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Chapter 1 

Introduction 

1.1 Problem statement  

Over the past decades, traffic congestion has increased significantly both on freeways and 
urban road networks. As a consequence, travellers experience higher travel times during 
their daily commuting activities and fuel consumption has increased due to traffic 
congestion. The urban mobility report 2009 (Schrank et al., 2009) shows that in 2007, 
congestion caused urban Americans to travel 4.2 billion hours more and to purchase an 
extra 2.8 billion gallons of fuel for a congestion cost of $87.2 billion – an increase of more 
than 50% over the previous decade.  These negative aspects of traffic congestion have 
been receiving a lot of attention. Therefore, different traffic management strategies, for 
instance, ramp metering, peak lanes, speed limit, traffic signal control at intersections, 
traveller information system, have been applied to improve traffic conditions both on 
freeways and urban roads. One important quality of mobility on the road network is the 
travel time. On one hand, the total travel time of vehicles can be used to reflect the 
performance of road networks and is of great interest for the road authorities who are 
trying to improve the mobility on the road network level. On the other hand, individual 
travel time is an important quality of a journey for travellers who need to make decisions 
on their choices, e.g. route choice, mode choice and departure time choice.  

Different monitoring techniques, for instance, Automatic Number Plate Recognition 
(ANPR) camera, Bluetooth scanners, mobile sensors (GPS integrated in-car devices, 
mobile phones, etc.), speed sensors (e.g., radar detectors) have been applied to measure 
travel times over the last decades. Some of these techniques (e.g., ANPR, Bluetooth 
devices) have been proved to be very promising, especially on freeways (Bertini et al., 
2005; KMJ Consulting, 2010; Yegor et al., 2010). Mobile sensors, especially GPS 
equipped probe vehicles, have been widely used to collect traffic information both on 
freeways and urban roads in recent years. At the meantime, scientists have proposed 
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different mathematical models to estimate travel times (Chu et al., 2005; OH et al., 2003; 
Vanajakshi et al., 2009; Yeon et al., 2008) or predict travel times (Clark, 2003; Innamaa, 
2005; van Hinsbergen et al., 2009; van Lint, 2004; You et al., 2000) and these models 
perform quite well on freeways. However, compared with freeways, very few models have 
been developed for urban networks and most estimation or prediction results are not so 
satisfactory (Liu, 2008). The reason behind this is that the traffic mechanisms on urban 
roads are very different from those on freeways. Traffic flows on freeways are often 
treated as uninterrupted flows, while traffic flows on urban roads are in general interrupted 
flows. Travel time varies with the fluctuations in traffic demand (e.g. due to time of day, 
day of the week, weather, seasonal effects, population characteristics, traffic information 
and user responses) and supply (e.g. due to incidents, road works, weather conditions, 
road geometry) on freeways, while on urban arterials, besides the fluctuations in traffic 
demand and supply, travel time can be influenced by other factors. Figure 1.1 
schematically describes factors contribute to the travel time on the urban signalized roads.  

 

Figure 1.1:  Schematic representation of factors contributing to the link travel time 
on the urban road 

Travel times vehicles experience on the urban road can be decomposed into free flow 
travel times and delays. Vehicles travelling on the urban road are subject to intersection 
delays due to queues and traffic control and mid-link delay caused by turning vehicles 
from cross streets, bus manoeuvres at bus stops, parking vehicles along the roadside, 
crossing pedestrians and cyclists, etc. However, intersection delays vary with effects of 
stochastic properties of traffic flow, stochastic arrivals and departures at the signalized 
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intersection and variations in the traffic control. These partly stochastic factors are not 
independent but rather overlap. As a result, delays are uncertain given known traffic 
condition (traffic flow) and traffic control. The free flow travel time is basically 
determined by the distance and the free flow speed. The free flow speed is determined by 
the speed limit, vehicle composition, spacing between intersections, lane width (TSENG 
et al., 2005). Therefore, the free flow travel time is not a constant value but variable given 
known travel distance. The result of all these factors is that for a given link or route within 
a certain time period, travel times are variable and a certain travel time distribution can be 
observed.  

Figure 1.2 illustrates the empirical travel time-flow relationship derived from local  10min 
aggregated measurements of time-mean flow and median travel time for each 10min on an 
urban arterial road ‘Kruithuisweg’ in March 2010 in the Netherlands.  There is almost no 
influence of public transit, cyclists and pedestrians since no bus stops, bicycle lanes and 
pedestrian lanes were designed along the road. The delay vehicles experienced on this 
road is mainly caused by intersections. The region ‘A’ illustrates the uncongested 
condition and region ‘B’ shows the oversaturated condition. It can be clearly seen in the 
Figure 1.2 that there is no one-one correspondence relationship between travel time and 
flow over the whole range of traffic flow. Even in the uncongested condition (region ‘A’), 
for a certain traffic flow, there is a big range of travel time corresponding to it. In the 
congested condition, a large variation of travel times can be observed.  The variation of 
travel times in Figure 1.2 can be attributed to the factors discussed above. Many of these 
factors are stochastic, which result in variable travel times. Among all these factors, traffic 
control has a special effect on the variability of travel times as illustrated in Figure 1.3. 
Two consecutive vehicles that enter the network at nearly the same time can have 
completely different travel times when the first vehicle just passes an intersection in the 
end of the green phase and the following vehicle has to stop. This may have impact on the 
delay at next intersections so that the first vehicle may have a much shorter travel time 
than the second one. This gives bifurcation (van Geenhuizen et al., 1998) in the 
development of the status of vehicles: even when the initial status is the same, the 
development of the status  in time can be very different. 
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Figure 1.2: Travel time-outflow relationships on an urban arterial road 
‘Kruithuisweg’ in March 2010 (Flow and travel time are both measured in 10min 
aggregation) in the Netherlands. 

 

Figure 1.3: Bifurcation phenomenon of vehicles passing signalized intersections 

A thorough analysis of all these factors influencing travel time variability seems 
impossible so far. If the frequency of bus manoeuvres at stops is known and also the 
frequency of parking manoeuvres, the effect on link travel times can be determined by 
analytical models, simulations or heuristic methods like Artificial Neural Networks 
(ANN). The time spent in queues is less predictable because the queue length at arrival on 
a link is not deterministic. The stochastic character of the arrivals makes it difficult or 
even unfeasible to predict the queue length for a longer time horizon (van Zuylen et al., 
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2007; Viti, 2006). In the case that the traffic condition is undersaturated and there is no 
initial queue, depending on the arrival moment at the signalized intersection, the effect of 
the traffic control is basically that vehicles have delays that are nearly uniformly 
distributed between zero second and the duration of the red phase. As a result, what we 
can observe in urban travel time is three time scales, corresponding to the following three 
different mechanisms: 

1. Slow variations with a time scale of about ten to twenty minutes, corresponding to 
variations on the average traffic flow (Figure 1.4); 

2. Medium fast variations with a time scale of minutes, corresponding to stochastic 
variations in the arrivals at bottlenecks and corresponding overflow queues (Figure 
1.5) ; 

3. Fast variations in the time scale of seconds, caused by the random arrival moment 
at the signalized intersections. As shown in Figure 1.6, the difference between the 
maximum travel time and minimum travel time can be as large as 162 seconds 
even within a small departure time period of 1min.  

As discussed in (van Hinsbergen et al., 2009) , travel times can be de-noised as the 
‘underlying trend’ travel times (low-frequency component ) and noisy travel times (high-
frequency component). The method proposed by these authors can better predict the so-
called ‘underlying trend’ urban travel times. However, the so-called noisy component of 
travel times is probably caused by the random arrival moment at the signalized 
intersections and stochastic variations in the arrivals at bottlenecks and corresponding 
overflow queues, which is yet a challenging subject for research.  

 

Figure 1.4: Slow variation of travel time with 15 min aggregation. The individual 
travel times are collected from an urban arterial road ‘Kruithuisweg’, the 
Netherlands on March 2nd, 2010 
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Figure 1.5: Median fast variation of travel time with 2min aggregation. The 
individual travel times are collected from an urban arterial road ‘Kruithuisweg’, the 
Netherlands on March 2nd, 2010 

     

Figure 1.6: Fast variation of travel time within a small departure period of 1 minute 
from 9:08AM to 9:09 AM. The individual travel times are collected from an urban 
arterial road ‘Kruithuisweg’, the Netherlands on March 2nd, 2010 
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The importance of travel time variability (uncertainty) in urban networks has received a 
lot of attention during past years. As suggested by Bates (Bates et al., 2001), for many 
travellers, the reduction in variability of travel time is as important as, if not more 
important than, the reduction in expected travel time. However, the investigation of travel 
time variability as done by most researchers is just in a phenomenological way by 
calibrating some distribution functions (e.g., log-normal, Gamma) with observed travel 
times. The problem arises when applying these distributions to different traffic conditions 
since they are only calibrated for a certain traffic condition. The character of urban travel 
times is represented by a specific distribution which can be influenced by different traffic 
processes (e.g., traffic flow, traffic control). The understanding of fundamental 
mechanisms of urban travel times can help better deal with travel time variability, predict 
travel time variability and furthermore influence travel time variability. Therefore, it is 
important to develop a theoretical travel time distribution model which can explain these 
mechanisms and can be generalized for different traffic conditions. This thesis focuses on 
the investigation of the travel time and its variability based on an analytical travel time 
distribution model, furthermore, estimating and predicting the travel time distribution for 
urban signalized arterials. As for urban arterials, a large part of travel time uncertainty is 
due to the uncertainty of delays at intersections. By analysing the stochastic properties of 
traffic flows, stochastic arrivals and departures at intersections and signal control, a better 
understanding of travel time uncertainty on urban arterials can be achieved. The 
knowledge of travel time uncertainty (variability) can help different types of travellers 
make better route choice for different purposes. Risk-averse travellers tend to choose more 
reliable routes even if they have higher travel times. For opportunity-seekers, routes with 
lower travel times but higher uncertainty are more appealing.   

The remainder of this chapter is organized as follows. The research questions and 
objectives are specified in section 1.2. Section 1.3 defines the research scope in this 
dissertation. Then, the main contributions to the existing knowledge and practical 
relevance are described in section 1.4. Finally, the outline of this thesis is given in 
section 1.5. 

1.2 Research questions and objectives 
This thesis focuses on the development of an analytical travel time distribution model, 
calibrating and validating the model and furthermore, applying this model for prediction.  
In this section, research questions are given and each research question is followed by the 
research objective. 

Observed travel times are essential for solid calibration and validation of any travel time 
estimation or prediction models. During the past decades, different monitoring techniques 
have been applied for monitoring road traffic. This raises our first research question:  

Research question 1: Regarding many different monitoring techniques, are these 
monitoring techniques qualified for measuring urban travel times?  
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In order to answer this question, we set our research objective as: 
Research objective 1: Investigate different monitoring techniques and specify their 
advantages and disadvantages in terms of measuring urban travel times.  

Among all travel time measuring techniques, probe vehicles with GPS as monitoring 
sensors has become a popular technique to obtain information about travel times. . 
However, very little research has been devoted to look into detailed problems with 
measuring urban travel times, e.g., travel times derived from two GPS measurements are 
usually not complete link travel times or route travel times. Then our second research 
question comes up: 

Research question 2: How can we use GPS measurements to derive complete link or 
route travel times? 

Research objective 2: Develop a model to estimate complete link travel times based on 
GPS data and compare this model with other existing models. 

From field travel time data, we can observe that urban travel times are very variable. In 
most research about travel time distribution, a single statistical distribution or a 
combination of different distributions is usually applied to fit field travel time data(EL 
FAOUZI et al., 2006; Guo et al., 2010). There is no physical meaning about these 
distributions. Therefore the third research question is as follows:  

Research question 3: Travel times are very variable on urban signalized roads, how can 
we model travel time variability in an analytical way such that it can be applied to describe 
travel time distributions for different traffic conditions? 

Research objective 3: Develop travel time distribution models for a single link as well as 
for an urban corridor and investigate travel time variability based on travel time 
distribution models. 

The traffic process on an urban road is rather stochastic. The number of vehicles arriving 
at the intersection within a certain time period is not constant but rather variable. Besides, 
vehicle arrival moments at the intersection are not deterministic as well. Therefore, our 
research question is formulated as: 

Research question 4: Do these stochastic properties of traffic flow, stochastic arrivals and 
departures influence the travel time variability? If so, how do these factors influence travel 
time variability? 

Research objective 4: Investigate the impact of different arrival processes and stochastic 
capacities on the travel time variability under different traffic conditions. 

Traffic is interrupted by signal control at intersections on urban roads. Vehicles need to 
wait at the intersection when the traffic light is red. This causes delay to arriving vehicles 
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at the intersection. Besides, vehicles passing the upstream intersection either can pass the 
downstream intersection without delay or vehicles need to wait at the downstream 
intersection due to the queue or traffic control (red phase). This puts forward our fifth 
research question: 

Research question 5: How does signal control influence the travel time distribution for an 
urban corridor? 

Research objective 5: Model the impacts of signal coordination on the travel time 
distribution for different traffic conditions. 

Modelling dynamics of queues at intersections is still a challenging topic. Queues are not 
deterministic but rather stochastic as already discussed by (Viti, 2006). For a given traffic 
condition and traffic control, a queue distribution can be observed. The queue has a direct 
impact on the delay and therefore on the travel time. In undersaturated conditions, the 
overflow queue distribution can be derived analytically and there is always an equilibrium 
distribution which can be achieved by a certain time period, regardless of the initial 
condition (e.g., no overflow queue or a certain length of the overflow queue).  However, in 
oversaturated conditions, the queue distribution is rather time dependent and no 
equilibrium distribution exists. Then, the related research question is: 

Research question 6: Can we estimate the overflow queue distribution from sample travel 
time measurements and furthermore reconstruct the travel time distribution? 

Research objective 6: Estimate parameters (overflow queue distribution in this case) in the 
travel time distribution model based on measured travel times (delays), subsequently 
reconstruct the travel time distribution from estimated parameters.  

If a travel time distribution can be reconstructed based on the estimated parameters, then 
the following question is:  

Research question 7: Can we predict travel time distribution from the network state? 

Research objective 7: Develop a model to predict travel time distribution with sufficient 
accuracy for practical applicability.  

1.3 Research scope 

The previous section discussed research questions that will be tackled throughout this 
thesis and research objectives that need to be achieved. The aim of this section is to define 
the research scope. 

This research focuses on urban arterials with fixed-time controlled intersections. Urban 
roads with dynamic controlled intersections, as well as unsignalized urban roads and urban 
streets with roundabouts are not addressed. However, some widely applied dynamic traffic 
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signal control systems, e.g., SCATS or SCOOT (SCATS, 2006; Hunt, et al., 1981), fall 
back to fixed time control, for instance, in peak flow situations. The variation of cycle 
time and green splits is small within a short time period under the similar traffic condition. 
Unsignalized urban roads can be modelled in a similar way, but more complicated and 
therefore not the subject of research yet. No special attention is given to different vehicle 
classes and therefore heterogeneity of traffic composition is not considered in this 
research.  

Many factors can influence the urban travel time and its variability as discussed in section 
1.1. A thorough analysis of all these factors on resulting travel times seems unrealistic. On 
urban signalized roads, delay at intersections constitutes a large part of the total delay 
vehicles experience and therefore has a significant impact on the travel time. In this thesis, 
the focus is on the stochastic traffic processes at intersections and traffic control on urban 
arterials as shown in figure 1.1 (grey hexagon box). When developing the travel time 
distribution model, the free flow speed is assumed not to be a constant value, but to have a 
certain probability distribution (e.g., normal distribution). The influence of the variation of 
free flow travel time on the travel time distribution is also discussed. Other factors, such as 
bus manoeuvres at bus stops, crossing pedestrians and cyclists, turning vehicles from cross 
streets, are not explicitly considered but can be included in the phenomenological free 
travel time distribution.   

1.4 Main Research contributions 

1.4.1 Scientific contributions 

The scientific contributions of this thesis to the state-of-the-art of understanding modelling 
urban travel time can be summarized as follows: 

The discussion and comparison between different technologies of measuring urban travel 
times give more insight into the application of these technologies in the urban network 
context. Especially with GPS probe vehicle system, the fundamental problem related to 
deriving complete link or route travel times from recorded time stamps of two arbitrary 
positions on the link/route is not explicitly addressed in most research. In chapter 3, a 
model to derive the complete link travel time is proposed and this model outperforms 
other existing models.  

• A new analytical link travel time distribution model is presented. It takes into account 
the stochastic properties of traffic flow, stochastic arrivals and departures at the 
signalized intersection both for undersaturated conditions and oversaturated conditions.  

• The comparison of delay (travel time) distributions with different arrival processes 
(Poisson, Binomial) at intersections has been performed, which provides more insights 
into how different arrival processes influence delay (travel time) distributions under 
different traffic conditions  

• The delay (travel time) uncertainty analysis based on the developed delay (travel time) 
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distribution model provides new knowledge on the evolution of travel time uncertainty 
among different traffic conditions.  

• An analytical travel time distribution model for an urban corridor, which takes into 
account of the signal coordination between consecutive intersections, is for the first 
time developed in this thesis. Different from other research about travel time 
distribution on urban roads, which mainly focuses on applying statistical distributions 
to the real data, the proposed model (chapter 5) provides more insight into travel time 
variability on urban arterials and it can be applied in different traffic conditions. 

• Heuristic methods are proposed to estimate the overflow queue distribution from a 
sample of measured travel times. Based on the estimated queue distribution, the travel 
time distribution is well reconstructed using the proposed travel time distribution 
model. 

1.4.2 Practical relevance 

Besides the scientific contributions listed in the previous subsection, the work done in this 
thesis is also relevant to some practical applications, which can be elaborated in five 
aspects:  

• Assessment of traffic state: Monitoring link/route travel times is an important topic in 
traffic management. Nowadays, GPS equipped probe vehicles are widely used to 
monitor traffic conditions. The average speed estimated from GPS data is used to 
reflect traffic conditions on the road in most practical applications. However, it is not 
the best option to use the average speed on the urban signalized roads to characterize 
the traffic situation. While on freeways the average speed from probe vehicles gives 
more useful information regarding the traffic state. The models discussed in chapter 3 
and the proposed neural network model to estimate the complete link travel times 
from probe vehicle data provides the possibility to monitor traffic states for urban 
links using estimated travel times from GPS data. 
 

• Travel time assessment: The present navigation systems provide mean travel times 
for urban routes based on average traffic conditions or only a few probes (e.g., 
Tomtom does that). The model proposed in this thesis makes it possible to give a 
better estimation and even prediction of the whole range of travel times and inform 
drivers better about routes with highest reliability.    

 
• Travel time reliability: The travel time distribution model developed in this thesis 

gives the possibility to assess travel time reliability in urban areas, which is one of 
issues in the policy goals (at least in the Netherlands).  
 

• Travel time prediction: Instead of predicting the mean travel time, this thesis 
proposes a travel time distribution prediction model which is more meaningful for the 
urban network with a lot of uncertainties involved.  
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• Route choice models: In route choice models, travel time reliability is considered as 
an important aspect which influences choice behaviour. The travel time distribution 
model provides the possibility to better incorporate travel time reliability into route 
choice models. 

 
• Influence uncertainty: By understanding fundamental mechanisms of urban travel 

times, for instance, impacts of different traffic processes (e.g., traffic flow and traffic 
control) on the travel time distribution, it provides possibilities to influence the travel 
time distribution (uncertainty) on urban roads. 

1.5 Thesis outline 

Figure 1. 7 shows the structure of this thesis and the connection between different 
chapters. 

Chapter 2 provides a state-of-the-art overview of modelling urban travel times. Three 
distinguishable yet interrelated parts of modelling urban travel times are covered in this 
chapter, namely, modelling delay at intersections, travel time estimation and prediction 
models, modelling travel time variability. Both advantages and disadvantages of these 
existing models or modelling approaches are discussed. Existing delay models mainly 
look at the expectation or standard deviation of delay, which just partially explain the 
delay uncertainty at intersections. Most travel time estimation or prediction models mainly 
estimate or predict average travel times, while they tend to overlook the variability of 
travel time. The stochastic properties of the traffic process on urban roads are not 
explicitly modelled in most cases. All these limitations in the existing models make urban 
travel time estimation and prediction less accurate. 

Chapter 3 compares different traffic monitoring techniques for measuring urban travel 
times. Special attention is given to the GPS probe vehicle system. A neural network model 
is proposed to estimate complete link travel times from partial travel times recorded by 
probe vehicles. The proposed model is compared with two other models and the results 
show that our model outperforms the other models. 

Chapter 4 describes the development of the delay distribution model for an isolated, fixed-
time controlled intersection. The model considers the stochastic properties of traffic flow, 
stochastic arrivals and departures at intersections. Based on the delay distribution model, 
the delay uncertainty is investigated under different traffic conditions (from 
undersaturation to oversaturation).  

Chapter 5 is a further extension of chapter 4. It provides an analytical travel time 
distribution model for an urban corridor with fixed-time controlled intersections. The 
model explicitly takes account of signal coordination between two consecutive 
intersections. Different offset settings (well-coordinated, different levels of mismatch) are 
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investigated under different traffic conditions. The comparison of the model and 
simulation results as well as the field data is presented in this chapter. 

Chapter 6 proposes heuristic methods to estimate parameters (e.g., overflow queue 
distribution) in the travel time distribution model based on sample measured travel times. 
Afterwards, the travel time distribution is reconstructed using estimated parameters.  

Chapter 7 describes the link travel time distribution prediction procedure and how this 
model is applied to predict the travel time distribution with field data. 

Chapter 8 summarizes conclusions from this research and provides future research 
directions. 

Apart from main chapters, appendixes A to D provide more detailed derivation of model 
equations and analysis. 

Travel times derived from GPS data are used as the ground-truth in our research. The 
discussion of the GPS positioning and speed information accuracy is provided in 
Appendix A.   

The delay distribution model developed in chapter 4 considers stochastic overflow queues. 
Appendix B provides the detailed formulation of overflow queue distribution based on 
Markov chain process. 

In chapter 5, the delay distribution model for an urban trip is presented. The detailed 
derivation of boundary delays in the delay distribution function can be found in 
Appendix C. 

Appendix D compares the formulation of link travel time function in the case of a vertical 
queue with that of shock wave.  

Appendix E provides more detailed information about the field test area we chose for our 
research.  

Appendix F gives the estimation process of real-life GPS travel times, which were used 
for the validation of the proposed model in chapter 5 and 7. 
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Figure 1. 7: Outline of the thesis 
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Chapter 2 

State-of-the-Art of travel time 
modelling on urban signalized roads 

2.1 Introduction  

Modelling travel time on freeways has been intensively discussed in the literature, from 
travel time estimation and prediction models (Dharia et al., 2003; Innamaa, 2005; van 
Hinsbergen et al., 2008; van Lint et al., 2005; Wei et al., 2007; Yeon et al., 2008) to travel 
time reliability models (Asakura et al., 1991; Loustau et al., 2010; Tu et al., 2007; 2008). 
A lot of these models have shown relatively good results either in estimating or predicting 
travel times on freeways. In this thesis, the focus is on the travel time at signalized urban 
roads, which has attracted relatively less attention due to the increased complexity brought 
by the traffic process at the intersections. The traffic characteristics of urban roads are 
significantly different from those of freeways. The travel time is mainly determined by 
three distinctive elements: 

1. Minimum driving time, mainly determined by the travel distance and the free flow 
speed characteristics; 

2. Waiting time at the junction(s), determined by the traffic control imposed (signalized, 
unsignalized intersections or roundabouts); 

3. Lost time due to secondary operations, such as parking movements, (un)loading 
vehicles and buses at stops, crossing pedestrians  and cyclists, turning vehicles from 
cross streets; 

The free flow speed on urban roads is mainly determined by the speed limit. It can be 
influenced by the vehicle composition, different driving behaviour, lane width, number of 
lanes, spacing between two intersections and etc. (TSENG et al., 2005; Yusuf, 2010). The 
mid-link delay is mainly caused by the movements of e.g. buses at bus stops, vehicles 
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parking along the road, pedestrians and cyclists crossing the road. The time spent in 
queues is determined by the queue lengths and the effective capacity of the bottleneck in 
front of the queue. Since this is in most cases a signalized intersection, this part of the 
travel time has a strong relation with traffic signals. The delay at a signalized intersection 
is determined by the regular process of the green and red status of the signal and by the 
queuing process. However, some irregular behaviour, e.g., visiting a shop during the trip 
along the roadside, is difficult to be modelled. This gives outliers if travel times are 
measured and this is one of the problems in predicting travel times from observed values.  

It is widely reported that the delay at signalized intersections constitutes the largest part of 
the total delay in urban networks. For this reason from now on in this thesis we will focus 
on signalized roads. According to the above listed three elements, travel times - excluding 
intermediate stops for shopping etc. - on urban signalized roads can be subdivided into 
two parts: time spent for traversing links with desired speed and delay due to the queue 
process at traffic signals. Since delays at signalized intersections play a dominant role in 
the travel times that vehicles experience on urban roads, modeling delay is not only 
important for real-time traffic control but also for urban travel time estimation and 
prediction. In this chapter, firstly, section 2.2 gives a state-of-art overview of urban travel 
time estimation and prediction models and their limitations in real applications are 
discussed. Thereafter, section 2.3 describes analytical delay and delay variability models at 
signalized intersections. In section 2.4, urban travel time variability measures and urban 
travel time variability models are presented. Finally, section 2.5 summarizes this chapter 
and provides the motivations for this thesis. 

2.2 Urban travel time estimation and prediction  

In literature, researchers propose different ways of categorizing travel time estimation and 
prediction models. For instance, a first distinction can be made according to different 
traffic data sources: travel time estimation and prediction models can be classified into 
fixed sensor-based (e.g., loop detectors, cameras, Bluetooth), mobile sensor-based (e.g., 
probe vehicles equipped with GPS devices or mobile phones) and multiple data source-
based (e.g., combining of the fixed sensor data and the mobile sensor data). From the 
modelling approach point of view, these methods can be classified into model-based 
methods and pure data-driven approaches. Among all, model-based methods and pure 
data-driven methods are two commonly used classes. Model-based methods make use of 
traffic flow models to estimate or predict traffic states along the route of interest. Based on 
the traffic states, travel times can be estimated or predicted. The data is used in these 
methods to calibrate the model parameters and for determining the actual traffic states. 
While pure data-driven approaches just look in the data for relationships, trends analogies 
between certain parameters (e.g., speeds and flows) and the (future) travel times without 
physical models behind. The overview provided in this section only covers the model-
based approaches for travel time estimation and prediction on urban roads.  
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2.2.1 Model-based methods 

Queuing theory based models 

1. Sandglass model 

Queuing theory is widely used for analysing congested systems. One famous model based 
on queuing theory is called the ‘Sandglass travel time model’ which is an analogy of 
vehicle discharging at an intersection with sand flowing to the bottom of the sandglass. In 
this model, travel time is defined as: 

Q Q
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c u

−
= +  (2.1)  

Where TT is the travel time; NQ and LQ are number of vehicles in queue and the length of 
queue, respectively; L is the length of road segment; uf is the link free flow speed and c is 
the link capacity. 

The first component is the time spent in queuing at the intersection. The second 
component is the free flow travel time on the uncongested section of the link. This model is 

therefore a deterministic queuing model. 

(Takaba et al., 1991) extended the sandglass model by defining a procedure for estimating 
the number of vehicles in the queue. The link travel time is further expressed as: 

1
( )j Q j Q

Q
f

k L k L L
TT L

c s u u

−
= − − +  (2.2)  

Where u is the travel speed; kj is the jam density; s is the saturation flow rate.  

The application of this model requires extensive estimation and calibration of model 
parameters such as saturation flow rate, jam density, free flow speed and queue length. 
Furthermore, the model is based on the steady state condition which implies that the 
probability distribution for the number of vehicles does not vary with time. This is 
obviously an unrealistic assumption for the oversaturated condition in which there is no 
equilibrium state of overflow queue.  

2. Liu et al. model 

As the development of traffic data collection techniques, more and more traffic data 
become available for traffic performance analysis and model development. (Liu et al., 
2006) proposed a time-dependent arterial travel time estimation model by utilizing high-
resolution detector and signal status data. According to this model, travel time is 
composed of three parts: free flow travel time, queuing delay and signal delay. Therefore, 
the time-dependent travel time can be calculated as: 
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where,  TTO-D(t) denotes the estimated travel time from origin O to destination D at the 
departure time instant t; 1i i

fTT → +  denotes the free flow travel time from the upstream 

intersection i to the downstream intersection i+1； Di
q(t) denotes the queuing delay 

encountered by the vehicle arriving at intersection i at time instant t; Di
s(t) denotes the 

signal delay encountered by the vehicle arriving at intersection i at time instant t; t0 is the 
departure time instant at the origin O; tiarrive is the arrival time instant at intersection i, 
which can be derived as: 

1 1i i i i
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i
departuret is the departure time instant at intersection i, which is calculated from: 

                                      ˆ( ) ( )i i i i i i
departure arrive q arrive s arrivet t D t D t= + +  

ˆi
arrivet is the adjusted arrival time at intersection i for calculating signal delay; it depends on 

the signal and flow status at the intersection. 

This model was further improved in (Liu et al., 2009) by integrating probe vehicle data. 
The good performance of this model is at the cost of accurate high resolution data (e.g., 
second-to-second detector data and signal control data) which are unavailable in most 
cases in reality. 

Traffic flow theory based models 

The first order traffic flow model proposed by (Lighthill et al., 1955), as well as (Richards, 
1956) (which is widely known as ‘LWR’ model) has been successfully applied in 
describing traffic flow dynamics on freeways. According to LWR model, the traffic flow 
can be characterized by flow, density and speed using the following equations: 
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Where, q(x, t) and k(x, t) is the flow and density at time instant t and location x, 
respectively. The first equation is also termed as principle of conversation of vehicles. The 
second equation represents the so-called the fundamental diagram, which describes the 
relationship between flow and density. Different forms and equations can be used to 
specify this relationship. The application of LWR model for travel time estimation on 
freeways has been investigated by several researchers(NAM et al., 1999; OH et al., 2003). 
This type of model requires either no on-ramp and off-ramp or detectors on every on-ramp 
and off-ramp. However, it is difficult to apply the LWR model on the urban road due to 
the fact that it is unlikely that all traffic streams merging and diverging are monitored.   
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On the urban signalized roads, the kinematic (shock) wave theory is widely used to 
describe the queue forming and discharging process over time and space. Different from 
the queuing theory which considers vertical queues without occupying space, the shock 
wave theory considers horizontal queues, which is more realistic. One of these models was 
proposed by (Skabardonis et al., 2005), which applies kinematic wave theory to model the 
spatial and temporal queuing at the traffic signals considering the signal coordination in 
estimating traffic arrivals at the intersection. The model estimates the travel time as the 
sum of the free flow time and the delay at the traffic signal. The delay is further 
decomposed of three parts: 

- Delay of a single vehicle due to the traffic signal;  

- Delay due to the queue formed at the intersection; 

- Oversaturation delay caused when the number of arrivals is larger than the number of 

departures at the intersection. 

This model considers different processes and the effect of signal offsets and platooning is 
also taken into account. However, the application of this model requires the estimation and 
calibration of a lot of parameters such as parameters for the fundamental diagram (free 
flow speed, capacity, jam density and congested wave speed), parameters for the driver 
behaviour (acceleration and deceleration rate).  

Cell Transmission Models 

The cell transmission model (CTM) was first proposed by (Daganzo, 1994; 1995). It is a 
finite difference numerical approximation of the LWR hydrodynamic model. In CTM, the 
road section is divided into homogeneous sections called ‘cells’. The length of each cell is 
equal to the distance travelled by a vehicle in one time step at the free flow speed so that 
no vehicle can pass more than one cell during one simulation time step under free flow 
conditions. In addition, each cell has a holding capacity Ni determined by the following 
equation: 

i j iN k n L=  (2.7)  

where kj is the jam density; ni is the number of lanes in cell i and L is the cell length.  

The CTM has two basic equations that are applied at each time step t for each cell i. The 
inflow into cell i+1  (or outflow from cell i) at time step t is given by: 

{ }1 1 1 1( ) min ( ), , / ( ( )i i i f i iq t n t Q w v N n t+ + + += −
 

(2.8)  

Where ni(t) is the number of vehicles in cell i waiting to enter cell i+1 ; Qi+1 is the inflow 
capacity (vehicle) of cell i+1  per time step; Ni+1-ni+1(t) is the available space in cell i+1  
and w/vf is the ratio of the backward shockwave speed and the free flow speed. 
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Once the aforementioned flows for each cell i at time step t have been determined, the 
number of vehicles at the next time step in cell i can be updated as: 

1( 1) ( ) ( ) ( )i i i in t n t q t q t++ = + −  (2.9)  

The CTM has been initially proposed to model traffic flow on highways. The application 
of CTM for traffic state estimation and prediction has been discussed in (Tampere et al., 
2007), which shows that the CTM can be used in a general Extended Kalman Filtering 
framework to do the traffic state estimation and prediction on motorways.  

Lo et al. (Lo, 1999; 2001; Lo et al., 2004) also show that the CTM can be extended for 
network scenarios, e.g., signalized intersections. By formulating the inflow capacity 
Qi+1(t) as a binary variable that fluctuates between null and saturation flow Qm, the effects 
of a traffic signal can be simulated.  
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The application of the CTM for traffic control purpose has been proposed by (Lo, 1999; 
2001). The delay in CTM can be estimated at the cell level by subtracting a cell’s outflow 
from its current occupancy for each time step as:  

1( ) ( ) ( )i i id t n t q t+= −  (2.11)  

Once the delay has been determined at a cell level, it can be aggregated at link or network 
level and used as the performance measure for control strategies.  

The CTM has the ability to capture the macroscopic features of traffic, e.g., shockwave, 
queue formation and dissipation in both congested and uncongested conditions. However, 
in CTM, the queue forms in a deterministic way which is not realistic in the urban context. 
Vehicle arrival and departure at intersections are not deterministic but rather stochastic, 
following certain distributions (e.g., Poisson, Binomial). Therefore, the observed queue is 
also not deterministic but more stochastic.  

Other model 

Traffic counts from loop detectors are often displayed by means of cumulative vehicle 
plots. Cumulative vehicle plots have a number of applications, among which they can be 
used to determine the travel time in between two road sections. As shown in Figure 2.1,  

A(t) is the cumulative arrival curve at the entry of a road section and D(t) is the cumulative 
curve at the exit of a road section. The travel time of the Nth vehicle can be determined as: 

1 1( ) ( ) ( )TT N D N A N− −= −  (2.12)  
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Figure 2.1: Cumulative arrivals and departures 

Travel time estimation based on cumulative plots is done mainly for freeways. The 
cumulative traffic counts at the upstream and downstream of links can be recorded by 
detectors. As a result, the estimation results are very sensitive to the accuracy of detector 
counts. As for urban roads, due to the intersections and mid-link sinks and sources, there 
is relative deviation amongst cumulative plots which has been intensively discussed by 
Bhaskar et al. (Bhaskar et al., 2009). By integrating different data sources including traffic 
counts from loop detectors, signal settings and probe vehicle data, Bhaskar et al. (Bhaskar 
et al., 2009) proposed a travel time estimation model for urban roads based on cumulative 
plots. The cumulative plot measured from the upstream intersection is redefined by 
utilizing the probe vehicle data and the cumulative plot at the downstream intersection. 
This model improves the estimation accuracy by correcting the miscounting at the 
upstream intersection and mid-link sinks and sources. However, on one hand, the 
miscounting problem at the upstream intersection is considered and on the other hand, the 
model assumes that there is no counting error at the downstream intersection which is 
obviously unrealistic.  

In general, model-based methods can describe the traffic process explicitly and provide 
full insight into the locations and causes of delays on the road network. Furthermore, these 
model-based methods are generic in the sense that they are not location-specific and 
system-dependent. However, these models are very complex to implement in practice due 
to the estimation or prediction requirements of traffic demand and supply at the model 
boundaries as inputs. 

2.2.2 Data-driven approaches 

Different from model-based approaches, data-driven approaches consider the traffic 
processes which generate travel times as black boxes and exploit purely inductive 
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techniques to either directly or indirectly estimate or predict travel times without explicitly 
addressing the physical traffic processes. Basically, two types of data-driven approaches 
can be found in literature. The first type is pure statistical methods which are more 
conventional approaches by assuming specific statistical properties of input parameters 
and outcomes (e.g., Gaussian noise around the means). The second type here we call 
Artificial Intelligence based approaches, which are more advanced methods though they 
can also be statistical methods, such as clustering (k-Nearest Neighbour, Fuzzy C-means), 
neural network  models.  

Pure statistical approaches 

1. Regression methods 

Regression analysis is widely used for prediction and is also used to understand which of 
the independent variables are related to the dependent variable, and to explore the forms of 
these relationships. Many researchers (Gault et al., 1981; Sisiopiku et al., 1994; Takayuki 
et al., 2004) have developed travel time prediction models based on regression. The main 
advantage of these models is that they are simple and easy to implement in practice. The 
factors such as degree of saturation and signal offsets can be easily incorporated into these 
models. The drawbacks of Gault’s model and Sisiopiku’s model lie in the fact that they 
are only for urban segment travel time prediction. Whether it is possible to extend these 
regression models to a route trip has not been investigated. Furthermore, these regression 
models are valid for relatively small deviations from those used for calibrating the 
regression line.  

