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You Can’t Always Get What You Want: Games of
Ordered Preference

Dong Ho Lee

Abstract—We study noncooperative games, in which each
player’s objective is composed of a sequence of ordered—and po-
tentially conflicting—preferences. Problems of this type naturally
model a wide variety of scenarios: for example, drivers at a busy
intersection must balance the desire to make forward progress
with the risk of collision. Mathematically, these problems possess
a nested structure, and to behave properly players must prioritize
their most important preference, and only consider less important
preferences to the extent that they do not compromise performance
on more important ones. We consider multi-agent, noncooperative
variants of these problems, and seek generalized Nash equilibria in
which each player’s decision reflects both its hierarchy of prefer-
ences and other players’ actions. We make two key contributions.
First, we develop a recursive approach for deriving the first-order
optimality conditions of each player’s nested problem. Second, we
propose a sequence of increasingly tight relaxations, each of which
can be transcribed as a mixed complementarity problem and solved
via existing methods. Experimental results demonstrate that our
approach reliably converges to equilibrium solutions that strictly
reflect players’ individual ordered preferences.

Index Terms—Autonomous agents, optimization and optimal
control, constrained motion planning.

I. INTRODUCTION

N OPTIMAL decision-making, a user’s preferences often
I reflect competing goals such as safety and efficiency. For
example, consider the intersection scenario in Fig. 1 where each
vehicle has a different order of preferences regarding reaching
the goal, driving under the speed limit, driving within the lane,
and minimizing fuel usage. In such cases, treating all prefer-
ences as equally important can be problematic, especially when
some preferences encode hard constraints, such as respecting
lane boundaries. When formulated as an optimization problem,
conflicting preferences can lead to infeasibility and ultimately
cause solver failure.

In many cases—such as the autonomous driving example
above—there is a clear hierarchy among the conflicting pref-
erences. A naive approach to encode this concept of ordered
preference is to construct a single objective function with
weighted contributions from each preference, which can be
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Fig. 1. A two-vehicle intersection scenario involving four levels of pref-
erences. The star indicates the goal position for each vehicle. Our game of
ordered preference (GOOP) framework identifies equilibrium trajectories by
selectively relaxing less important preferences only when they compromise
the performance of more important ones. In this figure, the dashed lines with
diamond markers depict the complete closed-loop trajectories computed via
receding horizon planning—where an open-loop plan is computed at each time
step and only the first control action is implemented—while the solid lines
with circle markers show a representative open-loop plan generated at ¢t = 3's.
Additional subplots illustrate vehicle speeds and anticipated final distance to
the goal in the closed-loop trajectories. Vehicle 1 (blue) initially violates the
speed limit in order to satisfy goal-reaching at the final time step. On the other
hand, Vehicle 2 (red) initially maintains their speed under the limit and sacrifices
goal-reaching instead.

adjusted manually or learned from data [1], [2]. However,
such formulations can easily become ill-conditioned, and it is
not always straightforward to design weights which yield the
desired behavior.

Hierarchical optimization problems have been well studied
in the operations research literature [3], [4]. These problems are
naturally characterized as a sequence of nested mathematical
programs, where the decision variable at each level is con-
strained to be a minimizer of the problem at the level below.
Several studies such as [5], [6], [7], [8] have explored theo-
retical properties such as optimality conditions and constraint
qualifications in bilevel settings. Nested problems of this kind
can also be solved via “lexicographic minimization,” in which
each subproblem is addressed in order—from the lowest level
to the highest level—while preserving the optimality of higher-
priority preferences (at lower levels) by incorporating additional
constraints [9], [10], [11].

While the lexicographic approaches produce solutions with
desirable properties in single-agent settings, their computational
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methods do not readily extend to multi-agent domains. In single-
agent contexts, hierarchical least-squares quadratic problems
have been studied [12], particularly in the realm of real-time
robot control. More generally, connectivity structures—often
referred to as mathematical program networks—have also been
characterized [13].

While various methods to cope with hierarchical preferences
have been developed—such as the aforementioned strategy of
weighting agents’ preferences according to their priority as
in [14]—most focus on single-agent scenarios, and there are
very limited results for multi-agent, noncooperative settings. For
example, recent work [15] applies lexicographic minimization
to an urban driving game via an iterated best response (IBR)
scheme. However, this approach is limited to a certain class
of games where IBR is guaranteed to converge. Follow-on
work [16] considers preferences which are only partially or-
dered, necessitating a substantially different solution approach.
Recent works [17], [18] introduce social or game-theoretic
models integrating high-level intent and compliance, while oth-
ers [19], [20] study game-theoretic planning in competitive
scenarios, but all assume scalarized or single-level objectives.
In contrast, our work focuses on settings where agents’ deci-
sions are governed by ordered preferences, allowing some to be
selectively relaxed to achieve higher priority goals.

