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"A baby learns to crawl, walk and then run. We are in the crawling stage when it comes
to applying machine learning."

Dave Waters
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Abstract

Waterschap Brabantse Delta (WBD) has the intention to implement measures that enhance the baseflow. Baseflow consists of
the groundwater flow and a small part of the interflow. During dry periods, streams are dependent on the baseflow. Enhancing
the baseflow has a proper effect on the ecologically relevant quality of waters, and is therefore wanted for WBD according to
the regulations of the Water Framework Directive.5

It is needed to quantitatively examine these measures that have been implemented in subcatchments of WBD. Therefore,
sufficient data of good quality is needed. Especially, the stream discharge itself is important to collect. However, stream
discharges are scarce datasets: it can not be measured directly, but needs to be derived from other parameters. In-situ devices
(for example acoustic Doppler velocimeters and acoustic Doppler current profilers) measuring water depth and velocity, can
be used to derive the stream discharge by applying the area-velocity method. However, these devices are expensive, time-10

consuming, and in-situ measurements are needed.
Therefore, other methods/models for obtaining stream discharge have been derived. These can be divided into two cate-

gories: physically based models and empirical methods or data-driven models. An example of a physically based model are
conceptual rainfall-runoff models making use of the physical understanding behind the hydrological system. These rainfall-
runoff models require subcatchment characteristics, which are hard to determine and hence often model calibration is applied.15

Therefore, also empirical methods have been used to derive the stream discharge. A well-known example is the rating-curve,
making use of Q,h-relations. This method has as a downside that Q,h-relations are dependent on hydraulic parameters of the
sides of the streams. These parameters are hard to determine, variable over time and time consuming to measure. Therefore, for
this research the question arises if there is another data-driven model that can find a link between stream discharge and another
variable within the subcatchment, which is not difficult to determine or obtain.20

Data-driven models in the form of machine learning have been applied before for stream discharge prediction. In these
models the stream discharge is predicted based on historical stream discharge data. These models can only be used on the
short-term and are therefore not wanted for this research.

Groundwater heads are mostly not scarce datasets and it is expected that these groundwater heads play a large role within25

the production of the baseflow. Moreover, large historical datasets exist of groundwater heads. In this research, it is examined
if the stream discharge can be simulated based on groundwater head time series by using machine learning algorithms. Four
different machine learning algorithms are used: decision tree regression (DTR), random forest regression (RFR), gradient
boosting regression (GBR) and support vector regression (SVR). The models are applied to the subcatchment Chaamse
Beken, for which it is wanted to simulate stream discharge between 2003-2019 (flow measuring weir has been removed in30

2003), and possibly in the future. The training set of these models is set from 1985-1999, whereas the test set is from 1999-
2003. Moreover, different input variables and combinations of these variables are chosen for the models: shallow wells (screen-
1 wells), deeper wells (screen-2 wells), precipitation and potential evaporation. The model performance is evaluated with the
metrics Nash-Sutcliffe Efficiency (NSE), mean absolute error (MAE), fourth root mean quadrupled error (R4MS4E) and mean
squared logarithmic error (MSLE). The first two are considered for overall model performance, whereas the latter two are for35

high flow and low flow model performance.
The results of the machine learning models show that using one screen-1 well (with the highest correlation with other

screen-1 wells in Chaamse Beken) did not succeed in simulating the stream discharge, for all four algorithms. Using all
selected screen-1 wells results in reasonable values for simulating the stream discharge (NSE of 0.69-0.70), except for
algorithm DTR (NSE of 0.42). Deeper wells (screen-2 wells) do not improve the relation between groundwater heads and40

stream discharge. Furthermore, adding variables precipitation and potential evaporation to the groundwater heads of screen-1
wells improve the overall model performance for SVR. Also, for the machine learning algorithm SVR the low flow model
performance seems to be promising. A NSE of 0.75 and a MSLE of 0.017 ln2(m3/sec) can be reached for the SVR model by
using groundwater heads of screen-1 wells, potential evaporation and precipitation as inputs. However, adding precipitation
did not result in a better simulation of the peak flows (R4MS4E of 0.60 m3/sec).45

In order to examine if this machine learning model can be used in the future for stream discharge simulation, the SVR model
is compared with an existing conceptual hydrological model: GR4J. The GR4J model is used as a baseline model in this
research, as it can simulate reasonable stream discharge values by only using precipitation and potential evaporation as inputs.
For the GR4J model the training set is set as calibration period and the test set as validation period. The model is calibrated50

with the objective function MAE. The GR4J model has a NSE value of 0.80 and a MSLE value of 0.0084 ln2(m3/sec) and can
be rated as good. It has a larger NSE value than the SVR model and performs better than the SVR machine learning model.

It is important to stress that for the GR4J model the memory (or state) of the system is included. In other words, based
on the previous day the water quantity in the the water reservoirs of the GR4J model is updated for the next day. This
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inclusion of the memory of the system is not the case for the machine learning algorithms. Also, by manually adding the
memory of the system, the machine learning algorithms did not or barely improve. Furthermore, an important difference
is the fact that groundwater heads play a significant role in the simulation of the stream discharge by using machine
learning algorithms. These groundwater heads are not directly used in the GR4J model. Lastly, it is stressed that for building
the GR4J model physical understanding of the hydrological system is needed, whereas for machine learning this is not the case. 5

For further research it is recommended to first divide the discharge time series into a baseflow time series and peakflow time
series (for example by using hydrograph separation). Separate machine learning algorithms can be applied for the peakflow,
and for the baseflow. This may lead to better results for the baseflow, and for the peakflow itself, whereafter they can be
combined to full discharge time series. Another recommendation for future research is to use a logarithmic transformation of 10

the stream discharge, to make the relation between stream discharge and groundwater heads more linear and less skewed. In
addition, also groundwater heads of wells outside the Chaamse Beken can be used as inputs for the machine learning models.
In this research, only wells within the Chaamse Beken were used. Lastly, in this research, significant time was spent to validate
the groundwater head time series (by using Pastas Time Series Analysis). However, the discharge time series is only checked
on correlations with other discharge time series in the surroundings. In future research, other techniques for validating stream 15

discharges need to be developed and applied.

Overall, it can be concluded that GR4J is favoured above the machine learning model SVR. However, machine learning
techniques (especially SVR) show promising results for the future in simulating stream discharge by using groundwater heads
and without taking the state of the hydrological system into account. 20
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1 Introduction

Waterschap Brabantse Delta (WBD) has the obligation to im-
plement the Water Framework Directive (WFD) as have all
the other water authorities in Europe. According to the WFD,
in 2027 all designated waters in Europe must have a good5

chemically and ecologically relevant quality (Ligtvoet et al.,
2008). Therefore, Waterschap Brabantse Delta has assigned
25 WFD subcatchments to better define the status of each
single subcatchment (Waajen et al., 2018). Some of these
subcatchments have been suffering from severe droughts in10

recent periods (WBD, 2018). As a result, the discharge of
the main streams within these subcatchments is decreasing
and parts of the streams are ending up dry (Vink, 2019). Tak-
ing climate change into account, the dry periods may even
increase with adverse consequences for the streams in the15

WFD subcatchments such as the ecological quality of these
streams. In general, discharges in streams can be classified
into three components: overland flow produced by water that
does not infiltrate into the soil and travels quickly to the
stream, interflow consisting of water that infiltrates into the20

soil and travels laterally downslope through upper soil lay-
ers, and groundwater flow that infiltrates and travels through
the aquifer (Bosch et al., 2017). Interflow moves more slowly
than overland flow but typically more rapidly than groundwa-
ter. Interflow can be further distinguished in a quickflow por-25

tion and a portion moving slowly through the subsoil. During
dry periods, discharges in streams consist of the slow portion
of interflow and groundwater flow as overland flow due to
precipitation is absent. In hydrological terms, the slow por-
tion of the interflow together with the groundwater flow is of-30

ten named baseflow (Bosch et al., 2017). The baseflow is de-
pendent on the groundwater reservoir which is being replen-
ished by infiltration of precipitation (Zhang and Schilling,
2006). Enhancing the base flow of streams in the WFD sub-
catchments is expected to lead to a better ecological quality35

of these streams. Therefore, Waterschap Brabantse Delta has
the intention to implement measures that enhance the base
flow. Choosing the right measures requires a proper under-
standing of the water-groundwater relations and sufficient
data of good quality.40

1.1 Problem Statement

Sufficient data of good quality within a subcatchment is still
an issue for small streams in WBD and among other places.
Stream discharges in particular are scarce datasets. This is
due to the fact that stream discharge itself can not be mea-45

sured directly, but needs to be derived from other parame-
ters, such as the cross-sectional area and velocity (Luxem-
burg and Coenders, 2017). Since both the velocity and wa-
ter depth vary over a cross section, it is difficult to derive
the discharge from one cross section over a stream directly.50

Therefore, a common method to derive discharge of the to-
tal stream is the area-velocity method by using current me-

ters, which is time-consuming. Other discharge measurement
devices making use of this method are acoustic Doppler ve-
locimeters and acoustic Doppler current profilers. Deriving 55

the discharge with these devices is less time consuming, but
expensive. Furthermore, these devices can only be used at
specific locations (Muste et al., 2007). Moreover, there is
no single measurement device that can continuously mea-
sure discharge directly. It can be concluded that measuring 60

stream discharge accurately, efficiently and cheaply is still an
unsolved problem. Without being able to measure the stream
discharge in a stream of a single subcatchment, it is impossi-
ble to examine the hydrological impacts of the - ecology im-
proving - measures being taken in that same subcatchment. 65

These hydrological impacts can only be examined by physi-
cally looking at the stream itself. It will be more sophisticated
to quantitatively examine these measures. In other words, the
stream discharge itself needs to be known.

