

Delft University of Technology

Improving the Computational Efficiency of ROVIO

Bahnam, S. A.; De Wagter, C.; De Croon, G. C.H.E.

DOI
10.1142/S2301385024410012
Publication date
2024
Document Version
Accepted author manuscript
Published in
Unmanned Systems

Citation (APA)
Bahnam, S. A., De Wagter, C., & De Croon, G. C. H. E. (2024). Improving the Computational Efficiency of
ROVIO. Unmanned Systems, 12(3), 589-598. https://doi.org/10.1142/S2301385024410012

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1142/S2301385024410012
https://doi.org/10.1142/S2301385024410012

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Unmanned Systems, Vol. 2, No. 11 (2022) 1–9

© World Scientific Publishing Company

Improving the Computational Efficiency of ROVIO

S.A. Bahnam1*, C. De Wagter1, G.C.H.E de Croon1

1 Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands

ROVIO is one of the state-of-the-art monocular visual inertial odometry algorithms. It uses an Iterative Extended Kalman Filter

(IEKF) to align visual features and update the vehicle state simultaneously by including the feature locations in the state vector

of the IEKF. This algorithm is single-core intensive, which allows the other cores to be used for other algorithms, such as object

detection and path optimization. However, the computational cost of the algorithm grows rapidly with the maximum number of

features to track. Each feature adds three new states (a 2D bearing vector and inverse depth), leading to bigger matrix multiplications

that are computationally expensive. The main computational load of ROVIO is the iterative update step of the IEKF. In this work,

we reduce the average computational cost of ROVIO by 40% on an NVIDIA Jetson TX2, without affecting the accuracy of

the algorithm. This computational gain is mainly achieved by exploiting the sparse matrices in ROVIO. Furthermore, we reduce

the computational peaks by pre-selecting new features based on their already calculated FAST score. The combination of both

modifications allows us to run ROVIO on the computationally restricted Raspberry Pi Zero 2 W.

Keywords: Visual Inertial Odometry; Computational efficiency; ROVIO.

1. Introduction

Visual Inertial Odometry (VIO) and Simultaneous Local-
ization And Mapping (SLAM) are popular methods to
navigate in GPS-denied environments. However, Micro Air
Vehicles (MAVs) with extreme Size, Weight, and Power
(SWaP) restrictions do not easily carry enough computa-
tional power to do onboard loop closure computations. Es-
pecially, if the MAV has multiple computational tasks, such
as object detection and path planning, the computational
effort for VIO must be minimized. Moreover, minimal com-
putation time and latency are also important for high-speed
flight such as autonomous drone racing.

The most common VIOs use either monocular or
binocular, i.e. using stereo vision. Stereo VIO has the ad-
vantage of being able to triangulate features to immedi-
ately get a depth estimation for new features. Even though
it requires an extra step (stereo matching), compared to
mono VIO, it does not have to be computationally more
expensive [1]. However, it requires accurate stereo calibra-
tion and adds the weight of an extra camera. Furthermore,
for drones with a smaller stereo baseline, the maximal ob-
servable depth is also smaller.

Monocular VIO is preferable for MAVs with extreme
SWaP constraints, as it requires only a single camera. The
state-of-the-art filter-based mono VIOs are ROVIO [2] and

MSCKF VIO [3]. ROVIO uses a patch-based direct method
to align features and estimate the state in an Iterative Ex-
tended Kalman Filter (IEKF). MSCKF tracks features and
updates the state each time a feature is lost. A disadvan-
tage of MSCKF is that the computational load per frame
varies as it only updates if a feature is lost or when a max-
imum number of camera states are in the buffer. Next,
there are optimization-based VIOs, like VINS-mono [4] and
OKVIS [5]. However, these are generally computationally
more expensive because they optimize over a window of
states.

Of the above-mentioned algorithms, ROVIO is the
only algorithm that is single-core intensive, which allows
using the other cores for other computational tasks. More-
over, ROVIO is the only direct method, whereas the others
are feature-based methods. The advantage of direct meth-
ods is that they can estimate the motion in low-texture
environments [6]. Furthermore, ROVIO can track features
on an edge (e.g. line features) due to the initial feature loca-
tion prediction that is obtained from the IMU-driven state
propagation [2].

ROVIO has been used in various drone applications,
ranging from cave exploration [7] to autonomous drone rac-
ing [8]. Brunner et al. considered using ROVIO in a drone
delivery application [9], but ended up choosing SVO [10]
because it is computationally cheaper and therefore has

∗E-mail: S.A.Bahnam@tudelft.nl

1

2 S.A. Bahnam et al.

a smaller computational delay. This illustrates the impor-
tance of computational load for real-time applications.

In this work, we reduce the computational cost of
ROVIO without affecting the accuracy. To be more pre-
cise we reduce the average computational time by 40%
on an NVIDIA Jetson TX2. Furthermore, we reduce the
computational peaks, which slightly affects the accuracy.
However, this allows us to run ROVIO on a Raspberry Pi
(RPI) Zero 2 W. The RPI Zero 2 W is a computationally
restricted platform with a small size of 65× 30 mm and a
weight of 11 g. The main modifications to ROVIO are:

(i) We substantially reduce the size of the Jacobian used
in the IEKF of the ROVIO algorithm,

(ii) We reduce the computational cost of the prediction
step of the IEKF by exploiting the sparse matrices,

(iii) We use the FAST score instead of the more expensive
Shi-Tomasi score [11] for feature selection and we pre-
select feature candidates with the highest FAST score
when many feature candidates are detected.