In this paper, we study multi-agent, game-theoretic variants
of problems of (totally) ordered preference, which we refer to
as game of ordered preferences (GOOPs). Our contributions are
twofold: (i) We reformulate each agent’s problem of ordered
preference by sequentially replacing inner-level optimization
problems with their corresponding Karush-Kuhn-Tucker condi-
tions. This yields a mathematical program with complementarity
constraints (MPCC) for each agent. (ii) We develop a relaxation
technique that smoothens the boundary of the feasible set in
these problems in order to facilitate numerical computation.
From this set of relaxed MPCCs, we derive a single mixed
complementarity problem whose solution is a (local) generalized
Nash equilibrium solution of the original GOOP. We present
experimental results which demonstrate that the proposed al-
gorithm reliably converges to approximate generalized Nash
solutions which reflect individual player’s hierarchy of prefer-
ences, and compare the results with a family of penalty-based
approximation baselines.

II. PRELIMINARIES AND RELATED WORK

In this section, we introduce two important concepts under-
pinning our work and discuss the related literature in each area.
In Section II-A, we discuss how we formulate the problem of
ordered preferences as a hierarchical optimization problem, and
transcribe it as an MPCC. Next, in Section II-B, we introduce
generalized Nash equilibrium problems (GNEPs) and discuss
their relationship to mixed complementarity problems (MiCPs),
for which an off-the-shelf solver is available.

A. From Hierarchical Preferences to MPCCs

We begin by discussing a single-agent problem with fwo
levels; future sections will generalize to the N-agent, K -level
setting. We use subscripts to denote the preference level and
assume that a higher preference index indicates higher priority.
In other words, the innermost problem carries the highest level
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of preference. This yields a problem of the following form:
min  J;(z1) (la)
z
s.t. 2z € argmin Jy(z3) (1b)
Z2
st. zy € Z, 9]

where Vi € {1,2},z; € R", J,(-) : R™ — R, and the inner fea-
sible set Z is defined in terms of continuously differen-
tiable functions g : R — R™and h: R™ — RP as Z := {z €
R"™|g(z) = 0, h(z) > 0}. This formulation captures the fact that
any outer-level variables are constrained to be in the set of
minimizers of the lower-level problem. By inspection, we can
readily see that the inner problem is a constrained nonlinear
program. In general, the Karush-Kuhn-Tucker (KKT) conditions
are only necessary for optimality, provided that some constraint
qualifications are satisfied [21]. If Z is convex, then the KKT
conditions are also sufficient. The necessary conditions for opti-
mality correspond to a mixed complementarity problem (MiCP),
which is the KKT system comprised of primal (z2) and dual
(Xa, po) variables of the inner problem. It is convenient to ex-
press the result in terms of the Lagrangian of the inner problem,
defined as Lo(z2, Ao, p12) := J (z2) — Ad h(z2) — g g(2z2):

,min Jy(z1) (2a)
sit. Vg, Lo(z1, A, o) =0, (2b)
0<h(z1) Lrs >0, (2¢)

g(z1) = 0. (2d)

The optimization problem in (2) is a single-level program
that involves the Lagrange dual variables of the lower level
problem in (1b) and (Ic) as primal variables. To be specific,
the dual variables (Ao, o) € RPT™, which are introduced at
the inner problem, become primal variables (Aq, 1) for the
outer problem (in addition to z; € R"™). We call these additional
primal variables as the induced primal variables since they are
introduced in the process of building a single-level program. In
particular, constraint (2b) refers to the stationarity condition of
the Lagrangian function with respect to the primal variable (z1)
of the inner level problem. Constraint (2c) encodes the com-
plementarity relationship between the inequality constraints in
(1¢) and the associated dual variables. This constraint indicates
that for each coordinate i € [p], at least one of h;(z) and A; is
zero, while the other is nonnegative. Lastly, (2d) is the equality
constraint from (1c).

The reformulated problem in (2) is known as a mathematical
program with complementarity constraints (MPCC). In general,
MPCC:s are ill-posed as the complementarity constraints in (2c)
violate constraint qualifications (CQs) such as the Mangasarian-
Fromowitz constraint qualification (MFCQ) and linear indepen-
dence constraint qualification (LICQ) at every feasible point
[22]. This inherent lack of regularity in the structure of MPCCs
makes it difficult to use standard nonlinear programming (NLP)
solvers directly. In particular, the absence of a CQ implies that the
KKT conditions of the reformulation in (2) may no longer hold
at a locally optimal solution. These theoretical and numerical
difficulties led to the development of tailored theory and methods
for solving MPCCs [23], [24], [25], [26], [27], [28]. In this
context, we develop a relaxation-based approach for solving
GOOPs, which we explore in detail in Section III.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2025 at 13:34:36 UTC from IEEE Xplore. Restrictions apply.
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B. Generalized Nash Equilibrium Problems