1.2 Literature background and knowledge gaps 70

A well known method in literature to more efficiently ob-
tain the stream discharge data is by applying conceptual hy-
drological models, or more simply known as rainfall-runoff
models (Sitterson et al., 2017). Conceptual models are phys-
ically based models and they interpret runoff processes by 75

connecting simplified components in the overall hydrologi-
cal process, while making use of the water balance equation.
In these models the discharge is derived from the inputs pre-
cipitation, potential evaporation and subcatchment character-
istics such as slopes and land cover (Sitterson et al., 2017). 80

These models have a downside that these subcatchment char-
acteristics are hard to determine.

In addition to the physically based models, literature
shows that there are some empirical methods or data-
driven models (DDM’s) to obtain stream discharge data 85

(Solomatine and Ostfeld, 2008). An example is using ma-
chine learning algorithms as DDM’s for predicting the stream
discharge a number of days ahead (Adnan et al., 2019). How-
ever, within this research the stream discharge of the previous
days is used as an input parameter. These models can be used 90

for obtaining stream discharge data on the short-term.
Another example of an empirical method is obtaining

stream discharge (Q) from water stages (H) (Luxemburg and
Coenders, 2017). Stages can be measured directly in streams
and can be measured continuously, whereas discharge can 95

not be measured directly and continuously. Relating stream
stages to stream discharge can therefore be a solution to
obtain continuous stream discharge data. An example of a
Q,H-relation is the rating curve. Each side of a stream has
a specific Q,H-relation dependent on different hydraulic pa- 100

rameters among other bottom slope, bottom width and bed
roughness. Since these parameters are hard and time consum-
ing to determine for each specific stream and vary along a
stream, the rating curve method is still not an ideal method to
gather stream discharge data. Again as a downside, it is hard 105
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to determine these subcatchment characteristics. It would be
more beneficial to find a link between stream discharge (Q)
and another variable within the hydrological subcatchment
which is not difficult to determine or to obtain.

1.3 Strategy within this research5

Since it is known that stream discharge also largely relates
on the base flow and hence the corresponding groundwa-
ter reservoir, the main focus within this research is on re-
lating groundwater heads (h) from different wells to stream
discharge (Q) in the same subcatchment. Groundwater head10

datasets are being measured in monitoring wells (see Ap-
pendix A) and are in contrast to discharge data and subcatch-
ments characteristics not scarce at all. However, the quality
of these datasets can be poor and needs to be validated before
a possible relation with stream discharge can be found. After15

having validated the groundwater head datasets, the relation
between these groundwater heads and stream discharge is be-
ing approached from a data-driven point of view (without
using the physical processes of hydrology (Solomatine and
Ostfeld, 2008)), in contrast to the already known conceptual20

hydrological models found in literature. Different machine
learning algorithms are applied as data-driven models.

Since there is a certain scepticism about DDM among
many hydrologists and water resources specialists (because
of the fact that the physical understanding of the hydrologi-25

cal system does not play a role within DDM’s) (Solomatine
and Ostfeld, 2008), the outcomes of the machine learning al-
gorithms are compared with a traditional conceptual hydro-
logical model. Note that the DDM’s and the calibrated con-
ceptual model will be specific for each single subcatchment30

and can not be used for other subcatchments, whereas the
research method proposed here is applicable for each single
subcatchment in general.

The focus area of this research (or strategy) is visualised
in a cross-section of a single subcatchment in Figure 1.35

Figure 1. The strategy within this research by obtaining the stream
discharge Q from the groundwater heads h

1.4 Research Questions

In this research three main research questions are examined.
The first research question focuses on the relation between
groundwater heads (h) and stream discharge (Q) within a sin-

gle subcatchment, by using DDM’s. Multiple machine learn- 40

ing algorithms are used for these DDM’s. Furthermore, dif-
ferent input variables sets are used for these models, such as
shallow wells (screen-1 wells), deeper wells (screen-2 wells),
precipitation and potential evaporation. This is done to exam-
ine which input variables give the best DDM output. In re- 45

search question two, the DDM with the best output (depend-
ing on the machine learning algorithm and the input vari-
ables) is chosen.

This chosen DDM is compared to an already existing
rainfall-runoff model in the third research question, which 50

is as mentioned before a physical model. This model is used
as a baseline to compare with the outputs of the best DDM.
The research questions are elaborated below:

1. Can we analyze if there is/are (a) relation(s) between
groundwater heads (X) and stream discharge (Y) in the 55

same subcatchment by using machine learning algo-
rithms, such that we can simulate the stream discharge
time series from these groundwater heads in the future,
or to fill in gaps in the historical stream discharge time
series? In formula form with n+1 the number of wells: 60

Y (
−→
X ) = F (X0,X1, .....Xn)? (1)

(a) Is it possible to find this relation when only using
one screen-1 well? Or do we need all screen-1 wells
within the subcatchment in order to find the relation 65

with the stream discharge?

(b) Can the relation be found with only screen-1 wells,
or are screen-1 and screen-2 wells needed to find an
accurate relation with the stream discharge?

(c) Is it necessary to add other hydrological variables 70

such as precipitation (P ) & potential evaporation
(Ep), in order to find a relation with the stream dis-
charge?

(d) Is it necessary to introduce memory (M ) and delays
(∆t) to the screen-1 wells, precipitation and poten- 75

tial evaporation variables, in order to find a relation
with the stream discharge?

2. Which DDM is the most suitable for finding a relation
with the stream discharge?

3. Does the best performing DDM perform as well or bet- 80

ter than a conceptual hydrological model?

1.5 Outline

In the next chapter "Materials", first of all the chosen sub-
catchment is described in section 2.1, including the selection
criteria for a subcatchment for this research. In the second 85

section, the data collection and validation of the stream dis-
charge series is elaborated, followed by the same procedure
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for the groundwater head time series in section 2.3. In ad-
dition, a data analysis is performed for the different ground-
water head time series. In this subsection, the data is being
described for the DDM’s.

The first part of chapter three "Methods", focuses on ma-5

chine learning: what is machine learning, the principle of
machine learning within this research (including different as-
sessments to tackle the research questions), which machine
learning algorithms are chosen (based on literature) and a
thoroughly explanation of how these algorithms work. The10

second part focuses on the conceptual hydrological model:
decision of the chosen model based on literature and the
working principle of this model. The last part of "Methods"
describes the evaluation metrics to compare the model per-
formances.15

Chapter four "Results, Discussion & Limitations" covers
the comparison of the different machine learning models and
evaluates the performance of these models based on their out-
put. Furthermore, the output of the conceptual hydrological
model is added to the results as a baseline and is compared20

with the machine learning algorithms outputs. In addition to
these results, the limitations of this research are elaborated.

In chapter five "Recommendations and future research"
some ideas and recommendations for further research are
more elaborated. Finally, in chapter six "Conclusions" the25

goal of this research is emphasized and the research ques-
tions are answered.

2 Materials

The materials needed for this research are: a study area,
groundwater head time series and a discharge time series in30

that same study area. In this chapter the study area is chosen
and elaborated on, followed by the data collection, valida-
tion and analysis of the stream discharge time series. Lastly,
the groundwater wells usable for this research are illustrated,
whose groundwater head time series are validated and anal-35

ysed.

