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Chapter 1

Introduction

1.1 Problem statement

Over the past decades, traffic congestion hasasexk significantly both on freeways and
urban road networks. As a consequence, travellgysrience higher travel times during
their daily commuting activities and fuel consuroptihas increased due to traffic
congestion. The urban mobility report 2009 (Schrahlal., 2009) shows that in 2007,
congestion caused urban Americans to travel 4lbmihours more and to purchase an
extra 2.8 billion gallons of fuel for a congesticost of $87.2 billion — an increase of more
than 50% over the previous decade. These negasipects of traffic congestion have
been receiving a lot of attention. Therefore, dédfe traffic management strategies, for
instance, ramp metering, peak lanes, speed linatfid signal control at intersections,
traveller information system, have been appliedniprove traffic conditions both on
freeways and urban roads. One important qualitgnobility on the road network is the
travel time. On one hand, the total travel timevehicles can be used to reflect the
performance of road networks and is of great istefer the road authorities who are
trying to improve the mobility on the road netwdekel. On the other hand, individual
travel time is an important quality of a journey fcavellers who need to make decisions
on their choices, e.g. route choice, mode choicedaparture time choice.

Different monitoring techniques, for instance, Auttic Number Plate Recognition
(ANPR) camera, Bluetooth scanners, mobile sensGRS( integrated in-car devices,
mobile phones, etc.), speed sensors (e.g., radectdes) have been applied to measure
travel times over the last decades. Some of thesenigues (e.g., ANPR, Bluetooth
devices) have been proved to be very promisinge@ally on freeways (Bertini et al.,
2005; KMJ Consulting, 2010; Yegor et al.,, 2010). blMe sensors, especially GPS
equipped probe vehicles, have been widely usedllect traffic information both on
freeways and urban roads in recent years. At thantimee, scientists have proposed




2 Modelling Urban Travel imes

different mathematical models to estimate travaekes (Chu et al., 2005; OH et al., 2003;
Vanajakshi et al., 2009; Yeon et al., 2008) or mtenlavel times (Clark2003; Innamaa
2005; van Hinsbergen et aR009; van Lint 2004; You et al.2000) and these models
perform quite well on freeways. However, compardith 'weeways, very few models have
been developed for urban networks and most esbmair prediction results are not so
satisfactory (Liu, 2008). The reason behind thishet the traffic mechanisms on urban
roads are very different from those on freewaysaffir flows on freeways are often
treated as uninterrupted flows, while traffic floas urban roads are in general interrupted
flows. Travel time varies with the fluctuationstmaffic demand (e.g. due to time of day,
day of the week, weather, seasonal effects, papolaharacteristics, traffic information
and user responses) and supply (e.g. due to irntsidevad works, weather conditions,
road geometry) on freeways, while on urban artgribésides the fluctuations in traffic
demand and supply, travel time can be influenced dblyer factors. Figure 1.1
schematically describes factors contribute to theel time on the urban signalized roads.

~ ~
o7 = = =
/ [rememmm—— 8
\ Traffic Sioihinvi N\
Traffic state / control tochastic \
I Stochastic \ arrivals and
| Sflow I ( | ¢ departures
\ .
\\ Overflow \// Uniform /
del. dela /
S - P - ~ i -

Turning vehicles
from cross streets
Bus maneuvers at
bus stops
Parking vehicles

Crossing
pedestrians and
cyclists

Vehicle
composition
Spacing between
intersections
Speed limit

Intersection delay

Stochastic

Travel time
distribution

Free flow
travel time

S¢,
o%as[ oM
‘c

Mid-link delay

'a"“’\c

External factors (e.g.,
Weather conditions)

Figure 1.1: Schematic representation of factors edributing to the link travel time
on the urban road

Travel times vehicles experience on the urban mad be decomposed into free flow
travel times and delays. Vehicles travelling on tinean road are subject to intersection
delays due to queues and traffic control and nmik-llelay caused by turning vehicles
from cross streets, bus manoeuvres at bus stopsngavehicles along the roadside,
crossing pedestrians and cyclists, etc. Howeveersaction delays vary with effects of
stochastic properties of traffic flow, stochastitivaals and departures at the signalized
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intersection and variations in the traffic contrdhese partly stochastic factors are not
independent but rather overlap. As a result, debygs uncertain given known traffic
condition (traffic flow) and traffic control. Therde flow travel time is basically
determined by the distance and the free flow sp€bd.free flow speed is determined by
the speed limit, vehicle composition, spacing betwetersections, lane width (TSENG
et al., 2005). Therefore, the free flow travel tim@ot a constant value but variable given
known travel distance. The result of all thesedets that for a given link or route within
a certain time period, travel times are variable arcertain travel time distribution can be
observed.

Figure 1.2 illustrates the empirical travel timewil relationship derived from local 10min
aggregated measurements of time-mean flow and médzel time for each 10min on an
urban arterial road ‘Kruithuisweg’ in March 2010time Netherlands. There is almost no
influence of public transit, cyclists and pedesisigince no bus stops, bicycle lanes and
pedestrian lanes were designed along the road.d&lsy vehicles experienced on this
road is mainly caused by intersections. The redidnillustrates the uncongested
condition and region ‘B’ shows the oversaturateddition. It can be clearly seen in the
Figure 1.2 that there is no one-one correspondezlatonship between travel time and
flow over the whole range of traffic flow. Eventime uncongested condition (region ‘A’),
for a certain traffic flow, there is a big range tadivel time corresponding to it. In the
congested condition, a large variation of traveles can be observed. The variation of
travel times in Figure 1.2 can be attributed to féetors discussed above. Many of these
factors are stochastic, which result in variabderét times. Among all these factors, traffic
control has a special effect on the variabilitytiavel times as illustrated in Figure 1.3.
Two consecutive vehicles that enter the networknedrly the same time can have
completely different travel times when the firshide just passes an intersection in the
end of the green phase and the following vehicketbatop. This may have impact on the
delay at next intersections so that the first iehmay have a much shorter travel time
than the second one. This gives bifurcation (varerBaizen et al., 1998) in the
development of the status of vehicles: even whenitiitial status is the same, the
development of the status in time can be veryehfit.
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Figure 1.2: Travel time-outflow relationships on an urban arterial road
‘Kruithuisweg’ in March 2010 (Flow and travel time are both measured in 10min
aggregation) in the Netherlands.

‘
Figure 1.3: Bifurcation phenomenon of vehicles passy signalized intersections

A thorough analysis of all these factors influegcitravel time variability seems
impossible so far. If the frequency of bus manoesvat stops is known and also the
frequency of parking manoeuvres, the effect on tiravel times can be determined by
analytical models, simulations or heuristic methditt® Artificial Neural Networks
(ANN). The time spent in queues is less predictdeleause the queue length at arrival on
a link is not deterministic. The stochastic chaadaf the arrivals makes it difficult or
even unfeasible to predict the queue length fayrgér time horizon (van Zuylen et,al.
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2007; Viti, 2006). In the case that the traffic condition islewsaturated and there is no
initial queue, depending on the arrival momenthat gignalized intersection, the effect of
the traffic control is basically that vehicles hadelays that are nearly uniformly

distributed between zero second and the duratidheofed phase. As a result, what we
can observe in urban travel time is three timees;alorresponding to the following three
different mechanisms:

1. Slow variations with a time scale of about tenwerity minutes, corresponding to
variations on the average traffic flow (Figure 1.4)

2. Medium fast variations with a time scale of minytesrresponding to stochastic
variations in the arrivals at bottlenecks and gpomding overflow queues (Figure
1.5);

3. Fast variations in the time scale of seconds, achbgehe random arrival moment
at the signalized intersections. As shown in Figuf the difference between the
maximum travel time and minimum travel time candselarge as 162 seconds
even within a small departure time period of 1min.

As discussed in (van Hinsbergen et al., 2009) vetrdimes can be de-noised as the
‘underlying trend’ travel times (low-frequency coament ) and noisy travel times (high-
frequency component). The method proposed by thed®rs can better predict the so-
called ‘underlying trend’ urban travel times. Howevthe so-called noisy component of
travel times is probably caused by the random arrmoment at the signalized

intersections and stochastic variations in thevalsi at bottlenecks and corresponding
overflow queues, which is yet a challenging subjectesearch.

900

Individual travel time
Median travel time
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Figure 1.4: Slow variation of travel time with 15 nmin aggregation. The individual
travel times are collected from an urban arterial oad ‘Kruithuisweg’, the
Netherlands on March 2, 2010
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The importance of travel time variability (uncenty) in urban networks has received a
lot of attention during past years. As suggestedBhaies (Bates et al., 2001), for many
travellers, the reduction in variability of travéme is as important as, if not more
important than, the reduction in expected travakti However, the investigation of travel
time variability as done by most researchers ig junsa phenomenological way by
calibrating some distribution functions (e.g., logrmal, Gamma) with observed travel
times. The problem arises when applying theseiligtons to different traffic conditions
since they are only calibrated for a certain tcaffondition. The character of urban travel
times is represented by a specific distributionclhgan be influenced by different traffic
processes (e.g., traffic flow, traffic control). &@hunderstanding of fundamental
mechanisms of urban travel times can help bettar wih travel time variability, predict
travel time variability and furthermore influencael time variability. Therefore, it is
important to develop a theoretical travel time rilisition model which can explain these
mechanisms and can be generalized for differeffictreonditions. This thesis focuses on
the investigation of the travel time and its vailighbased on an analytical travel time
distribution model, furthermore, estimating anddicgng the travel time distribution for
urban signalized arterials. As for urban arterial&arge part of travel time uncertainty is
due to the uncertainty of delays at intersecti@ysanalysing the stochastic properties of
traffic flows, stochastic arrivals and departuresgersections and signal control, a better
understanding of travel time uncertainty on urbaterals can be achieved. The
knowledge of travel time uncertainty (variabilitgan help different types of travellers
make better route choice for different purposeskRiverse travellers tend to choose more
reliable routes even if they have higher travelesmFor opportunity-seekers, routes with
lower travel times but higher uncertainty are mappealing.

The remainder of this chapter is organized as WidloThe research questions and
objectives are specified in section 1.2. Sectia® defines the research scope in this
dissertation. Then, the main contributions to thesteng knowledge and practical
relevance are described in section 1.4. Finallg, dtline of this thesis is given in
section 1.5.

1.2 Research questions and objectives

This thesis focuses on the development of an doalytravel time distribution model,
calibrating and validating the model and furthereyapplying this model for prediction.
In this section, research questions are given aot eesearch question is followed by the
research objective.

Observed travel times are essential for solid cafibn and validation of any travel time
estimation or prediction models. During the pastades, different monitoring techniques
have been applied for monitoring road traffic. Ti@ses our first research question:

Research question 1: Regarding many different monitoring techniquese dhese
monitoring techniques qualified for measuring urbawel times?
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In order to answer this question, we set our refealjective as:
Research objective 1: Investigate different monitoring techniques and cdyetheir
advantages and disadvantages in terms of measubag travel times.

Among all travel time measuring techniques, proediscles with GPS as monitoring
sensors has become a popular technique to obtéanmation about travel times. .
However, very little research has been devotedotik linto detailed problems with
measuring urban travel times, e.g., travel timet/dd from two GPS measurements are
usually not complete link travel times or routevaitimes. Then our second research
guestion comes up:

Research question 2: How can we use GPS measurements to derive conipi&ter
route travel times?

Research objective 2: Develop a model to estimate complete link traueles based on
GPS data and compare this model with other existindels.

From field travel time data, we can observe thaaartravel times are very variable. In
most research about travel time distribution, agleinstatistical distribution or a

combination of different distributions is usuallppdied to fit field travel time data(EL

FAOUZI et al.,, 2006; Guo et al., 2010). There is pimysical meaning about these
distributions. Therefore the third research quesisoas follows:

Research question 3: Travel times are very variable on urban signalimsatls, how can
we model travel time variability in an analyticahysuch that it can be applied to describe
travel time distributions for different traffic cditions?

Research objective 3. Developtravel timedistribution models for a single link as well as
for an urban corridor and investigate travel timariability based on travel time
distribution models.

The traffic process on an urban road is ratherhstsiic. The number of vehicles arriving
at the intersection within a certain time perioch@d constant but rather variable. Besides,
vehicle arrival moments at the intersection are deterministic as well. Therefore, our
research question is formulated as:

Research question 4. Do these stochastic properties of traffic flow,cétastic arrivals and
departures influence the travel time variabilitf3d, how do these factors influence travel
time variability?

Research objective 4: Investigate the impact of different arrival proges and stochastic
capacities on the travel time variability undefetiént traffic conditions.

Traffic is interrupted by signal control at intecens on urban roads. Vehicles need to
wait at the intersection when the traffic lightrésl. This causes delay to arriving vehicles
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at the intersection. Besides, vehicles passingifistream intersection either can pass the
downstream intersection without delay or vehicleech to wait at the downstream
intersection due to the queue or traffic contreld(pphase). This puts forward our fifth
research question:

Research question 5: How does signal control influence the travel tidigribution for an
urban corridor?

Research objective 5: Model the impacts of signal coordination on thavél time
distribution for different traffic conditions.

Modelling dynamics of queues at intersections ilsatchallenging topic. Queues are not
deterministic but rather stochastic as alreadyudised by (Viti, 2006). For a given traffic
condition and traffic control, a queue distributicen be observed. The queue has a direct
impact on the delay and therefore on the travektin undersaturated conditions, the
overflow queue distribution can be derived anaflticand there is always an equilibrium
distribution which can be achieved by a certainetiperiod, regardless of the initial
condition (e.g., no overflow queue or a certairgtarof the overflow queue). However, in
oversaturated conditions, the queue distributionrather time dependent and no
equilibrium distribution exists. Then, the relatedearch question is:

Research question 6: Can we estimate the overflow queue distributiomficample travel
time measurements and furthermore reconstructdhrelttime distribution?

Research objective 6: Estimate parameters (overflow queue distributiothis case) in the
travel time distribution model based on measuredelr times (delays), subsequently
reconstruct the travel time distribution from esdted parameters.

If a travel time distribution can be reconstrucbaed on the estimated parameters, then
the following question is:

Research question 7: Can we predict travel time distribution from théwerk state?

Research objective 7: Develop a model to predict travel time distribatiith sufficient
accuracy for practical applicability.

1.3 Research scope

The previous section discussed research questi@miswill be tackled throughout this
thesis and research objectives that need to bewashi The aim of this section is to define
the research scope.

This research focuses on urban arterials with ftk@@ controlled intersections. Urban
roads with dynamic controlled intersections, ad aglunsignalized urban roads and urban
streets with roundabouts are not addressed. Hoywswere widely applied dynamic traffic
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signal control systems, e.g., SCATS or SCOOT (SCAAW6; Hunt, et al., 1981), fall
back to fixed time control, for instance, in pedbw situations. The variation of cycle
time and green splits is small within a short tipegiod under the similar traffic condition.
Unsignalized urban roads can be modelled in a ainwlay, but more complicated and
therefore not the subject of research yet. No gpatiention is given to different vehicle
classes and therefore heterogeneity of traffic amsitipn is not considered in this
research.

Many factors can influence the urban travel timé s variability as discussed in section
1.1. A thorough analysis of all these factors wulteng travel times seems unrealistic. On
urban signalized roads, delay at intersections tdatess a large part of the total delay
vehicles experience and therefore has a significapact on the travel time. In this thesis,
the focus is on the stochastic traffic processeastatsections and traffic control on urban
arterials as shown in figure 1.1 (grey hexagon b&hen developing the travel time
distribution model, the free flow speed is assumetto be a constant value, but to have a
certain probability distribution (e.g., normal distition). The influence of the variation of
free flow travel time on the travel time distribariis also discussed. Other factors, such as
bus manoeuvres at bus stops, crossing pedestndnsyelists, turning vehicles from cross
streets, are not explicitly considered but canruded in the phenomenological free
travel time distribution.

1.4 Main Research contributions

1.4.1 Scientific contributions

The scientific contributions of this thesis to gtate-of-the-art of understanding modelling
urban travel time can be summarized as follows:

The discussion and comparison between differetnt@ogies of measuring urban travel

times give more insight into the application ofdégechnologies in the urban network
context. Especially with GPS probe vehicle systdm, fundamental problem related to

deriving complete link or route travel times froecorded time stamps of two arbitrary

positions on the link/route is not explicitly addsed in most research. In chapter 3, a
model to derive the complete link travel time iopwsed and this model outperforms

other existing models.

* A new analytical link travel time distribution mdde presented. It takes into account
the stochastic properties of traffic flow, stochastrrivals and departures at the
signalized intersection both for undersaturatedit@mns and oversaturated conditions.

 The comparison of delay (travel time) distributiongh different arrival processes
(Poisson, Binomial) at intersections has been padd, which provides more insights
into how different arrival processes influence gefravel time) distributions under
different traffic conditions

* The delay (travel time) uncertainty analysis basedhe developed delay (travel time)
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distribution model provides new knowledge on theletion of travel time uncertainty
among different traffic conditions.

* An analytical travel time distribution model for amban corridor, which takes into
account of the signal coordination between consexuntersections, is for the first
time developed in this thesis. Different from othesearch about travel time
distribution on urban roads, which mainly focusesapplying statistical distributions
to the real data, the proposed model (chapterd@)iggs more insight into travel time
variability on urban arterials and it can be apple different traffic conditions.

* Heuristic methods are proposed to estimate theflowequeue distribution from a
sample of measured travel times. Based on the a®tihqueue distribution, the travel
time distribution is well reconstructed using theopgbsed travel time distribution
model.

1.4.2 Practical relevance

Besides the scientific contributions listed in grevious subsection, the work done in this
thesis is also relevant to some practical appbeoati which can be elaborated in five
aspects:

» Assessment of traffic state: Monitoring link/route travel times is an importaopic in
traffic management. Nowadays, GPS equipped prolcles are widely used to
monitor traffic conditions. The average speed esttath from GPS data is used to
reflect traffic conditions on the road in most pireal applications. However, it is not
the best option to use the average speed on tla@ signalized roads to characterize
the traffic situation. While on freeways the averapeed from probe vehicles gives
more useful information regarding the traffic statbe models discussed in chapter 3
and the proposed neural network model to estintegecomplete link travel times
from probe vehicle data provides the possibilitymonitor traffic states for urban
links using estimated travel times from GPS data.

» Travel time assessment. The present navigation systems provide mean triawels
for urban routes based on average traffic condition only a few probes (e.g.,
Tomtom does that). The model proposed in this shaskes it possible to give a
better estimation and even prediction of the whalege of travel times and inform
drivers better about routes with highest reliailit

* Travel time reliability: The travel time distribution model developed instlihesis
gives the possibility to assess travel time religbin urban areas, which is one of
issues in the policy goals (at least in the Ne#nats).

 Travel time prediction: Instead of predicting the mean travel time, thigsth
proposes a travel time distribution prediction modeich is more meaningful for the
urban network with a lot of uncertainties involved.
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* Route choice models. In route choice models, travel time reliabilitydsnsidered as
an important aspect which influences choice behawvidhe travel time distribution
model provides the possibility to better incorperéitavel time reliability into route
choice models.

* Influence uncertainty: By understanding fundamental mechanisms of urbavel
times, for instance, impacts of different traffiopesses (e.qg., traffic flow and traffic
control) on the travel time distribution, it proeis possibilities to influence the travel
time distribution (uncertainty) on urban roads.

1.5 Thesis outline

Figure 1. 7 shows the structure of this thesis #ra& connection between different
chapters.

Chapter 2 provides a state-of-the-art overview afldelling urban travel times. Three
distinguishable yet interrelated parts of modellurgan travel times are covered in this
chapter, namely, modelling delay at intersectidreyel time estimation and prediction
models, modelling travel time variability. Both ahtages and disadvantages of these
existing models or modelling approaches are distlisExisting delay models mainly
look at the expectation or standard deviation daylewhich just partially explain the
delay uncertainty at intersections. Most traveltiestimation or prediction models mainly
estimate or predict average travel times, whiley ttend to overlook the variability of
travel time. The stochastic properties of the itaffrocess on urban roads are not
explicitly modelled in most cases. All these limibas in the existing models make urban
travel time estimation and prediction less accurate

Chapter 3 compares different traffic monitoringhieiques for measuring urban travel
times. Special attention is given to the GPS pradfecle system. A neural network model
is proposed to estimate complete link travel tirfresn partial travel times recorded by
probe vehicles. The proposed model is compared mithother models and the results
show that our model outperforms the other models.

Chapter 4 describes the development of the dektyilalition model for an isolated, fixed-
time controlled intersection. The model considées gtochastic properties of traffic flow,
stochastic arrivals and departures at intersectiBased on the delay distribution model,
the delay uncertainty is investigated under diffieretraffic conditions (from
undersaturation to oversaturation).

Chapter 5 is a further extension of chapter 4. rtivgles an analytical travel time
distribution model for an urban corridor with fix¢idhe controlled intersections. The
model explicitly takes account of signal coordioati between two consecutive
intersections. Different offset settings (well-cdimated, different levels of mismatch) are
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investigated under different traffic conditions. eTrcomparison of the model and
simulation results as well as the field data isprgéed in this chapter.

Chapter 6 proposes heuristic methods to estimatanpers (e.g., overflow queue
distribution) in the travel time distribution modehsed on sample measured travel times.
Afterwards, the travel time distribution is recansted using estimated parameters.

Chapter 7 describes the link travel time distribatprediction procedure and how this
model is applied to predict the travel time disitibn with field data.

Chapter 8 summarizes conclusions from this researuth provides future research
directions.

Apart from main chapters, appendixes A to D providare detailed derivation of model
equations and analysis.

Travel times derived from GPS data are used agtbend-truth in our research. The
discussion of the GPS positioning and speed infoomaaccuracy is provided in
Appendix A.

The delay distribution model developed in chapteodsiders stochastic overflow queues.
Appendix B provides the detailed formulation of di@v queue distribution based on
Markov chain process.

In chapter 5, the delay distribution model for aivam trip is presented. The detailed
derivation of boundary delays in the delay distiidau function can be found in
Appendix C.

Appendix D compares the formulation of link tratiehe function in the case of a vertical
gueue with that of shock wave.

Appendix E provides more detailed information abtheét field test area we chose for our
research.

Appendix F gives the estimation process of real-#PS travel times, which were used
for the validation of the proposed model in chaptand 7.
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Chapter 2

State-of-the-Art of travel time
modelling on urban signalized roads

2.1 Introduction

Modelling travel time on freeways has been inteslgivdiscussed in the literature, from
travel time estimation and prediction models (Dhat al, 2003; Innamaa2005; van
Hinsbergen et gl2008; van Lint et al.2005; Wei et a).2007; Yeon et al.2008) to travel
time reliability models (Asakura et al., 1991; Ltauset al., 2010; Tu et al., 2007; 2008).
A lot of these models have shown relatively gomiiits either in estimating or predicting
travel times on freeways. In this thesis, the fosusn the travel time at signalized urban
roads, which has attracted relatively less attandiae to the increased complexity brought
by the traffic process at the intersections. Tladfitr characteristics of urban roads are
significantly different from those of freeways. Thravel time is mainly determined by
three distinctive elements:

1. Minimum driving time, mainly determined by the tedwistance and the free flow
speed characteristics;

2. Waiting time at the junction(s), determined by ttadfic control imposed (signalized,
unsignalized intersections or roundabouts);

3. Lost time due to secondary operations, such asirgankovements, (un)loading
vehicles and buses at stops, crossing pedestaaiscyclists, turning vehicles from
Cross streets;

The free flow speed on urban roads is mainly datexchby the speed limit. It can be
influenced by the vehicle composition, differenividrg behaviour, lane width, number of
lanes, spacing between two intersections and ERENG et al. 2005; Yusuf 2010). The
mid-link delay is mainly caused by the movementaf. buses at bus stops, vehicles

15
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parking along the road, pedestrians and cyclistssing the road. The time spent in
gueues is determined by the queue lengths andffénetiee capacity of the bottleneck in
front of the queue. Since this is in most casegy@alized intersection, this part of the
travel time has a strong relation with traffic satgy The delay at a signalized intersection
is determined by the regular process of the greehred status of the signal and by the
gueuing process. However, some irregular behaveg, visiting a shop during the trip
along the roadside, is difficult to be modelled.isTlgives outliers if travel times are
measured and this is one of the problems in piiedittavel times from observed values.

It is widely reported that the delay at signalizei@rsections constitutes the largest part of
the total delay in urban networks. For this reasom now on in this thesis we will focus
on signalized roads. According to the above liskede elements, travel times - excluding
intermediate stops for shopping etc. - on urbanaiged roads can be subdivided into
two parts: time spent for traversing links with ided speed and delay due to the queue
process at traffic signals. Since delays at sigedlintersections play a dominant role in
the travel times that vehicles experience on urtmads, modeling delay is not only
important for real-time traffic control but alsorfarban travel time estimation and
prediction. In this chapter, firstly, section 2.2ep a state-of-art overview of urban travel
time estimation and prediction models and theiritations in real applications are
discussed. Thereafter, section 2.3 describes arallgielay and delay variability models at
signalized intersections. In section 2.4, urbanefdime variability measures and urban
travel time variability models are presented. Hinalection 2.5 summarizes this chapter
and provides the motivations for this thesis.

2.2 Urban travel time estimation and prediction

In literature, researchers propose different wdysategorizing travel time estimation and
prediction models. For instance, a first distinctican be made according to different
traffic data sources: travel time estimation anddprtion models can be classified into
fixed sensor-based (e.g., loop detectors, cam&lastooth), mobile sensor-based (e.g.,
probe vehicles equipped with GPS devices or mqtiilenes) and multiple data source-
based (e.g., combining of the fixed sensor datathedmobile sensor data). From the
modelling approach point of view, these methods banclassified into model-based
methods and pure data-driven approaches. Amongnaltiel-based methods and pure
data-driven methods are two commonly used claddedel-based methods make use of
traffic flow models to estimate or predict trafétates along the route of interest. Based on
the traffic states, travel times can be estimategredicted. The data is used in these
methods to calibrate the model parameters and dterchining the actual traffic states.
While pure data-driven approaches just look indhta for relationships, trends analogies
between certain parameters (e.g., speeds and flwes}he (future) travel times without
physical models behind. The overview provided ii$ thection only covers the model-
based approaches for travel time estimation andigiren on urban roads.
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2.2.1 Model-based methods
Queuing theory based models

1. Sandglass model

Queuing theory is widely used for analysing congegslystems. One famous model based
on queuing theory is called the ‘Sandglass traweetmodel’ which is an analogy of
vehicle discharging at an intersection with sawevihg to the bottom of the sandglass. In
this model, travel time is defined as:

2.1)

WhereTT is the travel timeNg andLq are number of vehicles in queue and the length of
gueue, respectively; is the length of road segment;is the link free flow speed aris
the link capacity.

The first component is the time spent in queuingtha intersection. The second
component is the free flow travel time on the urgested section of the linkhis model is
therefore a deterministic queuing model.

(Takaba et al., 1991) extended the sandglass nbydi#¢fining a procedure for estimating
the number of vehicles in the queue. The link tréiwee is further expressed as:

K.
Tr=ble
c
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_ LQ(_S u) " (2.2)

Whereu is the travel speed;is the jam densitys is the saturation flow rate.

The application of this model requires extensivénestion and calibration of model

parameters such as saturation flow rate, jam derfsée flow speed and queue length.
Furthermore, the model is based on the steady statdition which implies that the

probability distribution for the number of vehicle®es not vary with time. This is

obviously an unrealistic assumption for the ovensded condition in which there is no
equilibrium state of overflow queue.

2. Liu et al. model

As the development of traffic data collection teicjues, more and more traffic data
become available for traffic performance analysisl anodel development. (Liu et al.,
2006) proposed a time-dependent arterial traved tastimation model by utilizing high-
resolution detector and signal status data. Acogrdio this model, travel time is
composed of three parts: free flow travel time,.qog delay and signal delay. Therefore,
the time-dependent travel time can be calculated as
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IO =3 T+ 3 B(bd Y, Bt (23)

where, TT°P(t) denotes the estimated travel time from origin Qié¢stination D at the
departure time instartt TT,'”'"* denotes the free flow travel time from the upstrea
intersectioni to the downstream intersectidrl  D'y(t) denotes the queuing delay
encountered by the vehicle arriving at interseciiat time instant; D'(t) denotes the
signal delay encountered by the vehicle arrivinghtdrsection at time instant; ty is the
departure time instant at the origin Qe is the arrival time instant at intersectign
which can be derived as:

tl :ti—l

arrive departure

+TT (2.4)

departure

is the departure time instant at intersectiomhich is calculated from:

. L . i
ttljeparture - tlarrive+ DI q(tl arrive) + D gt arrivg
fi

e IS the adjusted arrival time at intersectidior calculating signal delay; it depends on
the signal and flow status at the intersection.

This model was further improved in (Liu et,a2009) by integrating probe vehicle data.
The good performance of this model is at the céstcourate high resolution data (e.g.,
second-to-second detector data and signal conatal) dvhich are unavailable in most
cases in reality.

Traffic flow theory based models

The first order traffic flow model proposed by (biill et al., 1955), as well as (Richards,
1956) (which is widely known as ‘LWR’ model) has eme successfully applied in
describing traffic flow dynamics on freeways. Aatimig to LWR model, the traffic flow
can be characterized by flow, density and speathubie following equations:

oq(xt) , ok(x Y _,
ox ot

(2.5a)

q=Q(K (2.62)

Where, q(x, t) and k(x, t)is the flow and density at time instahtand locationx,
respectively. The first equation is also termeg@sciple of conversation of vehicles. The
second equation represents the so-called the fumataindiagram, which describes the
relationship between flow and density. Differentnfis and equations can be used to
specify this relationship. The application of LWRodel for travel time estimation on
freeways has been investigated by several reseaa(blfM et al., 1999; OH et al., 2003).
This type of model requires either no on-ramp affidaonp or detectors on every on-ramp
and off-ramp. However, it is difficult to apply thH&VR model on the urban road due to
the fact that it is unlikely that all traffic stn@g merging and diverging are monitored.
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On the urban signalized roads, the kinematic (sheackve theory is widely used to
describe the queue forming and discharging prooess time and space. Different from
the queuing theory which considers vertical quengsout occupying space, the shock
wave theory considers horizontal queues, whichasemealistic. One of these models was
proposed by (Skabardonis et al., 2005), which apd{inematic wave theory to model the
spatial and temporal queuing at the traffic sigrassidering the signal coordination in
estimating traffic arrivals at the intersection.eTimodel estimates the travel time as the
sum of the free flow time and the delay at thefizasignal. The delay is further
decomposed of three parts:

- Delay of a single vehicle due to the traffic signal
- Delay due to the queue formed at the intersection;
- Oversaturation delay caused when the number ofadsris larger than the number of

departures at the intersection.

This model considers different processes and tleetedf signal offsets and platooning is
also taken into account. However, the applicatibtinis model requires the estimation and
calibration of a lot of parameters such as parammdte the fundamental diagram (free
flow speed, capacity, jam density and congestedev&peed), parameters for the driver
behaviour (acceleration and deceleration rate).

Cdl Transmission Modds

The cell transmission model (CTM) was first propbey (Daganzp1994; 1995). It is a
finite difference numerical approximation of the RMydrodynamic model. In CTM, the
road section is divided into homogeneous sectiatled ‘cells’. The length of each cell is
equal to the distance travelled by a vehicle in ome step at the free flow speed so that
no vehicle can pass more than one cell during anelation time step under free flow
conditions. In addition, each cell has a holdingamaty N; determined by the following
equation:

N, =kntL (2.7)
wherek; is the jam densityy; is the number of lanes in celandL is the cell length.

The CTM has two basic equations that are appliezhah time stepfor each celi. The
inflow into celli+1 (or outflow from celli) at time step is given by:

Ga(® =min{n (©,Q.,. W/ y (N, = n,(} (2.8)

Whereni(t) is the number of vehicles in célivaiting to enter celi+1; Q1 is the inflow
capacity (vehicle) of ceit1 per time stepNi+1-ni+1(t) is the available space in cell
andw/v is the ratio of the backward shockwave speed aadrée flow speed.
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Once the aforementioned flows for each cadlt time step t have been determined, the
number of vehicles at the next time step in cedn be updated as:

nt+)=n(+q()-q.(H (2.9)

The CTM has been initially proposed to model taffow on highways. The application
of CTM for traffic state estimation and predictibas been discussed in (Tampere et al.,
2007), which shows that the CTM can be used inreegg Extended Kalman Filtering
framework to do the traffic state estimation anedaction on motorways.

Lo et al. (Lg 1999; 2001; Lo et g1.2004) also show that the CTM can be extended for
network scenarios, e.g., signalized intersectiddyg. formulating the inflow capacity
Qi+1(t) as a binary variable that fluctuates between andl saturation flov@Q, the effects

of a traffic signal can be simulated.

if t Jgreen phas

if tOred phas (2.10)

Qn
t) =
Q+1( ) { O
The application of the CTM for traffic control purpe has been proposed by (11®99;
2001). The delay in CTM can be estimated at thelee¢l by subtracting a cell’'s outflow
from its current occupancy for each time step as:

d (1) =n (1) - g..(D (2.11)

Once the delay has been determined at a cell Igw=n be aggregated at link or network
level and used as the performance measure forai@ttategies.

The CTM has the ability to capture the macroscdpatures of traffic, e.g., shockwave,

gueue formation and dissipation in both congestetiumcongested conditions. However,
in CTM, the queue forms in a deterministic way vhig not realistic in the urban context.

Vehicle arrival and departure at intersections rave deterministic but rather stochastic,
following certain distributions (e.g., Poisson, 8mial). Therefore, the observed queue is
also not deterministic but more stochastic.

Other model

Traffic counts from loop detectors are often digpth by means of cumulative vehicle
plots. Cumulative vehicle plots have a number gdliaptions, among which they can be
used to determine the travel time in between tvaal rgections. As shown Figure 2.1,

A(t) is the cumulative arrival curve at the entry gbad section anB(t) is the cumulative
curve at the exit of a road section. The travektimfitheN™ vehicle can be determined as:

TT(N)=D*'(N)- AY(N (2.12)
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Figure 2.1: Cumulative arrivals and departures

Travel time estimation based on cumulative plotsdisie mainly for freeways. The
cumulative traffic counts at the upstream and dareasn of links can be recorded by
detectors. As a result, the estimation resultsvarg sensitive to the accuracy of detector
counts. As for urban roads, due to the intersestanmd mid-link sinks and sources, there
is relative deviation amongst cumulative plots whitas been intensively discussed by
Bhaskar et al. (Bhaskar et,&2009). By integrating different data sources inolgdraffic
counts from loop detectors, signal settings andb@neehicle data, Bhaskar et al. (Bhaskar
et al, 2009) proposed a travel time estimation model fban roads based on cumulative
plots. The cumulative plot measured from the ujpstrentersection is redefined by
utilizing the probe vehicle data and the cumulajiVet at the downstream intersection.
This model improves the estimation accuracy by emiing the miscounting at the
upstream intersection and mid-link sinks and sairddowever, on one hand, the
miscounting problem at the upstream intersectiaoissidered and on the other hand, the
model assumes that there is no counting error @atdttwnstream intersection which is
obviously unrealistic.

In general, model-based methods can describe #ifiictprocess explicitly and provide
full insight into the locations and causes of dslay the road network. Furthermore, these
model-based methods are generic in the sense hbgtdre not location-specific and
system-dependent. However, these models are venpleg to implement in practice due
to the estimation or prediction requirements offitademand and supply at the model
boundaries as inputs.