In this section, we formally introduce generalized Nash equi-
librium problems (GNEPs) and provide a brief overview of how
local solutions may be identified [29]. A GNEP involves N
players, whose variables are denoted as z' € R™. The dimen-
sion of the game is n := Zf\il ni. We denote by z™* € R"~"
the state variables of all players except player Ri. Each player R
has an objective function denoted by J%(z‘,z %) and a feasible
set Z(z ") on which their decisions depend. Each feasible set is
defined algebraically via (nonlinear) equality and/or inequality
constraints : Z4(z™) := {z'|¢(z',z %) = 0, h'(z',z"") > 0}.
We call these constraints private since they are “owned” by
each player Ri. Furthermore, we also consider constraints that
are shared among N players, which we denote as ¢g°(z) =
0,h%(z) > 0 where z := [z%,2%,...,2"]". For simplicity, we
assume that these constraints are shared by all players so that
everyone is equally responsible for satisfying them.

Definition I1.1 (Generalized Nash Equilibrium): Mathemat-
ically, a generalized Nash equilibrium problem (GNEP) is ex-
pressed via coupled optimization problems:

_ {min Ji(zt,27%)
Vie[N] { = 7 (3a)
st.  z'e Z'(z™)
s.t. ¢°(z) =0, h°(z)>0. (3b)

The generalized Nash equilibrium (GNE) solution of (3),
z* = [z'%,...,z"']7, satisfies the inequality J(z!, z ") >
J¥(z*) for all feasible choices z’ € Z¢(z %), for all players
i € [N]. This means that at equilibrium, no player has an in-
centive to unilaterally deviate from their equilibrium z%*.

In practice, it is intractable to solve for a (global) GNE solu-
tion. Instead, it is common to transcribe the formulation in (3) as
amixed complementarity problem (MiCP) and use off-the-shelf
solvers to find a local GNE solution. In essence, solving this
MiCP is equivalent to finding a point that satisfies the system
of first-order (KKT) conditions of each player’s optimization
problem. In this paper, we use the PATH solver [30], which
constructs an equivalent nonsmooth system of equations and
solves them via a generalized Newton method. We note that
solving for GNE solutions via solving the corresponding MiCP
has been widely used in [31], [32].

III. GAMES OF ORDERED PREFERENCES

In this section, we formalize a variant of the hierarchical prob-
lems described in Section II-A which extends to the multi-agent,
noncooperative games of Section II-B. We term this multi-agent
variant a game of ordered preference.

A. Mathematical Formulation of GOOPs

We begin by introducing the mathematical formulation of
GOOP which we shall contextualize with a running example.

1) General Formulation: Unlike the GNEP in Definition 2.1,
where each player’s optimization problem is a standard NLP, a
GOOQP consists of [NV optimization problems for each player, but
each player’s problem is hierarchical, of the type discussed in
Section II-A. Each player’s hierarchical problem may involve
a different number of levels. To this end, we use k* € [K?] to
denote the kthlevel of preference for player Ri, where K refers
to the number of preferences for Ri. Mathematically, we express

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 7, JULY 2025
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Fig.2. A highway driving scenario with 2 vehicles.

a GOOP as follows:

min Jj(z,2,") (4a)
s.t. z! € argmin Ji(z),z,") (4b)
2}
st. zh. € argmin Jiei(ztei,27"%) (40)
z;(L
9°(z1) =0, h°(z;)>0. (4e)

Here, Z} ., (z™") := {z' € R"|g"(2z",2™") = 0,h'(z",2™") >
0}, and (4e) represents the shared constraints between Ri and
the rest of the players.

Running example: We will use the following 2-player running
example to illustrate the GOOP formalism. We will study more
complex interactions in Section IV.

Consider the highway driving scenario of Fig. 2, in which
N = 2 vehicles must plan their future actions over the next 7'
time steps. In this example, vehicle 1 is an ambulance and its
highest priority preference is to reach a desired goal position.
Its secondary preference is to drive below the speed limit. In
contrast, vehicle 2 is a passenger car whose highest priority
preference is to respect the speed limit, and whose secondary
preference is to reach a goal location. Both vehicles’ lowest
priority objective is to minimize their individual control effort,
and no vehicle wants to collide. These conflicting preferences
make it natural to describe the interaction as a GOOP. !