2.1 Study area

The purpose of this research is to obtain the discharge time
series from groundwater head time series in the same sub-
catchment, such that ecology improving measures can be40

quantitatively analysed for subcatchments where a part of
the discharge time series is unknown. In general, this rela-
tion can be used for every subcatchment to fill in gaps within
the discharge time series or for interpolation. Moreover, the
relation can be used as a validation tool when the discharge45

time series is already known. In order to find the data-driven
relation, the time series of the groundwater heads and stream
discharge itself must be large enough for machine learning
purposes (Raschka and Mirjalli, 2017). This is defined as the
first criteria for selecting a proper study area. The next crite-50

ria is the fact that there should be free flow in the subcatch-
ment, without the presence of weirs inside the streams. This
is only necessary for the conceptual hydrological model, but
is not expected to be a problem for the DDM’s. Moreover,
the ideal scenario is to have a stream discharge gauge at the 55

outlet point of a subcatchment, as this is also the point where
the stream discharge is simulated for a rainfall-runoff model.
To summarize the criteria:

• large enough historical dataset of the stream discharge
and groundwater head time series 60

• free flow or absence of weirs in the streams of the sub-
catchment

• preferably a stream discharge measurement gauge at the
outlet point of the subcatchment

WBD has the supervision of in total 25 WFD subcatchments 65

which together form 6 catchments: Aa of Weerijs, Boven-
mark, Mark-Vliet, Dongestroom, Hollandsch Diep/Amer
and Brabantse Wal. The Bovenmark has in total 6 sub-
catchments, of which the streams in Strijbeekse Beek and
Chaamse Beken have been identified as streams where base 70

flow has to increase for ecological purposes and hence multi-
ple measures have been taken. Unfortunately, a lot of data
in the discharge time series is missing and makes it diffi-
cult to quantitatively examine if the base flow is increasing.
For this research, Chaamse Beken is chosen as study area, 75

since the discharge measurement gauge, Chaamse Beken Ul-
venhout (CBU), is almost at its outlet point, the presence of
free flow and the fact that the historical dataset of CBU and
groundwater head time series are large enough (18 years) for
the DDM. The location of the subcatchment Chaamse Beken 80

within WBD is depicted in Figure 2, and in Figure 3 the sub-
catchment itself is given with its stream discharge measure-
ment gauge CBU and the streams.

The subcatchment has a surface area of almost 50 km2

(Broekhoven et al., 2019), from which the land use is mostly 85

forest and grassland, as can be seen in Figure 4.
Furthermore with respect to the surface level, there is a

descending slope from the southeast towards the stream dis-
charge point CBU in the northwestern part, as can be seen
in Figure 5a. The highest surface level is around 25 meters 90

NAP, while the lowest level is around 2 meters NAP. The soil
within this subcatchment is made of phreatic aquifers. In ad-
dition, there is one shallow clay layer. This clay layer is been
deposited by the Stamproy Formation (Broekhoven et al.,
2019): a formation including deposits that are formed by 95

northward flowing rivers that drained the central and northern
part of Belgium (Westerhoff et al., 2009). Note that this clay
layer is not present within the whole subcatchment (almost
none in the north western part), but at most parts it is present.
Especially in the southern part of the Chaamse Beken, the 100

clay layer can reach thickness levels of 7meters. The top-,
bottom level (m NAP) and the thickness (m) of this clay layer
are depicted in respectively Figures 5b to 5d. The location of
this clay layer can also be seen in these Figures.
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Brabantse Delta

Bovenmark

Chaamse Beken

Figure 2. WBD with the location of catchment Bovenmark and subcatchment Chaamse Beken

Q Chaamse Beken Ulvenhout Stream Chaamse Beek

Figure 3. The study area of this research: subcatchment Chaamse Beken with its discharge stream point and its streams
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Figure 4. Land use within the Chaamse Beken, showing mostly grassland, nature and forest

(a) Surface level Chaamse Beken [m NAP] (b) Top level of Stamproy clay layer [m NAP]

(c) Bottom level of Stamproy clay layer [m NAP] (d) Thickness of Stamproy clay layer [m]

Figure 5. Surface Level & geo-information of the Stamproy clay layer within the subcatchment Chaamse Beken
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2.2 Stream Discharge Time Series CBU

2.2.1 Data collection & analysis

As stated before, the stream discharge gauge CBU can be
seen as the outlet point of the subcatchment and it has a long
historical daily dataset from 1984 to 2003. The stream dis-5

charge is derived from a certain Q,h-relation from a flow
measuring weir placed in 1984 (Vink, 2019). This flow mea-
suring weir is able to continuously measure the upstream wa-
ter level and taken into account the physical properties of
the standardized weir, the water level can be converted to a10

stream discharge. Flow measuring weirs are mostly seen in
small rivers or streams for the purpose of measuring stream
discharge. In the last years a lot of flow measuring weirs have
been removed (Hartong and Termes, 2009), which is also the
case for the weir CBU in 2003. The most important reason15

for this is the fact that fish ladders can not be combined with
the weirs, which is desirable for ecological benefits. More-
over, some weirs are removed as to reinforce natural flow
conditions within the subcatchment (Hartong and Termes,
2009).20

The stream discharge series of CBU is depicted in Figure
6 and is calculated from the water level in the unit of m3/sec
with a daily average frequency. The time series is available
from 03-05-1984 to 31-10-2003, however, in this research for
simplicity reasons the time series is used from 1985 to 200325

to have only full years (sea black lines in Figure 6). The av-
erage stream discharge is 0.35 m3/sec, while the minimum
and maximum value are respectively 0.0 and 4.69 m3/sec.
The time series shows that during some periods the stream
runs almost dry. Moreover, some high peaks are present in30

the time series as a result of heavy precipitation. To have
more insight in the time series of the years itself, a single
year comparison is shown in Figure 7.

This year comparison shows wet and dry years within the
time period of 1985-2003. The year 1996 is a very dry year35

with an average stream discharge of only 0.11 m3/sec. This
year is also in the record books of extremely dry years within
the Netherlands due to a large precipitation deficit (Beersma
et al., 2004). Furthermore, the years 1988 and 2001 are wet
years with respect to the other years in the time period.40

2.2.2 Data validation

In order to find a relation between groundwater heads and
the stream discharge CBU, it is important to first validate the
data. Validation of stream discharge data is still very com-
plex and possible methods are outlier detection and a corre-45

lation analysis with other surrounding stream discharge se-
ries (according to Witteveen & Bos, personal communica-
tion, 2019). For this research, the last method is applied.

The locations of the chosen stream discharge points are
shown in Figure 8 and the start- & end measuring period,50

the mean discharge and the corresponding subcatchment &

catchment are depicted in Table 1. Note that the stream dis-
charge point Merkske Castelré is connected to the stream up-
stream of Galderse Beek Galder via a stream in northern di-
rection. In the correlation analysis, each time series is com- 55

pared with the time series of CBU taken into account only
the overlapping time period. As can be seen in Table 2, all
the surrounding discharge time series have a positive corre-
lation coefficient of 0.86 or higher with CBU. According to
this correlation analysis, the discharge time series of CBU is 60

assumed to be validated for this research. In additional re-
search, outlier detection can be used to have more certainty
about the validated discharge time series.

2.3 Groundwater head time series within Chaamse
Beken 65

The next step is to select the groundwater wells within the
Chaamse Beken, and to validate the groundwater head time
series of these wells. Furthermore, an analysis is performed
on these time series to gain more insight into the groundwater
system of the Chaamse Beken. 70

2.3.1 Data selection groundwater wells

The source Dinoloket (the main source in the Netherlands
for obtaining subsurface data) is used to collect groundwater
head time series of monitoring wells. The data selection
process consists of multiple steps, from which each step will 75

be elaborated below. The selection process of screen-1 wells
and screen-2 wells is also visualized respectively in Figure 9
and 10.

Step 1: Shapefile in Dinoloket 80

The first step is to draw a large shapefile around Chaamse
Beken in Dinoloket and the data of these wells within
the Chaamse Beken is collected. The Dinoloket shapefile
contains 962 different groundwater head time series, from
which some are part of a single well screen series. The 85

screens of these wells are placed at approximately the same
location, but in different aquifers. For example, screen-1 is
placed in the phreatic aquifer, screen-2 is placed in a deeper
aquifer, etcetera, but they have the same screen name. Most
of the wells have around 2 to 6 screens, from which the 6th 90

screen can reach depths of almost 100 meters NAP. The
purpose of placing screens in different aquifers is to examine
the phenomena seepage and filtration (Ritzema et al., 2012).
The phenomena of seepage and infiltration are visualised in
Appendix A. In this research, it is firstly assumed that only 95

screen-1 & screen-2 wells are responsible for groundwater
flow towards the stream Chaamse Beken, whereas deeper
layer screens will bypass this stream. Furthermore as a
last criteria in this step, the groundwater head time series
should have a minimum number of 100 measurements. 100

Groundwater head time series with a sample size of less than
100 are removed. To conclude, there are 210 screen-1 wells
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Figure 6. Stream Discharge time serie Chaamse Beken Ulvenhout (CBU). The black lines are representing the period from 1985 to 2003 to
be used for this research.

Figure 7. Year-Comparison Stream Discharge Q - CBU

Figure 8. Locations of the other stream discharge points for the correlation-analysis
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Stream Discharge point Start End Mean Discharge [m^3/sec] KRW subcatchment KRW catchment

Q Chaamse Beken Ulvenhout 1985 2002 0.35 Chaamse Beken Bovenmark
Q Galderse Beek Galder 1988 2003 0.13 Galderse Beek Bovenmark
Q Grensweg Chaam 1992 1994 0.035 Chaamse Beken Bovenmark
Q Merkske Castelré 1987 2019 0.58 Merkske Bovenmark
Q Oranjeboombrug Breda 1982 2019 2.82 AA en Weerijs Aa of Weerijs

Table 1. Stream Discharge points for the correlation analysis

Stream Discharge point Correlation with CBU

Q Chaamse Beken Ulvenhout 1
Q Galderse Beek Galder 0.92
Q Grensweg Chaam 0.87
Q Merkske Castelré 0.94
Q Oranjeboombrug Breda 0.94

Table 2. Correlation of CBU and the stream discharge points in the surroundings

within the shapefile of Dinoloket with a minimum number
of 100 measurements (Figure 9a), and 59 screen-2 wells
(Figure 10a).