The remainder of the article is organized as follows.
Firstly, in Section 2 we give a short overview of ROVIO.
In Section 3 it is shown what we have modified in ROVIO
to reduce the computational cost. Next, the results on the
EuRoC and UZH-FPV drone racing datasets are shown in
Section 4. This is followed by the conclusion in Section 5.

2. Related work

ROVIO mainly differs from other VIOs by using an IEKF
that uses photometric errors of patches as an innovation
term in the filter update step. This means that the feature
alignment is done simultaneously with the state update.
The features are included in the state vector where each
feature has a 2D bearing vector and an inverse distance
parameter. Furthermore, the state vector includes 21 other
states: robocentric position, velocity and attitude of IMU
(9), accelerometer and gyroscope biases (6), and the lin-
ear and rotational part of the IMU-camera extrinsics (6).
Therefore, the state vector has a size of n = 21 + 3 · m,
where m is the maximum number of features (25). The
computation for each new image frame can be described in
3 steps. Firstly, the state is predicted using the IMU data
between time t and t − 1. Next, the state vector is itera-
tively updated until the feature is matched (or discarded as
an outlier) for all features. Lastly, new features are added
when the number of tracked features drops below a certain
threshold (of 0.8 ·m).

In most frames, no features need to be detected, which
results in a low average computation time. However, for
frames that add new features, it requires additional com-
putation for the feature detection next to the IEKF com-
putations. This results in a computational peak in ROVIO.

In most VIO evaluations on benchmarks, the VIO per-
formance is not affected by computational peaks, because a
camera buffer is used in the pipeline. However, the control
performance of real-time applications, such as autonomous

drone racing, is affected by delay. Therefore, one would like
to decrease the computational delay. For this reason, one
could decide to reduce the camera buffer in such applica-
tions. However, this comes at the cost that the accuracy of
the VIO may decrease. In the worst case, the filter could
even diverge if the peak processing time is too high. In [8]
it is reported that ROVIO was processed at 35 Hz, but
the total delay was 130 ms. It is also mentioned that the
main contribution to the total delay was interfacing with
the camera and running the VIO. We suspect that the dif-
ference between the delay and FPS might also be due to
the computational peaks, because ROVIO has a varying
computational cost per frame. In this work, we reduce the
computational cost of ROVIO to increase the execution fre-
quency and reduce delays.

Others use the GPU to (partially) accelerate the VIO
and increase the execution frequency. In [12] they speed up
VINS-mono [4] by implementing a parallelization scheme.
The optical flow tracking requires 1.9 times less computa-
tion time and the marginalization is 1.5 − 1.7 times faster
on an NVIDIA Jetson TX2. In [13] they have a GPU-
accelerated feature detector and tracker that runs 1000+
FPS on the NVIDIA Jetson TX2. For the backend, they run
ICE-BA [14], which is a lightweight bundle adjustment, on
the CPU. The VIO runs around 200 FPS on the NVIDIA
Jetson TX2. There are also learned VIO neural networks,
like VIOLearner [15]. However, currently, they run either
on big GPUs or have a slow inference speed. For example,
VIOLearner requires 27 ms on an NVIDIA Titan X GPU.

3. Method

3.1. ROVIO’s prediction step

In the prediction step of the IEKF, the states are prop-
agated and the covariance is estimated using the IMU
data. ROVIO uses the pre-integrated IMU data between
two frames to compute the prediction step only once every
frame and reduce the computational cost without a notable
performance loss. Computing the covariance matrix is the
computationally most expensive as it involves n×n matrix
multiplications and can be calculated with Equation 1.

P−
k = Fk−1 · P+

k−1 · F
T
k−1 +Gk−1 ·Wk−1 ·GT

k−1, (1)

in which P is the covariance matrix, k− 1 and k are before
and after the state prediction, respectively. F is the system
transition matrix, G is the noise input matrix and W is the
continuous time noise covariance. Each matrix here has a
size of n× n, where n is equal to 21 + 3 · m, and m is the
maximum number of features. Therefore, the multiplication
of the matrices is computationally expensive. However, ma-
trices F , G, and W are all sparse matrices. W is a constant
diagonal matrix, where all entries are the estimated noise
variances from the input. F and G can be found in Equa-
tion 2 and 3, respectively.

Improving the Computational Efficiency of ROVIO 3

F =

 I3×3

B15×12∗ 015×6 021×f

0n−3×3 06×12 I6×6

Bf×12∗ Bf×6 BDf×f

 , (2)

G =

03×3

D12×12 B3×3 015×6 021×f

06×3

B3×3

0n−12×12 06×3 D6×6

Bf×3 0f×6 BDf×f

 , (3)

in which B is a block matrix, BD a block diagonal (3 × 3
block diagonal for F and G), D is a diagonal matrix and f
is the number of all feature states (3m). For more details
on how F and G are constructed, see [2]. Note that Bf×12∗
contains 6 zero columns and B15×12∗ contains zero entries,
but are written such for simplification of the notation.

3.2. ROVIO’s iterative update step

The difference between an EKF and IEKF is that the up-
date step is performed multiple (j) iterations until the up-
date is converged, the measurement is discarded (detected
as an outlier), or the maximum number of iterations (20 for
the original settings) is reached. ROVIO iteratively updates
the state vector for each feature candidate (i) separately.

Each iteration requires big matrix multiplications to
calculate the Jacobian, Kalman gain, update vector, and
covariance matrix of the state update. The big matrices
are sparse, however, the used MatrixXd from the Eigen li-
brary [16] in ROVIO does not perform sparse matrix mul-
tiplication efficiently.