We model each vehicle as a player in the game and denote
the ith vehicle’s trajectory as z' := [x?,u’]", Vi € [N]. Here,
x'i=[ah, .., 2] T e R with oy = [pl ,,pb 4,0k 4,00 ()T €
R* encoding the state of ith vehicle, comprised of position and
velocity in the horizontal and vertical directions. Further, we
denote a sequence of control inputs by u’ := [uf, ..., u%]" €
R2T where the ith vehicle’s control input at time ¢, ui =
la, ;,al ,]" € R?, is the acceleration in the horizontal and
vertical directions, respectively. Each vehicle follows double-
integrator dynamics, discretized at a resolution At, i.e.

1 0 At 07 [pL, 1A2 0
- 01 0 At |p, N 0 A e
o0 1 0 |, At 0 al
00 0 1], 0 At |
—— i
e
5)

Note that (5) should be interpreted as equality constraints that
partially define 2%, (z7") in (4d). Both vehicles must also drive

! Although our running example considers only two levels of preferences,
in practice one could also introduce another level which encodes an absolute
maximum safety speed limit. This additional limit at a higher priority level
would prevent the ambulance from exceeding the speed limit indefinitely.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2025 at 13:34:36 UTC from IEEE Xplore. Restrictions apply.
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within the highway lane in the horizontal direction. We encode
this requirement as inequality constraints:

p, <P, <D, (©6)

The equality constraints (5) and inequality constraints (6) to-
gether specify the private feasible set 2%, (z,") in (4d). Both
vehicles also share a collision-avoidance constraint:

2 }T
col =1

eRT
(7
where d..; is the minimum distance between the two vehicles
to avoid collision.
To encode each player’s individual ordered preferences, we
define the following cost components:

iz %

R0l x0) = [ (k=824 () —9) -

(8a)
=1je{z,y}
(X)) = D [ —phrly (8b)
FSERT
T
ébcy(xi) = Z [ﬂj - U;’,t]-l— + [U;‘,t - @é]-‘m (80)
jEt{Zﬂc}y}

where [-], := max(0,-), (p, 7, P}, ) represents the terminal
position of the vehicle, (p¢, ﬁZy) refers to the desired goal po-
sition, and (v’,v%) and (v}, 7}) denote the lower and upper
limits of the velocity in the horizontal and vertical directions.

Using these cost components, we define vehicle 1’s or-
dered preferences to prioritize goal reaching (8b) over obeying
the speed limit (8c), i.e., J3(x") = Jope,(x') and J5(x") =
Jgoal( x1). In contrast, vehicle 2 prioritizes obeying the speed
limit (8c) over goal reaching (8b); i.e. J3(x?) = Jg,,(x*) and
I3 (%) = Sy (x7).

Intuitively, tﬁe ambulance may violate the speed limit to reach
the goal more quickly. Similarly, the passenger car in front
may pull to the side, de-prioritizing goal-reaching to yield to
the ambulance, or temporarily violate the speed limit to avoid
a collision. Once the ambulance has passed, however, the car
must strictly adhere to the speed limit. GOOP solutions naturally
give rise to appropriate negotiation of preferences, relaxing
less important preferences first when not all preferences can
be perfectly satisfied.

To support this intuition, we provide a sample solution for the
highway running example. Fig. 3 shows the interaction between
two vehicles with different priorities for this scenario where we
consider horizontal dynamics only. Vehicle 1 (blue) prioritizes
minimizing the distance to the goal at the final time step. How-
ever, it slows down in order to avoid collision with vehicle 2.
Vehicle 2 (red) prioritizes driving within the maximum speed
limit, but to avoid collision with the fast-approaching Vehicle
1 (blue), it temporarily exceeds this limit. Here, GOOP allows
optimal violations of preferences to satisfy hard constraints like
collision avoidance.

2) From Hierarchical to Single-Level: Next, we discuss
how to derive first-order necessary conditions for GOOP. We
shall use these conditions to identify equilibrium solutions in
Section III-B.
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Fig.3. A GOOP solution of the running example. The grey marker is the goal
position for both vehicles. The dashed line in the left plot (speed) indicates the
maximum speed limit. The dashed line in the right plot (distance between the
vehicles) represents the minimum safe distance for collision avoidance.

Following the procedure in Section II-A, we may transcribe
Ri#’s hierarchical problem (4) into a single level. To do this,
we will successively replace each nested problem within (4b),
(4c), (4d) with its corresponding KKT conditions, starting from
the inner-most problem, which encodes the highest priority
preference. As a result of this operation, we obtain a mathe-
matical program with complementarity constraints (MPCC) of
the following form:

2j" € argmin Jj(2},2]") (%)
s.t.g'(25,2,") = 0,h"(2,2,") >0,  (9b)
G'(z},2,") > 0,H (2{,2,") >0, (%)

Gz, 2,") H'(2},2,") =0, (9d)

g (75, 7,7) =0, h*(2%,2,") > 0. (%)

and we interpret the constraints in (9b) to (9d) as a specification
of Ri’s private constraint set Z%(z;%) for the GNEP in (3a),
and (9¢e) encode the shared constraints in (3b).