Step 2: Wells within Chaamse Beken5

The next step is to eliminate the screen-1 & screen-2 wells
from the shapefile that are not within the Chaamse Beken.
From the 210 screen-1 wells, 73 are remaining within the
Chaamse Beken (Figure 9b). From the 59 screen-2 wells,
only 19 are remaining within the Chaamse Beken (Figure10

10b). For this research, it was decided to take only the screen
wells within the Chaamse Beken into account. Note that the
boundaries of the subcatchment Chaamse Beken do not also
have to be the boundaries of the groundwater system itself.
Therefore, in future researches the collection of screen wells15

can be extended to outside the subcatchment itself.

Step 3: Define necessary time period for the model
The selection of wells in step two is further refined so that
only usable screen series for this research are remaining.20

Since the goal of this research is to link groundwater head
time series with the stream discharge series of CBU, the
chosen time period of the groundwater head time series
is dependent on the available time period of the stream
discharge CBU (1985-2002). Therefore, monitoring wells25

with at least a data availability for the years 1985-2002
are selected to apply for the data-driven model. From this
criteria, 13 screen-1 wells (Figure 9c) & 8 screen-2 wells
(Figure 10c) are left within the Chaamse Beken.

30

Step 4: Wells from step 3 & measuring up to 2019
Wells that have been measuring groundwater heads after
2002 and are still measuring today are preferable, such that
based on these groundwater head series the data-driven
model can be used to get the corresponding discharge35

time series until today. Therefore, this criteria is defined as
selecting wells that are still in place and are measuring up to
2019 and hence in 2019 (assumed as still measuring today).
This last step results in 8 screen-1 wells (Figure 9d)& 6
screen-2 wells (Figure 10d), which are the following: 40

• Screen-1 wells: B50B0074_1, B50B0075_1,
B50B0101_1, B50B0216_1, B50B0374_1,
B50B0380_1, B50B0498_1, B50E0140_1

• Screen-2 wells: B50B0074_2, B50B0075_2, 45

B50B0101_2, B50B0216_2, B500380_2, B50E0140_2

Note that there are two screen-1 wells which are not within
the screen-2 wells selection: well B50B0374 at almost the
same place at B50B0380, and well B50B0498 at almost the
same place at B50B0075. Since these two wells are having 50

similar time series as their neighbour wells, they do not add
new information to this research and are therefore not con-
sidered. With this given, there are 6 screen-1 and 6 screen-2
wells from the same monitoring well and can therefore also
be more easily compared for answering research question 1b. 55

In the end, the following screen-wells are used in this re-
search:
Screen-1 wells:

• X10: B50B0074_1 60

• X11: B50B0075_1
• X12: B50B0101_1
• X13: B50B0216_1
• X14: B50B0380_1
• X15: B50E0140_1 65
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Figure 9. Selection Process of the screen-1 wells: Step 1 (green), step 2 (light green), step 3 (yellow), step 4 (red)
.
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Figure 10. Selection Process of the screen-2 wells: Step 1 (green), step 2 (light green), step 3 (yellow), step 4 (red)
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Screen-2 wells:

• X20: B50B0074_2
• X21: B50B0075_2
• X22: B50B0101_25

• X23: B50B0216_2
• X24: B500380_2
• X25: B50E0140_2

The locations of the screen-1 (X10-X15) and screen-2 wells
(X20-X25) are depicted in Figure 11 & 12.10

Figure 11. screen-1 wells for further research

Figure 12. screen-2 wells for further research

2.3.2 Data validation groundwater wells with Pastas

The groundwater head time series of the 6 screen-1 wells
(X10-X15) are depicted in Figure 13 and the series of the
6 screen-2 wells (X20-X25) are depicted in Figure 14.
As can be seen from these time series, they do not have15

a continuous daily measurement frequency as the stream
discharge timeseries has. The measurement frequency is
high for most timeseries before the year 1980 and after
the year 1995. This means a lot of data is missing within

the necessary time period of 1985 to 2003. Moreover, the 20

data present in the timeseries needs to be validated as well
since groundwater heads can be prone to measurement
errors. The 2 problems of missing data & possible errors
within the data are solved by using the time series analysis
(TSA) package Pastas (Collenteur et al., 2019b): an open- 25

sourceframework for the analysis of hydrological time series.

Theory of Pastas
Pastas is making use of transfer function noise (TFN) mod-
elling, which attempts to translate one or more input series 30

to an output series using a statistical model (Collenteur et al.,
2019b). During Pastas TSA the groundwater heads (output
series) are being explained and simulated based on differ-
ent explanatory variables (input series), such as: precipita-
tion (P ), potential evaporation (Ep) or actual evaporation 35

(Ea). Moreover, extraction of pumping wells (Qpumping)
can also cause groundwater head fluctuations and can there-
fore also be used as an explanatory variable. And lastly, in-
terference with surface water can also play an important role
in groundwater head fluctuations, resulting in water stages 40

(Hstage) as an explanatory variable. So, TFN modelling
tries to explain the observed groundwater heads by one or
more other observed time series (P ,Ep/Ea,Qpumping and
Hstage). A TFN model has the following structure (Collen-
teur et al., 2019b): 45

h(t) =

M∑
m=1

hm(t) + d+ r(t) (2)

where h(t) are the observed groundwater heads, hm(t) is the
contribution of the explanatory variable m to the groundwa-
ter head, d is the base elevation of the model (a constant),
r(t) are the residuals, and m the number of explanatory vari- 50

ables. Note that this TFN model has a linear relation between
the in- and output. The contribution of explanatory variable
m to the groundwater head is calculated through convolution
(Collenteur et al., 2019b)):

hm(t) =

t∫
−∞

Sm(τ)θm(t− τ)dτ (3) 55

where Sm is the time serie of the explanatory variablem, and
θm is the impulse response function for stress m. The im-
pulse response is the head response due to an instantaneous
stress event of unit magnitude at time t=0 (Collenteur et al.,
2019b). For example, the head response due to a precipita- 60

tion event of 1mm at t=0. Note that hm(t) can also be neg-
ative, for instance with the explanatory variable evaporation:
evaporation will result in a lower groundwater level, while
precipitation will result in a higher groundwater level. Pos-
sible impulse response functions (τm) are (Collenteur et al., 65

2019b):
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Figure 13. Observed groundwater head time series of the 6 screen-1 wells
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Figure 14. Observed groundwater head time series of the 6 screen-2 wells
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Figure 15. Example of the Gamma (blue) and Hantush (orange)
step response function

– Gamma: used for groundwater response to P & Ep
(recharge) with 3 parameters A, a and n

– Hantush: commonly used for groundwater response to
Qpumping with 3 parameters A, ρ and Cs

– Exponential: commonly used for Hstage with 2 param-5

eters A and a

In contrast to the impulse response function τ(t), often the
step response (Θ) is used: the head response due to an uni-
form stress, for example the head response due to a constant
pumping rate. The step response due to a constant and unit10

stress starting at t=0 can then be easily obtained from the im-
pulse response through integration:

Θ(t) =

t∫
0

θ(t)dt (4)

Note that this step response will eventually reach a steady
state value (the maximum change in head due to the con-15

stant and unit stress) which is defined in the parameter A
of the impulse response function. Figure 15 shows an exam-
ple of a Gamma step response and a Hantush step response,
where the parameter A is shown. The parameter A is positive
for the Gamma function, while it is negative for the Hantush20

function. Furthermore, it is visible that these 2 step response
functions have different shape parameters. The calculation
time of the time when the steady state value (time of A) has
occured can become too long, and therefore, often a cutoff
value of 0.99 is defined in the response functions (Collenteur25

et al., 2019b): the response is cutoff after 99% of the max-
imun change in head occured.

In addition to the parameters within the step response
functions, there are also some parameters that need to be ex-
plained within the residuals (r(t)): 30

r(ti) = υ(ti) + r(ti−1)e−δti/α (5)

where α is the decay parameter, δti is the timestep between
observations at ti and ti−1, and υ(ti) is the noise as a result
of a random process.