A feature candidate is initialized using the predicted
feature location and its covariance. This is done at least
once and a maximum of 9 times (for the original settings)
per detected/tracked feature on the previous frame. Each
time the state vector is initialized as in Equation 4.

x = x+ P−
in×n

· −cTi2×n
· S−1

i · dyi, (4)

in which Pin×n
is the state covariance matrix, ci is the pixel

location of the feature inserted in a 2×n zero matrix, which
is done to get the correct size for matrix multiplication. dyi
is a 2 × 1 vector, which depends on the eigenvalues of the
Si. And Si is a 2 × 2 matrix and can be calculated with
Equation 5:

Si = −ci2×n
· P−

in×n
· −cTi2×n

. (5)

Since ci is the 2D pixel location we can save computa-
tion time. Depending on which feature is processed, we use
a certain block of those matrices. Therefore, we can modify
Equation 4 and 5 to Equation 6 and 7, respectively.

x = x+ P−
in×2

· −cTi2×2
· S−1

i · dyi, (6)

Si = −ci2×2 · P−
i2×2

· −cTi2×2
. (7)

Next, a multilevel patch is extracted (a patch of 6× 6
on two image levels) for each feature candidate. The Ja-
cobian of the feature is calculated based on the multilevel
patch gradient, adaptive light condition parameters and the
(distorted) feature pixel location.

In ROVIO the 2 × 2 Jacobian is inserted in a 2 × n
zero matrix, with n being the size of the state vector. This
is done to allow matrix multiplications with the n × n co-
variance matrix. However, this is very inefficient as many
zero multiplications are involved. Therefore, we extract the
useful information in the 2× 2 block Jacobian for calcula-
tions. This allows us to use smaller blocks for the covariance
matrix as well. The original code of ROVIO calculates the
2×2 matrix Si,j using Equation 8. We propose to calculate
Si,j as in Equation 9.

Si,j = Hi,j2×n
· P−

in×n
·HT

i,j2×n
+R, (8)

Si,j = Hi,j2×2 · P−
i2×2

·HT
i,j2×2

+R, (9)

in which P−
i2×2

= P−
i .block(21 + 3i, 21 + 3i, 2, 2) is a 2 × 2

block of the covariance matrix of the prediction step, where
i is the index of the update feature. Hi,j2×2

is the Jaco-
bian without zeros. R is the measurement noise matrix with
size 2 × 2. Note, that the computational time of our pro-
posed method is independent of the size of the state vec-
tor, whereas the original method is O(n3 + n2). Next, the
Kalman gain (of size n × 2) is calculated with the origi-
nal code as in Equation 10. We propose to modify it to
Equation 11.

Ki,j = P−
in×n

·HT
i,j2×n

·
(
Si,j2×2

)−1
, (10)

Ki,j = P−
in×2

·
(
HT

i,j2×2
·
(
Si,j2×2

)−1
)
. (11)

Since Ki, j is of size n×2 we have to use all rows of our
covariance matrix, but we only need two columns. Further-
more, we first do the 2×2 matrix multiplication as this will
save computational work. This reduces the computational
cost from O(n3 + n) to O(n).

The original code uses Equation 12 to compute the
update vector and we propose Equation 13 instead.

∆xi,j = (x−
i ⊟ x+

i,j)−

Ki,j ·
(
zi,j +Hi,j2×n

· (x−
in×1

⊟ x+
i,jn×1

)
)
, (12)

∆xi,j = (x−
i ⊟ x+

i,j)−

Ki,j ·
(
zi,j +Hi,j2×2

· (x−
i2×1

⊟ x+
i,j2×1

)
)
, (13)

4 S.A. Bahnam et al.

in which the ⊟ is the boxminus operator. The boxminus
operator takes the difference on a Lie group and maps it to
its Lie algebra, a detailed explanation can be found in [17].
The computational cost is reduced from O(n2+n) to O(n).

Furthermore, the Jacobian, Hj , and the measurement,
zj , (difference of the multilevel patches) are computed twice
per iteration in the original ROVIO code. This is modified,
such that it is only calculated once per iteration.

3.3. Fast feature selection

ROVIO detects features when the number of tracked fea-
tures drops below 80% of the maximum number of fea-
tures. It uses a FAST(9-16) feature detection on an image
pyramid (1/2 and 1/4 image size) to find new feature can-
didates. A low FAST threshold (of 5) is used, which can
detect feature candidates when there is little texture in the
image. New features are selected based on the Shi-Tomasi
score and the location of the feature candidates, features
candidates near tracked features are penalized.

However, the ROVIO’s feature selection can cause
computational peaks, which makes the filter diverge on
computationally limited devices. The reason for the com-
putational peaks is that the feature selection sometimes
is computationally too expensive and needs to run after
the filter prediction and iterative update step for frames
that track too few features. The computation time required
highly depends on the number of detected feature candi-
dates, which is very high for images with high texture. A
patch is extracted for each feature candidate to calculate
the Shi-Tomasi score, which is computationally expensive.

To reduce the computational peaks we make three
modifications. Firstly, we use the FAST score instead of
the Shi-Tomasi score. The FAST score is already calculated
in the used OpenCV implementation of the FAST feature
detector. Therefore, we do not require to extract a patch
and calculate the Hessian matrix. FAST features generally
have a lower quality than SIFT [18], SURF [19], ORB [20]
or Shi-Tomasi [11] features, but FAST features require less
computation. Therefore, the computational peaks will be
smaller when using FAST features, which is beneficial when
ROVIO runs on a computationally limited device.

Secondly, we only detect features on the 1/4 image
size to reduce the feature detection time and the number
of feature candidates. Lastly, if the FAST feature detec-
tor detects more than 250 feature candidates, we select 150
features with the highest FAST score as feature candidates.
This allows us to keep the FAST threshold low, and there-
fore detect feature candidates in low-textured images. Fur-
thermore, it makes the computational cost of the feature
selection process more consistent.

