
2

at the positive face at ri+ 1
2

is given by:

F̃i+ 1
2
=





ur
i+ 1

2

(
φi,j,k +

1
2

(
∆r− ur

i+ 1
2

∆t
))

φi+1,j,k − φi−1,j,k

2∆r
, ur

i+ 1
2
≥ 0

ur
i+ 1

2

(
φi+1,j,k −

1
2

(
∆r + ur

i+ 1
2

∆t
))

φi+2,j,k − φi,j,k

2∆r
, ur

i+ 1
2
< 0.

(4.27)
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The angular flux G̃j+ 1
2

is given by:

G̃j+ 1
2
=





uθ
j+ 1

2


φi,j,k +

1
2


∆θ −

uθ
j+ 1

2
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ri
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2∆θ
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2
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j+ 1

2
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1
2


∆θ +

uθ
j+ 1

2
∆t

ri




 φi,j+2,k − φi,j,k

2∆θ
, uθ

j+ 1
2
< 0,

(4.28)

and for the axial direction the flux H̃k+ 1
2

is given by:

H̃k+ 1
2
=





uz
k+ 1

2

(
φi,j,k +

1
2

(
∆z− uz

k+ 1
2

∆t
))

φi,j,k+1 − φi,j,k−1

2∆z
, uz

k+ 1
2
≥ 0

uz
k+ 1

2

(
φi,j,k+1 −

1
2

(
∆z + uz

k+ 1
2

∆t
))

φi,j,k+2 − φi,j,k

2∆z
, uz

k+ 1
2
< 0

(4.29)

For the VoF function, we denote the radial, angular and axial fluxes by Fi± 1
2
, Gj± 1

2

and Hk± 1
2
, respectively, and the advection scheme is given by:

ψ(∗) − ψ(n) =
1
|Ω|

(
F(n)

i− 1
2
− F(n)

i+ 1
2

)
+H(φ(n))∆t

(ru(n)
r )i+ 1

2
− (ru(n)

r )i− 1
2

ri∆r
, (4.30)

ψ(∗∗) − ψ(∗) =
1
|Ω|

(
G(∗)

j− 1
2
− G(∗)

j+ 1
2

)
+H(φ(n))∆t

u(n)
θ

j+ 1
2

− u(n)
θ

j− 1
2

ri∆θ
, (4.31)

ψ(n+1) − ψ(∗∗) =
1
|Ω|

(
H(∗∗)

k− 1
2
− H(∗∗)

k+ 1
2

)
+H(φ(n))∆t

u(n)
z

k+ 1
2
− u(n)

z
k− 1

2

∆z
, (4.32)

withH the Heaviside function and |Ω| = ri∆r∆θ∆z the volume of the cell. The time-

explicit second term on the right hand side guarantees that the volume is conserved

up to machine precision as long as the Courant number of the flow field, calculated

as ∆t(ur/∆r + uθ/(ri∆θ) + uz/∆z), remains less than 0.5. After application of the

divergence theorem, the radial VoF flux F(n)
i+ 1

2
becomes:

F(n)
i+ 1

2
= ri+ 1

2

∫ tn+∆t

tn

∫ z
k+ 1

2

z
k− 1

2

∫ θ
j+ 1

2

θ
j− 1

2

χ(ri+ 1
2
, θ, z, t)ur(ri+ 1

2
, θ, z, t)dθ dz dt, (4.33)

where χ is the colour function. To eliminate the time dependency from this expres-

sion, the motion of the colour function in the radial direction only is considered. It
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is observed that the continuity equation restricted to the radial direction:

1
r

∂

∂r
(rur) = 0, r > 0, (4.34)

implies that, at some fixed time t ∈ [tn, tn + ∆t], the characteristics are curved and

satisfy:

r(t)ur(r, θ, z, t) = ri+ 1
2
ur(ri+ 1

2
, θ, z, t). (4.35)

Integration then yields:

∫ r
i+ 1

2

r(t)
r dr =

∫ tn+∆t

t
ri+ 1

2
ur(ri+ 1

2
, θ, z, τ)dτ, (4.36)

so that:

r2(t) = r2
i+ 1

2
− 2

∫ tn+∆t

t
ri+ 1

2
ur(ri+ 1

2
, θ, z, τ)dτ, (4.37)

for some t ∈ [tn, tn + ∆t]. If we now assume ur(ri+ 1
2
, θ, z, t) to be constant in time

during the interval [tn, tn + ∆t] and equal to ur(ri+ 1
2
, θ, z, tn), then the integral re-

duces to:

r2(t) = r2
i+ 1

2
− 2ri+ 1

2
ur(ri+ 1

2
, θ, z, tn)(tn + ∆t− t). (4.38)

A change of variable finally allows us to rewrite equation 4.33 as:

F(n)
i+ 1

2
=
∫ z

k+ 1
2

z
k− 1

2

∫ θ
j+ 1

2

θ
j− 1

2

∫ r
i+ 1

2

r∗
χ(r, θ, z, tn)r dr dθ dz, (4.39)

with:

r∗ =
√

ri+ 1
2

(
ri+ 1

2
− 2ur(ri+ 1

2
, θ, z, tn)∆t

)
. (4.40)

The flux F(n)
i+ 1

2
is subsequently calculated by substitution of H(φ) for the colour

function χ and the techniques described in section 4.2.3. Notice how the radial

dimension of the donating region [r∗, ri+ 1
2
] differs from the Cartesian case where

generally r∗ = ri+ 1
2
− ur∆t so that the cell geometry is taken into account. In partic-

ular, at the polar axis r = 0, the inner cell face collapses and no flux exists as there

is no cell face for a flux to move through. This is consistently modelled when using

the flux region given by expression 4.40.
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The angular and axial VoF fluxes are given by:

G(∗)
j+ 1

2
=
∫ tn+∆t

tn

∫ z
k+ 1

2

z
k− 1

2

∫ r
i+ 1

2

r
i− 1

2

χ(r, θj+ 1
2
, z, t)uθ(r, θj+ 1

2
, z, t)r dr dz dt, (4.41)

H(∗)
k+ 1

2
=
∫ tn+∆t

tn

∫ r
i+ 1

2

r
i− 1

2

∫ θ
j+ 1

2

θ
j− 1

2

χ(r, θ, zk+ 1
2
, t)uz(r, θ, zk+ 1

2
, t)r dr dθ dt, (4.42)

and since the continuity equation restricted to the respective directions is:

1
r

∂uθ

∂θ
= 0,

∂uz

∂z
= 0, (4.43)

the resulting VoF fluxes based on a divergence-free velocity field become:

G(∗)
j+ 1

2
=
∫ z

k+ 1
2

z
k− 1

2

∫ r
i+ 1

2

r
i− 1

2

∫ θ
j+ 1

2

θ∗
χ(r, θ, z, tn)r dθ dr dz, (4.44)

H(∗)
k+ 1

2
=
∫ θ

j+ 1
2

θ
j− 1

2

∫ r
i+ 1

2

r
i− 1

2

∫ z
k+ 1

2

z∗
χ(r, θ, z, tn)r dz dr dθ, (4.45)

where:

θ∗ = θj+ 1
2
−

uθ(r, θj+ 1
2
, z, tn)∆t

ri
, z∗ = zk+ 1

2
− uz(r, zk+ 1

2
, tn)∆t. (4.46)

Conservation of mass (equivalent to conservation of volume in the incompressible

case) in a simulation model is of paramount importance for the results to have a

clear physical meaning. Furthermore, loss of mass introduces loss of momentum

in the numerical scheme. Generic VoF methods frequently suffer from volume loss

during advection; even if the advection scheme is conservative, there is no intrinsic

mechanism that prevents computational cells from overfilling (VoF larger than one)

or from over-emptying (VoF less than zero). These nonphysical occurrences need to

be subsequently corrected to obtain a physical solution through processes that usu-

ally either change the total volume (by adding or removing volume) or redistribute

the total volume to eliminate invalid VoF values. The advection scheme used in our

algorithm appears to be the only split flux scheme that is conservative and which

simultaneously prevents nonphysical VoF values up to rounding errors.
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4.2.5 VoF advection accuracy near the polar origin

Besides placing a severe time step constraint on explicit time integration methods,

the geometry of the cylindrical cells near the polar axis at r = 0 also significantly

affects the accuracy of the VoF advection when a planar interface crosses the origin.

To demonstrate this phenomenon, consider the case of downward moving planar

interface in the polar plane, initially positioned as shown in figure 4.4a.

(a) Initial interface position. (b) Interface passes through the origin.

Figure 4.4: Simulation of planar interface in the polar plane. Grid size Nr × Nθ is 20× 100.

The Cartesian velocity components (ux, uy) are taken as (0,−1), and the interface

remains exactly horizontal as it moves through the domain. The numerical result,

using the explicit VoF advection scheme of section 4.2.4, shows a significantly dif-

ferent interface shape as it passes the origin, which is shown in figure 4.4b: a cusp is

formed around the origin which takes a significant amount of time to disappear as

the interface continues to move downwards. The VoF advection is responsible for

this behaviour, since the level set function and its iso-contours are not affected† by

the presence of the origin (besides the time step constraint on its advection). For an

analysis of the VoF advection near the origin, the contravariant components (ṙ, θ̇)

of the velocity field are found through the coordinate transformation:

x = r cos θ, y = r sin θ, (4.47)

and for the given Cartesian velocity vector, these contravariant components have

the values:

ṙ = − sin θ, θ̇ = −cos θ

r
. (4.48)

The dot refers to time differentiation here, and for the angular movement in partic-

†This is easily verified because the algorithm implementation also allows a level set-only interface
by simply disabling the coupling to the VoF after advection of both quantities.
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ular, the path of a particle is thus determined by the differential equation:

dθ

dt
= −cos θ

r
. (4.49)

It is assumed that, just before crossing the origin, the initial location of the interface

is (r, θ) = (r, 0) (only the right half of the domain is considered for simplicity).