As a last step of the Pastas TSA, the parameters of the 35

TFN model are estimated by optimizing the objective func-
tion which is set as the least squares solver. With these chosen
parameters, the simulated heads can be calculated by loop-
ing through all explanatory variables and summing up their
head contributions hm(t), and adding a certain base level d 40

(Collenteur et al., 2019b). The difference between these sim-
ulated heads and the observed heads is then defined in the
residuals r(t), which subtracts the simulated heads from the
observed heads. This process is performed during the cali-
bration period, which is in terms of machine learning known 45

as the train set procedure (Raschka and Mirjalli, 2017). The
same set of parameters of the calibration period is then also
used to simulate the heads for the period after the calibration
period (the validation period) to examine the performance of
the model. It is common to have a larger calibration period 50

than a validation period (Raschka and Mirjalli, 2017). In this
research the calibration period is set from the beginning of
the observed groundwater heads (around 1970) till the end of
the year 2010, while the validation period is from 2011 till
2019. 55

A last remark need to be made on possible outliers present
in the observation series. These outliers will results in a less
better TFN model fit, and this may have result on the model
performance in the validation set. Therefore, clear outliers
are manually removed before the Pastas TSA. 60

Explanatory variables Chaamse Beken
Within subcatchment Chaamse Beken there are 4 possible
important explanatory variables affecting the groundwater
heads, from which the two most important ones are: precipi- 65

tation and actual evaporation. Actual evaporation is difficult
to measure. Therefore, it is often being estimated as a fac-
tor of the potential evaporation. An additional parameter is
namely added to the TFN model. The precipitation data is
obtained from the KNMI station Chaam and the potential 70

evaporation data from the weather station Gilze-Rijen just
outside the Chaamse Beken. These observation series have a
daily measurement frequency in the unit ofmm/day and are
added with a Gamma response function.

The third explanatory variable that could possible cause 75

groundwater head fluctuations, is the pumping well from
the water treatment plant Prinsenbosch (located just outside
Chaamse Beken). The extraction rates of this well are ob-
tained from Brabant Water and the time series are having a
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monthly measuring frequency in the unit of m3/month, be-
ing added in the form of a Hantush response function. The
program Pastas is able to cope with these different measur-
ing frequencies.

There is another explanatory variable which could have5

effect on the groundwater heads within the Chaamse Beken:
the sewage treatment plant Chaam discharging effluent water
in the streams. This last explanatory variable has a discontin-
uous measurement frequency in the unit of m3/sec, and is
being added with an Exponential response function. The lo-10

cations of the explanatory variables explained above are de-
picted in Figure 16, while the timeseries of these explanatory
variables are depicted in Appendix B1.

Figure 16. Explanatory variables for the TSA Pastas

Results simulations Pastas TSA
In Appendix B2 (screen-1 wells) and Appendix B3 (screen-215

wells), for each selected well a summary of the results of the
Pastas TSA is collected consisting of:

• Figure of observed groundwater heads & simulated
heads for the calibration and validation period

• Figure of observed groundwater heads & simulated20

heads for the period 1985-2003 (to be used for further
research)

• Figure representing the contributions of the explanatory
variables in the groundwater heads

• Table of the optimal parameters set and their boundaries25

• Table of fit statistics

An example of well B50B0074_1 is given in the section be-
low:

Figure 17 shows the observed groundwater heads and the
simulated groundwater heads with the TFN model. Note that30

the calibration period (red dots) is used to get the model with

the best fit with the optimal parameters. And in the validation
period this model is used to simulate again the groundwater
heads, based on the observed groundwater heads in the cali-
bration period (black dots). 35

Figure 18 is zooming in on the observed & simulated
groundwater heads in the research period 1985-2003. Note
that with the simulated groundwater heads, a time series with
daily values is created, and therefore the simulated heads are
used in the further research with machine learning, instead of 40

the observed series.
Figure 19 shows that the fluctuations in groundwater head

are mostly due to the rain and evaporation. Furthermore, the
pumping rates in Prinsenbosch are resulting in a constant
drop of groundwater head of approximately 0.4 meters un- 45

til half 1993. From then, the pumping rates result in a larger
drop of a maximum of 1.1 meters. This is due to the fact that
since half 1993 the pumping rates are increasing. And the last
explanatory variable "Effluent Chaam" has only since its start
in 1996 a positive influence on the groundwater head, with 50

a maximum value of 0.5 meters. Note that the hydrological
system is a very complex system and different processes oc-
cur also in the ground, and therefore, it is always the case to
have a certain "unexplained" percentage on the groundwater
head fluctuations. 55

B50B0074_1 Paramater Optimal P Pmin Pmax

P & Ep
(Gamma)

A 1.19 0 20.88
n 0.97 0.1 10
a 224.64 0.01 5000
f -1.08 -2 0

Qpumping
Prinsenbosch
(Hantush)

A -0.000080 -0.020 0
\rho 0.71 0.0001 10
cS 933.84 0.001 10000

Effluent Chaam
(Exponential)

A 0.00020 0 0.10
a 59.97 0.01 5000

Table 3. A summary of the optimal parameters with their predefined
boundaries for well B50B0074_1

Note that for each parameter, the minimum and maximum
value are predefined as pmin & pmax, as can be seen in
Table 3. For example, the parameter f to estimate the actual
evaporation as a fraction of the potential evaporation should
be between 0 and -2. This is due to the fact that the potential 60

evaporation is estimated as a reference evaporation of a
certain crop. However, in reality the actual evaporation can
be larger than this reference potential evaporation. For well
B50B00741 the optimal parameters are all within the range
of the pmin and pmax values. 65

Summarized Results
Table 4 gives an overview of the fit statistics, in which mul-
tiple criteria are given: EV P , R2, RMSE, AIC and the
BIC. The question arises which statistic need to be used 70
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Figure 17. Observed & simulated groundwater heads with a division in calibration and validation period, for well B50B0074_1

Figure 18. Observed & simulated groundwater heads for further research period 1985-2003 for well B50B0074_1

Figure 19. Contributions of the explanatory variables to the groundwater head during the research period for well B50B0074_1
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Statistic Well X10 Value

Akaike information Criterion (AIC) 16.96
Bayesian Information Criterion (BIC) 69.79
Explained Variance Percentage (EVP) 88.78
Pearson R^2 0.89
Root Mean Squared Errors (RMSE) 0.21

Table 4. A summary of the fit statistics of the calibration period for
well B50B0074_1

for this research. It is common in time series of groundwa-
ter heads to use the EVP as a criterion (Collenteur et al.,
2019a). The explained variance percentage (EVP) mea-
sures the percentage to which the TFN model accounts for
the variation of the observed groundwater heads. A higher5

EVP means a better cover of the variance within the model,
and hence a better model performance. The EVP is obtained
with the following formula:

EV P =
variance(hobserved)− variance(hresiduals)

variance(hobserved)
(6)

in which variance(hobserved) is the variance of the observed10

groundwater head time series and variance(hresiduals) is
the variance of the residual (observed-simulated) groundwa-
ter head time series. The EVP is used to check the perfor-
mance of the TFN model first during the calibration period,
and second during the validation period. The results of the15

EVP’s for the screen-1 wells are depicted in Table 5, and for
the screen-2 wells in Table 6.

Note that in the world of geohydrology it is common to say
to only use observed groundwater head series that meet the
requirements of an EVP of 70 or larger. This requirement is20

also used within this research. As can be seen in Table 5 there
is one screen-1 well that does not meet the requirements of
an EVP of 70 or larger: well X14. A possible reason for this
low EVP can be on the one hand due to the measurements of
observed head series itself, on the other hand due to the miss-25

ing of an explanatory variable within Pastas TSA, or because
of the fact that some groundwater head time series can not
be simulated with Pastas TSA due to non-linear behaviour.
The second reason of missing an explanatory variable is less
likely since time series of other wells around this specific30

well can be simulated with Pastas TSA.
When having a look at the geographical location of well

X14, it becomes clear that the location of this well is outside
the presence of the already discussed Stamproy clay layer,
as can be seen in Figure 20, in contrast to the other screen-135

wells. This can be a possible reason for the disability of sim-
ulating groundwater head time serie with the TFN model for
wellX14. Note that the simulated time series of this well will
be taken into account for the further research, as the machine
learning models itself are able to figure out if this variable is40

important enough for modelling the discharge time series.

Screen-1 well
EVP
calibration period
(start - 2010) [%]

EVP
validation period
(2010 - 2019) [%]

X10 88.78 87.10
X11 84.85 87.10
X12 88.85 82.46
X13 83.65 84.48
X14 66.96 59.14
X15 85.13 78.52

Table 5. EVP results of Pastas TSA screen-1 wells for the calibra-
tion period and the validation period

Screen-2 well
EVP
calibration period
(start - 2010) [%]

EVP
validation period
(2010 - 2019) [%]

X20 91.81 89.40
X21 88.84 91.06
X22 91.02 89.98
X23 90.57 89.67
X24 89.72 92.02
X25 91.69 90.14

Table 6. EVP results of Pastas TSA screen-2 wells for the calibra-
tion period and the validation period

Figure 20. The top level of the Stamproy clay layer, including the
locations of the screen-1 wells, showing well X14 does not lay
within the clay layer
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Furthermore, having a look at the EVP results, it is remark-
able to see that the EVP’s of the screen-2 wells are in general
higher than the ones of the screen-1 wells. One possible rea-
son for this given, is the fact that a deeper aquifer (screen-2)
has less interaction with the surroundings above surface level5

and hence the observed head series are easier to explain with
the explanatory variables than for the series of the screen-1
wells. And lastly it can be concluded that the model has also
a good performance for the validation period, taking also the
very dry year 2018 into account. Therefore, for the remaining10

part of this study the simulated series of all above-mentioned
screen-1 & screen-2 wells will be taken into account for the
research period 1985-2003.