4. Results

We test the original ROVIO, sparse ROVIO and fast
ROVIO, which in sparse ROVIO uses the sparse matri-
ces of Section 3.1 and Section 3.2 and fast ROVIO uses the

sparse matrices and fast feature selection of Section 3.3.
We use the EuRoC dataset [21] and the UZH-FPV drone
racing dataset [22] for evaluation of the modifications. We
run the algorithms on an NVIDIA Jetson TX2, which has
a 2 GHz dual-core Denver 2 64-Bit CPU and a quad-core
ARM Cortex-A57. Furthermore, we show that fast ROVIO
can run on computationally limited devices, such as the
RPI Zero 2 W. The RPI Zero 2 W has a 1 GHz quad-core
64-bit Arm Cortex-A53 CPU and 512 MB RAM with a
size of 65× 30 mm and a weight of 11 g.

Furthermore, we compare our results on the RPI Zero
2 W on the EuRoC dataset with the original ROVIO on
other computational limited devices from [23]. The compu-
tationally most limited device that was able to run ROVIO
was the ODROID XU4, which has a 32-bit dual quad-core,
ARM A7 at 1.5 GHz and ARM A15 at 2.0 GHz. It has
2 GB RAM and a size of 83× 58 mm with a mass of 59 g.

We use the tool of [24] to get the RMS of the APE.
All trajectories are aligned with the ground truth, optimiz-
ing the position and yaw only, which is proposed for mono
VIOs in [24]. Except, for the comparison with [23] we use
a 7DOF alignment in order to have a fair comparison.

4.1. EuRoC

We compare the original ROVIO, sparse ROVIO and fast
ROVIO on the EuRoC dataset. We are using the original
settings from ROVIO with the only modification that we
increase the prediction noise of the velocity estimation from
4·10−6 to 4·10−5, similarly to [23]. Furthermore, to compare
the accuracy of the different ROVIOs, we ensure that each
ROVIO version initializes at the same (IMU) timestamp
and processes the same number of frames on the laptop
and NVIDIA Jetson TX2.

Original ROVIO Sparse ROVIO Fast ROVIO

20

40

60

80

100

Co
m
pu

ta
tio

n
tim

e
pe

r f
ra
m
e
[m

s]

Fig. 1. Computation time per frame on the EuRoC dataset on
an NVIDIA Jetson TX2.

Improving the Computational Efficiency of ROVIO 5

Table 1. RMS of the APE in meters after 4DOF (position-yaw) alignment with the ground truth trajectory when processing
all frames on the EuRoC dataset.

Machine Algorithm MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Laptop
Original 0.189 0.298 0.437 0.601 0.855 0.113 0.165 0.096 0.148 0.215 0.126
Sparse 0.189 0.412 0.399 0.601 0.855 0.113 0.165 0.096 0.148 0.215 0.129
Fast 0.310 0.370 0.332 0.373 4.508 0.127 0.143 0.092 0.098 0.139 0.159

NVIDIA
Jetson
TX2

Original 0.189 0.507 0.437 0.601 0.855 0.113 0.165 0.096 0.148 0.215 0.129
Sparse 0.189 0.631 0.538 0.601 0.855 0.113 0.165 0.096 0.148 0.215 0.133
Fast 0.310 0.390 0.332 0.373 5.222 0.127 0.143 0.092 0.098 0.139 0.159

Fig. 2. Original ROVIO (left) tracks a feature on frame 146 while sparse ROVIO (right) loses track of it.

In Fig. 1 the computation time on an NVIDIA Jet-
son TX2 can be found for the original, sparse and fast
ROVIO. It can be seen that the average and the maximum
computational time per frame are reduced. The original
algorithm has an average computation time per frame of
25.2 ms. Using the sparse matrix multiplications reduces
the average computation per frame to 13.9 ms. The fast
feature selection barely reduces the average computation
time (13.8 ms), the reason for this is that features are not
detected at every frame. However, it does reduce the com-
putational peaks from 71 ms to 56 ms. This is because
the computational peaks often correspond to the frames
that detect new features. And the proposed feature selector
is computationally cheaper, especially when many feature
candidates are detected.

In Table 1 the Root Mean Square (RMS) of the Ab-
solute Position Errors (APE) are shown for the original
ROVIO, sparse ROVIO and fast ROVIO on a Dell XPS
13 laptop and the NVIDIA Jetson TX2. It was expected
that the original ROVIO and sparse ROVIO would have
the exact same RMSE (RMS of the APE), but this is not
the case for MH02, MH03, and V203. Furthermore, we see
that MH02 and V203 are different for the original ROVIO
on the laptop and the NVIDIA Jetson TX2. The cause of
the difference is that a rounding (machine) error can push
a feature that is on the border of the requirements to be
seen as tracked or lost. This may result in different fea-

tures being detected and tracked, which results in a change
in accuracy.

For example in Machine Hall 03 on the NVIDIA Jet-
son TX2, the difference between the original and sparse
ROVIO is due to a feature that is tracked for the original
ROVIO at frame 146 and the same feature is lost in the
sparse version, see Fig. 2. Consequently, the rest of the se-
quence sparse ROVIO will track different features than the
original ROVIO. Therefore, they have a different RMSE.
Something similar happens in MH02 and V203. The differ-
ence on MH02 and MH03 is bigger than V203 because the
lost feature happens earlier in the sequence.