2.2.2 Data-driven approaches

Different from model-based approaches, data-dria@proaches consider the traffic
processes which generate travel times as black shaxal exploit purely inductive
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techniques to either directly or indirectly estimat predict travel times without explicitly

addressing the physical traffic processes. Bagicallo types of data-driven approaches
can be found in literature. The first type is putatistical methods which are more
conventional approaches by assuming specific statisproperties of input parameters
and outcomes (e.g., Gaussian noise around the nelms second type here we call
Artificial Intelligence based approaches, which arere advanced methods though they
can also be statistical methods, such as clustékiiparest Neighbour, Fuzzy C-means),
neural network models.

Pur e statistical approaches

1. Regression methods

Regression analysis is widely used for predictind & also used to understand which of
the independent variables are related to the depenériable, and to explore the forms of
these relationships. Many researchers (Gault e1981; Sisiopiku et al., 1994; Takayuki
et al., 2004) have developed travel time predictimdels based on regression. The main
advantage of these models is that they are simpleeasy to implement in practice. The
factors such as degree of saturation and signs¢isfican be easily incorporated into these
models. The drawbacks of Gault's model and Sisigpiknodel lie in the fact that they
are only for urban segment travel time predictidfhether it is possible to extend these
regression models to a route trip has not beenstigated. Furthermore, these regression
models are valid for relatively small deviation®rfr those used for calibrating the
regression line.

2. Time series methods

Time series models such as autoregressive moviatpge (ARMA) and autoregressive
integrated moving average (ARIMA) models (Billingsal, 2006; Davis et al.1990) are
widely used for travel time prediction. One advgetaf these models is that the traffic
state (speed, flow, occupancy) or travel time @vprus time intervals can be incorporated
to predict travel time in the next time intervaspecially for trend prediction. However,
this can also be a limitation of such models treatehthe tendency to focus on the trend of
data and miss the extreme. Therefore, these mbdeks the difficulty of capturing non-
recurrent traffic behaviour or the transition frooongestion to free flow condition.
Furthermore, these models require a historicalbdesta which is not always available in
practice.

Pattern recognition based approaches

Pattern recognition is used for classifying datattgrns) based either on a priori
knowledge or on statistic information extractednirdhe patterns. Different pattern
recognition based techniques such as k-NearesthNeig(k-NN), fuzzy C-means and
neural network are applied to match traffic patsefior travel time estimation or prediction.
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1. k-Nearest Neighbour based approaches

The k-Nearest Neighbour (k-NN) is a method for siiggng objects based on closest
training examples in the feature space. The balsa behind it is that by matching the
current set of input variables with historical obvsions, a set df historical observations
that are similar to the current input can be oladinThe current output can be defined as a
function of the values from the obtained sek bistorical observations.

You et al. (You et al., 2000) applied k-NN methodestimate travel time on urban roads
based on the travel times obtained by probe vehidleeir model is based on segregating
the non-linear time series of travel time data iloial linear trend. The estimation results
showed that the model could perform well with a MAIR the region of 8% to 10%.

Bajwa et al.(Bajwa et gl2003) used the inverse of time-mean speed aggcbgatr 5
minutes obtained from ultrasonic detectors as feattectors. The traffic pattern was
identified as a function of distance weighted bgsth feature vectors. A genetic algorithm
was applied to determine the optimal number of estaneighbours. By minimizing the
squared difference between the predicted traffitepa and historical traffic patterns in
the database, nearest neighbours are obtained.

Based on the flow and occupancy data collected Hey Ibop detectorsRobinson
(Robinson, 2005) applied the k-NN method to estematban link travel time. The
Automatic Number Plate Recognition (ANPR) camerasemised to collect link travel
times for the historical database. The key parammetéhich include attributes to be
included in the feature vector, Distance Metridueaofk and Local Estimation Method in
the k-NN method were identified. The valuekois determined by minimizing the mean
squared error between the predicted traffic patechthe historical pattern. Then the final
travel time is estimated using LOWESS (LOcally Wigd Scatter plot Smoothing)
method. Robinsomlso compared the k-NN method with other existingdels. Results
showed that the proposed model outperforms othestieg models with the optimum
parameter setting, especially at low and very legiels of actual travel time.

The advantage of k-NN is that it has a solid thecakfoundation with a lot of available
research relating to the implementation of this hndt However, there are several
disadvantages related to this method. First, tidNkmethod requires a large historical
database which can cover different traffic pattetiewever, increasing the size of the
data also increases the computation time. In degeatnon-recurrent incident happens, the
model tends to be incapable of capturing suchfldnehenomenon since it is not stored
in the historical database. Secondly, the perfogeari this method highly depends on the
selection of parameters as discussed by (Robir@0f). There is no standard rule to
select the attributes to be included in the feataeor. An insufficient size can result in
an incomplete image of traffic searched in his@ridata. The value df is difficult to
determine and dependent on the size of the hislatatabase as well.
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2. Fuzzy logic based approaches

Li et al.(Li et al., 2002) applied fuzzy logic tstamate link travel time by using a single
GPS equipped probe vehicle. The driving patternsewketermined by combining the

average speed of the probe vehicle and a variaildonaximum continuous acceleration
(MCA). The output is the ratio of travel time ofetlprobe vehicle to the mean travel time
which is estimated from camera data. The membefsinigtion values are determined by
historical traffic data of the tested road segmBased on the output ratio, the travel time
is estimated for different driving patterns (sloery slow, medium, fast/very fast).

Though only a single GPS probe vehicle can protfue travel time estimation, the

formation of membership functions requires a laageunt of historical data. In addition,

Li et al. did not discuss the question how to datee the range of output ratio for

different driving pattern in order to estimate ehtime.

The advantage of using fuzzy logic is that it abonprecise input data for estimation or
prediction. The employment of fuzzy logic might belpful, for very complex processes,
when there is no simple mathematical model for lyigionlinear processes (e.g., the
traffic process on the urban road is highly nordie However, applying fuzzy logic
requires the determination of the number of meniberiinctions. There is no standard
rule about this. Furthermore, how well these mestliprfunctions can represent different
traffic patterns directly determines how accurate éstimation or prediction results would
be. As a result, fuzzy logic based methods reqgailarge historical database that can
cover different traffic patterns and a sufficiexipert knowledge for the formulation of
different rules for fuzzification and defuzzificad.

3. Neural network based approaches

Neural networks have been widely applied for shemta traffic and travel time prediction
on freeways. Models based on neural networks hheepbtential to learn complex
nonlinear relationship between variables by idgitg the patterns in the data. Different
neural network models such as spectral basis neetalork (SNN) (Park et al., 1999) ,
state-space neural network (SSNN) (van Hinsbegjal, 2008; van Hinsbergen et al.
2009; van Lint et al.2005) have been successfully applied to predictetréime on
freeways. The idea behind all these models is tifzael times are determined by the
traffic states along the route. Whereas on therurbad, the application of neural network
is less successful due to the difficulties in pcédg turning fractions at intersections and
highly complex traffic conditions along the roaddascussed by (Liu, 2008).

The clear advantages of neural network models decline fact that they do not require
extensive expertise on traffic flow modelling, thia¢y are fast and easy to implement and
ready-to-use software packages for model designcahbration are available (van Ljnt
2004). However, there are three main problemseelat neural network models:



Chapter 2. State-of-the-Art of travel time modejlion urban signalized roads 25

- Over-fitting: it is one of the problems that occur during newetlwork training. The
estimation or prediction error on the training severy small, but when new data is
applied to the network the error becomes large. mbevork has memorized the
training examples instead of generalizing to netuasions, especially when the
training data set is small. In this case, ther tiede-off between the complexity of the
network and training error though there are sonwhrigues, for instance, early
stopping and regularization to improve the oveirig problem.

- Generalizability: It has been recognized that the neural networkstdn have poor
generalizability. For instance, the network trairfed predicting travel times in the
morning peak hour could not directly be used fadgeting travel times in other time
periods (e.g., off-peak hour).

- Transferability: Most neural network models developed for travaletiestimation and
prediction are location specific. The model develbjor a certain route or link cannot
be applied to other routes or links with differeggometric conditions and traffic
conditions. Therefore, results from one locatiom r@ot transferable to another.

2.3 Delays on urban signalized roads

The previous sections provided different traveldiestimation and prediction methods,
some based on physical models inspired by hydradi;and queuing theories, others on
statistical models, from more conventional to madvanced Al approaches. These
methods, however, do not model explicitly the iaffrocess and delays at the signalized
intersections, i.e. they account implicitly for seedelays when extracting and processing
the data but do not relate the data to the tragffacess at each signal. By doing so they
overcome the extra complexity brought by modelliegplicitly the traffic control
mechanism. On the other hand they fail to providg ihsight into the relationship
between the latter and the resulting travel timeashyics and variability.

The delay vehicles experience at signalized intéiegs accounts for a large part of the
delay that vehicles would experience on the urlmad rcompared with that caused by
other factors, e.g., bus stops and parking aloegdlad. The importance of vehicle delay
at signalized intersections lies in the use of gasameter for both evaluation practices
and traffic management applications, e.g., detangithe optimal signal control scheme
by delay minimization, estimating urban link traw@he by integrating delay models. The
thesis mainly deals with delays at signalized s#etions, and more specifically, how
traffic processes and traffic control mechanisnfhi@mce delay distributions and in turn

to travel time distributions on urban roads. Theref in the following of this chapter we

will give an overview of the delay models and mdidgl approaches that are available in
literature.

The delay at signalized intersections is usuallynee as the difference between the travel
time a vehicle experiences when passing the intBoseand the travel time experienced
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by this vehicle if travelling at desired spedéigure 2.2illustrates an example of

hypothetical trajectory of a vehicle passing twgnsilized intersections. The total delay
experienced at the downstream signal is composeitheofstopped delay due to signal
operations and queues, deceleration delay andesatieh delay.

Any of the components constituting the total detamtribute to its dynamic and stochastic
behavior, and in turn to vehicles travel time vhaility, e.g., the arrival times, their
position in the queue, etc. In the following of ghsection we describe how these
components are modeled and how their variabilitpddressed at the signal level, while
later we extend this overview to the travel timeiaaility.

Distance
A

Total delay

I Acceleration end Acceleration

delay
Standing still |/ /

A Deceleration Begin / - > >
Stopped delay

Deceleration
delay

: >
Time

Figure 2.2: Trajectory of a vehicle travelling on te urban signalized road

2.3.1 Delay models for signalized intersections

Deterministic gueuing model

The deterministic queuing model assumes that vehiarrive at the intersection and
depart from the intersection with uniform and canstrates. Figure 2.3 illustrates
expected cumulative arrivals and departures foh hotder-saturated and oversaturated
conditions. In reality, vehicles are not continudug discrete. Therefore, the cumulative
curves should have steps. The conversion from thaeale time step to the continuous
time step has been clarified by (Van Zuylen et 2006). Therefore, the continuous
cumulative plots are used for analysis. In the wsd¢urated condition, during the red
phase, the arriving vehicles queue up linearlytheg will be served within the next green
phase. The delay in the area of the triangulardrediin bold is called the uniform delay
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as shown inFigure 2.3(a). In the oversaturated conditionllastrated in Figure 2.3(b), a
zero initial queue is assumed in this case. Theageearriving flow rate is larger than the
average departure rate. The overflow delay is tated by the area between the line
which represents the arrivals at capacity and the tepresenting the actual arrivals.
Equations (2.7) and (2.&an be derived to calculate the average uniformydehd the
average delay in the oversaturated condition, cdsfedy.

—_1\2
A=Ay 10

d, =7 2(1-x1) (2.7)
0.5, -ry) x>1.0

d, =900T ((x- D+ (X 1)2 ) (2.8)
Where,

dy: average uniform delay

do: average overflow delay during evaluation perfod
7. signal cycle

A: effective green to cycle time ratio

x: degree of saturation

T: evaluation period in the oversaturated condition

The assumption made for Equation (2.7) is thatalekiarrive at a uniform and constant
flow rate. The queue can always be cleared bef@etart of the next red time. However,
in reality, due to random effects in certain cyglasis likely that some vehicles will
remain queued at the end of the green phase even e average arriving flow is
smaller than the capacity. This phenomenon ocduraralom, depending on which cycle
happens to experience higher-than-capacity flowestatespecially at intersections
operating near capacity. Equation (2.8) considely the deterministic overflow delay
caused by sustained periods of oversaturationffaaaquation does not include the delay
due to the initial queue at the start of analyssqa. Viti (Viti, 2006) showed that the
probabilistic phenomenon contributes to obtain @at transition between the uniform
and the oversaturated delay components, as it mallshown in the next sections.
Moreover, he proposed a delay model that can bd tmeboth under-saturated and
oversaturated conditions and for modelling the ditton between these two states and
also for the case of initial queue.
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(b) Cumulative arrivals and departures in the oversaturated condition

Figure 2.3 Deterministic components of delay in undersaturate@nd oversaturated
conditions with uniform arrivals and departures



Chapter 2. State-of-the-Art of travel time modejlion urban signalized roads 29

Figure 2.4illustrates the relationship among three delay comepts. The first component
W, (k) represents the total delay accumulated within clgddg all vehicles arriving during
cyclek and vehicles already waiting at the intersectiothatstart of cyclé. The second
componentWsx(k) denotes the total delay experienced by only vebiakaiting at the
intersection at the beginning of the cyklandW;(k) denotes the total delay experienced
by vehicles arriving during cyclke and caused by the presence of the residual gQgue
Given the total arrival vehicle8y within cycle k, the average delay experienced by a
vehicle arriving during the cycleis calculated as:

Viti (Viti, 2006) gave a more general expressiavl|dwing earlier works on this subject
by Olszewski (Olszewski, 1990; Olszewski, 1994) as

(2.9)

W(k) :V\/l(k)—q)(Q)+¢)( Q+1)

A (2.10)
with
(2Q + A)Tc— 1y B-g
_ 2 if Q.+A=d
(k) = (2Q + A~ Ty (n,-Q = A)° otherwise (2.11)
2 2ny Ity = A ITe)
_Q’M, _kd
P(Q,) = 20 +(k+1)(Q > ), (2.12)

whereAgis the total arrivals within cyclie nqg denotes the constant value of departures for
each cyclek is the minimum number of cycles needed to s&yeehicles such tha-
k-d<0;

Therefore, given a non-zero overflow queue lengtth@ beginning of a cycle, the above
formulas allow one to calculate the delay experehnn the following cycles due to this
overflow queue.
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Figure 2.4. Schematic display of cycle delay whenverflow queue is present (cited
from Viti 2006)

Steady-state delay models

The deterministic queuing model assumes that vehichrrive uniformly at the
intersection, while steady-state delay models thkerandomness of arrivals into account.
The steady state models are developed under thenptien of stationary conditions for
the overflow queue which indicates that these nwdet applicable only for the cases of
undersaturation. The most widely used delay forrmda proposed by (Webster, 1958):

.-y X 13,2+ 51
d=-=5 + —-0.65% ) x~ 2.13
2[1-Ax] 29— x) %)1 ( )
The first term is the estimation of uniform deld@yhe second term considers the effect of
the random nature of arrivals. It is known as thendom delay’ which was derived
analytically assuming a Poisson arrival processcamdtant departure rate. The third term
is an empirical correction term to reduce the @ipancy with the simulation data.

Besides Webster's model, other steady-state modele proposed under different
assumptions for the arrival and departure distidout(Miller, 1963) developed a model
indirectly estimating delays through the estimatainaverage overflow queue, thus not
limited by a specific distribution for the arrivaléNewell, 1965) proposed a delay model
in which he used an index of variability that istdonited by the assumed arrival
distribution (e.g., Poisson, as in the case of \Wahs



Chapter 2. State-of-the-Art of travel time modejlion urban signalized roads 31

Time-dependent delay models

All steady-state delay models assume that the astichequilibrium can be achieved after
a certain period of time. When the degree of sétmas low, this equilibrium can be
reached within a reasonable time period. Howevéemthe traffic flow is close to the
capacity, the time to achieve the steady stateegaaed the evaluation period. In this case,
the system should allow a long time period to ratiluhe equilibrium state is reached.
Further, as the traffic demand exceeds capacipdststate models could not handle this
situation.

In order to limit the assumption of steady-statadittons, a lot of research has been
carried out during the past several decades tolaevieme-dependent delay models.
Compared with the steady-state models where theatsrand departures are assumed to
follow known distributions and they do not changemtime, the time-dependent models
deal with arrivals and departures as a functiotinog. (May et al., 1967) proposed a delay
model by applying a trapezoidal-shaped arrival ifgadnd constant departure rate. One
assumption in the model is that the random quewetuations can be neglected. This
model could provide acceptable results in highlydemsaturated conditions and
oversaturated conditions. However, when the tralfiev approaches the capacity, the
model underestimates queues and delays becausatthequeues caused by the random
fluctuations are not considered. How to estimate delay properly when the traffic
intensity approaches the capacity remained a pmohietil (Kimber et al., 1979). They
used the coordinate transformation technique sheh the steady-state model can be
asymptotic to the deterministic model in case odreaturated conditions. This approach
overcomes the gap between steady-state modelseagdinistic models. However, there
is no rigorous theoretical basis for this approbahonly a heuristic method, though Viti
(Viti, 2006) compared his model, which has morerays theoretical bases, with Kimber
and Hollis" model and showed some similarities. &l&veless, a number of time-
dependent models have been developed based ondidimate transformation technique
(Akcelik, 1980; 1988; Akcelik et al.,, 1993; Briloat al., 1990) and later on have
incorporated into some capacity guides, e.g., tighway Capacity Manual (TRB, 1997),
the Canadian Capacity Guide (ITE, 1995) and thetralian Capacity Guide (ARR,1995).
A general form of these capacity guide delay modetgven by (Dion et al., 2004):

D=d,x f,. +d,+dx f (2.14)

with:

2
o
d =05 e

C {1—;9 Dnin(x,l.O)}
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Whered; is the uniform delayp; is the incremental delay accounting for the stotbas
arrivals and oversaturation queudsijs the residual delay for oversaturation queues tha
may have existed before the analysis peripgglenotes the adjustment factor accounting
for the quality of progression in coordinated sysdef, denotes the adjustment factor for
residual delay component; denotes the adjustment factor for situations incWwhihe
platoon arrives during the green intervljs the proportion of vehicles arriving during
the effective green intervak denotes the incremental delay factor accountinmgpfe-
timed or actuated signal controller settingsienotes the adjustment factor for upstream
filtering/metering; T is the evaluation period; is the capacity of intersection approach
(veh/h); m and n denote capacity guide parametexsgdenotes the degree of saturation
below which the overflow delay is negligible.

While Kimber and Hollis’ model lacks the theoretidaasis, Viti (2006) proposed an
analytical time-dependent model which can well descthe dynamics of the queue in
both cases of decrease of the overflow queue amdase of the overflow queue based on
Markov process. The formulation of this model is@®ws:

Qmax

E[Q(0)] = Z JIRQ= 9 (2.15)
Qmax

i=0

whereE[Q(t)] is the time-dependent expected value of overflowug;P(Q=j, t) is the
probability of observing queueat timet; Hj (t) is the transition matrix which represents
the probability that the queue length moves froatestat timet -1 to statg at timet. Viti
further derived a heuristic formula which can wedbture the behaviour of the expected
overflow queue from Markov simulation (Equationsl&) and (2.16)):

Q) =a () PQ +(x-1)IN. Df +(1-a (D) I Q + y( ) Te”] (2.17)

Where N¢ represents the average number of departures pde; Q. denotes the
equilibrium value of queue under steady-state dond; o, 5, y are time-dependent model
parameters.

One difficulty in all these delay models is hownmdel the arrivals such that the model
can better represent the real situation. The Poissadval distribution is known to be
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applicable only in the case of an isolated intdrsacwith low traffic volume. As
discussed in (Dion, 2004), various capacity guidalets attempt to consider non-Poisson
arrivals, e.g., platoon arrivals.

Shock wave delay model

Michalopoulos and Stephanopoulous (Michalopoulogalgt1981)derived an analytical
model based on shock wave theory to estimate delagignalized intersections. The main
difference between this model and the steady stak®y model lies in the fact that the
latter assumes that the queue is building verticalthout considering space on the link
while the former considers that vehicles queuezontially. The advantages of this shock
wave delay model is that it describes the evolutbqueues in both time and space rather
than time alone and density variations along timeé space during the dissipation period
are taken into account.

Figure 2.5 illustrates the shock waves at a sigadliintersection in the undersaturated
condition. The maximum queue length can be detexdhimore realistically by
considering the horizontal extent of a queue. Thal travel time spent by all vehicles can
be estimated using the density and flow rate aatstiwith each region. Therefore, the
total delay within one signal cycle is calculatedtie difference between the total travel
time with traffic signals and the total travel timéthout traffic signals (Dion et al., 2004):

TTD = T-I;ig - T-Eo_ sig (218)

The average delay for individual vehicles can hliemeded as:

d :36002|qir|[n (6 — K ) G * T ) (Ko Ky)] (2.19)

wherel, is the maximum queue length;is the arrival flow ratey; is the effective red
phase intervalka, ks, kc are densities of area A, B and £ is the time interval between
the beginning of the green phase and the timenhsthen the maximum queue length
reachesicqis the time spent on clearing the queue of vehicles

The maximum queue length in this model is assumeblet deterministic. However, as
shown in (Viti, 2006), the overflow queue is notateninistic but rather stochastic. Van
Zuylen, and Hoogendoorn (van Zuylen et al., 20@0posed a probabilistic model by
combining the Markov chain process with shock walveory. Due to the stochastic
properties arrivals and departures, the maximunuguength is not deterministic but
stochastic with a certain distribution. The expdctalue of the maximum queue length by
this model is much longer than that from other ni®de
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Figure 2.5: Shock waves at the signalized interséah in under-saturated conditions

2.3.2 Delay variability at signalized intersections

Delay variance models

The delay models as discussed in the previousosectocus on estimating the mean delay
at intersections. However, due to the random flatwtis of arrivals and departures and
interruptions caused by traffic controls, delayséha high variation among vehicles at the
signalized intersection. (Fu et al., 2000) devetbp delay variability model to quantify
the variation of delays in highly undersaturated aighly oversaturated conditions. The
model is composed of two parts: the variance ofuthiéorm delay and the variance of the
random delay and analytical expression is the suromaf these two parts:

Var(d(t) = =LA) 4+ 31 - 4, )+{ 17X, T2 (%, )2} o

12(1- A%, ) x 2 [° (2.20)

WhereVar(d(t)) =time-dependent variance of delay

Tc = cycle time (seconds)
A = effective green to cycle time ratio
la = variance-to-mean vehicle arrivals. Hfe tvehicle arrivals follow a Poisson

distribution,l; is equal to 1
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c = capacity (pcu/second) which is deteedirby the saturation flow rateand
effective green to cycle time ratio

X = degree of saturation
Xmin = mMinimum of (1.0x)
Xmax = Mmaximum of (1.0x)
T = evaluation time

Xo andp; are model parameters and calibrated from a simoualatodel
X, =0.947+ 1.33¢ 10T 4 + 0.157
B, =8.294+ 6.08% 10T ¢

The validity of Fu’s model under the entire randalegree of saturations is questionable
since the model was only developed and calibratetkiutwo extreme traffic conditions
which are highly undersaturation and highly oversstion. Gu and Lan (Gu et al., 2009)
proposed an approximation model which is able tedit the delay variability for
different degrees of saturation with assumptioret tho initial queue is present at the
beginning of the evaluation period, vehicle arsvédllow a known distribution and the
average arrival rate is constant during the evelnaperiod. The model contains two
components including the expected conditional vegaof individual delay and the
variance of mean delay. The analytical model wathén simplified using the Taylor
expansion and the approximation formula is:

var(d(t)) thc(l_/])3(1+ AN- 4')]Xmin )
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Where Var(v) is the variance of arrivalsy and g are model parameters need to be
calibrated.

Gu compared the results from their model with thbsen a Monte Carlo simulation
model and those from Fu’s model. They claimed thats model underestimates the
overall delay variability over middle to high degseof saturation which were not
explicitly investigated in Fu’s model.

Delay distribution model

Besides the delay variance, another effective wanaodel the variability of delay is the
delay probability distribution. Due to the randorsseof traffic flow process and
uncertainty associated with factors affecting iséetion capacity, the actual delay
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incurred in any cycle may be very different frome texpected mean delay. Instead, a
certain probability distribution can be observedfdstunately, research in developing
delay probability distribution models is very limit in the past decades. Olszewski
(Olszewski, 1994) proposed a cycle-average delalggiility distribution model based on
the sequential calculation of queue length prolissl Influence of different arrival
processes, different degrees of saturation andawsthemes were investigated and they
concluded that the effect of arrival variability dhe cycle-average delay probability
distribution is significant. The shape of probapildistribution at an undersaturated
approach resembles a shifted exponential distohutwith a high probability of delay
equal to the uniform delay component. For the atersted conditions, the probability
distributions become more dispersed over time. foslel can capture the uncertainty of
the average cycle delay while in most research guint estimates of delay were
provided. However, this model didn’t explicitly demith the uncertainty or variability of
delay among individual arriving vehicles within ocycle time.

2.4 Travel time distribution models

The travel time distribution is commonly used toanqtitatively evaluate travel time

uncertainty and its spatial and temporal variatidesiam and Al-Deek (Emam et al.,
2006) compared different distributions for modalithe traffic data on freeways, e.g.,
log-normal, Gamma, Weibull and exponential distiidos. They concluded that the log-
normal distribution provided the best fit. Howevdhis single-mode travel time

distribution couldn’t well represent the travel @ndistribution on urban roads due to the
complex traffic conditions. Therefore, a multi-stdtmulti-mode) travel time distribution

model was proposed by (Guo et al., 2010). The mpdmlides the connection between
the travel time distributions and the underlinirgffic states.

(TTI.0)= 37, 1(TTI) 222

WhereTT is the travel timef (TT J;, 6) denotes the probability density function fbr;
n=(n1 n2, ...,nn) IS a vector of mixture coefficients which relatedifferent traffic states

N
and Z/]i =1; 6=(4,....6,) is a matrix of model parameters for each component
i=1
distribution; f; (©) stands for different distributions, e.g., normalg-hormal or Weibull;
f (TTi |n, 6;) represents the distribution of travel time coroesping to a specific traffic
condition, e.g., congested state and free flonestah have their own distinct component
distribution.

One advantage of applying this model is that mpaeameters and the underlining traffic
state can be connected. The similar work can atéstobnd in (Loustau et al., 2010), in
which a combination of three lognormal distribusowas proposed to model the travel
time distribution for different traffic conditions.
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Up to now, most research on travel time distributinainly focuses on applying certain
statistical distributions (e.g., normal, log-norinab the observed travel times. The
influence of different traffic processes and tmafftontrol schemes on travel time
variability is not explicitly considered or modalleOn urban roads, the dynamic and
stochastic behaviour has a significant influencehendelay uncertainty and in turn to the
travel time variability. Therefore, a travel timestibution model which explicitly takes
into account stochastic traffic processes and rdd#id control mechanism is proposed in
chapter 4 and 5.

2.5 Summary

The subject of modelling travel times on freewags heceived a lot of attention in the
past decades. Compared with that of freeways, reessarch has been dedicated to this
subject on urban roads, though more and more urbsgal time estimation and prediction
models have been developed in recent years. Inctiapter, three aspects of modelling
urban travel times are discussed, namely, urbareltrame estimation and prediction
models, modelling delays at signalized intersestiamd modelling urban travel time
variability.

First of all, this chapter gives a state-of-the<@rérview on urban travel time estimation
and prediction models. The advantages and disaalgestof these models are discussed. It
appears that most of existing models didn’t take atcount of stochastic processes (e.g.,
stochastic queuing process at intersections) onutban road. Besides, most existing
models including both model-based and heuristic et®dim at estimating or predicting
the mean travel time. However, travellers take dkdime variability into consideration
sometimes even more than mean travel time itserdfore, if the travel time distribution
is very large and skewed, providing the mean traveé to road users can be useless,
especially when time constraints are involved (argimportant appointment). Therefore,
it is more meaningful to model urban travel timegarms of distribution. In chapter 5 and
6, how travel time distribution can be modelled dadhermore how these distributions
can be estimated and predicted are discussed.

Secondly, different delay models including deteiistio and time-dependent models are
discussed. Since delay vehicles experience atsedt@ons is an important component of
the travel time on urban roads, how delays areneséid has a significant influence on the
final travel times. However, delay models have beeveloped mainly for the purpose of
improving traffic controls at intersections. Thenef, these models try to estimate or
predict the mean delay vehicles experience atsattions. As shown in (Viti, 2006), due
to the stochastic overflow queues at intersectideays are uncertain. Given the known
average traffic demand and capacity, a range @yd@ certain delay distribution) can be
found. The derivation of the delay distributionthé signalized intersection and travel
time uncertainty based on the analysis of the delayribution will be discussed in
chapter 4. An extension of delay distribution for arban trip will be introduced in
chapter 5.
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Finally, this chapter also discusses the researckravel time distribution models. The
limitation of the current research is that the stigation of travel time variability is just in
a phenomenological way, e.g., by calibrating sonmsdridution functions (e.g., log-
normal, Gamma) to the observed travel times. Thehststic traffic processes and traffic
control schemes are not explicitly considered asthmodels. Therefore, these models fail
in provide full insight into the relationship betere traffic processes, traffic control on
urban roads and the resulting travel time varighili



Chapter 3

Measuring urban travel times

3.1 Introduction

Travel times are widely accepted as very usefudrimgtion both for travellers and road
authorities. A number of models have been develdpesstimate or predict urban travel
times as discussed in chapter 2. At the meantinme nand more traffic monitoring
techniques have been developed to measure linbkute travel times. Basically, there are
two types of traffic sensors for measuring travales:

- Fixed sensorsThis type of sensors is installed along the radalsit specific locations.
When vehicles pass a pair of sensor locations, both stamps are recorded and
travel times between these two locations can beeterE.g., Automatic Number Plate
Recognition (ANPR) cameras, Bluetooth scannergsdpetectors.

- Mobile sensorsPosition detection equipment such as GPS sensgtghone sensors
can provide direct travel time from point-to-poiot the route traversed by probe
vehicles.

In this chapter, different monitoring techniques foeasuring urban travel time are
discussed in section 3.2. Especially, mobile senaox regarded as very promising means
to measure urban travel times. However, there amgedimits applying these techniques.
For instance, one limit of GPS travel time dataniost real applications is that travel times
collected at present by probe vehicles are obtamé#drather low frequencies (e.g., 30s,
1min), and therefore, do not originate from a sngbmplete link but are experienced by
probe vehicles from a certain position on one lioka certain position on another link.
Now the question is how to decompose travel tings individual links such that
complete link travel times or route travel times dee derived. In section 3.3, different
models to decompose travel times recorded by GBBepvehicles into individual links
are discussed and the performance of these madetsripared with each other using both

39
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the simulation data and empirical data. Finallymeamportant conclusions are presented
in section 3.4.

3.2 Empirical methods of measuring urban travel
times

3.2.1 Automatic Number Plate Recognition (ANPR)

Automatic Number Plate Recognition (ANPR) systenaweh been widely applied to
measure freeway travel times. ANPR systems normedigsist of two components:
cameras that detect passing vehicles and contihusesd the images to a computer and
software that recognizes number plates with itgadtars and stores them in a database.
By matching number plates recorded at two cametatilans with time stamps, travel
times of passing vehicles between these two locatian be estimated.

One advantage of using ANPR is that travel timesvéen two specific locations can be

calculated accurately. For instance, as long astme and end of links are defined at the
ANPR camera locations, link travel times can be snead. The second advantage of
ANPR systems is the high recognition rate. Althqugte recognition rate can vary

depending on different factors including vehiclacteristics, quality of installation and

weather condition. The average recognition ratéreeways as reported in the literatures
can be as high as 85%-90% (Friedrich et2008). However, the recognition rate is likely

to be lower on the urban road, especially closentersections or in case of congestion
where vehicles drive at closer distance to eackroffherefore, the number plate of cars
can be obscured by larger vehicles, e.qg., busésicks. Besides, due to a lot of turning

movements at intersections, vehicles recognizeshan camera location may not pass the
second camera location or vice versa. This woultea low matching rate.

The major concern about ANPR system in urban enwent is that it is difficult to
determine whether a vehicle has travelled exadiyng the route between A and B
without making unexpected stops en-route or chagpsilternative routes which have
similar or less travel time than the average trawmle of this route. For this case,
statistical data cleaning methods such as peresnstandard deviation may fail to detect
travel times which are not experienced by vehideghe route of interest. Nevertheless,
as suggested by (Robinson, 2005), it is possibledd¢tect whether a vehicle has
‘reasonably’ travelled along the route of interdst comparing the travel time of
individual vehicle with those immediately aheadaoid behind it at the first camera. An
overtaking rule approach was proposed by compdhadravel time of the current vehicle
against the travel time of a certain number of irdiaely following vehicles. The travel
time of a target vehicleis identified as valid if its travel time meet®tériteria given by:

r <ttt +A.  OkOFV(i) (3.1)
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wherer; represents the travel time of the target vehigl@lenotes the travel time of the
following vehicle; FV(i) denotes the set of following vehicldg; is the time difference
between the target vehicle and the following vehjgdssing the start point, which takes
into account that the target vehicle might be stoppy traffic lights, enabling the
following vehicle to catch it up. is the tolerance time which allows for the targehicle

to be overtaken by the following vehicle by a cer@mount of time before it is identified
as invalid.

This method is basically a dynamic way of cuttingd travel times. Applying this method
requires two parameters, namely, the number obvefig vehicles and tolerance time, to
be properly determined. It is difficult to prove &ther this method could work well in
urban situations or not. If these two parametezsnat well determined, e.g., the tolerance
time is too large, the consequence is that theiepstlof long travel times cannot be
properly filtered.

3.2.2 Probe vehicles (GPS/Mobile phone)

Basically, probe vehicles are those vehicles whiehequipped with certain sensors, e.g.,
GPS integrated navigation devices or mobile phonesjelling along the road and
regularly reporting their positions on the rout@vel speeds, directions and etc. In this
subsection, two types of probe vehicles: Probe cketiequipped with GPS integrated
navigation devices and probe vehicles equipped mitbile phones are discussed.

Probe vehicles equipped with GPS integrated navigan devices

Vehicles (e.g., taxis, trucks, buses) equipped WIHS devices are widely used to collect
traffic information (speeds or travel times) both foeeways and urban roads. There are
three main issues related to GPS probe vehiclegdibecting travel times in the urban
environment including positioning, transmissiorgiuency and sample size.

1. Positioning
® Stand-alone GPS positioning system

Concerning the positioning issue, GPS requireseastl four satellites to estimate the
location. In urban areas with overhanging treeginéls and tall buildings, this
requirement might not be met and GPS systems willltd estimate its position. This
phenomenon is called’ urban canyon effect’ whicled@xist in most cities. Due to
unavailability of GPS signals or communication ertbere are instances when data is not
recorded by GPS equipment and link travel timetheurban area with this effect cannot
be obtained by GPS systems. In addition, the redleof satellite signals has a significant
impact on the accuracy of GPS positioning (Modsglen al., 2006). E.g. in Figure 3.1,
the satellite signal is reflected 3 times befocheng the receiver. The delay of the signal
is extended by the length bfvhich is the sum of all additional paths the sigaiies due

to reflection. Due to the fact that the GPS reaeirgeunaware of the built-up in its
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environment, it would determine its own positionRos (GPS)which is located at the
opposite side of the building.
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Figure 3.1: GPS signal reflection (Modsching et 312006)

® GPS/MEMS INS integrated system

The stand-alone GPS positioning system suffersasigrasking, reflection of signal from
buildings, large vehicles a7nd GPS signal outagegke urban environment, which limits
its capability to deliver the required level of dahility, accuracy and reliability of
positioning. The integration of GPS positioning teys with other complementary
navigation technologies, such as MEMS (Micro-Eleditechanical System) based
inertial navigation system (INS), has shown a digaint improvement in the positioning
accuracy (Godha et al., 2007; Davidson et al., 2088 inertial system consisting of
inertial sensors (e.g., gyros, accelerometers) grawide continuous estimation of the
position and the velocity, which can be used tonaergt GPS data when the signal is weak
or short GPS signal outages. This GPS/MEMS INSgnatied system has been applied in
car navigation devices, e.g., Tomtom, Garmin.