Note that problem (9) involves new variables z},Vi € [N].
These include the original primal variables z} along with addi-
tional variables—the dual variables from lower-level problems
in (4)—induced by the aforementioned recursive procedure.
In particular, z} := [z},145, ub, ..., A%y, ] T, Vi € [N], and
the variables (A%, pb, ..., A%, pt.) are Lagrange multipliers
from the KKT conditions of lower-level problems. The func-
tions g'(2},2,"), (2}, 2,"), G'(#,,2,") and H'(Z},2,") col-
lect equality and inequality constraints that arise throughout. For
clarity, we present an explicit formulation of (9) in the following
running example.

Running example: For our running example, we have three
priority levels for each vehicle, i.e., K* = 3,Vi € [2]. For this
simple case, we can see how the dual variables become induced
primal variables for the outermost problem. Beginning with
the innermost level (k! = 3), the intermediate level (k! = 2)
problem becomes:

min  Ji(zh,7,")
5,053,153

(10a)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2025 at 13:34:36 UTC from IEEE Xplore. Restrictions apply.
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st Vg L5(25, 27", A5, 1) = 0, (10b)
0 < hi(z,7z,") L AL >0, (10c)
gi(z;,if’) =0. (10d)

The KKT conditions for (10) define the feasible set of the
outermost (k* = 1) problem:

Jl (Zzla ~Il)

mln
23,45, 15,05, b

(11a)

86 Vi i £2(21, 21", A5, 15, Ay, 13) = 0, (11b)

Vo £5(21, 21", A5, p15) = 0, (11c)

0 < hi(zt,z7%) LAt >0, (11d)

0< Al Lak?>o0, (11e)
h'(z1.21") 25 = 0,g'(21,2,") =0, (11f)

9°(21) =0, h*(z1) 2 0. (11g)

where 25 =51 a5% T, ph = [ut, ps% p5’)T  denote

dual variables for the inequality and equality constraints
(respectively) of the intermediate level problem. Note

that the Lagrangian for the outermost problem is
L (Z27Z1 7)‘37/137)‘2»/12) J5(25,2,") — h'(z5, 2" )T)‘z t-
)‘Z V £3(Z2,Z1 ’)‘S’MS)T:ugl -9 (ZZ’ZIl)Tu;Q -

iﬁ(z27 )Tkg 3. Observe that the formulation in (11) is in
the form of an MPCC as given in (9). To be specific, we have
that g% (2}, Z1") consists of the equality constraints (11b), (11c),
(11f). The shared constraints in (9e) are identical to (11g) and
the complementarity constraints in (9) correspond to:

1 5T hl Zi’iﬁi 150 57 )"Ll
G(zl,zn{ (ig ”}H(zl,zl)[;,z]. (12)
2

Next, we discuss how to solve problems of the form (9)
numerically.

B. Numerical Solution of GOOP

1) MPCC Relaxation: As noted earlier in Section II-A, the
MPCC in (9) can be numerically challenging to solve due to
irregularities in the geometry of the feasible set. Therefore, we
propose a relaxation scheme that mitigates the aforementioned
issue by solving a sequence of GOOPs which are regularized
by altering the complementarity constraints in (9d). To this end,
we replace the equality constraint in (9d) with an inequality as
follows:

G'(21,2,") H'(21,2,") < 0. (13)

When o = 0, this constraint encodes the original comple-
mentarity condition. For ¢ > 0, this reformulation enlarges the
feasible set and ensures that it has a nonempty interior. Using
this relaxation scheme, the MPCC in (9) becomes

71 € arg n}i_n VAR (14a)
s.t. g'(z3,27%) = 0,h'(2%,2,") >0,  (14b)
GY(z,,2,™) > 0, H (z%,7,") >0, (l4c)

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 7, JULY 2025

GY(zt,z;") H'(z},2,") < o, (14d)

g°(21,2,") =0, h*(Z1,2,") > 0.  (l4e)

2) From Relaxed MPCC to MiCP: To solve this transcribed
game, we formulate the KKT conditions of the coupled opti-
mization problem, i.e.,

_ Vi%,él -
gl cl
N =0and 0 < 1L A>0, (15)
VichN C
gN hs
L 9 ]

where
L7, A i, 00, 1) =

—g'(21,2,") i —

‘] (Z17Z1 ) - ci(iia iIl)TXZI
hs(zl)—ris _ gs(il)—rﬂ€7(l6)

is the Lagrangian of the ith player’s problem with Lagrange
multipliers (Al, IS 15),

(7,70 = fl((z A7)

)
o—G'(2y,2,") H'(2},2,")

denotes the aggregated vector of player ¢th (private) inequality
constraints in (14b) to (14d), and A denotes the aggregation
of all players Lagrange multiplies associated with inequality
constraints. The resulting KKT conditions in (15) take the form
of a standard MiCP [21, Definition 1.1.6] for which off-the-shelf
solvers exist.