Furthermore, only the advection in angular direction is considered while the radial

transport is momentarily neglected. Integrating equation 4.49 over a temporal in-

terval [0, ∆t] with θ(0) = 0 then yields the expression of the traversed angle of the

interface:

θ(r, ∆t) = − arctan
(

sinh
(

∆t
r

))
. (4.50)

This expression relates the angular location of the interface after a time step ∆t for

all radial coordinates. In particular, a particle on the interface close to r = 0 moves

to θ = −π/2 instantaneously when r goes to zero, irrespective of the time step; this

follows from the limit:

lim
r→0+

arctan
(

sinh
(

∆t
r

))
=

π

2
, ∀∆t > 0. (4.51)

For the described configuration, figure 4.5a shows the exact interface location based

on expression 4.50 on a grid in computational space after a single time step of

varying magnitude (made dimensionless as a Courant number ν). The asymptotic

movement near r = 0 is clearly visible, and it can be concluded that the interface

always traverses all inner cells with −π/2 < θ < 0 for every positive time step.

Furthermore, figure 4.5a shows that angular advection of the interface causes sub-

sequent radial movement of the interface in all inner cells with −π/2 ≤ θ ≤ −∆θ.

This comes as no surprise, however, as a radial flux through the origin is absent due

to expression 4.40. For completeness, the interface location after a full (both radial

and angular) advection step is also shown for the case when ν = 0.5. For angles

close to zero, there is no distinction between the full and the angular result because

the radial velocity is nearly zero at these locations. When θ → −π/2, where the

radial velocity is maximum, the discrepancy increases and can be attributed to (the

absence of) the radial advection of the interface.

The result of the exact angular movement of the interface near the origin now allows

a comparison with the numerical VoF flux approximation as presented in section

4.2.4. The finite volume fluxes for the angular direction, as shown in expressions

4.44 and 4.46, assume an angular velocity θ̇ that is constant over a cell face ∆r (or
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(a) Exact angular interface advection in the inner most
cells for different Courant numbers.
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(b) Exact (solid fill) vs approximated (hatched) image
of a donating region in cells near the origin.

Figure 4.5: Schematic overview of the VoF advection near the origin at r = 0.

∆r∆z in 3D). Based on this velocity, the corresponding donating region is obtained

by backtracing, and it therefore always has a rectangular shape in computational

space. The resulting angular VoF fluxes based on expressions 4.44 and 4.46 for the

case when ν = 0.5 are shown as the hatched areas in figure 4.5a. It can be seen that

the numerical fluxes approximate the exact gray surfaces reasonably well, even near

the origin. The problem, however, is the time-explicit nature of the VoF fluxes that

prevents instantaneous filling of multiple cells during a single time step. The cyan

coloured surface is to be divided over all cells with −π/2 < θ < −∆θ, but it can not

be captured by explicit VoF fluxes due to their CFL restriction. Decreasing the time

step reduces the inaccuracy by reducing the amount of fluid that is instantaneously

moved through the inner layer of cells (compare with the loss of ν = 0.1), but for

negligible loss this may lead to unrealistically small time steps that will make sim-

ulations impractical.

For all but the inner layer of cells, the situation in the case of a generic interface is

shown in figure 4.5b. The explicit VoF flux approximation assumes a translation of

the donating region of length θ̇I∆t in computational space, whereas the true image

of the donating region becomes skewed due to the exact non-constant angular ve-

locity that grows as 1/r when r decreases. For these cells, however, a sufficiently

small CFL number exists to guarantee that not more than a single cell is traversed
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by the interface during a single time step. For a given radial location of the cell, its

value can be obtained by using expression 4.50.

The analysis above shows that explicit VoF advection is not capable of correctly

capturing the dynamics of the interface close to the origin, and explains the numer-

ical result of figure 4.4b. The cusp originates due to the delay in the angular VoF

advection in the inner layer of cells that can only fill up to a single cell per time

step. This simple example demonstrates that explicit VoF advection is likely to be

insufficiently accurate when used in the study of stratified interface instabilities,

and therefore improvements are required. An implicit treatment of the VoF fluxes

appears an attractive alternative, because it allows the interface to cross multiple

cells in a single time step without CFL constraint. The main disadvantage, unfor-

tunately, is a highly complex and computationally expensive implementation, with

barely any supporting references from the literature. Despite this, it is strongly

recommended to evaluate the implicit VoF advection in further research, but it is

outside the scope of the present work. Instead, we have devised a relatively sim-

ple alternative method that provides satisfactory results for the test cases in this

chapter. In essence, it is based on an interface approximation provided by the level

set function at the new time level, and therefore it can be loosely regarded as an

approximation of implicit VoF advection. More specifically, a VoF redistribution

algorithm is employed based on the observation that near the origin, the level set

advection, although not volume-conserving, is more physically accurate than the

VoF field. Consider a subset of cells {Vi} of the complete discrete domain, and let

Vf and Vψ be the amount of volume in this set according to the linearized level set

and the VoF, respectively:

Vf := ∑
i

f (φi,∇φi)|Vi|, Vψ := ∑
i

ψi|Vi|, (4.52)

where |Vi| = ri∆r∆θ∆z is the volume of cell i and f is the VoF function described in

section 4.2.3. The complementary volumes Vc
f and Vc

ψ are defined analogously:

Vc
f := ∑

i
(1− f (φi,∇φi)) |Vi|, Vc

ψ := ∑
i
(1− ψi) |Vi|, (4.53)

and note that both Vf + Vc
f and Vψ + Vc

ψ sum up to the volume of the subset. De-

pending on the ratio Vψ/Vf , the volume Vψ based on the VoF field {ψi} is then

redistributed over {Vi} according to a weight factor based on the level set volume
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prediction f (φ,∇φ) into an updated VoF field {ψ̃i} through:

ψ̃i =





f (φi,∇φi)
Vψ

Vf
, Vψ ≤ Vf ,

1− (1− f (φi,∇φi))
Vc

ψ

Vc
f

, Vψ > Vf

(4.54)

Note that we must distinguish between Vψ/Vf ≤ 1 and Vψ/Vf > 1 in order to pre-

vent overfilling cells. Multiplying with the cell volume and subsequent summation

shows that the redistribution is conservative, i.e. ∑i ψi|Vi| = ∑i ψ̃i|Vi|. Furthermore,

the algorithm can be applied at any given subset, although without mixed cells it

leaves the original VoF field unchanged.

To demonstrate the effect of the redistribution algorithm, it is applied to the initial

test case of a horizontal interface in a uniform velocity field uy = −1. Figure 4.6

shows the resulting interface when it traverses the origin. The improvement due to

the redistribution is clearly noticeable, and further experiments on finer grids show

similar results. For the pure explicit VoF advection, the magnitude of the error does

not decrease upon refinement. This corresponds with the explanation given above.

Figure 4.6: Interface evolution (from left to right) around the origin in a downwards moving flow field. The red line
represents the interface from explicit VoF advection without redistribution, and the black line is the interface that results
from explicit VoF advection with subsequent redistribution according to equation 4.54.

Since the exact interface location is known, the accuracy of the proposed VoF re-

distribution method can be quantified by looking at the L1-error of the VoF values,

defined as:

‖ψ− ψex‖1 := ∑
I
|ψi − ψex

i |rI∆r∆θ∆z, (4.55)

with I some multi-index, ψ and ψex the calculated and exact VoF values at a prede-

fined time level, respectively, and rI∆r∆θ∆z the volume of cell I. For various grids,

table 4.1 shows the resulting values.

For the current interface configuration, it is observed that the error reduces with

grid refinement, although without a consistent rate. Performing the same simu-

lations without using the redistribution algorithm leads to an error that does not
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Table 4.1: L1-error of the VoF advection with redistribution.

Grid size VoF error
(Nr × Nθ × Nz) ‖ψ− ψex‖1

5× 10× 2 1.652 · 10−8

10× 50× 2 8.973 · 10−9

20× 100× 2 2.111 · 10−9

40× 200× 2 1.195 · 10−9

reduce at all. Therefore, this example clearly shows the added benefit of the level set

function and how it can contribute to a significantly improved interface accuracy.

Nonetheless, we recognize that the proposed VoF redistribution algorithm is rather

elementary, and further research into improving the accuracy of the VoF advection

near the origin is required.

4.3 Modal stability of a cylindrical interface

In this section, we test the capability of our algorithm to capture an infinitesimal

perturbation of a cylindrical interface in a shear flow, and to predict the associated

growth factor. Modal stability theory is used for the analysis, and an approach

similar to the work in Cartesian domains by Bagué et al. [4] is followed. The cylin-

drical Orr-Sommerfeld equation is derived based on a streamfunction formulation

of the perturbed velocities. The interface boundary conditions are then found, and

the resulting eigenvalue problem is solved using a Chebyshev collocation method.

We find that there exists a region of small real wave numbers for which the flow

is unstable; here an initial perturbation diverges according to a theoretical growth

factor as given by the solution of the eigenvalue problem. The aim is to test whether

for a given perturbed flow field and interface, the simulated growth factor in our

algorithm matches the value from the modal stability theory.

The computational domain consists of a cylinder with radius R, and the two fluids

are transported as core-annular flow. As such, they are initially separated at the

interface at r = R
2 . The density and viscosity of the fluid in the core and the fluid

in the annulus are denoted by (ρc, µc) and (ρa, µa), respectively. The amplitude of

the interface centred around r = R
2 is denoted by η(t, z), and the boundary layer

thickness in both phases is δ. Figure 4.7 gives a schematic view of the setup of the

case.
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Figure 4.7: Schematic of axisymmetric parallel shear flow with a wavy interface.

4.3.1 The base flow

For the base flow, we choose a shear flow profile based on the solution of an im-

pulsively accelerated annular flow between two positive radii. With the convective

terms and the pressure gradient being equal to zero, the resulting axial momen-

tum equation reduces to a radial diffusion equation with a Bessel series solution.