To verify that the sparse matrix multiplication is done
correctly, we use the Frobenius norm of the matrices for a
fuzzy comparison (Eigen::isApprox) as in Equation 14.

||V −W ||F ≤ p ·min(||V ||F , ||W ||F) (14)

in which V is the matrix calculated using the proposed
equations, W is the result using the original matrix multi-
plication from ROVIO. We set p to 10−12 because this is the
default value for a fuzzy comparison with double precision
matrices in the Eigen Library [16]. We do this test for all
proposed modifications separately. All modified equations
pass the test, except the update vector calculation from
Equation 13. In all sequences, it returns false 0.1% of the
time or less. We see that in all cases the norm of the update

6 S.A. Bahnam et al.

vector is smaller than 10−4. The reason for this is that the
fuzzy comparison becomes more strict and gets sensitive
to rounding errors when the update vector is small. When
changing p to 10−10 it passes the test for Equation 13 on all
sequences. This shows that the differences are very small.

When comparing fast ROVIO with original ROVIO
and sparse ROVO we see a very similar RMSE in Table 1,
except for Machine Hall 05. Fast ROVIO gets a way higher
error in the trajectory estimation, which is due to a sin-
gle feature that is tracked incorrectly at the beginning of
the sequence. Between frame 319 and frame 414 when the
drone is not moving, it falsely observes feature 403 as com-
ing closer to the camera. Even though all the other features
are tracked correctly (to be not moving), the VIO heavily
drifts in this case. This is because it cannot estimate depth
from a non-moving sequence of images. Therefore, ROVIO
estimates that the camera is moving towards feature 403
and the distance of all features to be really far away except
for feature 403, see Fig. 3 and 4. From a mathematical per-
spective, this is a correct prediction because features at an
infinite distance do not have an optical flow for translation.
In Fig. 5 it can be seen that the depth of most features is
recovered after taking off, because of the optical flow infor-
mation. The remaining path of sequence MH05 with fast
ROVIO is estimated correctly, which can be seen in Fig. 6
where we align the trajectory with a 6DOF Umeyama [25]
alignment (purely for visualization purposes).

The reason why this only happens for fast ROVIO is
that the feature selection of fast ROVIO is mainly based
on the FAST score. The FAST score is based on the differ-
ence between the center pixel and the 16 pixels on a circle
(of radius 3). Whereas, the Shi-Tomasi score is based on
the gradient of the image patch. Feature 403 has a low im-
age gradient, therefore a low Shi-Tomasi score. However,
it has a brightness contrast in the center of the patch and
therefore it has a relatively high FAST score.

Fig. 3. Features in camera view (right-bottom) and camera
frame and features with depth in the world frame of fast ROVIO
on Machine Hall 05 frame 319 (laptop).

Fig. 4. Feature 403 is falsely observed as moving closer to the
camera, which results in the VIO drifting and incorrectly esti-
mating the depth of the features on Machine Hall 05 frame 414.

Fig. 5. ROVIO recovers depth estimation of features when the
drone/camera starts moving on Machine Hall 05 frame 449.

Fig. 6. The estimated trajectory of fast ROVIO on MH05 on
the laptop after 6DOF Umeyama alignment shows that the tra-
jectory is initially drifting, but after the camera starts moving it
can correctly estimate the trajectory. Using the tool from [26].

Improving the Computational Efficiency of ROVIO 7

Table 2. Average RMS of the APE in meters / successful runs out 5 runs on the RPI running real-time with a 4DOF post-process
trajectory alignment.

Algorithm MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Original-25 X/0 X/0 0.31/3 0.93/1 0.65/3 0.16/3 0.17/5 0.14/5 0.18/4 0.43/1 0.47/4
Sparse-25 X/0 X/0 0.58/3 1.16/2 1.19/3 0.15/5 0.18/4 0.20/5 X/0 0.39/2 0.22/5
Fast-25 X/0 0.38/3 0.32/5 0.49/4 0.64/4 0.14/4 0.11/5 0.13/5 0.10/5 0.14/5 0.15/5

Original-15 X/0 X/0 0.42/5 0.80/1 0.86/4 0.14/5 0.14/5 X 0.18/5 0.28/5 0.17/2
Sparse-15 0.37/1 X/0 0.46/5 1.1/4 1.41/5 0.19/5 0.20/5 0.29/1 X/0 0.82/3 0.29/5
Fast-15 0.33/5 0.40/5 0.37/5 0.50/5 1.46/5 0.14/3 0.17/5 0.17/5 0.17/5 0.15/5 0.20/5

Table 3. Average processed frames of the successful runs on the RPI Zero 2 W running real-time.

Algorithm MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Original-25 X X 751 589 717 1095 459 664 795 635 696
Sparse-25 X X 1568 1086 1355 1970 1038 1422 X 1388 1387
Fast-25 X 2084 1896 1446 1529 2138 1217 1521 1589 1608 1481

Original-15 X X 1735 1380 1434 2333 1228 X 1601 1526 1478
Sparse-15 3041 X 2265 1698 1872 2677 1523 1989 X 1954 1739
Fast-15 3461 2813 2650 1939 2106 2847 1663 2101 2162 2181 1813

Total frames 3682 3040 2700 2033 2273 2912 1710 2149 2280 2348 1922

Table 4. RMS of the APE in meters with a 7DOF post-process trajectory alignment of ROVIO on computational
limited devices.