2. Time series methods 

Time series models such as autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) models (Billings et al., 2006; Davis et al., 1990) are 
widely used for travel time prediction. One advantage of these models is that the traffic 
state (speed, flow, occupancy) or travel time in previous time intervals can be incorporated 
to predict travel time in the next time interval, especially for trend prediction. However, 
this can also be a limitation of such models that have the tendency to focus on the trend of 
data and miss the extreme. Therefore, these models have the difficulty of capturing non-
recurrent traffic behaviour or the transition from congestion to free flow condition. 
Furthermore, these models require a historical database which is not always available in 
practice.   

Pattern recognition based approaches 

Pattern recognition is used for classifying data (patterns) based either on a priori 
knowledge or on statistic information extracted from the patterns. Different pattern 
recognition based techniques such as k-Nearest Neighbor (k-NN), fuzzy C-means and 
neural network are applied to match traffic patterns for travel time estimation or prediction.  
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1. k-Nearest Neighbour based approaches 

The k-Nearest Neighbour (k-NN) is a method for classifying objects based on closest 
training examples in the feature space. The basic idea behind it is that by matching the 
current set of input variables with historical observations, a set of k historical observations 
that are similar to the current input can be obtained. The current output can be defined as a 
function of the values from the obtained set of k historical observations.  

You et al. (You et al., 2000) applied k-NN method to estimate travel time on urban roads 
based on the travel times obtained by probe vehicles. Their model is based on segregating 
the non-linear time series of travel time data into local linear trend. The estimation results 
showed that the model could perform well with a MAPE in the region of 8% to 10%.  

Bajwa et al.(Bajwa et al., 2003) used the inverse of time-mean speed aggregated over 5 
minutes obtained from ultrasonic detectors as feature vectors. The traffic pattern was 
identified as a function of distance weighted by these feature vectors. A genetic algorithm 
was applied to determine the optimal number of nearest neighbours. By minimizing the 
squared difference between the predicted traffic pattern and historical traffic patterns in 
the database, nearest neighbours are obtained.  

Based on the flow and occupancy data collected by the loop detectors, Robinson 
(Robinson, 2005) applied the k-NN method to estimate urban link travel time. The 
Automatic Number Plate Recognition (ANPR) cameras were used to collect link travel 
times for the historical database. The key parameters which include attributes to be 
included in the feature vector, Distance Metric, value of k and Local Estimation Method in 
the k-NN method were identified. The value of k is determined by minimizing the mean 
squared error between the predicted traffic pattern and the historical pattern. Then the final 
travel time is estimated using LOWESS (LOcally WEighted Scatter plot Smoothing) 
method. Robinson also compared the k-NN method with other existing models. Results 
showed that the proposed model outperforms other existing models with the optimum 
parameter setting, especially at low and very high levels of actual travel time.  

The advantage of k-NN is that it has a solid theoretical foundation with a lot of available 
research relating to the implementation of this method. However, there are several 
disadvantages related to this method. First, the k-NN method requires a large historical 
database which can cover different traffic patterns. However, increasing the size of the 
data also increases the computation time. In case that a non-recurrent incident happens, the 
model tends to be incapable of capturing such a traffic phenomenon since it is not stored 
in the historical database. Secondly, the performance of this method highly depends on the 
selection of parameters as discussed by (Robinson, 2005). There is no standard rule to 
select the attributes to be included in the feature vector. An insufficient size can result in 
an incomplete image of traffic searched in historical data. The value of k is difficult to 
determine and dependent on the size of the historical database as well.  
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2. Fuzzy logic based approaches                                                                                                                             

Li et al.(Li et al., 2002) applied fuzzy logic to estimate link travel time by using a single 
GPS equipped probe vehicle. The driving patterns were determined by combining the 
average speed of the probe vehicle and a variable called maximum continuous acceleration 
(MCA). The output is the ratio of travel time of the probe vehicle to the mean travel time 
which is estimated from camera data. The membership function values are determined by 
historical traffic data of the tested road segment. Based on the output ratio, the travel time 
is estimated for different driving patterns (slow/very slow, medium, fast/very fast). 
Though only a single GPS probe vehicle can provide the travel time estimation, the 
formation of membership functions requires a large amount of historical data. In addition, 
Li et al. did not discuss the question how to determine the range of output ratio for 
different driving pattern in order to estimate travel time.  

The advantage of using fuzzy logic is that it allows imprecise input data for estimation or 
prediction. The employment of fuzzy logic might be helpful, for very complex processes, 
when there is no simple mathematical model for highly nonlinear processes (e.g., the 
traffic process on the urban road is highly nonlinear). However, applying fuzzy logic 
requires the determination of the number of membership functions. There is no standard 
rule about this. Furthermore, how well these membership functions can represent different 
traffic patterns directly determines how accurate the estimation or prediction results would 
be. As a result, fuzzy logic based methods require a large historical database that can 
cover different traffic patterns and a sufficient expert knowledge for the formulation of 
different rules for fuzzification and defuzzification.  

3. Neural network based approaches 

Neural networks have been widely applied for short-term traffic and travel time prediction 
on freeways. Models based on neural networks have the potential to learn complex 
nonlinear relationship between variables by identifying the patterns in the data. Different 
neural network models such as spectral basis neural network (SNN) (Park et al., 1999) , 
state-space neural network (SSNN)  (van Hinsbergen et al., 2008; van Hinsbergen et al., 
2009; van Lint et al., 2005) have been successfully applied to predict travel time on 
freeways. The idea behind all these models is that travel times are determined by the 
traffic states along the route. Whereas on the urban road, the application of neural network 
is less successful due to the difficulties in predicting turning fractions at intersections and 
highly complex traffic conditions along the road as discussed by (Liu, 2008).  

The clear advantages of neural network models include the fact that they do not require 
extensive expertise on traffic flow modelling, that they are fast and easy to implement and 
ready-to-use software packages for model design and calibration are available (van Lint, 
2004). However, there are three main problems related to neural network models: 
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- Over-fitting: it is one of the problems that occur during neural network training. The 
estimation or prediction error on the training set is very small, but when new data is 
applied to the network the error becomes large. The network has memorized the 
training examples instead of generalizing to new situations, especially when the 
training data set is small. In this case, there is a trade-off between the complexity of the 
network and training error though there are some techniques, for instance, early 
stopping and regularization to improve the over-fitting problem.  

- Generalizability: It has been recognized that the neural network tends to have poor 
generalizability. For instance, the network trained for predicting travel times in the 
morning peak hour could not directly be used for predicting travel times in other time 
periods (e.g., off-peak hour).  

- Transferability: Most neural network models developed for travel time estimation and 
prediction are location specific. The model developed for a certain route or link cannot 
be applied to other routes or links with different geometric conditions and traffic 
conditions. Therefore, results from one location are not transferable to another.  

2.3 Delays on urban signalized roads 

The previous sections provided different travel time estimation and prediction methods, 
some based on physical models inspired by hydrodynamic and queuing theories, others on 
statistical models, from more conventional to more advanced AI approaches. These 
methods, however, do not model explicitly the traffic process and delays at the signalized 
intersections, i.e. they account implicitly for these delays when extracting and processing 
the data but do not relate the data to the traffic process at each signal. By doing so they 
overcome the extra complexity brought by modelling explicitly the traffic control 
mechanism. On the other hand they fail to provide full insight into the relationship 
between the latter and the resulting travel time dynamics and variability. 

The delay vehicles experience at signalized intersections accounts for a large part of the 
delay that vehicles would experience on the urban road compared with that caused by 
other factors, e.g., bus stops and parking along the road. The importance of vehicle delay 
at signalized intersections lies in the use of this parameter for both evaluation practices 
and traffic management applications, e.g., determining the optimal signal control scheme 
by delay minimization, estimating urban link travel time by integrating delay models. The 
thesis mainly deals with delays at signalized intersections, and more specifically, how 
traffic processes and traffic control mechanisms influence delay distributions and in turn 
to travel time distributions on urban roads. Therefore, in the following of this chapter we 
will give an overview of the delay models and modelling approaches that are available in 
literature. 

The delay at signalized intersections is usually defined as the difference between the travel 
time a vehicle experiences when passing the intersection and the travel time experienced 
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by this vehicle if travelling at desired speed. Figure 2.2 illustrates an example of 
hypothetical trajectory of a vehicle passing two signalized intersections. The total delay 
experienced at the downstream signal is composed of the stopped delay due to signal 
operations and queues, deceleration delay and acceleration delay.  

Any of the components constituting the total delay contribute to its dynamic and stochastic 
behavior, and in turn to vehicles travel time variability, e.g., the arrival times, their 
position in the queue, etc. In the following of this section we describe how these 
components are modeled and how their variability is addressed at the signal level, while 
later we extend this overview to the travel time variability. 

Distance

Time

Total delay

Stopped delay
Deceleration  

delay

Acceleration  
delay

Acceleration end

Standing still

Deceleration Begin

    

Figure 2.2: Trajectory of a vehicle travelling on the urban signalized road 

2.3.1 Delay models for signalized intersections 

Deterministic queuing model 

The deterministic queuing model assumes that vehicles arrive at the intersection and 
depart from the intersection with uniform and constant rates.  Figure 2.3 illustrates 
expected cumulative arrivals and departures for both under-saturated and oversaturated 
conditions. In reality, vehicles are not continuous but discrete. Therefore, the cumulative 
curves should have steps. The conversion from the discrete time step to the continuous 
time step has been clarified by (Van Zuylen et al., 2006). Therefore, the continuous 
cumulative plots are used for analysis. In the under-saturated condition, during the red 
phase, the arriving vehicles queue up linearly and they will be served within the next green 
phase. The delay in the area of the triangular bordered in bold is called the uniform delay 
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as shown in  Figure 2.3(a). In the oversaturated condition as illustrated in  Figure 2.3(b), a 
zero initial queue is assumed in this case. The average arriving flow rate is larger than the 
average departure rate. The overflow delay is calculated by the area between the line 
which represents the arrivals at capacity and the line representing the actual arrivals. 
Equations (2.7) and (2.8) can be derived to calculate the average uniform delay and the 
average delay in the oversaturated condition, respectively. 
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Where, 

du: average uniform delay 

do: average overflow delay during evaluation period T 

τc: signal cycle 

λ: effective green to cycle time ratio 

x: degree of saturation 

T: evaluation period in the oversaturated condition  

The assumption made for Equation (2.7) is that vehicles arrive at a uniform and constant 
flow rate. The queue can always be cleared before the start of the next red time. However, 
in reality, due to random effects in certain cycles, it is likely that some vehicles will 
remain queued at the end of the green phase even when the average arriving flow is 
smaller than the capacity. This phenomenon occurs at random, depending on which cycle 
happens to experience higher-than-capacity flow rates, especially at intersections 
operating near capacity. Equation (2.8) considers only the deterministic overflow delay 
caused by sustained periods of oversaturation, and this equation does not include the delay 
due to the initial queue at the start of analysis period. Viti (Viti, 2006) showed that the 
probabilistic phenomenon contributes to obtain a smooth transition between the uniform 
and the oversaturated delay components, as it will be shown in the next sections. 
Moreover, he proposed a delay model that can be used for both under-saturated and 
oversaturated conditions and for modelling the transition between these two states and 
also for the case of initial queue.  
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 Figure 2.3：：：：Deterministic components of delay in undersaturated and oversaturated 
conditions with uniform arrivals and departures 



Chapter 2. State-of-the-Art of travel time modelling on urban signalized roads 29 

 

Figure 2.4 illustrates the relationship among three delay components. The first component 
W1(k) represents the total delay accumulated within cycle k by all vehicles arriving during 
cycle k and vehicles already waiting at the intersection at the start of cycle k. The second                            
component W2(k) denotes the total delay experienced by only vehicles waiting at the 
intersection at the beginning of the cycle k and W3(k) denotes the total delay experienced 
by vehicles arriving during cycle k and caused by the presence of the residual queue Qk. 
Given the total arrival vehicles Ak within cycle k, the average delay experienced by a 
vehicle arriving during the cycle k is calculated as:  
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Viti (Viti, 2006) gave a more general expression, following earlier works on this subject 
by Olszewski (Olszewski, 1990; Olszewski, 1994)  as: 
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where Ak is the total arrivals within cycle k; nd denotes the constant value of departures for 
each cycle; k is the minimum number of cycles needed to serve Qk vehicles such that Q-
k·d≤0;  

Therefore, given a non-zero overflow queue length at the beginning of a cycle, the above 
formulas allow one to calculate the delay experienced in the following cycles due to this 
overflow queue. 
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Figure 2.4: Schematic display of cycle delay when overflow queue is present (cited 
from Viti 2006) 

Steady-state delay models 

The deterministic queuing model assumes that vehicles arrive uniformly at the 
intersection, while steady-state delay models take the randomness of arrivals into account. 
The steady state models are developed under the assumption of stationary conditions for 
the overflow queue which indicates that these models are applicable only for the cases of 
undersaturation. The most widely used delay formula was proposed by (Webster, 1958): 
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The first term is the estimation of uniform delay. The second term considers the effect of 
the random nature of arrivals. It is known as the ‘random delay’ which was derived 
analytically assuming a Poisson arrival process and constant departure rate. The third term 
is an empirical correction term to reduce the discrepancy with the simulation data. 

Besides Webster’s model, other steady-state models were proposed under different 
assumptions for the arrival and departure distribution. (Miller, 1963) developed a model 
indirectly estimating delays through the estimation of average overflow queue, thus not 
limited by a specific distribution for the arrivals. (Newell, 1965) proposed a delay model 
in which he used an index of variability that is not limited by the assumed arrival 
distribution (e.g., Poisson, as in the case of Webster).  
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Time-dependent delay models 

All steady-state delay models assume that the stochastic equilibrium can be achieved after 
a certain period of time. When the degree of saturation is low, this equilibrium can be 
reached within a reasonable time period. However, when the traffic flow is close to the 
capacity, the time to achieve the steady state can exceed the evaluation period. In this case, 
the system should allow a long time period to run until the equilibrium state is reached. 
Further, as the traffic demand exceeds capacity, steady-state models could not handle this 
situation.  

In order to limit the assumption of steady-state conditions, a lot of research has been 
carried out during the past several decades to develop time-dependent delay models. 
Compared with the steady-state models where the arrivals and departures are assumed to 
follow known distributions and they do not change over time, the time-dependent models 
deal with arrivals and departures as a function of time. (May et al., 1967) proposed a delay 
model by applying a trapezoidal-shaped arrival profile and constant departure rate. One 
assumption in the model is that the random queue fluctuations can be neglected. This 
model could provide acceptable results in highly undersaturated conditions and 
oversaturated conditions. However, when the traffic flow approaches the capacity, the 
model underestimates queues and delays because the extra queues caused by the random 
fluctuations are not considered. How to estimate the delay properly when the traffic 
intensity approaches the capacity remained a problem until (Kimber et al., 1979). They 
used the coordinate transformation technique such that the steady-state model can be 
asymptotic to the deterministic model in case of oversaturated conditions. This approach 
overcomes the gap between steady-state models and deterministic models. However, there 
is no rigorous theoretical basis for this approach but only a heuristic method, though Viti 
(Viti, 2006) compared his model, which has more rigorous theoretical bases, with Kimber 
and Hollis’ model and showed some similarities. Nevertheless, a number of time-
dependent models have been developed based on the coordinate transformation technique 
(Akcelik, 1980; 1988; Akcelik et al., 1993; Brilon et al., 1990) and later on have 
incorporated into some capacity guides, e.g., the Highway Capacity Manual (TRB, 1997), 
the Canadian Capacity Guide (ITE, 1995) and the Australian Capacity Guide (ARR,1995). 
A general form of these capacity guide delay models is given by (Dion et al., 2004): 
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Where d1 is the uniform delay; d2 is the incremental delay accounting for the stochastic 
arrivals and oversaturation queues; d3 is the residual delay for oversaturation queues that 
may have existed before the analysis period; fPF denotes the adjustment factor accounting 
for the quality of progression in coordinated systems; fr denotes the adjustment factor for 
residual delay component; fP denotes the adjustment factor for situations in which the 
platoon arrives during the green interval; P is the proportion of vehicles arriving during 
the effective green interval; k denotes the incremental delay factor accounting for pre-
timed or actuated signal controller settings; I denotes the adjustment factor for upstream 
filtering/metering; T is the evaluation period; c is the capacity of intersection approach 
(veh/h); m and n denote capacity guide parameters; x0 denotes the degree of saturation 
below which the overflow delay is negligible. 

While Kimber and Hollis’ model lacks the theoretical basis, Viti (2006) proposed an 
analytical time-dependent model which can well describe the dynamics of the queue in 
both cases of decrease of the overflow queue and increase of the overflow queue based on 
Markov process. The formulation of this model is as follows: 
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where E[Q(t)]  is the time-dependent expected value of overflow queue; P(Q=j, t) is the 
probability of observing queue j at time t; Hij (t) is the transition matrix which represents 
the probability that the queue length moves from state i at time t -1 to state j at time t. Viti 
further derived a heuristic formula which can well capture the behaviour of the expected  
overflow queue from Markov simulation (Equations (2.15) and (2.16)): 
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Where NC represents the average number of departures per cycle; Qe denotes the 
equilibrium value of queue under steady-state conditions; α, β, γ are time-dependent model 
parameters.  

One difficulty in all these delay models is how to model the arrivals such that the model 
can better represent the real situation. The Poisson arrival distribution is known to be 
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applicable only in the case of an isolated intersection with low traffic volume. As 
discussed in (Dion, 2004), various capacity guide models attempt to consider non-Poisson 
arrivals, e.g., platoon arrivals.  

Shock wave delay model 

Michalopoulos and Stephanopoulous (Michalopoulos et al., 1981) derived an analytical 
model based on shock wave theory to estimate delays at signalized intersections. The main 
difference between this model and the steady state delay model lies in the fact that the 
latter assumes that the queue is building vertically without considering space on the link 
while the former considers that vehicles queue horizontally. The advantages of this shock 
wave delay model is that it describes the evolution of queues in both time and space rather 
than time alone and density variations along time and space during the dissipation period 
are taken into account. 

Figure 2.5 illustrates the shock waves at a signalized intersection in the undersaturated 
condition. The maximum queue length can be determined more realistically by 
considering the horizontal extent of a queue. The total travel time spent by all vehicles can 
be estimated using the density and flow rate associated with each region. Therefore, the 
total delay within one signal cycle is calculated as the difference between the total travel 
time with traffic signals and the total travel time without traffic signals (Dion et al., 2004): 

_D sig no sigTT TT TT= −  (2.18)  

The average delay for individual vehicles can be estimated as: 
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where Lm is the maximum queue length; q is the arrival flow rate; τr is the effective red 
phase interval; kA, kB, kC are densities of area A, B and C; τmQ 

is the time interval between 
the beginning of the green phase and the time instant when the maximum queue length 
reaches; τcQ 

is the time spent on clearing the queue of vehicles. 

The maximum queue length in this model is assumed to be deterministic. However, as 
shown in (Viti, 2006), the overflow queue is not deterministic but rather stochastic. Van 
Zuylen, and Hoogendoorn (van Zuylen  et al., 2007) proposed a probabilistic model by 
combining the Markov chain process with shock wave theory. Due to the stochastic 
properties arrivals and departures, the maximum queue length is not deterministic but 
stochastic with a certain distribution. The expected value of the maximum queue length by 
this model is much longer than that from other models.  
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Figure 2.5: Shock waves at the signalized intersection in under-saturated conditions 

2.3.2 Delay variability at signalized intersections 

Delay variance models 

The delay models as discussed in the previous sections focus on estimating the mean delay 
at intersections. However, due to the random fluctuations of arrivals and departures and 
interruptions caused by traffic controls, delays have a high variation among vehicles at the 
signalized intersection.  (Fu et al., 2000) developed a delay variability model to quantify 
the variation of delays in highly undersaturated and highly oversaturated conditions. The 
model is composed of two parts: the variance of the uniform delay and the variance of the 
random delay and analytical expression is the summation of these two parts: 
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Where ( ( ))Var d t =time-dependent variance of delay 

 τc         = cycle time (seconds) 

 λ          = effective green to cycle time ratio 

Ia          = variance-to-mean vehicle arrivals. If the vehicle arrivals follow a Poisson 
distribution, Ia is equal to 1 
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c          = capacity (pcu/second) which is determined by the saturation flow rate sand 
effective green to cycle time ratioλ  

x          = degree of saturation 

xmin      = minimum of (1.0, x) 

xmax     = maximum of (1.0, x) 

T         = evaluation time 

x0 and β1 are model parameters and calibrated from a simulation model 

      6
0 0.947 1.330 10 / 0.157cx T q λ−= + × +   

     4
1 8.294 6.080 10 / cT qβ −= + ×  

The validity of Fu’s model under the entire range of degree of saturations is questionable 
since the model was only developed and calibrated under two extreme traffic conditions 
which are highly undersaturation and highly oversaturation. Gu and Lan (Gu et al., 2009) 
proposed an approximation model which is able to predict the delay variability for 
different degrees of saturation with assumptions that no initial queue is present at the 
beginning of the evaluation period, vehicle arrivals follow a known distribution and the 
average arrival rate is constant during the evaluation period. The model contains two 
components including the expected conditional variance of individual delay and the 
variance of mean delay. The analytical model was further simplified using the Taylor 
expansion and the approximation formula is: 
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Where Var(v) is the variance of arrivals, α and β are model parameters need to be 
calibrated. 

Gu compared the results from their model with those from a Monte Carlo simulation 
model and those from Fu’s model. They claimed that Fu’s model underestimates the 
overall delay variability over middle to high degrees of saturation which were not 
explicitly investigated in Fu’s model. 

Delay distribution model 

Besides the delay variance, another effective way to model the variability of delay is the 
delay probability distribution. Due to the randomness of traffic flow process and 
uncertainty associated with factors affecting intersection capacity, the actual delay 
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incurred in any cycle may be very different from the expected mean delay. Instead, a 
certain probability distribution can be observed. Unfortunately, research in developing 
delay probability distribution models is very limited in the past decades. Olszewski 
(Olszewski, 1994) proposed a cycle-average delay probability distribution model based on 
the sequential calculation of queue length probabilities. Influence of different arrival 
processes, different degrees of saturation and control schemes were investigated and they 
concluded that the effect of arrival variability on the cycle-average delay probability 
distribution is significant. The shape of probability distribution at an undersaturated 
approach resembles a shifted exponential distribution, with a high probability of delay 
equal to the uniform delay component. For the oversaturated conditions, the probability 
distributions become more dispersed over time. This model can capture the uncertainty of 
the average cycle delay while in most research only point estimates of delay were 
provided. However, this model didn’t explicitly deal with the uncertainty or variability of 
delay among individual arriving vehicles within one cycle time.  

2.4 Travel time distribution models 

The travel time distribution is commonly used to quantitatively evaluate travel time 
uncertainty and its spatial and temporal variations. Emam and AI-Deek (Emam et al., 
2006) compared different distributions for modelling the traffic data on freeways, e.g., 
log-normal, Gamma, Weibull and exponential distributions. They concluded that the log-
normal distribution provided the best fit. However, this single-mode travel time 
distribution couldn’t well represent the travel time distribution on urban roads due to the 
complex traffic conditions. Therefore, a multi-state (multi-mode) travel time distribution 
model was proposed by (Guo et al., 2010). The model provides the connection between 
the travel time distributions and the underlining traffic states. 

1

( , ) ( )
N

i i i
i

f TT f TTη θ η θ
=

=∑  (2.22)  

Where TT is the travel time; f (TT |η, θ) denotes the probability density function for TT; 
η=( η1, η2, …, ηN ) is a vector of mixture coefficients which relate to different traffic states 

and
1

1
N

i
i

η
=

=∑ ; 1( ,..., )Nθ θ θ= is a matrix of model parameters for each component 

distribution; fi (�) stands for different distributions, e.g., normal, log-normal or Weibull;      
f (TTi |η, θi ) represents the distribution of travel time corresponding to a specific traffic 
condition, e.g., congested state and free flow state can have their own distinct component 
distribution. 

One advantage of applying this model is that model parameters and the underlining traffic 
state can be connected. The similar work can also be found in (Loustau et al., 2010), in 
which a combination of three lognormal distributions was proposed to model the travel 
time distribution for different traffic conditions. 
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Up to now, most research on travel time distribution mainly focuses on applying certain 
statistical distributions (e.g., normal, log-normal) to the observed travel times. The 
influence of different traffic processes and traffic control schemes on travel time 
variability is not explicitly considered or modelled. On urban roads, the dynamic and 
stochastic behaviour has a significant influence on the delay uncertainty and in turn to the 
travel time variability. Therefore, a travel time distribution model which explicitly takes 
into account stochastic traffic processes and the traffic control mechanism is proposed in 
chapter 4 and 5.  

2.5 Summary 

The subject of modelling travel times on freeways has received a lot of attention in the 
past decades. Compared with that of freeways, less research has been dedicated to this 
subject on urban roads, though more and more urban travel time estimation and prediction 
models have been developed in recent years. In this chapter, three aspects of modelling 
urban travel times are discussed, namely, urban travel time estimation and prediction 
models, modelling delays at signalized intersections and modelling urban travel time 
variability. 

First of all, this chapter gives a state-of-the-art overview on urban travel time estimation 
and prediction models. The advantages and disadvantages of these models are discussed. It 
appears that most of existing models didn’t take into account of stochastic processes (e.g., 
stochastic queuing process at intersections) on the urban road. Besides, most existing 
models including both model-based and heuristic models aim at estimating or predicting 
the mean travel time. However, travellers take travel time variability into consideration 
sometimes even more than mean travel time itself. Therefore, if the travel time distribution 
is very large and skewed, providing the mean travel time to road users can be useless, 
especially when time constraints are involved (e.g. an important appointment). Therefore, 
it is more meaningful to model urban travel times in terms of distribution. In chapter 5 and 
6, how travel time distribution can be modelled and furthermore how these distributions 
can be estimated and predicted are discussed. 

Secondly, different delay models including deterministic and time-dependent models are 
discussed. Since delay vehicles experience at intersections is an important component of 
the travel time on urban roads, how delays are estimated has a significant influence on the 
final travel times. However, delay models have been developed mainly for the purpose of 
improving traffic controls at intersections. Therefore, these models try to estimate or 
predict the mean delay vehicles experience at intersections. As shown in (Viti, 2006), due 
to the stochastic overflow queues at intersections, delays are uncertain. Given the known 
average traffic demand and capacity, a range of delay (a certain delay distribution) can be 
found. The derivation of the delay distribution at the signalized intersection and travel 
time uncertainty based on the analysis of the delay distribution will be discussed in 
chapter 4. An extension of delay distribution for an urban trip will be introduced in 
chapter 5.    
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Finally, this chapter also discusses the research on travel time distribution models. The 
limitation of the current research is that the investigation of travel time variability is just in 
a phenomenological way, e.g., by calibrating some distribution functions (e.g., log-
normal, Gamma) to the observed travel times. The stochastic traffic processes and traffic 
control schemes are not explicitly considered in these models. Therefore, these models fail 
in provide full insight into the relationship between traffic processes, traffic control on 
urban roads and the resulting travel time variability.  
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Chapter 3 

Measuring urban travel times 

3.1 Introduction 

Travel times are widely accepted as very useful information both for travellers and road 
authorities. A number of models have been developed to estimate or predict urban travel 
times as discussed in chapter 2. At the meantime, more and more traffic monitoring 
techniques have been developed to measure link or route travel times. Basically, there are 
two types of traffic sensors for measuring travel times: 

- Fixed sensors: This type of sensors is installed along the roadside at specific locations. 
When vehicles pass a pair of sensor locations, both time stamps are recorded and 
travel times between these two locations can be derived. E.g., Automatic Number Plate 
Recognition (ANPR) cameras, Bluetooth scanners, speed detectors.  

- Mobile sensors: Position detection equipment such as GPS sensors, cell phone sensors 
can provide direct travel time from point-to-point on the route traversed by probe 
vehicles. 

In this chapter, different monitoring techniques for measuring urban travel time are 
discussed in section 3.2. Especially, mobile sensors are regarded as very promising means 
to measure urban travel times. However, there are some limits applying these techniques. 
For instance, one limit of GPS travel time data in most real applications is that travel times 
collected at present by probe vehicles are obtained with rather low frequencies (e.g., 30s, 
1min), and therefore, do not originate from a single complete link but are experienced by 
probe vehicles from a certain position on one link to a certain position on another link. 
Now the question is how to decompose travel times into individual links such that 
complete link travel times or route travel times can be derived. In section 3.3, different 
models to decompose travel times recorded by GPS probe vehicles into individual links 
are discussed and the performance of these models is compared with each other using both 
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the simulation data and empirical data. Finally, some important conclusions are presented 
in section 3.4. 

3.2 Empirical methods of measuring urban travel 
times 

3.2.1 Automatic Number Plate Recognition (ANPR) 

Automatic Number Plate Recognition (ANPR) systems have been widely applied to 
measure freeway travel times. ANPR systems normally consist of two components: 
cameras that detect passing vehicles and continuously send the images to a computer and 
software that recognizes number plates with its characters and stores them in a database. 
By matching number plates recorded at two camera locations with time stamps, travel 
times of passing vehicles between these two locations can be estimated.  

One advantage of using ANPR is that travel times between two specific locations can be 
calculated accurately. For instance, as long as the start and end of links are defined at the 
ANPR camera locations, link travel times can be measured. The second advantage of 
ANPR systems is the high recognition rate. Although, the recognition rate can vary 
depending on different factors including vehicle characteristics, quality of installation and 
weather condition. The average recognition rate on freeways as reported in the literatures 
can be as high as 85%-90% (Friedrich et al., 2008). However, the recognition rate is likely 
to be lower on the urban road, especially close to intersections or in case of congestion 
where vehicles drive at closer distance to each other. Therefore, the number plate of cars 
can be obscured by larger vehicles, e.g., buses or trucks. Besides, due to a lot of turning 
movements at intersections, vehicles recognized in one camera location may not pass the 
second camera location or vice versa. This would cause a low matching rate.  

The major concern about ANPR system in urban environment is that it is difficult to 
determine whether a vehicle has travelled exactly along the route between A and B 
without making unexpected stops en-route or choosing alternative routes which have 
similar or less travel time than the average travel time of this route. For this case, 
statistical data cleaning methods such as percentiles, standard deviation may fail to detect 
travel times which are not experienced by vehicles on the route of interest. Nevertheless, 
as suggested by (Robinson, 2005), it is possible to detect whether a vehicle has 
‘reasonably’ travelled along the route of interest by comparing the travel time of 
individual vehicle with those immediately ahead of and behind it at the first camera. An 
overtaking rule approach was proposed by comparing the travel time of the current vehicle 
against the travel time of a certain number of immediately following vehicles. The travel 
time of a target vehicle i is identified as valid if its travel time meets the criteria given by:  

( )i k ik Ctt k FV iτ τ≤ + + ∆ ∀ ∈  (3.1)  
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 where τi represents the travel time of the target vehicle; τk denotes the travel time of the 
following vehicle; FV(i) denotes the set of following vehicles; ttik is the time difference 
between the target vehicle and the following vehicle passing the start point, which takes 
into account that the target vehicle might be stopped by traffic lights, enabling the 
following vehicle to catch it up; ∆c is the tolerance time which allows for the target vehicle 
to be overtaken by the following vehicle by a certain amount of time before it is identified 
as invalid.  

This method is basically a dynamic way of cutting long travel times. Applying this method 
requires two parameters, namely, the number of following vehicles and tolerance time, to 
be properly determined. It is difficult to prove whether this method could work well in 
urban situations or not. If these two parameters are not well determined, e.g., the tolerance 
time is too large, the consequence is that the outliers of long travel times cannot be 
properly filtered. 

3.2.2 Probe vehicles (GPS/Mobile phone) 

Basically, probe vehicles are those vehicles which are equipped with certain sensors, e.g., 
GPS integrated navigation devices or mobile phones, travelling along the road and 
regularly reporting their positions on the route, travel speeds, directions and etc. In this 
subsection, two types of probe vehicles: Probe vehicles equipped with GPS integrated 
navigation devices and probe vehicles equipped with mobile phones are discussed. 

Probe vehicles equipped with GPS integrated navigation devices 

Vehicles (e.g., taxis, trucks, buses) equipped with GPS devices are widely used to collect 
traffic information (speeds or travel times) both on freeways and urban roads. There are 
three main issues related to GPS probe vehicles for collecting travel times in the urban 
environment including positioning, transmission frequency and sample size. 

1. Positioning 

� Stand-alone GPS positioning system 

Concerning the positioning issue, GPS requires at least four satellites to estimate the 
location. In urban areas with overhanging trees, tunnels and tall buildings, this 
requirement might not be met and GPS systems will fail to estimate its position. This 
phenomenon is called’ urban canyon effect’ which does exist in most cities. Due to 
unavailability of GPS signals or communication error, there are instances when data is not 
recorded by GPS equipment and link travel times in the urban area with this effect cannot 
be obtained by GPS systems. In addition, the reflection of satellite signals has a significant 
impact on the accuracy of GPS positioning (Modsching et al., 2006). E.g. in Figure 3.1, 
the satellite signal is reflected 3 times before reaching the receiver. The delay of the signal 
is extended by the length of t which is the sum of all additional paths the signal takes due 
to reflection. Due to the fact that the GPS receiver is unaware of the built-up in its 
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environment, it would determine its own position to Pos (GPS) which is located at the 
opposite side of the building. 

 

Figure 3.1: GPS signal reflection (Modsching et al., 2006) 

� GPS/MEMS INS integrated system 

The stand-alone GPS positioning system suffers signal masking, reflection of signal from 
buildings, large vehicles a7nd GPS signal outages in the urban environment, which limits 
its capability to deliver the required level of availability, accuracy and reliability of 
positioning. The integration of GPS positioning system with other complementary 
navigation technologies, such as MEMS (Micro-Electro-Mechanical System) based 
inertial navigation system (INS), has shown a significant improvement in the positioning 
accuracy (Godha et al., 2007; Davidson et al., 2009). An inertial system consisting of 
inertial sensors (e.g., gyros, accelerometers) can provide continuous estimation of the 
position and the velocity, which can be used to augment GPS data when the signal is weak 
or short GPS signal outages. This GPS/MEMS INS integrated system has been applied in 
car navigation devices, e.g., Tomtom, Garmin.  

2. Transmission frequency 

Another issue about using GPS systems is the data transmission frequency which 
determines how frequently GPS systems receive positions of vehicles on the road. The 
higher the transmission frequency is, the more accurate link travel times can be estimated. 
Recently, some car navigation systems collect GPS data every second, which provides 
very detailed information about vehicle positions and speeds. Travel times can be easily 
derived from this high resolution GPS data. However, due to data processing and storage 
cost, a lot of commercial GPS solutions rarely record positions of vehicles with temporal 
interval smaller than 30s. For instance, taxis equipped with GPS devices are widely used 
to collect traffic information with polling intervals longer than 30s (e.g., 60s, 300s) in 
Chinese cities. The low temporal resolution makes it difficult to determine the precise 
times vehicles enter and exit a certain link. This also implies that travel times recorded by 
GPS probe vehicles are not complete link or route travel times but rather ‘intermediate’ 
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travel times from a certain position on one link to a certain position on another link. This 
fact is overlooked by a lot of research that proposes to use GPS probe vehicles to collect 
link travel time data. It is necessary to re-estimate complete link or route travel times from 
the travel times recorded by GPS probe vehicles. Therefore, three methods to reallocate 
travel times collected by GPS probe vehicles into individual links are discussed in section 
3.3 and the performance of each method in different traffic conditions is also presented.  

3. Sample size 

To what extent that travel times measured by probe vehicles can represent the mean 
population travel time is an important issue related to sample size and sample bias. The 
statistical sampling methodology can be used to determine the minimum required number 
of probe vehicles that would provide reliable link travel time estimates.  For a link i and 
time interval t, let µit represent the “true” mean of link travel time, σit represent the “true” 
variance of link travel time, nit  represent the number of probe vehicles required, εmax 
represent the maximum relative error, β represent the percentage of time the absolute 
value of relative error is less than εmax.  In addition, let Ф(x) represent the cumulative 
distribution function and Ф-1 is the inverse.  Assume that travel time on a particular link is 
an identically and independently distributed random variable, then the number of probe 
vehicles required can be calculated as: 
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Turner et al. (Turner et al., 1995) employed this statistical sampling method to obtain the 
minimum number of probe vehicles corresponding to a pre-specified permitted relative 
error and confidence level.  The sample size equation can be obtained as:  
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Where zα/2 is standard normal variables with the confidence level of 1-α; CV is the 
coefficient of variation which is the standard deviation divided by the mean travel time; e 
is the permitted relative error (%).The assumption behind formulas (3.1) and (3.2) is that 
travel times collected by probe vehicles are valid. Outliers should be removed before 
applying this formula to determine whether the sample travel times collected by probe 
vehicles can provide a statistical representation of real travel time. 