Because this solution contains Bessel functions of the second kind, it becomes un-

bounded as r → 0, and a distinction is made between the core flow (occupying the

region 0 ≤ r < R
2 ) and the annular flow (occupying the region R

2 ≤ r ≤ R). The

profile of the annular flow Ua is described by:

Ua(r, t) = ca

∞

∑
i=1

J0(kiR/2) f (ki, r)
J0(kiR/2) + J0(ki3R/2)

e−k2
i νat, ca ∈ R, (4.56)

where J0 and Y0 are Bessel functions of the first and second kind, respectively, and:

f (k, r) = J0(kr)Y0(k3R/2)− J0(k3R/2)Y0(kr), (4.57)

with {ki} the infinite set of solutions that satisfy f (k, R/2) = 0. After taking limits,

the profile for the core flow Uc becomes:

Uc(r, t) = cc

∞

∑
i=1

J0(lir)
li J1(li)

e−l2
i νct, cc ∈ R, (4.58)
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where {li} is now the set of solutions of J0(lR/2) = 0. In both expressions νa and νc

represent the constant kinematic viscosities of the annular flow and the core flow,

respectively. The profiles are such that the base flow has zero velocity at the inter-

face, i.e. Uc(R/2, t) = 0 = Ua(R/2, t). The time t effectively determines the size of

the boundary layer δ (see figure 4.7) around the interface, defined as the location

where the velocity equals 99% of the respective free stream velocity. Throughout

our analysis, the boundary layers in both phases have the same thickness δ for sim-

plicity. For a given value of δ, the associated times ta and tc have to be found by

using a numerical root finding algorithm. For practical purposes, the infinite sums

in expressions 4.56 and 4.58 are truncated after 150 terms; this number of terms

is found to yield a sufficiently accurate representation with negligible oscillations

for most cases, but the quality of the approximation rapidly deteriorates when the

boundary layer becomes smaller. The velocity profile then approaches a step func-

tion, and the combination of the Gibbs phenomenon and round-off errors cause

oscillations that impose a practical lower bound for the boundary layer thickness δ.

The constants cc and ca are subsequently used to scale the resulting profiles. First,

the value of cc is defined such that Uc(0, tc) = 1 m/s irrespective of the core fluid

properties. The continuity of tangential shear stress, denoted by:

µc
∂Uc

∂r

(
R
2

, tc

)
= µa

∂Ua

∂r

(
R
2

, ta

)
, (4.59)

then dictates the value of the constant ca. Finally, the base flow is defined as:





Uc(r) = Uc(r, tc), 0 ≤ r <
R
2

,

Ua(r) = Ua(r, ta),
R
2
≤ r < R.

(4.60)

Figure 4.8 shows two typical base flow profiles that are applied to the test cases that

are considered.

We define the following dimensionless numbers. The viscosity ratio is given by

γ = µc/µa and the density ratio is given by ζ = ρc/ρa. The Reynolds numbers for

the core and the annulus are based on the core free stream velocity Uc:

Rec =
ρcUc(0)δ

µc
, Rea =

ρaUc(0)δ
µa

. (4.61)
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(a) Base flow profile with Rec = 104.
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(b) Base flow profile with Rec = 102.

Figure 4.8: Axisymmetric base flow in the case of a cylinder of radius Rre f = 1 m and boundary layer thickness
δ/R = 0.1. The velocity Ure f is 1 m/s, and the interface is located at R/Rre f =

1
2 where the flow velocity is zero.

The Weber numbers are defined as:

Wec =
ρcUc(0)2δ

σ
, Wea =

ρaUc(0)2δ

σ
. (4.62)

4.3.2 Derivation of the perturbation equation

The base flow in the axisymmetric coordinate system is perturbed by the quantities

(ũr, ũz, p̃) such that:

ur = ũr, uz = U + ũz, p = P + p̃, (4.63)

where U is the axial base flow and P is the associated pressure field. Linearization of

the Navier-Stokes equations around the base flow yields the following momentum

equations:

∂ũr

∂t
+ U

∂ũr

∂z
+

1
ρ

∂ p̃
∂r
− ν

[
1
r

∂

∂r

(
r

∂ũr

∂r

)
− ũr

r2 +
∂2ũr

∂z2

]
= 0, (4.64)

∂ũz

∂t
+ ũr

∂U
∂r

+ U
∂ũz

∂z
+

1
ρ

∂ p̃
∂z
− ν

[
1
r

∂

∂r

(
r

∂ũz

∂r

)
+

∂2ũz

∂z2

]
= 0, (4.65)

and the continuity equation:

1
r

∂

∂r

(
r

∂ũr

∂r

)
+

∂2ũz

∂z2 = 0. (4.66)
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Assuming small perturbations, the perturbed velocity components can be expressed

in terms of a Stokes streamfunction Ψ such that:

ũr = −
1
r

∂Ψ
∂z

, ũz =
1
r

∂Ψ
∂r

. (4.67)

Two streamfunctions, Ψc and Ψa, are required for the core flow and the annular

flow, respectively. It is postulated that these streamfunctions can be written as:

Ψc = φc(r)eiα(z−ct), 0 ≤ r <
R
2

, (4.68)

Ψa = φa(r)eiα(z−ct),
R
2
≤ r ≤ R. (4.69)

Here α ∈ R is the wave number (we consider temporal instabilities only), and

c ∈ C. The split up in real and complex parts, i.e. c = cr + ici, determines the

phase velocity cr and the growth rate αci of the unstable modes. Substitution of

both streamfunctions into expressions 4.64 and 4.65 gives two equations with an

unknown pressure perturbation p̃, which can be eliminated by differentiating the

axial momentum equation 4.65 to r. Subtracting the two expressions then yields the

axisymmetric equivalent of the Orr-Sommerfeld equation in terms of φ:

ν

iα

(
φ′′′′ +

2φ′′′

r

)
+

[
U +

ν

iα

(
2α2 − 3

r2

)](
φ′′ − φ′

r

)

−
(

Uα2 + U′′ − U′

r
− νiα3

)
φ = c

(
φ′′ − φ′

r
− α2φ

)
, (4.70)

where the apostrophe denotes differentiation with respect to the radial coordinate.

Just like its Cartesian counterpart, the equation is of fourth order when viscosity is

present and second order in the inviscid case.

4.3.3 Boundary conditions

The two Orr-Sommerfeld equations for each phase require a total of eight boundary

conditions. These are imposed at the cylinder origin (two), at the interface (four)

and at the cylinder wall (two). At the cylinder wall, no-slip conditions are imposed

so that both ũr and ũz are zero, which implies:

φa(R) = 0, φ′a(R) = 0. (4.71)

At the cylinder axis of symmetry, the boundary conditions are more complicated.
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Axisymmetry dictates that the radial velocity ũr at r = 0 has to be zero; this can be

demonstrated by considering a decomposition into Cartesian components:

ũr = ux cos θ + uy sin θ. (4.72)

For constant non-zero values of the Cartesian components ux and uy at r = 0, the

radial velocity will vary with the angular coordinate θ. This dependence can only

be removed if ux = 0 = uy, which is when ũr = 0 identically. There appears to

be no condition for the axial velocity ũz, however, other then than that its value

must be finite. A Dirichlet condition for ũz could be imposed, and for simplicity it

is assumed to be homogeneous. In that case, a solution of the form φ(r) = r f (r)

could be constructed. From the homogeneous Dirichlet condition for ũr it follows

that φ/r → 0 as r → 0, which implies that f (0) = 0. For ũz, the condition is

φ′/r → 0, which becomes:

lim
r→0

φ′

r
= lim

r→0

(r f )′

r
= lim

r→0

(
f ′ +

f
r

)
. (4.73)

Using l’Hopitâl’s rule and the condition f (0) = 0, it follows that f ′(0) = 0. It must

be noted that during our computations, this approach was not required as it turned

out that setting φc(0) = 0 and φ′c(0) = 0 gave solutions with sufficient decay near

r = 0.

At the interface at r = R
2 + η, continuity of both velocity and stress is required in

the viscous case (we do not consider inviscid flows). The interface conditions are

linearized around r = R
2 assuming small deviations. Then continuity of normal and

tangential velocity implies, respectively:

φc = φa, (4.74)

U′cφc + cφ′c = U′aφa + cφ′a, (4.75)

at r = R
2 . Continuity of tangential and normal stress implies, respectively:

γ

[
c
(

φ′′c −
φ′c
r

)
+ (U′′c + cα2)φc

]
= c

(
φ′′a −

φ′a
r

)
+ (U′′a + cα2)φa, (4.76)

γ

iαRea

[
φ′′′c −

φ′′c
r

+

(
1
r2 − 3α2

)
φ′c −

2α2φc

r

]
+ γ

(
cφ′c + U′cφc

)
= (4.77)

1
iαRea

[
φ′′′a −

φ′′a
r

+

(
1
r2 − 3α2

)
φ′a −

2α2φa

r

]
+ cφ′a + U′aφa +

α2φa

cWea
,
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at r = R
2 . Notice that equation 4.77, which represents the continuity of the normal

stress, is non-linear in the parameter c due to the presence of surface tension.

4.3.4 Solving the generalized eigenvalue problem

Equation 4.70 with its given boundary conditions is solved with a Chebyshev col-

location method. First, the core and annular domains [0, R/2] and [R/2, R] are

mapped to the interval [−1, 1] using the following coordinate transformations:

x : [0, R/2]→ [−1, 1], x =
4r
R
− 1 for the core, (4.78)

x : [R/2, R]→ [−1, 1], x = −4r
R

+ 3 for the annulus. (4.79)

For both domains x = 1 now represents the interface and x = −1 represents the

cylinder core and outer wall. Both functions φc and φa are discretely approximated

by a truncated Chebyshev series, i.e:

φc =
N

∑
i=0

αiTi, φa =
M

∑
i=0

βiTi, (4.80)

where Ti is the Chebyshev polynomial of the first kind of order i. In our case,

we choose N = M. The computational domain [−1, 1] is discretized using N − 3

collocation nodes {xi} which are defined as the location of the internal extrema of

the Chebyshev function TN−2:

xi = cos
(

iπ
N − 2

)
, i = 1, . . . , N − 3, (4.81)

with the aim of obtaining spectral convergence. This gives 2N − 6 equations on the

internal nodes, together with 4 boundary conditions at x = −1 and 4 boundary

conditions at x = 1 for a total of 2N + 2 equations for the set of 2N + 2 unknowns

{αi, βi}. The non-linear boundary condition 4.77 is linearized using equations 4.75

and 4.76 following Boomkamp et al. [11]. This results in:

γ

iαRea

[
φ′′′c −

φ′′c
r

+

(
1
r2 − 3α2

)
φ′c −

2α2φc

r

]
+ γ

(
cφ′c + U′cφc

)
= (4.82)

1
iαRea

[
φ′′′a −

φ′′a
r

+

(
1
r2 − 3α2

)
φ′a −

2α2φa

r

]
+ cφ′a + U′aφa +

iα3

Wea

φ′c − φ′a
U′c −U′a

,

The approximations in expression 4.80 are substituted in equation 4.70 which results
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in a complex generalized eigenvalue problem for the growth factor c:

Ax = cBx, x =
(

α0, . . . , αN , β0, . . . , βN

)T
(4.83)

Due to the rows of zeros that arise from the homogeneous boundary conditions at

x = −1, the matrix B is singular. The implementation of the QZ algorithm with

balancing in Matlab is used to solve the system in equation 4.83. With the coef-

ficients {αi, βi} now known, the two series of expression 4.80 are concatenated to

form the complete eigenfunction φ over the whole domain [0, R]. Figure 4.9 shows

the non-dimensional real and imaginary parts of a typical resulting eigenfunction

for the case where δ/R = 0.2.
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(b) Imaginary part of the eigenfunction φi .