2.3.3 Data analysis of groundwater wells

The simulated groundwater heads of the 6 screen-1 & -215

wells are further analysed in this section. For example, a
certain correlation exists between the simulated heads of the
different wells and the distance between the wells. Moreover,
each well has a different response time on the precipitation,
evaporation and Qpumping Prinsenbosch. Therefore, the20

step-response of each single well is analysed. The goal of
this analysisis to get more insight into the hydrological
system of the subcatchment Chaamse Beken.

Correlations of simulated heads25

As expected, the correlation of the simulated head time se-
ries of wells decreases as the distance between the wells in-
creases. This hypothesis will be tested for screen-1 & screen-
2 wells. First of all, a heatmap showing the Pearson’s correla-
tion is depicted in Figure 21 for screen-1 wells, and in Figure30

8 for screen-2 wells.
The Pearson’s correlation coefficient is a measure for the

linear correlation between two time series. The simulated se-
ries of the screen-1 wells (0.54-0.97) have a larger range than
the series of the screen-2 wells (0.83-0.99). In other words,35

the series of the screen-2 wells are more strongly correlated
than the screen-1 wells. This can again be due to the fact that
screen-2 wells are located in deeper aquifers and hence de-
pend less on events above surface level.

To test the hypotheses "the larger the distance between40

wells, the smaller the Pearson’s correlation of the wells", for
well X10 a graph representing the correlation of simulated
heads versus the distance of well X1− 0 with the other 5
screen-1 wells is shown in Figure 23. The same procedure is
applied for well X20 with the other 5 screen-2 wells, as can45

be seen in Figure 24.
In Figure 23 it is visible that one well (well X14) does not

fit within the hypotheses of the larger the distance between
the wells, the smaller the correlation of the simulated heads
of those wells. The same applies for well X25 in Figure50

24. These 2 wells are hence an exception of the hypotheses,
and overall the hypotheses can not be rejected. Furthermore,
note that for the screen-2 wells the negative trendline of this

Figure 21. Pearson’s correlation matrix of simulated groundwater
head series screen-1 wells (0.5-1)

Figure 22. Pearson’s correlation matrix of simulated groundwater
head series screen-2 wells (0.5-1)
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hypotheses is stronger than for the screen-1 wells.

Figure 23. Relation between correlation of simulated heads and dis-
tance between well X10 and the other screen-1 wells (X11 to X15)

Figure 24. Relation between correlation of simulated heads and dis-
tance between well X20 and the other screen-2 wells (X21 to X25)

Step responses
The next analysis is performed on the different step responses
(already explained in section 2.3.2) of the screen-1 & screen-5

2 wells. As said before, for the recharge a Gamma function
is used, for the Qpumping Prinsenbosch a Hantush function,
and for the Effluent Chaam an Exponential function. These
different step response functions of the screen-1 wells are
depicted in respectively Figures 25, 26 and 27.10

Note that in these figures the line ends at the 99% step re-
sponse: when 99% of the maximum influence on the ground-
water head has occured. In reality, this line will reach a

Figure 25. The Gamma step response functions on the recharge (P-
E) for the screen-1 wells

Figure 26. The Hantush step response functions on the Qpumping
Prinsenbosch for the screen-1 wells

Figure 27. The Exponential step response functions on the Effluent
Chaam for the screen-1 wells
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steady-state which will continue for a very long time. To re-
duce the calculation time, the line is ended at the 99% step
response time. As can be seen in Figure 25, the largest influ-
ence on the groundwater head due to the recharge is at well
X15. However, it will take also the longest time to reach the5

99% response time (1258 days). The lowest influence on the
groundwater head due to the recharge is seen at wells X13
& X14. However, well X14 responds slower than well X13
on recharge. This indicates that the hydrological system is
extremely complex and can not be seen as one system where10

all wells responds similarly.
Figure 26 shows the Hantush step response functions of

the Qpumping Prinsenbosch, which have in general lower
influence on the groundwater head fluctuations than the
recharge itself. Well X10 has the largest negative influence15

on the groundwater head, which is as expected since this
well has the smallest underlying distance with the Qpump-
ing Prinsenbosch extraction point and hence the largest in-
fluence. Another remarkable point is the fact that well X14
has a very small 99% response time with regard to the other20

wells. A possible reason for this given, is the absence of the
clay layer at this well, and it might therefore respond faster
than the other wells. In general, it can be concluded that the
extraction rates at Prinsenbosch do not affect the groundwa-
ter heads in the screen-1 wells, since the pumping well is25

present in a much deeper aquifer.
Figure 27 shows the Exponential step response functions

of the Effluent Chaam. These step response functions can be
clustered into 3 categories:

– well X10, well X11 & well X15 with very short 99%30

response times and an average influence on the ground-
water head. These wells are also the furthest away from
the effluent point Chaam.

– well X13 & well X12 with a respectively large posi-
tive influence on the groundwater heads and a very large35

99% response time. These wells are also the closest to
the effluent point Chaam.

– well X14 with a very low influence on the groundwater
head and an average 99% response time.

The 99% response times of the different step response func-40

tions for the screen-2 wells are depicted in Table 7. Overall,
it can be concluded that the groundwater system is very com-
plex and every screen is responding differently on explana-
tory variables. Still a lot is unknown in this system.

3 Methods45

This chapter covers in section 3.1 the first method for finding
a relation between groundwater heads and stream discharge:
machine learning. A short description is given of machine
learning itself in subsection 3.1.1, followed by how it is ap-
plied in this research (subsection 3.1.2). Section 3.1.3 de-50

scribes which machine learning algorithms are chosen based

99% Response time [days]

Screen-2 well Recharge
Gamma

Qpumping
Prinsenbosch

Hantush

Effluent
Chaam

Exponential
X20 820 5380 7990
X21 832 3340 293
X22 638 26826 18796
X23 499 28697 23026
X24 771 5787 8362
X25 855 7275 17739

Table 7. The 99% step responses in days for the screen-2 wells
on the explanatory variables recharge, Qpumping Prinsenbosch and
Effluent Chaam

on literature review, including an explanation of these algo-
rithms.

In the second section (3.2), the second method for this re-
search is described: using a conceptual hydrological model 55

to obtain the stream discharge. First of all, a conceptual
model is chosen based on literature review, whereafter the
model itself is thoroughly described.

In the last section of this chapter, the metrics used to eval-
uate the model performances are described. 60

3.1 Method 1: Machine learning

3.1.1 What is machine learning?

These days there is an abundance of data, which might be
structured or unstructured data. Machine learning is related
to Artificial Intelligence (AI) by deriving knowledge from 65

this data in order to make data-driven decisions (Raschka and
Mirjalli, 2017). It involves self-learning algorithms that de-
rive knowledge from data in order to make predictions, iden-
tify patterns and make decisions with minimal human inter-
vention (Raschka and Mirjalli, 2017). 70

Within machine learning, a distinction is made between
supervised and unsupervised learning (Raschka and Mirjalli,
2017). Supervised learning labels the data before it is put into
the machine in input variable(s) X and a target Y . This tar-
get Y is in fact the output, and is hence actually part of the 75

dataset. With the machine learning algorithm we can predict
the target Y for other input variables X . In contrast to su-
pervised learning, for unsupervised learning the data is not
labeled into input variables X and a target Y before it is put
into the machine. The output stands actually for finding a 80

hidden pattern/structure in the input data. In this research,
supervised learning is used instead of unsupervised learning
since the data is labeled into input variables and an output.