Table 3.1 gives an example of minimum sample size of GPS probe vehicles estimated 
using Equation (3.2) and the real sample size of GPS probe vehicles for one link during 
different time period on 15th, May, 2010. The field GPS data was collected in Changsha, a 
city in China. Every 30 seconds, speeds, time stamps and positions of GPS equipped taxis 
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were recorded and sent to the monitoring centre. Based on the collected time stamps, 
speeds and positions, the link travel time for each probe vehicle can be estimated. In order 
to see whether the mean link travel time estimated from probe vehicle data can statistically 
represent the mean travel time of all vehicles on this link, we applied the sampling method 
discussed above. Column 2 in table 3.1 illustrates sample size of probe vehicles derived 
from the field data for each time period of 15 minutes (total 2 hours). Column 3 and 4 
indicate estimated sample size with different marginal error (5% and 10%). When the 
allowed maximum relative error is small, e.g., 5%, the required minimum sample size is 
larger than that measured from the field data in all time periods. In this case, it could not 
guarantee that the mean link travel time estimated from probe vehicles for each time 
period can represent the mean travel time of all vehicles on this link.  

Table 3.1: Comparison of field sample size of probe vehicles and estimated sample 
size with 95% confidence level   

Time period
Field GPS
sample size

Estimated GPS sample
size(marginal error =5%)

Estimated GPS sample
size(marginal error =10%)

10:00-10:15 56 178 44
10:15-10:30 90 215 53
10:30-10:45 85 616 154
10:45-11:00 79 204 51
11:00-11:15 97 275 68
11:15-11:30 96 406 101
11:30-11:45 110 574 143
11:45-12:00 90 343 85  

It can be clearly seen from equation (3.2) that for a given level of significance and 
permitted relative error, the sample size is directly determined by the coefficient of 
variation (CV) of the population. The higher the CV is, the lager the sample size is needed. 
Due to a number of stochastic factors on the urban road, e.g., the stochastic properties of 
traffic flow, the stochastic arrivals and departures at intersections, the variation of urban 
link travel time is larger than that of freeway travel time, the sample size needed is 
expected to be larger for urban link travel time estimation than for freeway travel time 
estimation. 

In the urban area, there are two main sources causing the biased travel time estimates 
using probe vehicles, which are bias in the probe vehicle composition and bias in the 
arrival time distribution. The first source is widely accepted that only a certain type of 
vehicles as probe vehicles tends to have biased travel time estimates. For instance, lorries 
as probe vehicles are likely to be over represented within a sample of GPS travel time 
records since lorries are in general slower than private cars. Using taxis as probe vehicles 
can also lead to biased travel time estimates due to different driving behaviour of taxis 
which are likely to stop along the roadside for (un)loading or search for customers. The 
second source of bias in travel time estimates is the bias in the arrival time distribution as 
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discussed in (Hellinga et al., 2002). The variability of travel time that vehicles experience 
on the urban arterial road segment is predominately determined by the variability of delay 
experienced at the signalized intersection. Delay at signalized intersections can be 
calculated as the function of the arrival time with respect to the signal cycle. Therefore, a 
biased probe vehicle sample with respect to their arrival time distribution will lead to a 
biased travel time estimate no matter how many probe vehicles are available.  

Probe vehicles equipped with mobile phones 

Vehicles with one or more active mobile phones have the potential to become probe 
vehicles. Mobile phones can be located by nearby base stations. There are different ways 
to calculate positions of mobile phones. One method is to estimate the position by 
calculating the distance from three nearby base stations. The positioning accuracy is about 
50-200m. Another method is to calculate the direction the signal is coming from using 
special antenna arrays installed at the base stations. The typical accuracy is about 50-300m 
for this method (Wunnava et al., 2007). By applying mobile phone technologies, different 
mobile phone probe systems have been developed, such as Call Record Systems, 
Alink/Handoff Systems, Timing Advance Systems and Abis Measurement Report 
Systems (Cayford et al., 2010). In recent years, some cellular networks also use GPS to 
locate a mobile phone. In this method, GPS satellite system is used to calculate the 
position of the mobile phone. The accuracy is between 5m and 30m. Based on the 
information of time stamps between two located positions, Point-to-Point travel times can 
be directly derived. However, the first two methods (most commonly used in cellular 
network) of positioning have the problem of low positioning accuracy which ranges from 
50m up to 300m. This might not be a serious problem on the freeway with mild traffic 
conditions. Whereas in the urban network with densely distributed roads, matching probe 
vehicle positions to the right road is very difficult. Within the distance of 200m, several 
parallel roads can be found in the urban area. Another problem related to mobile phone 
sensors is that it is difficult to distinguish whether a mobile phone is in the vehicle or 
outside the vehicle, especially on the urban road. For instance, mobile phone data from a 
user in a parallel metro or tram to the road can be misrecognized as travelling on the road, 
which causes an error for the travel time estimation. Similarly, when a pedestrian or 
cyclist uses a mobile phone on the footpath or cycle path along the road, the travel time 
collected by this mobile phone can be also misinterpreted as the vehicle travel time on the 
road, especially in congested conditions.  

3.2.3 Bluetooth 

Bluetooth is a wireless communication platform used to connect electronic devices. The 
interconnection between Bluetooth devices is achieved through transmission and 
acceptance of a 48-bit Machine Access Control, or ‘MAC’ address between inquiring and 
receiving devices. Vehicles with one or more Bluetooth devices on board can be 
recognized by a Bluetooth receiver installed on the roadside and when they pass different 
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Bluetooth receivers on a route, the time difference between registrations at two locations 
can be used to estimate the travel time.  

As shown in Figure 3.2, the Bluetooth device has a certain detection area with the radius 
about 50 to 60 meters. Vehicles with Bluetooth devices entering this circle will be 
detected. Therefore, a single device could collect data from both sides of the roadway. 

 

Figure 3.2: An example of detection range of a Bluetooth scanner 

Application of Bluetooth devices for measuring travel times on freeways has shown very 
promising results(KMJ Consulting, 2010; Yegor et al., 2010). As discussed in (Yegor et 
al., 2010), travel times collected by Omni-directional antennae Bluetooth sensors even 
with small samples (e.g.,4%) can provide a good representative of the actual traffic 
condition. Another advantage of applying this technique is that the constant broadcast of 
MAC addresses is detectable and measurable without establishing a relationship to 
personal or sensitive information, keeping the travelling public and their information 
anonymous, which implies that the private issue is not a problem and it would be easier to 
implement in practice.  

However, there are also some limitations related to this technique. First of all, Bluetooth 
devices transmit signals rather frequently. The Bluetooth-equipped vehicle could be 
detected at any time within the detection zone and could be detected several times when it 
passes a roadside Bluetooth receiver or not be detected at all depending on the driving 
speed and on the detection range of the Bluetooth device. The problem arises that which 
moments are chosen to calculate the travel time. For a longer distance, it might not be a 
big problem. While for a short distance, choosing inappropriate detection moments can 
cause large error. The estimation error is likely to be larger on the urban road if two 
Bluetooth devices are placed in a short distance (e.g., one link distance) or close to the 
intersections. Secondly, the same problem as discussed before with ANPR arises when 
vehicles that are detected at the beginning and at the end of a road segment may divert in 
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between or may stop for some time rather than being delayed by the traffic. This gives 
outliers and it is not always possible to distinguish the outliers from the regular trips. In 
order to see whether the method proposed by (Robinson, 2005) and discussed in section 
3.2.1 can also be used to detect outliers from the Bluetooth data, a test was carried out. 
The Bluetooth data was collected in Changsha, a city in Hunan province, in China. The 
Bluetooth devices were placed on an urban arterial. The distance between these two 
devices is about 2200m and two intersections are in between. Figure 3.3 illustrates the 
individual travel time collected by Bluetooth devices for two directions. After applying the 
outlier detection method, the travel times with red circles are identified as outliers while 
the black dots are valid travel times. The detection results are quite sensitive to the number 
of following vehicles and the tolerance time as mentioned in section 3.2.1. The larger the 
tolerance time is, the less will travel times be identified as outliers. The travel time 
distribution based on all valid travel times identified by this method is compared with the 
travel time distribution from GPS data as shown in Figure 3.4 . Larger travel times are 
more frequently observed by Bluetooth devices for both directions (Southbound and 
Northbound) compared with those collected by GPS probe vehicles. The travel time 
distribution from GPS data shifts more to the left with smaller mean travel time compared 
with the travel time distribution from Bluetooth data. However, it is hardly to say whether 
the outlier detection method performs well or not since we don’t have real ground truth 
data to validate it. Though travel time distribution from GPS data on the same link during 
the same time period could provide some evidence, these travel times are collected by 
taxis. In the uncongested condition, it is likely that taxis travel faster than other vehicles. 
The Kolmogorov-Smirnov test results are shown in Figure 3.5. The hypothesis that these 
travel time distributions (Bluetooth and GPS) come from the same distribution is rejected 
at 5 % significance level for both directions (p=2.91e-9<<0.05 and p=1.42e-5<<0.05, 
respectively). 

    

Figure 3.3:  Individual travel times collected by Bluetooth devices between time 
period of 10:30 and 12:05 on 15th, May, 2010 
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Figure 3.4: Travel time distributions derived from Bluetooth data and GPS data 

 

Figure 3.5: Kolmogorov-Smirnov test for travel time distributions from Bluetooth 
data and GPS data  

Besides, on the urban road, travel times collected by Bluetooth devices could come from 
cyclists or pedestrians carrying Bluetooth-enabled devices. Though, one would argue that 
the travel time experienced by a cyclist is much longer than that is from a vehicle. In 
congested conditions, this would not be the case since cyclists can experience similar 
travel times as vehicles within a short distance (e.g., a link of 500 meters). This type of 
outliers is rather difficult to distinguish in practice.  
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3.3 Comparison of urban link travel time estimation 
models based on probe vehicle data (PVD) 

Travel times collected by probe vehicles with low polling frequencies usually does not 
apply to one single link and therefore cannot be directly used as travel time information 
for travellers or for further travel time prediction. This type of travel times is not a 
complete link or route travel time but rather from a certain position on one link to a certain 
position on the same or another link. As for travellers, when making route choices they 
want to know the complete link or route travel times from their origins to the destinations. 
It is necessary to allocate the travel times between two consecutive time stamps from 
probe vehicles into individual links. 

3.3.1 Link travel time allocation 

Travel times collected by probe vehicles do not originate from a single complete link but 
are experienced by probe vehicles from a certain position on one link to a certain position 
on another link. These can be categorized into three types as illustrated in Figure 3.6 (a), 
(b) and (c).  

1,decτ 2,decτ
3,decτ 4,decτ

1 1,P t 2 2,P t 3 3,P t 4 4,P t

1 1,P t 2 2,P t 3 3,P t

1,decτ
2,decτ 3,decτ 4,decτ

3 2t t−

0 0,P t

0 0,P t
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1 1,P t
2 2,P t

1,decτ 2,decτ
3,decτ

0 0,P t

 

Figure 3.6: Sketch of assignment of travel times between recorded positions to the 
link in the middle (taking through-going traffic as an example)  

P1, P2, P3 and P4 are positions on the corresponding links and t1, t2, t3 and t4 are time 
stamps. t1,dec , t2,dec, t3,dec and t4,dec represent the reallocated link travel times based on the 
travel times collected by probe vehicles. The complete link travel time here is defined as 
the time difference between the time instant when the vehicle passes the upstream stop 
line and the time instant when the vehicle passes the downstream stop line.  

Type 1: The reported positions are on the same link (e.g. Link 2) as shown in Figure 3.6 
(a), the complete travel time of link 2 is composed of three parts: 

2 2, 3 2 3,L dec decTT t tτ τ= + − +  (3.4a)  

For this case, the link is long or the traffic condition on the target link is likely to be 
congested or vehicles need to wait for the red time since the probe vehicle experiences 
long travel time (at least longer than the sampling interval) on this link.  

Type 2: The first and second reported positions are on adjacent links shown in Figure 3.6 
(b), then the travel time of link 2 is estimated as: 

2 2, 3,L dec decTT τ τ= +  (3.4b)  

Type 3: At least one full link is existing between two consecutive reported positions 
illustrated in Figure 3.6 (c), the travel time of link 2 is: 

2 2,L decTT τ=  (3.4c)  

For this case, the traffic condition on the target link is likely to be free flow or 
undersaturated since the probe vehicle experiences short travel time. 

 



Chapter 3. Measuring urban travel times 51 

 

3.3.2 Description of Link travel time estimation models 

Model 1: Distance-proportion Model 

The basic idea of distance-proportion method is that the travel time between two time 
stamps is decomposed into individual links based on the distance. The link travel time 
based on this method can be derived according to three situations as shown in Figure 3.6. 
E.g., the travel time of link 2 can be estimated as: 

Type 1:  

( ) ( )
2 2, 3 2 3,

2 32 2
2 1 3 2 4 3

1 1 2 2 2 3 3 4

(1 )

(1 ) (1 )

L dec decTT t t

L PL P
t t t t t t

L P L P L P L P

τ τ= + − +
−= − + − + −

− + − +
 (3.5a)  

Type 2:  

( ) ( )
2 2, 3,

2 2 2 2
2 1 3 2

1 1 2 2 2 2 3 3

(1 )

(1 ) (1 )

L dec decTT

L P L P
t t t t

L P L P L P L P

τ τ= +
−= − + −

− + − +
 (3.5b)  

Type 3: 

( ) ( )
2

2 2, 2 1
1 1 2 3 21L dec

L
TT t t

L P L L P
τ= = −

− + +
 (3.5c)  

whereL1, L2 and L3 denote the length of link1, link2 and link3, respectively. 

This decomposition method is very simple and does not contain any other assumption than 
that travel times are allocated proportional to the length of the links that the probe vehicle 
has travelled between two registrations. 

Model 2: Hellinga’s model 

Hellinga (Hellinga, 2008) proposed an analytical model to decompose recorded partial 
link or route travel time into individual links considering the stopping probability and 
congestion probability. On the following, a brief introduction of this method is given. 
More detailed information about this method is given in Hellinga’s original paper. 

According to the definition proposed by Hellinga, link travel times in the urban road 
network can be decomposed into 3 parts:  

1) Free flow travel time;  
2) Stopping time caused by traffic control devices (deceleration and acceleration are 

included); 
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3) Delay due to traffic congestion.  
Therefore, the travel time between two consecutive time stamps of a probe vehicle can be 
expressed as: 

{ }
( , )

, 1 , , , , , , ,
0

( ) ( ) ( )
J m i

m i m i f m i j s m i j cong m i j
j

t t l l lτ τ τ+
=

− = + +∑  (3.6)  

where tm,i, tm,i+1 are consecutive time-stamps of probe vehicle m on link i and link i+1 ; τf 
(lm,i,j) is the free flow travel time on link j; τs (lm,i,j) is the stopping time on link j and τcong 

(lm,i,j) is the congestion time on link j.  

The free flow travel time on a link is calculated as the link length divided by the free flow 
speed: 

| ( , ) |
( ( , ))

( , )
i j

f i j
f i j

l n n
l n n

u n n
τ =  (3.7)  

Where |l (ni, nj)| is the length of the complete link or partial link l (ni, nj), uf (ni, nj)is the 
free flow speed for the complete or partial link l (ni, nj). However, in reality, free flow 
speeds vary with driving behaviour, speed limit, weather conditions, etc. It is difficult to 
estimate free flow speeds. Instead, the maximum allowed speed is used to calculate the 
free flow travel time. In order to see how Hellinga’s method performs with different free 
flow speeds, a sensitivity analysis of the free flow speed is discussed in section 3.3.4. 

The congestion time and stopping time based on the probability function are calculated by 
Hellinga as: 

max

( , )

, ,0
, , , ,0

( , , ) ( , )
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( , )

J m i
w w s m i Jj
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max , ,
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( , , ) ( , )
( )

( , )

w w s m i J
s m i J s

s

P m i w P l w
l dw

Q m i
τ τ= ∫  (3.9)  

Where w is the congestion index which is the ratio of the congestion time on the route to 
the sum of the congestion time and the free flow travel time on the route; The minimum 
value of w occurs when traffic demand is very low and the probe travels at the free speed 
and the maximum value wmax occurs when vehicles travel at a speed less than free flow 
speed due to traffic congestion and experience no delay caused by traffic control devices. 
τcong is the total congestion time; τs is the total stopping time; Pw (m,i,w) is the congestion 
probability which is used to capture the likelihood of a certain degree of congestion 
experienced by a probe vehicle m when traversing a given link. It is defined as: 
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where Tc ( m, i ) is the maximum delay the probe vehicle m experiences due to congestion.  

Ps (lm,j,J ,w) is the stopping probability which assumes that a probe vehicle stops at most 
once on the route. It is defined as: 
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j J
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 (3.11)  

where Hs (lm,j,J ,w) is the probability of stopping on a link. It is worth mentioning that there 
are two parameters c1 and c2 in the stopping probability function which need to be 
calibrated. In section 3.3.4, a sensitivity analysis regarding these two parameters is given. 

Model 3: Artificial Neural Network model  

Basically, the traffic data collected by probe vehicles include positions, time stamps and 
speeds on the route. Therefore, positions, time stamps and speeds can be used as the input 
data in the Artificial Neural Network (ANN) model. Traffic flow and signal timings are 
considered optionally since on one hand, they are not always available on the urban road 
network and on the other hand, it is preferable to develop a model to estimate travel time 
as accurate as possible with least information and make the model more generic. As 
discussed in (Hellinga, 2008), the traffic condition the probe vehicle experiences during 
the recent sampling interval is considered not substantially different from that on the route 
traversed by the same probe vehicle during the previous sampling interval. In the ANN 
model, the probe vehicle information on previous sampling interval is incorporated with 
the information on the recent sampling interval. Figure 3.7 shows the structure of the 
ANN model. The mathematical description of the model is as follows: 

Input layer: 
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Where p (i) is the position vector of probe vehicle i on the upstream link, target link and 
downstream link; s (i) is the link number vector indicating on which links the probe 
vehicle positions are; t (i) is the time stamp vector which indicates the time instances when 
the probe vehicle sends the information; u (i) is the speed vector.  
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The number of input neurons in our model can be determined as N=n*m；                                    
where n is the number of information points taken into consideration for each probe 
vehicle; m is the categories of information, here m is chosen to be 4 (positions, link IDs, 
time stamps and speeds). 

For the case in Figure 3.6 (a), the information on the previous sampling interval is also 
taken into account, so the input neurons are 5*4 (5 positions+5 link IDs+5 time stamps +5 
speeds) for each probe vehicle. For the case in Figure 3.6 (b), 4*4 input neurons are used 
and 3*4 input neurons are needed for the case in Figure 3.6 (c). 

Hidden layer: 
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where hm (i) denotes the value of the mth
 hidden neuron, ωj,m 

denotes the weight connecting 
the jth input neuron and the mth hidden neuron, bm

 
denotes a bias with a fixed value for the 

mth hidden neuron; φ is the transfer function. Common forms of the transfer function are 
logistic sigmoid and hyperbolic tangent functions. In practice, the latter is found to give 
rise to faster convergence (Bishop, 1995). Thus, we chose  
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Output layer: 
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where Y ( i ) denotes the estimated travel time of probe vehicle i; ωk denotes the weight 
connecting the kth hidden neuron and the output neuron; b is the bias for the output; Ф is 
the transfer function and a linear function is commonly used for the output units. 
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Figure 3.7: Topology of an Artificial Neural Network for link travel time estimation 

3.3.3 Experimental setup 

Description of the Test urban road  

As shown in Figure 3.8, an urban road called ‘Kruithuisweg’ in Delft city in the 
Netherlands was modelled using the VISSIM simulation model. Kruithuisweg is a typical 
urban road with signalized intersections lying between two freeways, A4 and A13. In 
order to mimic the real traffic situation on this road, traffic was assigned using Dynamic 
Traffic Assignment (DTA) based on the dynamic OD matrix in VISSIM. All the traffic 
signal controllers at the intersections are vehicle actuated. The free flow speed is set to be 
100km/h which is the speed limit on the real situation. The dots are the data collection 
points which record the information of vehicles every second. The arrow indicated in the 
figure is the target link for travel time estimation.  
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Figure 3.8: VISSIM model of Kruithuisweg road in Delft, the Netherlands 

Data preparation  

Re-sampling process 

The network was simulated for a period of 65min for each simulation run. Data from the 
first 5min of simulation were considered to be the warm-up period and were not used in 
the analysis. Every second, positions, time stamps and speeds of vehicles were recorded 
by the data collection point. However, in real world, the sampling interval is much longer 
than 1s. Instead, the sampling interval of 30s or 60s is more often used in reality. Hence, a 
‘Re-sampling’ procedure with 60s interval was taken to extract the data from the original 
simulation data set. One thing we should keep in mind is that the position of the probe 
vehicle can be anywhere on the link when sampling. This means that if we just take one 
position on the link as the initial sampling position, the estimation results will be biased. 
The ‘Re-sampling’ strategy can be explained by Figure 3.9. For instance, if the initial 
sampling moment isi , when applying 60s sampling strategy, the next moment is 60j + , 
and then 120j + , 180j + , etc. We can get different moment combinations to estimate the 
travel time of link 2.  
Combination 1: , 60, 120, 180, 240,...j j j j j+ + + +  
Combination 2: 1, 61, 121, 181, 241,...j j j j j+ + + + + … 
Therefore, the average travel time of a probe vehicle i  traversing link 2 can be calculated 
as: 

2 2,
1

1
( ) ( )

n

L L j
j

TT i TT i
n =

= ∑  (3.15)  
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where n is the number of different initial sampling moments, TTL2, j (i)  is the estimated 
link 2 travel time of probe vehiclei  with the initial sampling momentj . 

Equation (3.15) is applied for all three models (Distance-proportion model, Hellinga’s 
model and NN model) to calculate the average estimated travel time for each probe 
vehicle. The true link travel time of a probe vehicle traversing the target link is recorded 
by data collection points located at the beginning of the link and the end of the link. 

 

Figure 3.9: Different moments (positions) recorded by probe vehicles on different 
links 

Data for training and evaluation 

After the ‘Re-sampling’ process, the extracted data were used for training the neural 
network and estimating the link travel time. Total 70 random seeds were simulated and 
probe vehicle data from 30 random seeds, in which 20 random seeds are in the 
undersaturated condition and 10 random seeds are in the highly oversaturated condition, 
were used for the training process. The other 40 random seeds were used for the 
performance evaluation. Four scenarios were chosen for evaluation. The subdivision of 
data sets for training and evaluation is indicated in Table 3.2. 

� Scenario 1: Original demand (undersaturated condition) 

� Scenario 2: 20% demand increase 

� Scenario 3: 50% demand increase 

� Scenario 4: 100% demand increase (highly oversaturated condition) 

Table 3.2: Simulated data sets for training and evaluation 

training validation testing scenario 1 scenario 2 scenario 3 scenario 4

Undersaturation 12 4 4

Oversaturation 6 2 2

Number of 
random 
seeds

Training Evaluation

10 10 10 10

 

Also a real GPS data set was extracted from original data obtained from trips along the 
Kruithuisweg road for validation purpose. This was done according to the re-sampling 
process and contained in total 7 trips. 
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Neural Network training 

A training process is needed before the ANN model can be applied to estimate link travel 
times. Three procedures including training, validation and testing were conducted in the 
whole training process. The total training data set was divided into three subsets which are 
18 random seeds for training, 6 random seeds for validation and 6 random seeds for 
testing. During the training process, different hidden neurons, e.g. 10, 15, 20, 25, were 
chosen. The testing results show that the performance in terms of Mean Square 
Error(MSE) for the case of 10 and 15 neurons is not as good as that of 20 or 25 neurons. 
Therefore, 20 hidden neurons were used to build the network. Levenberg-Marquardt 
algorithm (Ranganathan, 2004) was chosen so that the over fitting phenomenon could be 
avoided. Besides, the Levenberg-Marquardt algorithm can provide fast convergence even 
for large networks that contain a few hundred weights. The trained ANN model is applied 
to estimate link travel times both in undersaturated conditions and oversaturated 
conditions. 

3.3.4 Sensitivity analysis in Hellinga’s model 

In Hellinga’s model, link travel time is composed of three parts including free flow travel 
time, congestion time and stopping time. In order to estimate free flow travel times, free 
flow speeds need to be determined. Besides, in the stopping likelihood function as 
proposed by Hellinga, two model parameters denoted by 1c and 2c were used to reflect the 
stopping likelihood pattern of the link. In this section, the sensitivity of the performance in 
terms of RMSE and MAPE of this model in both low traffic demand conditions and high 
traffic demand conditions are investigated.  

2
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Where, ,PVD it is the estimated travel time of the thi probe vehicle; ,true it is the true link travel time of 

the thi probe vehicle recorded by the data collection points.  

Figure 3.10 gives an illustration of how different combinations of 1c and 2c  influence the 
performance of the Hellinga’s model in terms of RMSE and MAPE. The free flow speed 
was set to be the speed limit (100km/h) for this case. The best combination of 1c and 2c
was then chosen and the next step is to analyse the sensitivity of the performance to the 
free flow speed, for which a range of speeds from 50 km/h to 150 km/h was used. The best 
combination of 1c , 2c  and the free flow speed for each scenario is given in Table 3.3. The 
selected parameter values are used in Hellinga’s model to estimate complete link travel 
times. 
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Figure 3.10: Performance of Hellinga’s model with different combinations of c1 and 
c2 in scenario 3 

Table 3.3: Parameter values in Hellinga’s model under different traffic conditions 

Parameters  Scenario 1  Scenario 2  Scenario 3  Scenario 4
 c1 5 5 0.1 0.1

 c2 1 1 1 1

Free flow speed (km/h) 80 80 100 110  

3.3.5 Results 

Results based on simulation data 

Figure 3.11, Figure 3.12 and Figure 3.13 provide the comparison between the estimated 
link travel times based on the Distance-proportion model and true link travel times, 
estimated link travel times based on Hellinga’s model and true link travel times, estimated 
link travel times based on the ANN model and true link travel times under different traffic 
demand conditions, respectively. The average travel time for each probe vehicle is 
estimated based on Equation (3.15) for all three models. Each point represents individual 
travel time for each probe vehicle. A linear regression is applied to compare the estimated 
links travel times with the true (simulated) link travel times. When traffic demand 
increases from original free flow condition to high demand condition, both the distance-
proportion model and Hellinga’s perform reasonably well with R2>88%. Among these 
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three models, the ANN model performs the best as can be seen in Figure 3.13 (a), (b), (c) 
and (d). The estimated link travel times based on ANN exhibit no apparent bias and have 
very high correlation with the true link travel times ( 2 96%R > ). The performance of these 
three estimation methods in terms of RMSE and MAPE is indicated in Table 3.4. As for 
ANN model, both RMSE and MAPE increase marginally as traffic demand increases. The 
increase of MAPE is less than 2%. As for Hellinga’s model, the MAPE increases from 
12% to 20% when traffic demand increase from undersaturated conditions (Original 
demand and 20% demand increase) to oversaturated conditions(50% demand increase and 
100% demand increase). Compared with Hellinga’s model, the Distance-proportion model 
gives less accurate estimation results when the traffic demand is low (in the case of 
original demand and 20% demand increase); However, when the traffic demand increases 
(from 50% increase to 100% increase), the Distance-proportion method provides more 
accurate estimation with lower RMSE.  

 

Figure 3.11: Correlation between estimated link travel times and true link travel 
times based on Distance-proportion method (60s sampling interval)  
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Figure 3.12: Correlation between estimated link travel times and true link travel 
times based on Hellinga’s method (60s sampling interval) 
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Figure 3.13: Correlation between estimated link travel times and true link travel 
times based on ANN method (60s sampling interval) 

Table 3.4: Performance measurements of Distance-proportion model, ANN model 
and Hellinga’s model with different traffic demand 

Distance_proportion Hellinga ANN Distance_proportion Hellinga   ANN
RMSE(s) 20.06 12.98 4.53 23.75 13.69 7.57
MAPE(%) 16.85 12.20 3.97 18.88 10.96 5.61
Average

Travel time(s)
91.35 105.73

Distance_proportion Hellinga ANN Distance_proportion Hellinga ANN
RMSE(s) 23.50 29.44 9.97 30.11 48.55 13.48
MAPE(%) 15.90 15.18 4.98 15.50 20.03 5.08
Average

Travel time(s)
137.80 192.51
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Results based on real GPS data 

The trained ANN model was also applied to estimate travel times based on the real GPS 
data. A car with a GPS device was driving back and forth on the same road 
‘Kruithuisweg’ 7 times and all the GPS positions were recorded every 0.3s. As discussed 
in the section 3.2.2, GPS positioning is not so accurate on urban roads due to tunnels, tall 
buildings, etc. Reflection of GPS signals has a significant impact on the accuracy of 
estimated positions. In our experiment, the urban road ‘Kruithuisweg’ is located in an 
open area. The ‘urban canyon’ is not a problem in our case.  

In the sampling procedure, 60s sampling interval was applied to extract GPS data from the 
original data set.  The estimation result is shown in Figure 3.14. Each point represents the 
travel time for each trip. From the regression formula in the figure, it can be seen that the 
trained ANN model performs reasonably well. The RMSE and MAPE are about 7.8s and 
10.9%, respectively. While for the Hellinga’s model, the estimation accuracy is lower with 
RMSE and MAPE of 14.2s and 20.6%, respectively. Though one could argue that the real 
data set is too small to give a statistically sound result, it shows the possibility to apply the 
ANN model to the real GPS data.  

 

Figure 3.14: Correlation between estimated link travel times and true link travel 
times based on real GPS data 

3.3.6 Conclusions 

Link travel time estimation based on the travel times collected by probe vehicles is one 
important application of PVD. Up to now, there is not much research about travel time 
allocation using PVD. In this section, three models are applied to estimate the complete 
link travel time based on PVD. A three-layer Artificial Neural Network model is proposed 
to estimate complete link travel times. The input information in the ANN model includes 
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individual probe vehicle’s positions, link IDs, time stamps and speeds. The estimation 
results are compared with those from Distance-proportion model and Hellinga’s model. 
The ANN model performs quite well under different traffic conditions. On average, the 
MAPE is less than 6 %. As for Hellinga’s model, the MAPE increases from 12% to 20% 
when the traffic demand increases. In Hellinga’s model, the link travel time is composed 
of free flow travel time, stopping time and congestion time. When congestion occurs, 
stopping time and congestion time are the main components of the estimated link travel 
time, which also suggests that stopping probability and congestion probability should be 
properly calibrated, especially when dealing with signalized intersections. The delay time 
can be caused by either traffic control or congestion. One thing worth mentioning is that 
the number of parameters in the ANN model is much more than those in Hellinga’s 
model. The higher performance of the ANN model is probably also due to the higher 
number of parameters. 

3.4 Summary and discussions 

Travel times are important not only for traffic management and planning, but also for the 
traffic guidance in the urban area. This chapter compared different techniques (ANPR 
cameras, probe vehicles, Bluetooth devices) developed in recent years to measure travel 
times on the urban road. The challenge of ANPR and Bluetooth devices for measuring 
urban travel times is how to properly determine outliers, which is not an easy task. 
Compared with ANPR and Bluetooth technologies, probe vehicles equipped with 
positioning (e.g., GPS, DGPS, GPS/MEMS integrated system) devices are more 
promising for collecting urban travel times. Especially in the case of GPS/MEMS 
equipped car navigation system with high polling frequency (e.g., 1s), travel times can be 
accurately derived.  Special focus was given to the probe vehicle data (PVD) with low 
polling frequencies (e.g., 15s, 30s, 60s). Due to the fact that travel times directly collected 
by these probe vehicles are unlikely to be complete link or route travel times, in this 
chapter different models including Distance-proportion model, Hellinga’s model and 
Artificial Neural Network (ANN) model to estimate complete link travel times based on 
PVD were discussed and compared with each other. The estimation results showed that 
the ANN model gives the best performance.   

Travel times measured by ANPR cameras, probe vehicles and Bluetooth devices provide 
useful information about the traffic state on the road. First of all, measured travel times 
provide the ground-truth for developing any travel time estimation or prediction model. 
Secondly, measured travel times are valuable for building the historical travel time 
database for the purpose of traffic management and planning. Finally and also most 
importantly, from measured travel times, travel time distribution can be derived which 
provides more insight into travel time variability and furthermore can be used for travel 
time prediction purpose. However, travel time distribution derived from measured travel 
times could not give sufficient insight into what causes this travel time distribution, in 
other words, what causes the travel time variability. A model that could provide some 
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insight into factors that lead to a certain travel time distribution and furthermore estimate 
the travel time distribution would be preferable. Therefore, in chapter 4, a delay (travel 
time) distribution model for an isolated intersection is developed taking different 
stochastic factors into account. This model is further extended to an urban trip with fixed 
time controlled intersection in chapter 5.  
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Chapter 4 

Delay distribution for signalized 
intersections 

4.1 Introduction 

In the previous chapter, several empirical methods to measure travel times on urban roads 
have been discussed and different models to estimate the complete link travel time have 
been introduced. The remaining question is how we can make good use of measured travel 
times. Providing mean travel time to travellers would lead to the problem that the actual 
travel time can be significantly different from the mean travel time, especially on the 
urban road. One important application of these travel time measurements (estimates) is 
that travel time variability can be investigated by looking at travel time distribution or 
using other statistical measures, e.g., percentiles, standard deviation, coefficient of 
variance. Instead of directly modelling travel time variability from measured travel times, 
an alternative way is to model travel time variability analytically. On urban roads, the 
uncertainty of delay at intersections is the main source of travel time uncertainty. The 
stochastic delays at the signalized intersection constitute a large part of travel times on 
urban links. The understanding of the vehicle delay evolution or delay variability at 
signalized intersections can lead to more insights into the variability of urban link travel 
time and gives more possibilities for travel time estimation and prediction.  

Basically, delays vehicles experience at a signalized intersection include uniform delays 
due to traffic control and overflow delays due to high traffic demand. However, delays 
vary with effects of stochastic properties of traffic flow, stochastic arrivals and departures 
at the signalized intersection as illustrated in Figure 4.1. These stochastic factors are not 
independent but rather overlap. As a result, delays are uncertain given known traffic 
condition (traffic flow) and traffic control. Instead, a certain delay distribution can be 
observed. 
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Figure 4.1: Schematic overview of main components of delay distribution 

In this chapter, a delay distribution model for a fixed-time controlled intersection - taking 
stochastic properties of traffic flow, stochastic arrivals and departures into account is 
proposed in section 4.2. The proposed model can deal with both the undersaturated 
condition and oversaturated condition. Section 4.2 also investigates the influence of 
different arrival patterns to the delay distribution. In section 4.3, the delay (travel time) 
variability is quantified by looking at the delay percentile from the derived delay 
distribution. The statistical range method is introduced to measure the delay uncertainty at 
signalized intersections.  Finally, section 4.4 summarizes the contribution of this chapter. 