Figure 4.9: Eigenfunction solution for case C with δ/R = 0.2.

The non-trivial solutions then turn equation 4.70 into a dispersion relation that

returns a vector of growth factors αci and an associated set of eigenvectors for a

given real wave number α.

4.3.5 Comparison of growth rates

For our simulation purposes, we assume a small perturbation ε (with fixed value

10−4) to the streamfunction Ψ. Associating the eigenfunction φ to the largest eigen-

value known, the initial perturbed velocity field (ũr, ũz) can be determined using
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equation 4.67 through:

ũr(r, z) = <
(
−1

r
∂Ψ
∂z

)
, ũz(r, z) = <

(
1
r

∂Ψ
∂r

)
, (4.84)

where < denotes the real parts of the expression. Writing the complex variables c

and φ in complex form as cr + ici and φr + iφi, these expressions can be expanded

to:

ũr(r, z) =
εα

r
[φr(r) sin αz + φi(r) cos αz] , (4.85)

ũz(r, z) =
ε

r
[
φ′r(r) cos αz− φ′i(r) sin αz

]
. (4.86)

The complete initial flow field then becomes (ũr, U + ũz). Figure 4.10 shows a

typical initial flow field based on a perturbed streamfunction.
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(a) Perturbed radial velocity ũr .
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Figure 4.10: Initial velocity field due to a streamfunction perturbation.

In a similar way, the initial interface perturbation η(0, z) is determined as:

η(0, z) =
2ε

R(c2
r + c2

i )
[(ciφi + crφr) cos αz + (ciφr − crφi) sin αz] , (4.87)

where the components of the eigenfunction φ are evaluated at the interface at r =

R/2. The wave length of the sinusoidal interface around r = R/2 is exactly 2π/α.

Both the perturbed flow field and interface are used as initial conditions for our

algorithm. Since the flow field is not exactly divergence-free in the discretization, a

projection is performed by the Poisson solver. This will cause small changes to the

initial analytical velocities, but the effect appears to be negligible.
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We consider four cases with two different base flows and parameters based on the

simulations of Bagué et al. [4]. For cases A and B, the core and annular densities

are equal, while the viscosity ratio is 0.1. For cases C and D, the viscosities are

almost equal (γ = 0.99), but the density ratio is 0.1. The cases B and D are equal to

A and C respectively but with a small amount of surface tension added. Table 4.2

summarizes all relevant parameters for all cases.

Table 4.2: Parameters for the different cases.

Case γ ζ Rec Rea Wec Wea

A 1 0.1 10000 1000 ∞ ∞
B 1 0.1 10000 1000 5 5
C 0.1 0.99 100 990 ∞ ∞
D 0.1 0.99 100 990 1.96 19.6

The axisymmetric domain R × L used for the simulation has dimension 1 m ×3

m, and it is discretized with 160× 480 computational cells. The time step varies

between 10−5 and 10−4 s to keep the CFL number more or less constant in all

runs. To be able to simulate different wave numbers with a constant cell res-

olution, the boundary layer thickness δ is varied to give a range of dimension-

less wave numbers αδ. The resulting dimensionless growth factor αciδ/Uc(0) is

then monitored during the simulation by a least squares fit of a sinusoidal wave

r = R/2 + a sin(2πz/L + b). The growth factor is determined by fitting a linear

function to the log-plot of the amplitude a versus time.

It is generally difficult to determine the end of the exponential regime; the transition

is often gradual, and a firm criterion is thus likely to be subjective. To create con-

sistency in our results, we monitor the quality of the least squares fits at every time

step. First, the R2 value of the sinusoidal fit of the interface in space is determined

as:

R2 = 1− ∑i(yi − fi)
2

∑i(yi − y)2 , (4.88)

where {yi} are the interface locations from the simulation and { fi} are the associ-

ated approximations, and the bar denotes the average over the sample set. Further-

more, we monitor the R2 value of the linear approximation to the logarithm of the

amplitude in time using an expression as suggested by Owkes and Desjardins [68]:
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R2 =

(
∑T

i=1
[
(ti − t)(ln(ai)− ln(a)

])2

∑T
i=1
(
ti − t

)2
∑T

i=1 (ln(ai)− ln(a))2
, (4.89)

with {ti} the time instances until t = T and {ai} the amplitudes from the sinusoidal

fit. For all test cases, we fix two (different) values close to unity, and as soon as one

of the two R2 values drops below this value, the evaluations are stopped as it is

assumed that the flow is no longer in the exponential flow regime.
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Figure 4.11: Growth rate according to the Orr-Sommerfeld theory (lines) versus numerical simulations (symbols) with
surface tension (dashed line) and without surface tension (solid line).

The results for the cases in table 4.2 are shown in figure 4.11. The curves represent

the growth rate of the most unstable mode derived from the Orr-Sommerfeld the-

ory with and without surface tension. The stabilizing effect of the surface tension

is apparent from the consistently lower growth factors for a given wave number.

Every case has been performed five times for varying wave numbers throughout

the unstable spectrum. An excellent agreement between the simulations and the

Orr-Sommerfeld theory is found, with relative errors that are less than 1% on av-

erage. The relative deviation tends to grow slightly when the wave numbers ap-

proach the critical value αc where the growth factor ci becomes zero, but the overall

agreement throughout the unstable regime of wave numbers is satisfactory. We can

conclude that modal stability analysis can be successfully applied to axisymmetric

shear flows, and the accurate simulation results gives confidence in the quality of

the interface algorithm and its ability to capture Kelvin-Helmholtz instabilities.
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4.4 Stratified shear flow in a periodic pipe section

This section serves as a prelude to section 4.5, where a large closed pipe experiment

will be simulated. To prevent any influence of the end walls, we consider a small

section of the pipe under periodic conditions to be able to monitor the wave devel-

opment for a predefined shear flow and initial perturbation of the interface.

To study the effects of a stratified shear flow in a controlled environment, we

simulate the behaviour of two layers of fluid in a periodic pipe section of radius

R = 0.025 m and length L = 2R. The lower heavier phase consists of water and

the upper lighter phase consists of oil. The velocity jump at the interface is initially

discontinuous, i.e.:

Uz(r, θ) =





U, y ≥ h,

−U, y < h,
(4.90)

where y = r sin θ and −R ≤ h ≤ R. h is a predefined height that depends on

the water volume fraction. Two volume fractions are considered, V = 1
2 and V =

2
3 . The former is computationally challenging as it involves the movement of the

interface through and around the origin. The latter in turn is used to study the

influence of the curved walls on the flow. An initial perturbation of the form y =

h + εR cos(4πz/L) is applied so that the domain covers two full wave lengths and

the amplitude of the perturbation is εR. The perturbation factor ε is fixed at 0.01.

The inviscid Kelvin-Helmholtz theory in a channel of height R provides a condition

for the onset of the instability, namely when the velocity difference 2U satisfies [24]:

(2U)2 >
ρw + ρo

ρwρo

(
g(ρw − ρo)

k
+ kσ

)
tanh(kR). (4.91)

When applied to the parameters given above, this yields 2U > 0.171 m/s. In our

simulation we have fixed the velocity U at 0.25 m/s to guarantee unstable flow

conditions. A grid of 30× 150× 60 cells is used with a time step of ∆t = 10−5 s to

satisfy the time step constraint due to surface tension. No-slip boundary conditions

are applied at the cylinder walls and periodicity is assumed in axial direction.

Figure 4.12 shows the water fraction and the interface at different times for both

V = 1
2 (left column) and V = 2

3 (right column). Profound discrepancies can be

seen between the development of the waves for both cases. The initial states (upper

graphs in figure 4.12) show a much smoother interface for V = 1
2 than for V = 2

3 .

The in-plane analysis shows that this is due to cross flow induced by the curved
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(a) Initial waves at t = 3 · 10−4 s for V = 1
2 . (b) Initial waves at t = 4 · 10−4 s for V = 2

3 .

(c) Wave build up at t = 6 · 10−4 s for V = 1
2 . (d) Wave build up at t = 6 · 10−4 s for V = 2

3 .

(e) Roll waves at t = 1.05 · 10−3 s for V = 1
2 . (f) Roll waves at t = 8.5 · 10−4 s for V = 2

3 .

Figure 4.12: Evolution of an initially perturbed interface in a shear flow. The left column has water fraction 1/2 and the
right column has 2/3. The grid size is 30× 150× 60.

walls in the latter case, while nearly no cross flow exists in the former. Also, the

figure shows that the instability first occurs in the centre for V = 1
2 , while slightly
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later the wave is initiated nearly uniformly across the pipe for V = 2
3 . At a slightly

later instant, as shown in the middle graphs of figure 4.12, waves have grown, and

a clear difference in the amplitudes for the waves for V = 1
2 and V = 2

3 is observed.

For V = 1
2 there is a tendency for the wave to start rolling. The vast movement of the

interface around the origin is a challenge for the interface algorithm, which becomes

clear in the left middle graph of figure 4.12, where a part of the interface has an

nonphysical shape in the front wave (although the rear wave looks unaffected).

Finally, for a later time as shown in the lower graphs of figure 4.12, the waves start

rolling and the initial wave length is regained.

4.5 Stratified shear flow in a closed inclined pipe

To validate the simulation results, a small experimental study was recently carried

out in the fluid flow lab of our university. Some dedicated experiments have been

performed based on the setup of Thorpe [88], including both a rectangular channel

and a cylindrical pipe. The Kelvin-Helmholtz instability arising from the shear

flow within the pipe was observed. A pipe length of 1 m with closed end walls

was used. At the start of the experiment, the pipe is tilted from horizontal to a

pre-defined inclination, which varied between 2◦, 5◦, 10◦ and 15◦. The fluids used

were water and oil with the following material properties:

ρw = 9.97 · 102 kg/m3, ρo = 8.74 · 102 kg/m3

µw = 8.90 · 10−4 kg/m/s, µo = 4.37 · 10−3 kg/m/s

The surface tension is about σ = 0.035 kg/s2. The experiments were done with a

water fraction V of 1/3, 1/2 and 2/3. In the simulations, we only considered an

inclination angle of 5◦, and the simulations were performed both with and without

surface tension.