Zooming in on the principle of supervised learning, we put
our data (divided into input and output) into a machine, de- 85

fine an algorithm within the machine, let the machine learn
from the input data and output without explicitly program-
ming ("train the model"), and in the end giving the algorithm
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Figure 28. The self-learning process of supervised learning

Figure 29. The usage of the self-learning process of supervised
learning

with model parameters linking the input data with the output
(see Figure 28). With this self-learning algorithm it is pos-
sible in the future to put a similar set of unseen input data
into the machine with the self-learning algorithm, to get the
desired simulated output (Figure 29).5

3.1.2 Principle of machine learning within this research

Within this research the stream discharge CBU is derived
from other input variables such as for example groundwater
heads, precipitation and evaporation, among others. As said
before, supervised learning is used, instead of unsupervised10

learning since the data is labeled in input variables and a
target. First, the machine learning model is trained from the
in- and output data from 1985-2003. Second, this trained
model can be used to simulate the unknown stream discharge
data from the input variables which can be used for the15

years where data of the input variables is known (at least the
years 2003-2019 for now). The model training and usage is
illustrated in Figure 30. Different important characteristics
of how this learning principle is precisely used, will be
elaborated below.20

Different model setups and their dataset collection
In order to answer the research questions 1a to 1d for the
study area Chaamse Beken, different model setups are
formulated. Each setup has a different set of input variables,25

whereas the target Y stays the same for each setup: Qobs.
The output of each setup Qsim needs to be comparable with
Qobs. The dataset of each setup contains of data from 1985
to 2003 and have all a daily frequency. The different model
setups needed for research questions 1a to 1d are thoroughly30

elaborated below and are summarized in Table 8.

research question 1a
For this research question it is examined if Qobs can be
simulated with only one screen-1 well or if all selected 35

screen-1 wells within Chaamse Beken are necessary for
obtainingQobs. To answer this research question, two model
setups are used. The first model setup focuses on only one
screen-1 well, namely well X10. The reason for this well
is the fact that this well has the largest correlation with all 40

the other screen-1 wells and is hence the most representative
for the screen-1 wells group (Figure 21) . The second model
setup takes the whole screen-1 wells group into account.

Model setup 1: 45

Y (t) = F (X10(t)) (7)

• Input variable: X10 [mNAP ]
• Target Y : Qobs [m3/sec]
• Output: Qsim1 [m3/sec]

Model setup 2: 50

Y (t) = F (X10(t),X11(t), .....X15(t)) (8)

• Input variable: X10 [mNAP ]
• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ]
• Input variable: X13 [mNAP ] 55

• Input variable: X14 [mNAP ]
• Input variable: X15 [mNAP ]
• Target Y : Qobs [m3/sec]
• Output: Qsim2 [m3/sec]

research question 1b 60

This research question focuses on how deep the wells should
be in order to find an accurate enough relation between
groundwater heads and the stream discharge. In subsection
2.3.1 it is already explained that for this research only
screen-1 and maybe screen-2 wells play a contributing role 65

in the baseflow. Therefore, this research question focuses
on if adding screen-2 wells as input variables improve the
output of the second model setup. The model setups used for
this research are hence the already explained model setup
2 and a new defined model setup 3 including the screen-2 70

wells.

Model setup 2:

Y (t) = F (X10(t),X11(t), .....X15(t)) (9) 75

• Input variable: X10 [mNAP ]
• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ]
• Input variable: X13 [mNAP ]
• Input variable: X14 [mNAP ] 80

• Input variable: X15 [mNAP ]
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Figure 30. The supervised machine learning principle within this research

• Target Y : Qobs [m3/sec]
• Output: Qsim2 [m3/sec]

Model setup 3:

Y (t) = F (X10(t), .....X15(t)&X20(t), ....X25(t)) (10)5

• Input variable: X10 [mNAP ]
• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ]
• Input variable: X13 [mNAP ]
• Input variable: X14 [mNAP ]10

• Input variable: X15 [mNAP ]
• Input variable: X20 [mNAP ]
• Input variable: X21 [mNAP ]
• Input variable: X22 [mNAP ]
• Input variable: X23 [mNAP ]15

• Input variable: X24 [mNAP ]
• Input variable: X25 [mNAP ]
• Target Y : Qobs [m3/sec]
• Output: Qsim3 [m3/sec]

research question 1c20

This research question focuses on if adding hydrological
variables P and Ep improves the output of the model when
only using screen-1 wells. For answering this research ques-
tion, the already defined second model setup is compared
with a new defined model setup (setup 4), in which the25

screen-1 wells are taken into account and the hydrological
variables P and Ep.

Model setup 2:
30

Y (t) = F (X10(t),X11(t), .....X15(t)) (11)

• Input variable: X10 [mNAP ]
• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ]
• Input variable: X13 [mNAP ] 35

• Input variable: X14 [mNAP ]
• Input variable: X15 [mNAP ]
• Target Y : Qobs [m3/sec]
• Output: Qsim2 [m3/sec]

Model setup 4: 40

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t)) (12)

• Input variable: X10 [mNAP ]
• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ] 45

• Input variable: X13 [mNAP ]
• Input variable: X14 [mNAP ]
• Input variable: X15 [mNAP ]
• Input variable: P [mm/day]
• Input variable: Ep [mm/day] 50

• Target Y : Qobs [m3/sec]
• Output: Qsim4 [m3/sec]

Note that in these above mentioned model setups (1-4), the
timestep t is in days. This means that the relation with the
stream discharge is tried to be found for data samples at the 55
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same days: "simulating Qobs at day t based on the input
variables at day t".

research question 1d
It is known within the hydrological system that the input5

variables are subject to delays ∆t. For example, a part of
the rainfall will percolate to the groundwater and it can take
days, months or even years before it enters the stream and
hence contributes to the stream discharge (Gonzales et al.,
2009). Furthermore, the hydrological system has a certain10

memory: groundwater heads one day, one month or even one
year prior to the groundwater head at t can also have effect on
the relation with the stream discharge (Gonzales et al., 2009).
This research question focuses on if adding these delays and
memory to the input variable set of model setup 4 (screen-115

wells, P and Ep) improve the output of the model, resulting
in model setup 5.

To account for these delays ∆t and memory M of the sys-
tem, a new set of input variables is added to model setup 5.
For the delays, we take into account a delay of 1, 2, 3, 4, 520

and 6 days. This can be added in the dataframe by shifting
only the input variables 1,2,3,4,5 and 6 days forward. This
is only performed for the input variables P & Ep, as ground-
water heads will not change that much in a period of 6 days.
In addition, the memory will be added in the form of rolling25

means: for the groundwater heads the mean of the past t−3,
t− 7, t− 14, t− 30 and t− 120 days is added at t+ 1. The
shifting and rolling principle is explicitly explained in Figure
31.

Figure 31. Shifts (green) and rolling means (red) to add delay and
memory in the system, only performed for the input variables

Note that shifted input variables P and Ep will get an30

addition "_S+("number of days shifted") in their names. The
same principle applies for the rolling means of the screen-1
wells, as they will get an addition of "_R+("number of
rolling days") in their names. This results in the following

model setups for research question 1e: 35

Model setup 4:

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t)) (13)

• Input variable: X10 [mNAP ] 40

• Input variable: X11 [mNAP ]
• Input variable: X12 [mNAP ]
• Input variable: X13 [mNAP ]
• Input variable: X14 [mNAP ]
• Input variable: X15 [mNAP ] 45

• Input variable: P [mm/day]
• Input variable: Ep [mm/day]
• Target Y : Qobs [m3/sec]
• Output: Qsim4 [m3/sec]

Model setup 5: 50

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t),Mand∆t)

(14)

• Input variable: X10 [mNAP ] + R3, R7, R14, R30,
R120

• Input variable: X11 [mNAP ] + R3, R7, R14, R30, 55

R120
• Input variable: X12 [mNAP ] + R3, R7, R14, R30,

R120
• Input variable: X13 [mNAP ] + R3, R7, R14, R30,

R120 60

• Input variable: X14 [mNAP ] + R3, R7, R14, R30,
R120

• Input variable: X15 [mNAP ] + R3, R7, R14, R30,
R120

• Input variable: P [mm/day] + S1, S2, S3, S4, S5, S6 65

• Input variable: Ep [mm/day] + S1, S2, S3, S4, S5, S6
• Target Y : Qobs [m3/sec]
• Output: Qsim5 [m3/sec]

Now that we have different model setups, also different
machine learning algorithms are needed to actually use these 70

different model setups. However, first, a way of testing each
machine learning model is explained.
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Input variables Setup 1 Setup 2 Setup 3 Setup 4 Setup 5

X10 x x x x x
X11 x x x x
X12 x x x x
X13 x x x x
X14 x x x x
X15 x x x x
X20 x
X21 x
X22 x
X23 x
X24 x
X25 x
P x x

P -S1 x
P -S2 x
P -S3 x
P -S4 x
P -S5 x
P -S6 x
Ep x x

Ep-S1 x
Ep-S2 x
Ep-S3 x
Ep-S4 x
Ep-S5 x
Ep-S6 x
X10-R3 x
X10-R7 x
X10-R14 x
X10-R30 x
X10-R120 x
X11-R3 x
X11-R7 x
X11-R14 x
X11-R30 x
X11-R120 x
X12-R3 x
X12-R7 x
X12-R14 x
X12-R30 x
X12-R120 x
X13-R3 x
X13-R7 x
X13-R14 x
X13-R30 x
X13-R120 x
X14-R3 x
X14-R7 x
X14-R14 x
X14-R30 x
X14-R120 x
X15-R3 x
X15-R7 x
X15-R14 x
X15-R30 x
X15-R120 x

Qsim Qsim1 Qsim2 Qsim3 Qsim4 Qsim5

Table 8. The different model setups used in this research. Each model setup has a different set of input variables, whereas the target Qobs
stays the same for each model setup. Each model setup results in a different Qsim (Qsim1toQsim5
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Figure 32. The random division of the input variable X10 into a
training and test set, used in this research