2. Transmission frequency

Another issue about using GPS systems is the datssmission frequency which
determines how frequently GPS systems receive ipositof vehicles on the road. The
higher the transmission frequency is, the more r@ateudink travel times can be estimated.
Recently, some car navigation systems collect G®3 dvery second, which provides
very detailed information about vehicle positiomsl aspeeds. Travel times can be easily
derived from this high resolution GPS data. Howedele to data processing and storage
cost, a lot of commercial GPS solutions rarely rdquositions of vehicles with temporal
interval smaller than 30s. For instance, taxis goed with GPS devices are widely used
to collect traffic information with polling intends longer than 30s (e.g., 60s, 300s) in
Chinese cities. The low temporal resolution makedifficult to determine the precise
times vehicles enter and exit a certain link. Tdso implies that travel times recorded by
GPS probe vehicles are not complete link or rotdeel times but rather ‘intermediate’
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travel times from a certain position on one linkat@ertain position on another link. This

fact is overlooked by a lot of research that pr@so® use GPS probe vehicles to collect
link travel time data. It is necessary to re-estar@mplete link or route travel times from

the travel times recorded by GPS probe vehiclegrdibre, three methods to reallocate
travel times collected by GPS probe vehicles inttividual links are discussed in section

3.3 and the performance of each method in diffetrafiic conditions is also presented.

3. Samplesize

To what extent that travel times measured by probleicles can represent the mean
population travel time is an important issue ralate sample size and sample bias. The
statistical sampling methodology can be used terdehe the minimum required number
of probe vehicles that would provide reliable lim&vel time estimates. For a linkand
time intervalt, letu; represent the “true” mean of link travel tinag,represent the “true”
variance of link travel timen; represent the number of probe vehicles requisgg
represent the maximum relative errg@rrepresent the percentage of time the absolute
value of relative error is less thapax In addition, let@(x) represent the cumulative
distribution function andp™ is the inverse. Assume that travel time on a aldr link is

an identically and independently distributed randeaniable, then the number of probe
vehicles required can be calculated as:

v (“zﬁj(atj 2
_ Hi
n = £ (3-2)

max

Turner et al. (Turner et al1995) employed this statistical sampling methodltain the
minimum number of probe vehicles corresponding farexspecified permitted relative
error and confidence level. The sample size egunatan be obtained as:
n= Za/ZZZCV2
e

(3.3)

Where z,, is standard normal variables with the confidenceelleof 1-a; CV is the
coefficient of variation which is the standard deion divided by the mean travel time;
is thepermitted relative error (%).The assumption betiordhulas (3.1) and (3.2) is that
travel times collected by probe vehicles are va@uitliers should be removed before
applying this formula to determine whether the skentpavel times collected by probe
vehicles can provide a statistical representatiaea travel time.

Table 3.1 gives an example of minimum sample siz&®S probe vehicles estimated
using Equation (3.2) and the real sample size df @Rbe vehicles for one link during
different time period on 1% May, 2010. The field GPS data was collected iargjsha, a
city in China. Every 30 seconds, speeds, time ssaamol positions of GPS equipped taxis
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were recorded and sent to the monitoring centrese8an the collected time stamps,
speeds and positions, the link travel time for gaabe vehicle can be estimated. In order
to see whether the mean link travel time estim&t@a probe vehicle data can statistically
represent the mean travel time of all vehicleshos link, we applied the sampling method

discussed above. Column 2 in table 3.1 illustratasple size of probe vehicles derived
from the field data for each time period of 15 ntew(total 2 hours). Column 3 and 4

indicate estimated sample size with different maabgierror (5% and 10%). When the

allowed maximum relative error is small, e.g., 3%€ required minimum sample size is
larger than that measured from the field data linimle periods. In this case, it could not

guarantee that the mean link travel time estimdtech probe vehicles for each time

period can represent the mean travel time of dlickes on this link.

Table 3.1: Comparison of field sample size of probeehicles and estimated sample
size with 95% confidence level

Field GPS Estimated GPS sample Estimated GPS sample

Time period sample size size(marginal error =5%) size (marginal error =10%)
10:00-10:15 56 178 44
10:15-10:30 90 215 53
10:30-10:45 85 616 154
10:45-11:00 79 204 51
11.00-11:15 97 275 68
11:15-11:30 96 406 101
11:30-11:45 110 574 143
11:45-12:00 90 343 85

It can be clearly seen from equation (3.2) that dogiven level of significance and
permitted relative error, the sample size is diyecketermined by the coefficient of
variation (CV) of the population. The higher {6¥ is, the lager the sample size is needed.
Due to a number of stochastic factors on the urbad, e.g., the stochastic properties of
traffic flow, the stochastic arrivals and departueg intersections, the variation of urban
link travel time is larger than that of freewayuea time, the sample size needed is
expected to be larger for urban link travel timéneation than for freeway travel time
estimation.

In the urban area, there are two main sources roquibe biased travel time estimates
using probe vehicles, which are bias in the probkicle composition and bias in the
arrival time distribution. The first source is wigeaccepted that only a certain type of
vehicles as probe vehicles tends to have biasgdlttiane estimates. For instance, lorries
as probe vehicles are likely to be over represemtithin a sample of GPS travel time

records since lorries are in general slower thawvafe cars. Using taxis as probe vehicles
can also lead to biased travel time estimates dudifterent driving behaviour of taxis

which are likely to stop along the roadside for){oading or search for customers. The
second source of bias in travel time estimatebasbias in the arrival time distribution as
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discussed in (Hellinga et al., 2002). The varigpitif travel time that vehicles experience
on the urban arterial road segment is predominatetgrmined by the variability of delay
experienced at the signalized intersection. Delaysignalized intersections can be
calculated as the function of the arrival time wiélspect to the signal cycle. Therefore, a
biased probe vehicle sample with respect to theiva time distribution will lead to a
biased travel time estimate no matter how many@rahicles are available.

Probe vehicles equipped with mobile phones

Vehicles with one or more active mobile phones hthe potential to become probe
vehicles. Mobile phones can be located by nearlsg Istations. There are different ways
to calculate positions of mobile phones. One metiodo estimate the position by
calculating the distance from three nearby badesta The positioning accuracy is about
50-200m. Another method is to calculate the dicectihe signal is coming from using
special antenna arrays installed at the base stafithe typical accuracy is about 50-300m
for this method (Wunnava et al., 2007). By applymgbile phone technologies, different
mobile phone probe systems have been developedy ascCall Record Systems,
Alink/Handoff Systems, Timing Advance Systems andisA Measurement Report
Systems (Cayford et al., 2010). In recent yearsjesoellular networks also use GPS to
locate a mobile phone. In this method, GPS sateflifstem is used to calculate the
position of the mobile phone. The accuracy is betw&m and 30m. Based on the
information of time stamps between two located fpmss$, Point-to-Point travel times can
be directly derived. However, the first two methddsost commonly used in cellular
network) of positioning have the problem of low piasing accuracy which ranges from
50m up to 300m. This might not be a serious probtenthe freeway with mild traffic
conditions. Whereas in the urban network with dgndestributed roads, matching probe
vehicle positions to the right road is very difficiwVithin the distance of 200m, several
parallel roads can be found in the urban area. #ergproblem related to mobile phone
sensors is that it is difficult to distinguish whet a mobile phone is in the vehicle or
outside the vehicle, especially on the urban réad.instance, mobile phone data from a
user in a parallel metro or tram to the road camimecognized as travelling on the road,
which causes an error for the travel time estinmtiSimilarly, when a pedestrian or
cyclist uses a mobile phone on the footpath orecyath along the road, the travel time
collected by this mobile phone can be also mispreted as the vehicle travel time on the
road, especially in congested conditions.

3.2.3 Bluetooth

Bluetooth is a wireless communication platform useadonnect electronic devices. The
interconnection between Bluetooth devices is addevhrough transmission and
acceptance of a 48-bit Machine Access ControlMAC’ address between inquiring and
receiving devices. Vehicles with one or more Blogho devices on board can be
recognized by a Bluetooth receiver installed onrtieeside and when they pass different
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Bluetooth receivers on a route, the time differebe@veen registrations at two locations
can be used to estimate the travel time.

As shown inFigure 3.2, the Bluetooth device has a certaindtiete area with the radius
about 50 to 60 meters. Vehicles with Bluetooth desientering this circle will be
detected. Therefore, a single device could collath from both sides of the roadway.

Figure 3.2: An example of detection range of a Blueoth scanner

Application of Bluetooth devices for measuring ghtimes on freeways has shown very
promising results(KMJ Consulting, 2010; Yegor et aD10). As discussed in (Yegor et
al., 2010), travel times collected by Omni-direnb antennae Bluetooth sensors even
with small samples (e.g.,4%) can provide a goodesgntative of the actual traffic
condition. Another advantage of applying this taghe is that the constant broadcast of
MAC addresses is detectable and measurable withetgblishing a relationship to
personal or sensitive information, keeping the elaivg public and their information
anonymous, which implies that the private issueoisa problem and it would be easier to
implement in practice.

However, there are also some limitations relatethi® technique. First of all, Bluetooth

devices transmit signals rather frequently. TheeBRioth-equipped vehicle could be
detected at any time within the detection zone@ndd be detected several times when it
passes a roadside Bluetooth receiver or not bectedeteat all depending on the driving

speed and on the detection range of the Bluetoetitd. The problem arises that which
moments are chosen to calculate the travel time.aHonger distance, it might not be a
big problem. While for a short distance, choosingpipropriate detection moments can
cause large error. The estimation error is likeybe larger on the urban road if two
Bluetooth devices are placed in a short distanag, (ene link distance) or close to the
intersections. Secondly, the same problem as disdubefore with ANPR arises when
vehicles that are detected at the beginning anldeagénd of a road segment may divert in
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between or may stop for some time rather than bdalgyed by the traffic. This gives
outliers and it is not always possible to distirgjuthe outliers from the regular trips. In
order to see whether the method proposed by (RohirZ)05) and discussed in section
3.2.1 can also be used to detect outliers fromBioetooth data, a test was carried out.
The Bluetooth data was collected in Changsha,yaiciHunan province, in China. The
Bluetooth devices were placed on an urban artefiaeé distance between these two
devices is about 2200m and two intersections areetween. Figure 3.Blustrates the
individual travel time collected by Bluetooth desscfor two directions. After applying the
outlier detection method, the travel times with patles are identified as outliers while
the black dots are valid travel times. The detectesults are quite sensitive to the number
of following vehicles and the tolerance time as tiwered in section 3.2.1. The larger the
tolerance time is, the less will travel times bentified as outliers. The travel time
distribution based on all valid travel times idéeti by this method is compared with the
travel time distribution from GPS data as showrigure 3.4. Larger travel times are
more frequently observed by Bluetooth devices fothbdirections (Southbound and
Northbound) compared with those collected by GP&b@rvehicles. The travel time
distribution from GPS data shifts more to the Vefih smaller mean travel time compared
with the travel time distribution from BluetoothtdaHowever, it is hardly to say whether
the outlier detection method performs well or nioice we don’t have real ground truth
data to validate it. Though travel time distributivom GPS data on the same link during
the same time period could provide some eviderfeeset travel times are collected by
taxis. In the uncongested condition, it is likeat taxis travel faster than other vehicles.
The Kolmogorov-Smirnov test results are shown iguFe 3.5. The hypothesis that these
travel time distributions (Bluetooth and GPS) coinmen the same distribution is rejected
at 5 % significance level for both directions (fle-9<<0.05 and p=1.42e-5<<0.05,
respectively).
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Figure 3.3: Individual travel times collected by Buetooth devices between time
period of 10:30 and 12:05 on 1B, May, 2010
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Figure 3.5: Kolmogorov-Smirnov test for travel time distributions from Bluetooth
data and GPS data

Besides, on the urban road, travel times collebte@luetooth devices could come from
cyclists or pedestrians carrying Bluetooth-enaldledices. Though, one would argue that
the travel time experienced by a cyclist is muchgkr than that is from a vehicle. In
congested conditions, this would not be the caseestyclists can experience similar
travel times as vehicles within a short distancg.(ea link of 500 meters). This type of

outliers is rather difficult to distinguish in pitaze.
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3.3 Comparison of urban link travel time estimation
models based on probe vehicle data (PVD)

Travel times collected by probe vehicles with loallipg frequencies usually does not
apply to one single link and therefore cannot bedlly used as travel time information
for travellers or for further travel time prediatioThis type of travel times is not a
complete link or route travel time but rather francertain position on one link to a certain
position on the same or another link. As for tréarsl when making route choices they
want to know the complete link or route travel tsyfeom their origins to the destinations.
It is necessary to allocate the travel times betwie consecutive time stamps from
probe vehicles into individual links.

3.3.1 Link travel time allocation

Travel times collected by probe vehicles do nogiodte from a single complete link but
are experienced by probe vehicles from a certagitipo on one link to a certain position
on another link. These can be categorized intcethypes as illustrated in Figure 3&),
(b) and (c).

TT1 (known) } TT2(known} TT3(known)
> >
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§ TT (known) 3

1 | [
) [ [
Rt Rt P.t

Ligk 3

b Tigec T2 gec I3 dec :

(c)

Figure 3.6: Sketch of assignment of travel times b@een recorded positions to the
link in the middle (taking through-going traffic as an example)

P1, P2, Ps and P, are positions on the corresponding links andt, t; andt, are time
stampsii gec, ©.deo t3,dec@Ndts gecrepresent the reallocated link travel times basedhe
travel times collected by probe vehicles. The cateplink travel time here is defined as
the time difference between the time instant when ehicle passes the upstream stop
line and the time instant when the vehicle padsesiownstream stop line.

Type 1: The reported positions are on the same link (ark 2) as shown in Figure 3.6
(a), the complete travel time of link 2 is composédthree parts:
T, = Togee T = L T (3.4a)

For this case, the link is long or the traffic cdiwh on the target link is likely to be
congested or vehicles need to wait for the red tainee the probe vehicle experiences
long travel time (at least longer than the sampiimgrval) on this link.

Type 2: The first and second reported positions are oncadjainks shown in Figure 3.6
(b), then the travel time of link 2 is estimated as
TTLZ = z-2,dec + T3,dec (34b)
Type 3: At least one full link is existing between two seautive reported positions
illustrated in Figure 3.6 (c), the travel time wid 2 is:
T, = Thgec (3.4c)

For this case, the traffic condition on the tardgek is likely to be free flow or
undersaturated since the probe vehicle experiestoas travel time.
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3.3.2 Description of Link travel time estimation models

Model 1: Distance-proportion Model

The basic idea of distance-proportion method i¢ tha travel time between two time
stamps is decomposed into individual links basedhendistance. The link travel time
based on this method can be derived accordingrée thituations as shown in Figure 3.6.
E.g., the travel time of link 2 can be estimated as

Type 1:
TTL2 =Togect tL-t,+ T3 gec
:( 2_t]_) L2P2 +t3_t2+(t4_t3) I—z(l_ P3) (35a)
LA-R)+L,P, L,(1- P)+ L;P,
Type 2:
TTLZ = T2,dec + T3,dec
- (t2 —tl) L2P2 + (t3 —t2) Lz(l_ PZ) (35b)
Li(l_ P1)+ L2P2 Lz(l_ P2)+ L3P3
Type 3:

_ —(+ _ L,
TT, = T4 = (tz tl) Ll(l— Pl) L+ LP, (3.5¢)

wherd. 1, L, andL3 denote the length of link1, link2 and link3, resipesly.

This decomposition method is very simple and da#santain any other assumption than
that travel times are allocated proportional toldregth of the links that the probe vehicle
has travelled between two registrations.

Model 2: Hellinga’s model

Hellinga (Hellinga, 2008) proposed an analyticald@loto decompose recorded partial
link or route travel time into individual links cemnlering the stopping probability and
congestion probability. On the following, a brieftroduction of this method is given.
More detailed information about this method is giwe Hellinga’s original paper.

According to the definition proposed by Hellingakl travel times in the urban road
network can be decomposed into 3 parts:

1) Free flow travel time;
2) Stopping time caused by traffic control devicescéderation and acceleration are
included);
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3) Delay due to traffic congestion.
Therefore, the travel time between two consecuiime stamps of a probe vehicle can be
expressed as:

J(m,i)

s "t = Z {Tf(l mii) P Tl i) F Teondl mi )} (3.6)
j=0
wheretn i tmir1 are consecutive time-stamps of probe vehmslen link i and linki+1; z
(Im,ij) is the free flow travel time on linK zs(Im,i;) is the stopping time on linkand zcong
(Im,ij) is the congestion time on link

The free flow travel time on a link is calculatesitae link length divided by the free flow
speed:

_Tin) |
Iy (I(nilnj N=— —— (3.7)
u(n,n)
Where]|l (n;, ny)| is the length of the complete link or partial linkn;, ry), us (ni, n)is the
free flow speed for the complete or partial linkn;, n). However, in reality, free flow
speeds vary with driving behaviour, speed limitather conditions, etc. It is difficult to
estimate free flow speeds. Instead, the maximuowalll speed is used to calculate the
free flow travel time. In order to see how Hellirsganethod performs with different free
flow speeds, a sensitivity analysis of the freevfkpeed is discussed in section 3.3.4.

The congestion time and stopping time based ompibieability function are calculated by
Hellinga as:

J(m,i) .
2o RPAmiwR( W

Tcong(l miJ) = J‘(:Nmaxa'mijrcong Q ( I) (38)
W P,(MLWR(L 5 W)
| )= d
Lln) = [T Q.(m " (3.9)

Wherew is the congestion index which is the ratio of tdomgestion time on the route to
the sum of the congestion time and the free flawvel time on the route; The minimum
value ofw occurs when traffic demand is very low and thebprtravels at the free speed
and the maximum valuemax occurs when vehicles travel at a speed less ttenflow
speed due to traffic congestion and experienceetamydcaused by traffic control devices.
TconglS the total congestion times is the total stopping timé?,, (m,i,w) is the congestion
probability which is used to capture the likelihoofl a certain degree of congestion
experienced by a probe vehictewhen traversing a given link. It is defined as:
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T(m 1, (D)) +T.(m ) 1
T (3.10)

m,i+1 m,i

R, (m i, w) = min(l,

m )+ tml ()

whereT:( m, i )is the maximum delay the probe vehioi@xperiences due to congestion.

Ps(ImjJ.w) is the stopping probability which assumes that @ervehicle stops at most
once on the route. It is defined as:

o _ Ho(lmioW) if J(k,i)=0
iy P = Hollmiow ].DJ(l_H {dwipW)  otherwise (3.11)

whereHs(Im,3,w) is the probability of stopping on a link. It is vilo mentioning that there
are two parameters; and c; in the stopping probability function which need he
calibrated. In section 3.3.4, a sensitivity anaysigarding these two parameters is given.

Model 3: Artificial Neural Network model

Basically, the traffic data collected by probe s include positions, time stamps and
speeds on the route. Therefore, positions, tinmasteand speeds can be used as the input
data in the Artificial Neural Network (ANN) modeTraffic flow and signal timings are
considered optionally since on one hand, they atealways available on the urban road
network and on the other hand, it is preferablddgeelop a model to estimate travel time
as accurate as possible with least information enadke the model more generic. As
discussed in (Hellinga, 2008), the traffic conditithe probe vehicle experiences during
the recent sampling interval is considered not sutglly different from that on the route
traversed by the same probe vehicle during theiguevsampling interval. In the ANN
model, the probe vehicle information on previousigkng interval is incorporated with
the information on the recent sampling intervalgufe 3.7 shows the structure of the
ANN model. The mathematical description of the maslas follows:

Input layer:
w0 | %
X(@)= : |= ) (3.12)
X,(1) (i)

Wherep (i) is the position vector of probe vehidl®en the upstream link, target link and
downstream link;s (i) is the link number vector indicating on which Ienkhe probe
vehicle positions ard;(i) is the time stamp vector which indicates the tinsances when
the probe vehicle sends the informatiar()) is the speed vector.
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(i) | [ s(i) | (i) | (i) ]

p)=| . [ st)y=| . [ ti)=| . [ u@)=

p, ()] s, ()] 0| ol

The number of input neurons in our model can beerdehed as N=n*m
where n is the number of information points taken into ddesation for each probe
vehicle; m is the categories of information, heresnchosen to be 4 (positions, link IDs,
time stamps and speeds).

For the case in Figure 3.6 (a), the informationtlo® previous sampling interval is also
taken into account, so the input neurons are 5*dotions+5 link IDs+5 time stamps +5
speeds) for each probe vehicle. For the case r&ig.6 (b), 4*4 input neurons are used
and 3*4 input neurons are needed for the casegur&i3.6(c).

Hidden layer:

o> @ o (i) +b,
h(i) [Z ' J

j=1

W) ¢( " wj,mxi(i)+bmj

ppr

H (i) =

(3.13)

wherehq, (i) denotes the value of tmé" hidden neurong;m denotes the weight connecting
the ™ input neuron and the™ hidden neuronb,denotes a bias with a fixed value for the
m™ hidden neurony is the transfer function. Common forms of the tfangunction are
logistic sigmoid and hyperbolic tangent functiohs practice, the latter is found to give
rise to faster convergence (Bishd®95). Thus, we chose

—2X

_1-e
¢(X) - 1+ e_ZX
Output layer:
Y(i)=TT(D=¢[i%n(D+bJ (3.14)

whereY (i) denotes the estimated travel time of probe vehjdg denotes the weight
connecting thed" hidden neuron and the output neurbns the bias for the outpu® is
the transfer function and a linear function is coomhy used for the output units.
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Figure 3.7: Topology of an Artificial Neural Network for link travel time estimation

3.3.3 Experimental setup

Description of the Test urban road

As shown in Figure 3.8, an urban road called ‘Kruisweg’ in Delft city in the
Netherlands was modelled using the VISSIM simufatiwodel. Kruithuisweg is a typical
urban road with signalized intersections lying bstw two freeways, A4 and Al13. In
order to mimic the real traffic situation on thmad, traffic was assigned using Dynamic
Traffic Assignment (DTA) based on the dynamic ODtrixain VISSIM. All the traffic
signal controllers at the intersections are vehadiated. The free flow speed is set to be
100km/h which is the speed limit on the real sitwat The dots are the data collection
points which record the information of vehicles gveecond. The arrow indicated in the
figure is the target link for travel time estimatio
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Figure 3.8: VISSIM model of Kruithuisweg road in Ddft, the Netherlands

Data preparation

Re-sampling process

The network was simulated for a period of 65mindach simulation run. Data from the
first 5min of simulation were considered to be W&m-up period and were not used in
the analysis. Every second, positions, time staamusspeeds of vehicles were recorded
by the data collection point. However, in real wigithe sampling interval is much longer
than 1s. Instead, the sampling interval of 30sGx i§ more often used in reality. Hence, a
‘Re-sampling’ procedure with 60s interval was takerextract the data from the original
simulation data set. One thing we should keep indms that the position of the probe
vehicle can be anywhere on the link when samplifigs means that if we just take one
position on the link as the initial sampling pasitj the estimation results will be biased.
The ‘Re-sampling’ strategy can be explained by F@gB.9. For instance, if the initial
sampling moment is when applying 60s sampling strategy, the next ewnis j +60,
and thenj +120, j+180, etc. We can get different moment combinationsgtimate the
travel time of link 2.

Combination 1: j,j +60,j +120j + 18(, + 240,...

Combination 2: j+1,j +61j + 121 + 18], + 241, ...

Therefore, the average travel time of a probe Vehitraversing link 2 can be calculated
as:

T =12 TT,, () 3.15)



Chapter 3. Measuring urban travel times 57

where n is the number of different initial samplimpments,TT.» j (i) is the estimated
link 2 travel time of probe vehiciewith the initial sampling moment.

Equation (3.15) is applied for all three modelsstBnce-proportion model, Hellinga’'s
model and NN model) to calculate the average egtidh#@ravel time for each probe
vehicle. The true link travel time of a probe vaditraversing the target link is recorded
by data collection points located at the beginm@hthe link and the end of the link.

i i+ +2 i+60 i+61 i+62 N N B N N N
i+120 i+121 i+122 i+180 i+181 i+182 4240 i+241 i+242

NSNS - AR -

(] A O @ A O ® A o

O e A O

Link 1 Link 2 Link 3

Figure 3.9: Different moments (positions) recordedoy probe vehicles on different
links

Data for training and evaluation

After the ‘Re-sampling’ process, the extracted datxe used for training the neural
network and estimating the link travel time. Tof@l random seeds were simulated and
probe vehicle data from 30 random seeds, in whibhr@€dom seeds are in the
undersaturated condition and 10 random seeds dteeihighly oversaturated condition,
were used for the training process. The other 4@dom seeds were used for the
performance evaluation. Four scenarios were chésepvaluation. The subdivision of
data sets for training and evaluation is indicatethble 3.2.

® Scenario 1:0riginal demand (undersaturated condition)

® Scenario 2:20% demand increase

® Scenario 3:50% demand increase

® Scenario 4:100% demand increase (highly oversaturated camiti

Table 3.2: Simulated data sets for training and evaation

Training Evaluation
training validation testing scenario 1 scenario 2 scenario 3 sgen4
Number of| Undersaturation 12 4 4
random ) 10 10 10 10
seeds | ©versaturation 6 2 2

Also a real GPS data set was extracted from odigiata obtained from trips along the
Kruithuisweg road for validation purpose. This wd@ne according to the re-sampling
process and contained in total 7 trips.
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Neural Network training

A training process is needed before the ANN model loe applied to estimate link travel
times. Three procedures including training, valoatand testing were conducted in the
whole training process. The total training dataveas divided into three subsets which are
18 random seeds for training, 6 random seeds fbdateon and 6 random seeds for
testing. During the training process, differentddd neurons, e.g. 10, 15, 20, 25, were
chosen. The testing results show that the perfocsaim terms of Mean Square
Error(MSE) for the case of 10 and 15 neurons isasogood as that of 20 or 25 neurons.
Therefore, 20 hidden neurons were used to build nievork. Levenberg-Marquardt
algorithm (Ranganathan, 2004) was chosen so teap\hbr fitting phenomenon could be
avoided. Besides, the Levenberg-Marquardt algoritiam provide fast convergence even
for large networks that contain a few hundred wtsigiithe trained ANN model is applied
to estimate link travel times both in undersatutateonditions and oversaturated
conditions.

3.3.4 Sensitivity analysis in Hellinga’s model

In Hellinga’s model, link travel time is composefitioree parts including free flow travel
time, congestion time and stopping time. In ordeestimate free flow travel times, free
flow speeds need to be determined. Besides, instbpping likelihood function as

proposed by Hellinga, two model parameters denbyed andc, were used to reflect the

stopping likelihood pattern of the link. In thiscsen, the sensitivity of the performance in
terms of RMSE and MAPE of this model in both lowaffic demand conditions and high
traffic demand conditions are investigated.

RMSE= J%Z( buoi = he)” (3.16)

0|t
MAPE=100*12

i=1

PVD,i - ttrue,i

(3.17)

rue,i

Where,t,,, is the estimated travel time of th€probe vehiclet, . .is the true link travel time of

the i" probe vehicle recorded by the data collection oint

true,i

Figure 3.10 gives an illustration of how differetmbinations ofc,and c, influence the
performance of the Hellinga’s model in terms of RIM&d MAPE. The free flow speed
was set to be the speed limit (100km/h) for thisecalhe best combination ofandc,
was then chosen and the next step is to analyssethgtivity of the performance to the
free flow speed, for which a range of speeds frénkra/h to 150 km/h was used. The best
combination ofc,,c, and the free flow speed for each scenario is gimefable 3.3. The
selected parameter values are used in Hellingadeinim estimate complete link travel
times.
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Scenario 3 (50% demand increase)
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Figure 3.10: Performance of Hellinga’s model with dferent combinations of c1 and
C2 in scenario 3

Table 3.3 Parameter values in Hellinga’s model under differentraffic conditions

Parameters Scenario 1  Scenario 2 Scenaric 3 Sceinaf
cl 5 5 0.1 0.1
c2 1 1 1 1
Free flow speed (km/h) 80 80 100 110
3.3.5 Results

Results based on simulation data

Figure 3.11, Figure 3.12 and Figure 3.13 provide ¢cbmparison between the estimated
link travel times based on the Distance-proportrandel and true link travel times,
estimated link travel times based on Hellinga’s elahd true link travel times, estimated
link travel times based on the ANN model and tink travel times under different traffic
demand conditions, respectively. The average traweé for each probe vehicle is
estimated based on Equation (3.15) for all thredetso Each point represents individual
travel time for each probe vehicle. A linear regres is applied to compare the estimated
links travel times with the true (simulated) linkatel times. When traffic demand
increases from original free flow condition to higkmand condition, both the distance-
proportion model and Hellinga’s perform reasonabiil with R>>88%. Among these
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three models, the ANN model performs the best asbeaseen in Figure 3.18), (b), (c)
and (d). The estimated link travel times based diNAexhibit no apparent bias and have
very high correlation with the true link travel &% (R* > 96%). The performance of these
three estimation methods in terms of RMSE and MA®dicated in Table 3.4. As for
ANN model, both RMSE and MAPE increase marginafiytraffic demand increases. The
increase of MAPE is less than 2%. As for Hellingaisdel, the MAPE increases from
12% to 20% when traffic demand increase from uratarated conditions (Original
demand and 20% demand increase) to oversaturatelitions(50% demand increase and
100% demand increase). Compared with Hellinga’'sehdte Distance-proportion model
gives less accurate estimation results when th@ictrdemand is low (in the case of
original demand and 20% demand increase); Howewleen the traffic demand increases
(from 50% increase to 100% increase), the Distammogeortion method provides more
accurate estimation with lower RMSE.
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250
150 y=0.73084*x+8.3857 .

200 y=0.79933*x+1.2212

100 150

100

[8)]
o
Estimated link travel time(s)

Estimated link travel time(s)

50

O L L L 0 L L L L L
0 50 100 150 200 0 50 100 150 200 250 300
True link travel time(s) True link travel time(s)
(@) (b)
. Distance-proportion(50% demand increase) 400, Distance-proportion(100% demand increase)
o TrueTT vs. Estimated'l‘r‘ e  TrueTT vs. EstimatedTT

350

250
300

N
o
o

250
150 200

150
100

Estimated link travel time(s)
Estimated link travel time(s)

100
50 R-square=0.97942
50
0 L L L L L 0 ' ' L
0 50 100 150 200 250 300 0 100 200 300 400
True link travel time(s) True link travel time(s)

(©) (d)

Figure 3.11: Correlation between estimated link trael times and true link travel
times based on Distance-proportion method (60s satipg interval)
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Figure 3.12: Correlation between estimated link trael times and true link travel
times based on Hellinga’s method (60s sampling imeal)
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Figure 3.13: Correlation between estimated link trael times and true link travel
times based on ANN method (60s sampling interval)

Table 3.4: Performance measurements of Distance-pportion model, ANN model
and Hellinga’s model with different traffic demand

Scenario 1 Scenario 2
Distance_proporticn Helinga  ANN Distance_proportion liiga ANN
RMSE(s) 20.06 12.98 4.53 23.75 13.69 7.57
MAPE(%) 16.85 12.20 3.97 18.88 10.96 5.61
Average
Travel time(s) 91.35 105.73
Scenario 3 Scenario 4
Distance_proporticn Helinga ANN Distance proportion liHga ~ANN
RMSE(s) 23.50 29.44 9.97 30.11 4855  13.48
MAPE(%) 15.90 15.18 4.98 15.50 20.03 5.08
Average 137.80 192,51

Travel time(s)
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Results based on real GPS data

The trained ANN model was also applied to estintedeel times based on the real GPS
data. A car with a GPS device was driving back daodh on the same road
‘Kruithuisweg’ 7 times and all the GPS positionsreveecorded every 0.3s. As discussed
in the section 3.2.2, GPS positioning is not sauea® on urban roads due to tunnels, tall
buildings, etc. Reflection of GPS signals has anifiant impact on the accuracy of
estimated positions. In our experiment, the urba@adr'Kruithuisweg’ is located in an
open area. The ‘urban canyon’ is not a problemuinocase.

In the sampling procedure, 60s sampling intervad syaplied to extract GPS data from the
original data set. The estimation result is shawhigure 3.14. Each point represents the
travel time for each trip. From the regression folanin the figure, it can be seen that the
trained ANN model performs reasonably well. The Rvi&hd MAPE are about 7.8s and

10.9%, respectively. While for the Hellinga’s madéke estimation accuracy is lower with

RMSE and MAPE of 14.2s and 20.6%, respectively.ugioone could argue that the real
data set is too small to give a statistically sotagllt, it shows the possibility to apply the
ANN model to the real GPS data.
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Figure 3.14: Correlation between estimated link trael times and true link travel
times based on real GPS data

3.3.6 Conclusions

Link travel time estimation based on the travelgsrcollected by probe vehicles is one
important application of PVD. Up to now, there ist Mmuch research about travel time
allocation using PVD. In this section, three modmis applied to estimate the complete
link travel time based on PVD. A three-layer Ariéil Neural Network model is proposed
to estimate complete link travel times. The inpformation in the ANN model includes
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individual probe vehicle’s positions, link IDs, tanstamps and speeds. The estimation
results are compared with those from Distance-ptapo model and Hellinga’'s model.
The ANN model performs quite well under differerdftic conditions. On average, the
MAPE is less than 6 %. As for Hellinga’s model, MM&PE increases from 12% to 20%
when the traffic demand increases. In Hellinga’sdeipthe link travel time is composed
of free flow travel time, stopping time and congasttime. When congestion occurs,
stopping time and congestion time are the main @apts of the estimated link travel
time, which also suggests that stopping probabditg congestion probability should be
properly calibrated, especially when dealing wignalized intersections. The delay time
can be caused by either traffic control or congestOne thing worth mentioning is that
the number of parameters in the ANN model is mudrerthan those in Hellinga’'s
model. The higher performance of the ANN model risbpbly also due to the higher
number of parameters.

3.4 Summary and discussions

Travel times are important not only for traffic na@mement and planning, but also for the
traffic guidance in the urban area. This chaptengared different techniques (ANPR
cameras, probe vehicles, Bluetooth devices) dee€lop recent years to measure travel
times on the urban road. The challenge of ANPR Blugtooth devices for measuring
urban travel times is how to properly determinelietd, which is not an easy task.
Compared with ANPR and Bluetooth technologies, prokehicles equipped with
positioning (e.g., GPS, DGPS, GPS/MEMS integratgdtesn) devices are more
promising for collecting urban travel times. Espdlgi in the case of GPS/MEMS
equipped car navigation system with high pollinggirency (e.g., 1s), travel times can be
accurately derived. Special focus was given togtabe vehicle data (PVD) with low
polling frequencies (e.g., 15s, 30s, 60s). Duééofact that travel times directly collected
by these probe vehicles are unlikely to be complietie or route travel times, in this
chapter different models including Distance-proport model, Hellinga’s model and
Artificial Neural Network (ANN) model to estimateomplete link travel times based on
PVD were discussed and compared with each othe¥.eBlimation results showed that
the ANN model gives the best performance.