4.5.1 Results without surface tension

We start by performing a simulation without surface tension to observe how the in-

terface perturbation grows under the influence of gravity and viscosity alone. From

equation 4.91 it follows that in this case k ∼ 1/∆U, and hence inviscid theory pre-

dicts the presence of increasing wave lengths as the velocity difference ∆U increases.

Viscosity, however, is known to enforce a lower bound on the wave lengths due to

its damping effect. Simulations are performed on two grids, and a Fast Fourier
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Transform (FFT) analysis is done on a fixed segment of the interface at different

time instances. The segment is chosen such that sufficient resolution for the FFT

exists. Figure 4.13 shows the truncated results for both grids on a log scale. Using

the cylinder radius R, the wave number k and the interface amplitude A are made

dimensionless as k̃ and Ã, respectively.
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(a) Results from the 20× 100× 500 grid. The red lines are
located at k̃ = 1.53 and k̃ = 2.2.
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Figure 4.13: FFT of the interface at different times (in seconds) in the centre region of the pipe without surface tension.

At early times, both grids seem to contain a dominating wave number k̃ close to

2.3. This value can therefore be considered as the cut-off wave number due to

viscosity. When the velocity difference grows with increasing time, there is a shift

of the leading wave number which is most clearly noticeable in figure 4.13a. The

amplitude around k̃ = 1.53 is growing slowly and becomes dominant at t = 2.3 s. A

similar, but less pronounced shift is observed as well in figure 4.13b. The dominant

part of the spectrum at t = 2.6 s becomes wider without strong peaks, implying the

presence of multiple smaller wave lengths. The shift in the dominant wave length

for increasing velocity difference is also observed by Bartosiewicz et al. [9] in their

2D simulation results of the Thorpe experiment.

To demonstrate the damping effect of the viscosity, the simulation on the finest grid

with 26× 120× 1000 cells is repeated with inviscid fluids. In this case, k ∼ 1/∆U

should hold exactly without viscous damping, and larger wave numbers are ex-

pected compared to the viscous case. The resulting FFT analysis at a fixed time,

together with the viscous result, is shown in figure 4.14. The inviscid spectrum is

clearly much wider than the viscous spectrum, with peaks up to k̃ = 9. Note that
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Figure 4.14: Truncated FFT results from the 26× 120×
1000 grid at t = 1.4 s.
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Figure 4.15: Amplitude growth of the initial perturbation
resulting from the FFT analysis.

near this wave number, the computational grid size used gives only about three

cells per wave length, and hence the observed upper limit is likely to result from

the choice of the grid size.

Finally, the growth of the perturbation amplitude is considered. The inviscid theory

predicts that any unstable wave number initially grows exponentially in time until

non-linear effects become dominant. To that end, the wave amplitudes that result

from the viscous FFT analyses are plotted over time on a log scale for both grids in

figure 4.15. In particular for the results on the finer grid, a region of exponential

growth is indeed found.

4.5.2 Results with surface tension

The simulations of the previous section are repeated, but now with a non-zero sur-

face tension of σ = 0.035 kg/s2. According to the inviscid theory, the presence of

surface tension suppresses small wave lengths. The analysis of the right hand side

of equation 4.91 shows at least two observations. Firstly, a critical velocity difference

exists, below which all perturbations are damped. Secondly, for a sufficiently large

velocity difference, there exists a bounded spectrum of unstable wave numbers.

A wave length of about 3.4 cm was measured in the lab for a pipe at 5◦ inclina-

tion. Furthermore, it was noted during the lab experiments that the wave front was

not necessary uniform throughout the cross section of the pipe. For the simulated
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Figure 4.16: Truncated FFT result. The red line is at k̃ = 1.
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Figure 4.17: Amplitude growth of the initial perturbation
resulting from the FFT analysis.

results, an FFT analysis similar to the one described in the previous section is per-

formed. Figure 4.16 shows a clear peak at around k̃ = 1, corresponding to a wave

length of around 2.5 cm, which is somewhat shorter than the experimental value of

3.4 cm. Similar to the case without surface tension, the perturbation grows nearly

exponentially, as shown in figure 4.17. Finally, figure 4.18 shows the interface at

time t = 3.25 s, which is just before roll waves appear.

Figure 4.18: Simulated interface near the midsection of the pipe.

A notable issue that we encountered is related to the boundary condition of the

level set function. In Cartesian domains often a homogeneous Neumann condition

for the level set function is used at the walls of the domain. In the case of 2D strat-

ified two-phase flows, this seems to be a reasonable approximation. In cylindrical

coordinates, however, the interface becomes excessively curved near the walls due
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to the surface tension force. An example is shown in figure 4.19, where the solid

line represents the interface in a cross section of the pipe.

Neumann

Extrapolation

Figure 4.19: Cross-section of the pipe at z = −0.45 m with the interface for both homogeneous Neumann and extrapo-
lation boundary conditions.

As the upper area becomes even smaller, the condition leads to numerical stability

problems as regions with extreme curvature are present. To remedy this, wetta-

bility should be included in the boundary conditions, which will likely result in

a more realistic behaviour of the interface near the walls. A simple alternative is

to apply linear extrapolation of the level set function at the boundary (notice that

the homogeneous Neumann condition is in fact a zero order extrapolation). Fig-

ure 4.19 shows the interface of the same simulation with linear extrapolation of the

boundary conditions, and the result looks much more physical compared to apply-

ing the Neumann condition. A potential drawback that we encountered with the

extrapolation method is the slightly less stable level set reinitialization when this

is performed close to the wall. Since wettability is not yet included in our algo-

rithm, we have chosen to apply the extrapolation boundary condition for the level

set function.

4.5.3 Computational performance

The algorithm uses domain decomposition in the axial direction and the MPI pro-

tocol for parallel computations. Preconditioning is applied to the solving of both

the momentum equations and the Poisson equation. A simple but effective Jacobi

preconditioner is used for the linearized momentum equations, and the Conjugate

Gradient method uses block Incomplete Cholesky preconditioning with Subdomain
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Deflation. A strong scaling test is performed using the closed cylinder setup of

section 4.5, with a grid size of 20× 100× 500 computational cells. A total of 1000 it-

erations are performed to eliminate initialization influences, and the resulting mea-

sured wall clock time is shown in figure 4.20.
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Figure 4.20: Strong scaling results of the algorithm implementation.

Performance profiling for different grid sizes shows that the interface representation

algorithm is very light (less than 5% of CPU time in a typical run) when compared to

the cost of the flow solver. This can be expected when considering the complexity of

the fully implicit flow solver versus the explicit interface advection. Our algorithm

is able to handle CFL numbers up to 0.5, which allows the use of significantly larger

time steps than in commonly used compressive VoF methods. The efficiency of the

method is further improved through the use of interface subcycling, where multiple

interface advection steps can be performed within a single flow time step, thereby

fully utilizing the unconditional stability of the flow solver in case of CFL numbers

larger than 0.5.

4.6 Conclusions

A sharp interface model for cylindrical coordinates was designed, tested, and val-

idated. By using structured orthogonal coordinates, the aim is to obtain better

accuracy and efficiency compared to commonly used unstructured methods to al-

low LES or DNS for turbulent multiphase flows at reasonable computational costs.

The method is based on an efficient combination of the LS method and the VoF
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method, and it was validated using two test cases. The simulations show an ex-

cellent behaviour of the interface algorithm for a controlled perturbation in core-

annular flow. The agreement of the simulations with experiments for the onset of

Kelvin-Helmholtz waves in an inclined pipe section is reasonable.

In the absence of similar methods to compare with, we acknowledge that the al-

gorithm presented is a first step towards the efficient use of cylindrical coordinates

in multiphase pipe flows. Their use can be particularly troublesome in the dis-

cretization of both the flow field and the interface. In Oud et al. [67], the former

problem was dealt with for single phase flows, and the difficulty in the extension

to multiphase flows lies in the interface algorithm. A complete implementation of

the Ghost Fluid method [51], including both the jump in pressure and its gradient,

would allow the use of the flow discretization of Oud et al. [67] in our algorithm.

The implementation of the pressure gradient jump is challenging, but it is recom-

mended to explore this in future work.

The behaviour of the VoF function near the polar origin needs further investigation.

A detailed analysis was performed, and it was concluded that the cause of the

encountered numerical oscillations lies in the time-explicit advection of the VoF

field. An improvement was derived in the form of a VoF redistribution algorithm,

but further research into alternative discretization techniques might be considered

to improve the quality of the interface representation when it crosses the origin.

An implicit treatment of the VoF fluxes appears an attractive alternative, because

it allows the interface to cross multiple cells in a single time step without CFL

constraint. It is strongly recommended to explore this implicit approach in future

work.
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Chapter 5
Recommended further developments

The objective of the study described in the first chapter of this thesis was to ob-

tain an improved numerical tool that is able to carry out relatively fast, robust,

and accurate simulations of physical, two-phase flow instabilities in straight pipe

sections. Thereto the Navier-Stokes equations and the Laplace-Young equation for

the interface were discretized on cylindrical coordinates for a straight pipe section.

A second-order accuracy of the discretization could be obtained by using a mimetic

approach. The Mass-Conserving Level Set method, as was originally developed for

interfaces on a Cartesian grid, was extended to cylindrical coordinates. In the nu-

merical analysis, much attention was given to handling the singularity in the grid at

the centreline. The new numerical tool was verified and validated against a number

of two-phase flow test cases, with increasing complexity.

The most complex test case considered so far with our method was the onset and

growth of Kelvin-Helmholtz waves in a finite pipe section (with closed end walls)

that was tilted to a small angle, starting from a full horizontal position. The pipe

was filled with two liquids with a different density and viscosity. Experiments

for this case, as obtained at Delft University, exist, and they include the onset and

growth of the waves, but also the damping, until a new steady state with the two

layers of liquid is obtained for the new tilted position. The wave damping was not

yet simulated.

Up to now, all considered transient effects occur in laminar two-phase base flows.