Device MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203

Intel NUC 0.21 0.25 0.25 0.49 0.52 0.10 0.10 0.14 0.12 0.14 0.14
UP Board X X X X X X X X X X X
ODROID-10 0.36 0.23 0.58 0.81 0.78 0.15 0.24 0.20 0.15 0.17 0.23

RPI-15-fast 0.30/5 0.23/5 0.35/5 0.44/5 1.18/5 0.14/3 0.17/5 0.16/5 0.13/5 0.15/5 0.19/5

4.2. Raspberry Pi Zero 2 W

We run a 32-bit Raspbian Buster on the RPI Zero 2 W.
Next to the limited computational resources, the RPI Zero
2 W has a limited RAM of 512 MB. When running ROVIO
and the EuRoC ROSbag with the original settings (25 fea-
tures) it almost uses the total available RAM. Furthermore,
running the original ROVIO on the RPI Zero 2 W results
in the images being stored in the camera buffer, since it
is too slow to process all frames in real-time. The increas-
ing number of images stored in the camera buffer results
in that they are saved in the SWAP memory. Therefore,
we modify the camera buffer to a maximum of 1 frame,
which means that the oldest frame is dropped when the
algorithm is too slow to process two consecutive frames at

the camera frame rate. Next to limiting memory usage, it
also reduces the delay between the VIO and the real system
(since older frames are discarded). To compile ROVIO we
add 4 GB of SWAP memory. However, during runtime, we
disable SWAP memory to prevent any memory from be-
ing stored as SWAP. Without changing the camera buffer
and enforcing to use of RAM, the original ROVIO always
diverges.

The computation time of ROVIO on the RPI Zero 2
W is bigger than the camera frame rate, which leads to
frames being discarded. For each run the computation time
(slightly) varies, therefore different frames are discarded
when running the same sequence multiple times. For this
reason, we run all sequences 5 times for each version of
ROVIO. Furthermore, we test ROVIO with 25 (original
value) features and 15 features.

In Table 2 we show the average RMS of the APE of
all successful runs and the number of successful runs per

8 S.A. Bahnam et al.

sequence. The average number of frames processed per se-
quence can be found in Table 3. We excluded runs where
the filter has diverged, because if the filter diverges it starts
to detect new features at each frame and stops tracking fea-
tures (since the IMU prediction step estimates the features
to be out of the image). We see that the original ROVIO can
estimate the trajectory 30 out of 55 runs without diverg-
ing while processing only 25 − 35% of the frames. Sparse
ROVIO processes almost twice as many frames, which is
expected since we saw a computational efficiency gain of
40% on the NVIDIA Jetson TX2. However, it had 29 suc-
cessful runs out of 55, which is 1 less than the original
ROVIO. Fast ROVIO had a similar average computational
cost as sparse ROVIO on the NVIDIA Jetson TX2, but
on the RPI Zero 2 W fast ROVIO process 10− 30% more
frames than sparse ROVIO. This is because it reduces the
computational peaks, and frames are mainly discarded at
the computational peaks of the algorithm. The additional
processed frames allow the algorithm to successfully run
ROVIO 45 out of 55 times. If we compare fast ROVIO on
the RPI Zero 2 W with the laptop and TX2 on Machine
Hall 5, we see that fast ROVIO on the RPI Zero 2 W does
not drift. This is because the RPI Zero 2 W did not detect
the bad feature from Fig. 3 and 4, because of the discarded
frames.

When reducing the number of features from 25 to 15 we
see that more frames are processed. For the original ROVIO
we see that it processes more than double the frames, how-
ever, it only slightly improves from 30 to 32 successful
runs. Similarly, we also see that sparse ROVIO slightly im-
proves from 29 to 34 successful runs. Interestingly, we see
that sparse-15 ROVIO processes more frames than fast-
25 ROVIO and yet it fails more often. This indicates that
computational peaks, when new features are added, are im-
portant to minimize to have a stable ROVIO filter. The
reason for this might be that when new features are added,
the depth of the features are unknown, which makes it hard
to track when too many frames are discarded. For sparse-15
ROVIO we see that it processes almost all frames and the
successful runs increase from 45 to 53. The average RMSE
on Machine Hall 5 for fast ROVIO is increased from 0.64
to 1.46. This is because in 1 out of 5 runs, it detected the
bad feature and started to drift at the beginning of the
sequence, similarly as on the laptop and TX2 (when pro-
cessing all frames). It can be seen that 2 out of 5 times
fast-15 ROVIO diverges on V101. We observed that in the
second processed frame (the first frame that tracks detected
features) the features are tracked incorrectly. This causes
the attitude to be wrongly estimated. Therefore, there is an
offset between the estimated gravity vector and the mea-
sured gravity vector in the accelerometers. This causes the
filter to estimate a movement (while the drone is not mov-
ing yet). New features cannot be tracked due to the wrong
estimation of the prediction step and already tracked fea-
tures are falsely estimated to be far away. For 3 out of 5
runs, the first frame was discarded, which prevented the
filter from diverging.

In Table 4 we compare fast-15 ROVIO on the RPI Zero

2 W with the original ROVIO on other computationally
limited devices. The RMSE of the trajectories for the In-
tel NUC, UP Board and ODROID XU4 is taken from [23].
In [23] the trajectories are aligned with the ground truth us-
ing a 7DOF alignment [25]. In order to compare the results
fairly, we also use a 7DOF alignment for fast-15 ROVIO on
the RPI Zero 2 W in Table 4. Original ROVIO on the Intel
NUC is the most accurate because it is computationally
powerful enough to process ROVIO. Furthermore, we see
that original ROVIO does not run with 25 features on the
UP board and ODROID XU4. For the ODROID XU4 it was
possible to run ROVIO with 10 features, but not on the UP
Board [23]. Our modified fast ROVIO can successfully run
on the EuRoC dataset 53 out of 55 times using 15 features.
Even though the RPI Zero 2 W is computationally more
restricted, it has a comparable or better accuracy than orig-
inal ROVIO on the ODROID XU4 with 10 features, except
for MH05 where fast-ROVIO diverges (1 out of 5 times) in
the beginning of the sequence (see Fig. 6).