Travel times measured by ANPR cameras, probe \eshahd Bluetooth devices provide
useful information about the traffic state on tlead. First of all, measured travel times
provide the ground-truth for developing any tratigle estimation or prediction model.
Secondly, measured travel times are valuable falding the historical travel time

database for the purpose of traffic management @adning. Finally and also most
importantly, from measured travel times, traveldimistribution can be derived which
provides more insight into travel time variabiliyd furthermore can be used for travel
time prediction purpose. However, travel time dmttion derived from measured travel
times could not give sufficient insight into whatuses this travel time distribution, in
other words, what causes the travel time varighilt model that could provide some
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insight into factors that lead to a certain trawle distribution and furthermore estimate
the travel time distribution would be preferabldefefore, in chapter 4, a delay (travel
time) distribution model for an isolated interseantiis developed taking different
stochastic factors into account. This model ishieirtextended to an urban trip with fixed
time controlled intersection in chapter 5.
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Chapter 4

Delay distribution for signalized
Intersections

4.1 Introduction

In the previous chapter, several empirical methtodseasure travel times on urban roads
have been discussed and different models to estithat complete link travel time have
been introduced. The remaining question is how aremake good use of measured travel
times. Providing mean travel time to travellers Vdokead to the problem that the actual
travel time can be significantly different from timeean travel time, especially on the
urban road. One important application of theseeirdime measurements (estimates) is
that travel time variability can be investigated lopking at travel time distribution or
using other statistical measures, e.g., percentdésndard deviation, coefficient of
variance. Instead of directly modelling travel timariability from measured travel times,
an alternative way is to model travel time varigpiknalytically. On urban roads, the
uncertainty of delay at intersections is the mamrse of travel time uncertainty. The
stochastic delays at the signalized intersectiamsitinte a large part of travel times on
urban links. The understanding of the vehicle dedaglution or delay variability at
signalized intersections can lead to more insightts the variability of urban link travel
time and gives more possibilities for travel tingtimation and prediction.

Basically, delays vehicles experience at a sigadlimtersection include uniform delays
due to traffic control and overflow delays due tighhtraffic demand. However, delays
vary with effects of stochastic properties of ti@ffow, stochastic arrivals and departures
at the signalized intersection as illustrated igufe 4.1. These stochastic factors are not
independent but rather overlap. As a result, dekgs uncertain given known traffic
condition (traffic flow) and traffic control. Inséel, a certain delay distribution can be
observed.

67
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Figure 4.1: Schematic overview of main componentd delay distribution

In this chapter, a delay distribution model forxaeél-time controlled intersection - taking
stochastic properties of traffic flow, stochasticials and departures into account is
proposed in section 4.2. The proposed model cah wih both the undersaturated
condition and oversaturated condition. Section dl$b investigates the influence of
different arrival patterns to the delay distributidn section 4.3, the delay (travel time)
variability is quantified by looking at the delayengentile from the derived delay
distribution. The statistical range method is idtroed to measure the delay uncertainty at
signalized intersections. Finally, section 4.4 manzes the contribution of this chapter.

4.2 Delay distribution at signalized intersections

4.2.1 Delay distribution in the undersaturated conditionwith a fixed
overflow queue

The delay at an approach of a signalized intesectepends on the arrivals and
departures, the length of the red and green phardghe initial queue. The queue length
is a step function that increases with one at thgad of a vehicle and decreases with one
at the departure of a vehicle in one cycle. If @ketthe expectation value of the queue
length, it becomes a continuous function of timéeTexpectation value of the queue
length can be derived from the probability functiohqueue length as shown in (Viti,
2006). In order to derive the delay distributiomdtion, we start with a simple case in the
undersaturated condition. We assume that at thmmieg of the red phase with t=0, no
initial queue exists at the stop line of the inketeon and the green phaggis not fully
saturated on the average. The queue builds up giopal to the time in the red phase
and decreases proportional to the time in the gpdase. The average arrival rate is g and
it remains constant during the evaluation peridae @ielay as function of the arrival time
at the stop line of the intersection (in the caka wertical queue) for this simplified case
can be derived as (van Zuylen 2006; van Zuylemn. g2@07):
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w =7 -+ 3L +—i—t(1—ﬂs), ift<r (4.1a)
W(D) = (qt+1-s(t-r,)) r !
L S Jfr, <t<—3 (4.1b)
=7 +2-ta-9) 1-9
S S S
T, +=
W(t) =0, if>—S (4.1c)
1-9
S

As a next step let's assume that an initial overfepueueny exists at the start of the red

phase and that the green phase is still long entuglandle all traffic. For this case, the
delay is given by:

W(tjn) =7 - t+0F1FA0 Ly Gy o (4.23)
S S S
,ifr, <t<—3— (4.2b)
=7 +nO_+1_t(1_ﬂ) 1-4
S S S
7+t
W(t|n)=0, ff>— S (4.2¢)
-4
S

The delay has a maximum as experienced by a vehioling just after the end of the
effective green time. It is equal to the red timelus the time necessary to release the
initial queue and the arriving vehicle itself, addcreases linearly until the end of the
saturated green time. Afterwards, the delay is.Z€he probability that a vehicle has a
delay between andd + Ad is given by the chance that a vehicle arrives betteW ™(t)
andt+4t =W ( d+4d ) as shown in Figure 4.2 (a), whé¥ecan be easily obtained as:

dt
dw(9)

At =-Ad

(4.3)

The inverse mapping of deldy to the arrival time is not a single valued functemcan
be seen from Figure 4.2 (b). The derivative dogsexest atW=0. This can be simply
solved by introducing the Dirac delta function {act a generalization of the function
concept, only applicable in integrations) with tbBowing properties:

5(x)=0 ifxz0 ,
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[ ox=x) f(9dx= 1( %) (4.4)

Therefore, the probability density function candetermined as:

P(W|n)=a(n)o(W+ 2 (4.5)

n, +1
T+
whereg=1-——— S =
Ic (1_9) Tc(l_g)
S s

, 7c IS the cycle time.

Delayw(t) Arival
time
r LR
S \
+ S
d Ag R
ot
t—Ade t Arrival time Delay W
(a) (b)

Figure 4.2: Delay as a function of arrival timeW (t) and the inverse relationt (W)

4.2.2 Delay distribution in the oversaturated condition wth a fixed
overflow queue

When the initial queue is larger than a certaireghold, the green phase becomes
oversaturated. The question whether an arrivingclethas to wait for a next cycle to
depart, depends on the number of vehicles thateafthefore this one in the cycle plus the
initial queue. As soon as this quantity exceedsnilmaber of vehicles that can depart in
the (remaining) green time, the vehicle has to vi@ita following cycle or even more
cycles. The delay becomes

W(tl QJ): (Tr - t)+\\MJTC +(r& +1+ qt_i‘LqH_lJ gg) §L
STg S'Q

(4.6a)

={rr+”°+1+{”°+qt+1Jrr} —a-9 i t<r
S g S

r
]
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g g

W(t| rb):{—no it thrC +(n+1+ gt- s(t—rr)—\‘—r}’-|r qt+1J 8
ST, g,
(4.6b)

:{,r+rb+1+{rb+qt+1Jrr} -9 i or
S g, S

The floorl 4 is used to indicate the integer value of the exgioesinside the brackets. An
example of the oversaturated condition is showrFigure 4.3. In this example the
transitions occur at four time instants, t;, t, andts. Vehicles arriving betweety andt;
can leave the intersection in the next green phadgcles arriving betweeti andt, can
depart in the green phase of the next cycle, dte.fumber of red time that the arriving
vehicles need to wait for can be directly derivemhf Equation (4.6). The more generic
expression is:

ST,

The minimum number of extra red time an arrivindnicke needs to wait for can be
derived as:

ST,

Nmin :\\no +1J (48)

If the initial overflow queue can depart from theersection within the effective green
time, the minimum number of extra red time that @inéving vehicle needs to wait for is
zero. In this example, we assume that the initr@rtbow queue can be released within the
effective green time.

Similarly, the maximum number of extra red timesws when vehicles arrive at the end
of cycle time given by:

|zt +1
Nmax - \‘%J (49)
¢}

The transition moments can be expressed as:
0

ty=yNs,—-n-1
q

N = Nmin

) 4.10
N min < N < Nmax ( )
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Figure 4.3: Delay as a function of arrival time forthe oversaturated condition
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w=r+2 o a9y g o2 09
S S S S

r

For more general expression, we can substitineEquation (4.6) with, and the delay
for each transition point can be calculated as:

+1-(N+1Dg
max(O,(N+1Tc+no (N+Y ~) i
) q N min< N < Nmax
W, .= i} (4.11a)
N1 +no+l_ e n= Nmax
( )Tr TC( )
S S
1+ N)7 2ot :
W B r N = Nmin 4.11b
ON+2 Np. 41 +no+1—Nsrg N min < N £ Nmax . )
ctby T

q

The probability distribution for this case consiefssome box shaped functions that may
overlap as shown in Figure 4.4. The box shapedifums are defined as:

0 if W<W,,

B(W’WN+1’WN+2)= 1 If V\£N+1S WK V%HZ (412)
O If W >VVZN+2

The delay probability function can be represented a

N max

PW[n)= > BEW W..( 8 W.. 9 (4.13)

N=Nmin

wheref = J
Ic (1_g)
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Figure 4.4: Delay probability distribution for the oversaturated condition

Based on Equations (4.5) and (4.13), delay proibalistribution with an initial queue
for both undersaturated and oversaturated condittan be expressed in one equation:

N max

PW[n)=a(m)a(W+ > B BW Wil 9 Wl I (4.14)
WhereB(W,Wn+1(no), Won+2(No)) IS given by Equation (4.12) aMibn+1(No), Wen+2(Ng) are
given by Equation (4.11).

4.2.3 Delay distribution with a stochastic overflow queue

The delay probability distribution function derivedthe previous section is based on the
fixed overflow queue that is present at the stathe green phase. If the overflow queue is
stochastic with a certain probability distributidhe expected probability distribution of
the delay can be composed as a weighted sum odlpitidy functions:

00

P(W)=Y RW| ) R p) (4.15)

=
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where P(ny) is the probability distribution of the initial que. It can be easily derived
using the Markov Chain Process by assuming a ceataival distribution (e.g., Poisson)
and departure distribution ( e.g. Normal or Binoafjiras explained in (Olszewski994;
van Zuylen et a).2007; Viti, 2006).

Based on Equations (4.13), (4.14) and (4.15), we rmamerically calculate the delay
distribution with a stochastic overflow queue. Kgud.5 (@) illustrates the delay
distribution for an undersaturated condition (degoé saturation x = 0.833) based on the
function in Equation (4.15). The tail abow = 36 the red time, and the increase between
0 and 36s delay are the consequence of the stacbastflow queue distribution. Figure
4.5 (b) compares the delay distribution among differéegrees of saturation. When the
degree of saturation is increasing, the shape efdéday distribution shifts to the right
with a higher standard deviation. However, the yéliatributions for different degrees of
saturation are highly overlapping as can be cleseln in Figure 4.8). A given delay
can correspond to different traffic conditions watrtain probabilities. This indicates that
a single delay couldn’'t give enough information wibavhat is happening at the
intersection. Consequently, measured delays ohglesivehicle do not have much value
for the prediction of delays of other vehicles &ling at the same time period.

For the case of oversaturation, as we already si&&tl) no equilibrium state of the queue
distribution exists which also means that the dedestribution is time-dependent and
shifts over time towards higher delay values. Fegdr6 can explain this phenomenon
more intuitively. The shape of delay distributidmifts from left to right cycle by cycle
and spreads over with a larger range of delay fcgate to cycle. The expected value of
delay continues to increase and the same for thance of delay.
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Figure 4.5: Delay probability distribution in undersaturated and oversaturated
conditions
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Figure 4.6: Evolution of delay distribution in oversaturated condition @c = 60s,

79= 24s, x = 1.1, s = 1800veh/h)

4.2.4 Comparison between the Poisson arrival and Binomiarrival

processes

Delay distribution with Poisson arrival process hasn discussed in the previous section.
As we know, the Poisson process is a random progbgsh means that events occur
independently of one another. For an isolated setdron with light traffic condition,

vehicles can pass independently of each other. Htisson process can be used to
describe vehicle arrivals in this case. When ttati@mand is increasing, vehicle headways
become more uniform due to car following behavidbim; the other hand, more and more
vehicles form platoons (clusters, groups). Soméidigions, e.g., negative exponential,
shifted negative exponential, are commonly usedetcribe arrival headways. However,
these commonly used distributions tend to give gwedictions for the range of small

headways as shown in (Akcelik et,all994).

Instead,

they proposed a bunched

exponential distribution model which provides morealistic prediction of arrival

headways. In our study, we still use the Binomralal distribution just as an example to
show how different arrival distributions influenttee delay distribution in different traffic
conditions. Compared with the Poisson process,poogerty of Binomial process is that
the ratio of variance over mean is smaller thahldre we define it as the coefficient of

variance:

(4.16)
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whered?is the variance of arrivals apds the average arrivals.

One condition in applying a Binomial process sttt variance needs to be determined
in advance. The variance of arrivals has to benedééd based on observations and usually
is intersection specific. In order to see how thefficient of variance influences the delay
distribution, the value of is chosen to be 0.4, 0.6 and 0.9. The results@rgared with
that of Poisson process and shown in Figure 4.7. tRe undersaturated condition
(x=0.833) as shown in Figure 4.7(a)), choosingedédht value ofl for the Binomial
arrival has no significant influence on the delastribution. Nevertheless, when the value
of | increases towards an oversaturated condition 2}=s illustrated in Figure 4.7 (b),
the delay distribution spreads over a larger raofggelays. For this case, different arrival
patterns, especially the variation in arrivals viadlve a significant influence on the delay
distribution. Larger variance in arrivals will lead larger variance in delay distribution.
Compared with the delay distribution of Poissorivats, smaller variance of delay can be
observed in the delay distribution with Binomiafiaals. This is explainable because in
the Poisson arrival process, the arrivals are mumeertain, which leads to the larger
variance of delays experienced by vehicles atititatsection.
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Figure 4.7: Delay distribution with Poisson arrivak and Binomial arrivals

4.2.5 Comparison between the delay model and VISSIM simation in
undersaturated conditions

The delay distribution model presented in previsestions has the ability to describe the
evolution of delay distribution under differentffra conditions. In order to see how this
analytical model works, we compared the delay ithistion from the proposed model with
that from VISSIM simulation. The cycle time is 68sd green time is 24s both for the
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analytical model and simulation model. The sataratiew is 2200veh/h/lane. The
individual delay was recorded in VISSIM and theayeHistribution was derived. As
illustrated in Figure 4.8a) (b), the delay distributions based on the ditally model
match those from VISSIM simulation very well botir the degree of saturation of 0.833
and 0.917.The Kolmogorov-Smirnov test (Figure 4&Bypws that the hypothesis that the
delay distribution based on the simulation data #rad based on the proposed model
come from the same distribution cannot be rejeat#id significance level 0é=5%.
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Figure 4.8: Comparison of delay distribution betwea analytical model and
simulation
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4.3 Delay uncertainty at signalized intersections

In the previous section, the delay distribution elddr an isolated intersection has been proposed.
It has shown that a wide range of delays can baddoth in undersaturated and oversaturated
conditions. Based on the delay distribution, ie@sy to calculate the percentile delay, e.d! 90
percentile delayKigure 4.9. The expected value and standard deviation @sde calculated.

cumulative distribution under different degree of sturation
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Figure 4.9: Cumulative delay distribution for different degrees of saturation

In literatures, the variance of delay is commonbed to quantify the uncertainty
(variability) of delay at signalized intersectiom$ere, we use an indicator called ‘width’
to measure the uncertainty of delay. It was origynaroposed in (van Lint et al., 2005;
van Lint et al., 2008) to measure the reliabilifyravel time. The wider the travel time is,
the less reliable travel times become. An examptlis method is the difference between

the 90th and 10th percentile relative to the median
90th __ 10th
_b-D" (4.17)

where,Dy denotes the (relative) delay uncertairy®™ D" and D" denote 98, 50"

and 10" percentile delay, respectively.

Figure 4.10shows the dynamics of delay uncertainty defineeédnation (4.18) for the
period of 30 cycles. Under the undersaturated ¢mmd{degree of saturation x=0.8@)y
fluctuates for the first 5 cycles and remains neadnstant for the next 25 cycles. In a
slightly oversaturated condition (e.g., x=1.0B), rapidly increases for the first 5 cycles
and flattens out for the remaining 25 cycles. Hoavein a highly oversaturated condition
(e.g. x=1.2) Dy increases at the beginning and decreases monallgras the number of
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cycles increase®y is larger in low degree of saturation (x=0.8) as be clearly seen in
Figure 4.10. Under the undersaturated conditiom,nttost probable delay is zero and the
delay is predominately determined by the arrivahmeat at the intersection and the red
time. The stochastic characteristics at the intdi@e play a main role in the delay
uncertainty. While under the oversaturated condjtaelays are mainly determined by the
overflow queue and stochastic arrivals and depestimave less influence on the delay
distribution. Therefore, delays are relatively moegtain under oversaturated conditions
even though vehicles experience larger delays.

We also investigated the delay variability unddfedent degrees of saturation ranging
from 0.5 until 2 and the analysis period T= 6008 ¢ycles). As shown in Figure 4.11,
two different arrival processes (Poisson arrivat @inomial arrival processes) are
compared with each other. The delay uncertaintybeadivided into three regions. For the
case of highly undersaturated conditions (x<038),decreases both for the Poisson and
Binomial process. When the degree of saturatiomeages (0.8<x<1)Jpy increases
dramatically for Poisson arrivals. This is expldileabecause when the traffic condition is
near saturated, traffic flow becomes unstable asthall disturbance can lead to a large
variation of delay. In highly oversaturated corwhs when the degree of saturation is
higher than 1.1Dy keeps on decreasing@y for the Binomial arrival process (the
coefficient of variance is set to be 0.8) is slighgmaller than that of Poisson arrival
process.Figure 4.12 illustrates the delay uncertainty ungtrchastic departures with
standard deviation equals to 10% and 20% of avedagartures per cycle, respectively.
Under highly undersaturated and highly oversatdratenditions, the relative uncertainties
of delay for these two cases are quite similaracheother, while under traffic conditions
in between, larger standard deviation of departterds to have a largér,. The similar
phenomenon can be observed in Figure 4.11, whiengyer variance of arrivals leads to a
largerDy in middle traffic conditions.
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Figure 4.10: Evolution of delay variability for the period of 20 cycles
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Figure 4.11 Delay uncertainty as function of degrees of saturan for different
arrival distributions (The standard deviation of sauration flow is chosen as 10% of
the average saturation flow)
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Figure 4.12: Delay uncertainty as function of degres of saturation for different
standard deviation of the saturation flow (Poissorarrival)

4.4 Summary

On the urban road, the variability (uncertainty)tdvel time is largely caused by the
variability (uncertainty) of delay vehicles expere at intersections. This chapter has
focus on the analysis of the delay distribution #or isolated, fixed-time controlled
intersection. The delay distribution model is depeld and the variability of delay at
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signalized intersections is investigated basedhendelay distribution model taking the
stochastic properties of the traffic into account.

In the proposed model, we assume that the init@ug is not deterministic but has a
certain probability distribution. Both the Poissamival process and the Binomial arrival
process are considered and the departures are esdsiambe stochastic. Analysis of
different arrival processes has revealed that idewsaturated conditions, the delay
distribution does not significantly influenced biferent arrival processes (e.g., Poisson,
Binomial). The comparison of delay uncertainty iffestent traffic conditions has shown

that the delay is more uncertain in undersaturatedditions than oversaturated
conditions. This gives more insight to travel tiesimation and prediction on the urban
road. The uncertainty of delay in undersaturateaditions should be particularly taken

into account in order to have better estimationpadiction results. This chapter also
reveals that the delay distributions for differetdégrees of saturation are highly
overlapping which indicates that a single delay camrespond to different traffic states
with certain probabilities and also for a giverfficastate, a range of delays can be found.

Up to this chapter, the delay distribution modelosly applicable for an isolated
intersection. On urban arterials, traffic proceas be influenced by signal coordination
between intersections. Delays (travel times) tledticles experience on urban roads are
accordingly influenced by signal coordination. Tisisnvestigated in chapter 5.



Chapter 5

Model development for urban travel
time distribution

5.1 Introduction

The travel time that vehicles experience on an muntw@d can be decomposed into two
parts: the free flow travel time and the delay. Thee flow travel time is basically
calculated as the distance over the free flow spdedever, estimation of delay is more
difficult due to stochastic characteristics of fi@fon the urban road as discussed in
chapter 4. Up to now, most research about trave ®stimation and prediction mainly
deals with the expectation or variance of traveaks. Very little attention has been paid to
investigate the travel timelistribution though some research about using statistical
distributions (e.g., normal, log-normal or combioat of different distributions) to fit
observed travel times and estimating parameters fhese measured travel times can be
found in the literature (EL FAOUZI et al., 2006; &Get al., 2010). These models hardly
have physical meaning and some parameters areutliffo interpret from the traffic point
of view. Therefore, it is necessary to developawel time distribution model which can
explain the underlying urban traffic phenomenon @ath be generalized to different
traffic conditions.

One important and difficult part in developing arabtical travel time distribution model
is to estimate delays at intersections. Delaygatteer uncertain due to a lot of stochastic
factors when vehicles approaching intersectionshi@pter 4, a delay distribution model
for an isolated intersection has been developed.prbposed model can well capture the
delay dynamics and uncertainty at intersectionghis chapter, a single link travel time
distribution model is developed in section 5.2.0hder to see how the proposed model
performs, travel time distributions generated Hodim the VISSIM simulation model and
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field data are compared with those estimated frioenanalytical model. In section 5.3, a
travel time distribution model for an urban tripspag two intersections is proposed.
Travel time distributions estimated based on thedydical model are compared with those
derived from the VISSIM simulation model and fromld data obtained from floating
cars. Finally, section 5.4 presents some conclgsion

5.2 Travel time distribution for a link with one

signalized intersection

5.2.1 Definition of the link travel time

In this thesis, the complete link travel time idided as the travel time when the vehicle
enters the upstream of the link of interest urtieaves the downstream intersection as
illustrated in Figure 5.1. The link travel timeaspressed as:

TT = tentry - texit (51)

Lontry Complete link Lovit

- [

Figure 5.1: Schematic representation of an urbannk

5.2.2 Components of urban link travel time

Basically, the travel time vehicles experience amedain linki can be subdivided into two
components:

TTO=TT(9+ D(Y (5.2)

WhereTT ' (t) represents the free flow travel time at time insteon linkii. It is further
calculated as the link lengthdivided by the free flow speagt

TT' (1) =u5 (5.3)
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The free flow speed varies with different drivinghaviour, speed limit, spacing between
intersections, vehicle composition, weather condgj etc. Therefore, the free flow travel
time is not a constant valuB; (t) represents the delay vehicles experience when tilggpar
at time instant. As discussed in chapter 2 and chapter 4, delejgbles encountered on
an urban trip can be caused by different factorg,, dus manoeuvres at bus stops,
vehicles parking along the roadside, cross pe@estrand cyclists, traffic control and
gueues at intersections. Among all these factbesgelay at intersections due to the queue
and traffic control constitutes a large part of to&al delay. In this thesis, we mainly
consider the delay at intersections.

In order to apply the definition in Equation (5t@)derive the link travel time distribution,
we assume a vertical queue at the intersectiors &ksumption has been discussed in
chapter 4 to derive the delay distribution. Theoseglcassumption is that the number of
vehicles in queue is not too large such that tiemo spill back in case of a horizontal
gueue. The reason for the second assumption isfttie queue is so large that it spills
back and blocks the traffic at the upstream int#rse. In this case, the vertical queue is
not a reasonable assumption anymore.

5.2.3 Derivation of a single link travel time distribution

Case 1: constant free flow travel time

The free flow travel time can be estimated by syrgdsuming a constant free flow speed
(e.g., speed limit). In that case, the free floaw#l time is a constant value. The delay
vehicles experience at the signalized intersedtiaterived based on the vertical queue as
discussed in chapter 4. This does not have a Higeimce on the final calculation of the
total link travel time for the case of undersatadatonditions or slightly oversaturated
conditions. More detailed discussion about caltudathe total link travel time in case of
vertical queue and shock wave can be found in Agipged. The probability of a certain
link/trip travel timet, P(t) can then be seen as the shifted probability cfream delayw

as:

P =FR(t-7) (5.4)

where,z; is the link free flow travel timeP(t) is the probability of a certain link travel
time t ( t=w+7; ); Pq(w) is the probability of a given delay which has been derived in
chapter 4 with formulas (4.16) and (4.17).

Case 2: stochastic free flow travel time

However, the free flow travel time in most casesas a constant value. Instead, the free
flow travel time has a certain probability distritmn. As for an isolated intersection, the
delay distribution at the intersection is indeperidef the travel speed. Therefore, by
combining the free flow travel time distributiontivithe delay distribution, the link travel
time distribution can be derived as:
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P()=[ R (t-sI9R(3d (5.5)

WherePs (s) denotes the free flow travel time distributidiy;(w|s) denotes the conditional
probability of the delayv given a certain free flow travel tinge For a given travel time
(t=w+s), this conditional probability can also be fornteldhas:

P(wW9=R(t943 (5.6)

For the case that both the delay probability distion and free flow travel time
distribution are discrete, the link travel timetdlsution can be modified as:

t

P(t)=> P(t-s| 9 P($ (5.7)

s=0

5.2.4 Comparison with VISSIM

The analytical model presented in the previousi@edias the ability to describe the
variability of travel times (travel time distriboti) given the known traffic conditions
(e.g., traffic demand, traffic control). One mayegtion whether this model is able to
represent the reality or not. In this section, firet validation was conducted by
comparing the results from the analytical modehwitose from the VISSIM simulation
model.

A single-lane link of 600m with one fixed time coolted intersection was modelled in
VISSIM. Travel times for the complete link were oeded in VISSIM. The cycle time is
60s and effective green time is 24s. The numbesiwiulation runs is 300 and the
evaluation time for each simulation 1200s (20cycl&#/0 scenarios were chosen:

Scenario 1: The input flow is 720veh/h. The degree of satorais about 0.833;

Scenario 2: The input flow is 807veh/h. The degree of satorats about 0.917.

The free flow travel times were also recorded kting vehicles travel through the link
without interruption. The mean free flow travel &nand the standard deviation were
estimated based on the recorded data. A normaildisbn was used as an approximation
of the free flow travel time distribution in thisusly. Figure 5.Zompares the link travel
time distributions derived from the proposed mo@eld those from the VISSIM
simulation model. The link travel time distributederived from the analytical model can
well represent those from the VISSIM simulation raofbr both scenarios. This can be
confirmed by the Kolmogorov-Smirnov test=6%) results as shown irigure 5.3. The
hypothesis that simulated travel times come from sme distribution as the model
predicted is not violated with the sample size @3.5
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Figure 5.2: Comparison of the link travel tine distribution between the analytical
model and VISSIM simulation model
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Figure 5.3: Kolmogorov-Smirnov test

5.2.5 Comparison with field data
Test area

In the previous subsection, travel time distribngiaerived from the proposed model are
compared with those from the VISSIM simulation ddtathis section, field data were
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collected in Changsha, a Chinese city in Hunan iRcev More than 5000 taxis equipped
with GPS devices are used as probe vehicles tnagefi the urban road network. Every
30s, positions, speeds and time stamps are recartkdent to the monitoring centre. As
discussed in chapter 3, the Neural Network model peovide good estimation of

complete link travel times from GPS data. Howedewr to the lack of ground-truth travel
time data, it is infeasible to apply the NN modelthis case. Instead, complete travel
times were estimated by applying interpolation wsffeed and time stamp information
when taxis pass before and after intersectionsetmh complete link. More detailed

information can be found in Appendix F. Two linkglwsignalized intersections indicated
by arrows along Shaoshan Road were chosen assthexréa shown iRigure 5.4.
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Figure 5.4: The test road in Changsha city

Data and parameters

Travel times collected by GPS probe vehicles betwkE00 AM and 11:00AM on 1%

May 2010 are used for analysis and comparison.eTald indicates parameters of each
link and intersection as well as the number ofdfighvel time observations for each link.
The average free flow speeds are estimated as #ikam speeds from GPS data after
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removing zero speed, which are 23km/h, 25km/h aainzh for link 13-11, 11-8 and 8-3,
respectively. The saturation flow rate for eachenséction was estimated based on
observations. From the analysis of the saturatmm for different lanes and intersections,
the average saturation flow is about 1550veh/h \aitbtandard deviation of 150veh/h.
Therefore, the saturation flow rate was determibgdninimizing the error between the
model predicted travel time distribution with theld GPS travel time distribution using
the step-wise method.

Table 5.1: Parameters of links and intersections

Link Link length(m) Average Average free flow  Number of field travel
infow(veh/h/lane) travel time(min) time observations
13-11 1200 500 3 104
11-8 700 350 1.7 145
8-3 600 340 1.5 84
| ntersection Aver.age cycle Effec.tive green Saturation
time(s) time(s) flow(veh/h/lane)
11 200 68 1550
8 190 53 1580
3 190 50 1600
Results

Figure 5.5and Figure 5.6 illustrate the travel time distributiomem GPS probe vehicle
data and from the analytical model on link 13-1dk 111-8 and link 8-3 during periods
10:00AM-10:30AM and 10:30AM-11:00AM, respectiveliravel time distributions from
the proposed model can represent the field traweé tdistributions reasonably well.
However, middle range of travel times and highewéi times are more frequently
observed in field GPS data than the model prediespecially for link 11-8. This
discrepancy probably due to the fact that in the# tead, vehicles turning from cross
streets can cause extra delay to the through-gahgles on link 11-8 as can be seen in
Figure 5.4, while the proposed model does not cendhe effect of turning movements
from side streets between two signalized intersasti From the Kolmogorov-Smirnov
test as shown in Figure 5.5 (b) (d) (f) and Figbré (b) (d) (f), even with small GPS
sample data, the hypothesis of a same distribligivween the model and field data cannot
be rejected except link 11-8 which has larger @isancy between the model and
observations during period 10:00AM-10:30AM.
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Figure 5.5: Comparison between travel time distribtions from GPS probe vehicle
data and those derived from the proposed model oimk 13-11, link 11-8 and link 8-3,
respectively (10:00 AM-10:30 AM).
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Figure 5.6: Comparison between travel time distribtions from GPS probe vehicle
data and those derived from the proposed model oimk 13-11, link 11-8 and link 8-3,
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5.3 Travel time distribution for an urban corridor

As already discussed, the delay vehicles experiefeygs a main role in the total travel
time. The situation becomes even more complicavedam urban corridor with multiple
intersections. The way how these intersectioncaocedinated has a big influence on the
final delay distribution. In this section, a deldigtribution model for an urban corridor is
developed. By combining the delay distribution witle free flow travel time distribution,
the link travel time distribution was derived.

5.3.1 Basic notations and assumptions

The delay distribution model for an isolated ingetgon has been discussed in chapter 4.
In order to derive the delay distribution for afam trip with a group of signals, we limit
ourselves by the following conditions:

1) Two fixed-time signalized intersections are consdein a single trip. The saturation
flow rate is the same for both intersections.

2) The acceleration and deceleration effects arexpioitly considered. The concepts of
effective green and effective red are used instead.

3) The vehicle arrivals at the first intersection éo¥l the Poisson distribution. The
average arrival rate is assumed to be constamglthie evaluation period;

4) The arrival times of vehicles are uniformly distried; Departures are uniformly
distributed at the saturation flow ragevhen there is a queue and at the arrival gate
after the queue has disappeared.

5) Platoon dispersion is not considered between tvjacadt intersections.

6) The mid-link delay caused by bus manoeuvres atsbass and vehicles’ parking etc.
along the roadside is not considered.

In chapter 4, the sensitivity of a similar model diifferent arrival distributions is analysed
and it has shown that the condition 3 is not esslefithe assumption 4 can be relaxed to a
more general case that departures from the upstir@@nsection within a cycle time is a
continuous time-dependent distribution as discussedViti et al., 2009). Here we
consider departures are uniformly distributed foe tonvenience of modelling. As for
fixed-time control, the coordination scheme betwben intersections has a big influence
on the delay vehicles experience when passing timesétersections. Figure 5(&) and

(b) shows different offset settings for two fixethe controlled intersections. For the
convenience of modelling, we assume that bothsettions have the same cycle tirae
effective green timey and red timer;. These assumptions can be relaxed to different
effective green times between consecutive inteimext The derivations in the following
sections are all based on the assumption of the sawele time and effective green time
between two consecutive intersections. The offgdbetween two intersections is defined
as:
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T =l 4 (5.8)

wheret; is the beginning of effective green time at thetrgasn intersection angis the
beginning of effective green time at the downstreat@rsection. The link length between
the two intersections is; the free flow speed 1&. Then the average free flow link travel
time is:

TT, =X (5.9)
uf
If two intersections are well coordinated, therenis mismatch between these two
intersections. In the case that two intersectioesnat well coordinated, the mismatch of
green timery, as illustrated in Figure 5(&a) (b) between the upstream intersection and the
downstream intersection can be derived as:

Tm =7 - Toff (510)

Two types of mismatch can be found in reality asnshin Figure 5.7.

1) Mismatch 1, early green:As illustrated in Figure 5.7 (a), the start of tireen phase
at the downstream intersection is too early su@t pgart of the green time is not
utilized by the platoon. Hence, the mismatch betwtee two intersections is positive :

I,=T—-T4>0

Since the mismatch time is only utilized by the agmmg queue from the previous cycle
not by the vehicles departing from the upstreararggction right after the traffic light
turns to green. The effective green time of the migtveam intersection when vehicles can
pass without delay is given by:

I,=r,-T, (5.11)

2) Mismatch 2, late green:As illustrated in Figure 5.7 (b), the start of treen phase at
the downstream intersection is too late so thaiclkehdeparting directly after the start
of the green time from the upstream intersectioednt® wait for the red time at the
downstream intersection. Hence, the mismatch betwbe two intersections is
negative:

T, =T-T,,<O0

m
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flow

(b, late green)

Figure 5.7: Offsets at adjacent intersections

5.3.2 Delay at two adjacent intersections

As discussed in the previous section, there aretypes of mismatch (early green and late
green) between the two fixed-time controlled indet®ns. In this section, the delay
vehicles experience when traversing the two cornsecuntersections is analysed and
discussed according these two types of mismatch.
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Mismatch 1, early green

(1) When the upstream intersection is undersaturated

Figure 5.8 illustrates the delay that vehicles experience ipgsswo signalized
intersections. We assume that there is no oveedaor (filtered by the upstream
intersection) at the downstream intersection. Ddpwnon the arrival moment at both
intersections, the initial overflow queue at thestopam intersection and offsets between
two intersections, delay vehicles experience cacdbegorized into three cases:

Case 1: Figure 5.8 (a)

As shown in Figure 5.8a), vehicles leaving from the upstream intersectibtimet; can
pass the downstream intersection without delay. idleh departing from the first
intersection aftet; +zg' have to wait at the second intersection. The alsiare first in a
dense platoon determined by the saturation flow a&itel the saturated green time, the
flow is determined by the arrival rate. When thaigke arrives at the beginning of the red
timety at the upstream intersection, delay equals togtidime plus the time to release the
initial overflow queue at the upstream intersectmas the arriving vehicle itself and
decreases linearly until zero at the saturatedngtieee which is given by:

=ty ——— (5.12)

Wherer, is the red timeny is the initial queues is the saturation flow rate ands the
arriving flow rate.