4.2 Delay distribution at signalized intersections 

4.2.1 Delay distribution in the undersaturated condition with a fixed   
overflow queue  

The delay at an approach of a signalized intersection depends on the arrivals and 
departures, the length of the red and green phases, and the initial queue. The queue length 
is a step function that increases with one at the arrival of a vehicle and decreases with one 
at the departure of a vehicle in one cycle. If we take the expectation value of the queue 
length, it becomes a continuous function of time. The expectation value of the queue 
length can be derived from the probability function of queue length as shown in (Viti, 
2006). In order to derive the delay distribution function, we start with a simple case in the 
undersaturated condition. We assume that at the beginning of the red phase with t=0, no 
initial queue exists at the stop line of the intersection and the green phase τg is not fully 
saturated on the average. The queue builds up proportional to the time in the red phase τr 
and decreases proportional to the time in the green phase. The average arrival rate is q and 
it remains constant during the evaluation period. The delay as function of the arrival time 
at the stop line of the intersection (in the case of a vertical queue) for this simplified case 
can be derived as (van Zuylen 2006; van Zuylen et al., 2007): 



Chapter 4. Delay distribution for signalized intersections 69 

 

1 1
( ) (1 )r r

qt q
W t t t

s s s
τ τ+= − + = + − −  ,  if rt τ<     (4.1a)  

( 1 ( ))
( )

1
(1 )

r

r

qt s t
W t

s
q

t
s s

τ

τ

+ − −=

= + − −
 , if 

1

1

r

r
st

q

s

τ
τ

+
< <

−
 (4.1b)  

( ) 0W t =  ,                          if 

1

1

r st
q

s

τ +
≥

−
    (4.1c)  

As a next step let’s assume that an initial overflow queue n0 exists at the start of the red 
phase and that the green phase is still long enough to handle all traffic. For this case, the 
delay is given by:  
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The delay has a maximum as experienced by a vehicle arriving just after the end of the 
effective green time. It is equal to the red time τr plus the time necessary to release the 
initial queue and the arriving vehicle itself, and decreases linearly until the end of the 
saturated green time. Afterwards, the delay is zero. The probability that a vehicle has a 
delay between d and d + ∆d is given by the chance that a vehicle arrives between t=W -1(t) 
and t+∆t =W -1( d+∆d ) as shown in Figure 4.2 (a), wheret∆ can be easily obtained as: 

( )

dt
t d

dW t
∆ = −∆  (4.3)  

The inverse mapping of delay W to the arrival time is not a single valued function as can 
be seen from Figure 4.2 (b). The derivative does not exist at W=0. This can be simply 
solved by introducing the Dirac delta function (in fact a generalization of the function 
concept, only applicable in integrations) with the following properties: 

( ) 0 0 ,x if xδ = ≠  
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(a)                                                                 (b) 

Figure 4.2: Delay as a function of arrival time W (t) and the inverse relation t (W) 

4.2.2 Delay distribution in the oversaturated condition with a fixed 
overflow queue  

When the initial queue is larger than a certain threshold, the green phase becomes 
oversaturated. The question whether an arriving vehicle has to wait for a next cycle to 
depart, depends on the number of vehicles that arrived before this one in the cycle plus the 
initial queue. As soon as this quantity exceeds the number of vehicles that can depart in 
the (remaining) green time, the vehicle has to wait for a following cycle or even more 
cycles. The delay becomes 
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The floor└ ┘is used to indicate the integer value of the expression inside the brackets. An 
example of the oversaturated condition is shown in Figure 4.3. In this example the 
transitions occur at four time instants： t0, t1, t2 and t3. Vehicles arriving between t0 and t1 
can leave the intersection in the next green phase, vehicles arriving between t1 and t2 can 
depart in the green phase of the next cycle, etc. The number of red time that the arriving 
vehicles need to wait for can be directly derived from Equation (4.6). The more generic 
expression is: 
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The minimum number of extra red time an arriving vehicle needs to wait for can be 
derived as: 
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If the initial overflow queue can depart from the intersection within the effective green 
time, the minimum number of extra red time that the arriving vehicle needs to wait for is 
zero. In this example, we assume that the initial overflow queue can be released within the 
effective green time. 

Similarly, the maximum number of extra red times occurs when vehicles arrive at the end 
of cycle time given by: 
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The transition moments can be expressed as: 
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Figure 4.3: Delay as a function of arrival time for the oversaturated condition 

Transition point 0: 0 0t =
 

0 0
2

1 1
r r

n n
W

s s
τ τ+ += + = +

                                 
 

Transition point 1: 0
1

1gs n
t

q

τ − −
=

   

0 00
1

1 11
(1 )g g

r C

s n n sn q
W

s q s q

τ τ
τ τ

− − − ++= + − − = +              

0
4 1

1g
r C r

n s
W W

q

τ
τ τ τ

− +
= + = + +                                       

Transition point 2: 0
2

2 1gs n
t

q

τ − −
=

                                             
 

0 00
3

2 1 1 21
(1 ) 2g g

r r C

s n n sn q
W

s q s q

τ τ
τ τ τ

− − + −+= + + − − = +             

0
6 3

1 2
2 g

r C r

n s
W W

q

τ
τ τ τ

+ −
= + = + +                        

                  

 

Transition point 3: 0
3

3 1g
C

s n
t

q

τ
τ

− −
= =

 



Chapter 4. Delay distribution for signalized intersections 73 

 

0 0
5

1 1
2 (1 ) 3 (1 )r r C r C

n nq q
W

s s s s
τ τ τ τ τ+ += + + − − = + − −                

 

For more general expression, we can substitute t  in Equation (4.6) with Nt and the delay 
for each transition point can be calculated as:  
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The probability distribution for this case consists of some box shaped functions that may 
overlap as shown in Figure 4.4. The box shaped functions are defined as: 
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The delay probability function can be represented as: 
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Figure 4.4: Delay probability distribution for the oversaturated condition 

Based on Equations (4.5) and (4.13), delay probability distribution with an initial queue 
for both undersaturated and oversaturated conditions can be expressed in one equation:  
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Where B(W,W2N+1(n0), W2N+2(n0)) is given by Equation (4.12) and W2N+1(n0), W2N+2(n0) are 
given by Equation (4.11).  

4.2.3 Delay distribution with a stochastic overflow queue  

The delay probability distribution function derived in the previous section is based on the 
fixed overflow queue that is present at the start of the green phase. If the overflow queue is 
stochastic with a certain probability distribution, the expected probability distribution of 
the delay can be composed as a weighted sum of probability functions: 
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where P(n0) is the probability distribution of the initial queue. It can be easily derived 
using the Markov Chain Process by assuming a certain arrival distribution (e.g., Poisson) 
and departure distribution ( e.g. Normal or Binominal) as explained in (Olszewski, 1994; 
van Zuylen et al., 2007; Viti, 2006). 

Based on Equations (4.13), (4.14) and (4.15), we can numerically calculate the delay 
distribution with a stochastic overflow queue. Figure 4.5 (a) illustrates the delay 
distribution for an undersaturated condition (degree of saturation x = 0.833) based on the 
function in Equation (4.15). The tail above W = 36, the red time, and the increase between 
0 and 36s delay are the consequence of the stochastic overflow queue distribution. Figure 
4.5 (b) compares the delay distribution among different degrees of saturation. When the 
degree of saturation is increasing, the shape of the delay distribution shifts to the right 
with a higher standard deviation. However, the delay distributions for different degrees of 
saturation are highly overlapping as can be clearly seen in Figure 4.5 (b). A given delay 
can correspond to different traffic conditions with certain probabilities. This indicates that 
a single delay couldn’t give enough information about what is happening at the 
intersection. Consequently, measured delays of a single vehicle do not have much value 
for the prediction of delays of other vehicles travelling at the same time period. 

For the case of oversaturation, as we already discussed, no equilibrium state of the queue 
distribution exists which also means that the delay distribution is time-dependent and 
shifts over time towards higher delay values. Figure 4.6 can explain this phenomenon 
more intuitively. The shape of delay distribution shifts from left to right cycle by cycle 
and spreads over with a larger range of delay from cycle to cycle. The expected value of 
delay continues to increase and the same for the variance of delay.  

  

(a)                                      (b) 

Figure 4.5: Delay probability distribution in undersaturated and oversaturated 
conditions               

0 10 20 30 40 50 60 70 80 90 100 110
0

0.01

0.02

0.03

0.04

0.05

0.06

Delay(s)

P
ro

b
ab

ili
ty

C=60s,tg=24s,s=1800veh/h,T=600s

 

 

0 20 40 60 80 100120140160180200220240260280300320320
0

0.005

0.01

0.015

0.02

0.025

0.03

Delay(s)

P
ro

b
ab

ili
ty

C=60s,tg=24s,s=1800veh/h,T=600s

 

 

x=0.9, 10 cycles

x=1.05, 10 cycles

x=1.2, 10 cycles

x=0.833



76  Modelling Urban Travel Times                                                            

 

 

Figure 4.6: Evolution of delay distribution in oversaturated condition (τC = 60s,        
τg = 24s, x = 1.1, s = 1800veh/h) 

4.2.4 Comparison between the Poisson arrival and Binomial arrival 
processes 

Delay distribution with Poisson arrival process has been discussed in the previous section. 
As we know, the Poisson process is a random process which means that events occur 
independently of one another. For an isolated intersection with light traffic condition, 
vehicles can pass independently of each other. The Poisson process can be used to 
describe vehicle arrivals in this case. When traffic demand is increasing, vehicle headways 
become more uniform due to car following behaviour; On the other hand, more and more 
vehicles form platoons (clusters, groups). Some distributions, e.g., negative exponential, 
shifted negative exponential, are commonly used to describe arrival headways. However, 
these commonly used distributions tend to give poor predictions for the range of small 
headways as shown in (Akcelik et al., 1994). Instead, they proposed a bunched 
exponential distribution model which provides more realistic prediction of arrival 
headways. In our study, we still use the Binomial arrival distribution just as an example to 
show how different arrival distributions influence the delay distribution in different traffic 
conditions. Compared with the Poisson process, one property of Binomial process is that 
the ratio of variance over mean is smaller than 1. Here we define it as the coefficient of 
variance: 
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where σ2 is the variance of arrivals and µ is the average arrivals. 

One condition in applying a Binomial process is that the variance needs to be determined 
in advance. The variance of arrivals has to be estimated based on observations and usually 
is intersection specific. In order to see how the coefficient of variance influences the delay 
distribution, the value of I is chosen to be 0.4, 0.6 and 0.9. The results are compared with 
that of Poisson process and shown in Figure 4.7. For the undersaturated condition 
(x=0.833) as shown in Figure 4.7(a)), choosing different value of I for the Binomial 
arrival has no significant influence on the delay distribution. Nevertheless, when the value 
of I  increases towards an oversaturated condition (x=1.2) as illustrated in Figure 4.7 (b), 
the delay distribution spreads over a larger range of delays. For this case, different arrival 
patterns, especially the variation in arrivals will have a significant influence on the delay 
distribution. Larger variance in arrivals will lead to larger variance in delay distribution. 
Compared with the delay distribution of Poisson arrivals, smaller variance of delay can be 
observed in the delay distribution with Binomial arrivals. This is explainable because in 
the Poisson arrival process, the arrivals are more uncertain, which leads to the larger 
variance of delays experienced by vehicles at that intersection.  

 

 

(a) Undersaturated condition                  (b) Oversaturated condition 

Figure 4.7: Delay distribution with Poisson arrivals and Binomial arrivals 

4.2.5 Comparison between the delay model and VISSIM simulation in 
undersaturated conditions 

The delay distribution model presented in previous sections has the ability to describe the 
evolution of delay distribution under different traffic conditions. In order to see how this 
analytical model works, we compared the delay distribution from the proposed model with 
that from VISSIM simulation. The cycle time is 60s and green time is 24s both for the 
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analytical model and simulation model. The saturated flow is 2200veh/h/lane. The 
individual delay was recorded in VISSIM and the delay distribution was derived. As 
illustrated in Figure 4.8 (a) (b), the delay distributions based on the analytical model 
match those from VISSIM simulation very well both for the degree of saturation of 0.833 
and 0.917.The Kolmogorov-Smirnov test (Figure 4.8) shows that the hypothesis that the 
delay distribution based on the simulation data and that based on the proposed model 
come from the same distribution cannot be rejected with significance level of α=5%. 

 

(a) Degree of saturation=0.833 

 
(b) Degree of saturation=0.917 

Figure 4.8: Comparison of delay distribution between analytical model and 
simulation 
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4.3 Delay uncertainty at signalized intersections 

In the previous section, the delay distribution model for an isolated intersection has been proposed. 

It has shown that a wide range of delays can be found both in undersaturated and oversaturated 

conditions. Based on the delay distribution, it is easy to calculate the percentile delay, e.g. 90th 

percentile delay (Figure 4.9). The expected value and standard deviation also can be calculated.  

   

Figure 4.9: Cumulative delay distribution for different degrees of saturation 

In literatures, the variance of delay is commonly used to quantify the uncertainty 
(variability) of delay at signalized intersections. Here, we use an indicator called ‘width’ 
to measure the uncertainty of delay. It was originally proposed in (van Lint et al., 2005; 
van Lint et al., 2008) to measure the reliability of travel time. The wider the travel time is, 
the less reliable travel times become. An example of this method is the difference between 
the 90th and 10th percentile relative to the median: 
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U th

D D
D

D

−=  (4.17)  

where, DU denotes the (relative) delay uncertainty, D90th, D50th and D10th denote 90th, 50th 
and 10th percentile delay, respectively. 

Figure 4.10 shows the dynamics of delay uncertainty defined in equation (4.18) for the 
period of 30 cycles. Under the undersaturated condition (degree of saturation x=0.80), DU 
fluctuates for the first 5 cycles and remains nearly constant for the next 25 cycles. In a 
slightly oversaturated condition (e.g., x=1.05), DU rapidly increases for the first 5 cycles 
and flattens out for the remaining 25 cycles. However, in a highly oversaturated condition 
(e.g. x=1.2), DU increases at the beginning and decreases monotonically as the number of 
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cycles increases. DU is larger in low degree of saturation (x=0.8) as can be clearly seen in 
Figure 4.10. Under the undersaturated condition, the most probable delay is zero and the 
delay is predominately determined by the arrival moment at the intersection and the red 
time. The stochastic characteristics at the intersection play a main role in the delay 
uncertainty. While under the oversaturated condition, delays are mainly determined by the 
overflow queue and stochastic arrivals and departures have less influence on the delay 
distribution. Therefore, delays are relatively more certain under oversaturated conditions 
even though vehicles experience larger delays. 

We also investigated the delay variability under different degrees of saturation ranging 
from 0.5 until 2 and the analysis period T= 600s (10 cycles).  As shown in Figure 4.11, 
two different arrival processes (Poisson arrival and Binomial arrival processes) are 
compared with each other. The delay uncertainty can be divided into three regions. For the 
case of highly undersaturated conditions (x<0.8), DU decreases both for the Poisson and 
Binomial process. When the degree of saturation increases (0.8<x<1), TDU increases 
dramatically for Poisson arrivals. This is explainable because when the traffic condition is 
near saturated, traffic flow becomes unstable and a small disturbance can lead to a large 
variation of delay. In highly oversaturated conditions when the degree of saturation is 
higher than 1.1, DU keeps on decreasing. DU for the Binomial arrival process (the 
coefficient of variance is set to be 0.8) is slightly smaller than that of Poisson arrival 
process. Figure 4.12 illustrates the delay uncertainty under stochastic departures with 
standard deviation equals to 10% and 20% of average departures per cycle, respectively. 
Under highly undersaturated and highly oversaturated conditions, the relative uncertainties 
of delay for these two cases are quite similar to each other, while under traffic conditions 
in between, larger standard deviation of departures tends to have a larger DU. The similar 
phenomenon can be observed in Figure 4.11, where a larger variance of arrivals leads to a 
larger DU in middle traffic conditions.  

 

Figure 4.10: Evolution of delay variability for the period of 20 cycles 
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Figure 4.11: Delay uncertainty as function of degrees of saturation for different 
arrival distributions (The standard deviation of saturation flow is chosen as 10% of 
the average saturation flow) 

 

Figure 4.12: Delay uncertainty as function of degrees of saturation for different 
standard deviation of the saturation flow (Poisson arrival) 
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intersection. The delay distribution model is developed and the variability of delay at 
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signalized intersections is investigated based on the delay distribution model taking the 
stochastic properties of the traffic into account.  

In the proposed model, we assume that the initial queue is not deterministic but has a 
certain probability distribution. Both the Poisson arrival process and the Binomial arrival 
process are considered and the departures are assumed to be stochastic. Analysis of 
different arrival processes has revealed that in undersaturated conditions, the delay 
distribution does not significantly influenced by different arrival processes (e.g., Poisson, 
Binomial). The comparison of delay uncertainty in different traffic conditions has shown 
that the delay is more uncertain in undersaturated conditions than oversaturated 
conditions. This gives more insight to travel time estimation and prediction on the urban 
road. The uncertainty of delay in undersaturated conditions should be particularly taken 
into account in order to have better estimation or prediction results. This chapter also 
reveals that the delay distributions for different degrees of saturation are highly 
overlapping which indicates that a single delay can correspond to different traffic states 
with certain probabilities and also for a given traffic state, a range of delays can be found.  

Up to this chapter, the delay distribution model is only applicable for an isolated 
intersection. On urban arterials, traffic process can be influenced by signal coordination 
between intersections. Delays (travel times) that vehicles experience on urban roads are 
accordingly influenced by signal coordination. This is investigated in chapter 5.   



 

  83 

Chapter 5 

Model development for urban travel 
time distribution 

5.1 Introduction 

The travel time that vehicles experience on an urban road can be decomposed into two 
parts: the free flow travel time and the delay. The free flow travel time is basically 
calculated as the distance over the free flow speed. However, estimation of delay is more 
difficult due to stochastic characteristics of traffic on the urban road as discussed in 
chapter 4. Up to now, most research about travel time estimation and prediction mainly 
deals with the expectation or variance of travel times. Very little attention has been paid to 
investigate the travel time distribution, though some research about using statistical 
distributions (e.g., normal, log-normal or combination of different distributions) to fit 
observed travel times and estimating parameters from these measured travel times can be 
found in the literature (EL FAOUZI et al., 2006; Guo et al., 2010). These models hardly 
have physical meaning and some parameters are difficult to interpret from the traffic point 
of view. Therefore, it is necessary to develop a travel time distribution model which can 
explain the underlying urban traffic phenomenon and can be generalized to different 
traffic conditions.  

One important and difficult part in developing an analytical travel time distribution model 
is to estimate delays at intersections. Delays are rather uncertain due to a lot of stochastic 
factors when vehicles approaching intersections. In chapter 4, a delay distribution model 
for an isolated intersection has been developed. The proposed model can well capture the 
delay dynamics and uncertainty at intersections. In this chapter, a single link travel time 
distribution model is developed in section 5.2. In order to see how the proposed model 
performs, travel time distributions generated both from the VISSIM simulation model and 
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field data are compared with those estimated from the analytical model. In section 5.3, a 
travel time distribution model for an urban trip passing two intersections is proposed. 
Travel time distributions estimated based on the analytical model are compared with those 
derived from the VISSIM simulation model and from field data obtained from floating 
cars. Finally, section 5.4 presents some conclusions.  

5.2 Travel time distribution for a link with one 
signalized intersection 

5.2.1 Definition of the link travel time 

In this thesis, the complete link travel time is defined as the travel time when the vehicle 
enters the upstream of the link of interest until it leaves the downstream intersection as 
illustrated in Figure 5.1. The link travel time is expressed as: 

entry exitTT t t= −  (5.1)  

                                                   

 

Figure 5.1:  Schematic representation of an urban link  

5.2.2 Components of urban link travel time 

Basically, the travel time vehicles experience on a certain link i can be subdivided into two 
components: 

( ) ( ) ( )f
i i iTT t TT t D t= +  (5.2)  

Where ( )f
iTT t  represents the free flow travel time at time instant t on link i. It is further 

calculated as the link length Li divided by the free flow speed uf: 

( )f i
i

f

L
TT t

u
=  (5.3)  
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The free flow speed varies with different driving behaviour, speed limit, spacing between 
intersections, vehicle composition, weather conditions, etc. Therefore, the free flow travel 
time is not a constant value. Di (t) represents the delay vehicles experience when departing 
at time instant t. As discussed in chapter 2 and chapter 4, delays vehicles encountered on 
an urban trip can be caused by different factors, e.g., bus manoeuvres at bus stops, 
vehicles parking along the roadside, cross pedestrians and cyclists, traffic control and 
queues at intersections. Among all these factors, the delay at intersections due to the queue 
and traffic control constitutes a large part of the total delay. In this thesis, we mainly 
consider the delay at intersections. 

In order to apply the definition in Equation (5.2) to derive the link travel time distribution, 
we assume a vertical queue at the intersection. This assumption has been discussed in 
chapter 4 to derive the delay distribution. The second assumption is that the number of 
vehicles in queue is not too large such that there is no spill back in case of a horizontal 
queue. The reason for the second assumption is that if the queue is so large that it spills 
back and blocks the traffic at the upstream intersection. In this case, the vertical queue is 
not a reasonable assumption anymore.  

5.2.3 Derivation of a single link travel time distribution 

Case 1: constant free flow travel time 

The free flow travel time can be estimated by simply assuming a constant free flow speed 
(e.g., speed limit). In that case, the free flow travel time is a constant value. The delay 
vehicles experience at the signalized intersection is derived based on the vertical queue as 
discussed in chapter 4. This does not have a big influence on the final calculation of the 
total link travel time for the case of undersaturated conditions or slightly oversaturated 
conditions. More detailed discussion about calculating the total link travel time in case of 
vertical queue and shock wave can be found in Appendix D.  The probability of a certain 
link/trip travel time t, P(t) can then be seen as the shifted probability of a certain delay w 
as: 

( ) ( )d fP t P t τ= −  (5.4)  

where, τf  is the link free flow travel time; P(t) is the probability of a certain link travel 
time t ( t=w+τf  ); Pd (w) is the probability of a given delay w which has been derived in 
chapter 4 with formulas (4.16) and (4.17).  

Case 2: stochastic free flow travel time 

However, the free flow travel time in most cases is not a constant value. Instead, the free 
flow travel time has a certain probability distribution. As for an isolated intersection, the 
delay distribution at the intersection is independent of the travel speed. Therefore, by 
combining the free flow travel time distribution with the delay distribution, the link travel 
time distribution can be derived as:  
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0
( ) ( | ) ( )

t

d fP t P t s s P s ds= −∫  (5.5)  

Where Pf (s) denotes the free flow travel time distribution; Pd (w|s) denotes the conditional 
probability of the delay w given a certain free flow travel time s. For a given travel time t 
(t=w+s), this conditional probability can also be formulated as:       

( ) ( | )d dP w s P t s s= −  (5.6)  

For the case that both the delay probability distribution and free flow travel time 
distribution are discrete, the link travel time distribution can be modified as: 

0

( ) ( | ) ( )
t

d f
s

P t P t s s P s
=

= −∑  (5.7)  

5.2.4 Comparison with VISSIM 

The analytical model presented in the previous section has the ability to describe the 
variability of travel times (travel time distribution) given the known traffic conditions 
(e.g., traffic demand, traffic control). One may question whether this model is able to 
represent the reality or not. In this section, the first validation was conducted by 
comparing the results from the analytical model with those from the VISSIM simulation 
model.  

A single-lane link of 600m with one fixed time controlled intersection was modelled in 
VISSIM. Travel times for the complete link were recorded in VISSIM. The cycle time is 
60s and effective green time is 24s. The number of simulation runs is 300 and the 
evaluation time for each simulation 1200s (20cycles). Two scenarios were chosen: 

Scenario 1: The input flow is 720veh/h. The degree of saturation is about 0.833; 

Scenario 2: The input flow is 807veh/h. The degree of saturation is about 0.917. 

The free flow travel times were also recorded by letting vehicles travel through the link 
without interruption. The mean free flow travel time and the standard deviation were 
estimated based on the recorded data. A normal distribution was used as an approximation 
of the free flow travel time distribution in this study. Figure 5.2 compares the link travel 
time distributions derived from the proposed model and those from the VISSIM 
simulation model. The link travel time distributions derived from the analytical model can 
well represent those from the VISSIM simulation model for both scenarios. This can be 
confirmed by the Kolmogorov-Smirnov test (α=5%) results as shown in Figure 5.3. The 
hypothesis that simulated travel times come from the same distribution as the model 
predicted is not violated with the sample size of 500.   
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      Figure 5.2: Comparison of the link travel time distribution between the analytical 
model and VISSIM simulation model 

   

 

Figure 5.3: Kolmogorov-Smirnov test 

5.2.5 Comparison with field data 

Test area 

In the previous subsection, travel time distributions derived from the proposed model are 
compared with those from the VISSIM simulation data. In this section, field data were 
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collected in Changsha, a Chinese city in Hunan Province. More than 5000 taxis equipped 
with GPS devices are used as probe vehicles travelling in the urban road network. Every 
30s, positions, speeds and time stamps are recorded and sent to the monitoring centre. As 
discussed in chapter 3, the Neural Network model can provide good estimation of 
complete link travel times from GPS data. However, due to the lack of ground-truth travel 
time data, it is infeasible to apply the NN model in this case. Instead, complete travel 
times were estimated by applying interpolation with speed and time stamp information 
when taxis pass before and after intersections for each complete link. More detailed 
information can be found in Appendix F. Two links with signalized intersections indicated 
by arrows along Shaoshan Road were chosen as the test area shown in Figure 5.4. 

 

Figure 5.4：：：：The test road in Changsha city 

Data and parameters 

Travel times collected by GPS probe vehicles between 10:00 AM and 11:00AM on 15th, 
May 2010 are used for analysis and comparison. Table 5.1 indicates parameters of each 
link and intersection as well as the number of field travel time observations for each link. 
The average free flow speeds are estimated as the median speeds from GPS data after 
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removing zero speed, which are 23km/h, 25km/h and 24km/h for link 13-11, 11-8 and 8-3, 
respectively. The saturation flow rate for each intersection was estimated based on 
observations. From the analysis of the saturation flow for different lanes and intersections, 
the average saturation flow is about 1550veh/h with a standard deviation of 150veh/h. 
Therefore, the saturation flow rate was determined by minimizing the error between the 
model predicted travel time distribution with the field GPS travel time distribution using 
the step-wise method.  

Table 5.1: Parameters of links and intersections 

Link Link length(m)
Average

infow(veh/h/lane)
Average free flow
travel time(min)

Number of field travel
time observations

 13-11 1200 500 3 104
 11-8 700 350 1.7 145
 8-3 600 340 1.5 84

11 200 68 1550
8 190 53 1580
3 190 50 1600

Saturation
flow(veh/h/lane)

Intersection Average cycle
time(s)

Effective green
time(s)

 

Results 

Figure 5.5 and Figure 5.6 illustrate the travel time distributions from GPS probe vehicle 
data and from the analytical model on link 13-11, link 11-8 and link 8-3 during periods 
10:00AM-10:30AM and 10:30AM-11:00AM, respectively. Travel time distributions from 
the proposed model can represent the field travel time distributions reasonably well. 
However, middle range of travel times and higher travel times are more frequently 
observed in field GPS data than the model predicts, especially for link 11-8. This 
discrepancy probably due to the fact that in the test road, vehicles turning from cross 
streets can cause extra delay to the through-going vehicles on link 11-8 as can be seen in 
Figure 5.4, while the proposed model does not consider the effect of turning movements 
from side streets between two signalized intersections. From the Kolmogorov-Smirnov 
test as shown in Figure 5.5 (b) (d) (f) and Figure 5.6 (b) (d) (f), even with small GPS 
sample data, the hypothesis of a same distribution between the model and field data cannot 
be rejected except link 11-8 which has larger discrepancy between the model and 
observations during period 10:00AM-10:30AM.  
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Figure 5.5: Comparison between travel time distributions from GPS probe vehicle 
data and those derived from the proposed model on link 13-11, link 11-8 and link 8-3, 
respectively (10:00 AM-10:30 AM). 
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Figure 5.6: Comparison between travel time distributions from GPS probe vehicle 
data and those derived from the proposed model on link 13-11, link 11-8 and link 8-3, 
respectively (10:30 AM-11:00 AM). 
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5.3  Travel time distribution for an urban corridor 

As already discussed, the delay vehicles experience plays a main role in the total travel 
time. The situation becomes even more complicated for an urban corridor with multiple 
intersections. The way how these intersections are coordinated has a big influence on the 
final delay distribution. In this section, a delay distribution model for an urban corridor is 
developed. By combining the delay distribution with the free flow travel time distribution, 
the link travel time distribution was derived. 

5.3.1 Basic notations and assumptions 

The delay distribution model for an isolated intersection has been discussed in chapter 4. 
In order to derive the delay distribution for an urban trip with a group of signals, we limit 
ourselves by the following conditions: 

1) Two fixed-time signalized intersections are considered in a single trip. The saturation 
flow rate is the same for both intersections. 

2) The acceleration and deceleration effects are not explicitly considered. The concepts of 
effective green and effective red are used instead. 

3) The vehicle arrivals at the first intersection follow the Poisson distribution. The 
average arrival rate is assumed to be constant during the evaluation period;  

4) The arrival times of vehicles are uniformly distributed; Departures are uniformly 
distributed at the saturation flow rate s when there is a queue and at the arrival rate q 
after the queue has disappeared.  

5) Platoon dispersion is not considered between two adjacent intersections. 

6) The mid-link delay caused by bus manoeuvres at bus stops and vehicles’ parking etc. 
along the roadside is not considered. 

In chapter 4, the sensitivity of a similar model for different arrival distributions is analysed 
and it has shown that the condition 3 is not essential. The assumption 4 can be relaxed to a 
more general case that departures from the upstream intersection within a cycle time is a 
continuous time-dependent distribution as discussed in (Viti et al., 2009). Here we 
consider departures are uniformly distributed for the convenience of modelling.  As for 
fixed-time control, the coordination scheme between two intersections has a big influence 
on the delay vehicles experience when passing these two intersections. Figure 5.7 (a) and 
(b) shows different offset settings for two fixed-time controlled intersections. For the 
convenience of modelling, we assume that both intersections have the same cycle time τC, 
effective green time τg and red time τr. These assumptions can be relaxed to different 
effective green times between consecutive intersections. The derivations in the following 
sections are all based on the assumption of the same cycle time and effective green time 
between two consecutive intersections. The offset τoff between two intersections is defined 
as: 
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2 1off t tτ = −  (5.8)  

where t1 is the beginning of effective green time at the upstream intersection and t2 is the 
beginning of effective green time at the downstream intersection. The link length between 
the two intersections is L; the free flow speed is uf.  Then the average free flow link travel 
time is:  

f
f

L
TT

u
=  (5.9)  

If two intersections are well coordinated, there is no mismatch between these two 
intersections. In the case that two intersections are not well coordinated, the mismatch of 
green time τm as illustrated in Figure 5.7 (a) (b) between the upstream intersection and the 
downstream intersection can be derived as:  

m offτ τ τ= −  (5.10)  

Two types of mismatch can be found in reality as shown in Figure 5.7. 

1) Mismatch 1, early green: As illustrated in Figure 5.7 (a), the start of the green phase 
at the downstream intersection is too early such that part of the green time is not 
utilized by the platoon. Hence, the mismatch between the two intersections is positive : 

                                                     0m offτ τ τ= − >  

Since the mismatch time is only utilized by the remaining queue from the previous cycle 
not by the vehicles departing from the upstream intersection right after the traffic light 
turns to green. The effective green time of the downstream intersection when vehicles can 
pass without delay is given by: 

g g mτ τ τ′ = −  (5.11)  

2) Mismatch 2, late green: As illustrated in Figure 5.7 (b), the start of the green phase at 
the downstream intersection is too late so that vehicles departing directly after the start 
of the green time from the upstream intersection need to wait for the red time at the 
downstream intersection. Hence, the mismatch between the two intersections is 
negative: 

                                                      0m offτ τ τ= − <  
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Figure 5.7: Offsets at adjacent intersections 

5.3.2 Delay at two adjacent intersections 

As discussed in the previous section, there are two types of mismatch (early green and late 
green) between the two fixed-time controlled intersections. In this section, the delay 
vehicles experience when traversing the two consecutive intersections is analysed and 
discussed according these two types of mismatch. 
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Mismatch 1, early green 

(1) When the upstream intersection is undersaturated 

Figure 5.8 illustrates the delay that vehicles experience passing two signalized 
intersections. We assume that there is no oversaturation (filtered by the upstream 
intersection) at the downstream intersection. Depending on the arrival moment at both 
intersections, the initial overflow queue at the upstream intersection and offsets between 
two intersections, delay vehicles experience can be categorized into three cases: 

Case 1: Figure 5.8 (a) 

As shown in Figure 5.8 (a), vehicles leaving from the upstream intersection at time t1 can 
pass the downstream intersection without delay. Vehicles departing from the first 
intersection after t1 +τg′ have to wait at the second intersection. The arrivals are first in a 
dense platoon determined by the saturation flow and after the saturated green time, the 
flow is determined by the arrival rate. When the vehicle arrives at the beginning of the red 
time t0 at the upstream intersection, delay equals to the red time plus the time to release the 
initial overflow queue at the upstream intersection plus the arriving vehicle itself and 
decreases linearly until zero at the saturated green time which is given by: 

0

0

1

1

r

sat

n

st t
q

s

τ ++
= +

−
 (5.12)  

Where τr is the red time; n0 is the initial queue; s is the saturation flow rate and q is the 
arriving flow rate.  

Vehicles arriving at the upstream intersection experience zero delay after tsat up till tf =
 t0+τr+τg′as shown in Figure 5.8 (a) and after tf, vehicles have to wait for the red time at 
the downstream intersection. The delay as a function of arrival time at the stop line of the 
upstream intersection can be determined as:  

0
0 0

0

1
(1 )( )

( ) 0

(1 )( )

r sat

sat f

r f f

n q
t t t t t

s s
W t n t t t

q
t t t t

s

τ

τ

+ + − − − ≤ ≤


= < ≤

 − − − >


 (5.13)  

Case 2: Figure 5.8 (b) 

As shown in Figure 5.8 (b), when the initial overflow queue becomes larger such that 
vehicles arriving the upstream intersection at time th before the end of the saturated green 
time tsat have to wait for the red time at the downstream intersection. The moment th is 
given by: 
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0 0( ) 1h gn q t t sτ ′+ − + =  

i.e. 0
0

1g
h

s n
t t

q

τ ′ − −
= +  (5.14)  

Vehicles arriving before th only have delay at the upstream intersection and after th, 
vehicles need to wait at the downstream intersection. For this case, delay as a function of 
arrival time at the stop line of the upstream intersection can be calculated as: 

0
0

0
0

0

1
(1 )( ),

( )
1

2 (1 )( ),

r h

r h

n q
t t t t

s sW t n
n q

t t t t
s s

τ

τ

+ + − − − ≤=  + + − − − >
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 (5.15)  

Case 3: Figure 5.8 (c) 

As shown in Figure 5.8 (c), if the initial overflow queue departing from the upstream 

intersection is so large that it can’t leave the downstream intersection completely within the 
green time τg′. For this case, the vehicle arriving right after the start of the red time at the 
upstream intersection needs to wait for the red time at the downstream intersection 
because of the long overflow queue which is given by: 

0

0

1

1
g

g

n s

n s

τ
τ

′+ ≥
′≥ −

 

The delay vehicles experience can be calculated as: 

( ) 0
0 0

1
2 (1 )( )r

n q
W t n t t

s s
τ += + − − −  (5.16)  

 



Chapter 5. Model development for urban travel time distribution  97 

 

                
                      

/ fL u

offτ
gτ

gτ ′

0t satt ft
0 Ct τ+

s
q

0 1
r

n

s
τ ++

rτ

1t

2t

 

(a) 

/ fL u

offτ gτ

gτ ′

0t
0 Ct τ+

s
q

sattht

0 1
r

n

s
τ ++

rτ

1t

2t

 

(b) 



98  Modelling Urban Travel Times                                                            

 

/ fL u

offτ
gτ

gτ ′

0t
0 Ct τ+

s
q

0 1
2 r

n

s
τ ++

mτ

1t

2t

satt
 

(c) 

Figure 5.8: Delay as a function of arrival time for two adjacent intersections in the 
undersaturated condition (Mismatch 1, early green) 

(2) When the upstream intersection is oversaturated 

When the initial overflow queue at the upstream intersection is larger than a certain 
threshold, the green phase becomes oversaturated. The question whether an arriving 
vehicle has to wait for a next cycle to depart, depends on the number of vehicles that 
arrived before this one in the cycle plus the initial overflow queue. As soon as this 
quantity exceeds the number of vehicles that can depart in the (remaining) green time, the 
vehicle has to wait for a following cycle or even more cycles at the upstream intersection. 
On the other hand, whether the vehicle departing from the upstream intersection needs to 
wait for the red time at the downstream intersection depends on the number of vehicles in 
front of this vehicle departing from the upstream intersection in the same cycle. If this 
quantity exceeds the number of vehicles that can depart from the downstream intersection 
in the effective green time, the vehicle needs to wait for the red time again at the 
downstream intersection. The general expressions can be derived as: 

( )
0 0 0 0 0

0 0 0

0

0 0 0
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    + + − + + − + ′+ + − − − + − + − <    
       = 
 + + − + + + − − − 
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(5.17)  
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The floor     is used to indicate the integer value of the expression inside the brackets. 