4.3. UZH-FPV drone racing dataset

We also run the original, sparse and fast ROVIO on the
UZH-FPV drone racing dataset [22]. We are using se-
quences 03, 05, 06, 07, 09 and 10 of the forward-facing
camera indoor, because those sequences contain the ground
truth of the trajectory. We do the evaluation on the
NVIDIA Jetson TX2 and Raspberry Pi Zero 2 W. On the
NVIDIA Jetson TX2, we use 25 features (original setting)
and for the RPI Zero 2 W, we use 15 features. We reduce
the camera state buffer to 1 and run each sequence 5 times
and take the average of the successful runs. All other pa-
rameters are set to the original settings (prediction noise
of the velocity estimation: 4 · 10−6, whereas in Section 4.1
and 4.2 we have used 4 · 10−5).

In Table 5 the average RMS of the APE of the success-
ful runs on the UZH-FPV drone racing dataset is shown
with the number of successful runs out of 5 tries per se-
quence. Furthermore, we show the average processed frames
in Table 6, again we have excluded runs where the filter
has diverged. We can see that on the NVIDIA Jetson TX2
sparse ROVIO is slightly more accurate than the original
and fast ROVIO. This is because sparse ROVIO processes
more frames than the original ROVIO, since it is compu-
tationally more efficient. Sparse ROVIO already processes
almost all frames. Therefore, the main difference between
fast ROVIO and sparse ROVIO on the TX2 is that sparse
ROVIO selects new features to track more carefully. Fur-
thermore, we can see that fast ROVIO failed twice on se-
quence 09, whereas original and sparse ROVIO have not
failed on this sequence.

However, on the RPI Zero 2 W, we see that fast
ROVIO performs better than the original and sparse
ROVIO in terms of successful runs. Original ROVIO has
diverged 14 times out of the 30 runs, sparse ROVIO has di-
verged 12 times and fast ROVIO (on the RPI Zero 2 W) did
not fail a single time. The reason for original ROVIO and

Improving the Computational Efficiency of ROVIO 9

Table 5. Average RMS of the APE in meters / successful runs out 5 runs on the
UZH-FPV drone racing dataset with a 4DOF post-process trajectory alignment.

Machine Algorithm 03 05 06 07 09 10

NVIDIA
Jetson
TX2

Original-25 0.96/5 0.67/5 0.53/5 1.01/5 0.40/5 0.49/5
Sparse-25 0.86/5 0.59/5 0.47/5 0.86/5 0.41/5 0.58/5
Fast-25 0.89/5 0.60/5 0.60/5 0.94/5 0.67/3 0.55/5

RPI
Zero
2W

Original-15 X/0 0.53/5 3.03/2 X/0 0.78/4 0.75/5
Sparse-15 X/0 0.66/5 2.36/2 1.23/1 0.61/5 0.62/5
Fast-15 1.39/5 0.67/5 1.00/5 1.04/5 0.54/5 0.69/5

Table 6. Average processed frames of the successful runs on the UZH-FPV
drone racing dataset.

Machine Algorithm 03 05 06 07 09 10

NVIDIA
Jetson
TX2

Original-25 2165 4080 1617 2864 2050 2083
Sparse-25 2432 4157 1943 3163 2065 2123
Fast-25 2510 4159 1967 3173 2062 2123

RPI
Zero
2 W

Original-15 X 1796 692 X 941 871
Sparse-15 X 2950 1090 1751 1467 1447
Fast-15 1995 3678 1490 2518 1870 1946

Total frames 2552 4162 1970 3177 2068 2127

sparse ROVIO diverging that often is that many frames are
discarded, which makes it very hard to track when flying at
a high speed. Fast ROVIO has processed around 30− 40%
more frames than sparse ROVIO. The difference is bigger
on the UZH-FPV dataset than on EuRoC (10 − 30%) be-
cause the drone is flying at higher velocities in the UZH-
FPV dataset. Therefore, features have a higher optical flow,
which makes them move faster out of the image and harder
to track. Thus, new features need to be detected more often
on the UZH-FPV dataset.

5. Conclusion

We have made ROVIO computationally more efficient with
sparse ROVIO, mainly by exploiting the sparse matrices.
The accuracy is similar to the original ROVIO but requires
40% less computation time on an NVIDIA Jetson TX2. The
computational gain depends on the number of features used
because the computational cost of the modified ROVIO is
less dependent on the size of the state vector compared to
the original ROVIO.

Furthermore, we have reduced the computational
peaks of ROVIO by using the FAST score instead of the
more expensive Shi-Tomasi score, which we called fast
ROVIO. This allowed us to run a stable ROVIO with 15 fea-
tures on an RPI Zero 2 W. This comes with a cost that the
selected features to track are slightly lower quality features.
We saw that this is mainly an issue when the camera is not

moving since the depth of the features cannot be observed.
Therefore, ROVIO is not able to detect the falsely tracked
feature as an outlier. For this reason, we recommend using
sparse ROVIO on devices that are computationally power-
ful enough to process the frames at a sufficient frame rate.
However, on computationally limited devices, fast ROVIO
makes a big difference in terms of the stability of the filter
because ROVIO often diverges when too many consecutive
frames are discarded.

Appendix A Code

Two branches for sparse ROVIO and fast ROVIO are
available on: https://github.com/tudelft/rovio2

References

[1] K. Sun, K. Mohta, B. Pfrommer, M. Watterson,
S. Liu, Y. Mulgaonkar, C. Taylor and V. Kumar, Ro-
bust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight, IEEE Robotics and Automation Let-
ters 3 (April 2018) 965–972.

[2] M. Bloesch, M. Burri, S. Omari, M. Hutter and
R. Siegwart, Iterated extended Kalman filter based
visual-inertial odometry using direct photometric
feedback, The International Journal of Robotics Re-
search 36 (September 2017) 1053–1072.