Vehicles arriving at the upstream intersection epee zero delay aftdg,: up till t; =

totz+7g'as shown in Figure 5.8 (a) and aftewehicles have to wait for the red time at
the downstream intersection. The delay as a funafaarrival time at the stop line of the
upstream intersection can be determined as:

+
I+ nos 1_(1_%)(t_to) to <t Stsat

W(t|n) = 0 t, <t (5.13)

7, -1-De-t) t>t,

Case 2: Figure 5.8 (b)

As shown in Figure 5.8b), when the initial overflow queue becomes largech that
vehicles arriving the upstream intersection at ttpeefore the end of the saturated green
time tsc have to wait for the red time at the downstreatergection. The momery is
given by:
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N, +q(t, — ) +1= SJg

sty —n -1
q

Vehicles arriving befordy only have delay at the upstream intersection ditet &,
vehicles need to wait at the downstream intersector this case, delay as a function of
arrival time at the stop line of the upstream isgetion can be calculated as:

ie.t, =t + (5.14)

I+ no+1—(1—38)(t—t0), t<t,

r

W(t[n) = (5.15)

+
or, + 1= ye-t,), 1>,
S S

Case 3: Figure 5.8 (c)

As shown inFigure 5.8(c), if the initial overflow queueleparting from the upstream

intersectionis so large that it can’t leave the downstreararggction completely within the

green timery'. For this case, the vehicle arriving right aftee start of the red time at the
upstream intersection needs to wait for the redetiat the downstream intersection
because of the long overflow queue which is givgn b

n+1> s
n,=s, -1

The delay vehicles experience can be calculated as:

W(t|n)=2r, +n°T+1—(1—HS)(t— b) (5.16)
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Figure 5.8: Delay as a function of arrival time fortwo adjacent intersections in the
undersaturated condition (Mismatch 1, early green)

(2) When the upstream intersection is oversaturated

When the initial overflow queue at the upstreanensgction is larger than a certain

threshold, the green phase becomes oversaturatex.qliestion whether an arriving

vehicle has to wait for a next cycle to depart,ed&s on the number of vehicles that
arrived before this one in the cycle plus the ahitoverflow queue. As soon as this

guantity exceeds the number of vehicles that caarén the (remaining) green time, the
vehicle has to wait for a following cycle or evemna cycles at the upstream intersection.
On the other hand, whether the vehicle departiomfthe upstream intersection needs to
wait for the red time at the downstream intersectiepends on the number of vehicles in
front of this vehicle departing from the upstreameisection in the same cycle. If this

guantity exceeds the number of vehicles that caarddérom the downstream intersection
in the effective green time, the vehicle needs tmtvior the red time again at the

downstream intersection. The general expressiambealerived as:

{Tr+no+l+\‘rb+CKt—To)+lJTr} 1 —%(t—t(), if n,+q t-t) +1—{WJQQ<%
s st, S 5

W(tn)=

@+ r‘gl{ b+ Q(SZ WlJ 711 —Ebs(t -1, else (5.17)
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The floor| | is used to indicate the integer value of the esgiom inside the brackets.

Mismatch 2, late green

(1) When the upstream intersection is undersaturated

Vehicles leaving from the first intersection afte the beginning of the green time) have
to wait at the second intersection for a period,ds shown irFigure 5.9. The arrivals are
first in a dense platoon determined by the satmatiow and after the saturated green
time, the flow is determined by the arrival rateh®& vehicles arrive befotey, the delay
at the first and second intersection is determimed

w(tn)=7, +22-a-De- ez, t<t, 518)

After ts5, the delay can be calculated as:

W(tn)= Mafz, - -I( t- 1.0

1 (5.19)
=Maxr, +7, + -0 -H(t-1,0, 2t

By combining Equations (5.18) and (5.19), the dedaya function of arrival time at the
upstream intersection can be derived as:

+1
w(tn)= Ma){r,+rm+n°S —(1—93)( t 1),0} (5.20)
L/u, f_r:
_ 1 —
- R
Toﬁ ’
flow q
-

-

+T, +L+1
S
.|
0

t

-~

N\

+
tsat tf to Ic Arrival time
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Figure 5.9: Delay as a function of arrival time fortwo adjacent intersections in the
undersaturated condition (Mismatch 2, late green)

(2) When the upstream intersection is oversaturated

In oversaturated conditions, the arriving vehicéeds to wait for extra red times due to
the large initial overflow queue and the high tkaflemand. Therefore, the delay as the
function of arrival time can be deduced as:

g

W (tn)={z, +7, + no;rlJ{ n, + q(str- to)+1J I} AL _ﬂ)s(t—t& (5.21)

5.3.3 Travel time distribution for two adjacent intersections

The delay as function of the arrival time at thestegam intersection for two types of
mismatch both in the undersaturated condition awersaturated condition has been
discussed in the previous subsection. In this siose the travel time distribution model
for two consecutive fixed-time controlled intersens, taking the stochastic overflow
gueue in the first intersection and different mitthas between these two intersections
into account, is developed.
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Delay distribution with an initial deterministic qu eue

(1) Mismatch 1: early green

The delay as a function of arrival time at the tgmih intersection both for the
undersaturated condition and oversaturated comditan be derived according to
Equations (5.15), (5.17), (5.18) and (5.19). Astfar oversaturated condition, the number
of extra red times that a vehicle arriving at tirmeeds to wait at the upstream intersection
can be directly derived from Equation (5.19). Tharengeneric expression is:

S

N =|‘q(t_t0)+no+1J (5.22)

From Equation (5.19), we can see that when a vehigiving within the time interval of
one cycle time, the minimum number of extra redesinthis vehicle needs to wait at the
upstream intersection can be derived as:

n,+1
Nmin :\‘ ° J (523)
ST,
And the maximum number of extra red times is gilvgn
_|arc+tnp+l
N =|——2— (5.24)
ST,

If the value within L 4 is an integer, the maximum delay will be expere@hdby the
vehicle arriving at the end of the cycle. Otherwibe maximum delay will appear before
the end of the cycld & to+ zc) in oversaturated conditions.

When vehicles arrive at the downstream intersectlmre are two cases:

- Passing the downstream intersection without delay;

- Passing the downstream intersection with a certgiay.

Whether vehicles need to wait for the red timehatdownstream intersection depends on
whether the number of vehicles in front of this ieth plus the vehicle itself can be
released within the green timg at the downstream intersection.

N +q(t-%)+1

ST,

1) If 0<sn,+q(t— t0)+1—\‘ J g, < 9, vehicles experience no delay at the

downstream intersection. Vehicles just experienelmys at the upstream intersection.
Given the initial moment of the calculatid#) in our approach, it is the beginning of the
red time. For this case, the transition momentscditinuity of the delay as function ¥
appear when:
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N, + 0t — ) +1- Ng, =0
Each transition moment can be derived as:
t, N=N_

ty = +Nsrg—r3,—1

(5.25)
t0
q

ST,

upstream and downstream intersections, the trangitioments appear when:

2) If n,+ q(t—t0)+1{nO + gt t°)+1J &, 2 g, Vvehicles experience delays at both the

N, +d(ty — %) +1- N9, = g

g

Each transition moment can be expressed as:

N, +9,- -1
q

An example is shown in Figure 5.10. The ‘star’ pgiare the transition moments when
vehicles arriving at the stop line of the upstrdatarsection need to wait for another red
phase at the upstream intersection. The dots aneition moments when vehicles arrive
at the stop line of the upstream intersection @ilberience an extra delay of ‘red phase’ at
the downstream intersection. The star transitiomers lie on the decreasing trend line
starting from the dot transition moments in case imtersections have the same red time.
However, if the upstream intersection and the doweasn intersection have different red
times, the star transition moments can be abovbetow the trend lineFigure 5.11
illustrates trajectories of vehicles passing twieiisections. The bold solid lines indicate
trajectories of vehicles arriving at the ‘transitimoments’ which are ‘dots’ and ‘stars’ as
shown in Figure 5.10. In the case of a verticalugyé¢he ‘transition arrival moments, t;

are extrapolated and the dotted lines are virnagdtories of vehicles arriving at the stop
line of the upstream intersection.

ty =t, +

(5.26)
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Figure 5.10: Delay as a function of arrival time (athe stop line of the upstream
intersection in the case of a vertical queue) in thoversaturated condition with the
same red time for both intersections (Mismatch 1,aly green)
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Figure 5.11: Trajectories of vehicles passing twoniersections (Mismatch 1, early
green)
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(2) Mismatch 2: late green

In case of mismatch 2, vehicles departing from upstream intersection right after the
traffic light turns to green will experience exttalay due to the late start of green phase at
the downstream intersection. The transition momeatsbe derived from Equation (5.21)
as:

t, N=N_
ty = +Nsrg—rg,—1

(5.27)
t0
q

Nmin, Nmax @are the minimum number of extra red time and maximmumber of extra red
time that vehicles need to wait at the upstreamrseiction, respectively, which are given
by Equations(5.23) and (5.24).

Figure 5.12 illustrates the delay as a functiorawival time at the upstream intersection
(In case of a vertical queue, the arrival time nete the arrival moment at the stop line) in
the oversaturation condition. The ‘star’ points #re transition moments when vehicles
arriving at the stop line of the upstream intereecheed to wait for an extra red phase at
the upstream intersection. Trajectories of vehigd@ssing two intersections and the
‘transition arrival momentt; at the stop line of the upstream intersectionsir@wn in
Figure 5.13. The dotted line is the virtual tragegtof the vehicle arriving at the stop line
of the upstream intersection in the case of acarjueue.

Delay T

t, t, t, t, + 7.

Arrival time

Figure 5.12: Delay as a function of arrival time fo two adjacent intersections in the
oversaturated condition with the same red time forboth intersections (Mismatch 2,
late green)
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»
»

t 1 \ t

Figure 5.13: Trajectories of vehicles passing twantersections with mismatch 2 (The
bold solid line indicates the trajectory of the veltle arriving at the ‘transition
moment’ t; as shown in figure 5.12)

The influence of shockwave on delay calculatiodistussed in Appendix D and it shows
that the shock wave does not have influence offinaédelay calculation as long as there
is no spill back. According to Equations (5.17) af®d21), delay at these transition
moments can be calculated. Due to the complexity, detailed deduction process of
delays for different transition moments under b# tases described in previous sections
is not discussed in this chapter but can be founflppendix C. The general expressions
of delay for these transition moments and theahithoment are given according to two
types of mismatch.

Mismatch 1:
N _ & +9.-n-1
(1) If n0+1—|‘n°+1Jsrg <g, & " Q’
q
right after the beginning of the red time can legwe downstream without delay and
the last transition moment according to Equatio2gpbis larger than the cycle time
(shown in Figure 5.10 a), then delays at the ttmmsimoments are given by the

following equations:

> 1. :The first vehicle arriving

ST,
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N, + 9, - -1

NTC+Tr+T;_ NminSN< Nmax
Wiy, = o q (5.28a)
(N+Dr, +2= -1, (1-) N= N,
S S
(N +1)Tr+no+1 N = Nmin
S
Vv2N+2 - ’ (N _1)gg + ST; _ ra -1 (5-28b)
(N=-Dr +2r +71, - N, <N< N,

q
NS, + 9, - -1
q

right after the beginning of the red time can legwe downstream without delay and
the last transition moment according to Equatior2@p is within the cycle time
(shown in Figure 5.10 b), then delays at the ttersimoments are given by the
Equations (5.29a) and (5.29 b) as:

(2) If n, +1—\‘n°—+1J T,<9, & < 7. : The first vehicle arriving
S

g

N, +9,- -1

Nrc+rr+ré— , N, SN N,
Wy = . a (5.29a)
+
(N+Dr, +2 727 1-9 N=N_ +1
S S
(N +1)Tr+no+1 N = I\lmin
S

Wiz = (5.29b)

(N-Dsr,+g,- -1
q

(N=-Dr.+2r +71, - N, <N<N_+1

mi

NS, + 95— -1

+ L

) If n, +1—\‘n°—1J g,29, & >71.: The initial overflow queue
ST q

¢]
iIs so large that the first vehicle arriving rigttea the start of the red time at the
upstream intersection has to wait for the red tanthe downstream intersection plus
the condition that the last transition moment adow to Equation (5.26) is larger
than the cycle time (shown in Figure 5.10 a). Has tcase, then delays at the

transition moments are calculated as:

N, +9,- -1

NTC+Tr+T;_ Nmin +1< N< Nmax
Wy, = q (5.30a)

(N1 + 27 - N= N,
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n, +1

(N+1)7, + N=N_ +1

min

Wonio = (N —1)STg + g'g -n-1 (5.30b)

(N-D7 . +2r +71, - ]

N, +1<N<N__

mi

ST, ’ q
so large that the first vehicle arriving right afthhe start of the red time at the
upstream intersection has to wait for the red tanhthe downstream intersection plus

the condition that the last transition moment adoay to Equation (5.26) is within the
cycle time (shown in Figure 5.10b). The delayshatttansition moments for this case

N s +9.-n-1
4) If n0+1-{LﬂJggz g & —9 9 " <71.: The initial overflow queue is

are given by:
, Ns +g,-3-1
NTC+TT+T9_ I\Imin+]‘s N< Nmax
Wy, = . a (5.31a)
+
(N+D)r, +2= =7, (1-T) N= Ny, +1
S S
(N+1)Tr +n0+1 N: Nmin +1
W, = S ' (5.31b)
N-Dr. +2r +7 - NTDF* T =B NN 41
( ) C r g min max
q
Mismatch 2:
N+Ds. —-n-1
(N+1)TC+Tm_( ) . rb I\Imins N< Nmax
W, = . 9 (5.32a)
+
(N+D7, +7,+ 227 4=y N= N,
S S
(N+1)Tr+rm+n0+l N= Nmin
S
Woin = NS, - 1 -1 (5.32b)
I\IZ-C-+-Z-m-+-Tr_g— I\Imin<|\Is Nmax
q

As shown in chapter 4, for an isolated intersegtiba delay probability distribution in the
undersaturated condition consists of a Dirac diltection and a box shaped function.
While for the oversaturated condition, the prolgbdistribution is the sum of some box
shaped functions that may overldgor the case of two adjacent intersections, onee th
delay at transition points is determined, by ineemsapping the delay to the arrival time
and taking the derivative, the delay distributican doe derived similarly as shown in
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Figure 5.14(a) (b). The probability distribution function ftwoth the undersaturated and
oversaturated condition is given by:

RW[n)=a(n)a(W+> 8 BW Wi 8 W.A (5.33)

Where a andg are model parameters with

The definition ofé (W )andB ( W, Wn+1, Wen+2 ) are given by Equations (4.4) and (4.14)
in chapter 4, respectivel\on+1, Wons2 are delays at transition moments, which are given
by Equations (5.28) - (5.32)

1 N\ | \

\ )
\ > W Wo W, WW, W >

W, NG W, W, W POV)A el 3o VsV, W% 1
PW) A

\Nl W3 W4 W2 w \Nl W3W2 WS 4 6
crov) A cravik

s ——— 1

W W, W, W, w W W,W, WoW, W, IV

(a) Undersaturated condition  (b) Oversaturated itimmd

Figure 5.14: Delay probability distribution and cumulative distribution for both
undersaturated and oversaturated conditions
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Delay distribution with a stochastic overflow queue

The delay probability distribution function derivadthe previous subsection is based on
the fixed initial queue that is present at the benig of the green phase at the upstream
(initial) intersection. If the initial queue is stwastic with a certain probability distribution,
the expected probability distribution of the deRy(W) can be calculated as a weighted
sum of probability functions:

00

P (W)= R(W )R p) (5.34)

=0

where P(n) is the probability of the overflow quews.

5.3.4 Trip travel time distribution

In section 5.2.3, the single link travel time distition has been derived by combining the
free flow travel time with the delay distributiorlowever, for an urban trip with two
intersections or more, the delay is dependent erirtée flow travel time. Fast drivers may
encounter green waves along the trip while slowelts may be stopped by the red light.
The delay distributions for these two types of drsvare different. Furthermore, variable
free flow travel time enables vehicles to take cea@ch other. Therefore, for a given travel
timet (t= w + s), the probability of a certain delaycan be formulated as:

P'(wd9=B(t s$ ¥ (5.35)

In this case, the trip travel time distributiB(t) (t =w + s)can be calculated as:

P()=[ Pi(t-s sl 9 P(3d (5.36)

WhereP’4(w, s | s)denotes the probability of a certain delaygiven a certain free flow
travel times and it takes into account that slow vehicles aken over by faster ones so
that slow vehicles join a larger queue at the ddmeasn intersectionPs (s) denotes the
probability of a certain free flow travel timee If the variation of the free flow speed is
very small such that vehicles cannot take over edbbr or in case of one lane traffic,
Equation (5.36) can be approximated by the follgnequation:

P()= [ R(t-s| § P(3d (5.37)

Pq (w|9) (t=w+s) denotes the probability of a certain delaygiven a certain free flow
travel times with assumptions that vehicles cannot take oven e#her.

Numerical example: Trip travel time distribution wi th two intersections

In order to see how the proposed trip travel tinstridbution model works under different
traffic conditions, a hypothetical corridor of 12080with two fixed time controlled
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intersections is used for analysis. The distandevd®n two intersections is 500m. The
cycle time for both the upstream intersection dreldownstream intersection is 60s with
the effective green time of 24s. The saturatiowftate is assumed to be 1800veh/h. The
total evaluation period is 600s (10 cycles). Therage free flow speed is assumed to be
60km/h. Therefore, the average free flow traveletibetween two intersections is about
30s. Two different traffic conditions, for instanceindersaturation (x=0.85) and
oversaturation (x=1.2), are investigated undeeddiit offsets between two intersections:

® Mismatch=0s The offset equals to the average free flow tradirae between two
intersections. The average mismatch between twaysattions is zero. In this case,
two intersections are well coordinated. Most vedgcexperience zero delay at the
downstream intersection.

® Mismatch=10s The average mismatch of traffic signals between intersections is
about 10 seconds. Some vehicles will experienceaydedt the downstream
intersection.

® Mismatch=20s The average mismatch of traffic signals betweemn intersections is
about 20 seconds. Two intersections are badly auatet.

Figure 5.15andFigure 5.16 compare the travel time distributioosdifferent degrees of
saturation of mismatch 1 and mismatch 2, respdgtividne travel time distributions are
derived at the I0cycle. For the case of mismatch 1 as showfigure 5.15, as the level
of mismatch increases (from well-coordinated tolypadordinated), the delay distribution
for the low degree of saturation (x=0.85) changgsificantly. When two intersections
are well coordinated, the travel time distributiesnskewed to low values. However, the
distribution tends to be skewed towards high vahsethe level of mismatch increases and
the whole distribution shifts more to the high #htimes. This indicates that the
coordination between two intersections has a larfigence on the travel time distribution
in low degree of saturation. As for the high degrésaturation (e.g. 1.2), the travel time
distribution shifts from the left to the right whiémplies that more and more vehicles will
experience longer travel times. The similar phenwonecan be observed for the type of
mismatch 2 as shown in Figure 5.16. When the lefghismatch increases, the travel
time distribution keeps the similar shape and shdtvards higher values.
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Figure 5.15: Trip travel time distribution with di fferent levels of Mismatch 1 in the
undersaturated condition (left) and the oversaturaéd condition (right) (x is the
degree of saturation) calculated with the analytienodel
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Figure 5.16: Trip travel time distribution with dif ferent levels ofMismatch 2 in the
undersaturated condition (left) and the oversaturaéd condition (right) (x is the

degree of saturation)

5.3.5 Comparison with VISSIM simulation

An urban corridor composed of two fixed-time coli&d intersections was built in
VISSIM. The total length of the corridor is abo0Dm and the desired speed is 60km/h.
The cycle time and effective green time for thetiyh-going approach are the same for
both intersections with 60s and 24s, respectivélye inflow is 800veh/h/lane. The
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simulation period is 1200s and a total of 300 ezdions were simulated for each level of
mismatch between two intersections (Four levelsigimatch: 0s, 5s, 15s and 20s). Travel
times were recorded for each simulation run. Figuf& andFigure 5.19 compare travel
time distributions from the analytical model andga from the VISSIM simulation under
the undersaturated condition (x = 0.917). As carséen from these figures, the travel
time distributions from the analytical model canllwepresent those from the simulation
model under different levels of mismatch except thare is small discrepancy in low
travel times and high travel times. This discregacauld be the result of both the variable
free flow travel time in VISSIM and stochastic aalis and departures at the upstream
intersection. Different free flow travel times mbydivehicles’ arrival moments at the
downstream intersection. For instance, in caseadl ggreen mismatch, the first vehicle
departing from the upstream intersection with serndilee flow travel time can decrease
the level of mismatch for this vehicle. As a consate, the vehicle experiences smaller
delay compared with the delay estimated by assuitmagaverage free flow travel time.
The variation of inflow (stochastic arrivals) andtftow (stochastic departures) for each
cycle at the upstream intersection influences thlaydboth at the upstream intersection
and the downstream intersection. The discrepandyerhigh travel times could be caused
by the stochastic overflow queues due to stochasticals and departures at the upstream
intersection. Nevertheless, from the Kolmogorov4®ww test as illustrated in Figure 5.18
(Mismatchl) and Figure 5.2Mismatch 2), the hypothesis that the sample traveé
distribution generated in VISSIM and the traveldidistribution from proposed model are
drawn from the same distribution holds for diffdréevels of mismatch and different
types of mismatch.
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Figure 5.18: Kolmogorov-Smirnov test for differentlevel of mismatch 1
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Figure 5.19: Trip travel time distributions derived from the analytical model and
VISSIM simulation data with different levels of mismatch 2 (g = 800veh/h/lane,
L =500m)



Cumulative distribution

Cumulative distribution

116

Modelling Urban Travel imes

1 — 1
0.9 Simulation data Simulation data
A A R Model Y A Model
c
0.7 S
g Maximum
0.6 Maximum T 06 error: 0.027
error: 0.046 2
0.5 o ks-test:
>
ks-test: i= N=500
0.4
0.4 N=500 Z alpha=0.05
0.3 alpha=0.05 g p-value=0.84
p-value=0.24 O
0.2 0.2
0.1
0 ) ) ) O L L L
50 100 150 200 250 50 100 150 200 250
Travel time(s) Travel time(s) .
(a) Offset=30s( Average mismatch=0) (b) Offset=35s( Average mismatch=5s)
1 1 = ~
P ,’
Simulation data Simulation data
osl [ |----- Model o8 J | === Model
c
kel
) 5
0.6 Maximum 2 06 Maximum
' error. 0.044 @ error: 0.042
©
ks-test: 2 ks-test:
0.4 N=500 5 0.4 N=500
alpha=0.05 g alpha=0.05
p-value=0.26 3 p-value=0.32
0.2 0.2
1
0 . . . 0 ! . ,
50 100 150 200 250 50 100 150 200 250

Travel time(s)

Travel time(s)

(b) Offset=45s( Average mismatch=15 (b) Offset=50s( Average mismatch=20s)

Figure 5.20: Kolmogorov-Smirnov test for differentlevel of mismatch 2

5.4 Conclusions and discussion

The ability to measure the variability of travehg for an urban trip is important for urban
link travel time estimation and prediction. Givdrettravel time or delay distribution, the
variability of travel time can be investigated sstatistical measures, e.g., percentiles or
percent variation(Lomax et al., 2003). Furthermahe, knowledge of the variability of
travel time (delay) helps to determine the predittintervals when dealing with travel
time prediction. Without a solid method to estim#te variability of travel times, the
prediction of travel times, e.g., for routing pusps, has a low practical value. The model
developed in this paper is a further step towardetéer method to predict urban travel
times.
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In this chapter, a link travel time distribution de is proposed. The comparison of the
results from the proposed model with those from\il&SIM simulation model shows that
the link travel time distribution based on the pe@d model can well represent the one
from the simulation model. The comparison with digbPS data indicates that model
estimated link travel time distributions are narsficantly different from field travel time
distributions, though middle range and higher trdwees are more frequently observed
with GPS data than the model predicts for link 1{F@ure 5.5 (c)).

The extension of the link travel time distributitmthe trip travel time distribution is also
discussed. An analytical model of travel time dsttion for an urban trip with two
intersections taking the stochastic propertiesraffic flow and signal coordination into
account was for the first time proposed in thisptea The model assumes that two
intersections are fixed-time controlled with a aartoffset. Different offset settings (well-
coordinated, different levels of mismatch) are Btigated under different traffic
conditions. Results show that for the case of misma - early green -, the shape of the
travel time distribution keeps on changing and tshtbwards high values when the
mismatch level of two intersections increases (fromell-coordinated to badly
coordinated). This implies that the way two intetsms are coordinated has big influence
on the travel time distribution, especially in tteese of undersaturated intersections. While
in oversaturated conditions, the travel time disttion spreads over a big range and shifts
to the high values when the level of mismatch iases. The comparison with VISSIM
simulation shows that the trip travel time disttibas derived from the analytical model
can well represent those from VISSIM simulationeptcthere is small discrepancy in low
travel times and high travel times. The discrepaiscgrobably due to both the variable
free flow speed in VISSIM and variable demand (s&stic arrivals) at the upstream
intersection.

The proposed model was only validated in the uraderated condition. As for the

oversaturated condition, one difficulty is to esdtenthe overflow queue distribution at the
upstream (initial) intersection. One alternativeywa to estimate the overflow queue
distribution from traffic measures (e.g., measudgdays or travel times), which is

discussed in chapter 6. Furthermore, this modey eohsiders an urban trip with two

intersections. In reality, there can be more imetions within a single trip. The travel

time distribution of several intersections can vdepending on the coordination of traffic
signals and the effective red time. Finally, inéstsons in a string often have different
cycle green splits. This has not been taken into@at in this study, but can rather easily
be accounted for in a future, more comprehensiveain
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Chapter 6

Urban travel time distribution
estimation based on traffic
measurements

6.1 Introduction

An analytical model of delay distribution for arban trip with two fixed-time controlled
intersections has been developed in chapter 5. diffieulty in applying this model
remains the question how to estimate parameteteeinmodel, especially the overflow
gueue which is a rather stochastic quantity. & gloposed delay distribution model, the
overflow queue distribution at the upstream intetisa is estimated in an analytical way
by applying a Markov chain model with the assumptid a certain arrival distribution
(e.g. Poisson distribution) within a certain timeripd. However, when it comes to the
oversaturated condition, the overflow queue distidn has a strong relation with the
initial condition and it is rather time dependentiayrowing over time.

The calibration of parameters in the delay distitdiu model both in the undersaturated
condition and oversaturated condition is an impar&spect in applying this model for
real time estimation or prediction. On one hand dalibration of model parameters
requires a certain amount of traffic data (e.cavet times, traffic volumes and signal
timings). As the development of traffic monitoritechniques, more and more traffic data
is becoming available now. Travel times can be mneak by different means such as
Automatic Number Plate Recognition (ANPR) camerBeriini et al., 2005), GPS
equipped vehicles (Hoeschen et @005)and Bluetooth devices (Yegor Malinovskiy et
al., 2010) On the other hand, using and fusing all the akkiladata for parameter
estimation can be quite computation intensive. &loee, we have to choose a sample of
the available data. We apply two sampling methoBandom sampling (RS) and Latin

119
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Hypercube sampling (LHS) - to obtain delay/travele measurements of sample trips
from all observations (observed travel times orage). The LHS method is a more
efficient way of sampling given that the populataistribution is known (N. A. Wahanani

et al., 2009). In this chapter, both Least squares Maximum Likelihood are applied to

perform the parameter estimation in section 6.2 Genetic Algorithm is adopted to find
the optimal parameter set both to minimize the sg@aror function and maximize the
likelihood function. Based on the estimated paramsetthe delay distribution can be
reconstructed. In section 6.3, the estimated ddistyibutions are compared with those
from VISSIM simulation. Section 6.4 summarizes tbetributions of this chapter.

6.2 Parameter estimation methods for the delay
distribution model

6.2.1 Parameters in the delay distribution model

The delay distribution models for an isolated iséetion and an urban trip with two fixed
controlled intersections have been developed inptelna4d and 5, respectively. The
proposed delay distribution model both for the usdtirated condition and the
oversaturated condition has the formulation as:

PN =a(ma(W+" 4 8wl . Wl 1) (6.1)
P =Y P(wn) R 1) (6.2)

WhereP(n) is the overflow queue probability distributiod{w)is the Dirac delta function
which has been introduced in chapter 4 with thie¥ahg properties:

3w =0, if w#0
[T tw)o(w)dw= f(0)

B(w, Wn-1, Wep) is @ box function with the property:

1 W2k+1 <w< W2k+2

B(W, Wy \qy W, ) = :
(W Vs, Woo2) {O otherwise

Wan-1, Won @are delay boundaries determined by flow, overfipreue, signal timing (e.g.,
red phase, cycle time and coordination of intefeastin case of an urban corridor) as
discussed in chapter 4 and d;and are model parameters following from the traffic
state, e.g. the flow, overflow queue;, the red phask and cycle timec with:
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r +(n+1) .
azmax(l——z ,0, B= q
Tc(l_g) Tc(l_g)

Among all the parameters in the delay distributifumction, the overflow queue
probability distribution is the most difficult pareeter to be determined. In the analytical
model, the overflow queue distribution is estimatesing a Markov chain model by
assuming a certain arrival distribution (e.g., Borsarrivals) within a certain time period.
In undersaturated conditions, the overflow queusriution follows the equilibrium
distribution after a certain number of cycles. Téstimated delay distribution can
represent the real delay distribution quite welbwéver, in oversaturated conditiorise
overflow queue distribution is not only dependenttloe initial condition but also evolves
over time. There is no equilibrium state for thedow queue distribution. In this case, it
is difficult to estimate the delay distribution whican represent the real traffic situation.
Therefore, a possible alternative way to be inges#id is:

- to estimate the overflow queue distribution froaffic measurements (delays), and
- to reconstruct the delay distribution based on tsimated overflow queue
distribution.

6.2.2 Parameter estimation methods

As can be seen from Equations (6.1) and (6.2),npaters in these two functions include
f, the delay boundaries in the box functieg,.1 and w.n,+, and the overflow queue
distributionP(n). However,a, Won+1 andwan,, are also function of the overflow quene
The question is whether it is possible to recogtheetraffic state which in this case is the
overflow queue distribution from the travel timeelgy) distribution. Two parameter
estimation methods, namely Least Squares (LS) aaditvum Likelihood (ML), are
applied to perform the parameter estimation. ThasteSquares (LS) and Maximum
Likelihood (ML) are widely used for parameter esation (Myung, 2003; Pollard, 2006;
Roberts et al., 2003; Sharma et al., 2003). The hind maximum likelihood parameter
estimation is to determine the parameters that miaei the probability (likelihood) of the
sample data. From a statistical point of view, thethod of maximum likelihood is
considered to be generally more robust and yielslimators with good statistical
properties. The least squares method is simplecande seen as a Maximum Likelihood
method for normal distributed errors. In other dgrMLE methods are versatile and
apply to most models and to different types of ditarder to estimate the parameters in
the delay distribution functions, a maximum ovesfloqueue is assumed before
performing the parameter estimation. The overflareuwg distribution is estimated based
on the measurements, e.g., the measured delaysl tiraes), flows and cycle time.

Least Square (LS) estimation

The objective of the least square method is tostdiie parameters of a model function to
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best fit a set of data and to characterize thesstatl properties of estimates. Here, the
model function is the delay probability functid®(w) with parameters:, S, overflow
gueue probability, pi,...,mand the data set is the measured delays with ti@apility
distribution ofP, . Therefore, the objective function can be forrtedaas:

min £ @, 8,7y By F Y (W) B §
=30 @()W)+ > BN, Wy ). W (P~ R

izl j=0

(6.3)

St.0<a<1,0<6<1

n
2P =1
=0
Osp;=1

wherem is the maximum number of delays amgis the maximum delayj;is the number

of vehicles in the overflow queue ands the maximum overflow queue we assume and
can be approximated based on the maximum dklesythe number of extra red times that
an arriving vehicle needs to wal;is the maximum number of red times that the argvin
vehicle needs to wait for given the overflow qugue, is the measured delay distribution
which in this case is obtained from the VISSIM slation. As mentioned in the previous
subsection, the parameteris also a function of the overflow queue. Therefothe
parameter in the objective function to be estimaeatie overflow queue distribution.

Maximum Likelihood (ML) Estimation

From the Bayesian point of view, the probability afcertain parameter sdi given
observed data D can be formulated as:

P(D|®)P(®)

P(®| D)= 5(0)

(6.4)

WhereP(D|®) is the likelihood to observg, given the parameter sét P(®) is the prior
distribution of parameter s& and P(D) is the probability to observ® which can be
considered as the normalization factor.

In order to maximize the posterior probability distition P(®|D), one effective way is to
maximize the likelihood functiorP(D|®) in Equation (6.4) given known probability
distribution of data sé®(D).

In our case, the data set consists of measuregsdg@tavel times) and the parameter set is
a, p and the overflow queue distributiqgn, p1,..., . For measured delays, w,,...,w.,

the dependency among these delays is unlikely tddae to us. Here we assume they are
stochastically independent. The likelihood functoam be formulated as:
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L(a, B, Pos Proeees B [ W, W5 W, )
=P(W, W, W@ B, R R R (6.5)
=P(W|a. B, m. B R)P(Wa B, R, Brees P)--P(W@ B DD P

where P(wy, Wo,..., Wila, £, Po, Pi,-..,n) denotes the probability density function of
measured delays;, W,..., Wn given parameters, S, o, pu,-..,f. FOr a single delaw,
the probability can be calculated by the followingction:

P(w|a,8, R, Ry R)

= 3 1) dw) 3, FBON, v . W o DI P (66)

If we combine Equation (6.5) with Equation (6.6)e tikelihood function can be rewritten
as:

L(a, B, Py, oo B[ WL W ey V%)zﬂ{Z{x(J)S(w)FZﬁB(W%1(1)%2(1))19} 6.7)

1=1 ( j=0

In practice, it is more convenient to work with lechlogarithm of the likelihood function
which is calculated as:

InL= iln {i[a( j)o(w) +Z_N:,BB(W, W D) Wi o )] p,} (6.8)

The objective function for minimization is formutid as:
min f (a,8,p,.0,,----B, )= minf InL)

—mln{—zIn{Z[a(j)d(WHZ,BB(W Wy p ( 1)y Wyt o(1))] p]}}

=1 i=0

(6.9)

St.0<a<1,0<6<1

M:

:o

O<p; =1

The objective functions of Least Square estimatiod Maximum Likelihood estimation
are very complicated and highly nonlinear. Finding optimal solution for the parameter
estimation in an analytical way is not applicalilberefore, the Genetic Algorithm (GA)
(Dias et al., 2002; Whitley, 1994; Yao et al., 1p84applied to find the optimal solutions
for both methods. There are several advantagepmfiag GA method. First, GA can
solve every optimization problem which can be déscr with the chromosome encoding;
secondly, GA is able to solve multi-dimensionaln+fferential, non-continuous, and
even non-parametrical problems; Thirdly, GA is arstic method which has the ability
to find a solution at least close to the globalimpim. When applying GA for parameter
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estimation in our case, the fitness functions arentilated based the LS and ML. The
parameter that needs to be estimated is the owedieue probability distribution. Based
on the estimated overflow queue distribution, tleéad distribution can be reconstructed
using Equations (6.1 ) and ( 6.2).