The real check of whether the new tool is indeed fast, robust, and accurate for

problems of industrial interest requires considering cases with a higher Reynolds
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number, which will give a turbulent base flow.

Although we obtained significant new insights in the numerics of two-phase flow,

there is plenty of room for further investigation. The recommended areas of re-

search are described in the subsequent subsections of this chapter.

Feasibility of high Reynolds number computations

The derivation of the kinetic energy conservation in section 2.4.3 appears to hinge

on the use of the Implicit Midpoint time integration method. As mentioned, the

choice of the time integration method is as important as the choice of the spatial

discretization method if exact conservation is desired. However, the implicit nature

of the method used and the fact that conservation requires the solution of the non-

linear equations lead to a computationally expensive discretization. Of course, it

is completely up to the objectives of the user whether this effort merits the com-

putational costs, but it warrants an investigation into the possibilities of cheaper

(perhaps explicit) time integration methods with similar or nearly similar conserva-

tion properties, such as in the work of Sanderse [76] and Verstappen and Veldman

[91].

For LES or DNS, it is likely that the overall second order accuracy of the proposed

Navier-Stokes discretization is too restrictive. Further research should therefore

entail the extension to higher order discretizations, while maintaining the conser-

vation properties of the scheme. The extension needs to concern at least two im-

portant aspects. First, higher order approximations of the discrete vector operators

and inner products as defined in section 2.2 should be established. Except for the

cells near the origin, straightforward application of higher order differences seems

sufficient for this. The difficulty will likely be the second aspect, namely the find-

ing of a consistent averaging procedure for the discrete convective terms, which

governs both the momentum and kinetic energy conservation. Alternatively, ob-

taining higher order of approximations based on Richardson extrapolation can be

explored along the lines of Verstappen and Veldman [91], but the implications on

the conservation properties (especially on non-uniform grids) should be thoroughly

monitored.
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Conservation of helicity

Besides mass, momentum and kinetic energy, a scalar quantity known as helicity is

a conserved quantity in inviscid 3D flows. It is defined as:

H =
∫

Ω
u · (∇× u)dV =

∫

Ω
u ·ω dV, (5.1)

with u ∈ R3 the flow velocity and ω ∈ R3 the flow vorticity. The importance of

helicity to the vortical structures of turbulence was recognized by Moffatt and Tsi-

nober [59] a few decades ago. Despite its physical relevance, numerical discretiza-

tion schemes of the incompressible Navier-Stokes equations designed to conserve

(among others) helicity are scarce, but developments do occur; see for example the

work of Liu and Wang [54] and Rebholz [70]. It would be interesting to investigate

to what extent the proposed Navier-Stokes discretization is capable of conserving

helicity as an additional conserved quantity. One of the first tasks will be to find

a discrete analogue to the definition of helicity in equation 5.1, since velocity and

vorticity are defined at different locations in the staggered grid. This problem is

similar to the discretization of the product occurring in the convective terms of the

discrete Navier-Stokes equations (see section 2.3.1). The simultaneous conservation

of multiple quantities is not easy for numerical schemes: like the conservation of

kinetic energy, also the conservation of helicity follows from manipulation of the

momentum equations. A successful demonstration of this would make a very pos-

itive contribution to the field of turbulent pipe flow simulations.

Extension to variable-viscosity flows

The applicability of the proposed Navier-Stokes discretization in cylindrical coor-

dinates for pipes is currently limited to flows of constant viscosity. This is due to

the fact that the development of mimetic discretization techniques was originally

focused on first order tensors, i.e. the gradient of a scalar or the curl of a vector.

For non-constant viscosity flows, the viscous part of the Navier-Stokes equations

consists of a second-order tensor that is more complex to handle in the context of

mimetic finite differences. Expanding the field of mimetic approximations to higher

order tensors is currently an active field of research (see for example Campbell and

Shashkov [16], Campbell et al. [17], da Veiga and Manzini [19]), and it is likely that

an extension to variable-viscosity flows lies within the realm of possibilities.
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Accuracy of the interface conditions

For a more consistent treatment of the jump conditions at the interface, the current

algorithm needs to be modified in such a way that the interface is modeled as truly

sharp. As mentioned in section 3.2.2, a continuous viscosity formulation that is

smeared out in a narrow region along the interface is currently used to avoid the

complex implementation of one of the interface conditions. A full implementation

of the Ghost Fluid method similar to Kang et al. [51], in which both the jump in the

pressure as well as the jump in the viscosity are modeled, is more consistent with

the assumption of a sharp interface. A secondary benefit is that a full implementa-

tion would allow the use of the current constant-viscosity discretization for laminar

flows as well as for DNS for turbulent flows. The turbulent viscosity νt, when used

in LES, is not constant in space, which complicates the application of the proposed

discretization for the simulation of turbulent flows. Once correctly implemented,

the conservation properties of the multiphase scheme should be investigated. Al-

ready challenging in single phase flows, the conservation of momentum and kinetic

energy in numerical schemes for multiphase flows is even more difficult to obtain.

Rigorous analyses of this subject in the literature are rare, and more research into

these aspects is required.

Implicit VoF advection

It was shown in section 4.2.5 that explicit finite volume-based VoF advection is

highly inaccurate whenever the interface crosses the origin of the polar plane. This

is caused by the inability of explicit advection to allow fluid to traverse multiple

cells within a single time step. A simple VoF redistribution algorithm was devised

to improve the accuracy of the interface near the origin for the intended test cases,

but a more generalized solution is required. Implicit treatment of the VoF fluxes

does not suffer from the prohibitive CFL constraint of explicit methods, and this is

likely to significantly improve the accuracy of the VoF advection near the origin. The

complexity of its implementation and the computational cost are strong drawbacks

of such an approach, but it is likely that the availability of the level set function

may render an implicit treatment feasible. The key observation is that the level set

function at the new time level is generally a very good approximation of the exact

new interface. When this is used in combination with iterative solvers, it provides

an accurate first guess so that the number of iterations can be kept small. In this

way, the computational cost can hopefully remain at an acceptable level, but only

practical experience will ultimately show the realism of this expectation.
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Extension to the Moment of Fluid method

Recent developments in the field of interface capturing methods include the Mo-

ment of Fluid (MoF) method [26, 27], which is a generalization of the VoF method

by including higher order moments of the colour function in the process of the in-

terface reconstruction. Having available both the fluid quantity and its centroid in-

formation in every cell, the reconstruction of a linear interface is formally uniquely

defined. An important observation is that this reconstruction can be done cell-wise

without any interaction with neighbouring cells, which makes (fine-grained) par-

allelization of the process relatively simple. Although the MoF method formally

renders the level set function redundant in terms of determinacy, the latter can

still be used to efficiently simplify various processes in the MoF algorithm. The

relatively simple implementation and low computational demands of the level set

method then make it a feasible addition nonetheless. Jemison et al. [47] have devel-

oped a coupled level set - MoF method for incompressible two-phase flow problems

on Cartesian grids with impressive results. The use of the MoF method as an exten-

sion to the current algorithm should therefore be considered. The first steps towards

such an extension have already been taken by applying the numerical VoF calcula-

tion of section 4.2.3 to the calculation of the first moments of the colour function.

Additionally, an advection scheme for the fluid moments has been derived.

Parallel performance

The results of the 3D test case in section 4.5 show good scaling properties of the

current algorithm. However, so far we have only carried out a few strong scaling

tests to analyze the parallelism. For more definite conclusions on the performance,

also weak scaling results should be determined in future research. Furthermore, the

coarse-grained parallelism can be improved by extending the domain decomposi-

tion to radial and angular domains as well (currently only decomposition in axial

direction is performed), depending on the configuration considered in the test case.

Fine-grained parallelism through the use of OpenMP is currently not employed, but

its implementation should be included in the future optimization of the algorithm.

Domain geometry

The initial choice of a straight cylindrical pipe section was made for efficiency pur-

poses, and the genericity of the computational domain was intentionally sacrificed.

For an increased applicability of the algorithm, an extension to include smoothly
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curved cylinders to simulate bends in pipes will be valuable. Any attempt, however,

should strive to maintain the efficiency of the algorithm as much as possible. The

orthogonality of the cylindrical coordinate system, which contributes to the over-

all efficiency, is generally lost when the cylinder axis is described by a continuous

curve in space. As a possible solution, however, the coordinate system derived by

Germano [34] is close to cylindrical, and can be used to maintain orthogonality of

the flow equations. The adaptation of the interface algorithm then remains. Because

of the similarity to cylindrical coordinates, it is expected that the conversion can be

performed without adding an excessive amount of complexity.

Extension of the test cases

Further validation of the derived interface algorithm requires an extended set of

test cases. Configurations close to real-life hydrocarbon applications are of partic-

ular interest, like for example the simulation of a Benjamin bubble in a horizontal

pipe (for which also analytical solutions exist) or the comparison to stratified flow

(laminar and turbulent) in a pipe with capillary waves and with gravity waves at

the interface [10]. Furthermore, the comparison with experiments of hydrodynamic

slug flow in a horizontal pipe [98] and the comparison to core-annular flow with a

laminar oil core with turbulent water in the annulus [65], known as ’bamboo waves’

[52, 71], could be investigated in more detail.

Cylindrical coordinates versus Cartesian coordinates

The use of cylindrical coordinates to model pipe flows was motivated by an antici-

pated performance gain compared to the use of a Cartesian coordinate systems. To

precisely quantify the benefits of using the boundary-fitting cylindrical coordinate

system over the Cartesian coordinate system in combination with the Immersed

Boundary Method (IBM) or similar boundary-capturing techniques, comparitive

simulations need to be performed. An appropriate array of tests is required to de-

rive objective conclusions about the difference in robustness, speed and accuracy of

both approaches.
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Conclusions

The present thesis has provided a detailed analysis to numerically solve the

Navier-Stokes equations for two-phase flows in a pipe using cylindrical coor-

dinates. The work can be split up in finding a proper discretization of the Navier-

Stokes equations for each of the multiple phases, and finding a proper represen-

tation of the interface between the phases. As the desire was to use a structured,

boundary-fitted grid through cylindrical coordinates (instead of an unstructured

boundary-fitted grid or a structured, non-boundary-fitted Cartesian grid), resolv-

ing the singularity in the grid at the pipe centre line was a main challenge in this

study.

The main conclusions of the Navier-Stokes discretization are the following.