[3] A. Mourikis and S. Roumeliotis, A multi-state con-
straint Kalman filter for vision-aided inertial naviga-

10 S.A. Bahnam et al.

tion, 2007 IEEE International Conference on Robotics
and Automation, ICRA’07 , Proceedings - IEEE In-
ternational Conference on Robotics and Automation,
(IEEE, Rome, Italy, November 2007), pp. 3565–3572.

[4] T. Qin, P. Li and S. Shen, VINS-Mono: A Robust
and Versatile Monocular Visual-Inertial State Estima-
tor, IEEE Transactions on Robotics 34 (August 2018)
1004–1020.

[5] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart and
P. Furgale, Keyframe-Based Visual-Inertial Odome-
try Using Nonlinear Optimization, The International
Journal of Robotics Research 34 (February 2014) 314–
334.

[6] G. Huang, Visual-Inertial Navigation: A Concise Re-
view, 2019 International Conference on Robotics and
Automation (ICRA), (IEEE, Montreal, QC, Canada,
May 2019), pp. 9572–9582.

[7] M. Dharmadhikari, H. Nguyen, F. Mascarich,
N. Khedekar and K. Alexis, Autonomous Cave Ex-
ploration using Aerial Robots, 2021 International
Conference on Unmanned Aircraft Systems (ICUAS),
Athens, Greece (July 2021), pp. 942–949.

[8] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski,
M. Gehrig, M. Muglikar and D. Scaramuzza, AlphaPi-
lot: autonomous drone racing, Autonomous Robots 46
(January 2022) 307–320.

[9] G. Brunner, B. Szebedy, S. Tanner and R. Watten-
hofer, The Urban Last Mile Problem: Autonomous
Drone Delivery to Your Balcony, 2019 International
Conference on Unmanned Aircraft Systems (ICUAS),
Atlanta, GA, USA (August 2019), pp. 1005–1012.

[10] C. Forster, Z. Zhang, M. Gassner, M. Werlberger and
D. Scaramuzza, SVO: Semidirect Visual Odometry for
Monocular and Multicamera Systems, IEEE Transac-
tions on Robotics 33 (April 2017) 249–265.

[11] J. Shi and Tomasi, Good features to track, 1994 Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition, (IEEE, Seattle, WA, USA, June
1994), pp. 593–600.

[12] Q. Lu, J. Xu, L. Hu and M. Shi, Parallel VINS-Mono
algorithm based on GPUs in embedded devices, Inter-
national Journal of Advanced Robotic Systems 19(1)
(2022) p. 17298814221074534.

[13] B. Nagy, P. Foehn and D. Scaramuzza, Faster than
FAST: GPU-accelerated frontend for high-speed VIO,
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE (2020), pp.
4361–4368.

[14] H. Liu, M. Chen, G. Zhang, H. Bao and Y. Bao, ICE-
BA: Incremental, Consistent and Efficient Bundle Ad-
justment for Visual-Inertial SLAM, 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-

tion, (2018), pp. 1974–1982.
[15] E. J. Shamwell, K. Lindgren, S. Leung and W. D.

Nothwang, Unsupervised Deep Visual-Inertial Odom-
etry with Online Error Correction for RGB-D Imagery,
IEEE Transactions on Pattern Analysis and Machine
Intelligence 42(10) (2020) 2478–2493.

[16] G. Guennebaud, B. Jacob and others, Eigen v3
http://eigen.tuxfamily.org, (2010).

[17] J. Solà, J. Deray and D. Atchuthan, A micro Lie the-
ory for state estimation in robotics (2018).

[18] D. G. Lowe, Distinctive Image Features from Scale-
Invariant Keypoints, International Journal of Com-
puter Vision 60 (2004) 91–110.

[19] H. Bay, T. Tuytelaars and L. Van Gool, SURF:
Speeded Up Robust Features, Computer Vision –
ECCV 2006 , eds. A. Leonardis, H. Bischof and A. Pinz
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2006),
pp. 404–417.

[20] E. Rublee, V. Rabaud, K. Konolige and G. Brad-
ski, ORB: An efficient alternative to SIFT or SURF,
2011 International Conference on Computer Vision,
(2011), pp. 2564–2571.

[21] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder,
S. Omari, M. Achtelik and R. Siegwart, The EuRoC
micro aerial vehicle datasets, The International Jour-
nal of Robotics Research 35 (September 2016) 1157–
1163.

[22] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler
and D. Scaramuzza, Are We Ready for Autonomous
Drone Racing? The UZH-FPV Drone Racing Dataset,
2019 International Conference on Robotics and Au-
tomation (ICRA), (IEEE, Montreal, QC, Canada, Au-
gust 2019), pp. 6713–6719.

[23] J. Delmerico and D. Scaramuzza, A Benchmark Com-
parison of Monocular Visual-Inertial Odometry Algo-
rithms for Flying Robots, 2018 IEEE International
Conference on Robotics and Automation (ICRA),
(IEEE, Brisbane, QLD, Australia, May 2018), pp.
2502–2509.

[24] Z. Zhang and D. Scaramuzza, A Tutorial on Quan-
titative Trajectory Evaluation for Visual(-Inertial)
Odometry, IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), (IEEE, Madrid, Spain, October 2018), pp.
7244–7251.

[25] S. Umeyama, Least-squares estimation of transforma-
tion parameters between two point patterns, IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence 13(4) (1991) 376–380.

[26] M. Grupp, evo: Python package for the evalua-
tion of odometry and SLAM https://github.com/
MichaelGrupp/evo, (2017).