6.3 Experiment setup

6.3.1 Scenarios

In order to estimate the parameters in the delayribution function, a microscopic
simulation tool VISSIM was used to generate theugtbtruth data (e.g., delays or travel
times). An urban corridor with two fixed time cooited intersections was modelled in
VISSIM. The cycle time for both intersections issédnd the effective green time is 24s.
The link length between two intersections is al@m. The free flow speed is 60km/h.
The total evaluation period is 10 cycles (600s).oTdifferent traffic conditions are
considered:

- Undersaturated conditianThe input flow is 800veh/h and the degree of rsditon is
about 0.9.

- Oversaturated conditianThe input flow is 1050veh/h and the degree ofirsdion is
about 1.2. The delay (travel time) measurementtpsiplaced 300m upstream of the
intersection such that the maximum overflow quewm’'tvreach the measurement
point.

As discussed in chapter 5, there are two typesisfatch (early green and late green)
between two consecutive intersections. In our erpart, we mainly focus on Mismatch
1(the case of early green). Nevertheless, the peteanestimation process can be applied
to Mismatch 2 as well. Three levels of mismatchengtosen to be investigated:

- Level 1 (Mismatch=0)Two intersections are well coordinated. Theraasmismatch
between two intersections;

- Level 2 (Mismatch=5s)The mismatch of traffic signals between two is&ations is 5
seconds;

- Level 3 (Mismatch=20s)Two intersections are badly coordinated. The raisim of
traffic signals between two intersections is 200sels.

6.3.2 Simulation runs

For each scenario, the number of simulation ruesl®a¢o be determined in order to obtain
a sufficiently smooth distribution as the grounathrdistribution. For each simulation run,
all delays are recorded and the delay distributiam be derived. The required number of
simulation runs depends on the variation of averdglay among different simulation
runs, the required accuracy and the reliabilitytlué results. In order to estimate the
variation of the average delay, a fixed 100 simoiatruns was chosen in a pilot
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experiment with an average demand of 800veh/h @=0Che minimum number of
simulation runs can be determined by the followeggation:

2
n= (—tl-mad J (6.10)

€4

Where n is the minimum number of simulation runguieed;t;.2is the critical value of
the t-distribution with the confidence level dfa (in our experiment, 95% confidence
level was chosenyy is the standard deviation of delays (We use thedstrd deviation of
sample average delays from pilot simulation ruagjs the accepted error(e.g., we chose
eq=uq* 5%, whereyuy is the mean delay derived from the pilot simulations).

By applying Equation (6.10), the required minimurmmber of simulation runs for the

undersaturated condition ( x = 0.9 ) and the owarated condition ( x = 1.2 ) are 185 and
130, respectively. In order to get a sufficientiyaoth delay distribution, the number of
simulation runs was increased to 300.

6.3.3 Sampling strategies for ground truth simulation dat

The number of simulation runs we applied is vergdasuch that a smooth ground-truth
delay distribution can be obtained. However, usatigthe data (delays) generated in
VISSIM for parameter estimation will lead to theoplem of time-consuming
computations. Therefore, it is necessary to ingasgti whether parameters can be well
estimated using sampled delays (travel times)his paper, two sampling methods were
applied to obtain the sample delays from the totmhber of delays generated in VISSIM:
Random Sampling (RS) and Latin Hypercube Sampliitfy).

Random sampling (RS)

In random sampling, each item or element of theufdjn has an equal chance of being
chosen at each draw. A sample is random if the odefibr obtaining the sample meets the
criterion of randomness (each element having amlechance at each draw). The actual
composition of the sample itself does not determirieether or not it was a random

sample. For instance, travel times recorded by @feSe vehicles or Bluetooth devices
are just random sample measurements since therntotaber of vehicle travel times is

unknown. However, one should keep in mind that fihal estimation results can be

biased if the sample measurements cannot reprisgepbpulation distribution.

Latin Hypercube sampling (LHS)

The LHS is a stratified-random procedure, proviae®fficient way of sampling variables
from their distributions. The basic idea is that ttHS involves sampling)l values from
the prescribed distribution of eachlovariablesX;, X;..., Xx. The cumulative distribution
for each variable is divided intd equiprobable intervals. A value is selected rangoml
from each interval. Thal values obtained for each variable are paired rahdonth the
other variables. Unlike simple random samplings tmethod ensures a full coverage of
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the range of each variable by maximally stratifygegrh marginal distribution (Helton et
al., 2002).

The total number of simulated delays is about 5000@he undersaturated condition
(x = 0.9) and 30000 in the oversaturated condifr~ 1.2). Table 6.1 indicates the
sample percentages for parameter estimation iexpgriment.

Table 6.1: Sample percentages for parameter estinan

Undersaturation (x=0.9), total measure ments=50000

Sample percentage(%) 0.50% 1% 5%
Number of samples 250 500 2500
Oversaturation (x=1.2), total measure ments=30000
Sample percentage(%) 0.50% 1% 5%
Number of samples 150 300 1500

6.3.4 Implementation of GA

There are several issues need to be addressedappbiing GA for optimization in our
case. First of all, the optimization was done intlta which has the built-in software
package of GA (Mathworks, 2008). Secondly, the grenince of the GA depends on a
number of factors such as population size, evaloaif fithess function, selection method,
crossover method, mutation method, crossover raderautation rate. The population size
determines the size of the population at each génar The larger the population size is,
the more points that the GA is able to search &edetore the better the results will be.
However, a large population size will lead to ag@omputation time. There is a trade-off
between the performance and the computation timeut case, the population size was
chosen as twice as the number of parameters whiggual to the length of overflow
gueues. The number of overflow queues is expeactdxt tdifferent in the undersaturated
condition and oversaturated condition. The popohasize was set to be smaller in the
undersaturated condition than in the oversaturetedition. Selecting the best options to
do the GA optimization involves trial and error.i$t also not realistic to try all the
combinations of these options. Therefore, fouramiin the GA (in Matlab) which are
crossover function (Five functions are availableluding ‘Scattered crossover’, 'Single
point crossover’, 'Two point crossover’, ’Intermatk crossover’ and ’Heuristic
crossover’) , mutation function (Three functionse aavailable including ‘Gaussian
mutation’, ‘Uniform mutation’ and ‘Adaptive feas#lmutation’), crossover rate and
mutation rate were investigated to obtain the bestlts. The best combination of these
options, which are crossover function of ‘Heuristmssover’, mutation function of
‘Adaptive Feasible mutation’, crossover rate of 8nd mutation rate of 0.3, was used to
perform the parameter estimation.

6.3.5 Performance measures

In order to see whether delay distributions cawbk# estimated based on the optimized
parameters, two aspects are investigated:
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- Comparison of estimated delay distributions witte tground-truth distributions
generated in VISSIM

The estimated delay distributions based on diffepamameter estimation methods (ML

and LS), sampling methods (RS and LHS) and diffesample percentages are compared
with ground-truth distributions. The objective is &nalyse how the aforementioned

different combinations influence the estimatioruits

- Robustness of estimation results

The estimation accuracy based on different pergestaof sample measurements is

compared with the degree of representation of iiffepercentage sample measurements
to the total measurements. The objective is togtigate how robust the estimation results

are regarding the incomplete information carriedslynpled measurements. The Root

Mean Square Error (RMSE) is used as the performaulteator.

RMS@odelzJ%i( Rasel) = Rl ) (611
RMSESampIe: \/%i PSampIé ) - PTrlfe))z (612)

Where, RMSkyoqel denotes theRMSE of the estimated delay distribution based on our
proposed model compared with the ground-truth deliagribution; RMSEample denotes
the RMSE of the sample delay distribution compared with t®und-truth delay
distribution; n is the total number of measured delaiioqe(i) denotes the model-
estimated probability of delay in clagsPsampiéi) is the probability of delay in classn

the sample delay distributiorPr.i) denotes the probability of delay classn the
ground-truth delay distribution. For the class sifethe delay distribution, 1s has been
chosen.

6.3.6 Results

Comparison of delay distributions

Figure 6.lillustrates the estimated delay distributions basedthe Least-Square (LS)
estimation and the Maximum Likelihood (ML) estinmati The Random Sampling (RS)
method was applied to obtain sample measuremepts fthe total measurements
generated in VISSIM. Figure 6.8hows estimated delay distributions based on ML
method (Figure 6.1 (a), (c), (e)) and LS methodgyFe 6.1 (b), (d), (f)) in the
undersaturated condition with the degree of saturaif 0.9. As can be seen from Figure
6.1, both the ML method and LS method perform virelthe undersaturated condition
when two intersections are well coordinated orehisrmismatch (5s, 20s). For this case,
even with very small sample measurements, e.g.,(@b6ut 0.5%), the estimated delay
distribution can well represent the ground-trutistrdlbution generated from VISSIM.
Table 6.2 indicates the performance of these twarpater estimation methods in terms of
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RMSE. The ML method performs slightly better thaB imethod when there is no
mismatch. While the LS method performs better witieme is mismatch (5s or 20s). Both
methods show very small RMSE in the undersaturatedition with different sample
sizes. Figure 6.2 illustrates the estimated deislyidutions in the oversaturated condition
with the degree of saturation of 1.2. As can bartyeseen, the LS method overestimates
the low probability values and as a consequencesnestimates the higher values.
Compared with delay distributions estimated basadlL& method, estimated delay
distributions based on ML method can better reprieiee ground-truth even with very
small sample measurements of 150 (0.5% ) and 300),(though there is slight
discrepancy between estimated distributions andurgtdruth distributions. The
performance measure of RMSE as indicated in Talecénfirms that the ML method
performs better than the LS method in the overastdrcondition.
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Figure 6.1: Comparison of delay distributions derived from simulation data with
model estimated delay distributions using ML methodleft) and LS method (right) in
the undersaturated condition (x=0.9) (Sample delaywere derived using RS method)
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Figure 6.2: Comparison of delay distributions derived from simulation data with
model estimated delay distributions using ML methodleft) and LS method (right) in
the oversaturated condition (x=1.2) (Sample delaysere derived using RS method)

Table 6.2: Performance of two parameter estimatioomethods (ML and LS) in terms
of RMSE

ML method(Undersaturation) RS method(Undersaturation

No mismatch mismatch No mismatch mismatch=
mismatch  =5s =20s [mismatch =5s 20s
2500(5%) 0.00096 0.00213 0.00159 0.00102 0.00202 0.00140
500 (1%) 0.00093 0.00215 0.00147 0.00105 0.00204 0.00142
250 (0.5%) 0.00094 0.00211 0.001540 0.00095 0.00204 010014

ML method(Oversaturation) RS method(Oversaturation)

Sample size

No mismatch mismatch No mismatch mismatch=
mismatch  =5s =20s [mismatch =5s 20s

1500(5%) 0.00098 0.00084 0.00101 0.00129 0.00124 0.00131
300 (1%) 0.00093 0.00082 0.00081 0.00177 0.00143 0.00212
150 (0.5%) 0.00100 0.00086 0.000§7 0.00170 0.00139 010016

Sample size

Figure 6.3comparesthe estimated delay distributions based on sample mezasuats

using Latin Hypercube Sampling (LHS) method with thosaguRandom Sampling (RS)
method in the oversaturated condition. The grey bars shovwgiure 6.3 (a) and (b)
represent the ground-truth distributions when two intersectaoe well coordinated (no
mismatch). As shown in Figure 6.3 (a) and (b), the estichaelay distributions using
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both LHS method and RS method are able to represegtdhed-truth distributions even
with small sample measurements of 300 (1% of total measutelnénough a little
distortion can be found with RS method when the same is very small, e.g., 150
(0.5% of the total measurements). It appears that the estindatay distributions using
the measurements based on LHS method are not significattty thean those based on
RS method. The estimation performance in terms of RMSEble a3 confirms this.
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Figure 6.3 Comparison of delay distributions derived from simulation data with
model estimated delay distributions based onLHS and RS in the oversaturated
condition (Parameters were estimated using ML method)

Table 6.3: Estimation performance of two sampling methods (HS and RS) in terms
of RMSE in the oversaturated condition (Mismatch=0s)

Sample size LHS RS
300 (1%)  0.00103 0.00093
1500(5%)  0.00093 0.00098

Robustness of estimation results with different sample percemas

Figure 6.4compares the accuracy of the estimated delay loigion in terms of RMSE

with that of the random sampled data distributiwhich is used for parameter estimation.
Different sample sizes were chosen for compari$be. Kolmogorov-Smirnov test shows
that all sample delay distributions (from small gdnsizes to large sample sizes) we
obtained for parameter estimation can statisticajyresent the ground-truth distribution.
From figure 6.4, we can see that the estimationlt®esare quite robust regardless of
different sample sizes in both the undersaturatexddition (Figure 6.4(a)) and the

oversaturated condition (Figure 6.4(b)), as longhessample size is not too small (e.g.,
>50 in case of undersaturated condition or >15€ase of oversaturated condition). Even
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the sample data distribution cannot well represeatground-truth distribution, e.g., the
RMSE of the sample data is very large (see Tallewhen the sample size is 25 or 30
(0.05% in the undersaturated condition or 0.1% ha bversaturated condition), the
accuracy of estimated delay distribution is stilbah higher than that of sample data
distribution in terms of RMSE. This indicates thla¢ estimation results are quite robust
regarding to incomplete information carried by aenple data. The reason for this can be
explained by Figure 6.5. The sample distributionirisgular if the sample size is too
small. However, the model tries to give a relagv&mnooth distribution by smoothing the

error along the whole range of delays.
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Figure 6.4 Comparison of the accuracy between the estimated delaystlibutions
with sample data distributions in terms of RMSE
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Table 6.4: RMSE of the sample distribution and the estimatkdistribution in case of
no mismatch

Undersaturation

Sample sizqg 25 50 250 500 2500 5000 7500 10000

Sampe | 0143 00109 0.0015 0.0007 0.0002 0.0001 0.0001 0.0000
distribution
Estimated | ) 1918 0.0019 0.0009 0.0009 0.0010 0.0009 0.0013 0.0012
distribution

Oversaturation

Sample sizg 30 150 300 1500 3000 4500 6000 9000

Sample 143111 0.0032 0.0017 0.0004 0.0002 0.0001 0.0001 0.0001
distribution
Estmated | ) 1112 0.0010 0.0009 0.0010 0.0010 0.0010 0.0009 0.0010
distribution

Probability

Population
distribution

Sample
distribution

Estimated
distribution

Travel time

Figure 6.5: Smoothing effect of the estimated distribution givesample distribution

6.4 Conclusions and discussion

Deriving travel time distributions as discussecivapter 5 requires proper estimation of
parameters in the model, especially the overfloeugudistribution. In this chapter, model
parameters are estimated based on the traffic mesgseLg., delays (travel times). Two
parameter estimation methods, namely ML and LSdes®issed and compared with each
other. From the estimation results, the ML methedfqggms much better than the LS
method, which is likely to give biased travel tidistribution estimation.



134 Modelling Urban Travel imes

In order to see whether model parameters can benagstl based on sample
measurements, different sampling methods (LHS a8}l &e applied and results show
that even with small sample size, e.g., 250 inuhdersaturated condition or 150 in the
oversaturated condition (0.5%), the travel timetritigtion can be well reconstructed
based on the estimated parameters. The estimatmmagy is not sensitive to different
sampling methods.

The investigation of the robustness of parametéimasion indicates that estimation
results are quite robust regardless of differemy@a sizes in both the undersaturated
condition and the oversaturated condition, as lasighe sample size is not too small and
the sample data distribution can statistically espnt the true distribution (as indicated in
table 6.4 with KS-test). Even the sample data iBistion cannot very well represent the
ground-truth distribution, for instance, the RMSElwe sample distribution is very large
when the sample size is 25 or 30, the accuracgtohated travel time distribution is still
higher than that of sample data distributions. H$® indicates that the model can reduce
the error due to the small sample size which camwet represent the ground-truth
distribution.

The results obtained in this chapter provide thesfmlity to calibrate the parameters of
the travel time distribution model based on sampbservations from field data, for
instance, GPS probe vehicle data, camera dataustd®ith data. Besides, the cycle time
(60s) we used in the simulation can be replacednyother cycle length. The outcomes
are independent of cycle time and can be genedafimeother signal settings. The next
step is to investigate whether travel time distiitms can be estimated using observed
travel time data.



Chapter 7

Application of the model for link travel
time distribution prediction

7.1 Introduction

The model developed in chapter 4 and 5 providepdissibility to estimate the travel time
distribution given traffic flow and traffic controscheme. The results from both the
simulation data and the field data show that tlaeel time distribution can be well
estimated for fixed demand within a certain timeiquk However, in reality, traffic
demand varies from period to period within a dayavEl times vehicles experience on an
urban road have a certain distribution within gaiartime period and this distribution can
change from period to period due to different tcatonditions and traffic control schemes.
Therefore, it would be useful if it was possiblepiedict the travel time distribution in
such a dynamic and stochastic system. On one ha@dlynamic demand can influence
the travel time distribution from time to time. @me other hand, adaptive traffic control
schemes can change accordingly due to the timemgargemand, which also has a
significant impact on the travel time distribution.

Figure 7.1 shows the relationship of travel timstrbution with traffic flow and traffic
control. In this chapter, we want to investigateettier the travel time distribution for a
certain period can be predicted based on predicidfic flow and traffic control. Section
7.2 describes the travel time prediction procediifee cycle time and green split for a
certain time period are predicted using a neuravoik model based on the predicted
traffic flow. Thereafter, the travel time distrilbon is predicted by applying the model we
developed in chapter 4 and 5. Sections 7.3 andsiio#v the model predicted results
with VISSIM simulation data and field data, respeslly. Finally, section 7.5 summarizes
the contribution of this chapter.

135
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0(t) S(t) P(t)

Travel time

Traffic flow ey Traffic control distribution

Figure 7.1: Relationship among travel time distribution, traffic flow and traffic
control

7.2 Methodology

7.2.1 Traffic flow prediction

Model-based travel time prediction requires thedjmtéon of traffic states in the near
(short-term) future. Predicted traffic flows (spsktknsities) are commonly used as the
input source of these prediction models. As for titevel time distribution model we
developed, traffic demand and traffic control dre pre-requisites. In order to predict the
travel time distribution for a short time perioiffic flow needs to be predicted.

In the past decades, different traffic flow preint models including heuristic method
based models (e.g., nonparametric regression, Inetsvork, linear and nonlinear
regression, ARIMA) (Cetiner et al2010; Kamarianakis et al2003; Stathopoulos et al.
2003; Zheng et gl.2006), physical models (e.g., models which are dase traffic
process theory) (Ashok et a2000) or combination of both types of models (Okutst
al, 1984; Szeto et al.2009) have been developed. Among all these modess,
multivariate models, which can be heuristic metbaded models or physical models, are
capable of capturing the spatial characteristicshef network as well as the temporal
revolution of traffic in different location in theetwork and giving better predictions
(Kamarianakis et 812003; Stathopoulos et aR003). In this chapter, we are not trying to
develop a new model to predict traffic flow on tmban road. This is out of the scope of
the thesis. We assume that the input flow in oudehas the traffic flow predicted by
some method such as described above. In the nbsgéestion, a neural network model is
proposed to predict the average cycle length aeemngsplit for a certain period given
predicted traffic flows in case of adaptive coniroivhich traffic demand plays a key role
in determining optimal control schemes, e.g., SCASSOOT.

7.2.2 Cycle length and green split prediction using a Neal Network
model

Different traffic control systems, for instancexdd-time/pre-timed control, vehicle-
actuated control and adaptive control can be apphean urban network. The fixed /pre-
timed control, where the structure and timing @& traffic control process are determined
in advance, is the simplest mode of traffic contfar the vehicle-actuated control, the
structure and timing of the control program ardu@nced by the information of individual
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vehicles measured by detectors. Compared witheéhile-actuated control, the adaptive
control determines the control process based onintfeemation of the whole traffic
situation (e.g., traffic demand). Phase changesedbasn prediction from traffic
measurement at each signalized approach (USDOB,)2B0wever, some widely applied
dynamic traffic signal control systems, e.g., S@atScoot, fall back to nearly fixed time
control, for instance, in peak flow situations. Magiation of cycle time and green splits is
small within a short time period under similar fimconditions. Therefore, it is feasible
to predict the average control scheme (e.g., aeecggle time and green split) for a short
time period (e.g., 30min) based on the traffic dechan order to apply the travel time
distribution model for the purpose of prediction.

A three-layer neural network model is applied tedict the average cycle time and green
splits for the SCATS system, which is an adaptieatm| system. The mathematical
formulation of the model is as follows:

Input layer:

(1) | | ()
X() =| = (7.1)
] a0

where x (t) denotes the value of thH8 input neuron at time periot] g (t) denotes the
incoming volume of phaskat time perioct for intersectionj. DS'(t) is the maximum
degree of saturation at intersectjoffhe reason we chose these parameters as inpat is
the cycle time is determined by the maximum Degre8aturation (DS) in SCATS. The
green splits are determined by the traffic demaordefich phase. One thing we need to
mention here is that the traffic demand has nebngar relationship with the DS.
Therefore, the input parameters of traffic flow a8 are interchangeable.

Hidden layer:

¢[iaf;qj (t)+q“J

=1

h (1)
H(t) = = : (7.2)

t n
h,(t) ¢(Zafmqj(t)+qnh]

" m denotes the weight connecting tffeinput neuron and thei” hidden neuronb™;,
denotes a bias with a fixed value for th® hidden neurony is the transfer function, for
which we chose the hyperbolic tangent function as:

@(x) =tanh(x) (7.3)
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Output layer:

C(t) <D(Zaai’,lhk(t)+ bfj

t =]
AQ 0,0 | _

Y(9)=|: =
Yo(H)

(7.4)

0,0 @(iaﬁ,phkuw b‘;;j

wherey;(t) denotes the value of th8 output neuronC(t) denotes the predicted cycle time
for time period; gi(t) denotes the predicted green time of phasgy ,denotes the weight
connecting théd" hidden neuron and thg" output neuronb’, denotes a bias with a fixed
value for thepth output neuron;@(-) is the transfer function and a linear function is
commonly used for the output units.

7.2.3 Link travel time distribution prediction

The travel time distribution model requires threaiminputs: Traffic volume, traffic
control information (mainly cycle time and greenit@nd overflow queue distribution.
In the previous sections, traffic volume predictiagcle time and green split prediction
have been discussed. Based on a predicted traffione, the existing queue length, and
traffic control information, the overflow queue glibution can be predicted by applying
the model proposed by Viti (VitR006). Figure 7.2 illustrates the procedure ofdtdine
distribution prediction. Therefore, the predictedvel time distributionP, (t) can be
formulated as:

P (1) =@ (Q(Y, C(1), 9(9), R (D) (7.5)

where Q(t) is the predicted traffic flow at time period@(t) andg(t) are the predicted
cycle time and green time during time peripdrespectively;Pyo (t) is the predicted
overflow queue distribution during time peridad y(-) is the travel time distribution
function developed in chapter 4 and 5.
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Traffic volume Q(t)

Existing overflow

queue ny(t-1) Cycle time C(?) and
green time g; (7)

v

Predicted overflow queue
distribution P, (?)

|

Travel time distribution P,(?)

Figure 7.2: Flow chart of travel time distribution prediction

7.3 Experiment with VISSIM simulation data

7.3.1 Experiment setup

One link with a fixed-time controlled intersectioamas modelled in VISSIM. The link
length is 1000m. The cycle time is 60s with theegréme of 24s. No prediction of cycle
time and green split is required in this case siheetraffic control scheme is fixed. The
traffic demand for different periods is indicatedTiable 7.1. Traffic was simulated in total
6 periods with each period of 5 cycles (5min) ard cycles (15min) for two cases,
respectively. The first 5 cycles in the first peris considered as the warm-up period and
no simulation data were recorded. The simulatioartatl with low demand
(undersaturated condition) and increased to highatel (oversaturated condition) in time
period 3. Afterwards, the demand decreased agaimtiersaturated conditions during
periods 4, 5 and 6. Total 500 simulation runs wesed and individual travel times were
recorded for each simulation run. The predictios wede 5min and 15 min in advance.
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Table 7.1: Traffic demand for total 6 simulation periods (E&h period is 5min for
case 1 and 15min for case 2)

Simulation Case 1 1-600 600-900 900-1200 1200-1500 1500-1800 1800-2100
time period
(s) Case 4 1-900 900-1800 1800-2700 2700-3600 3600-4500 4500-5400

Traffic

demand(vehhlane)| 8% ~ 800 1000 850 750 700

7.3.2 Results

Figure 7.3 shows the link travel time distributigm®dicted by the proposed model and
those obtained from VISSIM simulation for 6 periosigh a prediction horizon of 5 min.
The travel time distribution changes from periog&siod due to different traffic demand.
Figure 7.3 (a), (b), (e), (f) illustrate that theegicted link travel time distributions can
well represent those from the VISSIM simulationtle undersaturated condition during
the first two simulation periods and last two siatidn periods. When traffic demand
increases, the intersection becomes oversaturatesl.overflow queue increases from
cycle to cycle. The predicted travel time distribatfor the oversaturated condition during
the last cycle of period 3 is shown in Figure 7c3 (t can be seen that the predicted
distribution can still represent the true distribatexcept there are discrepancies in the
high travel times and low travel times. When t@ffiemand decreases in period 4, the
shape of travel time distribution is changing fraycle to cycle due to the decreasing
overflow queue. The transition from the oversatoatondition to the undersaturated
condition can be predicted as shown in Figure @)3vwhere the predicted distribution can
match the true distribution, though low travel tsrage slightly more frequently predicted
by the model and as a consequence, middle tranektiare more frequently observed in
the simulation data. From the Kolmogorov-Smirnost tendicated in Table 7.2 with a
sample size of 500, the hypothesis that the satnglel time distribution obtained from
VISSIM simulation and the predicted travel time tdimition draw from the same
distribution holds for different time periods.

Figure 7.4 illustrates the comparison of the maguaeticted travel time distributions with
those from VISSIM simulation for a prediction hame of 15min. In the undersaturated
conditions as shown in Figure 7.4 (a) (b) (e)tffg model can still predict quite accurately
even with a longer prediction horizon. However, theedicted distribution for the
oversaturated condition shown (Figure 7.4 (c)) esemates the low values and high
values and as a consequence underestimates thdemmadtge delays. The predicted
distribution for the transition state (Figure 7.d4))( deviates from that of VISSIM
simulation significantly, especially for the middlienge delays. Nevertheless, the
Kolmogorov-Smirnov test (Table 7.2) indicates thia¢ hypothesis can still hold for
different prediction periods. The discrepancy betvehe model-predicted distribution
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with that obtained from the VISSIM simulation isopably due to the fact that the
overflow queue distribution is more difficult togalict accurately for a longer prediction
horizon (e.g., 15min).
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Figure 7.3: Comparison of the model predicted travel time ditributions with those
recorded in VISSIM (The prediction horizon is 5min)
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Table 7.2: Komogorov-Smirnov test for a sample size of0B with different prediction
horizons (significance level=0.05)

Case 1 (Prediction horizon=5min)

Period 1 2 3 4 5 6
p-value 0.687 0.753 0.422 0.191 0.527 0.334
H()|/_|pf£r|1_|e25)|s Accepted Accepted Accepted Accepied Accepted Accepted

Case 1 (Prediction horizon=15min)
Period 1 2 3 4 5 6
p-value 0.298 0.796 0.089 0.142 0.664 0.279
H()|/_|pf£r|1_|e25)|s Accepted Accepted Accepted Accepied Accepted Accepted

7.4 Experiment with field data

In the previous section, the link travel time disition can be well predicted given the
flow and signal control using simulation data. istsection, model predicted travel time
distributions are compared with those from fieldada&he same route of Shaoshan Road
(used in chapter 5) in Changsha city, Hunan prayimrt China was investigated for this
study. Four links (link 13-11, link 11-8 in the tlabound direction and link 11-13, link 8-
11 in the southbound direction as can be foundganreé 5.5) were selected to perform the
travel time distribution prediction. The predictibarizon was chosen to be 30min.

7.4.1 Data preparation

Travel time data

Travel times were collected by taxis equipped W@RPS devices travelling on the
Shaoshan Road during the morning peak hour frofdA8Wto 10:00AM on 14, May,
2010. Travel time distributions for both links wesbktained every 30min, total 4 periods
for each link.

Data for cycle time and green splits prediction

The SCATS traffic control system was installed e intersections on Shaoshan Road.
The cycle time and green splits are changing frone to time depending on the traffic
demand. Four-phase control has been applied fersettions 13, 11 and 8 which can be
found in Appendix E. In the SCATS system, the cyldagth is determined by the
maximum Degree-of-Saturation (DS). Thus, the maxmDS was also used as the input
in the neural network besides the traffic volumae®eek data (From f5May, 2010 to
21th, May, 2010) aggregated into 30min interval evased to train the neural network
proposed in section 7.2.
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7.4.2 Cycle time and green splits prediction using SCAT8#8ata

Before applying the neural network model proposedsection 7.2.2 for prediction
purpose, Bayesian training was applied to trainrteeral network. Different number of
hidden neurons (3, 4, 5, 8, 10) were chosen inraénvestigate the sensitivity of the
training procedure. When the number of hidden nesiiacreases, the training error is
decreasing. This illustrates that more complex énweurons) models tend to fit the data
better than simple ones. However, the increasedofeln neurons from 5 to 10 just yields
marginal improvement in terms of Mean Absolute Betage Error (MAPE). Therefore,
5 hidden neurons were applied to do the predidashk. Table 7.3 indicates the prediction
performance of cycle length and green splits imgeof MAPE for link 13-11 and 11-8.

Table 7.3: MAPE of cycle length and green splits predictioon link 13-11 and 11-8

Link 13-11 Link 11-8

Cycle length 3.23% 3.74%

Green split 3.09% 2.92%

7.4.3 Results

Figure 7.5 and 7.6 compare the predicted link fréee distributions with those derived
from GPS data on link 13-11(Northbound) and link1Bl respectively. Total four periods
(Each period is 30min) of travel time distributimere investigated. Figures 7.5 and 7.6 (b)
(d) (f) (h) on the right side are cumulative distiions. As can be seen from the figures,
the predicted distributions can well represent tilagel time distributions derived from
GPS data. The predicted travel time distributiohisn& 11-13 in the southbound direction
can still represent the GPS travel time distritngjoeven though the sample size of the
GPS travel time measurements is very small for speréods, e.g., 8:30AM-9:00AM,
9:00AM-9:30AM. This can be also confirmed by theltdogorov-Smirnov test shown in
Table 7.4 and Table 7.5. The performance measareesms of MAPE for the statistical
values of the distribution are indicated in Tablé.7The MAPEs for these statistical
values are quite small. The maximum MAPE of 9.7% ba found with the standard
deviation on link 13-11.

Compared with link 13-11 and link 11-13, the préeelictravel time distributions for link

11-8 and link 8-11 shown in Figures 7.7 and 7.8 lass accurate. The predicted
distributions deviate from the travel time disttilons derived from GPS data significantly
for some periods, e.g., 9:30-10:00AM of link 11&30-9:00AM of link 8-11. The

Kolmogorov-Smirnov test of link 11-8 shows the hijpsis that two distributions are the
same cannot hold for periods 9:00-9:30AM. As fokIB-11, the hypothesis doesn’t hold
for periods 8:00-8:30AM and 8:30-9:00AM. Howevdre tMAPES of links 11-8 and 8-11
indicated in Tables 7.6 and 7.7 are relatively lwith the maximum value of 15.8% for
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the standard deviation. Nevertheless, it is siifiadilt to say how general this result
is since the GPS sample data are relatively smallfdinks of interest.
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Figure 7.5: Comparison of the model predicted travel time ditributions with those
from field GPS data on link 13-11 (Northbound: 8:00AM-10:00AV1)
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Figure 7.7: Comparison of the model predicted travel time ditributions with those
from field GPS data on link 11-8 (Northbound: 8:00AM-10:00AM)



148 Modelling Urban Travel imes
0.35 1
0.3 GPS datg|
' Model E 0.8
0.25 3
z S 06
= 02 s Y —— GPS datd
_‘é‘ 0.15 L A Model
a 8 04
0.1 £
O 0.2
0.05
0 0 : : : :
0 2 4 6 8 10 12 0 4 6 8 10 12
Travel time(min) Travel time(min)
(a) 8:00AM-8:30AM (b) 8:00AM-8:30AM
0.4
GPS data GPS data
Model 208 '] |-—- Model
0.3 3
3
2 o
3 s
8 0.2 o
s £
& 3
01
0 ' L
0 2 4 6 8 10 6 8 10
Travel time(min) Travel time(min)
(c) 8:30AM-9:00AV (d) 8:30AM-9:00AV
0.25 1
GPS data
0.2 Model 208 —— GPS data |
| |\ S === Model
= 3
% 0.15 1 5 06 1
IS o
5 2
a 01 . % 0.4 ]
g
]
0.05 1 002 .
0 : 0 : : : :
0 2 4 6 8 10 12 0 4 6 8 10 12
Travel time(min) Travel time(min)
(e) 9:00AM-9:30AM (f) 9:00AM-9:30AM
0.25 1
GPS data — GPS data
0.2 Model | %‘ ost 4 | ===-- Model |-
2 5
= 0.15 1 5 06 ]
@
S S
= 01 1 & 0. il
o X 0.4
3
0.05 1 0 0.2 1
0 0 : : :
0 2 4 6 8 10 12 0 6 8 10 12

Travel time(min)
(g) 9:30AM-10:00ANM

Travel time(min)
(h) 9:30AM-10:00AM

Figure 7.8: Comparison of the model predicted travel time ditributions with those
from field GPS data on link 8-11 (Southbound: 8:00AM-10:00AM)



Chapter 7. Application of the model for link travighe distribution prediction 149

Table 7.4: Kolmogorov-Smirnov test of link 13-11 and 11-8 fothe Northbound
direction (significance level=0.05)

Link 13-11
Period 1 2 3 4
p-value 0.388 0.115 0.247 0.481
Number of observations 76 84 81 65

Hypothesis (H1=H2) Accepted Accepted  Accepted  Accepted

Link 11-8
Period 1 2 3 4
p-value 0.058 0.102 0.082 0.001
Number of observations 89 93 98 73

Hypothesis (H1=H2) Accepted Accepted  Accepted Rejected

Table 7.5: Kolmogorov-Smirnov test of link 11-13 and 8-11of the Southbound
direction (significance level=0.05)

Link 11-13
Period 1 2 3 4
p-value 0.213 0.122 0.343 0.288
Number of observations 39 26 23 29

Hypothesis (H1=H2) Accepted Accepted  Accepted  Accepted

Link 8-11
Period 1 2 3 4
p-value 0.009 0.012 0.148 0.113
Number of observations 69 59 65 73

Hypothesis (H1=H2) Rejected Rejected  Accepted  Accepted
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Table 7.6: Performance measures in terms of MAPE for 6 perds on link 13-11 and
link 11-8 (Northbound)

Link 13-11
Mean Sd. TT90th ~ TT50th ~ TT10th

MAPE(%) 2.1 9.7 6.5 4.2 4.9

Link 11-8
Mean Sd. TT90th ~ TT50th ~ TT10th

MAPE(%) 6.0 15.8 7.3 45 5.5

Table 7.7: Performance measures in terms of MAPE for 4 perds on link 11-13 and
link 8-11 (Southbound)

Link 11-13
Mean Sd. TT90th ~ TT50th ~ TT10th

MAPE(%) 0.9 85 2.7 2.4 3.7
Link 8-11

Mean Sd.  TT90th  TT50th  TT10th

MAPE(%) 3.4 6.5 4.4 3.6 2.9

7.5 Conclusions and discussion

Urban travel time prediction is an important an@lEnging topic. Providing predicted
travel times, especially the variability (uncertgnof travel times can help travellers
make better route choices. A methodology of urlra@atravel time distribution prediction

is for the first time proposed in this chapter. eTthaffic control scheme (cycle time and
green splits) is predicted using a neural netwoddeh The predicted traffic flow and
traffic control scheme are used as model input. &plying the link travel time

distribution model proposed in chapter 5, the tirdvel time distribution is predicted.