• The applied approach leads to a discretization of the flow velocities and the pres-

sure which was numerically demonstrated to be second order accurate in space.

• The applied approach leads to conservation of mass and radial, angular and axial

momentum in cylindrical domains with appropriate boundary conditions. Mass

and momentum conservation were numerically demonstrated to hold.

• When using the Implicit Midpoint method (which conserves quadratic invariants)

for the time integration of the semi-discrete Navier-Stokes equations, the applied

approach leads to a discretization that is capable of conserving kinetic energy for

inviscid flows with appropriate boundary conditions. The spatial conservation of

kinetic energy for such flows has been proven analytically to hold.

• The combination of the mimetic approximation of the differential vector operators

and the averaging procedure of the discrete convective terms of the Navier-Stokes
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equations leads to a consistent treatment of the coordinate singularity. In the

applied approach, the singularity at the pipe axis neither requires any special

in situ modifications of the discretization, nor does it affect the second order

accuracy or the conservation properties.

• The second order accuracy and the conservation properties apply for both uni-

form and non-uniform grids (in radial and axial direction).

The main conclusions of the numerical interface representation are the following.

• A combined Level Set method and Volume of Fluid method, which can be seen

as a dual interface approach, has been successfully extended from its earlier use

in Cartesian coordinates to cylindrical coordinates.

• The Height Function method used to calculate the interface curvature based on a

local stencil of VoF values can be extended to 3D cylindrical domains. Numerical

tests show that the resulting approximation is second order accurate in space for

an exact VoF field.

• It was verified that second order reinitialization of the level set function leads to

a non-convergent approximation of the interface curvature when that curvature

is approximated by using the level set function.

• Comparison of the simulation results of the developed dual interface method

with results from three general-purpose CFD packages (Fluent, STAR-CCM+ and

OpenFOAM) for the rising bubble test cases shows a good agreement, both for

the bubble shape and for the terminal rise velocity. There is also good agreement

with lab experiments.

• The time-explicit VoF advection becomes highly inaccurate when flow in the polar

plane through the origin at r = 0 is present. This is caused by angular velocities

that become infinite, and the subsequent instantaneous movement of the interface

cannot be captured by explicit methods.

• Modal stability theory of two-phase pipe flows can successfully be applied to the

development of temporal instabilities in the case of an axisymmetric interface in

a core-annular flow. The developed interface algorithm is capable of accurately

approximating the predicted growth rate for a given perturbation of the interface.

• Performance tests show that the developed interface algorithm generally takes

only 5− 10% of CPU time during each time step. Furthermore, results from large
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test cases with more than 106 cells show good strong scaling properties of the

algorithm.

This study has led to new software for solving two-phase pipeline problems that

are of industrial interest. The robustness, speed and accuracy of the CFD algorithm

was demonstrated for a number of test cases. Strengths and weaknesses of the ap-

plied numerical methods have been identified. It is clear that more work is needed

to prove the performance for more challenging test cases, such as turbulent (rather

than laminar) two-phase flow, the interaction of a turbulent and wavy interface, hy-

drodynamic slug flow, entrainment of gas bubbles in a liquid layer, or entrainment

of liquid droplets in a gas layer. In the previous chapter, recommendations were

given for further research on the numerical aspects that will make the handling of

these more difficult test cases possible. Success means the ability to perform 2D

and 3D simulations in a robust, fast, and accurate manner, for real-life engineering

two-phase pipe flow conditions. This is clearly within reach, and the demonstrated

success has and will help to make multiphase CFD more mature, and bring it to a

level of reliability comparable to the level at which we nowadays carry out single

phase simulations.





Appendix A
Proofs of mimetic inner products

In this appendix, the proofs that are referred to in section 2.2.4 are provided.

Proposition. For any p ∈ HC and u ∈ HS on an infinite domain, it holds that (Du, p)HC =

−(u, Gp)HS .

Proof. Let p ∈ HC and u = (ur, uθ , uz) ∈ HS . We start with the inner product

(Du, p)HC. For cell I, this is given by:

(Du, p)HCI = VI
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where VI = ri∆ri∆θ∆zk is the volume of cell I. Then, for the inner product (u, Gp)HS ,

we collect all contributions to an arbitrary pI. For an arbitrary cell I:
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Collecting all radial contributions to pI gives:
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which after simplification reduces to −∆θ∆zk

(
ri+ 1
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2
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)
. In a similar

way, collecting all angular contributions to pI gives:
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which reduces to −∆ri∆zk(uθI+eθ
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). Finally, for the axial contributions, we

get:

− ri∆ri∆θ

2

[
from cell I−2 ez︷ ︸︸ ︷

− 2∆zk−1
∆zk−1 + ∆zk

uzI−ez

from cell I︷ ︸︸ ︷
− 2∆zk

∆zk−1 + ∆zk
uzI−ez

+
2∆zk

∆zk + ∆zk+1
uzI+ez

+
2∆zk+1

∆zk + ∆zk+1
uzI+ez

︸ ︷︷ ︸
from cell I+2 ez

]
, (A.6)

which reduces to −ri∆ri∆θ(uzI+ez
− uzI−ez

). Comparing the coefficient for pI from

equation A.2 and the cumulative coefficient from equations A.4, A.5 and A.6 shows

that after summation over the entire computational grid it holds that (Du, p)HC =

−(u, Gp)HS .
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Proposition. For any ω ∈ HL and u ∈ HS on an infinite domain, it holds that

(Cω, u)HS = (ω, Cu)HL.

Proof. Let ω = (η, ω, ζ) ∈ HL and u = (ur, uθ , uz) ∈ HS . We collect the compo-

nents of ω in both inner products. For ηI+eθ+ez , there are contributions from cells

I, I + 2 eθ , I + 2 ez and I + 2 eθ + 2 ez. The sum of the contributions to the term

ηI+eθ+ez from the inner product (Cω, u)HS is:

ri∆ri∆θ∆zk
2

[ from cell I︷ ︸︸ ︷
uθI+eθ

∆zk
− uzI+ez

ri∆θ
+

from cell I+2 eθ︷ ︸︸ ︷
uθI+eθ

∆zk
+

uzI+2 eθ+ez

ri∆θ

]

+
ri∆ri∆θ∆zk+1

2

[
−

uθI+eθ+2 ez

∆zk+1
− uzI+ez

ri∆θ︸ ︷︷ ︸
from cell I+2 ez

−
uθI+eθ+2 ez

∆zk+1
+

uzI+2 eθ+ez

ri∆θ︸ ︷︷ ︸
from cell I+2 eθ+2 ez

]
, (A.7)

which reduces to:

ri∆ri∆θ
∆zk + ∆zk+1

2

(
uzI+2 eθ+ez − uzI+ez

ri∆θ
−

2(uθI+eθ+2 ez
− uθI+eθ

)

∆zk + ∆zk+1

)
. (A.8)

The contributions from the inner product (ω, Cu)HL consist of:
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2 ·

from cells I, I+2 eθ︷ ︸︸ ︷
ri∆ri∆θ∆zk

2
+ 2 ·

from cells I+2 ez ,I+2 eθ+2 ez︷ ︸︸ ︷
ri∆ri∆θ∆zk+1

2

]
(Cu)rI+eθ+ez

2

= ri∆ri∆θ
∆zk + ∆zk+1

2
(Cu)rI+eθ+ez

, (A.9)

which after substitution of equation 2.44 becomes exactly equation A.8. Hence, for

an arbitrary ηI+eθ+ez , both inner products yield the same contributions. Then we

collect all contributions to ωI+er+ez . These stem from cells I, I + 2 er, I + 2 ez and

I + 2 er + 2 ez. From the inner product (Cω, u)HS , we get:

ri+ 1
2
∆θ

2

[ from cell I︷ ︸︸ ︷
−∆riurI+er

+ ∆zkuzI+ez

from cell I+2 er︷ ︸︸ ︷
−∆ri+1urI+er

− ∆zkuzI+2 er+ez
(A.10)
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+ ∆riurI+er+2 ez
+ ∆zk+1uzI+ez︸ ︷︷ ︸

from cell I+2 ez

+∆ri+1urI+er+2 ez
− ∆zk+1uzI+2 er+ez︸ ︷︷ ︸

from cell I+2 er+2 ez

]
,

which reduces to:

ri+ 1
2

∆ri + ∆ri+1

2
∆θ

∆zk + ∆zk+1
2

·
(

2(urI+er+2 ez
− urI+er

)

∆zk + ∆zk+1
− 2

(
uzI+2 er+ez

− uzI+ez

)

∆ri + ∆ri+1

)
. (A.11)

From the inner product (ω, Cu)HL, we collect:

[
from cell I︷ ︸︸ ︷

ri+ 1
2
∆ri∆θ∆zk

4
+

from cell I+2 ez︷ ︸︸ ︷
ri+ 1

2
∆ri∆θ∆zk+1

4
+ (A.12)

ri+ 1
2
∆ri+1∆θ∆zk

4︸ ︷︷ ︸
from cell I+2 er

+
ri+ 1

2
∆ri+1∆θ∆zk+1

4︸ ︷︷ ︸
from cell I+2 er+2 ez

]
(Cu)θI+er+ez

= ri+ 1
2

∆ri + ∆ri+1

2
∆θ

∆zk + ∆zk+1
2

(Cu)θI+er+ez
. (A.13)

After substitution of (Cu)θI+er+ez
from equation 2.46, we get exactly the result of

equation A.11. Finally, collecting all contributions to ζI+er+eθ
from cells I, I + 2 er,

I + 2 eθ and I + 2 er + 2 eθ , we get from the inner product (Cω, u)HS :

∆zk
2

[ from cell I︷ ︸︸ ︷
∆riurI+er

− ri∆θuθI+eθ
+

from cell I+2 er︷ ︸︸ ︷
∆ri+1urI+er

+ ri+1∆θuθI+2 er+eθ
(A.14)

−∆riurI+er+2 eθ
− ri∆θuθI+eθ︸ ︷︷ ︸

from cell I+2 eθ

−∆ri+1urI+eθ+2 eθ
+ ri+1∆θuθI+2 er+eθ︸ ︷︷ ︸

from cell I+2 er+2 eθ

]
,

which reduces to:

∆ri + ∆ri+1

2
∆θ∆zk·



2
(

ri+1uθI+2 er+eθ
− riuθI+eθ

)

∆ri + ∆ri+1
−

urI+er+2 eθ
− urI+er

∆θ


 . (A.15)
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From the inner product (ω, Cu)HL, we collect:

[ from cells I and I+2 eθ︷ ︸︸ ︷
ri + ri+1

2
∆ri∆θ∆zk

2
+

from cells I+2 er and I+2 er+2 eθ︷ ︸︸ ︷
ri + ri+1

2
∆ri+1∆θ∆zk

2

]
(Cu)zI+er+eθ

(A.16)

=
ri + ri+1

2
∆ri + ∆ri+1

2
∆θ∆zk(Cu)zI+er+eθ

(A.17)

After substitution of equation 2.48, the resulting expression is exactly equation A.15.