3) Proposed Algorithm: With the above relaxation scheme
at hand, we numerically solve the original (unrelaxed) GOOP
via a sequence of successively tightened relaxations (15); i.e.
with o successively approaching zero.

Our proposed procedure is summarized in Algorithm 1 in
which GOOP(o) denotes the relaxed MiCP at tightness o.
Specifically, we start by initializing z as a vector of zeros of the
appropriate dimension and setting ¢ as a small positive number.
We then solve the resulting MiCP using the PATH solver [30],
and repeat for successively smaller o using each solution z as an
initial guess for the next round. In this way, we gradually drive o
to zero and find a local GNE solution such that the maximum vi-
olation of complementarity, max;{ G* (z},z,") H} (2}, 27" ) }} .,
is below a certain tolerance, v > 0. The convergence of such
annealing procedures has been widely studied in the context
of general mathematical program with equilibrium constraintss
(MPECs) and MPCCs. Under tailored constraint qualifications
outlined in [22], [25], the stationary points of the relaxed prob-
lems converge to a weak stationary point of the underlying
MPEC. For more details on convergence results, we refer readers
to [22], [25]. If, at any iteration, the current solution does
not change significantly from the previous one, i.e., by more
than a fixed tolerance € > (0, we consider the solution has con-
verged. We refer to [22] for guidelines on selecting (o, &, 7y, €) in
Algorithm III-B3.
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Algorithm 1: Relaxed Game of Ordered Preferences.

1 zg, 00, Kk, 7, € < initial guess, relaxation factor, update
factor, complementarity tolerance, converged

tolerance
2 Set k+1
3 while max;{G%(zx)H}(z)}IL, >~ or k=1 do
4 zj. < solution of GOOP(o_1) initialized at z,_ 1
s | if max;{Gi(zr)Hi(z)} L, <~ then
6 L break ; // Solution is found
7 else if ||z, — z;_1]|]2 < € then

8 | break ;
9 else

10 O < KOk—1
11 k+—k+1

// Low precision solution

// Reduce o /0

12 return: z, o, max; { G (zr) Hi(zi) }}L,

IV. EXPERIMENTS

This section evaluates the performance of the proposed GOOP
approach in a Monte Carlo study and compares it with a baseline
that encodes the ordered preferences via penalty-based scalariza-
tion in a non-hierarchical game formulation. These experiments
are designed to support the claims that (i) GOOP reliably reflect
agents’ individual ordered preferences and that (ii) penalty-
based approximate scalarization schemes fail to capture such
solutions. Finally, we also present a scenario with more complex
dynamics and preferences to illustrate the practical generality of
the GOOP framework.

A. Experiment Setup

Evaluation Scenario: Our experiment extends the previous
running example of highway driving scenario, where we con-
sider NV = 3 vehicles: vehicle 1 (blue) is an ambulance that
wishes to travel at high speed, and vehicles 2 (red) and 3 (green)
are passenger cars just ahead of the ambulance. Each vehicle
adheres to a specific hierarchy of preferences, as outlined in (8).
Note that the road length is set to 56 m, lane width to 13 m and
the speed limit to 5.6 m /s. Vehicles are modeled as point-masses
and are required to drive within the lane. To avoid collision, a
minimum required safety distance of 5.6 m between vehicles is
enforced.

Initial State Distribution: In order to evaluate the performance
of each method, we consider a wide variety of initial conditions.
To focus on more challenging scenarios, i.e. those with con-
flicting objectives, we construct the set of initial conditions as
follows. First, we generate 10 base scenarios at which at least one
vehicle cannot achieve all of their preferences perfectly. We then
sample 10 additional initial states from a uniform distribution
centered around each base scenario. We thus obtain a total 100
challenging scenarios.