The comparison of the model predicted link traviebet distribution with that from
VISSIM simulation shows that the link travel timistibution predicted by the model can
well represent the ground-truth distribution. Thenparison with field data indicates that
the link travel time distribution can still be pretgd reasonably well, e.g., links 13-11 and
11-13. However, the predicted travel time distriduog of links 11-8 and 8-11 can
represent the observed travel time distributionS0#6 of the cases. There is discrepancy
between the model predicted travel time distributamd the field travel time distribution.
Nevertheless, it is still difficult to say whethiée link travel time distribution can be well
predicted by the proposed model. First of all, nhenber of sample travel times collected
from the field GPS data is small (<100). This giwesirregular, unsmooth travel time
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distribution as can be seen from Figure 7.7 andirf€ig.8. In order to obtain a smooth
distribution, more observed travel times are nee@tondly, travel times collected by
the GPS probe vehicles are not complete link trameds. Re-estimating the complete link
travel time could also give an error to the figfikltravel time distribution, though it is not
expected to be a significant factor which influentiee shape of observed distributions.
Thirdly, the length of link 8-11 and 11-8 (700m)sisorter compared with that of link 11-
13 and 13-11 (1200m). The influence of the traffomtrol at the upstream intersection on
the arrivals (e.g., filtering and platooning effeat the downstream intersection is likely
more significant for link 8-11 and 11-8. The comsence is that the overflow queue
distribution may not be properly estimated, whicluld lead to the discrepancy between
the model estimated distribution and the observstilution. Finally, vehicles are likely
to experience mid-link delay caused by the turniaicles from side streets which is not
considered in the link travel time distribution nebdFigure 7.9 shows the speed
information collected by GPS taxis on the test idom Low speeds due to vehicles
turning from the side streets can be clearly obekry

South bound on 14th May 2010
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Figure 7.9: GPS probe vehicle speeds on the test corridor (frorsouth to north:
intersections 3->8->11->13)

Travel time distribution prediction is a difficukubject. The model proposed in this
chapter provides the possibility to predict thd fulk travel time distribution. With the
wide application of GPS equipment, GPS probe vekiblecome more and more popular
to collect traffic data. This gives the opporturtityvalidate the model with more observed
data.
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Chapter 8
Conclusions and future research

In this thesis, an analytical model has been d@eeldor urban travel time distributions.
The model is calibrated and validated using botmugation data and field data.
Furthermore, the model has been applied for thekitame distribution prediction. In this
chapter, some conclusions which are drawn basdteoresearch carried in this thesis are
presented in section 8.1. The applicability of tsults for practitioners and some
implications for policy makers are indicated ints@t 8.2 and 8.3, respectively. Finally,
section 8.2 gives some recommendations for fukesearch.

8.1 Conclusions

Travel time estimation and prediction have beerestigated by many researchers as
discussed in the literature review in chapter ZhisTthesis presents a different way to
model urban travel times and travel time variagilihore specifically, model the travel
time in a probabilistic way instead of the meawetdime. The main contributions of this
thesis are the development of an analytical tréwe distribution model, calibration and
validation of the model and application of the middethe prediction purpose.

8.1.1 Conclusions from the state-of-the-art review

In chapter 2, the current state of practice in node urban travel times has been
presented. Three aspects of this topic, nameby,utttban travel time estimation and
prediction, delay estimation at signalized intetises and travel time variability, are
studied in the literature review. From the studgwirent urban travel time estimation and
prediction models, it shows that most of these ri®deuldn’'t perform well and have
poor transferability. Most existing approaches,ludong both model-based and data-
driven methods, aim at estimating or predictingrtiezan travel time. Little or no attention
has been paid to the stochastic properties ofidraffocesses (e.g., stochastic queuing
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process at intersections) which often cause unngrtaf the travel time vehicles
experience on urban roads. The inability of capgthe uncertainty of the travel time
makes these models less suitable to describeahel time in the urban network.

Delay vehicles experience at intersections is ggomant component of the travel time on
urban roads. The accuracy with which delays caadbienated has a significant influence
on the accuracy of final estimated travel times.weeer, delay models have been
developed mainly for the purpose of improving tiaffontrols at intersections. Therefore,
these models try to estimate or predict the me&aydehicles experience at intersections.
As shown in (Viti, 2006), due to the stochasticrfle& queues at intersections, delays are
uncertain. Given the known average traffic demand eapacity, a wide spread delay
distribution can be found. A delay distribution nebavhich can capture the stochastic
properties of traffic processes is necessary ftomasing or predicting urban travel times.

Travel time reliability (variability) has been wigeinvestigated during the past decades.
A number of travel time reliability models and eddility measures have been proposed to
describe how reliable travel times are given aaerraffic condition. Different statistical
distributions, e.g., normal, log-normal or Weibdi$tribution, have been applied to model
travel time data. However, these distributions lyandve physical meaning. A travel time
distribution model which can explain the physiclepomenon of traffic processes is
beneficial for the state-of-the-art of modellingban travel times. This is the main
conclusion drawn from the literature review.

8.1.2 Empirical analysis of urban travel times

Travel times are widely accepted as very usefudrimation both for travellers to make
route choice or departure time choice and road caitihs to improve road network
performance. Therefore, different monitoring tagaes, for instance, ANPR cameras,
probe vehicles, Bluetooth devices, have been dpedlto measure link/route travel times.
In chapter 3, applying these techniques for meagwiban travel times is discussed and
some conclusions can be drawn from this chapter:

First of all, ANPR and Bluetooth techniques arg@promising in measuring travel times,
especially on freeways. While on urban roads, doe complex road network
configurations (e.g., intersections), differentfficaprocesses and travel behaviour, it is
difficult to say that these monitoring techniques qualified for measuring urban travel
times. Applying these techniques for measuringaartravel times requires an effective
filtering method. In ANPR system in the urban eamment, it is difficult to determine
whether a vehicle has travelled exactly along thee between A and B without making
unexpected stops en-route or choosing alternativees which have similar or less travel
time than the average travel time of this routanéthod that can effectively filter these
outliers is necessary. As for the Bluetooth systeesjdes the same problem as discussed
before with ANPR, Bluetooth devices transmit signadther frequently. The Bluetooth-
equipped vehicle could be detected at any timeiwithe detection zone and could be
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detected several times when it passes a roadsigeddith receiver or not be detected at
all depending on the driving speed and on the tletecange of the Bluetooth device.
Furthermore, travel times collected by Bluetootlvides could come from cyclists or
pedestrians carrying Bluetooth-enabled devices. Howemove these outliers is critical
for applying these techniques in urban settings.

Secondly, probe vehicles equipped with certain tmpsng devices (e.g., GPS/MEMS
integrated system) and with low polling intervaésg(, 1s, 5s) are able to collect traffic
data that are qualified for travel time estimatiemen in urban settings. Outliers can be
more easily removed from the detailed informati&or instance, trajectories can be
derived from high-frequency positioning data. Based the trajectory, it is likely to
determine whether a vehicle has travelled exabtyroute of interest. On the other hand,
a lot of commercial GPS solutions rarely recordifpmss of vehicles with temporal
interval smaller than 30s due to the cost of dabagssing and storage. For instance, taxis
equipped with GPS devices are widely used to cotlatfic data with polling intervals
longer than 30s (e.g., 60s, 300s) in big ChinetsesciAs a result, travel times recorded by
these mobile sensors are usually not completediniute travel times. In order to derive
complete link/route travel times, methods (e.ge, tieural network model as proposed in
this thesis) that can accurately estimate the cetapink/route travel times are preferable.

Finally, measured travel times provide the groumdht for developing any travel time
estimation or prediction model. They are valuale Huilding the historical travel time
database for the purpose of traffic management @aning. Most importantly, from
measured travel times, travel time distribution barderived which provides more insight
into travel time variability and furthermore canumed for travel time prediction purpose.

8.1.3 New insight into travel time variability

On the urban road, the variability (uncertainty)tdvel time is largely caused by the
variability (uncertainty) of delay vehicles expere at intersections. Delays vehicles
experience at a signalized intersection includdoam delays due to traffic control and
overflow delays due to high traffic demand. Howevdelays vary with effects of
stochastic properties of traffic flow, stochastitivaals and departures at the signalized
intersection. These stochastic factors are notp@déent but rather overlap. As a result,
delays are uncertain given known traffic conditifiraffic flow) and traffic control.
Instead, a certain delay distribution can be olegkrv

The delay distribution model proposed in chaptetakes the stochastic properties of
traffic processes into account. It allows one teestigate the variability of delay and
furthermore variability of travel time on urban dsa The analysis of different arrival
processes has revealed that in undersaturatedtiomsdithe delay distribution is not
significantly influenced by different arrival prasses (e.g., Poisson, binomial). The
comparison of delay uncertainty in different traffionditions shows that the delay is more
uncertain in undersaturated conditions than overatdd conditions. This gives more
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insight to travel time estimation and predictiontba urban road. The uncertainty of delay
in undersaturated conditions should be particultaken into account in order to have
better estimation or prediction results. This cbapiso reveals that the delay distributions
for different degrees of saturation are highly ¢sgping which indicates that a single
delay can correspond to different traffic stateshwdertain probabilities and also for a
given traffic state, a range of delays can be found

8.1.4 Urban travel time distribution model

The investigation of travel time distribution haseb done by a lot of researchers in a
phenomenological way by calibrating some distrilmutifunctions (e.g., log-normal,
Gamma) to the observed travel times. However, theracter of urban travel times is
represented by a specific distribution which can ibfuenced by different traffic
processes (e.g., traffic flow, traffic control). &hunderstanding of fundamental
mechanisms of urban travel times can help to beléad with travel time variability,
predict travel time variability and furthermorelunce travel time variability.

The main contribution of this thesis is the develept of an analytical urban link/route

travel time distribution model, which distinguishfem the existing models in three

aspects. First of all, the proposed model takes actount of traffic demand and supply,
stochastic properties of traffic processes on urbignalized roads and traffic control

scheme. The physical phenomenon of traffic canxpéaaed by the model. Secondly, the
parameters in the model also have physical meankasinstance, the parameter of the
overflow queue distribution can reflect the traffmondition to a certain extent.

Furthermore, these parameters can be partiallpnattd given known traffic demand and
supply, traffic control scheme, etc. Finally, thisodel has transferability and can be
applied in different traffic conditions.

The model of travel time distribution for an urb@p with two intersections proposed in
chapter 5 assumes that two intersections are fixegl-controlled with a certain offset.
Different offset settings (well-coordinated, di#et levels of mismatch) are investigated
under different traffic conditions. Results showattiior the case of mismatch 1 — early
green -, the shape of the travel time distribukeaps on changing and shifts towards high
values when the mismatch level of two intersectimeseases (from well-coordinated to
badly coordinated). This reveals that the way twtersections are coordinated has
significant influence on the travel time distritarti especially for undersaturated
intersections.

8.1.5 Model calibration

The application of the proposed model for traveieidistribution estimation requires
proper calibration (estimation) of parameters. Mieest important as well as most difficult
parameter that needs to be estimated is the owedleeue distribution. The numerical
example given in chapter 5 assumes that the asriabkhe intersection and departures
from the intersection follow certain distributiorfe.g., Poisson distribution, binomial
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distribution). The overflow queue distribution istiemated using a Markov chain process
model within a certain time period. However, whéncomes to the oversaturated
condition, the overflow queue distribution has @msg relation with the initial condition
and it is rather time dependent and growing owvereti Therefore, calibration of these
parameters under different traffic conditions igportant for the real time application.
Chapter 6 applies two parameter estimation methodsiely, Least Squares (LS) and
Maximum Likelihood (ML). On one hand, the calibmatiof model parameters requires a
certain amount of traffic data (e.g., travel timgaffic volumes and signal timings). On
the other hand, using and fusing all the availatd&a for parameter estimation can be
quite computation intensive. Therefore, a samptanfrthe available data is used for
parameter estimation.

The estimation results based on simulation datavstmat both LS method and ML
method perform well in the undersaturated conditidhile in the oversaturated condition,
ML method performs better than LS method, whichikely to give biased travel time
distribution estimation. The parameter estimatiesuits based on sample measurements
reveal that even with small sample size, parametars be well estimated both in
undersaturated conditions and oversaturated conditiThe travel time distribution can be
well reconstructed based on the estimated parasa€iére estimation accuracy is not
sensitive to different sampling methods (e.g., nsbratified or less stratified).

The investigation of the robustness of parametéimasion indicates that estimation
results are quite robust regardless of differemiga sizes in both the undersaturated
condition and the oversaturated condition, as lsthe sample size is not too small. Even
the sample data distribution cannot very well repn¢ the ground-truth distribution, for
instance, the RMSE of the sample distribution isyMarge, the accuracy of estimated
travel time distribution is still higher than that sample data distributions. This also
indicates that the model can reduce the error dubd small sample size which cannot
well represent the ground-truth distribution.

8.1.6 Model validation

Chapter 5 provides the validation of the link tdatrme distribution model and the trip
travel time distribution model. Both microscopiensilation and field observations have
been used to validate the proposed models.

The comparison of the results from the proposedahedth those from the VISSIM
simulation model shows that the link travel timstdbution based on the proposed model
can well represent the one from the simulation rhotlee comparison with field GPS
data indicates that model estimated link traveletidistributions are not significantly
different from field travel time distributions, thgh middle range and higher travel times
are more frequently observed with GPS data thamibdel predicts for a certain link.

For the trip travel time distribution model with dwfixed time controlled intersections,
different situations of signal coordination, forsiance, early green and late green as
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discussed in chapter 5, were considered. The casopawith VISSIM simulation shows
that the trip travel time distributions derivedrfradhe analytical model can well represent
those from VISSIM simulation except there is snalidicrepancy in low travel times and
high travel times. The discrepancy is probably ttuboth the variable free flow speed in
VISSIM and variable demand (stochastic arrivalghatupstream intersection.

8.1.7 Model prediction

Chapter 7 was dedicated to the prediction methadthe urban link travel time
distribution by applying the proposed travel timstibution model. Three main inputs
are required in the prediction procedure: traffddlvme, traffic control and overflow queue
distribution. This thesis does not explicitly death traffic volume prediction which has
been extensively investigated by many researctedisgussed in chapter 7. As for the
traffic control scheme, some widely applied dynamnatfic signal control systems, e.g.,
SCATS or SCOOQT, fall back to nearly fixed time aonht for instance, in peak flow
situations. The variation of cycle time and greplitsis small within a short time period
under similar traffic conditions. This gives thespibility to predict the traffic control
scheme for a short time period. In chapter 7, trexage traffic control scheme of SCATS
system for a short time period (30 min) is prediaising a neural network model. If the
initial queue state is known (e.g., measured byeras), the overflow queue distribution
for the future moment can be predicted using a E\arkodel.

The comparison of the model predicted link traviebet distribution with that from
VISSIM simulation shows that with time-varying demdathe link travel time distribution
predicted by the model can well represent the gidwnth distribution. The comparison
with field GPS data indicate that the link traviele distribution can still be well predicted
for certain links. While for other links, the prethd travel time distributions deviate
significantly from the field travel time distribotns. Nevertheless, it is difficult to say how
general this result is. Reasons for this as digclsschapter 7 are three folds.

® Lack of sufficient sample observatioi$ie number of sample travel times collected
from the field GPS data is very small (< 90 in 3GmiThis gives an irregular,
unsmooth travel time distribution. In order to dbta smooth distribution, more
observed travel times are needed.

® Complete link travel time estimation errofravel times collected by the GPS probe
vehicles are not complete link travel times. Renesting the complete link travel
time can also give an error to the field link tratime distribution, though it is not
expected to be a significant factor which influencthe shape of observed
distributions.

® Mid-link delay: Vehicles turning from thaide street could cause extra delay to the
through-going vehicles. This is not considered he tink travel time distribution
model.
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8.2 Practical usability of the results

The results presented in this thesis provide séiramications for practical applications:

The travel time distribution models developed iis thesis can be used for travel time
assessment. The present navigation systems proved: travel times for urban

routes based on average traffic conditions or enfgw probes (e.g., Tomtom does
that). The model proposed in this thesis could gimeestimation of the whole range
of travel times and inform drivers better abouttesuwith high reliability.

Travel time prediction on urban roads is a difficsibject. The proposed models can
be used for urban link/ trip travel time predictioBhapter 7 already shows the
possibility of applying the model for predictionrpose. The full range of link travel
times could be predicted for a short time period).(el5min, 30min), though the
validation of the prediction procedure using fialdta is limited by the fact of
insufficient field GPS data. More probe vehicleshahigher polling frequency (5s or
15s) are necessary in order to validate the piedichethod.

Travel time uncertainty is considered as an imparégpect in departure time choice
and route choice models. The standard deviatianawtl time is usually included in

these models to capture the disutility of traveldiuncertainty. The effectiveness of
using standard deviation lies in the fact that tfael time distribution is normal.

However, travel time distributions are rarely nofrfraore likely skewed) on urban

roads. The travel time distribution model developgadthis thesis provides the

possibility to better incorporate travel time uria@rty into departure time choice and
route choice models.

8.3 Policy implications

Travel time reliability has been an important saebja the policy agendas in Netherlands.
The following implications can be made for practiiers and policy makers:

The travel time distribution model developed irstthesis provides the possibility to
assess travel time reliability in urban areas. ikience of traffic demand, traffic
supply, traffic control schemes and stochastic ggees on urban travel time
reliability can be explicitly considered.

The fundamental investigation of urban travel timeechanisms provides the
possibilities to influence the travel time distrilmn and as a consequence to influence
the travel time reliability from different aspects:

- Demand: The influence of traffic demand measureas,(eongestion pricing) on
travel time reliability can be quantified.
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Supply: The influence of the change in traffic slypm travel time reliability can
be explicitly investigated.

Traffic control: The traffic control scheme (cydiene, green splits and offsets)
can be optimized to provide most reliable link/eut

Stochastic factors: The stochastic processes atsetttions cause the intrinsic
uncertainty of travel times on urban roads. Thesetofs should be always
considered in urban travel time reliability models.

Recommendations for future research

Based on the conclusions given by the previousaegcthis final section of the thesis
provides the possible directions of future reseat some implications of the model
application.

8.4.1 Recommendations for model development

In chapter 4 and 5, the link travel time distribatimodel and the trip travel time
distribution model were developed. Both models hneoretical background and some
assumptions and simplifications were made. Theegfturther research to improve the
model can be in the following directions:

® Improvement of the current model from the followigpects:

Consider more general signal configuration: The travel time distribution
model for two intersections assumes that both setdions have the same cycle
time and green splits for the convenience of matteliHowever, intersections in
a string often have different cycle time and greplits. This could be taken into
account in future to make the model more genert.(Viti,2006) did something
similar for the Markov model for delays in his tiges

Consider the overflow queue at the downstreamsetdion: In the trip travel time

distribution model, we only consider the overflomege distribution at the

upstream intersection since we assume both inteveshave the same cycle time
and green splits. The overflow queue distributionhe downstream intersection
could be modelled considering the stochastic depsst from the upstream

intersection (e.g., time-dependent departure Bigion as shown in Viti et al.,

2009 and the turning flows coming from the upstréat@rsection.

® Extension of the travel time distribution modelntailltiple intersections (>2): The trip
travel time distribution model only considers twatersections. In reality, more
intersections can be included in one trip. The msitsh of this model to multiple
intersections (>2) can be beneficial to practiggdlations.
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® Extension of the travel time distribution modetitne-dependent control intersections:
The model developed in this thesis only considesedftime controlled intersections,
though the travel time distribution for a certaieripd can be estimated considering
averaged cycle times and green splits as showmapters 5 and 7. The overflow
gueue distribution can be quite different for tioependent controls as discussed in
(Viti, 2006).

8.4.2 Recommendations for model calibration and validatio

In the thesis, the proposed model is calibrated \atidiated using both simulation data
and field GPS data. Some further improvementseegled in order to apply it in practice.

® Model calibration in different traffic conditionssing field data: The main parameter
in the delay distribution model is the overflow geedistribution. Chapter 6 shows
that it is possible to estimate the overflow quedistribution from traffic
measurements. The estimation results from VISSIMhutation data are very
promising both in undersaturated conditions andrsatarated conditions. Future
research should be devoted to calibrate the modeiffierent traffic conditions using
field GPS data.

® The validation of the link travel time distributionodel was done both with VISSIM
simulation data and field GPS data. Due to the lseshple size of GPS data and
relatively low polling frequency (30s), the valigat results are less convincing. In
future, more GPS data with higher polling frequesc{e.g., 1s, 5s) are needed to
validate this model. While for the trip travel tingestribution model, only VISSIM
simulation data were used for the model validatoue to the lack of signal
coordination information with field data. In futyrigeld data with signal coordination
information (e.g., offsets between intersections) rreeded to validate the trip travel
time distribution model.

8.4.3 Recommendations for research direction

Some recommendations for model development, modibration and validation are
given in the previous subsections. Besides, monerngé research directions can be in the
following aspects:

® Modelling travel time distribution in case of spback in the network wideThe
probabilistic way of modelling travel times for amban link can be extended to a
network wide taking the spill back into account.

® Optimization of traffic controlTraffic control optimization, in a conventionaly is
done such that the average delay (travel time)uonber of stops can be minimized.
The model developed in this thesis can also berjparated into a traffic control
optimization framework considering minimization bbth the average delay (travel
time) and the variability of delay (travel time).
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Investigating the influence of traveller compliareo®d route choice behaviour on the
travel time distribution The travel time information distributed to traee$ has
influence on their travel behaviour and as a comsece on the travel time
distribution.

Travel time distribution model could be imbeddedthe macroscopic simulation
models The travel time distribution model provides thesgibility to incorporate
uncertainties in macroscopic simulation models.
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Appendix A

GPS position and speed accuracy

Note. In the thesis, GPS probe vehicle data were usedraund truth for model
calibration and validation. A short discussion d?$&data for travel time estimation has
been discussed in chapter 3. This appendix provitdee detailed information about GPS
position and speed accuracy.

A GPS system consists of three segments: spaceesédsatellites), control segment
(control stations), user segment (GPS receiver$3PS receiver calculates its position by
precisely timing the signals sent by GPS satelltigh above the Earth. Each satellite
continually transmits messages that include the tine message was transmitted, precise
orbital information, the general system health amagh orbits of all GPS satellites. The
receiver uses the messages it receives to detetimengansit time of each message and
computes the distance to each satellite. Thesandiss along with the satellites' locations
are used with the possible aid of trilaterationpeteding on which algorithm is used, to
compute the position of the receiver. Many GPSsusitow derived information such as
direction and speed, calculated from position ckangThere are many issues related to
the GPS system. This appendix mainly provides médion about GPS position accuracy
and speed accuracy.

A.1 Positioning accuracy
A.1.1 GPS positioning accuracy

The accuracy of GPS position can be influencedevgal factors: selectivity availability,
satellite geometry, satellite orbits, multipath eetf atmospheric effects, satellite and
receiver clock errors and etc.

Sdlectivity availability
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The selectivity availability (SA) is an artificighlsification of the time in the signal
transmitted by the satellite. The implementationSéf was to intentionally degrade the
autonomous real-time positioning accuracy availdbleinauthorized users for security
reasons. With SA turned on, nominal horizontal aedical errors can be up to about
100m and 150m. On May 2, 2000, the U.S. governrdeattivated SA, resulting in a
much-improved GPS position accuracy of 20m or degss.

Satellite geometry

The accuracy of the computed GPS position is digatad by the geometric location of
the GPS satellites as seen by the receiver. Gaetliteageometry is obtained when the
satellites are spread out in the sky. For instaificereceiver sees 4 satellites and all are
arranged for example in the north-west, this |dads “bad” geometry. In the worst case,
no position determination is possible at all, wiadindistance determinations point to the
same direction. Even if a position is determinéa, érror of the positions may be up to
100 — 150 m. If, on the other hand, the 4 satellaee well distributed over the whole
firmament, the determined position will be much eaccurateFigure A.1 and A.2 show
geometrical alignment of satellités the two-dimensional case.

If the two satellites are in an advantageous mosifrom the view of the receiver they can be
seen in an angle of approximately 90 degrees th e#iter. The signal runtime cannot be
determined absolutely precise as explained earlibe possible positions are therefore
marked by the grey circles. The point of intersectA of the two circles is a rather small,
more or less quadratic field (square area), theraehed position will be rather accurate.

Figure A.1 Good geometrical alignment of two satellité's

1 Sourcehttp://www.kowoma.de/en/gps/satellites.htm
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If the satellites are more or less positioned ia bme from the view of the receiver, the plane
of intersection of possible positions is considgrédrger and elongated. The determination of
the position is less accurate.

Figure A.2 Bad geometrical alignment of two satellite's
Satellite orbits

Usually, satellites are positioned in very pre@sdaits. However, slight shifts of the orbits

are possible due to gravitation forces. The oraiadire controlled and corrected regularly
and are sent to the receivers in package of epleuiaia. Therefore, the influence on the
position determination is low with a resulting erdue to satellite orbits of not more than
2m.

Multipath effects

The multipath effect is caused by reflection ofefiae signals on objects. The reflected
signal takes more time to reach the receiver thandirect signal. For GPS signals, this
effect mainly appears in the neighbourhood of lalgyeldings or other elevations,
especially in the urban environment.

Atmospheric effects

Another source of inaccuracy is the reduced spéguiopagation in the troposphere and
ionosphere. While radio signals travel with theoedly of light in the outer space, their
propagation in the ionosphere and tropospherevges!

Satellite and receiver clock errors and rounding errors

The GPS satellite clocks, although highly accurates not perfect. The remaining
inaccuracy of the time still leads to an error adboat 2m in the position



176 Modelling Urban Travel imes

determination. Rounding and calculation errorshe teceiver sum up approximately to
1m.

The errors of the GPS position are summarized enfthlowing table. The individual
values are no constant values, but are subjecariances. All numbers are approximate
values. All these effects lead to a total erroalodut+15m.

Table A.1: Typical GPS position accuracwvith SA deactivated

Factors Error (m)
Shifts in the satelite orbits +25
Multipath effect +1
lonospheric effects +5
Tropospheric effects +0.5

Clock errors of the satelites' clocks + 2

Calculation and rounding errors 1

A.1.2 DGPS positioning accuracy

The accuracy of GPS positioning can be improvedapplying the technique called
differential GPS (DGPS), which enables civil reees/to achieve accuracies in the range
of decimetres to a few meters. The basic idehdsd second stationary GPS receiver is
used for correcting the measurements of the fasgiver. If the position of the stationary
receiver is known very accurately, by means ofrgy lvave transmitter a correction signal
can be sent which is received and analysed by evescconnected to the mobile GPS.
Some countries around the world have establishédones of GPS reference stations
around their coastal areas, which continuously drast real-time DGPS corrections.
Basically, there are three types of DGPS servigtesys: a single station-based DGPS
service system (Maritime DGPS service), wide-ardteréntial GPS (WADGPS) and
multisite RTK system.

In the maritime DGPS service system, each referstat®n operates independently of the
other stations in the network to serve users witisigoverage area. This service requires a
beacon receiver connected to a GPS receiver theeptr the Radio Technical
Commission for Maritime Service (RTCM) correctionhe coverage depends on the
transmitter power output, the atmospheric noiseyéteiver sensitivity, the characteristics
of the propagation path or conductivity. The cogere greater over water than inland.

Real-time DGPS with a single reference stationthasdisadvantage that the positioning
accuracy tends to deteriorate as the user movey &om the reference station. To
overcome this problem, a system based on a nunflvedely separated reference stations

2 Source: ElI-Rabbany, A (2006)ntroduction to GPS: the global Positioning Systértech House, London.
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known as WADGPS has been developed. This systeoivies a set of ground reference
stations that cover a wide geographical area, eayerage of large, inaccessible regions
using fewer reference stations.

The multisite RTK service could provide the positiay accuracy at subdecimetre-level.
The idea behind multisite RTK positioning is basad using a network of reference
stations to create raw GPS measurements for aalvmtference station, which is located
close to the mobile, or the rover, receiver. Onoeated, the virtual reference station
measurements are transmitted to the mobile receneere the normal single reference
station RTK positioning can be performed. The RTd&iponing with a single reference
station is limited to a distance of 15 to 20 km.tWfhis service, four GPS reference
stations could cover an entire city or even a nurobemall adjacent cities.

A.2 GPS speed accuracy

The results and discussions about the accuracyP& §peed measurements provided in
this appendix are mainly cited from Al-Gaadi’s wdrkhe initial motivation of their work

is to see how accurate the GPS speed measuremmeniis dhe agricultural operations.
However, their results are also valuable for otpglications.

In their study, a passenger vehicle was equipp#d avhand-held GPS receiver to provide
GPS speed data and a pulse transmitter to obtdiitles wheel speed. GPS-derived
speed data was compared with the speed measureinasesl on wheel speed data
(reference speed) and errors in GPS speed measusmere determined. Different
ground speed values: 5, 10, 15, 20, 25, 30, 40 S0idn/h were chosen to do the
comparison. Some results and discussions are gased on their experiment:

1. For all GPS data points, the average speed measntetcuracy is 1.27 km/h (6.9%).
A maximum error of 0.51km/h and 5.54 km/h were funth 50 percentile and 95
percentile data points, respectively.

2. The magnitude of error in tested GPS speed measuteis not proportional to the
magnitude of vehicle ground speed.

3. In their experiment, they found that the GPS aaouia significantly degraded at
sudden big changes of vehicle speed. E.g., an efr&®0.16% was produced due to a
vehicle speed reduction from 18.65 to 11.19 km/thvi0s. This result also implies
that the accuracy of acceleration calculated froR5Gpeed measurements can not be
guaranteed, especially for the high acceleration.

4. If no big sudden change of vehicle speed occuesatierage accuracy of GPS speed
measurement is less than 1km/h except for 15kmién skt with an average accuracy
of 1.72km/h. They found that the average erroess Ithan 5.3% with all data sets,
except for the 15km/h data set with an error 02%9

3AI—Gaadi, K.A. (2005). Testing the accuracy of admous GPS in ground speed measurendenirnal of Applied
Science$(9):1518-1522.
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Appendix B

Formulation of overflow queue
distribution

Note. The overflow queue at an isolated intersectiarth@ upstream intersection in case
of an urban trip with two intersections as discdssechapter 5) is not constant but rather
stochastic. This stochastic overflow queue hasgairifluence on the delay distribution.
The derivation of the overflow queue distributiemiot discussed in chapter 4 and 5. This
appendix provides the detailed formulation of theerfiow queue distribution model
(cited from Viti).

Let Qmax be the maximum value of the queue length, whichlmstored in the considered
road sectiongmaxand dmax respectively the maximum number of arrivals angadtires
possible within a cycleQj; be the transition matrix, which represents thebpbality that
the queue length moves from a staae timet-1 to statg at timet. If j # O, this probability
is expressed by:

Pr(] :i+qt _dt) O jZi_dt g U [quax ]1dtD [Odmax ]

B.1
0 athiese (B8.1)

Q (t) :{

Since queues are constrained to be non-negativen wWie departures are larger than the
sum of the arrivals and the queue at the startintecycle, the queue at the end of the
green phase will be zero. Obviously, part of thiseg phase will not be used by any
vehicle. According to this consideration the chamfea queuei to become zero is
computed with the following condition:
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Qu(0) = kZ:(‘;F’r(k-OFO) 0 i<d ,q0 [Og, ] .2)

0 otherwise

If the departures are deterministic, Equation (BR@nputes the probability for a specific
gueue length in the transition matrix from each couple a ). If departuresd; are
stochastic, given the range of possible departfi@esdn.y and the assumption of
independence of departure and arrival distribufitims transition probability from a state
to a statg is given by:

QM=3Q(td)Pr(d) (B.3)

Every time step is uniquely determined once an initial condit@#is assumed. This value,
as said, can be a specific value or a stochastiabla. In both conditions the initial
condition can be expressed by a vector of initisue probabilities Bp (0)={ Pro(0), Pr(0),
Pr(0),..., Pbma(0)} where the deterministic case can be seenspgeial case of this vector
where probability is 1 for the deterministic valaed zero for the others. Since the queue
probability distribution at every timé-1 and the transition matrixy are, as defined,

independent, the probability of each sfategiven by:
Qmax

PrQ,=j.t)= Z PrQ,=it-1Q, ¢, (B.4)



Appendix C

Derivation of boundary delays in the
trip travel time distribution function in
oversaturated conditions

Note. The detailed derivation of boundary delays.; andw.n:,in the delay distribution
function for the oversaturated condition is notserged in chapter 5. Therefore, this
appendix provides more detailed derivation for ezadvho are interested. The boundary
delays here refer to the delays at the transitioments when a vehicle arrives just before
these moments can pass the intersection, wheredslibwing vehicle needs to wait for
the red time.

C.1 Mismatch 1 (early green)

In oversaturated conditions, the delay as the fonaif arrival time is derived as:

{r, +no+1_{rb+c(t— %)+1Jrr} 1 —3(t—t9, if ny+ot—t) —{—m-kc(t_to)ﬂJsr <q
S g S 8

g g
W= ’ ’ (C.1)

{2r, + m;lj{ L q(str_ T°)+1J i}l _%s(t -1, else

g

As for the oversaturated condition, the numbenaifeered times that a vehicle arriving at
time t needs to wait at the upstream intersection caditeetly derived from Equation
(C.1). The more generic expression is:
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ST,

n{q(t-to)+no+1J ©.2)

From Equation (C.2), we can see that when a vehiclging within the time interval of
one cycle time, the minimum number of extra redesnthis vehicle needs to wait at the
upstream intersection can be derived as:

Nmin :\\no +1J (C3)

ST,

And the maximum number of extra red times is gikbgn

N = {MJ )

ST,

If the value within L 4 is an integer, the maximum delay will be experehdby the
vehicle arriving at the end of the cycle. Otherwibe maximum delay will appear before
the end of the cycld<ty+zc) in oversaturated conditions.

When vehicles arrive at the downstream intersectlmre are two cases:
- Passing the downstream intersection without delay

- Passing the downstream intersection with a cartiglay.

Whether vehicles need to wait for the red timehatdownstream intersection depends on
whether the number of vehicles in front of this ieth plus the vehicle itself can be
released within the green timg at the downstream intersection.