For the specific case of ζ̃k0 , the inner product (Cω, u)HS get contributions from all

cells around the axis:

r1∆ri∆θ∆zk0

2 ∑
I,i=1,k=k0

uθI+eθ
+ uθI−eθ

∆ri
= r1∆θ∆zk0 ∑

I,i=1,k=k0

uθI+eθ
, (A.18)

while the inner product (ω, Cu)HL yields:

Nθ
r1∆r1∆θ∆zk0

4
(Cu)z0,k0

, (A.19)

and after substitution of equation 2.49, this gives:

Nθ
r1∆r1∆θ∆zk0

4
4

∆r1Nθ
∑

I,i=1,k=k0

uθI+eθ
= r1∆θ∆zk0 ∑

I,i=1,k=k0

uθI+eθ
, (A.20)

which is precisely equation A.18.
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Summary

This research entails the numerical simulation of physical flow instabilities

that can occur in two-phase pipe flows with a new efficient algorithm. The flu-

ids are assumed to be immiscible, and the flow is incompressible and isothermal in

a straight circular pipe section with a certain inclination. The numerical algorithm

that was developed consists of a flow solver and a sharp interface model that solve

the Navier-Stokes equations in cylindrical coordinates. The simulation results ob-

tained with the new method are validated through comparison with other models

and with experiments. The focus lies on obtaining an accurate and efficient algo-

rithm that can ultimately be used for Direct Numerical Simulations or Large Eddy

Simulations of turbulent two-phase pipe flows.

First, an improved approximation of the Navier-Stokes equations in cylindrical co-

ordinates was derived based on mimetic principles. Instead of minimizing the trun-

cation error, this approach aims at discretely satisfying as many of the continuous

vector identities as possible. The resulting finite difference discretization spatially

conserves mass, momentum and kinetic energy on non-uniform grids for inviscid

flows when used in conjunction with a suitable time integration method. Exten-

sive numerical testing demonstrates that the discretization is second order accurate.

In particular, the coordinate singularity at the pipe centre, which causes significant

problems in existing numerical methods, is incorporated consistently in the mimetic

framework.

The proposed discretization is currently only applicable to constant-viscosity flows,

and therefore a different variable-viscosity Navier-Stokes discretization (that does

not conserve kinetic energy) is used for the two-phase flow simulations. In this ap-

proach, the Navier-Stokes equations in cylindrical coordinates are solved on a stag-

gered cylindrical grid. The spatial discretization is based on a second order finite

difference discretization of the Navier-Stokes equations, and a projection scheme is
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used to advance the flow field in time. The momentum equations are linearized

using Newton linearization, and the resulting semi-discrete system is solved using

the Implicit Midpoint time integration method with a Jacobi preconditioner. The

Poisson equation for the pressure is solved using the Conjugate Gradient method

with an Incomplete Cholesky preconditioner (block IC for the parallel algorithm).

In addition to the flow solver, a dual interface algorithm consisting of an efficient

combination of the Level Set method and the Volume of Fluid (VoF) method was

constructed in cylindrical coordinates. The straightforward interface representation

of the Level Set method is supplemented with the inherent volume conservation

of the VoF method, thereby creating a method that is superior to either of its con-

stituents. Both the Level Set function and the VoF function are retained on the

cylindrical grid, and they are coupled through a computationally efficient function.

A conservative dimensionally split advection algorithm that is second order accu-

rate in space is used for both variables, which results in exact conservation of the

volume fractions.

The analysis of the time-explicit advection of the VoF field shows that it is unable to

capture the interface accurately whenever it traverses the origin in the polar plane.

To remedy this, a VoF redistribution algorithm was derived that significantly im-

proves the VoF advection accuracy near the polar origin.

The jump conditions at the interface are modeled with the Ghost Fluid method. The

fluid density is based on the VoF value, while the viscosity is smeared out along

a narrow tube around the interface. The approximation of the interface curvature,

which is required when surface tension is present, is calculated with the VoF-based

Height Function method that has been extended to cylindrical domains.

The complete algorithm has been implemented in Fortran 90 and was validated

using a comprehensive test suite. The numerical results were compared with a

variety of rising bubbles to investigate the performance and the accuracy of the

method. Good agreement is generally found for the terminal rising velocities and

for the bubble shapes. Based on modal stability theory, the algorithm shows an

excellent ability in capturing the predicted growth factor of a perturbed axisym-

metric surface. The full 3D algorithm has finally been validated by comparison

with experiments for Kelvin-Helmholtz waves in horizontally inclined pipes.



Samenvatting

Dit onderzoek betreft de numerieke simulatie van fysische instabiliteiten die

gevormd kunnen worden in twee-fase buisstromingen met een nieuw efficient

algoritme. De fluida worden als onmengbaar beschouwd, en de stroming is in-

compressibel en isotherm door een rechte buis onder een gegeven helling. Het

numerieke algoritme dat is ontwikkeld bestaat uit een stromingsmodel en een

scherp interface model die beiden worden gebruikt om de Navier-Stokes verge-

lijkingen in cylindrische coordinaten op te lossen. De verkregen simulatieresul-

taten zijn gevalideerd door vergelijking met andere modellen en met experimenten.

De nadruk ligt op het verkrijgen van een nauwkeurig en efficient algoritme dat

uiteindelijk gebruikt kan worden voor Directe Numerieke Simulaties of Large-Eddy

Simulaties van turbulente twee-fase buisstromingen.

De eerste stap in het onderzoek was het afleiden van een verbeterde benadering van

de Navier-Stokes vergelijkingen in cylindrische coordinaten gebaseerd op mime-

tische principes. In plaats van het minimalizeren van de lokale discretizatiefout

heeft een mimetische methode het doel om zo veel mogelijk vectoridentiteiten

die gelden op continu niveau ook op het discrete niveau te laten gelden. De re-

sulterende eindige differentie discretizatie behoudt zowel massa, momentum als

kinetische energie op niet-uniforme roosters voor niet-visceuze stromingen indien

een geschikte tijdsintegratiemethode wordt gebruikt. Uitgebreide numerieke testen

laten zien dat de discretizatie een tweede orde nauwkeurigheid heeft. De aan-

pak van de coordinaatsingulariteit in het midden van de buis, welke voor aanzien-

lijke problemen zorgt in bestaande numerieke methoden, volgt consistent uit de

mimetische methode.

De afgeleide discretizatie is momenteel alleen toepasbaar op stromingen met een

constante viscositeit. Om die reden is een andere Navier-Stokes discretizatie ge-

bruikt voor de twee-fase stroming simulaties. Deze discretizatie behoudt geen
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kinetische energie, maar is wel toepasbaar op stromingen met variable viscositeit.

Bij deze aanpak worden de Navier-Stokes vergelijkingen in cylindercoordinaten

opgelost op een versprongen cylindrisch rooster. De ruimtelijke discretizatie is

gebaseerd op een tweede orde eindige differentie methode, en de tijdsdiscretiza-

tie maakt gebruikt van een projectie-algoritme. De momentumvergelijkingen wor-

den gelinearizeerd met behulp van Newton linearizatie, en het resulterende semi-

discrete systeem wordt opgelost door de Impliciete Middelpunt methode met Ja-

cobi voorbewerking. De Poisson vergelijking voor de druk wordt opgelost door de

Geconjugeerde Gradienten methode met Incomplete Cholesky voorbewerking (blok

IC bij de parallelle implementatie).

Naast de stromingsdiscretizatie is ook een interface algoritme in cylindercoordi-

naten ontwikkeld dat bestaat uit een efficiente combinatie van de Level Set methode

en de Volume of Fluid (VoF) methode. De eenvoudige interface representatie van

de Level Set methode wordt aangevuld met het inherente volumebehoud van de

VoF methode, waardoor een hybride algoritme ontstaat dat superieur is aan elk van

beide individuele technieken. Zowel de Level Set functie als de VoF functie worden

gebruikt op het rooster, en beiden worden gekoppeld door een numeriek efficiente

relatie. Beide variabelen worden door een tweede orde nauwkeurig advectie algo-

ritme getransporteerd, waarbij individuele volume fracties tot op machine precisie

worden behouden.

Een analyze van de expliciete advectie van het VoF veld laat zien dat deze niet in

staat blijkt het interface nauwkeurig te modelleren wanneer dit door de oorsprong

van het poolvlak beweegt. Om de nauwkeurigheid te vergroten is een VoF herdis-

tributie algoritme ontwikkeld dat significant verbeterde resultaten geeft in de buurt

van de cylindrische oorsprong.

De discontinuiteiten die ontstaan bij het interface worden gemodelleerd met de

Ghost Fluid methode. The dichtheid van de fluida is gebaseerd op de VoF waar-

den, en de viscositeit is uitgesmeerd over een dunne laag rond het interface. De

benadering van de kromming van het interface, welke nodig is voor stromingen

met oppervlaktespanning, is gebaseerd op de Hoogte Functie methode die is uitge-

breid naar cylindrische domeinen.

Het volledige algoritme is geimplementeerd in Fortran 90, en vervolgens gevalideerd
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aan de hand van een uitgebreid scala aan testen. De numerieke resultaten zijn

vergeleken met een aantal experimentele resultaten van stijgende bellen om de

nauwkeurigheid van het algoritme te onderzoeken. Er wordt een goede nauwkeurig-

heid gevonden voor de stijgsnelheden en de vorm van de bellen. Het algoritme

toont bijzonder goede resultaten bij het voorspellen van groeifactoren van een ver-

stoord axisymmetrisch interface op basis van modale stabiliteitstheorie. Het volledi-

ge 3D algoritme werd uiteindelijk ook gevalideerd door vergelijking met experi-

menten voor Kelvin-Helmholtz golven in een horizontale buis.
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