Evaluation Metrics: For each of these test problems, (i) we
evaluate methods based on the preferences at each priority level
for each player and (ii) we measure the L, distance between the
trajectories found by each method. To account for the existence
of multiple equilibria, we solve the GOOP 20 times, each time
using a different initial guess. We report the distance between
the baseline trajectory and the closest GOOP trajectory.
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B. Baseline: Explicitly Weighting Preferences

When one does not have access to a solver capable of en-
coding preference hierarchies explicitly—the key feature of
our proposed approach—one may instead attempt to encode
the concept of ordered preferences via scalarized objective. A
natural scalarization scheme is a weighted sum of objectives per
player—a technique that as been previously explored by [14] in
non-game-theoretic motion planning. We use a game-theoretic
variant of this approach as a baseline. Thus, for the baseline,
each player solves a problem of the following form:

min oy J{(z',27) + azJi(z', 2 ") + azJi(z',z") (18a)

st. g'(z',z") = 0,h'(z",27%) >0, (18b)
9°(z) = 0,h%(z) > 0. (18¢)
Here, [a1, g, a3] = [1, ¢, a?] " in (18a) is the vector of penalty

weights assigned to each prioritized preference. To encode rel-
ative importance analogously to the hierarchical formulation in
(4), we choose o > 1.

Baseline variants: Observe that, for large penaty weights, the
scalarized objective (18a) ensures a large separation of prefer-
ences at different hierarchy levels. Hence, one may be tempted
to choose o > 1. However, large penalty weights negatively
affect the conditioning of the problem (18). Since it is not
straightforward to determine the lowest value of « that enforces
the preference hierarchy, we instead consider several variants of
the baseline with o € {1, 10, 20, 30,40, 50}.

C. Implementation Details

We implement Algorithm 1 and the aforementioned baseline
in the Julia programming language.? To ensure a fair compar-
ison, we implement all methods using the same MiCP solver,
namely PATH [30].

Non-smooth objectives: Note that some of the objectives are
not smooth, cf. (8b), and (8c), posing a challenge for numerical
optimization. However, since these objectives take the form
Ji(zi,z7%) := max(0, — fi(z}, z,")), we can introduce a slack
variable transformation to obtain a smooth problem, i.e., we can
reformulate min,; max(0, — f; (z, z;")) as:

min  sj, (19a)

Z;,,8;

s.t. s}c > —f,i(z};,zfi), (19b)
st > 0. (19¢)

D. Large-Scale Quantitative Results

Table I shows the performance gap between our method
(game of ordered preference (GOOP) (4) as implemented by
Algorithm 1) and the baseline variants (game (18)) with different
penalty parameters. Here, J, and Jj, denote the performance at
preference level k for the baseline and our method, respectively.

Out of 100 test cases, Algorithm 1 did not converge for
six of the initial conditions at which the three vehicles were
approximately collinear; we hypothesize that these instances
correspond to boundaries between homotopy classes. Therefore,

2Source code is available at https://github.com/CLeARoboticsLab/ordered-
preferences.
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TABLE I
DIFFERENCE OF PREFERENCES VALUES AT EACH PRIORITY LEVEL ACROSS
DIFFERENT «

Robot «@ jg —J3 j2 — Ja
| 0168 £ 0.004 -1.76 + 0.54
10 0179 0003 -1.87 + 0.54
RI (Ambulance) 30 6043 4 0044 022 070
50 0.046 %0055 -0.01 + 1.03
1 00000001 000 % 0.0l
10 0.000%0.001  0.00 % 0.0l
R2 (Passenger Car) 35 (/000 + 0.001  0.00 + 0,01
50 0.002+0.024  0.00 £ 001
I 000£000 000000
10 000000 000 +0.00
R3 (Passenger Car) 35 5004000 0,00 + 0.00
50 0.00%000  0.00 % 0.00
Z(l) Goal
Ll ol
Ours (GOOP) -
152) PR O o
Ours (GOOP) .
Zl,ct
R -
H— ine (a=50)
L
T ...D:{..\. ............... -
5 Baseline (a =30)

a (x10)

Fig. 4. L;-trajectory distance between GOOP solutions and baseline approx-
imations at penalty strength a (21 4) for the 3-vehicle ambulance scenario.
To facilitate a fair comparison when multiple solutions exist, we compute
the distance as the minimum difference between the baseline trajectory and
all available GOOP equilibria computed for the same initial condition. Note

z%é) refers to the ¢th GOOP trajectory for the given initial condition, where
¢=1,2,...,20.

the results below reflect only the remaining 94 test cases. For
reference, the baselines converged for all cases.

Main Result 1: Preference Prioritization in GOOP: Table 1
shows the performance gap with respect to the multiple prefer-
ence levels. We see that the performance gap at the highest pref-
erence level (level 3) is always positive (up to solver precision),
indicating that our method finds solutions that perform better
with respect to the highest priority preference. Furthermore,
Table I indicates that our method achieves this performance by
“backing down” on lower priority preferences as indicated by
the largely negative gap with respect to this metric. In sum, these
results support the claim that our method respects the order of
preferences: GOOP solutions relax less important preferences
in favor of more important ones.