Mismatch 2, late green 

(1) When the upstream intersection is undersaturated 

Vehicles leaving from the first intersection after t1 (the beginning of the green time) have 
to wait at the second intersection for a period of τm as shown in Figure 5.9. The arrivals are 
first in a dense platoon determined by the saturation flow and after the saturated green 
time, the flow is determined by the arrival rate. When vehicles arrive before tsat, the delay 
at the first and second intersection is determined by: 

( ) 0
0 0

1
(1 )( ) ,r m sat

n q
W t n t t t t

s s
τ τ+= + − − − + <  (5.18)  

After tsat, the delay can be calculated as: 

( )0

0
0

{ (1 )( ),0}

1
{ (1 )( ),0},

m sat
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q
W t n Max t t

s
n q

Max t t t t
s s

τ

τ τ

= − − −

+= + + − − − ≥
 (5.19)  

By combining Equations (5.18) and (5.19), the delay as a function of arrival time at the 
upstream intersection can be derived as:  

( ) 0
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1
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n q
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τ τ += + + − − −  (5.20)  
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Figure 5.9: Delay as a function of arrival time for two adjacent intersections in the 
undersaturated condition (Mismatch 2, late green) 

(2) When the upstream intersection is oversaturated 

In oversaturated conditions, the arriving vehicle needs to wait for extra red times due to 
the large initial overflow queue and the high traffic demand. Therefore, the delay as the 
function of arrival time can be deduced as: 

( ) 0 0 0
0 0

1 ( ) 1
{ } (1 )( )r m r

g

n n q t t q
W t n t t

s s s
τ τ τ

τ
 + + − += + + + − − − 
  

 (5.21)  

5.3.3 Travel time distribution for two adjacent intersections 

The delay as function of the arrival time at the upstream intersection for two types of 
mismatch both in the undersaturated condition and oversaturated condition has been 
discussed in the previous subsection. In this subsection, the travel time distribution model 
for two consecutive fixed-time controlled intersections, taking the stochastic overflow 
queue in the first intersection and different mismatches between these two intersections 
into account, is developed. 
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Delay distribution with an initial deterministic qu eue 

(1) Mismatch 1: early green 

The delay as a function of arrival time at the upstream intersection both for the 
undersaturated condition and oversaturated condition can be derived according to 
Equations (5.15), (5.17), (5.18) and (5.19). As for the oversaturated condition, the number 
of extra red times that a vehicle arriving at time t needs to wait at the upstream intersection 
can be directly derived from Equation (5.19). The more generic expression is: 

0 0( ) 1

g

q t t n
N

sτ
 − + +=  
  

 (5.22)  

From Equation (5.19), we can see that when a vehicle arriving within the time interval of 
one cycle time, the minimum number of extra red times this vehicle needs to wait at the 
upstream intersection can be derived as: 

0
min

1

g

n
N

sτ
 +=  
  

 (5.23)  

And the maximum number of extra red times is given by:  

0
max

1C

g

q n
N

s

τ
τ

 + +=  
  

 (5.24)  

If the value within └ ┘ is an integer, the maximum delay will be experienced by the 
vehicle arriving at the end of the cycle. Otherwise, the maximum delay will appear before 
the end of the cycle (t < t0 + τC) in oversaturated conditions. 

When vehicles arrive at the downstream intersection, there are two cases: 

- Passing the downstream intersection without delay; 

- Passing the downstream intersection with a certain delay. 

Whether vehicles need to wait for the red time at the downstream intersection depends on 
whether the number of vehicles in front of this vehicle plus the vehicle itself can be 
released within the green time τg′ at the downstream intersection. 

1) If 0 0
0 0

( ) 1
0 ( ) 1 g g

g

n q t t
n q t t s s

s
τ τ

τ
 + − + ′≤ + − + − < 
  

, vehicles experience no delay at the  

downstream intersection. Vehicles just experience delays at the upstream intersection. 
Given the initial moment of the calculation t0, in our approach, it is the beginning of the 
red time. For this case, the transition moments (discontinuity of the delay as function of tn) 
appear when:
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0 0( ) 1 0N gn q t t Nsτ+ − + − =
 

Each transition moment can be derived as:  
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 (5.25)  

2) If 0 0
0 0
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vehicles experience delays at both the 

upstream and downstream intersections, the transition moments appear when:
 

0 0( ) 1N g gn q t t Ns sτ τ′ ′+ − + − =
 

Each transition moment can be expressed as: 

0
0

1g g
N

Ns s n
t t

q

τ τ ′+ − −
′ = +  (5.26)  

An example is shown in Figure 5.10. The ‘star’ points are the transition moments when 
vehicles arriving at the stop line of the upstream intersection need to wait for another red 
phase at the upstream intersection. The dots are transition moments when vehicles arrive 
at the stop line of the upstream intersection will experience an extra delay of ‘red phase’ at 
the downstream intersection. The star transition moments lie on the decreasing trend line 
starting from the dot transition moments in case two intersections have the same red time. 
However, if the upstream intersection and the downstream intersection have different red 
times, the star transition moments can be above or below the trend line. Figure 5.11 
illustrates trajectories of vehicles passing two intersections. The bold solid lines indicate 
trajectories of vehicles arriving at the ‘transition moments’ which are ‘dots’ and ‘stars’ as 
shown in Figure 5.10. In the case of a vertical queue, the ‘transition arrival moments’t’1, t1 
are extrapolated and the dotted lines are virtual trajectories of vehicles arriving at the stop 
line of the upstream intersection. 
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Figure 5.10: Delay as a function of arrival time (at the stop line of the upstream 
intersection in the case of a vertical queue) in the oversaturated condition with the 
same red time for both intersections (Mismatch 1, early green) 

1t ′  

Figure 5.11: Trajectories of vehicles passing two intersections (Mismatch 1, early 
green) 
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(2) Mismatch 2: late green 

In case of mismatch 2, vehicles departing from the upstream intersection right after the 
traffic light turns to green will experience extra delay due to the late start of green phase at 
the downstream intersection. The transition moments can be derived from Equation (5.21) 
as: 

0 min

0
0 min max

1N g

t N N

t Ns n
t N N N

q

τ
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= − − + < ≤


 (5.27)  

Nmin, Nmax are the minimum number of extra red time and maximum number of extra red 
time that vehicles need to wait at the upstream intersection, respectively, which are given 
by Equations(5.23) and (5.24). 

Figure 5.12 illustrates the delay as a function of arrival time at the upstream intersection 
(In case of a vertical queue, the arrival time refers to the arrival moment at the stop line) in 
the oversaturation condition. The ‘star’ points are the transition moments when vehicles 
arriving at the stop line of the upstream intersection need to wait for an extra red phase at 
the upstream intersection. Trajectories of vehicles passing two intersections and the 
‘transition arrival moment’ t1 at the stop line of the upstream intersection are shown in 
Figure 5.13. The dotted line is the virtual trajectory of the vehicle arriving at the stop line 
of the upstream intersection in the case of a vertical queue. 
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Figure 5.12: Delay as a function of arrival time for two adjacent intersections in the 
oversaturated condition with the same red time for both intersections (Mismatch 2, 
late green) 
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Figure 5.13: Trajectories of vehicles passing two intersections with mismatch 2   (The 
bold solid line indicates the trajectory of the vehicle arriving at the ‘transition 
moment’ t1 as shown in figure 5.12) 

The influence of shockwave on delay calculation is discussed in Appendix D and it shows 
that the shock wave does not have influence on the final delay calculation as long as there 
is no spill back. According to Equations (5.17) and (5.21), delay at these transition 
moments can be calculated. Due to the complexity, the detailed deduction process of 
delays for different transition moments under all the cases described in previous sections 
is not discussed in this chapter but can be found in Appendix C. The general expressions 
of delay for these transition moments and the initial moment are given according to two 
types of mismatch. 

Mismatch 1: 

(1) If 0
0
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 + ′+ − < 
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 & 
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N s s n

q

τ τ
τ

′+ − −
> :The first vehicle arriving  

right after the beginning of the red time can leave the downstream without delay and 
the last transition moment according to Equation (5.26) is larger than the cycle time 
(shown in Figure 5.10 a), then delays at the transition moments are given by the 
following equations: 
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(2) If  0
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≤ : The first vehicle arriving  

right after the beginning of the red time can leave the downstream without delay and 
the last transition moment according to Equation (5.26) is within the cycle time 
(shown in Figure 5.10 b), then delays at the transition moments are given by the 
Equations (5.29a) and (5.29 b) as:  
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is so large that the first vehicle arriving right after the start of the red time at the 
upstream intersection has to wait for the red time at the downstream intersection plus 
the condition that the last transition moment according to Equation (5.26) is larger 
than the cycle time (shown in Figure 5.10 a). For this case, then delays at the 
transition moments are calculated as: 
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so large that the first vehicle arriving right after the start of the red time at the 
upstream intersection has to wait for the red time at the downstream intersection plus 
the condition that the last transition moment according to Equation (5.26) is within the 
cycle time (shown in Figure 5.10b). The delays at the transition moments for this case 
are given by: 
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Mismatch 2:
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As shown in chapter 4, for an isolated intersection, the delay probability distribution in the 
undersaturated condition consists of a Dirac delta function and a box shaped function. 
While for the oversaturated condition, the probability distribution is the sum of some box 
shaped functions that may overlap. For the case of two adjacent intersections, once the 
delay at transition points is determined, by inverse mapping the delay to the arrival time 
and taking the derivative, the delay distribution can be derived similarly as shown in 
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Figure 5.14 (a) (b). The probability distribution function for both the undersaturated and 
oversaturated condition is given by: 

0 0 2 1 0 2 2 0( ) ( ) ( ) ( , ( ), ( ))d N N
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P W n n W B W W n W nα δ β + += +∑  (5.33)  

Where α andβ are model parameters with  

0

0

( 1)
1

max( ,0)
(1 )

r
g

C
C

n
s n s

qq
s

ττ
α

τ τ

++′ − −
= −

−
,

1

(1 )C

q
s

β
τ

=
−

,  

The definition of δ ( W ) and B ( W, W2N+1, W2N+2 ) are given by Equations (4.4) and (4.14)  
in chapter 4, respectively. W2N+1, W2N+2   are delays at transition moments, which are given 

 by Equations (5.28) - (5.32). 
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Figure 5.14: Delay probability distribution and cumulative distribution for both 
undersaturated and oversaturated conditions 
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Delay distribution with a stochastic overflow queue 

The delay probability distribution function derived in the previous subsection is based on 
the fixed initial queue that is present at the beginning of the green phase at the upstream 
(initial) intersection. If the initial queue is stochastic with a certain probability distribution, 
the expected probability distribution of the delay Pd (W) can be calculated as a weighted 
sum of probability functions: 

( )
0

0 0
0

( | ) ( )d d
n

P W P W n P n
∞

=

=∑  (5.34)  

where 0( )P n is the probability of the overflow queue n0. 

5.3.4 Trip travel time distribution  

In section 5.2.3, the single link travel time distribution has been derived by combining the 
free flow travel time with the delay distribution. However, for an urban trip with two 
intersections or more, the delay is dependent on the free flow travel time. Fast drivers may 
encounter green waves along the trip while slow drivers may be stopped by the red light. 
The delay distributions for these two types of drivers are different. Furthermore, variable 
free flow travel time enables vehicles to take over each other. Therefore, for a given travel 
time t (t = w + s), the probability of a certain delay w can be formulated as:        

( ), ( , | )d dP w s s P t s s s′ ′= −  (5.35)  

In this case, the trip travel time distribution P(t) (t = w + s) can be calculated as:  

0
( ) ( , | ) ( )

t

d fP t P t s s s P s ds′= −∫  (5.36)  

Where P’d(w, s | s) denotes the probability of a certain delay w given a certain free flow 
travel time s and it takes into account that slow vehicles are taken over by faster ones so 
that slow vehicles join a larger queue at the downstream intersection; Pf (s) denotes the 
probability of a certain free flow travel time s. If the variation of the free flow speed is 
very small such that vehicles cannot take over each other or in case of one lane traffic, 
Equation (5.36) can be approximated by the following equation: 

0
( ) ( | ) ( )

t

d fP t P t s s P s ds≈ −∫  (5.37)  

Pd (w|s) (t=w+s) denotes the probability of a certain delay w given a certain free flow 
travel time s with assumptions that vehicles cannot take over each other.  

Numerical example: Trip travel time distribution wi th two intersections 

In order to see how the proposed trip travel time distribution model works under different 
traffic conditions, a hypothetical corridor of 1200m with two fixed time controlled 
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intersections is used for analysis. The distance between two intersections is 500m. The 
cycle time for both the upstream intersection and the downstream intersection is 60s with 
the effective green time of 24s. The saturation flow rate is assumed to be 1800veh/h. The 
total evaluation period is 600s (10 cycles). The average free flow speed is assumed to be 
60km/h. Therefore, the average free flow travel time between two intersections is about 
30s. Two different traffic conditions, for instance, undersaturation (x=0.85) and 
oversaturation (x=1.2), are investigated under different offsets between two intersections: 

� Mismatch=0s: The offset equals to the average free flow travel time between two 
intersections. The average mismatch between two intersections is zero. In this case, 
two intersections are well coordinated. Most vehicles experience zero delay at the 
downstream intersection. 

� Mismatch=10s: The average mismatch of traffic signals between two intersections is 
about 10 seconds. Some vehicles will experience delay at the downstream 
intersection.  

� Mismatch=20s: The average mismatch of traffic signals between two intersections is 
about 20 seconds. Two intersections are badly coordinated.  

Figure 5.15 and Figure 5.16 compare the travel time distributions for different degrees of 
saturation of mismatch 1 and mismatch 2, respectively. The travel time distributions are 
derived at the 10th cycle. For the case of mismatch 1 as shown in Figure 5.15, as the level 
of mismatch increases (from well-coordinated to badly coordinated), the delay distribution 
for the low degree of saturation (x=0.85) changes significantly.  When two intersections 
are well coordinated, the travel time distribution is skewed to low values. However, the 
distribution tends to be skewed towards high values as the level of mismatch increases and 
the whole distribution shifts more to the high travel times. This indicates that the 
coordination between two intersections has a large influence on the travel time distribution 
in low degree of saturation. As for the high degree of saturation (e.g. 1.2), the travel time 
distribution shifts from the left to the right which implies that more and more vehicles will 
experience longer travel times. The similar phenomenon can be observed for the type of 
mismatch 2 as shown in Figure 5.16. When the level of mismatch increases, the travel 
time distribution keeps the similar shape and shifts towards higher values. 
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 Figure 5.15: Trip travel time distribution with di fferent levels of Mismatch 1 in the 
undersaturated condition (left) and the oversaturated condition (right) (x is the 
degree of saturation) calculated with the analytic model 

 

Figure 5.16: Trip travel time distribution with dif ferent levels of Mismatch 2 in the 
undersaturated condition (left) and the oversaturated condition (right) (x is the 
degree of saturation) 

5.3.5 Comparison with VISSIM simulation  

An urban corridor composed of two fixed-time controlled intersections was built in 
VISSIM. The total length of the corridor is about 1200m and the desired speed is 60km/h. 
The cycle time and effective green time for the through-going approach are the same for 
both intersections with 60s and 24s, respectively. The inflow is 800veh/h/lane. The 
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simulation period is 1200s and a total of 300 realizations were simulated for each level of 
mismatch between two intersections (Four levels of mismatch: 0s, 5s, 15s and 20s). Travel 
times were recorded for each simulation run. Figure 5.17 and Figure 5.19 compare travel 
time distributions from the analytical model and those from the VISSIM simulation under 
the undersaturated condition (x = 0.917). As can be seen from these figures, the travel 
time distributions from the analytical model can well represent those from the simulation 
model under different levels of mismatch except that there is small discrepancy in low 
travel times and high travel times. This discrepancy could be the result of both the variable 
free flow travel time in VISSIM and stochastic arrivals and departures at the upstream 
intersection. Different free flow travel times modify vehicles’ arrival moments at the 
downstream intersection. For instance, in case of early green mismatch, the first vehicle 
departing from the upstream intersection with smaller free flow travel time can decrease 
the level of mismatch for this vehicle. As a consequence, the vehicle experiences smaller 
delay compared with the delay estimated by assuming the average free flow travel time. 
The variation of inflow (stochastic arrivals) and outflow (stochastic departures) for each 
cycle at the upstream intersection influences the delay both at the upstream intersection 
and the downstream intersection. The discrepancy in the high travel times could be caused 
by the stochastic overflow queues due to stochastic arrivals and departures at the upstream 
intersection. Nevertheless, from the Kolmogorov-Smirnov test as illustrated in Figure 5.18 
(Mismatch1) and Figure 5.20 (Mismatch 2), the hypothesis that the sample travel time 
distribution generated in VISSIM and the travel time distribution from proposed model are 
drawn from the same distribution holds for different levels of mismatch and different 
types of mismatch.  
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Figure 5.17: Trip travel time distributions derived from the analytical model and 
VISSIM simulation data with different level of mismatch 1 (q=800veh/h/lane, 
L=500m) 

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Travel time(s)
(a) offset=30s (average mismtach=0s)

P
ro

ba
bi

lit
y

 

 

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Travel time(s)
(b) offset=25s (average mismatch=5s)

P
ro

ba
bi

lit
y

 

 

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Travel time(s)
(c) offset=15s( average mismatch=15s)

P
ro

ba
bi

lit
y

 

 

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Travel time(s)
(d) offset=10s (average mismatch=20s)

P
ro

ba
bi

lit
y

 

 

VISSIM Simulation

Model

VISSIM Simulation

Model

VISSIM Simulation

Model VISSIM Simulation

Model



114  Modelling Urban Travel Times                                                            

 

 

Figure 5.18: Kolmogorov-Smirnov test for different level of mismatch 1 
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Figure 5.19: Trip travel time distributions derived from the analytical model and 
VISSIM simulation data with different levels of mismatch 2 (q = 800veh/h/lane, 
L = 500m) 
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Figure 5.20: Kolmogorov-Smirnov test for different level of mismatch 2 
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time prediction. Without a solid method to estimate the variability of travel times, the 
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times. 
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In this chapter, a link travel time distribution model is proposed. The comparison of the 
results from the proposed model with those from the VISSIM simulation model shows that 
the link travel time distribution based on the proposed model can well represent the one 
from the simulation model. The comparison with field GPS data indicates that model 
estimated link travel time distributions are not significantly different from field travel time 
distributions, though middle range and higher travel times are more frequently observed 
with GPS data than the model predicts for link 11-8 (Figure 5.5 (c)).  

The extension of the link travel time distribution to the trip travel time distribution is also 
discussed. An analytical model of travel time distribution for an urban trip with two 
intersections taking the stochastic properties of traffic flow and signal coordination into 
account was for the first time proposed in this chapter. The model assumes that two 
intersections are fixed-time controlled with a certain offset. Different offset settings (well-
coordinated, different levels of mismatch) are investigated under different traffic 
conditions. Results show that for the case of mismatch 1 - early green -, the shape of the 
travel time distribution keeps on changing and shifts towards high values when the 
mismatch level of two intersections increases (from well-coordinated to badly 
coordinated). This implies that the way two intersections are coordinated has big influence 
on the travel time distribution, especially in the case of undersaturated intersections. While 
in oversaturated conditions, the travel time distribution spreads over a big range and shifts 
to the high values when the level of mismatch increases. The comparison with VISSIM 
simulation shows that the trip travel time distributions derived from the analytical model 
can well represent those from VISSIM simulation except there is small discrepancy in low 
travel times and high travel times. The discrepancy is probably due to both the variable 
free flow speed in VISSIM and variable demand (stochastic arrivals) at the upstream 
intersection. 

The proposed model was only validated in the undersaturated condition. As for the 
oversaturated condition, one difficulty is to estimate the overflow queue distribution at the 
upstream (initial) intersection. One alternative way is to estimate the overflow queue 
distribution from traffic measures (e.g., measured delays or travel times), which is 
discussed in chapter 6. Furthermore, this model only considers an urban trip with two 
intersections. In reality, there can be more intersections within a single trip. The travel 
time distribution of several intersections can vary depending on the coordination of traffic 
signals and the effective red time. Finally, intersections in a string often have different 
cycle green splits. This has not been taken into account in this study, but can rather easily 
be accounted for in a future, more comprehensive, model. 
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Chapter 6 

Urban travel time distribution 
estimation based on traffic 
measurements 

6.1 Introduction 

An analytical model of delay distribution for an urban trip with two fixed-time controlled 
intersections has been developed in chapter 5. The difficulty in applying this model 
remains the question how to estimate parameters in the model, especially the overflow 
queue which is a rather stochastic quantity.  In the proposed delay distribution model, the 
overflow queue distribution at the upstream intersection is estimated in an analytical way 
by applying a Markov chain model with the assumption of a certain arrival distribution 
(e.g. Poisson distribution) within a certain time period. However, when it comes to the 
oversaturated condition, the overflow queue distribution has a strong relation with the 
initial condition and it is rather time dependent and growing over time.  

The calibration of parameters in the delay distribution model both in the undersaturated 
condition and oversaturated condition is an important aspect in applying this model for 
real time estimation or prediction. On one hand, the calibration of model parameters 
requires a certain amount of traffic data (e.g., travel times, traffic volumes and signal 
timings). As the development of traffic monitoring techniques, more and more traffic data 
is becoming available now. Travel times can be measured by different means such as 
Automatic Number Plate Recognition (ANPR) cameras (Bertini et al., 2005), GPS 
equipped vehicles (Hoeschen et al., 2005) and Bluetooth devices (Yegor Malinovskiy et 
al., 2010). On the other hand, using and fusing all the available data for parameter 
estimation can be quite computation intensive. Therefore, we have to choose a sample of 
the available data. We apply two sampling methods - Random sampling (RS) and Latin 
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Hypercube sampling (LHS) - to obtain delay/travel time measurements of sample trips 
from all observations (observed travel times or delays). The LHS method is a more 
efficient way of sampling given that the population distribution is known (N. A. Wahanani 
et al., 2009). In this chapter, both Least squares and Maximum Likelihood are applied to 
perform the parameter estimation in section 6.2. The Genetic Algorithm is adopted to find 
the optimal parameter set both to minimize the square error function and maximize the 
likelihood function. Based on the estimated parameters, the delay distribution can be 
reconstructed. In section 6.3, the estimated delay distributions are compared with those 
from VISSIM simulation. Section 6.4 summarizes the contributions of this chapter. 

6.2 Parameter estimation methods for the delay 
distribution model 

6.2.1 Parameters in the delay distribution model 

The delay distribution models for an isolated intersection and an urban trip with two fixed 
controlled intersections have been developed in chapter 4 and 5, respectively. The 
proposed delay distribution model both for the undersaturated condition and the 
oversaturated condition has the formulation as: 
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P w n n w B w w n w nα δ β + +
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Where P(ni) is the overflow queue probability distribution; ( )wδ is the Dirac delta function 
which has been introduced in chapter 4 with the following properties: 

( ) 0, 0w if wδ = ≠     
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B(w, w2n-1, w2n) is a box function with the property: 
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w2n-1, w2n are delay boundaries determined by flow, overflow queue, signal timing (e.g., 
red phase, cycle time and coordination of intersections in case of an urban corridor) as 
discussed in chapter 4 and 5; α and β are model parameters following from the traffic 
state, e.g. the flow q, overflow queue ni , the red phase tr and cycle time τC with: 
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Among all the parameters in the delay distribution function, the overflow queue 
probability distribution is the most difficult parameter to be determined. In the analytical 
model, the overflow queue distribution is estimated using a Markov chain model by 
assuming a certain arrival distribution (e.g., Poisson arrivals) within a certain time period. 
In undersaturated conditions, the overflow queue distribution follows the equilibrium 
distribution after a certain number of cycles. The estimated delay distribution can 
represent the real delay distribution quite well. However, in oversaturated conditions, the 
overflow queue distribution is not only dependent on the initial condition but also evolves 
over time. There is no equilibrium state for the overflow queue distribution. In this case, it 
is difficult to estimate the delay distribution which can represent the real traffic situation. 
Therefore, a possible alternative way to be investigated is:  

- to estimate the overflow queue distribution from traffic measurements (delays), and  
- to reconstruct the delay distribution based on the estimated overflow queue 

distribution. 

6.2.2 Parameter estimation methods 

As can be seen from Equations (6.1) and (6.2), parameters in these two functions include α, 
β, the delay boundaries in the box function w2n+1 and w2n+2 and the overflow queue 
distribution P(ni). However, α, w2n+1 and w2n+2 are also function of the overflow queue ni. 
The question is whether it is possible to recognize the traffic state which in this case is the 
overflow queue distribution from the travel time (delay) distribution. Two parameter 
estimation methods, namely Least Squares (LS) and Maximum Likelihood (ML), are 
applied to perform the parameter estimation. The Least Squares (LS) and Maximum 
Likelihood (ML) are widely used for parameter estimation (Myung, 2003; Pollard, 2006; 
Roberts et al., 2003; Sharma et al., 2003). The idea behind maximum likelihood parameter 
estimation is to determine the parameters that maximize the probability (likelihood) of the 
sample data. From a statistical point of view, the method of maximum likelihood is 
considered to be generally more robust and yields estimators with good statistical 
properties. The least squares method is simpler and can be seen as a Maximum Likelihood 
method for normal distributed errors.  In other words, MLE methods are versatile and 
apply to most models and to different types of data. In order to estimate the parameters in 
the delay distribution functions, a maximum overflow queue is assumed before 
performing the parameter estimation. The overflow queue distribution is estimated based 
on the measurements, e.g., the measured delays (travel times), flows and cycle time.  

Least Square (LS) estimation 

The objective of the least square method is to adjust the parameters of a model function to 
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best fit a set of data and to characterize the statistical properties of estimates. Here, the 
model function is the delay probability function P(w) with parameters α, β, overflow 
queue probability p0, p1,…,pn and the data set is the measured delays with the probability 
distribution of Pm . Therefore, the objective function can be formulated as:  
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where m is the maximum number of delays and wm is the maximum delay; j is the number 
of vehicles in the overflow queue and n is the maximum overflow queue we assume and 
can be approximated based on the maximum delay; k is the number of extra red times that 
an arriving vehicle needs to wait;N is the maximum number of red times that the arriving 
vehicle needs to wait for given the overflow queue j; Pm is the measured delay distribution 
which in this case is obtained from the VISSIM simulation. As mentioned in the previous 
subsection, the parameter α is also a function of the overflow queue. Therefore, the 
parameter in the objective function to be estimated is the overflow queue distribution. 

Maximum Likelihood (ML) Estimation 

From the Bayesian point of view, the probability of a certain parameter set Ф given 
observed data D can be formulated as: 

( ) ( )
( | )

( )

P D P
P D

P D

Φ Φ
Φ =  (6.4)  

Where P(D|Ф) is the likelihood to observe D, given the parameter set Ф, P(Ф) is the prior 
distribution of parameter set Ф and P(D) is the probability to observe D which can be 
considered as the normalization factor.  

In order to maximize the posterior probability distribution P(Ф|D), one effective way is to 
maximize the likelihood function P(D|Ф) in Equation (6.4) given known probability 
distribution of data set P(D).  

In our case, the data set consists of measured delays (travel times) and the parameter set is 
α, β and the overflow queue distribution p0, p1,…, pn. For measured delays1 2, ,..., mw w w , 
the dependency among these delays is unlikely to be clear to us. Here we assume they are 
stochastically independent. The likelihood function can be formulated as: 
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where P(w1, w2,…, wm|α, β, p0, p1,…,pn) denotes the probability density function of 
measured delays w1, w2,…, wm given parameters α, β, p0, p1,…,pn. For a single delay wi, 
the probability can be calculated by the following function: 
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If we combine Equation (6.5) with Equation (6.6), the likelihood function can be rewritten 
as:  
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(6.7)  

In practice, it is more convenient to work with scaled logarithm of the likelihood function 
which is calculated as:  
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The objective function for minimization is formulized as: 
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The objective functions of Least Square estimation and Maximum Likelihood estimation 
are very complicated and highly nonlinear. Finding the optimal solution for the parameter 
estimation in an analytical way is not applicable. Therefore, the Genetic Algorithm (GA) 
(Dias et al., 2002; Whitley, 1994; Yao et al., 1994) is applied to find the optimal solutions 
for both methods. There are several advantages of applying GA method. First, GA can 
solve every optimization problem which can be described with the chromosome encoding; 
secondly, GA is able to solve multi-dimensional, non-differential, non-continuous, and 
even non-parametrical problems; Thirdly, GA is a heuristic method which has the ability 
to find a solution at least close to the global optimum. When applying GA for parameter 
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estimation in our case, the fitness functions are formulated based the LS and ML. The 
parameter that needs to be estimated is the overflow queue probability distribution. Based 
on the estimated overflow queue distribution, the delay distribution can be reconstructed 
using Equations ( 6.1 ) and ( 6.2 ). 

6.3 Experiment setup 

6.3.1 Scenarios 

In order to estimate the parameters in the delay distribution function, a microscopic 
simulation tool VISSIM was used to generate the ground truth data (e.g., delays or travel 
times). An urban corridor with two fixed time controlled intersections was modelled in 
VISSIM. The cycle time for both intersections is 60s and the effective green time is 24s. 
The link length between two intersections is about 500m. The free flow speed is 60km/h. 
The total evaluation period is 10 cycles (600s). Two different traffic conditions are 
considered: 

- Undersaturated condition: The input flow is 800veh/h and the degree of saturation is 
about 0.9. 

- Oversaturated condition: The input flow is 1050veh/h and the degree of saturation is 
about 1.2. The delay (travel time) measurement point is placed 300m upstream of the 
intersection such that the maximum overflow queue won’t reach the measurement 
point. 

As discussed in chapter 5, there are two types of mismatch (early green and late green) 
between two consecutive intersections. In our experiment, we mainly focus on Mismatch 
1(the case of early green). Nevertheless, the parameter estimation process can be applied 
to Mismatch 2 as well. Three levels of mismatch were chosen to be investigated: 

- Level 1 (Mismatch=0): Two intersections are well coordinated. There is no mismatch 
between two intersections; 

- Level 2 (Mismatch=5s): The mismatch of traffic signals between two intersections is 5 
seconds; 

- Level 3 (Mismatch=20s): Two intersections are badly coordinated. The mismatch of 
traffic signals between two intersections is 20 seconds.  

6.3.2 Simulation runs 

For each scenario, the number of simulation runs needs to be determined in order to obtain 
a sufficiently smooth distribution as the ground truth distribution. For each simulation run, 
all delays are recorded and the delay distribution can be derived. The required number of 
simulation runs depends on the variation of average delay among different simulation 
runs, the required accuracy and the reliability of the results. In order to estimate the 
variation of the average delay, a fixed 100 simulation runs was chosen in a pilot 
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experiment with an average demand of 800veh/h (x=0.9). The minimum number of 
simulation runs can be determined by the following equation: 
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 (6.10)  

Where n is the minimum number of simulation runs required; t1-α/2 is the critical value of 
the t-distribution with the confidence level of 1-α (in our experiment, 95% confidence 
level was chosen); σd is the standard deviation of delays (We use the standard deviation of 
sample average delays from pilot simulation runs). εd is the accepted error(e.g., we chose 
εd=µd*5%, where µd  is the mean delay derived from the pilot simulation runs ).  

By applying Equation (6.10), the required minimum number of simulation runs for the 
undersaturated condition ( x = 0.9 ) and the oversaturated condition ( x = 1.2 ) are 185 and 
130, respectively. In order to get a sufficiently smooth delay distribution, the number of 
simulation runs was increased to 300.  

6.3.3 Sampling strategies for ground truth simulation data 

The number of simulation runs we applied is very large such that a smooth ground-truth 
delay distribution can be obtained. However, using all the data (delays) generated in 
VISSIM for parameter estimation will lead to the problem of time-consuming 
computations. Therefore, it is necessary to investigate whether parameters can be well 
estimated using sampled delays (travel times). In this paper, two sampling methods were 
applied to obtain the sample delays from the total number of delays generated in VISSIM: 
Random Sampling (RS) and Latin Hypercube Sampling (LHS).  

Random sampling (RS) 

In random sampling, each item or element of the population has an equal chance of being 
chosen at each draw. A sample is random if the method for obtaining the sample meets the 
criterion of randomness (each element having an equal chance at each draw). The actual 
composition of the sample itself does not determine whether or not it was a random 
sample. For instance, travel times recorded by GPS probe vehicles or Bluetooth devices 
are just random sample measurements since the total number of vehicle travel times is 
unknown. However, one should keep in mind that the final estimation results can be 
biased if the sample measurements cannot represent the population distribution.  

Latin Hypercube sampling (LHS) 

The LHS is a stratified-random procedure, provides an efficient way of sampling variables 
from their distributions. The basic idea is that the LHS involves sampling N values from 
the prescribed distribution of each of k variables X1, X2…, Xk . The cumulative distribution 
for each variable is divided into N equiprobable intervals. A value is selected randomly 
from each interval. The N values obtained for each variable are paired randomly with the 
other variables. Unlike simple random sampling, this method ensures a full coverage of 
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the range of each variable by maximally stratifying each marginal distribution (Helton et 
al., 2002).  

The total number of simulated delays is about 50000 in the undersaturated condition        
(x = 0.9) and 30000 in the oversaturated condition (x = 1.2). Table 6.1 indicates the 
sample percentages for parameter estimation in our experiment. 

Table 6.1: Sample percentages for parameter estimation 

Sample percentage(%) 0.50% 1% 5%
Number of samples 250 500 2500

Sample percentage(%) 0.50% 1% 5%
Number of samples 150 300 1500

Undersaturation (x=0.9), total measurements=50000

Oversaturation (x=1.2), total measurements=30000

  

6.3.4 Implementation of GA  

There are several issues need to be addressed when applying GA for optimization in our 
case. First of all, the optimization was done in Matlab which has the built-in software 
package of GA (Mathworks, 2008). Secondly, the performance of the GA depends on a 
number of factors such as population size, evaluation of fitness function, selection method, 
crossover method, mutation method, crossover rate and mutation rate. The population size 
determines the size of the population at each generation. The larger the population size is, 
the more points that the GA is able to search and therefore the better the results will be. 
However, a large population size will lead to a long computation time. There is a trade-off 
between the performance and the computation time. In our case, the population size was 
chosen as twice as the number of parameters which is equal to the length of overflow 
queues. The number of overflow queues is expected to be different in the undersaturated 
condition and oversaturated condition. The population size was set to be smaller in the 
undersaturated condition than in the oversaturated condition. Selecting the best options to 
do the GA optimization involves trial and error. It is also not realistic to try all the 
combinations of these options. Therefore, four options in the GA (in Matlab) which are 
crossover function (Five functions are available including ‘Scattered crossover’, ’Single 
point crossover’, ’Two point crossover’, ’Intermediate crossover’ and ’Heuristic 
crossover’) , mutation function (Three functions are available including ‘Gaussian 
mutation’, ‘Uniform mutation’ and ‘Adaptive feasible mutation’), crossover rate and 
mutation rate were investigated to obtain the best results. The best combination of these 
options, which are crossover function of ‘Heuristic crossover’, mutation function of 
‘Adaptive Feasible mutation’, crossover rate of 0.7 and mutation rate of 0.3, was used to 
perform the parameter estimation. 

6.3.5 Performance measures 

In order to see whether delay distributions can be well estimated based on the optimized 
parameters, two aspects are investigated:  



Chapter 6. Urban travel time distribution estimation based on traffic measurements  127 

 

- Comparison of estimated delay distributions with the ground-truth distributions 
generated in VISSIM 

The estimated delay distributions based on different parameter estimation methods (ML 
and LS), sampling methods (RS and LHS) and different sample percentages are compared 
with ground-truth distributions. The objective is to analyse how the aforementioned 
different combinations influence the estimation results.  

- Robustness of estimation results 

The estimation accuracy based on different percentages of sample measurements is 
compared with the degree of representation of different percentage sample measurements 
to the total measurements. The objective is to investigate how robust the estimation results 
are regarding the incomplete information carried by sampled measurements. The Root 
Mean Square Error (RMSE) is used as the performance indicator. 
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Where, RMSEModel denotes the RMSE of the estimated delay distribution based on our 
proposed model compared with the ground-truth delay distribution; RMSESample denotes 
the RMSE of the sample delay distribution compared with the ground-truth delay 
distribution; n is the total number of measured delays; PModel(i) denotes the model-
estimated probability of delay in class i; PSample(i) is the probability of delay in class i in 
the sample delay distribution; PTrue(i) denotes the probability of delay class i in the 
ground-truth delay distribution. For the class size of the delay distribution, 1s has been 
chosen. 

6.3.6 Results 

Comparison of delay distributions 

Figure 6.1 illustrates the estimated delay distributions based on the Least-Square (LS) 
estimation and the Maximum Likelihood (ML) estimation. The Random Sampling (RS) 
method was applied to obtain sample measurements from the total measurements 
generated in VISSIM. Figure 6.1 shows estimated delay distributions based on ML 
method (Figure 6.1 (a), (c), (e)) and LS method (Figure 6.1 (b), (d), (f)) in the 
undersaturated condition with the degree of saturation of 0.9. As can be seen from Figure 
6.1, both the ML method and LS method perform well in the undersaturated condition 
when two intersections are well coordinated or there is mismatch (5s, 20s). For this case, 
even with very small sample measurements, e.g., 250 (about 0.5%), the estimated delay 
distribution can well represent the ground-truth distribution generated from VISSIM. 
Table 6.2 indicates the performance of these two parameter estimation methods in terms of 
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RMSE. The ML method performs slightly better than LS method when there is no 
mismatch. While the LS method performs better when there is mismatch (5s or 20s). Both 
methods show very small RMSE in the undersaturated condition with different sample 
sizes. Figure 6.2 illustrates the estimated delay distributions in the oversaturated condition 
with the degree of saturation of 1.2. As can be clearly seen, the LS method overestimates 
the low probability values and as a consequence underestimates the higher values. 
Compared with delay distributions estimated based on LS method, estimated delay 
distributions based on ML method can better represent the ground-truth even with very 
small sample measurements of 150 (0.5% ) and 300 (1%), though there is slight 
discrepancy between estimated distributions and ground-truth distributions. The 
performance measure of RMSE as indicated in Table 6.2 confirms that the ML method 
performs better than the LS method in the oversaturated condition. 
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Figure 6.1: Comparison of delay distributions derived from simulation data with 
model estimated delay distributions using ML method (left) and LS method (right) in 
the undersaturated condition (x=0.9) (Sample delays were derived using RS method) 
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Figure 6.2: Comparison of delay distributions derived from simulation data with 
model estimated delay distributions using ML method (left) and LS method (right) in 
the oversaturated condition (x=1.2) (Sample delays were derived using RS method) 

Table 6.2: Performance of two parameter estimation methods (ML and LS) in terms 
of RMSE 

Sample size
No

mismatch
mismatch

=5s
mismatch

=20s
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mismatch
mismatch
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mismatch=
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2500(5%) 0.00096 0.00213 0.00159 0.00102 0.00202 0.00140
500 (1%) 0.00093 0.00215 0.00157 0.00105 0.00204 0.00142

250 (0.5%) 0.00094 0.00211 0.00150 0.00095 0.00204 0.00141
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1500(5%) 0.00098 0.00084 0.00101 0.00129 0.00124 0.00131
300 (1%) 0.00093 0.00082 0.00081 0.00177 0.00143 0.00212

150 (0.5%) 0.00100 0.00086 0.00087 0.00170 0.00139 0.00161
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Figure 6.3 compares the estimated delay distributions based on sample measurements 
using Latin Hypercube Sampling (LHS) method with those using Random Sampling (RS) 
method in the oversaturated condition. The grey bars shown in Figure 6.3 (a) and (b) 
represent the ground-truth distributions when two intersections are well coordinated (no 
mismatch). As shown in Figure 6.3 (a) and (b), the estimated delay distributions using 
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both LHS method and RS method are able to represent the ground-truth distributions even 
with small sample measurements of 300 (1% of total measurements), though a little 
distortion can be found with RS method when the sample size is very small, e.g., 150 
(0.5% of the total measurements). It appears that the estimated delay distributions using 
the measurements based on LHS method are not significantly better than those based on 
RS method.  The estimation performance in terms of RMSE in Table 6.3 confirms this.          