N +q(t-%)+1

ST,

downstream intersection. Vehicles just experienelys at the upstream intersection.
Given the initial moment of the calculatidg) in our approach, it is the beginning of the
red time. For this case, the transition momentscditinuity of the delay as function &Qf
appear when:

1) If O<n,+q(t- t0)+1—\‘ J g, < g, vehicles experience no delay at the

n,+o(t,~ ) +1-ng =0
Each transition moment can be derived as:

t, n=N

=9 N n-1

n (C.5)
[
q
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ST,

upstream and downstream intersections, the trangttioments appear when:

2) If n,+ q(t—to)+1{no + gt t°)+1J g, 2 g, Vvehicles experience delays at both the

1

n,+(t, — ) +1-ng, =

Each transition moment can be expressed as:

, ng,+9,- -1
t =t + a N, SN< N, (C.6)

An example is shown in Figure C.1. The ‘star’ psiate the transition moments when the
vehicles needs to wait for another red time atupstream intersection; The ‘dot’ points
are transition moments that vehicles arrive atdbenstream intersection right after the
signal turns red. As can be seen in Figure C.Er dfte transition moments (dots), the
delay is decreasing linearly as the function ofivatrtime and the other transition
moments (stars) can be ignored because all thassition moments are within the delay
evolution trend starting from the dot transition ments. However, this is only for the
case of the same red time both for the upstreamrsettion and the downstream
intersection. In case of different red times, ther $ransition moments can be above or
below the trend line starting from the dot tramsitimoments as described above. The
example given in the following considers two siioas:

n,+1
a 1-| -2
@ n, + {srg

time can leave the downstream without delay. F@& tase, the delay the vehicle
arriving at the beginning of the red time equals to

W=r, +—%+1+{—%+1J I, = (1+{—n°+1J)rr TRLLES @1+N
S g, 9, S

Jsrg < g : The first vehicle arriving right after the beging of the red

- €7

min
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Arrival time Arrival time
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Il T (b
q q
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Figure C.1: Delay as a function of arrival time with two ntersection coordinated in
the oversaturated condition

Transition 1: t,

+

W2 = (1+ Nmin)Tr + nO 1

Transition 2: t/ = Nown g * T = ra_1+t0
q

+1 N s +9 -n-1

W= (14 N, )7, + e T e T 07 B2 4

q S

+1-N_ g - §

= NminZ-C + Tr + Tg'; + no e ?

q

rb +l_ I\Imin S-g - ng
q
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q
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Transition 3: t, +t,
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+1 (@+N,)s,+9,- -1
VV3:(2+ Nmin)rr +n0 1_( mm) g g r(] (1_2)
q S
1+ N,, +g,-n-1
L
q
+1 (@+N s +9, -n-1
W= Wt r, =@+ N, + e NS T T, T 0, 4,
S q S
+N . +9 -n-
:(l+ Nmin)z_c+21_r+z_é _(1 len)g—g 9'9 ra 1
q
. L ,_(2+Nmin)gg+g-'g_ra_1
Transition 4: if t; = . >T. (see Figure C.1 (a))
t3 :TC
W5 = (3+ Nmin)rr + no +1_TC (1_55)
|f tl — (2+Nmin)gg + g-; - r(]_1<1_
3 q ~ ¢ (see Figure C.1 (b))
+ 2+N_ ). +9.-n-1
W= @+ N, + et B8 TS, TR g
q S
= (24 Ny )T +7, +7 (2 N )T + 94~ B 1
min /* C r g
q
W, =W +7,
., (2+N_ ), +9,-n-1
:(2+Nmin)rc+2Tr +Tg - : ?
q
+
W7 = (4+ Nmin)Tr +nOTl_TC (l_gs)
n,+1 . - , , ,
(b) n,+1-| >—|sr, 2 g The initial overflow queue is so large that thmstfvehicle
ST
g

arriving right after the start of the red time dbet upstream intersection
has to wait for the red time at the downstreanrsaetion. For this case, the delay the
vehicle arriving at the beginning of the red tingeials to:

n+1
s

W=(2+N, )7, + (C.8)

min
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Figure C.2: Delay as a function of arrival time with two intesections coordinated in
the oversaturated condition
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W, = @+ Ny )r, + 207 1-)
|f t! — (2+Nmin)gg + SJg_ ra_l<1_
2 q ~ ¢ (see Figure C.2 (b))
W, =3+ N )7 +n0+1_(2+ N )T, + S~ ’3_1(1_2)
3 min/%r q s
1 (2+Nmin)g + g-' - r(]_l
:(2+Nmin)rc+rr+rg_ : :
q
Wo =W, +7,
2+N_)sr. +9 -n-1
T e
q
+
W= @+ N, + 22 0

For more general expression, the delay for eactsitian point can be calculated as:

N s +9 -n-1
(1) If n +1—|‘n°+1Jsr <g & =9 9 s >T
0 g g C
ST, q
ns,+9,-n-1
nre +7, +7, ——2—2 Niin < N< Ny,
W,,., = . q (C.9a)
+
(n+Dr, +2 -7, (1-9) n= N,
S s
(n+1yr, + o n=N,,
s
W, = (-1, + &' - g-1 (C.9b)
(n_l)rc + 2Z-r + T;; - 2 . Nmin <ns Nmax
q
N s +9 -n-1
(2 If n +1—\‘n°+1Jsr <g &—29 9 L <T
0 g g C
ST, q
nsr,+9,- Q-1
N +7, +T, ——— g , N,,<ns N,
W, ,, = . q (C.10a)
+
(D7, + o7 0D) n= N+
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(n+1)rr + no + n= Nmin
W, = > C.10b
2n+2 ' (n_l)g-g+g-;_ Ia—l ( . )
(n-Yr.+2r +1, - N, <ns N, +1
q
N . I, +9. - n-1
3) If n,+1- n°+13725r'& ma¥y T 9o 7 B >T
0 g g C
ST, q
, nsr,+9,-p-1
NT, +7,+7,~ N., t1= n< N,
W, = . 9 (C.11a)
+
(n+17, +2= -1, (1-) n= N,
S S
(n+1)rr +n0+1 n= Nmin +l
Wi = ' (C.11b)
m n-1)sr,+g,—-n-1
(n-Dr. + 21, +7, (DS, * 9,7 g N, +1<n< N,
q
N & +9. -n-1
@ 1if n+1-| 2 g 5 g g e T T T BT
| s, q
, nsr +9,-p-1
nre +7,+7,— N.n t1= n< N,
W, = . 9 (C.12a)
+
(n+17, +2=-7,(1-) n= N, +1
s S
(n+1y7, +22 n= Ny, +1
S
W2n+2 - _ . (n—l)STg + 5':3 _ r(]_l (Cle)
(n-Yr. +2r +1, N, t1<ns N +1
q
C.2 Mismatch 2 (late green)
In case of mismatch 2, the delay as the functioarabal time is given by:
+1 +qg(t—t)+1
W=(r, +7,+ B0y DA g G C.13)
S g, S

Vehicles departing from the upstream intersectightrafter the traffic light turns to
green will experience extra delay due to the Itdet ©f green phase at the downstream
intersection. The transition moments can be derk@ud Equation (C.14) as:
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t, n=N

t, = +nsrg—rg)—1

. (C.14)
t0
q

N <n<N

min max

Nmin, Nmax are the minimum number of extra red time and marrmumber of extra red
time that vehicles need to wait at the upstreamrseiction, respectively, which are given
by Equations(C.3) and (C.4).

Delay

W6

W4

1:r
W :
W, t
r
W3
W
tO tl t2 C

Arrival time

Figure C.3: Delay as a function of arrival time with two intesections coordinated in
the oversaturated condition

Transition 1: t,

When the vehicle arrives at the beginning of the trmeto, the delay equals to the red
time plus the time to release the queue in frontheg vehicle plus the coordination
mismatch at the downstream intersection, whichviergby:

n, +1

W2=(1+ N )Tr+rm+

min

(1+ Nmin)STg - Q) _1+

Transition 2: t, =
q

b
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1+N_VJst. - n-1
VV:L = (1+ Nmin)rr +7, +nO_+1_ (1_2)(( mln) g n )
S S q
+ ) - n -
@+ N, g 47, - NS 7L

q

(1+ Nmin)gg - r!)_l

W4 :V\{+Tr :(1+ Nmin)TC +Z'r +Tm_

q
2+N Vs - n-1
Transition 3: tz:( min )y ~ b 4,
q
W, =(2+ N, )T, +7,, +n0_+1_(1_ﬂ)((2+ Ninin )Ty ~ rb—l)
S S q
= (24 Ny )1 47, ~ 2 M), T2

q

(2+Nmin)gg - rb_l
W, =W, +7, =(2+ N, ). +7,— ; +

(2+Nmin)gg - r])_l
q

Z-I’

:(2+N )TC+Tr+Tm_

min

Transition 4: t, =1,

n,+1

W, =(3+ N,,)T, +7,, +T_TC(1_HS)

min

From the given example, a more generic expressiarbe derived as:

n+l)sr, —n-1
(n+1)rc+rm—( )T, Ny N, <n< N
Pora= 1 ! (C.15a)
+
(n+1)l'r + I + L _Tc(l_g) n= Nmax
S S
@+n)r, +7, + N +1 n=N,,
s
Warez = ns, - -1 (C.15b)
nr.+7,+7, ————-— Nmin <n< Nmax

q



Appendix D

Comparison of link travel time in case
of a vertical qgueue and shock wave

Note. In order to see whether the shock wave has infleeon the calculation of link

travel time, this appendix provides detailed arialyd the delay as a function of arrival
time in D.1. Afterwards, the comparison of the lin&kvel time between the vertical queue
and shock wave is given in D.2. The derivationta tlelay as a function of arrival time
for the case of shock wave is based on the assoimgtia triangular fundamental diagram.

D.1 Delay calculation in case of shock wave

Case 1: No initial queue exists at the beginning of the rechpse

For the sake of simplicity, we assume the triangfuadamental diagram as illustrated in
Figure D.1.k; is the jam densityks is the capacity densit¥, is the arrival flow densitys

is the capacity flowg is the arrival flowLs is the effective length of a stopped vehicle, the
following relationship can be derived:

Ly=— (D.1)

The difference of delay between the preceding Veland the following vehicle is given
by:

Ad = (D.2)

L_L
WU,
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Wherew is the congested wave speed from the standingtgtie to the queue discharging
state which can be derived as:

S
o (D.3)

W=

uy is the shock wave speed from the free flow statéhé standing still state which is
given by:

-9
u -
G (D.4)
Wherek, =4
S
q 4
S F-——""7 A
1
1
arrival ',
flowqg |~ ~ _I .
1 1 w
L N u,
S
1 1 R
k, Kk, kK k

Figure D.1: Flow density diagram

Let's assume there is no queue at the beginningeofed phaset£0) and no spillback
during the whole analysis period. For a given timsantt when vehicles arriving at the

back of the queue (in case of shock wave), thé &otevals between time instaftandt
can be calculated as :

A(t) = qt

Therefore, the delay can be derived as:

(D.5)
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Figure D.2: Space-time diagram at a signalized intersection

Case 2: Initial overflow queueng at the beqinning of the red phase

In the absence of queues, all vehicles would ddpHotwing the trajectory AB as shown
in Figure D.3. Therefore, the queuing delay isahea ofW,. When a vehicle arrives at the
beginning of the red phase=Q), there is an initial queus. For this case, the del&, is

composed of two parts:

W,=r,+d

(D.7)

Whered is the queuing delay due to the initial overflouege at the beginning of the red

phase, which can be calculated as:

d:(n°+1)|'5+(n°+1)|'5=(rb+l)(i+i)Ls
u, w u W

_ k  ki-k, 1

—(no+1)(s+ s )‘ﬁ

_n+1
S

(D.8)
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By substitutingd in Equation (D.7) with Equation (D.8), we can derithe delay at the
beginning of the red phase as:

n,+1
W, =7, +-2
s

r

(D.9)

The delay as a function of arrival time (the momehen the vehicle joins the end of the
gueue) in this case can be calculated as:

W(t)=V\6+AdDM=r,+%T+1—(1—ﬂs)t (D.10)

From Equations (D.6) and (D.10), we can see trettiay as a function of arrival time in
case of a shock wave is consistent with what we ligscussed in chapter 4 and chapter 5.
The difference is the definition of the arrival #min case of a vertical queue, the arrival
timet refers to the arrival moment at the stop line. M/for the shock wave case, it refers
to the arrival moment at the back of the queue.

A

X

W

>

t

Figure D.3: Space-time diagram at a signalized intersectian case of an initial queue
No

The validity of the above comparison of the delayaafunction of arrival time between
vertical queue and shock wave is limited by theuaggion of triangular fundamental
diagram. Different fundamental diagram could resultifferent conclusions. However,
when calculating the complete link travel time, #ssumption of triangular fundamental
diagram is not necessary. Hurdle (Hurdle et al012@ompared the delay estimated from
the shock wave model and the cumulative arrival degharture model on freeways. They
showed that these two models are compatible, yigldientical estimates of travel times
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and delay. D.2 shows more detailed comparisohetbomplete link travel time in case of
a vertical queue and shock wave.

D.2 Comparison of link travel time between a vertial
gueue and shock wave

Figure D.4 shows trajectories of vehicles passitigkain case of a vertical queue (Figure
D.4 (a)) and shock wave (Figure D.4 (b})is the start of the link anxi is the end of the
link (stop line). We assume arrival moments at tipstream of the link are uniformly
distributed within a cycle time; The First-In-Fi®Gut holds for all arriving vehicles and
vehicles approach and depart from the intersectoth instant acceleration and
deceleration. For the case of a vertical queughacle entering the upstream of the link at
time instant, will pass the stop line of the downstream inteisacat time instanty' . The
same goes for vehicles entering at time instah¢es ... , t, and passing the stop line of
the downstream intersection at time instanggst,,..., ty. The link travel time of a
vehicle entering at time instaifor the case of vertical queue can be calculased a

TTo(t)=t-t, i=012,..n (D.11)

WhereTTyq (1) is the link travel time of a vehicle entering tnastream of the link at time
instantt; in case of a vertical queut; is the time instant when the vehicle passing thp s
line of the downstream intersection.

For the case of shock wave, the link travel tima @thicle entering at time instanat the
upstream of the link can be calculated as:

T (t)=T-t, i=0,1,2,..n (D.12)

WhereTTsw (1) is the link travel time of a vehicle entering tgstream of the link at time
instantt; in case of shock wavéd;; is the time instant when the vehicle passing thp s
line of the downstream intersection.

Let's assume that when a vehicle enters the upstaddink at timety will arrive at the
beginning of the red time at the downstream int#rge and there is no queue, the travel
time of this vehicle is given by:

TTo(h) = - t=7, +22 (0.13)

TTw(h)=T-t=7+ Xlu_fx" (D.14)

The link travel time of a vehicle entering at tiestantt; (T; in case of shock wayeat the
upstream of the link can be calculated as:
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TTo(t) =1t =TTo(b)+ ({1, - (1 - 1))

_ 11 (D.15)
=TT, +i(=——
vo(b) i q)
TTe(M=T-T=TL(H+ (T- T,-(T- T)) (D.16)
WhereT, - T, -LL =%, T'-T, =%+f =—2, u, is the free flow speed of arriving
uW uf

vehicles andl, is the platoon departure speed.

Therefore Equation (D.16) can be rewritten as:

TTo(T) = T-T= TL( D+ a§—§> (D.17)

From Equations (D.13), (D.14), (D.15), (D.17), vancsee that the link travel time for the
case of a vertical queue is consistent with thadhafck wave under the assumption of a
triangular fundamental diagram.

A

X

X7

v

(a) Vertical queue
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(b) Shock wave

Figure D.4: Space-time diagram of vehicles passing one link case of a vertical
gueue (a) and shock wave (b)
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Appendix E

Test area

Note. Throughout this thesis, travel times measure&PByp probe vehicles were used for
analysis. This appendix provides more informatibowd the test area where GPS travel
times were collected.

The city Changsha is the capital of Hunan Provittds.located in the southwest of China.
More than 5000 taxis and private cars equipped @RS devices are travelling in the

urban network every day. Every 30s, informatiooulvehicle positions, speeds and time
stamps is sent to the monitoring centre. Figureilkudtrates the test corridor we selected
for our research. Total three bidirectional linksdafour signalized intersections are
considered. We name the intersections and links muimbers for the simplicity purpose.

The intersections are 3, 8, 11 and 13 as showigumef E.1. The northbound links include:

 Link13-11
 Link11-8
e Link 8-3

The southbound links include:

* Link 3-8
« Link8-11
« Link 11-13

The intersections on the test road are controllgdam adaptive control system called
SCATS system. The cycle time and green splits adrgn time to time according to
traffic demand.
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Appendix F

Complete link travel time estimation
from GPS data

Note. Chapter 3 proposes a Neural Network model to estimomplete link travel times
from GPS data. However, due to the fact that tieen® ground-truth data and insufficient
real-life GPS data to train the Neural network mpode applied a method proposed by Li
(Li et al, 2010) to estimate the complete link travel timese Bstimated travel times are
used for the validation purpose in chapters 5 and 7

Figure F.1 illustrates an example of a probe vehicthversing different links. The
information of probe vehicle positions, time stangpsl speeds is recorded. The method
proposed by Li (Li et al., 2010) is basically anenpolation process. The estimation
results show that this method is quite accurath Riot Mean Square Percentage Error of
5.9% for estimating the average link travel timeewhhe probe vehicle penetration rate is
5%. As shown in Figure F.1,(i), t2(i), t3(i), t4(i) are time stamps of probe vehiclev,(i),
Vo(i), va(i), v4 (i) are instant speeds of probe vehicldn order to derive the complete link
travel time of link 2, time stampgy(i), taowr(i), Which are the start moment when the probe
vehicle passes the stop line at the upstream edegos and the end moment when the
probe vehicle passes the stop line at the dowmstiatersection, need to be estimated.
The start moment passing the stop line at the egastintersection can be estimated using
Equation (F.1) and (F.2) as:

Vo (1) = vy (i)

2(d, +d) (F-1)

&y _1o(1) =

201
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1
8y_12(1)

t, () =t,0) - (Vo (0) —WVo0)2 — 28,0 ,) (F.2)

Similarly, the end moment arriving at the stop lofehe downstream intersection can be
estimated as:

oY -w0)
2050, %, =9
fan ) 20~ 0,0~ 028 08) .

Therefore, the complete link travel time of prolehiclei passing link 2 is derived as:

TT(0) = tyoun(i) =t ,5(0) (F.5)

Wherea,, ,,(i)anda,,_,,(i) are the average acceleration of probe vehitletween point

1 and point2, point 3 and point 4, respectively;d, are the distances from start moment
to point 1and point 2;ds, d;are the distances frorthe end moment to point 3 and point 4.

t,(1),v,(0) t, () 6(1),v, () t3(1),V5 () | taoun(i) t,(i),v,(0)
® o ° ® ®

Link 1 Link 2

Figure F.1 Calculation of complete link travel time



Summary

Urban travel times are intrinsically uncertain doea lot of stochastic characteristics of
traffic, especially at signalized intersections.sigle travel time does not have much
meaning and is not informative to drivers or tr@filanagers. The range of travel times is
large such that certain travel times can occuictorgested conditions as well as off-peak
situations. Therefore, it is better to consider Wiele distribution of travel times. The
knowledge of travel time variability (uncertaintyd in fact important both in the
evaluation of Dynamic Traffic Management measures teaveller's choices. Particularly
in the Netherlands, one of the policy goals isgpriove the door-to-door travel time
reliability. Providing travel time variability infonation can help different types of
travellers make better route choice decision féledgnt purposes. Risk-averse travellers
tend to choose more reliable routes even if thexe lmgher mean travel times. While for
opportunity-seekers, routes with lower mean traweés but higher uncertainty are more
appealing.

Travel time variability in urban areas

The importance of travel time variability in urbaetworks has received more and more
attention during the past years. However, the igason of travel time variability as
done by most researchers is just in a phenomemalodescriptive way by fitting some
distribution functions (e.g., log-normal, gamma)dserved travel times. The problem
arises when applying these distributions to diffiérteaffic conditions since they are only
calibrated for a specific traffic situation. Theachcter of urban travel times is represented
by a specific probability distribution which can influenced by different traffic processes
(e.g., traffic flow, traffic control). The undersiding of fundamental mechanisms of urban
travel times can help to better deal with travehdi variability, predict travel time
variability and furthermore influence travel timariability. Therefore, this thesis focuses
on developing a theoretical travel time distribaotionodel which can explain these
mechanisms and can be generalized to differedictiainditions.

Link travel timesfrom probe vehicles

We started our research by obtaining ‘ground trtighd link travel time data. These data
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are valuable for model calibration and validatibifferent monitoring techniques (ANPR

cameras, probe vehicles, Bluetooth devices) forsom@ag urban travel times were
compared. We focused on estimating the completettawvel time from the GPS probe
vehicle data with low polling frequencies (e.g.,s3Q min). Due to the fact that the
available data are the positions of probe vehiatdtxed time intervals, which means that
travel times directly obtained from GPS data akel¥i to be partial link or route travel

times, we need to estimate the complete link/rataeel times from GPS data. Three
methods were applied in this study, namely, théadise-proportion method, Hellinga’s
method and an Atrtificial Neural Network (ANN) modeThe estimation results showed
that the ANN method gives the best performance.

Verification of thetravel time distribution model

On urban roads, the variability of the delay atfséctions is the main source of travel
time variability. We started developing an anabftidelay distribution model for a single

fixed-time controlled intersection. The model caess stochastic properties of traffic
flow, and stochastic arrivals and departures airttezsection. The influence of stochastic
arrivals on the delay distribution has been paldity investigated by looking at different

arrival distributions, e.g., Poisson, Binomial. time undersaturated condition, different
arrival distributions have marginal influence oe ttelay distribution. The comparison of
delay variability in different traffic conditionshews that the delay is more uncertain in
undersaturated conditions than in oversaturatedlittons. This gives more insight into

travel time estimation and prediction on urban soa@lhe uncertainty of delay in

undersaturated conditions should be particulatgrianto account in order to have better
estimation and prediction results.

We extended the delay distribution model from aglginintersection to multiple
intersections. The signal coordination between imtersections is explicitly modelled.
Different offset settings from well-coordinated bmadly coordinated situations were
investigated under different traffic conditions. rermore, the free flow travel time
distribution has been incorporated into the delegribution model in order to derive a
complete travel time distribution. The numericadukts show that the shape of the travel
time distribution keeps on changing and shifts talsahigh values when the mismatch
level of two intersections increases (from well hoated to badly coordinated). This
reveals that the way two intersections are cootdthdas significant influence on the
travel time distribution, especially in undersatachconditions.

Model calibration and validation

We compared the travel time distributions from theoretical model with those from

VISSIM simulation data and field GPS data. The cangon results show a very good
agreement. The model-estimated travel time digiobba can well represent the travel
time distributions derived from VISSIM simulatiomtd. The model-estimated link travel
time distribution has been compared with that fitetd GPS data and results show that,
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for certain links, the model-estimated link tratehe distribution can still represent the
real distribution quite well. While for other linka significant discrepancy between these
two distributions can be observed. This discrepacey be attributed to two reasons:
insufficient sample observations with potentiaireation errors and mid-link delay which
is likely to be observed in the field whereas ih@ included in the model.

As a further step, we investigated the possibdité calibrating the model by observed
travel times. The overflow queue is the most imgrtstochastic parameter in the
mathematical model for the delay and travel timg&ritiution. In order to estimate the
overflow queue distribution, two parameter estioratmethods (Least-Squares (LS) and
Maximum Likelihood (ML)) have been applied to estim the overflow queue
distribution from traffic measurements (e.g., meadudelays or travel times). The
Genetic Algorithm was used to find the quasi-optisalutions for these two methods.
The estimation results based on VISSIM simulatiatachave shown that both the LS
method and the ML method can perform well in undenmsated conditions. While in the
oversaturated condition, ML method performs betiti@an LS method, which is likely to
give biased travel time distribution estimationeeTparameter estimation results based on
sample delays have revealed that, even with a saalple size, parameters could still be
well estimated both in undersaturated conditionsl awersaturated conditions. The
estimation accuracy is not sensitive to differeampling methods (e.g., Random
Sampling or Latin Hypercube Sampling). We also stigated the robustness of
parameter estimation. The results show that paemseain be well estimated regardless of
different sample size in both the undersaturatedlition and the oversaturated condition,
as long as the sample size is not too small.

Prediction of travel time distributions

We applied the model for travel time distributioneghction using both the VISSIM
simulation data and the real-life data. The fieldadwas collected in Changsha, China.
The prediction procedure requires three input Wem namely, traffic volume, traffic
control, and overflow queue distribution. In theldi test area, the intersections are
controlled by a SCATS system, which is an adaptigivork control system. The cycle
time and green splits vary from time to time. There, the average traffic control scheme
(mainly cycle time and green splits) of the SCAStem for a short time period (30min)
is predicted using a neural network model. Therftawe queue distribution is predicted
by assuming certain arrival distribution (e.g., $3on, Binomial) and departure
distribution (e.g., Binomial) at the upstream istmtion using a Markov chain model. The
comparison of the model-predicted link travel tiaistribution with that from VISSIM
simulation has shown that the link travel time rmilisttion predicted by the model can well
represent the ground-truth distribution of VISSIMtiwtime-dependent traffic demand.
The comparison with field GPS data indicates thatlink travel time distribution can still
be predicted reasonably well for certain links.
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A new vision of urban trave time

To conclude, the travel time distribution model eleyed in this thesis provides a new
way to describe and understand travel time vartgbdn urban roads. The proposed
model can be easily transferred to different teagfonditions, and can be applied for travel
time distribution prediction which is more meanmigfor the urban network with a lot of
uncertainties involved. By creating the understagdif the fundamental mechanism of
travel times on urban roads, it provides the pd#s#s to influence the travel time
variability on urban roads.



Samenvatting

Stedelijke reistijden zijn intrinsiek onzeker doogen groot aantal variabele
verkeerskarakteristieken met name bij geregeldéspmmten. Een enkele reistijd is van
weinig betekenis en is niet informatief voor autdmlisten of verkeersmanagers.
Afzonderlijke reistijden lopen dusdanig uiteen dpecifieke reistijden zowel tijdens de
spits als er buiten kunnen voorkomen. Daarom isbtdr om uit te gaan van de volledige
verdeling van reistijden. Het kennis hebben van vadeiabiliteit (onzekerheid) van
reistijden is van belang voor zowel het evalueran gynamisch verkeersmanagement als
ook reizigerskeuze. In Nederland in het bijzondehet één van de beleidsdoelen om de
deur-tot-deur reistijdbetrouwbaarheid te verbetekast aanbieden van informatie over de
reistijdvariabiliteit kan daarnaast ook verschitlentypen reizigers helpen bij het maken
van betere routekeuzen voor verschillende reisdoeRisicomijdende reizigers zijn
geneigd om te kiezen voor meer betrouwbare routdfs als deze routes gemiddeld
genomen een hogere reistijd hebben. Dit terwijlrvagportunisten routes met een lagere
gemiddelde reistijd en hogere onzekerheid aantiigkdezijn.

Reistijdvariabiliteit in stedelijke gebieden

Het belang van reistijdvariabiliteit in stedelijketwerken heeft meer en meer aandacht
gekregen gedurende de afgelopen jaren. Echter, deomeeste onderzoekers wordt
reistijdvariabiliteit enkel geanalyseerd op fenowlegische, beschrijvende wijze door een
verdelingsfunctie (bv. lognormaal, gamma) te fittep de geobserveerde reistijden.
Wanneer deze verdelingsfuncties worden toegepasteogchillende verkeerscondities
ontstaan echter problemen, aangezien zij enkel eearspecifieke verkeerssituatie zijn
gekalibreerd. Het karakter van stedelijke reistijdeordt gerepresenteerd door een
specifiek verdelingsfunctie welk beinvioedt wordtod verscheidene verkeersprocessen
(bv. verkeersafwikkeling, verkeersregeling). Hetgfijpen van de onderliggende
mechanismen van stedelijke reistijden verbetert dvegaan met reistijdvariabiliteit,
alsmede het voorspellen en beinvioeden van reiatijgbiliteit. Deze dissertatie focust
daarom op het ontwikkelen van een theoretisch meaol@l de reistijdverdeling welk deze
onderliggende mechanismen kan verklaren en wellergggliseerd kan worden naar
verschillende verkeerscondities.

207



208 Modelling Urban Travel imes

Linkreistijden van probe vehicles

We zijn het onderzoek begonnen met het verzamedagnound truthlinkreistijddata uit
het veld. Deze data zijn waardevol voor modelkalier en —validatie. Verschillende
monitoringstechnieken (automatische nummerpladtemering camera’sprobe vehicles
Bluetooth apparaten) voor het meten van stedelghstijden zijn onderling vergeleken.
We hebben gefocust op het schatten van completereigtijden op basis van
laagfrequente GPS data (bv. 30 seconde, 1 minamprobe vehiclesDe beschikbare
data beslaan dan de posities van ptebe vehiclesop vastgestelde tijdsintervallen.
Daardoor zullen de reistijden welk direct volgehdeze GPS data doorgaans betrekking
hebben op een gedeelte van de link of route. Deptimlink- en routereistijden moeten
geschat worden op basis van deze data. In dezée stijd drie methoden hiervoor
gebruikt, namelijk dedistance-proportionmethode, Hellinga’s methode en met behulp
van een artificiéle neurale netwerk (ANN). De stihgsresultaten laten zien dat de ANN
het beste resultaat oplevert.

Verificatie van het reistijdverdelingsmodel

Op stedelijke wegen is de variabiliteit van de raging bij kruispunten de voornaamste
bron van reistijdvariabiliteit. Wij zijn daarom bagnen met het ontwikkelen van een
analytisch model voor de vertragingsverdeling bgn eenkel fixed-time controlled
kruispunt. Het model houdt rekening met stochaséiscverkeerskenmerken en
stochastische aankomsten en vertrekken. De inwlaadstochastische aankomsten bij het
kruispunt is in het bijzonder onderzocht door tejkda naar verschillende
aankomstverdelingen, zoals poisson en binomiaais §evonden dat voamnverzadigde
condities verschillende aankomstverdelingen sleebts marginale invloed hebben op de
vertragingsverdeling. Het vergelijken van de veingsvariabiliteit laat zien dat de
grootte van de vertraging onzekerder isdnyerzadigdeondities dan bipververzadigde
condities. Dit geeft nieuwe inzichten aan reistijusting en —voorspelling op stedelijke
wegen. De vertragingsonzekerheid tijdeosverzadigdecondities zou meegenomen
moeten worden om tot betere schattings- en vodisgsiesultaten te komen.

Het vertragingsverdelingsmodel is vervolgens uitgebvan een enkel kruispunt naar
meerdere kruispunten. De afstemming van verkeéatstigelingen op twee kruispunten is
expliciet gemodelleerd. De verschillende mate vé&steeaming, variérend van goed
gecoordineerd tot slecht gecoérdineerd, zijn ormdrz onder verschillende
verkeerscondities. Daarnaast is de verdeling varvrge reistijd opgenomen in het
vertragingsverdelingsmodel om zo te komen tot denpiete reistijdverdeling. De
numerieke resultaten tonen aan hoe de vorm vaaistgdverdeling continue verandert en
groter wordt naarmate dfstemmingvan de twee kruispunten slechter wordt (van goed
gecoordineerd tot slecht gecoérdineerd). Hieruifjktoldat de wijze waarop twee
kruispunten zijn gecodrdineerd met name onverzadigdecondities een significante
invloed uitoefent op de reistijdverdeling.
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Modelkalibratie en -validatie

We hebben de reistijdverdelingen vanuit het théssletmodel vergeleken met VISSIM
simulatiedata en GPS veld data. Deze vergelijkaant heel goede overeenkomsten. De
model geschatte reistijdverdelingen komen goed emrermet de reistijdverdeling
verkregen van VISSIM simulatiedata. Uit de verdatiy tussen de model geschatte
reistijdverdelingen en de GPS veld data blijkt dabr bepaalde wegvakken het model
goede resultaten geeft terwijl voor andere linkstgrverschillen te zien zijn. Deze
verschillen hebben twee oorzaken: onvoldoende wvases welk kunnen resulteren in
schattingsfouten en vertragingen in het middendeafink welk waarschijnlijk zijn in het
veld, echter niet gemodelleerd worden.

In een volgende stap is gekeken naar de mogeligdhedh het model te kalibreren aan de
hand van geobserveerde reistijden.dverloopwachtrij, de wachtrij die overblijft aan het
eind van de groenfase, is de voornaamste stoctizstgarameter in het model voor het
bepalen van de vertragings- en reistijdverdelinon @ezeoverloopwachtrijverdeling te
schatten, zijn twee schattingsmethodeagt-squaregLS) enmaximum likelihoodML))
toegepast, gebruikmakend van verkeersmetingeng@meten vertragingen of reistijden).
Een genetisch algoritme is gebruikt om quasi-opgnoplossingen te vinden voor deze
beide methoden. Modelschattingen gebaseerd op WISSinulatiedata geven goede
resultaten inonverzadigdecondities zowel bij de LS methode als de ML methokh
oververzadigdecondities geeft de ML methode echter betere ramut dan de LS
methode welk de reistijdverdeling structureel oveoef onderschat. Deze
parameterschattingen gebaseerd op trekkingen uedeagingsverdeling laat zien dat,
zelfs met weinig trekkingen, parameterwaarden nauwmig geschat kunnen worden bij
zowel onverzadigdels oververzadogdeondities. De nauwkeurigheid van de schattingen
hangt daarbij niet af van de wijze waarop dezekirgjen worden gedaan (bv. willekeurig
of latin hypercube sampling Ook is gekeken naar de robuustheid van de
parameterschattingen. De resultaten tonen aan elgiacameterwaarden goed geschat
kunnen worden ongeacht het aantal trekkingen, goleet aantal niet te laag is, voor
zowelonverzadigdalsoververzadigdeondities.

Voorspellen van reistijdverdelingen

Het model is toegepast voor het voorspellen vanetiijdverdeling gebruikmakend van
VISSIM simulatiedata en velddata. De velddata zigrzameld in de stad Changsha,
China. De voorspellingsprocedure maakt gebruik dae invoervariabelen, namelijk de
verkeersvolume, verkeersregeling enoderloopwachtrijverdeling. In het gebied waar de
velddata zijn verzameld, worden de kruispuntregelin gestuurd door het SCATS
systeem; een netwerk regelsysteem. De cyclustigtergroentijden variéren in de tijd
afhankelijk van de verkeerscondities. Het gemideleldrkeersregelschema (voornamelijk
cyclustijden en groentijden) van het SCATS systegor een korte periode (30 min)
wordt daarom voorspeld met een neurale netwerk ma@meoverloopvachtrijverdeling
wordt voorspeld met edvlarkov ketermodel waarbij veronderstellingen worden gemaakt
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over de aankomstenverdeling (bv. poisson, binomiaal de vertrekverdeling (bv.

binomiaal) bij het kruispunt stroomopwaarts. Destiglverdeling op een wegvak, zoals
voorspeld door het model, komt goed overeen metedédeling volgend uit de VISSIM

simulatie met een dynamische vervoersvraag. Eegeligiing met de GPS veld data laat
zien dat de reistijdverdeling op een wegvak reklefiped voorspeld kan worden voor
sommige wegvakken.

Een nieuwe kijk op stedelijke reistijden

We kunnen als conclusie trekken dat het reistijdelengsmodel ontwikkeld in dit
proefschrift een nieuwe manier verschaft om reigéjiabiliteit op stedelijke netwerken te
beschrijven en te begrijpen. Het ontwikkelde mddei eenvoudig toegepast worden bij
verschillende verkeerscondities en kan gebruikt deor voor het voorspellen van
reistijdverdelingen welk meer van belang is op aligee netwerken gegeven de grote
mate van onzekerheden. Door inzicht te brengereiordlerliggende mechanismen welk
de reistijden op stedelijke wegen bepalen, cratEae dissertatie de mogelijkheden om de
reistijdvariabiliteit op deze stedelijke wegen exheteren.

(Dutch translation pided by Adam Pel)
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