Baseline performance: The baseline attenuates the perfor-
mance gap as the penalty parameter « increases. However, even
with the largest penalty weight, i.e., @ = 50, the baseline fails
to consistently match our method’s performance and exhibits a
high variance. This effect can be attributed to poor numerical
conditioning of the problem for large weights.

Main Result 2: Distance between baseline and GOOP so-
lutions: Fig. 4 measures the L distance between the baseline
and GOOP equilibrium trajectories for each test case. Although
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Goal
N e e T oo
34§ Ours (GOOP) .
»
.
§
® e O *-
« Baseline (t = 50)
=2 .
. e @ *-
. Baseline (a=30) g
.
.
14 oo
.
s mne e O e *-
* Baseline (a = 10)
T T e —
0.9 1.0

Fig. 5. Comparison of vehicle 1’s highest (get to goal) and second highest
(obey speed limit) preference values for GOOP and baseline for different
values of a. Increasing « initially improve the trajectory for R1. However,
the performance improvement is not monotonic since at « = 30 and o = 50,
the baseline yields a degraded trajectory for R1, i.e. farther away from the goal
position.

higher o values occasionally improve the baseline performance
(as the lower end of the distributions approaches zero), for
sufficiently high values of a the baseline exhibits poor numerical
conditioning, resulting in a large variance in the solution quality,
i.e., the scalarized approximations do not always recover the
GOOP equilibria. This result shows the limitations of approxi-
mating GOOP solutions via scalarization.

E. Detailed Analysis for a Fixed Scenario

To provide additional intuition beyond the large-scale eval-
uation in Section IV-D, next, we assess a fixed scenario in
greater detail. Fig. 5 visualizes the solutions identified by both
Algorithm 1 and the baseline for a single initial state and a dense
sweep over the penalty weight, i.e., « € {1,2,...,49,50}. In
Fig. 5, we plot player 1’s preferences at level 3 (J1) over their
preferences at level 2 (J3). To illustrate how the solutions in
Fig. 5 correspond to open-loop trajectories, we link selected
points to their respective trajectories on the right side.

Quantitative Results: Our GOOP solution, marked by a star at
the top left, outperforms all baselines, achieving the lowest value
of preference at the most important level. All baseline solutions
are located to the right of the GOOP solution, indicating that
the baselines do not consistently match GOOP in optimizing
the highest priority preference. In line with the large-scale
evaluation in Section IV-D, we observe that larger weights do
not consistently improve performance. In fact, R1’s trajectory
worsens for a = 30 and o = 50.

Qualitative Results: Recall that for R1, reaching its goal has
the highest priority. By accurately encoding this prioritization,
our method finds a solution that brings R1 closer to the goal
at the final time step than all baseline variants. For R2 and R3,
all methods achieve comparable performance with respect to
all prioritized preferences. In summary, these results further
support the claim that the equilibrium solutions computed by
Algorithm 1 reflect players’ hierarchical preferences.

F. An Intersection Scenario

We present an intersection scenario involving two vehicles,
each with four levels of preferences. In accordance with the order
of preferences outlined in Fig. 1, vehicle 1 accelerates beyond

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2025 at 13:34:36 UTC from IEEE Xplore. Restrictions apply.



LEE et al.: YOU CAN'T ALWAYS GET WHAT YOU WANT: GAMES OF ORDERED PREFERENCE

the speed limit (of 10 m/s). In contrast, vehicle 2 maintains its
speed but sacrifices reaching the goal. Both vehicles achieve
the top preference by sacrificing their less important prefer-
ences, showing that our GOOP framework accurately captures
the hierarchy of preferences in settings with deeply nested
objectives.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the game of ordered preference
(GOOP), a multi-agent, noncooperative game framework where
each player optimizes over their own hierarchy of preferences.
We recursively derived first-order optimality conditions for each
player’s optimization problem, which introduces complemen-
tarity constraints. We proposed a relaxation-based algorithm
for solving the N-player KKT system for approximate (lo-
cal) GNE solutions. Our experiments show that our algorithm
outperforms penalty-based baselines while accurately reflecting
each individual’s order of preferences by relaxing lower-priority
preferences when needed. Future work may focus on tailored
numerical solvers that avoid the need for iteratively solving
relaxed MiCP subproblems. Our formulation’s problem size
grows exponentially in the number of hierarchy levels. While
real-time performance is not the immediate goal of this work,
future work should address this limitation, in which case our
work can serve as a reference solution technique. Future work
may also explore amortized optimization via neural network
policies that approximate equilibrium solutions, potentially en-
abling larger-scale deployments with many players and deeper
preference hierarchies. Finally, extending GOOP to incorporate
feedback mechanisms for dynamic information presents an ex-
citing opportunity for applications such as autonomous mobile
agents.
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