 

Figure 6.3: Comparison of delay distributions derived from simulation data with 
model estimated delay distributions based on LHS and RS in the oversaturated 
condition (Parameters were estimated using ML method) 

Table 6.3: Estimation performance of two sampling methods (LHS and RS) in terms 
of RMSE in the oversaturated condition (Mismatch=0s) 
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300 (1%) 0.00103 0.00093
1500(5%) 0.00093 0.00098  

Robustness of estimation results with different sample percentages 

Figure 6.4 compares the accuracy of the estimated delay distribution in terms of RMSE 
with that of the random sampled data distribution, which is used for parameter estimation. 
Different sample sizes were chosen for comparison. The Kolmogorov-Smirnov test shows 
that all sample delay distributions (from small sample sizes to large sample sizes) we 
obtained for parameter estimation can statistically represent the ground-truth distribution. 
From figure 6.4, we can see that the estimation results are quite robust regardless of 
different sample sizes in both the undersaturated condition (Figure 6.4(a)) and the 
oversaturated condition (Figure 6.4(b)), as long as the sample size is not too small (e.g., 
>50 in case of undersaturated condition or >150 in case of oversaturated condition). Even 

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Delay(s)
(a) Sample size=300 (Sample percentage=1%,Mismatch=0s)

P
ro

ba
bi

lit
y

 

 
Simulation data

LHS method

RS method

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Delay(s)
(b) Sample size=150  (Sample percentage=0.5%,Mismatch=0s)

P
ro

ba
bi

lit
y

 

 
Simulation data

LHS method

RS method



132  Modelling Urban Travel Times                                                            

 

the sample data distribution cannot well represent the ground-truth distribution, e.g., the 
RMSE of the sample data is very large (see Table 6.4) when the sample size is 25 or 30 
(0.05% in the undersaturated condition or 0.1% in the oversaturated condition), the 
accuracy of estimated delay distribution is still much higher than that of sample data 
distribution in terms of RMSE. This indicates that the estimation results are quite robust 
regarding to incomplete information carried by the sample data. The reason for this can be 
explained by Figure 6.5. The sample distribution is irregular if the sample size is too 
small. However, the model tries to give a relatively smooth distribution by smoothing the 
error along the whole range of delays. 

 

(a) Undersaturation 

 

(b) Oversaturation 

Figure 6.4: Comparison of the accuracy between the estimated delay distributions 
with sample data distributions in terms of RMSE  
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Table 6.4: RMSE of the sample distribution and the estimated distribution in case of 
no mismatch 

Sample size 25 50 250 500 2500 5000 7500 10000

Sample
distribution

0.0143 0.0109 0.0015 0.0007 0.0002 0.0001 0.0001 0.0000

Estimated
distribution

0.0018 0.0019 0.0009 0.0009 0.0010 0.0009 0.0013 0.0012

Sample size 30 150 300 1500 3000 4500 6000 9000

Sample
distribution

0.0111 0.0032 0.0017 0.0004 0.0002 0.0001 0.0001 0.0001

Estimated
distribution

0.0043 0.0010 0.0009 0.0010 0.0010 0.0010 0.0009 0.0010

Undersaturation

Oversaturation

 

 

   

Figure 6.5: Smoothing effect of the estimated distribution given sample distribution 

6.4 Conclusions and discussion 

Deriving travel time distributions as discussed in chapter 5 requires proper estimation of 
parameters in the model, especially the overflow queue distribution. In this chapter, model 
parameters are estimated based on the traffic measures, e.g., delays (travel times). Two 
parameter estimation methods, namely ML and LS, are discussed and compared with each 
other. From the estimation results, the ML method performs much better than the LS 
method, which is likely to give biased travel time distribution estimation.  
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In order to see whether model parameters can be estimated based on sample 
measurements, different sampling methods (LHS and RS) are applied and results show 
that even with small sample size, e.g., 250 in the undersaturated condition or 150 in the 
oversaturated condition (0.5%), the travel time distribution can be well reconstructed 
based on the estimated parameters. The estimation accuracy is not sensitive to different 
sampling methods.  

The investigation of the robustness of parameter estimation indicates that estimation 
results are quite robust regardless of different sample sizes in both the undersaturated 
condition and the oversaturated condition, as long as the sample size is not too small and 
the sample data distribution can statistically represent the true distribution (as indicated in 
table 6.4 with KS-test). Even the sample data distribution cannot very well represent the 
ground-truth distribution, for instance, the RMSE of the sample distribution is very large 
when the sample size is 25 or 30, the accuracy of estimated travel time distribution is still 
higher than that of sample data distributions. This also indicates that the model can reduce 
the error due to the small sample size which cannot well represent the ground-truth 
distribution.  

The results obtained in this chapter provide the possibility to calibrate the parameters of 
the travel time distribution model based on sample observations from field data, for 
instance, GPS probe vehicle data, camera data or Bluetooth data. Besides, the cycle time 
(60s) we used in the simulation can be replaced by any other cycle length. The outcomes 
are independent of cycle time and can be generalized for other signal settings. The next 
step is to investigate whether travel time distributions can be estimated using observed 
travel time data. 
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Chapter 7  

Application of the model for link travel 
time distribution prediction 

7.1 Introduction 

The model developed in chapter 4 and 5 provides the possibility to estimate the travel time 
distribution given traffic flow and traffic control scheme. The results from both the 
simulation data and the field data show that the travel time distribution can be well 
estimated for fixed demand within a certain time period. However, in reality, traffic 
demand varies from period to period within a day. Travel times vehicles experience on an 
urban road have a certain distribution within a certain time period and this distribution can 
change from period to period due to different traffic conditions and traffic control schemes. 
Therefore, it would be useful if it was possible to predict the travel time distribution in 
such a dynamic and stochastic system.  On one hand, the dynamic demand can influence 
the travel time distribution from time to time.  On the other hand, adaptive traffic control 
schemes can change accordingly due to the time-varying demand, which also has a 
significant impact on the travel time distribution.  

Figure 7.1 shows the relationship of travel time distribution with traffic flow and traffic 
control. In this chapter, we want to investigate whether the travel time distribution for a 
certain period can be predicted based on predicted traffic flow and traffic control. Section 
7.2 describes the travel time prediction procedure. The cycle time and green split for a 
certain time period are predicted using a neural network model based on the predicted 
traffic flow. Thereafter, the travel time distribution is predicted by applying the model we 
developed in chapter 4 and 5. Sections 7.3 and 7.4 show the model predicted results 
with VISSIM simulation data and field data, respectively. Finally, section 7.5 summarizes 
the contribution of this chapter. 
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Figure 7.1: Relationship among travel time distribution, traffic flow and traffic 
control 

7.2 Methodology 

7.2.1 Traffic flow prediction 

Model-based travel time prediction requires the prediction of traffic states in the near 
(short-term) future. Predicted traffic flows (speeds/densities) are commonly used as the 
input source of these prediction models. As for the travel time distribution model we 
developed, traffic demand and traffic control are the pre-requisites. In order to predict the 
travel time distribution for a short time period, traffic flow needs to be predicted.  

In the past decades, different traffic flow prediction models including heuristic method 
based models (e.g., nonparametric regression, neural network, linear and nonlinear 
regression, ARIMA) (Cetiner et al., 2010; Kamarianakis et al., 2003; Stathopoulos et al., 
2003; Zheng et al., 2006), physical models (e.g., models which are based on traffic 
process theory) (Ashok et al., 2000) or combination of both types of models (Okutani et 
al., 1984; Szeto et al., 2009) have been developed. Among all these models, the 
multivariate models, which can be heuristic method based models or physical models, are 
capable of capturing the spatial characteristics of the network as well as the temporal 
revolution of traffic in different location in the network and giving better predictions 
(Kamarianakis et al., 2003; Stathopoulos et al., 2003). In this chapter, we are not trying to 
develop a new model to predict traffic flow on the urban road. This is out of the scope of 
the thesis. We assume that the input flow in our model is the traffic flow predicted by 
some method such as described above.  In the next subsection, a neural network model is 
proposed to predict the average cycle length and green split for a certain period given 
predicted traffic flows in case of adaptive control in which traffic demand plays a key role 
in determining optimal control schemes, e.g., SCATS, SCOOT. 

7.2.2  Cycle length and green split prediction using a Neural Network 
model 

Different traffic control systems, for instance, fixed-time/pre-timed control, vehicle-
actuated control and adaptive control can be applied in an urban network. The fixed /pre-
timed control, where the structure and timing of the traffic control process are determined 
in advance, is the simplest mode of traffic control. For the vehicle-actuated control, the 
structure and timing of the control program are influenced by the information of individual 
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vehicles measured by detectors.  Compared with the vehicle-actuated control, the adaptive 
control determines the control process based on the information of the whole traffic 
situation (e.g., traffic demand). Phase changes based on prediction from traffic 
measurement at each signalized approach (USDOT, 2005). However, some widely applied 
dynamic traffic signal control systems, e.g., Scats or Scoot, fall back to nearly fixed time 
control, for instance, in peak flow situations. The variation of cycle time and green splits is 
small within a short time period under similar traffic conditions.  Therefore, it is feasible 
to predict the average control scheme (e.g., average cycle time and green split) for a short 
time period (e.g., 30min) based on the traffic demand in order to apply the travel time 
distribution model for the purpose of prediction. 

A three-layer neural network model is applied to predict the average cycle time and green 
splits for the SCATS system, which is an adaptive control system. The mathematical 
formulation of the model is as follows: 
 
Input layer: 

1 1( ) ( )

( )

( ) ( )n n
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where ( )ix t  denotes the value of the i th input neuron at time period t, qi (t) denotes the 
incoming volume of phase i at time period t for intersection j. DS j(t) is the maximum 
degree of saturation at intersection j. The reason we chose these parameters as input is that 
the cycle time is determined by the maximum Degree of Saturation (DS) in SCATS. The 
green splits are determined by the traffic demand for each phase. One thing we need to 
mention here is that the traffic demand has nearly linear relationship with the DS. 
Therefore, the input parameters of traffic flow and DS are interchangeable. 
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ω
h
j,m 

denotes the weight connecting the jth input neuron and the mth hidden neuron, bh
m

 
denotes a bias with a fixed value for the mth hidden neuron; φ is the transfer function, for 
which we chose the hyperbolic tangent function as:   

( ) tanh( )x xϕ =  (7.3)  
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Output layer:  
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where yi(t) denotes the value of the ith output neuron; C(t) denotes the predicted cycle time 
for time period t; gi(t) denotes the predicted green time of phase i; ωo

k, p denotes the weight 
connecting the kth hidden neuron and the pth output neuron; bo

p
 
denotes a bias with a fixed 

value for the pth output neuron; Ф(·) is the transfer function and a linear function is 
commonly used for the output units. 

7.2.3 Link travel time distribution prediction  

The travel time distribution model requires three main inputs: Traffic volume, traffic 
control information (mainly cycle time and green split) and overflow queue distribution. 
In the previous sections, traffic volume prediction, cycle time and green split prediction 
have been discussed. Based on a predicted traffic volume, the existing queue length, and 
traffic control information, the overflow queue distribution can be predicted by applying 
the model proposed by Viti (Viti, 2006). Figure 7.2 illustrates the procedure of travel time 
distribution prediction. Therefore, the predicted travel time distribution Pτ (t) can be 
formulated as: 

0
( ) ( ( ), ( ), ( ), ( ))nP t Q t C t g t P tτ ψ=  (7.5)  

where Q(t) is the predicted traffic flow at time period t; C(t) and g(t) are the predicted 
cycle time and green time during time period t, respectively; Pn0 (t) is the predicted 
overflow queue distribution during time period t; ψ(·) is the travel time distribution 
function developed in chapter 4 and 5. 
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Figure 7.2:  Flow chart of travel time distribution prediction 

7.3 Experiment with VISSIM simulation data 

7.3.1 Experiment setup  

One link with a fixed-time controlled intersection was modelled in VISSIM. The link 
length is 1000m. The cycle time is 60s with the green time of 24s. No prediction of cycle 
time and green split is required in this case since the traffic control scheme is fixed. The 
traffic demand for different periods is indicated in Table 7.1. Traffic was simulated in total 
6 periods with each period of 5 cycles (5min) and 15 cycles (15min) for two cases, 
respectively. The first 5 cycles in the first period is considered as the warm-up period and 
no simulation data were recorded. The simulation started with low demand 
(undersaturated condition) and increased to high demand (oversaturated condition) in time 
period 3. Afterwards, the demand decreased again to undersaturated conditions during 
periods 4, 5 and 6.  Total 500 simulation runs were used and individual travel times were 
recorded for each simulation run. The prediction was made 5min and 15 min in advance. 
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Table 7.1: Traffic demand for total 6 simulation periods (Each period is 5min for 
case 1 and 15min for case 2) 

Case 1 1-600 600-900 900-1200 1200-1500 1500-1800 1800-2100

Case 2 1-900 900-1800 1800-2700 2700-3600 3600-4500 4500-5400

650 800 1000 850 750 700
Traffic

demand(veh/h/lane)

Simulation
time period

(s)

 

7.3.2 Results 

Figure 7.3 shows the link travel time distributions predicted by the proposed model and 
those obtained from VISSIM simulation for 6 periods with a prediction horizon of 5 min. 
The travel time distribution changes from period to period due to different traffic demand. 
Figure 7.3 (a), (b), (e), (f) illustrate that the predicted link travel time distributions can 
well represent those from the VISSIM simulation in the undersaturated condition during 
the first two simulation periods and last two simulation periods. When traffic demand 
increases, the intersection becomes oversaturated. The overflow queue increases from 
cycle to cycle. The predicted travel time distribution for the oversaturated condition during 
the last cycle of period 3 is shown in Figure 7.3 (c). It can be seen that the predicted 
distribution can still represent the true distribution except there are discrepancies in the 
high travel times and low travel times. When traffic demand decreases in period 4, the 
shape of travel time distribution is changing from cycle to cycle due to the decreasing 
overflow queue. The transition from the oversaturated condition to the undersaturated 
condition can be predicted as shown in Figure 7.3 (d), where the predicted distribution can 
match the true distribution, though low travel times are slightly more frequently predicted 
by the model and as a consequence, middle travel times are more frequently observed in 
the simulation data. From the Kolmogorov-Smirnov test indicated in Table 7.2 with a 
sample size of 500, the hypothesis that the sample travel time distribution obtained from 
VISSIM simulation and the predicted travel time distribution draw from the same 
distribution holds for different time periods.  

Figure 7.4 illustrates the comparison of the model predicted travel time distributions with 
those from VISSIM simulation for a prediction horizon of 15min. In the undersaturated 
conditions as shown in Figure 7.4 (a) (b) (e) (f), the model can still predict quite accurately 
even with a longer prediction horizon. However, the predicted distribution for the 
oversaturated condition shown (Figure 7.4 (c)) overestimates the low values and high 
values and as a consequence underestimates the middle range delays. The predicted 
distribution for the transition state (Figure 7.4 (d)) deviates from that of VISSIM 
simulation significantly, especially for the middle range delays. Nevertheless, the 
Kolmogorov-Smirnov test (Table 7.2) indicates that the hypothesis can still hold for 
different prediction periods. The discrepancy between the model-predicted distribution 
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with that obtained from the VISSIM simulation is probably due to the fact that the 
overflow queue distribution is more difficult to predict accurately for a longer prediction 
horizon (e.g., 15min).  

 

 

Figure 7.3: Comparison of the model predicted travel time distributions with those 
recorded in VISSIM (The prediction horizon is 5min) 
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Figure 7.4: Comparison of the model predicted travel time distributions with those 
recorded in VISSIM (The prediction horizon is 15min)  
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Table 7.2: Komogorov-Smirnov test for a sample size of 500 with different prediction 
horizons (significance level=0.05)  

Period 1 2 3 4 5 6
p-value 0.687 0.753 0.422 0.191 0.527 0.334

Hypothesis
(H1=H2)

Accepted Accepted Accepted Accepted Accepted Accepted

Period 1 2 3 4 5 6
p-value 0.298 0.796 0.089 0.142 0.664 0.279

Hypothesis
(H1=H2)

Accepted Accepted Accepted Accepted Accepted Accepted

Case 1 (Prediction horizon=5min)

Case 1 (Prediction horizon=15min)

 

7.4 Experiment with field data 

In the previous section, the link travel time distribution can be well predicted given the 
flow and signal control using simulation data. In this section, model predicted travel time 
distributions are compared with those from field data. The same route of Shaoshan Road 
(used in chapter 5) in Changsha city, Hunan province, in China was investigated for this 
study. Four links (link 13-11, link 11-8 in the northbound direction and link 11-13, link 8-
11 in the southbound direction as can be found in Figure 5.5) were selected to perform the 
travel time distribution prediction. The prediction horizon was chosen to be 30min.  

7.4.1 Data preparation 

Travel time data 

Travel times were collected by taxis equipped with GPS devices travelling on the 
Shaoshan Road during the morning peak hour from 8:00AM to 10:00AM on 14th, May, 
2010. Travel time distributions for both links were obtained every 30min, total 4 periods 
for each link.  

Data for cycle time and green splits prediction 

The SCATS traffic control system was installed at the intersections on Shaoshan Road. 
The cycle time and green splits are changing from time to time depending on the traffic 
demand. Four-phase control has been applied for intersections 13, 11 and 8 which can be 
found in Appendix E. In the SCATS system, the cycle length is determined by the 
maximum Degree-of-Saturation (DS).  Thus, the maximum DS was also used as the input 
in the neural network besides the traffic volume. One week data (From 15th, May, 2010 to 
21th, May, 2010) aggregated into 30min interval were used to train the neural network 
proposed in section 7.2.  
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7.4.2 Cycle time and green splits prediction using SCATS data 

Before applying the neural network model proposed in section 7.2.2 for prediction 
purpose, Bayesian training was applied to train the neural network. Different number of 
hidden neurons (3, 4, 5, 8, 10) were chosen in order to investigate the sensitivity of the 
training procedure. When the number of hidden neurons increases, the training error is 
decreasing. This illustrates that more complex (more neurons) models tend to fit the data 
better than simple ones. However, the increase of hidden neurons from 5 to 10 just yields 
marginal improvement in terms of Mean Absolute Percentage Error (MAPE).  Therefore, 
5 hidden neurons were applied to do the prediction task. Table 7.3 indicates the prediction 
performance of cycle length and green splits in terms of MAPE for link 13-11 and 11-8.  

Table 7.3: MAPE of cycle length and green splits prediction on link 13-11 and 11-8 

Link 13-11 Link 11-8

Cycle length 3.23% 3.74%

Green split 3.09% 2.92%
 

7.4.3 Results 

Figure 7.5 and 7.6 compare the predicted link travel time distributions with those derived 
from GPS data on link 13-11(Northbound) and link 11-13, respectively. Total four periods 
(Each period is 30min) of travel time distribution were investigated. Figures 7.5 and 7.6 (b) 
(d) (f) (h) on the right side are cumulative distributions. As can be seen from the figures, 
the predicted distributions can well represent the travel time distributions derived from 
GPS data. The predicted travel time distributions of link 11-13 in the southbound direction 
can still represent the GPS travel time distributions, even though the sample size of the 
GPS travel time measurements is very small for some periods, e.g., 8:30AM-9:00AM, 
9:00AM-9:30AM. This can be also confirmed by the Kolmogorov-Smirnov test shown in 
Table 7.4 and Table 7.5. The performance measures in terms of MAPE for the statistical 
values of the distribution are indicated in Table 7.6. The MAPEs for these statistical 
values are quite small. The maximum MAPE of 9.7% can be found with the standard 
deviation on link 13-11. 

Compared with link 13-11 and link 11-13, the predicted travel time distributions for link 
11-8 and link 8-11 shown in Figures 7.7 and 7.8 are less accurate. The predicted 
distributions deviate from the travel time distributions derived from GPS data significantly 
for some periods, e.g., 9:30-10:00AM of link 11-8, 8:30-9:00AM of link 8-11. The 
Kolmogorov-Smirnov test of link 11-8 shows the hypothesis that two distributions are the 
same cannot hold for periods 9:00-9:30AM. As for link 8-11, the hypothesis doesn’t hold 
for periods 8:00-8:30AM and 8:30-9:00AM. However, the MAPEs of links 11-8 and 8-11 
indicated in Tables 7.6 and 7.7 are relatively low with the maximum value of 15.8% for 
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the standard deviation. Nevertheless, it is still difficult to say how general this result 
is since the GPS sample data are relatively small for all links of interest.  

 

 

Figure 7.5: Comparison of the model predicted travel time distributions with those 
from field GPS data on link 13-11 (Northbound: 8:00AM-10:00AM) 
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Figure 7.6: Comparison of the model predicted travel time distributions with those 
from field GPS data on link 11-13 (Southbound: 8:00AM-10:00AM) 
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Figure 7.7: Comparison of the model predicted travel time distributions with those 
from field GPS data on link 11-8 (Northbound: 8:00AM-10:00AM) 
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Figure 7.8: Comparison of the model predicted travel time distributions with those 
from field GPS data on link 8-11 (Southbound: 8:00AM-10:00AM) 
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Table 7.4: Kolmogorov-Smirnov test of link 13-11 and 11-8 for the Northbound 
direction (significance level=0.05) 

Period 1 2 3 4

p-value 0.388 0.115 0.247 0.481

Number of observations 76 84 81 65

Hypothesis (H1=H2) Accepted Accepted Accepted Accepted

Period 1 2 3 4

p-value 0.058 0.102 0.082 0.001

Number of observations 89 93 98 73

Hypothesis (H1=H2) Accepted Accepted Accepted Rejected

Link 11-8

Link 13-11

 

Table 7.5: Kolmogorov-Smirnov test of link 11-13 and 8-11 for the Southbound 
direction (significance level=0.05) 

Period 1 2 3 4

p-value 0.213 0.122 0.343 0.288

Number of observations 39 26 23 29

Hypothesis (H1=H2) Accepted Accepted Accepted Accepted

Period 1 2 3 4

p-value 0.009 0.012 0.148 0.113

Number of observations 69 59 65 73

Hypothesis (H1=H2) Rejected Rejected Accepted Accepted

Link 8-11

Link 11-13
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Table 7.6: Performance measures in terms of MAPE for 6 periods on link 13-11 and 
link 11-8 (Northbound) 

Mean Std. TT90th TT50th TT10th

MAPE(%) 2.1 9.7 6.5 4.2 4.9

Mean Std. TT90th TT50th TT10th

MAPE(%) 6.0 15.8 7.3 4.5 5.5

Link 13-11

Link 11-8

 

Table 7.7: Performance measures in terms of MAPE for 4 periods on link 11-13 and 
link 8-11 (Southbound) 

Mean Std. TT90th TT50th TT10th

MAPE(%) 0.9 8.5 2.7 2.4 3.7

Mean Std. TT90th TT50th TT10th

MAPE(%) 3.4 6.5 4.4 3.6 2.9

Link 11-13

Link 8-11

 

7.5 Conclusions and discussion 

Urban travel time prediction is an important and challenging topic. Providing predicted 
travel times, especially the variability (uncertainty) of travel times can help travellers 
make better route choices. A methodology of urban link travel time distribution prediction 
is for the first time proposed in this chapter.  The traffic control scheme (cycle time and 
green splits) is predicted using a neural network model. The predicted traffic flow and 
traffic control scheme are used as model input. By applying the link travel time 
distribution model proposed in chapter 5, the link travel time distribution is predicted.  
 
The comparison of the model predicted link travel time distribution with that from 
VISSIM simulation shows that the link travel time distribution predicted by the model can 
well represent the ground-truth distribution. The comparison with field data indicates that 
the link travel time distribution can still be predicted reasonably well, e.g., links 13-11 and 
11-13. However, the predicted travel time distributions of links 11-8 and 8-11 can 
represent the observed travel time distributions in 50% of the cases. There is discrepancy 
between the model predicted travel time distribution and the field travel time distribution. 
Nevertheless, it is still difficult to say whether the link travel time distribution can be well 
predicted by the proposed model. First of all, the number of sample travel times collected 
from the field GPS data is small (<100). This gives an irregular, unsmooth travel time 
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distribution as can be seen from Figure 7.7 and Figure 7.8. In order to obtain a smooth 
distribution, more observed travel times are needed. Secondly, travel times collected by 
the GPS probe vehicles are not complete link travel times. Re-estimating the complete link 
travel time could also give an error to the field link travel time distribution, though it is not 
expected to be a significant factor which influences the shape of observed distributions. 
Thirdly, the length of link 8-11 and 11-8 (700m) is shorter compared with that of link 11-
13 and 13-11 (1200m). The influence of the traffic control at the upstream intersection on 
the arrivals (e.g., filtering and platooning effect) at the downstream intersection is likely 
more significant for link 8-11 and 11-8.  The consequence is that the overflow queue 
distribution may not be properly estimated, which could lead to the discrepancy between 
the model estimated distribution and the observed distribution. Finally, vehicles are likely 
to experience mid-link delay caused by the turning vehicles from side streets which is not 
considered in the link travel time distribution model. Figure 7.9 shows the speed 
information collected by GPS taxis on the test corridor. Low speeds due to vehicles 
turning from the side streets can be clearly observed. 

 

Figure 7.9: GPS probe vehicle speeds on the test corridor (from south to north: 
intersections 3->8->11->13) 

Travel time distribution prediction is a difficult subject. The model proposed in this 
chapter provides the possibility to predict the full link travel time distribution. With the 
wide application of GPS equipment, GPS probe vehicles become more and more popular 
to collect traffic data. This gives the opportunity to validate the model with more observed 
data. 
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Chapter 8 

Conclusions and future research 

In this thesis, an analytical model has been developed for urban travel time distributions. 
The model is calibrated and validated using both simulation data and field data. 
Furthermore, the model has been applied for the travel time distribution prediction. In this 
chapter, some conclusions which are drawn based on the research carried in this thesis are 
presented in section 8.1. The applicability of the results for practitioners and some 
implications for policy makers are indicated in section 8.2 and 8.3, respectively. Finally, 
section 8.2 gives some recommendations for future research. 

8.1 Conclusions 

Travel time estimation and prediction have been investigated by many researchers as 
discussed in the literature review in chapter 2.  This thesis presents a different way to 
model urban travel times and travel time variability; more specifically, model the travel 
time in a probabilistic way instead of the mean travel time. The main contributions of this 
thesis are the development of an analytical travel time distribution model, calibration and 
validation of the model and application of the model for the prediction purpose.  

8.1.1 Conclusions from the state-of-the-art review 

In chapter 2, the current state of practice in modelling urban travel times has been 
presented.  Three aspects of this topic, namely, the urban travel time estimation and 
prediction, delay estimation at signalized intersections and travel time variability, are 
studied in the literature review. From the study of current urban travel time estimation and 
prediction models, it shows that most of these models couldn’t perform well and have 
poor transferability. Most existing approaches, including both model-based and data-
driven methods, aim at estimating or predicting the mean travel time. Little or no attention 
has been paid to the stochastic properties of traffic processes (e.g., stochastic queuing 
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process at intersections) which often cause uncertainty of the travel time vehicles 
experience on urban roads. The inability of capturing the uncertainty of the travel time 
makes these models less suitable to describe the travel time in the urban network.  

Delay vehicles experience at intersections is an important component of the travel time on 
urban roads. The accuracy with which delays can be estimated has a significant influence 
on the accuracy of final estimated travel times. However, delay models have been 
developed mainly for the purpose of improving traffic controls at intersections. Therefore, 
these models try to estimate or predict the mean delay vehicles experience at intersections. 
As shown in (Viti, 2006), due to the stochastic overflow queues at intersections, delays are 
uncertain. Given the known average traffic demand and capacity, a wide spread delay 
distribution can be found. A delay distribution model which can capture the stochastic 
properties of traffic processes is necessary for estimating or predicting urban travel times. 

Travel time reliability (variability) has been widely investigated during the past decades. 
A number of travel time reliability models and reliability measures have been proposed to 
describe how reliable travel times are given a certain traffic condition. Different statistical 
distributions, e.g., normal, log-normal or Weibull distribution, have been applied to model 
travel time data. However, these distributions hardly have physical meaning. A travel time 
distribution model which can explain the physical phenomenon of traffic processes is 
beneficial for the state-of-the-art of modelling urban travel times. This is the main 
conclusion drawn from the literature review. 

8.1.2 Empirical analysis of urban travel times 

Travel times are widely accepted as very useful information both for travellers to make 
route choice or departure time choice and road authorities to improve road network 
performance.  Therefore, different monitoring techniques, for instance, ANPR cameras, 
probe vehicles, Bluetooth devices, have been developed to measure link/route travel times. 
In chapter 3, applying these techniques for measuring urban travel times is discussed and 
some conclusions can be drawn from this chapter: 

First of all, ANPR and Bluetooth techniques are quite promising in measuring travel times, 
especially on freeways. While on urban roads, due to complex road network 
configurations (e.g., intersections), different traffic processes and travel behaviour, it is 
difficult to say that these monitoring techniques are qualified for measuring urban travel 
times.  Applying these techniques for measuring urban travel times requires an effective 
filtering method. In ANPR system in the urban environment, it is difficult to determine 
whether a vehicle has travelled exactly along the route between A and B without making 
unexpected stops en-route or choosing alternative routes which have similar or less travel 
time than the average travel time of this route. A method that can effectively filter these 
outliers is necessary. As for the Bluetooth system, besides the same problem as discussed 
before with ANPR, Bluetooth devices transmit signals rather frequently. The Bluetooth-
equipped vehicle could be detected at any time within the detection zone and could be 
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detected several times when it passes a roadside Bluetooth receiver or not be detected at 
all depending on the driving speed and on the detection range of the Bluetooth device. 
Furthermore, travel times collected by Bluetooth devices could come from cyclists or 
pedestrians carrying Bluetooth-enabled devices. How to remove these outliers is critical 
for applying these techniques in urban settings. 

Secondly, probe vehicles equipped with certain positioning devices (e.g., GPS/MEMS 
integrated system) and with low polling intervals (e.g., 1s, 5s) are able to collect traffic 
data that are qualified for travel time estimation, even in urban settings. Outliers can be 
more easily removed from the detailed information. For instance, trajectories can be 
derived from high-frequency positioning data. Based on the trajectory, it is likely to 
determine whether a vehicle has travelled exactly the route of interest. On the other hand, 
a lot of commercial GPS solutions rarely record positions of vehicles with temporal 
interval smaller than 30s due to the cost of data processing and storage. For instance, taxis 
equipped with GPS devices are widely used to collect traffic data with polling intervals 
longer than 30s (e.g., 60s, 300s) in big Chinese cities. As a result, travel times recorded by 
these mobile sensors are usually not complete link or route travel times. In order to derive 
complete link/route travel times, methods (e.g., the neural network model as proposed in 
this thesis) that can accurately estimate the complete link/route travel times are preferable. 

Finally, measured travel times provide the ground-truth for developing any travel time 
estimation or prediction model. They are valuable for building the historical travel time 
database for the purpose of traffic management and planning. Most importantly, from 
measured travel times, travel time distribution can be derived which provides more insight 
into travel time variability and furthermore can be used for travel time prediction purpose. 

8.1.3 New insight into travel time variability 

On the urban road, the variability (uncertainty) of travel time is largely caused by the 
variability (uncertainty) of delay vehicles experience at intersections. Delays vehicles 
experience at a signalized intersection include uniform delays due to traffic control and 
overflow delays due to high traffic demand. However, delays vary with effects of 
stochastic properties of traffic flow, stochastic arrivals and departures at the signalized 
intersection. These stochastic factors are not independent but rather overlap. As a result, 
delays are uncertain given known traffic condition (traffic flow) and traffic control. 
Instead, a certain delay distribution can be observed. 

The delay distribution model proposed in chapter 4 takes the stochastic properties of 
traffic processes into account. It allows one to investigate the variability of delay and 
furthermore variability of travel time on urban roads. The analysis of different arrival 
processes has revealed that in undersaturated conditions, the delay distribution is not 
significantly influenced by different arrival processes (e.g., Poisson, binomial). The 
comparison of delay uncertainty in different traffic conditions shows that the delay is more 
uncertain in undersaturated conditions than oversaturated conditions. This gives more 
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insight to travel time estimation and prediction on the urban road. The uncertainty of delay 
in undersaturated conditions should be particularly taken into account in order to have 
better estimation or prediction results. This chapter also reveals that the delay distributions 
for different degrees of saturation are highly overlapping which indicates that a single 
delay can correspond to different traffic states with certain probabilities and also for a 
given traffic state, a range of delays can be found.  

8.1.4 Urban travel time distribution model 

The investigation of travel time distribution has been done by a lot of researchers in a 
phenomenological way by calibrating some distribution functions (e.g., log-normal, 
Gamma) to the observed travel times. However, the character of urban travel times is 
represented by a specific distribution which can be influenced by different traffic 
processes (e.g., traffic flow, traffic control). The understanding of fundamental 
mechanisms of urban travel times can help to better deal with travel time variability, 
predict travel time variability and furthermore influence travel time variability. 

The main contribution of this thesis is the development of an analytical urban link/route 
travel time distribution model, which distinguishes from the existing models in three 
aspects. First of all, the proposed model takes into account of traffic demand and supply, 
stochastic properties of traffic processes on urban signalized roads and traffic control 
scheme. The physical phenomenon of traffic can be explained by the model. Secondly, the 
parameters in the model also have physical meanings. For instance, the parameter of the 
overflow queue distribution can reflect the traffic condition to a certain extent. 
Furthermore, these parameters can be partially estimated given known traffic demand and 
supply, traffic control scheme, etc. Finally, this model has transferability and can be 
applied in different traffic conditions.  

The model of travel time distribution for an urban trip with two intersections proposed in 
chapter 5 assumes that two intersections are fixed-time controlled with a certain offset. 
Different offset settings (well-coordinated, different levels of mismatch) are investigated 
under different traffic conditions. Results show that for the case of mismatch 1 – early 
green -, the shape of the travel time distribution keeps on changing and shifts towards high 
values when the mismatch level of two intersections increases (from well-coordinated to 
badly coordinated). This reveals that the way two intersections are coordinated has 
significant influence on the travel time distribution, especially for undersaturated 
intersections. 

8.1.5 Model calibration  

The application of the proposed model for travel time distribution estimation requires 
proper calibration (estimation) of parameters. The most important as well as most difficult 
parameter that needs to be estimated is the overflow queue distribution. The numerical 
example given in chapter 5 assumes that the arrivals at the intersection and departures 
from the intersection follow certain distributions (e.g., Poisson distribution, binomial 
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distribution). The overflow queue distribution is estimated using a Markov chain process 
model within a certain time period. However, when it comes to the oversaturated 
condition, the overflow queue distribution has a strong relation with the initial condition 
and it is rather time dependent and growing over time. Therefore, calibration of these 
parameters under different traffic conditions is important for the real time application. 
Chapter 6 applies two parameter estimation methods, namely, Least Squares (LS) and 
Maximum Likelihood (ML). On one hand, the calibration of model parameters requires a 
certain amount of traffic data (e.g., travel times, traffic volumes and signal timings). On 
the other hand, using and fusing all the available data for parameter estimation can be 
quite computation intensive. Therefore, a sample from the available data is used for 
parameter estimation.  

The estimation results based on simulation data show that both LS method and ML 
method perform well in the undersaturated condition. While in the oversaturated condition, 
ML method performs better than LS method, which is likely to give biased travel time 
distribution estimation. The parameter estimation results based on sample measurements 
reveal that even with small sample size, parameters can be well estimated both in 
undersaturated conditions and oversaturated conditions. The travel time distribution can be 
well reconstructed based on the estimated parameters. The estimation accuracy is not 
sensitive to different sampling methods (e.g., more stratified or less stratified).  

The investigation of the robustness of parameter estimation indicates that estimation 
results are quite robust regardless of different sample sizes in both the undersaturated 
condition and the oversaturated condition, as long as the sample size is not too small. Even 
the sample data distribution cannot very well represent the ground-truth distribution, for 
instance, the RMSE of the sample distribution is very large, the accuracy of estimated 
travel time distribution is still higher than that of sample data distributions. This also 
indicates that the model can reduce the error due to the small sample size which cannot 
well represent the ground-truth distribution. 

8.1.6 Model validation 

Chapter 5 provides the validation of the link travel time distribution model and the trip 
travel time distribution model. Both microscopic simulation and field observations have 
been used to validate the proposed models.  

The comparison of the results from the proposed model with those from the VISSIM 
simulation model shows that the link travel time distribution based on the proposed model 
can well represent the one from the simulation model. The comparison with field GPS 
data indicates that model estimated link travel time distributions are not significantly 
different from field travel time distributions, though middle range and higher travel times 
are more frequently observed with GPS data than the model predicts for a certain link. 

For the trip travel time distribution model with two fixed time controlled intersections, 
different situations of signal coordination, for instance, early green and late green as 
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discussed in chapter 5, were considered. The comparison with VISSIM simulation shows 
that the trip travel time distributions derived from the analytical model can well represent 
those from VISSIM simulation except there is small discrepancy in low travel times and 
high travel times. The discrepancy is probably due to both the variable free flow speed in 
VISSIM and variable demand (stochastic arrivals) at the upstream intersection. 

8.1.7 Model prediction 

Chapter 7 was dedicated to the prediction method for the urban link travel time 
distribution by applying the proposed travel time distribution model. Three main inputs 
are required in the prediction procedure: traffic volume, traffic control and overflow queue 
distribution. This thesis does not explicitly deal with traffic volume prediction which has 
been extensively investigated by many researchers as discussed in chapter 7. As for the 
traffic control scheme, some widely applied dynamic traffic signal control systems, e.g., 
SCATS or SCOOT, fall back to nearly fixed time control, for instance, in peak flow 
situations. The variation of cycle time and green splits is small within a short time period 
under similar traffic conditions. This gives the possibility to predict the traffic control 
scheme for a short time period. In chapter 7, the average traffic control scheme of SCATS 
system for a short time period (30 min) is predicted using a neural network model. If the 
initial queue state is known (e.g., measured by cameras), the overflow queue distribution 
for the future moment can be predicted using a Markov model.  

The comparison of the model predicted link travel time distribution with that from 
VISSIM simulation shows that with time-varying demand, the link travel time distribution 
predicted by the model can well represent the ground-truth distribution. The comparison 
with field GPS data indicate that the link travel time distribution can still be well predicted 
for certain links. While for other links, the predicted travel time distributions deviate 
significantly from the field travel time distributions. Nevertheless, it is difficult to say how 
general this result is. Reasons for this as discussed in chapter 7 are three folds.  

� Lack of sufficient sample observations: The number of sample travel times collected 
from the field GPS data is very small (< 90 in 30min). This gives an irregular, 
unsmooth travel time distribution. In order to obtain a smooth distribution, more 
observed travel times are needed.  
 

� Complete link travel time estimation error: Travel times collected by the GPS probe 
vehicles are not complete link travel times. Re-estimating the complete link travel 
time can also give an error to the field link travel time distribution, though it is not 
expected to be a significant factor which influences the shape of observed 
distributions.   

� Mid-link delay: Vehicles turning from the side street could cause extra delay to the 
through-going vehicles. This is not considered in the link travel time distribution 
model. 
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8.2 Practical usability of the results 

The results presented in this thesis provide several implications for practical applications: 

� The travel time distribution models developed in this thesis can be used for travel time 
assessment. The present navigation systems provide mean travel times for urban 
routes based on average traffic conditions or only a few probes (e.g., Tomtom does 
that). The model proposed in this thesis could give an estimation of the whole range 
of travel times and inform drivers better about routes with high reliability. 

� Travel time prediction on urban roads is a difficult subject. The proposed models can 
be used for urban link/ trip travel time prediction. Chapter 7 already shows the 
possibility of applying the model for prediction purpose. The full range of link travel 
times could be predicted for a short time period (e.g., 15min, 30min), though the 
validation of the prediction procedure using field data is limited by the fact of 
insufficient field GPS data. More probe vehicles with higher polling frequency (5s or 
15s) are necessary in order to validate the prediction method.  

� Travel time uncertainty is considered as an important aspect in departure time choice 
and route choice models. The standard deviation of travel time is usually included in 
these models to capture the disutility of travel time uncertainty. The effectiveness of 
using standard deviation lies in the fact that the travel time distribution is normal. 
However, travel time distributions are rarely normal (more likely skewed) on urban 
roads. The travel time distribution model developed in this thesis provides the 
possibility to better incorporate travel time uncertainty into departure time choice and 
route choice models. 

8.3 Policy implications 

Travel time reliability has been an important subject in the policy agendas in Netherlands. 
The following implications can be made for practitioners and policy makers: 

� The travel time distribution model developed in this thesis provides the possibility to 
assess travel time reliability in urban areas. The influence of traffic demand, traffic 
supply, traffic control schemes and stochastic processes on urban travel time 
reliability can be explicitly considered. 

� The fundamental investigation of urban travel time mechanisms provides the 
possibilities to influence the travel time distribution and as a consequence to influence 
the travel time reliability from different aspects: 

- Demand: The influence of traffic demand measures (e.g., congestion pricing) on 
travel time reliability can be quantified. 
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- Supply: The influence of the change in traffic supply on travel time reliability can 
be explicitly investigated.  

- Traffic control: The traffic control scheme (cycle time, green splits and offsets) 
can be optimized to provide most reliable link/route. 

- Stochastic factors: The stochastic processes at intersections cause the intrinsic 
uncertainty of travel times on urban roads. These factors should be always 
considered in urban travel time reliability models. 

8.4 Recommendations for future research 

Based on the conclusions given by the previous section, this final section of the thesis 
provides the possible directions of future research and some implications of the model 
application.   

8.4.1 Recommendations for model development 

In chapter 4 and 5, the link travel time distribution model and the trip travel time 
distribution model were developed. Both models have theoretical background and some 
assumptions and simplifications were made. Therefore, further research to improve the 
model can be in the following directions:  

� Improvement of the current model from the following aspects: 
- Consider more general signal configuration: The trip travel time distribution 

model for two intersections assumes that both intersections have the same cycle 
time and green splits for the convenience of modelling. However, intersections in 
a string often have different cycle time and green splits. This could be taken into 
account in future to make the model more generic. Viti (Viti,2006) did something 
similar for the Markov model for delays in his thesis 
 

- Consider the overflow queue at the downstream intersection: In the trip travel time 
distribution model, we only consider the overflow queue distribution at the 
upstream intersection since we assume both intersections have the same cycle time 
and green splits. The overflow queue distribution at the downstream intersection 
could be modelled considering the stochastic departures from the upstream 
intersection (e.g., time-dependent departure distribution as shown in Viti et al., 
2009 and the turning flows coming from the upstream intersection. 
 

� Extension of the travel time distribution model to multiple intersections (>2): The trip 
travel time distribution model only considers two intersections. In reality, more 
intersections can be included in one trip. The extension of this model to multiple 
intersections (>2) can be beneficial to practical applications. 
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� Extension of the travel time distribution model to time-dependent control intersections: 
The model developed in this thesis only considers fixed-time controlled intersections, 
though the travel time distribution for a certain period can be estimated considering 
averaged cycle times and green splits as shown in chapters 5 and 7.  The overflow 
queue distribution can be quite different for time-dependent controls as discussed in 
(Viti, 2006).  

8.4.2 Recommendations for model calibration and validation 

In the thesis, the proposed model is calibrated and validated using both simulation data 
and field GPS data.  Some further improvements are needed in order to apply it in practice. 

� Model calibration in different traffic conditions using field data: The main parameter 
in the delay distribution model is the overflow queue distribution. Chapter 6 shows 
that it is possible to estimate the overflow queue distribution from traffic 
measurements. The estimation results from VISSIM simulation data are very 
promising both in undersaturated conditions and oversaturated conditions. Future 
research should be devoted to calibrate the model in different traffic conditions using 
field GPS data. 
 

� The validation of the link travel time distribution model was done both with VISSIM 
simulation data and field GPS data. Due to the small sample size of GPS data and 
relatively low polling frequency (30s), the validation results are less convincing. In 
future, more GPS data with higher polling frequencies (e.g., 1s, 5s) are needed to 
validate this model. While for the trip travel time distribution model, only VISSIM 
simulation data were used for the model validation due to the lack of signal 
coordination information with field data. In future, field data with signal coordination 
information (e.g., offsets between intersections) are needed to validate the trip travel 
time distribution model.  

8.4.3 Recommendations for research direction 

Some recommendations for model development, model calibration and validation are 
given in the previous subsections. Besides, more general research directions can be in the 
following aspects: 

� Modelling travel time distribution in case of spill back in the network wide: The 
probabilistic way of modelling travel times for an urban link can be extended to a 
network wide taking the spill back into account.  

� Optimization of traffic control: Traffic control optimization, in a conventional way, is 
done such that the average delay (travel time) or number of stops can be minimized. 
The model developed in this thesis can also be incorporated into a traffic control 
optimization framework considering minimization of both the average delay (travel 
time) and the variability of delay (travel time). 
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� Investigating the influence of traveller compliance and route choice behaviour on the 
travel time distribution: The travel time information distributed to travellers has 
influence on their travel behaviour and as a consequence on the travel time 
distribution.  

� Travel time distribution model could be imbedded in the macroscopic simulation 
models. The travel time distribution model provides the possibility to incorporate 
uncertainties in macroscopic simulation models.  
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Appendix A 

GPS position and speed accuracy 

Note.  In the thesis, GPS probe vehicle data were used as ground truth for model 
calibration and validation. A short discussion of GPS data for travel time estimation has 
been discussed in chapter 3. This appendix provides more detailed information about GPS 
position and speed accuracy.  

A GPS system consists of three segments: space segment (satellites), control segment 
(control stations), user segment (GPS receivers). A GPS receiver calculates its position by 
precisely timing the signals sent by GPS satellites high above the Earth. Each satellite 
continually transmits messages that include the time the message was transmitted, precise 
orbital information, the general system health and rough orbits of all GPS satellites. The 
receiver uses the messages it receives to determine the transit time of each message and 
computes the distance to each satellite. These distances along with the satellites' locations 
are used with the possible aid of trilateration, depending on which algorithm is used, to 
compute the position of the receiver. Many GPS units show derived information such as 
direction and speed, calculated from position changes1.  There are many issues related to 
the GPS system. This appendix mainly provides information about GPS position accuracy 
and speed accuracy.  

A. 1 Positioning accuracy 

A.1.1 GPS positioning accuracy1 

The accuracy of GPS position can be influenced by several factors: selectivity availability, 
satellite geometry, satellite orbits, multipath effect, atmospheric effects, satellite and 
receiver clock errors and etc. 

Selectivity availability 
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The selectivity availability (SA) is an artificial falsification of the time in the signal 
transmitted by the satellite. The implementation of SA was to intentionally degrade the 
autonomous real-time positioning accuracy available to unauthorized users for security 
reasons. With SA turned on, nominal horizontal and vertical errors can be up to about 
100m and 150m. On May 2, 2000, the U.S. government deactivated SA, resulting in a 
much-improved GPS position accuracy of 20m or even less.  

Satellite geometry 

The accuracy of the computed GPS position is also affected by the geometric location of 
the GPS satellites as seen by the receiver. Good satellite geometry is obtained when the 
satellites are spread out in the sky. For instance, if a receiver sees 4 satellites and all are 
arranged for example in the north-west, this leads to a “bad” geometry. In the worst case, 
no position determination is possible at all, when all distance determinations point to the 
same direction. Even if a position is determined, the error of the positions may be up to 
100 – 150 m. If, on the other hand, the 4 satellites are well distributed over the whole 
firmament, the determined position will be much more accurate. Figure A.1 and A.2 show 
geometrical alignment of satellites for the two-dimensional case. 

If the two satellites are in an advantageous position, from the view of the receiver they can be 

seen in an angle of approximately 90 degrees to each other. The signal runtime cannot be 
determined absolutely precise as explained earlier. The possible positions are therefore 
marked by the grey circles. The point of intersection A of the two circles is a rather small, 

more or less quadratic field (square area), the determined position will be rather accurate. 

 

 

 

 

 

 

 

 

 

 
 

Figure A.1 Good geometrical alignment of two satellites1 

1 
Source: http://www.kowoma.de/en/gps/satellites.htm 
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If the satellites are more or less positioned in one line from the view of the receiver, the plane 
of intersection of possible positions is considerably larger and elongated. The determination of 

the position is less accurate. 

 
Figure A.2 Bad geometrical alignment of two satellites1 

Satellite orbits 

Usually, satellites are positioned in very precise orbits. However, slight shifts of the orbits 
are possible due to gravitation forces. The orbit data are controlled and corrected regularly 
and are sent to the receivers in package of ephemeris data. Therefore, the influence on the 
position determination is low with a resulting error due to satellite orbits of not more than 
2m.  

Multipath effects 

The multipath effect is caused by reflection of satellite signals on objects. The reflected 
signal takes more time to reach the receiver than the direct signal. For GPS signals, this 
effect mainly appears in the neighbourhood of large buildings or other elevations, 
especially in the urban environment. 

Atmospheric effects 

Another source of inaccuracy is the reduced speed of propagation in the troposphere and 
ionosphere. While radio signals travel with the velocity of light in the outer space, their 
propagation in the ionosphere and troposphere is slower.  

Satellite and receiver clock errors and rounding errors 

The GPS satellite clocks, although highly accurate, are not perfect. The remaining 
inaccuracy of the time still leads to an error of about 2 m in the position 
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determination. Rounding and calculation errors of the receiver sum up approximately to 
1 m. 

The errors of the GPS position are summarized in the following table. The individual 
values are no constant values, but are subject to variances. All numbers are approximate 
values. All these effects lead to a total error of about ±15m.  

Table A.1:  Typical GPS position accuracy with SA deactivated1 

Factors Error (m)

Shifts in the satellite orbits ± 2.5

Multipath effect ± 1

Ionospheric effects ± 5

Tropospheric effects ± 0.5

Clock errors of the satellites' clocks ± 2

Calculation and rounding errors ± 1
 

A.1.2 DGPS positioning accuracy2 

The accuracy of GPS positioning can be improved by applying the technique called 
differential GPS (DGPS), which enables civil receivers to achieve accuracies in the range 
of decimetres to a few meters.  The basic idea is that a  second stationary GPS receiver is 
used for correcting the measurements of the first receiver. If the position of the stationary 
receiver is known very accurately, by means of a long wave transmitter a correction signal 
can be sent which is received and analysed by a receiver connected to the mobile GPS. 
Some countries around the world have established networks of GPS reference stations 
around their coastal areas, which continuously broadcast real-time DGPS corrections. 
Basically, there are three types of DGPS service systems: a single station-based DGPS 
service system (Maritime DGPS service), wide-area differential GPS (WADGPS) and 
multisite RTK system. 

In the maritime DGPS service system, each reference station operates independently of the 
other stations in the network to serve users within its coverage area. This service requires a 
beacon receiver connected to a GPS receiver that accepts the Radio Technical 
Commission for Maritime Service (RTCM) corrections. The coverage depends on the 
transmitter power output, the atmospheric noise, the receiver sensitivity, the characteristics 
of the propagation path or conductivity. The coverage is greater over water than inland. 

Real-time DGPS with a single reference station has the disadvantage that the positioning 
accuracy tends to deteriorate as the user moves away from the reference station. To 
overcome this problem, a system based on a number of widely separated reference stations  
 
2 

Source:  El-Rabbany, A (2006). Introduction to GPS: the global Positioning System. Artech House, London. 
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known as WADGPS has been developed. This system involves a set of ground reference 
stations that cover a wide geographical area, e.g., coverage of large, inaccessible regions 
using fewer reference stations. 

The multisite RTK service could provide the positioning accuracy at subdecimetre-level. 
The idea behind multisite RTK positioning is based on using a network of reference 
stations to create raw GPS measurements for a virtual reference station, which is located 
close to the mobile, or the rover, receiver. Once created, the virtual reference station 
measurements are transmitted to the mobile receiver, where the normal single reference 
station RTK positioning can be performed. The RTK positioning with a single reference 
station is limited to a distance of 15 to 20 km. With this service, four GPS reference 
stations could cover an entire city or even a number of small adjacent cities. 

A.2 GPS speed accuracy 

The results and discussions about the accuracy of GPS speed measurements provided in 
this appendix are mainly cited from Al-Gaadi’s work3. The initial motivation of their work 
is to see how accurate the GPS speed measurements are for the agricultural operations. 
However, their results are also valuable for other applications.  
 
In their study, a passenger vehicle was equipped with a hand-held GPS receiver to provide 
GPS speed data and a pulse transmitter to obtain vehicle’s wheel speed. GPS-derived 
speed data was compared with the speed measurements based on wheel speed data 
(reference speed) and errors in GPS speed measurements were determined. Different 
ground speed values: 5, 10, 15, 20, 25, 30, 40 and 50km/h were chosen to do the 
comparison. Some results and discussions are given based on their experiment: 

1. For all GPS data points, the average speed measurement accuracy is 1.27 km/h (6.9%). 
A maximum error of 0.51km/h and 5.54 km/h were found with 50 percentile and 95 
percentile data points, respectively. 

2. The magnitude of error in tested GPS speed measurement is not proportional to the 
magnitude of vehicle ground speed. 

3. In their experiment, they found that the GPS accuracy is significantly degraded at 
sudden big changes of vehicle speed. E.g., an error of -80.16% was produced due to a 
vehicle speed reduction from 18.65 to 11.19 km/h with 10s. This result also implies 
that the accuracy of acceleration calculated from GPS speed measurements can not be 
guaranteed, especially for the high acceleration. 

4. If no big sudden change of vehicle speed occurs, the average accuracy of GPS speed 
measurement is less than 1km/h except for 15km/h data set with an average accuracy 
of 1.72km/h. They found that the average error is less than 5.3% with all data sets, 
except for the 15km/h data set with an error of 9.92%.  
 

3
Al-Gaadi, K.A. (2005). Testing the accuracy of autonomous GPS in ground speed measurement. Journal of Applied 

Sciences,5(9):1518-1522.   
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Appendix B 

Formulation of overflow queue 
distribution 

Note.  The overflow queue at an isolated intersection (at the upstream intersection in case 
of an urban trip with two intersections as discussed in chapter 5) is not constant but rather 
stochastic. This stochastic overflow queue has a big influence on the delay distribution. 
The derivation of the overflow queue distribution is not discussed in chapter 4 and 5. This 
appendix provides the detailed formulation of the overflow queue distribution model 
(cited from Viti). 

Let Qmax be the maximum value of the queue length, which can be stored in the considered 
road section, qmax and dmax respectively the maximum number of arrivals and departures 
possible within a cycle, Qij be the transition matrix, which represents the probability that 
the queue length moves from a state i at time t-1 to state j at time t. If j ≠ 0, this probability 
is expressed by: 

max maxPr( )          ,   [0, ],   [0, ]
( )  

0                                              otherwise
t t t t t

ij

j i q d j i d q q d d
Q t

= + − ∀ ≥ − ∈ ∈
= 
     

   (B.1) 

Since queues are constrained to be non-negative, when the departures are larger than the 
sum of the arrivals and the queue at the starting of the cycle, the queue at the end of the 
green phase will be zero. Obviously, part of this green phase will not be used by any 
vehicle. According to this consideration the chance of a queue i to become zero is 
computed with the following condition: 
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max
00

Pr( 0)          ,   [0, ]
( )                  

0                                         otherwise

td i

t t t
ki

k q i d q q
Q t

−

=


− = ∀ ≤ ∈= 




∑       (B.2) 

If the departures are deterministic, Equation (B.2) computes the probability for a specific 
queue length j in the transition matrix from each couple (i, at ). If departures dt are 
stochastic, given the range of possible departures [0, dmax] and the assumption of 
independence of departure and arrival distributions, the transition probability from a state i 
to a state j is given by: 

max

0

( ) ( , )Pr( )
t

d

ij ij t t
d

Q t Q t d d
=

=∑                                                    (B.3) 

Every time step t is uniquely determined once an initial condition Q0 is assumed. This value, 
as said, can be a specific value or a stochastic variable. In both conditions the initial 
condition can be expressed by a vector of initial queue probabilities PrQ0 (0)={ Pr0(0), Pr1(0), 
Pr2(0),…, PrQmax(0)} where the deterministic case can be seen as a special case of this vector 
where probability is 1 for the deterministic value and zero for the others. Since the queue 
probability distribution at every time t-1 and the transition matrix qij are, as defined, 
independent, the probability of each state j is given by:  

                                     
max

0

Pr( , ) Pr( , 1) ( )
Q

o o ij
i

Q j t Q i t Q t
=

= = = − ⋅∑                                   (B.4) 
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Appendix C 

Derivation of boundary delays in the 
trip travel time distribution function in 
oversaturated conditions 

Note. The detailed derivation of boundary delays w2n+1 and w2n+2 in the delay distribution 
function for the oversaturated condition is not presented in chapter 5. Therefore, this 
appendix provides more detailed derivation for readers who are interested. The boundary 
delays here refer to the delays at the transition moments when a vehicle arrives just before 
these moments can pass the intersection, whereas the following vehicle needs to wait for 
the red time.  

C.1 Mismatch 1 (early green) 

In oversaturated conditions, the delay as the function of arrival time is derived as: 

0 0 0 0 0
0 0 0

0 0 0
0

1 ( ) 1 ( ) 1
{ } (1 )( ), ( ) 1

1 ( ) 1
{2 } (1 )( ),

r r g g
g g

r r
g

n n q t t n q t tq
t t if n q t t s s

s s s s
W

n n q t t q
t t else

s s s

τ τ τ τ
τ τ

τ τ
τ

    + + − + + − + ′+ + − − − + − + − <    
       =
 + + − + + + − − − 
  

 
(C.1)  

As for the oversaturated condition, the number of extra red times that a vehicle arriving at 
time t needs to wait at the upstream intersection can be directly derived from Equation 
(C.1). The more generic expression is: 
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0 0( ) 1

g

q t t n
n

sτ
 − + +=  
  

 (C.2)  

From Equation (C.2), we can see that when a vehicle arriving within the time interval of 
one cycle time, the minimum number of extra red times this vehicle needs to wait at the 
upstream intersection can be derived as: 

0
min

1

g

n
N

sτ
 +=  
  

 (C.3)  

And the maximum number of extra red times is given by:  

0
max

1C

g

q n
N

s

τ
τ

 + +=  
  

 (C.4)  

If the value within └ ┘ is an integer, the maximum delay will be experienced by the 
vehicle arriving at the end of the cycle. Otherwise, the maximum delay will appear before 
the end of the cycle (t<t0+τC) in oversaturated conditions. 

When vehicles arrive at the downstream intersection, there are two cases: 

- Passing the downstream intersection without delay; 

- Passing the downstream intersection with a certain delay. 

Whether vehicles need to wait for the red time at the downstream intersection depends on 
whether the number of vehicles in front of this vehicle plus the vehicle itself can be 
released within the green time τg′ at the downstream intersection. 

1) If 0 0
0 0

( ) 1
0 ( ) 1 g g

g

n q t t
n q t t s s

s
τ τ

τ
 + − + ′≤ + − + − < 
  

, vehicles experience no delay at the 

downstream intersection. Vehicles just experience delays at the upstream intersection. 
Given the initial moment of the calculation t0, in our approach, it is the beginning of the 
red time. For this case, the transition moments (discontinuity of the delay as function of tn) 
appear when:

 

0 0( ) 1 0n gn q t t nsτ+ − + − =
 

Each transition moment can be derived as:  

0 min

0
0 min max

1n g

t n N

t ns n
t N n N

q

τ
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= − − + < ≤
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 (C.5)  
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2) If 0 0
0 0
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n q t t
n q t t s s

s
τ τ

τ
 + − + ′+ − + − ≥ 
  

vehicles experience delays at both the 

upstream and downstream intersections, the transition moments appear when:
 

                0 0( ) 1n g gn q t t ns sτ τ′ ′+ − + − =
 

Each transition moment can be expressed as: 

0
0 min max

1g g
n

ns s n
t t N n N

q

τ τ ′+ − −
′ = + ≤ <  (C.6)  

An example is shown in Figure C.1. The ‘star’ points are the transition moments when the 
vehicles needs to wait for another red time at the upstream intersection; The ‘dot’ points 
are transition moments that vehicles arrive at the downstream intersection right after the 
signal turns red. As can be seen in Figure C.1, after the transition moments (dots), the 
delay is decreasing linearly as the function of arrival time and the other transition 
moments (stars) can be ignored because all these transition moments are within the delay 
evolution trend starting from the dot transition moments. However, this is only for the 
case of the same red time both for the upstream intersection and the downstream 
intersection. In case of different red times, the star transition moments can be above or 
below the trend line starting from the dot transition moments as described above. The 
example given in the following considers two situations: 

 

(a) 0
0

1
1 g g

g

n
n s s

s
τ τ

τ
 + ′+ − < 
  

: The first vehicle arriving right after the beginning of the red 

time can leave the downstream without delay. For this case, the delay the vehicle 
arriving at the beginning of the red time equals to: 

0 0 0 0 0
min
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 (C.7)  
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Figure C.1:  Delay as a function of arrival time with two intersection coordinated in 
the oversaturated condition 
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: The initial overflow queue is so large that the first vehicle 

arriving right after the start of the red time at the upstream intersection                                            
has to wait for the red time at the downstream intersection. For this case, the delay the 
vehicle arriving at the beginning of the red time equals to:                                                                                                                              
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Figure C.2: Delay as a function of arrival time with two intersections coordinated in 
the oversaturated condition  
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For more general expression, the delay for each transition point can be calculated as: 
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C.2 Mismatch 2 (late green) 

In case of mismatch 2, the delay as the function of arrival time is given by: 
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 (C.13)  

Vehicles departing from the upstream intersection right after the traffic light turns to 
green will experience extra delay due to the late start of green phase at the downstream 
intersection. The transition moments can be derived from Equation (C.14) as: 
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Nmin, Nmax are the minimum number of extra red time and maximum number of extra red 
time that vehicles need to wait at the upstream intersection, respectively, which are given 
by Equations(C.3) and (C.4). 
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Figure C.3: Delay as a function of arrival time with two intersections coordinated in 
the oversaturated condition 

Transition 1: 0t  

When the vehicle arrives at the beginning of the red time t0, the delay equals to the red 
time plus the time to release the queue in front of this vehicle plus the coordination 
mismatch at the downstream intersection, which is given by: 
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From the given example, a more generic expression can be derived as: 

0
min max

2 1

0
max

( 1) 1
( 1)

1
( 1) (1 )

g
C m

n

r m C

n s n
n N n N

q
W

n q
n n N

s s

τ
τ τ

τ τ τ
+

+ − −
+ + − ≤ <= 

+ + + + − − =

 (C.15a)  

0
min

2 2
0

min max

1
(1 )

1

r m

n
g

C m r

n
n n N

s
W

ns n
n N n N

q

τ τ

τ
τ τ τ

+

+ + + + ==  − −
 + + − < ≤


 (C.15b)  



 

  191 

 

Appendix D 

Comparison of link travel time in case 
of a vertical queue and shock wave 

Note. In order to see whether the shock wave has influence on the calculation of link 
travel time, this appendix provides detailed analysis of the delay as a function of arrival 
time in D.1. Afterwards, the comparison of the link travel time between the vertical queue 
and shock wave is given in D.2. The derivation of the delay as a function of arrival time 
for the case of shock wave is based on the assumption of a triangular fundamental diagram. 

D.1 Delay calculation in case of shock wave 

Case 1: No initial queue exists at the beginning of the red phase 

For the sake of simplicity, we assume the triangular fundamental diagram as illustrated in 
Figure D.1. kj is the jam density, ks is the capacity density, kq is the arrival flow density, s 
is the capacity flow, q is the arrival flow, Ls is the effective length of a stopped vehicle, the 
following relationship can be derived: 

1
s

j

L
k

=  (D.1)  

The difference of delay between the preceding vehicle and the following vehicle is given 
by: 

s s

w

L L
d

w u
∆ = −  (D.2)  
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Where w is the congested wave speed from the standing still state to the queue discharging 
state which can be derived as: 

j s

s
w

k k
=

−
 (D.3)  

uw is the shock wave speed from the free flow state to the standing still state which is 
given by: 

w
j q

q
u

k k
=

−
 (D.4)  

Where q s

q
k k

s
=  

 

Figure D.1: Flow density diagram 

Let’s assume there is no queue at the beginning of the red phase (t=0) and no spillback 
during the whole analysis period. For a given time instant t when vehicles arriving at the 
back of the queue (in case of shock wave), the total arrivals between time instant 0 and t 
can be calculated as : 

( )A t qt=  (D.5)  

Therefore, the delay can be derived as: 
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Figure D.2: Space-time diagram at a signalized intersection 

Case 2: Initial overflow queue n0 at the beginning of the red phase 

In the absence of queues, all vehicles would depart following the trajectory AB as shown 
in Figure D.3. Therefore, the queuing delay is the area of Wq. When a vehicle arrives at the 
beginning of the red phase (t=0), there is an initial queue n0. For this case, the delay W0 is 
composed of two parts: 

0 rW dτ= +  (D.7)  

Where d is the queuing delay due to the initial overflow queue at the beginning of the red 
phase, which can be calculated as: 
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By substituting d in Equation (D.7) with Equation (D.8), we can derive the delay at the 
beginning of the red phase as: 

0
0

1
r

n
W

s
τ += +  (D.9)  

The delay as a function of arrival time (the moment when the vehicle joins the end of the 
queue) in this case can be calculated as: 

0
0

1
( ) ( ) (1 )r

n q
W t W d A t t

s s
τ += + ∆ ∗ = + − −  (D.10)  

From Equations (D.6) and (D.10), we can see that the delay as a function of arrival time in 
case of a shock wave is consistent with what we have discussed in chapter 4 and chapter 5. 
The difference is the definition of the arrival time. In case of a vertical queue, the arrival 
time t refers to the arrival moment at the stop line. While for the shock wave case, it refers 
to the arrival moment at the back of the queue.  

 

Figure D.3: Space-time diagram at a signalized intersection in case of an initial queue 
n0 

The validity of the above comparison of the delay as a function of arrival time between 
vertical queue and shock wave is limited by the assumption of triangular fundamental 
diagram. Different fundamental diagram could result in different conclusions. However, 
when calculating the complete link travel time, the assumption of triangular fundamental 
diagram is not necessary. Hurdle (Hurdle et al., 2001) compared the delay estimated from 
the shock wave model and the cumulative arrival and departure model on freeways. They 
showed that these two models are compatible, yielding identical estimates of travel times 
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and delay.  D.2 shows more detailed comparison of the complete link travel time in case of 
a vertical queue and shock wave.  

D.2 Comparison of link travel time between a vertical 
queue and shock wave 

Figure D.4 shows trajectories of vehicles passing a link in case of a vertical queue (Figure 
D.4 (a)) and shock wave (Figure D.4 (b)). x0 is the start of the link and x1 is the end of the 
link (stop line). We assume arrival moments at the upstream of the link are uniformly 
distributed within a cycle time; The First-In-First-Out holds for all arriving vehicles and 
vehicles approach and depart from the intersection with instant acceleration and 
deceleration. For the case of a vertical queue, a vehicle entering the upstream of the link at 
time instant t0 will pass the stop line of the downstream intersection at time instant t0’ . The 
same goes for vehicles entering at time instances t1, t2, … , tn and passing the stop line of 
the downstream intersection at time instances t1’, t2’,…, tn’ . The link travel time of a 
vehicle entering at time instant ti for the case of vertical queue can be calculated as: 

( ) , 0,1, 2,...,VQ i i iTT t t t i n′= − =  (D.11)  

Where TTVQ (ti) is the link travel time of a vehicle entering the upstream of the link at time 
instant ti in case of a vertical queue; t’ i is the time instant when the vehicle passing the stop 
line of the downstream intersection. 

For the case of shock wave, the link travel time of a vehicle entering at time instant ti at the 
upstream of the link can be calculated as: 

( ) , 0,1,2,...,SW i i iTT t T t i n′= − =  (D.12)  

Where TTSW (ti) is the link travel time of a vehicle entering the upstream of the link at time 
instant ti in case of shock wave; T’ i is the time instant when the vehicle passing the stop 
line of the downstream intersection. 

Let’s assume that when a vehicle enters the upstream of link at time t0 will arrive at the 
beginning of the red time at the downstream intersection and there is no queue, the travel 
time of this vehicle is given by:  

1 0
0 0 0( )VQ r

f

x x
TT t t t

u
τ −′= − = +  (D.13)  

1 0
0 0 0( )SW r

f

x x
TT T T t

u
τ −′= − = +  (D.14)  

The link travel time of a vehicle entering at time instant ti (Ti in case of shock wave) at the 
upstream of the link can be calculated as: 
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Where 1

1s s
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L L
T T

u u q−− = + = , 1

1s s
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s

L L
T T

w u s−′ ′− = + = , fu is the free flow speed of arriving 

vehicles and su is the platoon departure speed.  

 Therefore，Equation (D.16) can be rewritten as: 

0

1 1
( ) ( ) ( )SW i i i SWTT T T T TT T i

s q
′= − = + −  (D.17)  

From Equations (D.13), (D.14), (D.15), (D.17), we can see that the link travel time for the 
case of a vertical queue is consistent with that of shock wave under the assumption of a 
triangular fundamental diagram. 
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Figure D.4: Space-time diagram of vehicles passing one link in case of a vertical 
queue (a) and shock wave (b) 
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Appendix E 

Test area  

Note.  Throughout this thesis, travel times measured by GPS probe vehicles were used for 
analysis. This appendix provides more information about the test area where GPS travel 
times were collected.  

The city Changsha is the capital of Hunan Province. It is located in the southwest of China. 
More than 5000 taxis and private cars equipped with GPS devices are travelling in the 
urban network every day.  Every 30s, information about vehicle positions, speeds and time 
stamps is sent to the monitoring centre. Figure E.1 illustrates the test corridor we selected 
for our research. Total three bidirectional links and four signalized intersections are 
considered. We name the intersections and links with numbers for the simplicity purpose. 
The intersections are 3, 8, 11 and 13 as shown in figure E.1.  The northbound links include: 

• Link 13-11 
• Link 11-8 

• Link 8-3 

The southbound links include: 

• Link 3-8 
• Link 8-11 

• Link 11-13 

The intersections on the test road are controlled by an adaptive control system called 
SCATS system. The cycle time and green splits change from time to time according to 
traffic demand.  
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Figure E.1：：：：The test road in Changsha city, Hunan Province, China 
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Appendix F 

Complete link travel time estimation 
from GPS data 

Note. Chapter 3 proposes a Neural Network model to estimate complete link travel times 
from GPS data. However, due to the fact that there is no ground-truth data and insufficient 
real-life GPS data to train the Neural network model, we applied a method proposed by Li 
(Li et al., 2010) to estimate the complete link travel times. The estimated travel times are 
used for the validation purpose in chapters 5 and 7.  

Figure F.1 illustrates an example of a probe vehicle traversing different links. The 
information of probe vehicle positions, time stamps and speeds is recorded. The method 
proposed by Li (Li et al., 2010) is basically an interpolation process. The estimation 
results show that this method is quite accurate with Root Mean Square Percentage Error of 
5.9% for estimating the average link travel time when the probe vehicle penetration rate is 
5%. As shown in Figure F.1, t1(i), t2(i), t3(i), t4(i) are time stamps of probe vehicle i;  v1(i), 
v2(i), v3(i), v4 (i) are instant speeds of probe vehicle i . In order to derive the complete link 
travel time of link 2, time stamps tup(i), tdown(i), which are the start moment when the probe 
vehicle passes the stop line at the upstream intersection and the end moment when the 
probe vehicle passes the stop line at the downstream intersection, need to be estimated. 
The start moment passing the stop line at the upstream intersection can be estimated using 
Equation (F.1) and (F.2) as: 

2 1
1 2

2 1

( ) ( )
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Similarly, the end moment arriving at the stop line of the downstream intersection can be 

estimated as: 
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Therefore, the complete link travel time of probe vehicle i passing link 2 is derived as: 

( ) ( ) ( )down upTT i t i t i= −  (F.5)  

Where 1 2( )t ta i→
)

and 3 4( )t ta i→
)

are the average acceleration of probe vehicle i between point 

1 and point2, point 3 and point 4, respectively; d1, d2 are the distances from start moment 
to point 1and point 2; , d3, d4 are the distances from  the end moment to point 3 and point 4.  
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Figure F.1 Calculation of complete link travel time 
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Summary 

Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of 
traffic, especially at signalized intersections. A single travel time does not have much 
meaning and is not informative to drivers or traffic managers. The range of travel times is 
large such that certain travel times can occur for congested conditions as well as off-peak 
situations. Therefore, it is better to consider the whole distribution of travel times. The 
knowledge of travel time variability (uncertainty) is in fact important both in the 
evaluation of Dynamic Traffic Management measures and traveller’s choices. Particularly 
in the Netherlands, one of the policy goals is to improve the door-to-door travel time 
reliability. Providing travel time variability information can help different types of 
travellers make better route choice decision for different purposes. Risk-averse travellers 
tend to choose more reliable routes even if they have higher mean travel times. While for 
opportunity-seekers, routes with lower mean travel times but higher uncertainty are more 
appealing.  

Travel time variability in urban areas 

The importance of travel time variability in urban networks has received more and more 
attention during the past years. However, the investigation of travel time variability as 
done by most researchers is just in a phenomenological descriptive way by fitting some 
distribution functions (e.g., log-normal, gamma) to observed travel times. The problem 
arises when applying these distributions to different traffic conditions since they are only 
calibrated for a specific traffic situation. The character of urban travel times is represented 
by a specific probability distribution which can be influenced by different traffic processes 
(e.g., traffic flow, traffic control). The understanding of fundamental mechanisms of urban 
travel times can help to better deal with travel time variability, predict travel time 
variability and furthermore influence travel time variability. Therefore, this thesis focuses 
on developing a theoretical travel time distribution model which can explain these 
mechanisms and can be generalized to different traffic conditions. 

Link travel times from probe vehicles 

We started our research by obtaining ‘ground truth’ field link travel time data. These data 
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are valuable for model calibration and validation. Different monitoring techniques (ANPR 
cameras, probe vehicles, Bluetooth devices) for measuring urban travel times were 
compared. We focused on estimating the complete link travel time from the GPS probe 
vehicle data with low polling frequencies (e.g., 30s, 1 min). Due to the fact that the 
available data are the positions of probe vehicles at fixed time intervals, which means that 
travel times directly obtained from GPS data are likely to be partial link or route travel 
times, we need to estimate the complete link/route travel times from GPS data.  Three 
methods were applied in this study, namely, the distance-proportion method, Hellinga’s 
method and an Artificial Neural Network (ANN) model.  The estimation results showed 
that the ANN method gives the best performance. 

Verification of the travel time distribution model 

On urban roads, the variability of the delay at intersections is the main source of travel 
time variability. We started developing an analytical delay distribution model for a single 
fixed-time controlled intersection. The model considers stochastic properties of traffic 
flow, and stochastic arrivals and departures at the intersection. The influence of stochastic 
arrivals on the delay distribution has been particularly investigated by looking at different 
arrival distributions, e.g., Poisson, Binomial. In the undersaturated condition, different 
arrival distributions have marginal influence on the delay distribution. The comparison of 
delay variability in different traffic conditions shows that the delay is more uncertain in 
undersaturated conditions than in oversaturated conditions. This gives more insight into 
travel time estimation and prediction on urban roads. The uncertainty of delay in 
undersaturated conditions should be particularly taken into account in order to have better 
estimation and prediction results. 

We extended the delay distribution model from a single intersection to multiple 
intersections. The signal coordination between two intersections is explicitly modelled. 
Different offset settings from well-coordinated to badly coordinated situations were 
investigated under different traffic conditions. Furthermore, the free flow travel time 
distribution has been incorporated into the delay distribution model in order to derive a 
complete travel time distribution. The numerical results show that the shape of the travel 
time distribution keeps on changing and shifts towards high values when the mismatch 
level of two intersections increases (from well coordinated to badly coordinated). This 
reveals that the way two intersections are coordinated has significant influence on the 
travel time distribution, especially in undersaturated conditions.  

Model calibration and validation 

We compared the travel time distributions from the theoretical model with those from 
VISSIM simulation data and field GPS data. The comparison results show a very good 
agreement. The model-estimated travel time distributions can well represent the travel 
time distributions derived from VISSIM simulation data.  The model-estimated link travel 
time distribution has been compared with that from field GPS data and results show that, 
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for certain links, the model-estimated link travel time distribution can still represent the 
real distribution quite well. While for other links, a significant discrepancy between these 
two distributions can be observed. This discrepancy can be attributed to two reasons: 
insufficient sample observations with potential estimation errors and mid-link delay which 
is likely to be observed in the field whereas it is not included in the model. 

As a further step, we investigated the possibilities of calibrating the model by observed 
travel times. The overflow queue is the most important stochastic parameter in the 
mathematical model for the delay and travel time distribution. In order to estimate the 
overflow queue distribution, two parameter estimation methods (Least-Squares (LS) and 
Maximum Likelihood (ML)) have been applied to estimate the overflow queue 
distribution from traffic measurements (e.g., measured delays or travel times). The 
Genetic Algorithm was used to find the quasi-optimal solutions for these two methods. 
The estimation results based on VISSIM simulation data have shown that both the LS 
method and the ML method can perform well in undersaturated conditions. While in the 
oversaturated condition, ML method performs better than LS method, which is likely to 
give biased travel time distribution estimations. The parameter estimation results based on 
sample delays have revealed that, even with a small sample size, parameters could still be 
well estimated both in undersaturated conditions and oversaturated conditions. The 
estimation accuracy is not sensitive to different sampling methods (e.g., Random 
Sampling or Latin Hypercube Sampling). We also investigated the robustness of 
parameter estimation. The results show that parameters can be well estimated regardless of 
different sample size in both the undersaturated condition and the oversaturated condition, 
as long as the sample size is not too small. 

Prediction of travel time distributions 

We applied the model for travel time distribution prediction using both the VISSIM 
simulation data and the real-life data. The field data was collected in Changsha, China. 
The prediction procedure requires three input variables, namely, traffic volume, traffic 
control, and overflow queue distribution. In the field test area, the intersections are 
controlled by a SCATS system, which is an adaptive network control system. The cycle 
time and green splits vary from time to time. Therefore, the average traffic control scheme 
(mainly cycle time and green splits) of the SCATS system for a short time period (30min) 
is predicted using a neural network model.  The overflow queue distribution is predicted 
by assuming certain arrival distribution (e.g., Poisson, Binomial) and departure 
distribution (e.g., Binomial) at the upstream intersection using a Markov chain model. The 
comparison of the model-predicted link travel time distribution with that from VISSIM 
simulation has shown that the link travel time distribution predicted by the model can well 
represent the ground-truth distribution of VISSIM with time-dependent traffic demand. 
The comparison with field GPS data indicates that the link travel time distribution can still 
be predicted reasonably well for certain links.  
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A new vision of urban travel time 

To conclude, the travel time distribution model developed in this thesis provides a new 
way to describe and understand travel time variability on urban roads. The proposed 
model can be easily transferred to different traffic conditions, and can be applied for travel 
time distribution prediction which is more meaningful for the urban network with a lot of 
uncertainties involved. By creating the understanding of the fundamental mechanism of 
travel times on urban roads, it provides the possibilities to influence the travel time 
variability on urban roads.  
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Samenvatting 

Stedelijke reistijden zijn intrinsiek onzeker door een groot aantal variabele 
verkeerskarakteristieken met name bij geregelde kruispunten. Een enkele reistijd is van 
weinig betekenis en is niet informatief voor automobilisten of verkeersmanagers. 
Afzonderlijke reistijden lopen dusdanig uiteen dat specifieke reistijden zowel tijdens de 
spits als er buiten kunnen voorkomen. Daarom is het beter om uit te gaan van de volledige 
verdeling van reistijden. Het kennis hebben van de variabiliteit (onzekerheid) van 
reistijden is van belang voor zowel het evalueren van dynamisch verkeersmanagement als 
ook reizigerskeuze. In Nederland in het bijzonder is het één van de beleidsdoelen om de 
deur-tot-deur reistijdbetrouwbaarheid te verbeteren. Het aanbieden van informatie over de 
reistijdvariabiliteit kan daarnaast ook verschillende typen reizigers helpen bij het maken 
van betere routekeuzen voor verschillende reisdoelen. Risicomijdende reizigers zijn 
geneigd om te kiezen voor meer betrouwbare routes zelfs als deze routes gemiddeld 
genomen een hogere reistijd hebben. Dit terwijl voor opportunisten routes met een lagere 
gemiddelde reistijd en hogere onzekerheid aantrekkelijker zijn. 

Reistijdvariabiliteit in stedelijke gebieden 

Het belang van reistijdvariabiliteit in stedelijke netwerken heeft meer en meer aandacht 
gekregen gedurende de afgelopen jaren. Echter, door de meeste onderzoekers wordt 
reistijdvariabiliteit enkel geanalyseerd op fenomenologische, beschrijvende wijze door een 
verdelingsfunctie (bv. lognormaal, gamma) te fitten op de geobserveerde reistijden. 
Wanneer deze verdelingsfuncties worden toegepast op verschillende verkeerscondities 
ontstaan echter problemen, aangezien zij enkel voor een specifieke verkeerssituatie zijn 
gekalibreerd. Het karakter van stedelijke reistijden wordt gerepresenteerd door een 
specifiek verdelingsfunctie welk beïnvloedt wordt door verscheidene verkeersprocessen 
(bv. verkeersafwikkeling, verkeersregeling). Het begrijpen van de onderliggende 
mechanismen van stedelijke reistijden verbetert het omgaan met reistijdvariabiliteit, 
alsmede het voorspellen en beïnvloeden van reistijdvariabiliteit. Deze dissertatie focust 
daarom op het ontwikkelen van een theoretisch model voor de reistijdverdeling welk deze 
onderliggende mechanismen kan verklaren en welk gegeneraliseerd kan worden naar 
verschillende verkeerscondities. 
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Linkreistijden van probe vehicles 

We zijn het onderzoek begonnen met het verzamelen van ground truth linkreistijddata uit 
het veld. Deze data zijn waardevol voor modelkalibratie en –validatie. Verschillende 
monitoringstechnieken (automatische nummerplaat herkenning camera’s, probe vehicles, 
Bluetooth apparaten) voor het meten van stedelijke reistijden zijn onderling vergeleken. 
We hebben gefocust op het schatten van complete linkreistijden op basis van 
laagfrequente GPS data (bv. 30 seconde, 1 minuut) van probe vehicles. De beschikbare 
data beslaan dan de posities van de probe vehicles op vastgestelde tijdsintervallen. 
Daardoor zullen de reistijden welk direct volgen uit deze GPS data doorgaans betrekking 
hebben op een gedeelte van de link of route. De complete link- en routereistijden moeten 
geschat worden op basis van deze data. In deze studie zijn drie methoden hiervoor 
gebruikt, namelijk de distance-proportion methode, Hellinga’s methode en met behulp 
van een artificiële neurale netwerk (ANN). De schattingsresultaten laten zien dat de ANN 
het beste resultaat oplevert. 

Verificatie van het reistijdverdelingsmodel 

Op stedelijke wegen is de variabiliteit van de vertraging bij kruispunten de voornaamste 
bron van reistijdvariabiliteit. Wij zijn daarom begonnen met het ontwikkelen van een 
analytisch model voor de vertragingsverdeling bij een enkel fixed-time controlled 
kruispunt. Het model houdt rekening met stochastische verkeerskenmerken en 
stochastische aankomsten en vertrekken. De invloed van stochastische aankomsten bij het 
kruispunt is in het bijzonder onderzocht door te kijken naar verschillende 
aankomstverdelingen, zoals poisson en binomiaal. Er is gevonden dat voor onverzadigde 
condities verschillende aankomstverdelingen slechts een marginale invloed hebben op de 
vertragingsverdeling. Het vergelijken van de vertragingsvariabiliteit laat zien dat de 
grootte van de vertraging onzekerder is bij onverzadigde condities dan bij oververzadigde 
condities. Dit geeft nieuwe inzichten aan reistijdschatting en –voorspelling op stedelijke 
wegen. De vertragingsonzekerheid tijdens onverzadigde condities zou meegenomen 
moeten worden om tot betere schattings- en voorspellingsresultaten te komen. 

Het vertragingsverdelingsmodel is vervolgens uitgebreid van een enkel kruispunt naar 
meerdere kruispunten. De afstemming van verkeerslichtregelingen op twee kruispunten is 
expliciet gemodelleerd. De verschillende mate van afstemming, variërend van goed 
gecoördineerd tot slecht gecoördineerd, zijn onderzocht onder verschillende 
verkeerscondities. Daarnaast is de verdeling van de vrije reistijd opgenomen in het 
vertragingsverdelingsmodel om zo te komen tot de complete reistijdverdeling. De 
numerieke resultaten tonen aan hoe de vorm van de reistijdverdeling continue verandert en 
groter wordt naarmate de afstemming van de twee kruispunten slechter wordt (van goed 
gecoördineerd tot slecht gecoördineerd). Hieruit blijkt dat de wijze waarop twee 
kruispunten zijn gecoördineerd met name in onverzadigde condities een significante 
invloed uitoefent op de reistijdverdeling. 
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Modelkalibratie en -validatie 

We hebben de reistijdverdelingen vanuit het theoretisch model vergeleken met VISSIM 
simulatiedata en GPS veld data. Deze vergelijking toont heel goede overeenkomsten. De 
model geschatte reistijdverdelingen komen goed overeen met de reistijdverdeling 
verkregen van VISSIM simulatiedata. Uit de vergelijking tussen de model geschatte 
reistijdverdelingen en de GPS veld data blijkt dat voor bepaalde wegvakken het model 
goede resultaten geeft terwijl voor andere links grote verschillen te zien zijn. Deze 
verschillen hebben twee oorzaken: onvoldoende observaties welk kunnen resulteren in 
schattingsfouten en vertragingen in het midden van de link welk waarschijnlijk zijn in het 
veld, echter niet gemodelleerd worden. 

In een volgende stap is gekeken naar de mogelijkheden om het model te kalibreren aan de 
hand van geobserveerde reistijden. De overloop wachtrij, de wachtrij die overblijft aan het 
eind van de groenfase, is de voornaamste stochastische parameter in het model voor het 
bepalen van de vertragings- en reistijdverdeling. Om deze overloop wachtrijverdeling te 
schatten, zijn twee schattingsmethoden (least-squares (LS) en maximum likelihood (ML)) 
toegepast, gebruikmakend van verkeersmetingen (bv. gemeten vertragingen of reistijden). 
Een genetisch algoritme is gebruikt om quasi-optimale oplossingen te vinden voor deze 
beide methoden. Modelschattingen gebaseerd op VISSIM simulatiedata geven goede 
resultaten in onverzadigde condities zowel bij de LS methode als de ML methode. In 
oververzadigde condities geeft de ML methode echter betere resultaten dan de LS 
methode welk de reistijdverdeling structureel over- of onderschat. Deze 
parameterschattingen gebaseerd op trekkingen uit de vertragingsverdeling laat zien dat, 
zelfs met weinig trekkingen, parameterwaarden nauwkeurig geschat kunnen worden bij 
zowel onverzadigde als oververzadogde condities. De nauwkeurigheid van de schattingen 
hangt daarbij niet af van de wijze waarop deze trekkingen worden gedaan (bv. willekeurig 
of latin hypercube sampling). Ook is gekeken naar de robuustheid van de 
parameterschattingen. De resultaten tonen aan dat de parameterwaarden goed geschat 
kunnen worden ongeacht het aantal trekkingen, zolang het aantal niet te laag is, voor 
zowel onverzadigde als oververzadigde condities. 

Voorspellen van reistijdverdelingen 

Het model is toegepast voor het voorspellen van de reistijdverdeling gebruikmakend van 
VISSIM simulatiedata en velddata. De velddata zijn verzameld in de stad Changsha, 
China. De voorspellingsprocedure maakt gebruik van drie invoervariabelen, namelijk de 
verkeersvolume, verkeersregeling en de overloopwachtrijverdeling. In het gebied waar de 
velddata zijn verzameld, worden de kruispuntregelingen gestuurd door het SCATS 
systeem; een netwerk regelsysteem. De cyclustijden en groentijden variëren in de tijd 
afhankelijk van de verkeerscondities. Het gemiddelde verkeersregelschema (voornamelijk 
cyclustijden en groentijden) van het SCATS systeem voor een korte periode (30 min) 
wordt daarom voorspeld met een neurale netwerk model. De overloopwachtrijverdeling 
wordt voorspeld met een Markov keten model waarbij veronderstellingen worden gemaakt 
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over de aankomstenverdeling (bv. poisson, binomiaal) en de vertrekverdeling (bv. 
binomiaal) bij het kruispunt stroomopwaarts. De reistijdverdeling op een wegvak, zoals 
voorspeld door het model, komt goed overeen met de verdeling volgend uit de VISSIM 
simulatie met een dynamische vervoersvraag. Een vergelijking met de GPS veld data laat 
zien dat de reistijdverdeling op een wegvak redelijk goed voorspeld kan worden voor 
sommige wegvakken. 

Een nieuwe kijk op stedelijke reistijden 

We kunnen als conclusie trekken dat het reistijdverdelingsmodel ontwikkeld in dit 
proefschrift een nieuwe manier verschaft om reistijdvariabiliteit op stedelijke netwerken te 
beschrijven en te begrijpen. Het ontwikkelde model kan eenvoudig toegepast worden bij 
verschillende verkeerscondities en kan gebruikt worden voor het voorspellen van 
reistijdverdelingen welk meer van belang is op stedelijke netwerken gegeven de grote 
mate van onzekerheden. Door inzicht te brengen in de onderliggende mechanismen welk 
de reistijden op stedelijke wegen bepalen, creëert deze dissertatie de mogelijkheden om de 
reistijdvariabiliteit op deze stedelijke wegen te verbeteren. 

 

                                                                                

                                                                               (Dutch translation provided by Adam Pel) 
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概述概述概述概述 （（（（Summary in Chinese）））） 

随着经济的不断发展，全球交通拥堵问题也越来越严重。因此，各个国家不断在高

速路和城市路网中实施各种交通管理策略以改善交通状况，例如，匝道控制、高峰

时段车道、限速、交叉口信号控制、出行信息服务系统等。在评价城市路网交通性

能的各种指标中，其中一个很重要的指标就是行程时间。行程时间可以直观地反映

道路交通运行状况（拥堵还是畅通）。从本质上来说，城市道路行程时间是一个不

可确定的变量。这主要归因于城市路网中交通的随机特性，尤其是在交通信号控制

路口处存在众多不可预测性因素。单个行程时间对于出行者和道路交通管理部门来

说没有太大意义，而且包含的信息量也不够。倘若行程时间范围很大，以至于在拥

挤交通状态下某些出行者经历的行程时间也可能在非拥堵（平峰时段）状态下出现。

因此，相比之下考虑整个行程时间分布更有意义。掌握行程时间可变性（Travel 
Time Variability）对于动态交通管理措施的评价和出行者的出行选择行为都是非常

重要的。在荷兰，提高门对门的行程时间可靠度已列入了交通政策目标之一。为出

行者提供行程时间可变性信息可以帮助不同类别的出行者更好地做出路径选择。一

些比较保守的出行者可以选择更可靠的路径，即使该路径的平均行程时间要长一些。

而对于那些冒险型（乐观型）的出行者来说，平均行程时间短但不确定性高的路径

更有吸引力。 

城市路网行程时间可变性城市路网行程时间可变性城市路网行程时间可变性城市路网行程时间可变性    

在过去几十年中，城市路网行程时间可变性的重要性得到了越来越多的关注。然而，

对于行程时间可变性（不确定性）的研究绝大部分仅限于用现象逻辑学的方法用某

些分布函数（例如，对数-正态分布函数，伽马函数）来拟合实测的行程时间数据。

由于这些函数模型仅仅在某些特定交通状况下进行过校正，并不能适用于其他不同

的交通状况。城市道路行程时间的特性可以用一个特殊的概率分布函数来表示。这

一分布函数受不同交通过程（traffic process, 例如，交通流、交通控制）的影响。

充分理解城市道路行程时间的基本机理可以更好地应对行程时间可变性，预测行程

时间可变性，更重要的是影响行程时间可变性（例如，提高行程时间可靠度）。因

此，本文的研究重点是建立一个适用于不同交通状况的行程时间分布的理论模型。 

基于浮动车的行程时间估计基于浮动车的行程时间估计基于浮动车的行程时间估计基于浮动车的行程时间估计    

本文首先着手分析用于获取“真实” 路段行程时间数据的技术和方法。实际行程

时间数据对于行程时间分布模型的校正和验证都是非常有价值的。目前，用于行程

时间数据采集技术主要包括自动车牌识别技术、浮动车技术、蓝牙检测技术等。本
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文的重点放在 GPS 浮动车采集技术上，主要研究如何从 GPS 浮动车采集的数据中估

计完整的路段行程时间。由于 GPS浮动车采集的数据包括采样位置和采样时刻，这

些采样位置可以在道路的任何位置（如道路中、路口处）。这就意味着直接从 GPS
数据中获得的只是部分路段行程时间，因而需要采用有效的估计方法获得完整的路

段或路径行程时间。本文应用了 3 种不同方法，即路程比例法（distance-proportion 
method）、Hellinga方法、人工神经网络法(ANN)。从估计准确度来看,人工神经网

络法的精度最高。 

城市道路行程时间分布模型城市道路行程时间分布模型城市道路行程时间分布模型城市道路行程时间分布模型    

在城市道路中，交叉口的延误可变性是整个行程时间可变性的主要来源之一。本文

提出了一个针对固定信号配时交叉口的解析延误分布模型。该模型充分考虑了交通

流的随机特性、交叉口的车辆到达和离开随机过程。其中，重点研究了车辆的随机

达到分布（例如，泊松分布，二项式分布）对交叉口延误概率分布的影响。在非饱

和交通状态下，不同车辆到达分布对于延误分布的影响很小。而对不同交通状态下

延误可变性的比较显示：在非饱和交通状态下的延误比在过饱和交通状态下的延误

更具不确定性。这就意味着在非饱和交通状态下，要得到更准确的行程时间估计或

预测，模型中必须重点考虑延误的不确定性。 

本文进一步将单一交叉口的延误分布模型扩展到多交叉口延误分布模型。该模型充

分考虑了在不同交通状况下交叉口之间的协调控制，例如相邻交叉口的相位差设置

（从完全协调控制到不协调控制）。除此之外，通过将自由流行程时间分布函数和

延误分布函数相结合，本文提出了一个完整的行程时间分布模型。数值计算结果显

示，当相邻交叉口的相位不匹配率增加时（也即从完全协调控制到不协调控制），

行程时间分布函数的形状不断发生变化，并且一直沿着更高行程时间方向移动。这

也意味着相邻交叉口之间的协调控制方式对于行程时间分布有很大影响，尤其是在

非饱和交通状况下。 

本文将基于理论模型的行程时间分布与基于 VISSIM 仿真数据以及实际 GPS数据的

行程时间分布进行了比较。比较结果显示两者之间基本一致（理论模型和 VISSIM
仿真数据，理论模型和实际 GPS数据）。其中，理论模型估计的行程时间分布能够

很好地吻合 VISSIM 仿真得到的行程时间分布。对于实际数据，某些路段模型估计

的行程时间分布能够较好地表示实际 GPS行程时间分布。而对于另一些路段，两者

之间存在一定的偏差。导致这一偏差的因素主要包括：1.实际样本量不足,而且可

能存在误差；2.路段延误（mid-link delay）：理论模型没有考虑路段延误，只考虑

交叉口延误。 

模型校正和验证模型校正和验证模型校正和验证模型校正和验证    

理论模型建立后,下一步就是校正模型参数。本文研究了如何通过实测行程时间数

据来校正模型参数。 在交叉口延误和道路行程时间分布的数学模型中,最主要的随

机参数是二次排队（overflow queue）概率分布。为了估计二次排队概率分布，本文

采用了两种参数估计方法，即最小二乘法（Least-Squares）和极大似然估计法

（Maximum Likelihood）。同时，应用遗传算法求出目标函数（LS 和 ML）的准优
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解。基于 VISSIM 仿真数据的参数估计结果显示，在非饱和交通状况下，这两种方

法的估计精度都较高。而在过饱和交通状况下，ML 的估计精度明显要比 LS 高。

LS参数估计法得到的估计结果往往存在很大的偏差。基于样本数据的参数估计（这

里指的是 ML 方法）表明：即使使用少量的样本数据，不管在非饱和交通状况下还

是过饱和交通状况下，都能较准确地估计模型参数。参数估计的精度不受采样方法

的影响，如随机采样（RandomSampling）或拉丁超立方体采样（Latin Hypercube 
Sampling）。同时，本文对于参数估计方法的鲁棒性（robustness）也进行了研究。

结果表明：只要用于参数估计的样本数量（延误或行程时间）不是很小，不管在非

饱和交通状态下还是过饱和交通状态下，参数估计的精度跟样本量的大小之间没有

直接关系。 

行程时间分布预测行程时间分布预测行程时间分布预测行程时间分布预测    

本文还应用该理论模型来预测路段行程时间分布。其中，预测数据分别来自于

VISSIM 仿真软件和实际采集的数据（数据采集地点：长沙）。整个预测过程需要 3

个输入变量：交通流量、交通控制方式以及二次排队概率分布。在测试路网区域内，

交叉口是由 SCATS系统控制的。该系统是一个自适应路网控制系统。信号周期和

绿灯相位随着时间不断变化。因此，本文应用神经网络模型来预测短期（30 分钟）

SCATS系统的平均交通控制方式（主要是指平均信号周期和绿灯相位）。溢出车辆

排队概率分布则通过马可夫链模型（Markov chain）预测得到的，同时假设某一随

机到达分布函数（如：泊松分布，二项式分布）和随机离开分布函数（如：二项式

分布）。将模型预测的路段行程时间分布与 VISSIM 仿真的行程时间分布行进比较，

结果显示：在动态交通需求情况下，理论模型预测的行程时间分布与 VISSIM 仿真

获得的行程时间分布能很好地吻合。对于实际数据中的某些路段，模型预测的路段

行程时间分布也能较好地吻合 GPS浮动车获取的行程时间分布。 

综上所述，本文提出的行程时间分布模型为描述和理解城市道路行程时间可变性

（可靠性）提供了全新的途径。该模型可以方便地应用于不同交通状况，并且适用

于行程时间分布预测，这对于充满不确定性的城市道路来说更有意义。 

 

 

 

 

 

 





 

  215 

 

About the author: curriculum vitae 
and list of publications 

Fangfang Zheng was born in Pujiang, Zhejiang Province, China, in 
1981.  She started her bachelor study in 1999 at the school of 
Information Science and Technology of Southwest Jiaotong 
University, Chengdu.  She received her Bachelor degree in July, 
2003. Afterwards, she was recommended to continue her master 
study at the college of Traffic and Transportation in Southwest 
Jiaotong University. In 2006, she completed her master thesis and 
obtained the MSc degree. Thereafter, she started to work in the 

college of Traffic and Transportation. In 2007, she started her part-time PhD study in 
Traffic Engineering at the College of Traffic and Transportation.  

In March 2008, she started her PhD research in Transportation and Planning, at the 
Faculty of Civil Engineering and Geosciences, Delft University of Technology, the 
Netherlands. Her study is funded by the China Scholarship Council (CSC) and University 
Foundation of Delft (UfD).  During her stay at TU Delft, she worked on the subject of 
urban travel time modelling, especially on the reliability of urban travel times, for which 
she participated in a Trail Course for PhD students called  ‘Reliability of Transportation’ 
as one of the lecturers. She also published several Journal papers based on her research 
work and presented in various conferences. In the conference of Mobil.TUM 2009 in 
Munich, she presented a paper and for which she won the prize of ‘best presentation’. 

After her PhD, she will continue her scientific career in the College of Traffic and 
Transportation in Southwest Jiaotong University, China. 

 

 

 



216  Modelling Urban Travel Times                                                            

 

The following publications by the author have been accepted or are still under review: 
(papers that are presented at multiple conferences are only included once in this list) 

Journal publications 

1. Zheng, F. and van Zuylen, H.J. (2011). Modeling Travel Time Variability Based on 
Delay Distribution for Signalized Urban Trips. Accepted for publication in 
Transportation Research Record: Journal of the Transportation Research Board. 
 

2. Zheng, F. and van Zuylen, H.J. (2011). Urban link travel time estimation based on 
sparse probe vehicle data: an Artificial Neural Network model vs. an analytical model. 
Submitted for publication in Transportation Research Part C: Emergency technology 
(under review) 
 

3. Zheng, F. and van Zuylen, H.J. (2010). Uncertainty and Predictability of Urban Link 
Travel Time: A Delay Distributon Based Analysis. Transportation Research Record: 
Journal of the Transportation Research Board, 2192:136-146. 

Book chapter 

4.  van Zuylen, H.J., Zheng, F. and Chen, Y.S. (2010). Using Probe vehicle data for 
traffic state estimation in signalized urban networks. International series in operation 
research and management science: Traffic data collection and its standardization, 
Springer.  

Peer-reviewed conference proceedings 

5. Zheng, F. and van Zuylen, H.J. (2011). Modeling Travel Time Variability Based on 
Delay Distribution for Signalized Urban Trips. In proceedings: 90th annual meeting of 
Transportation Research Board, Washington D.C. 
 

6. Zheng, F. and van Zuylen, H.J. (2011). Estimating the delay distribution function for 
an urban trip based on sample measurements. In proceedings: 90th annual meeting of 
Transportation Research Board,Washington D.C. 

 
7. Zheng,F. and van Zuylen, H.J. (2011). Calibration of an urban travel time distribution 

model.  In proceedings: 2nd International Conference on Models and Technologies 
for Intelligent Transportation Systems, Leuven, Belgium. 

 
8. Zheng, F. and van Zuylen, H.J. (2011). Reistijdverwachting voor een stedelijke rit, 

DVM congres ANWB Verkeerskunde, Rotterdam, the Netherlands. 
 
9. Zheng, F., van Zuylen, H.J. and Chen, Y.S.  (2010). An investigation of urban link 

travel time estimation based on probe vehicle data. In proceedings: 89th annual 
meeting of Transportation Research Board, Washington D.C. 

 
10. Zheng, F. and van Zuylen, H.J. (2010). Uncertainty and Predictability of Urban Link 



About the author: curriculum vitae and list of publications 217 

 

Travel Time: A Delay Distribution Based Analysis. In proceedings: 89th annual 
meeting of Transportation Research Board, Washington D.C. 

 
11. Zheng, F. and van Zuylen, H.J. (2010). Comparison of Urban Link Travel Time 

Estimation Models based on Probe Vehicle Data. In proceedings: the 7th International 
Conference on Traffic and Transportation Studies, Kunming, China 

 
12. Zheng, F.and van Zuylen, H.J. (2010). Reconstruction of Delay Distribution at 

Signalized Intersections based on Traffic Measurements. In proceedings: the IEEE 
conference on Intelligent Transportation System, Madeira, Portugal 

 
13. Zheng, F. and van Zuylen, H.J. (2010). Estimating urban travel time distribution using 

probe vehicle data.  In Proceedings: 11th Trail congress and knowledge Market. 
Rotterdam, the Netherlands 

 
14. Zheng, F., van Zuylen, H.J. and Chen, Y.S. (2009). Investigating the feasibility of 

urban link travel time estimation based on probe vehicle data. In proceedings: the 2nd 
International Conference on Traffic Engineering, Chengdu, China 

 
15. van Zuylen, H.J., Zheng, F. and Chen, Y.S. (2008). Using Probe vehicle data for 

traffic state estimation in signalized urban networks. In proceedings: the international 
workshop on data collection and its standardization, Barcelona. 

 
16. van Zuylen, H.J., Zheng, F. and Chen, Y.S. (2008). Using Probe vehicle data for 

traffic state estimation in signalized urban networks. In proceedings: 10th Trail 
Congress and Knowledge Market. Rotterdam, the Netherlands 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



218  Modelling Urban Travel Times                                                            

 

 



 

  219 

TRAIL Thesis Series 

The following list contains the most recent dissertations in the TRAIL Thesis Series. For a 
complete overview of more than 100 titles see the TRAIL website: www.rsTRAIL.nl. 

The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on 
transport, infrastructure and logistics. 

Zheng, F., Modelling Urban Travel Times, T2011/9, July 2011, TRAIL Thesis Series, the 
Netherlands 

Vlassenroot, S.H.M., The Acceptability of In-vehicle Intelligent Speed Assistance (ISA) 
Systems: from trial support to public support, T2011/8, June 2011, TRAIL Thesis Series, 
the Netherlands 

Kroesen, M., Human Response to Aircraft Noise, T2011/7, June 2011, TRAIL Thesis 
Series, the Netherlands 

Nielsen, L.K., Rolling Stock Rescheduling in Passenger Railways: applications in short-
term planning and in disruption management, T2011/6, May 2011, TRAIL Thesis Series, 
the Netherlands 

Qing, O., New Approach to Fusion of Heterogeneous Traffic Data, T2011/5, May 2011, 
TRAIL Thesis Series, the Netherlands 

Walta, L., Getting ADAS on the Road: actors’ interactions in Advanced Driver Assistance 
Systems deployment, T2011/4, April 2011, TRAIL Thesis Series, the Netherlands 

Lin, S., Efficient Model Predictive Control for Large-Scale Urban Traffic Networks, 
T2011/3, April 2011, TRAIL Thesis Series, the Netherlands 

Oort, N. van, Service Reliability and Urban Public Transport Design, T2011/2, April 
2011, TRAIL Thesis Series, the Netherlands 



220  Modelling Urban Travel Times                                                            

 

Mahmod, M.K.M., Using Co-Operative Vehicle-Infrastructure Systems to Reduce Traffic 
Emissions and Improve Air Quality at Signalized Urban Intersections, T2011/1, March 
2011, TRAIL Thesis Series, the Netherlands 

Corman, F., Real-Time Railway Traffic Management: dispatching in complex, large and 
busy railway networks, T2010/14, December 2010, TRAIL Thesis Series, the Netherlands 

Kwakkel, J., The Treatment of Uncertainty in Airport Strategic Planning, T2010/13, 
December 2010, TRAIL Thesis Series, the Netherlands 

Pang, Y., Intelligent Belt Conveyor Monitoring and Control, T2010/12, December 2010, 
TRAIL Thesis Series, the Netherlands 

Kim, N.S., Intermodal Freight Transport on the Right Track? Environmental and 
economic performances and their trade-off, T2010/11, December 2010, TRAIL Thesis 
Series, the Netherlands 

Snelder, M., Designing Robust Road Networks: a general design method applied to the 
Netherlands, T2010/10, December 2010, TRAIL Thesis Series, the Netherlands 

Hinsbergen, C.P.IJ. van, Bayesian Data Assimilation for Improved Modeling of Road 
Traffic, T2010/9, November 2010, TRAIL Thesis Series, the Netherlands 

Zuurbier, F.S., Intelligent Route Guidance, T2010/8, November 2010, TRAIL Thesis 
Series, the Netherlands 

Larco Martinelli, J.A., Incorporating Worker-Specific Factors in Operations Management 
Models, T2010/7, November 2010, TRAIL Thesis Series, the Netherlands 

Ham, J.C. van, Zeehavenontwikkeling in Nederland: naar een beter 
beleidsvormingsproces, T2010/6, August 2010, TRAIL Thesis Series, the Netherlands 

Boer, E. de, School Concentration and School Travel, T2010/5, June 2010, TRAIL Thesis 
Series, the Netherlands 

Berg, M. van den, Integrated Control of Mixed Traffic Networks using Model Predictive 
Control, T2010/4, April 2010, TRAIL Thesis Series, the Netherlands 

Top, J. van den, Modelling Risk Control Measures in Railways, T2010/3, April 2010, 
TRAIL Thesis Series, the Netherlands 

Craen, S. de, The X-factor: a longitudinal study of calibration in young novice drivers, 
T2010/2, March 2010, TRAIL Thesis Series, the Netherlands 

Tarau, A.N., Model-based Control for Postal Automation and Baggage Handling, 
T2010/1, January 2010, TRAIL Thesis Series, the Netherlands 



TRAIL Thesis Series 221 

 

Knoop, V.L., Road Incidents and Network Dynamics: effects on driving behaviour and 
traffic congestion, T2009/13, December 2009, TRAIL Thesis Series, the Netherlands 

Baskar, L.D., Traffic Control and Management with Intelligent Vehicle Highway Systems, 
T2009/12, November 2009, TRAIL Thesis Series, the Netherlands 

Konings, J.W., Intermodal Barge Transport: network design, nodes and competitiveness, 
T2009/11, November 2009, TRAIL Thesis Series, the Netherlands 

Kusumaningtyas, I., Mind Your Step: Exploring aspects in the application of long 
accelerating moving walkways, T2009/10, October 2009, TRAIL Thesis Series, the 
Netherlands 

Gong, Y., Stochastic Modelling and Analysis of Warehouse Operations, T2009/9, 
September 2009, TRAIL Thesis Series, the Netherlands 
 
 
 
 
 
 