Figure 33. The non-random division of the input variable X10 into
a training and test set, used in this research

Division in training and test set
For each machine learning algorithm it is important to test
the performance of the machine learning model. Therefore,
the dataset of 1985-2003 is split into a training and test set:
the training set to train the model and find the optimal model5

parameters of the algorithm ("train the model"), and a test
set to use this model with the optimized model parameters to
derive the output of the model (Qsim) and hence compare it
with the original output (Qobs) ("test or evaluate the model").
The question arises how large the training set and hence the10

test set should be. The training set should be large enough in
order to find the possible relation between the input(s) and
output of each model. However, there should still be a part
left to use as test set. This test set should be representative
for the total set, to make sure there are enough dynamics in15

the system.
From previous hydrological researches (Zhao et al., 2019;

Sachindra et al., 2018; Buckingham et al., 2015) it can be

Figure 34. The random division of the original target QCBU into
a training and test set, with the same division as in the random divi-
sion of the input variable

Figure 35. The non-random division of the original target set
QCBU into a training and test set, with the same division as in
the non-random division of the input variable

said that approximately 65-75% of the data should be set as
the training set, and the remaining 25-35% as the test set, in 20

order to capture a relation between the input(s) and output.
Note that in the dataset 1985-2003, dry years and wet years
are present. To include these wet and dry years as much as
possible in the training set and in the test set, the training set
is chosen as 75% of the total set, whereas the test set is only 25

25%.
A common approach in machine learning is to randomly

divide the total set in a training set and a test set (Raschka and
Mirjalli, 2017). An example of a randomized split of an input
variable and the target is depicted in Figure 32 & Figure 34 . 30

However, in this research this common random splitting
in training and test set is not applied. This is due to the fact
that the goal of this research is to fill up full years of stream
discharge between 2003-2019, and simulate full years after
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Figure 36. The principle of 5-folds grid search cross validation

2019. So, full years as a test set are also wanted. This means
that the first 14 years (1985-1999) are the training set, and
the remaining 4 years (1999-2003) are part of the test set
(Figures 33 & 35). These 4 years within the test set consists
of dry and wet years and are hence a good representation for5

the total dataset.
With this random or non-random division of a training

and test set, a data point is either part of the training set, or
part of the test set. Note that the non-random division in a
training and test set has been applied before in hydrological10

researches, for example in (Giri et al., 2019).

Model parameter and hyperparameters
The division of the dataset into a training and test set is ex-
plained above. It might get more complicated when taking15

hyperparameter tuning into account. Each machine learning
model has a few model parameters and a set of hyperparame-
ters (Raschka and Mirjalli, 2017). A machine learning model
is the definition of a mathematical formula with a number
of model parameters that need to be learned from the data20

(Probst et al., 2019). During training of the model, the model
parameters are determined such that the model fits best to the
existing data.

On the other hand, there are hyperparameters which can
not be directly learned from the regular training process.25

These hyperparameters express “higher-level” properties of
the model such as its complexity or how fast it should learn
(Raschka and Mirjalli, 2017; Probst et al., 2019). These pa-
rameters must be set manually before training the model
(Probst et al., 2019). In other words, hyperparameters are set-30

tings of an algorithm that can be tuned to optimize the model
performance.

The question arises which hyperparameters are optimal for
the model performance. The hyperparameters can be chosen
randomly, but a common procedure within machine learning 35

is to use 5-Folds Grid Search Cross Validation,which is
explained below.

5-Folds Grid Search Cross Validation
As a first step, the hyperparameters needed to be tuned are 40

selected for each machine learning algorithm and for each
hyperparameter a dictionary of values is defined. For exam-
ple, for the algorithm random forest, the depth of the trees is
set as [2,4,6] and the number of regression trees within the
random forest is set as [10,25,50]. This means in total 3*3 45

= 9 different sets of hyperparameters. For the second step,
the training set is taken into account (the test set is left apart)
and is divided into 5 folds. Each fold must be used for vali-
dation once, and k-1 times for training (see Figure 36). Until
this point, the steps are just preparations for the hyperparam- 50

eter tuning with 5-Folds Grid Search Cross Validation. The
hyperparameter tuning starts with taking the first hyperpa-
rameter set (tree depth = 2, number of trees = 10), training
the model with this hyperparameter set for the k-1 folds and
evaluating the model performance with the first hyperparam- 55

eter set on the first validation fold (score 1). The accuracy of
the model is noted as S1. The next step is to go through score
2 where another fold is chosen as the validation set. The ac-
curacy of the model for score 2 is noted as S2. This process
continues until all 5 folds have been validation set once. So 60

for the first hyperparameter set, S1 to S5 are noted down. In
the end, the evaluation of the total model (S) for the first hy-
perparameter set is calculated as the average of each single
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performance (Sk):

S =

k∑
i=1

Si (15)

For the first hyperparameters set 5 loops are performed.
For the second hyperparameter set another 5 loops are per-
formed. This process is continued untill all hyperparame-5

ters sets have followed the procedure explained above. For
the 9 different hyperparameters sets of the example, in total
9*5=45 loops are performed. The optimum hyperparameter
set is chosen as the one that gives the best overall accuracy of
the model. Note that the larger the hyperparameters set and10

the number of folds chosen, the more loops are performed
and the longer the calculation time. Therefore, the number of
folds in researches when applying k-folds grid search cross
validation is often maximized to 5 (Lu et al., 2019), as is also
the case for this research.15

After having found the best hyperparameter set with
5-Folds Grid Search Cross Validation, the total training set
is used again to retrain the model with the found hyperpa-
rameter set.

20

Overfitting and underfitting
Overfitting and underfitting are two phenomena that often
occur within machine learning. Overfitting occurs when the
machine learning algorithm captures the noise of the data. It
often occurs when the algorithm fits the data too well. Specif-25

ically, overfitting occurs if the model shows low bias but high
variance.

Underfitting on the other hand, occurs when the machine
learning algorithm cannot capture the underlying trend of
the data. It occurs when the algorithm does not fit the data30

well enough. Specifically, underfitting occurs if the algorithm
shows low variance but high bias. An example of underfit-
ting, an optimal fit and overfitting are depicted in Figure 37.
The precise principle of the variance and bias affecting over-
fitting or underfitting is outside the scope of this research.35

However, for each machine learning algorithm and its model
setup, overfitting and underfitting needs to be checked.

Figure 37. An example of underfitting, an optimal fit and overfitting

3.1.3 Chosen Machine Learning Algorithms

Data-driven models present linear or non-linear relation-
ships between input variables and its target. The least40

squares (LS), multiple linear regression (MLR), autoregres-

sive (AR), moving average (MA), autoregressive moving av-
erage (ARMA) and autoregressive integrated moving aver-
age (ARIMA) are examples of algorithms assuming a linear
relationship exist between the input and output of these mod- 45

els (Adnan et al., 2019). These linear algorithms have been
applied for streamflow forecasting since 1970 (Yaseen et al.,
2015). For example, AR, ARMA and ARIMA have been pre-
sented by Salas et al. (1980) in the application of modelling
hydrologic time series. Moreover, Valipour (2015) used an 50

ARIMA model for long-term runoff forecasting in the United
States. Since the streamflow process is complex and it is
characterized by nonlinear relationship between streamflow
and the characteristics of its watershed, these linear algo-
rithms result in poor model performance (Adnan et al., 2019). 55

Therefore, in the last decades, researchers have concen-
trated on machine learning algorithms that can capture the
non-linear relationship (Adnan et al., 2019), for example
model tree (MT), support vector machine (SVM) and artif-
ical neural networks (ANN’s). These models are helpful in 60

identifying the inherent nonlinearity in streamflow processes,
according to Adnan et al. (2019).

Stravs and Brilly (2007) succesfully applied a MT to pre-
dict streamflows of several tributaries of Sava River and con-
cluded that especially MT is useful for streamflow prediction 65

during rainless periods. This means that MT’s are useful in
predicting the streamflow during baseflow conditions. A MT
model can exist of one regression tree as in decision tree
regression (DTR), or of multiple trees in random forest re-
gression (RFR) and gradient boosting regression (GBR). 70

RFR and GBR are an extension of DTR and are able to im-
prove the model performance with regard to DTR. As these
models proved to be useful in predicting the baseflow, these
three mentioned machine learning algorithms are considered
in this research. In addition to these MT algorithms, SVM is 75

also considered in this research as a machine learning algo-
rithm to have also another kind of algorithm than tree-based
modelling. According to Msiza et al. (2007) SVM in the form
of regression (support vector regression (SVR)) shows to
be equal to ANN’s. Moreover, ANN’s are rather used when 80

there is big data and that is not the case in this research.
Therefore, ANN’s are not considered in this research.

Note that in all above-mentioned researches the discharge
time series itself has been used as an input variable to pre-
dict the discharge at 1,2,3 days, 1 month or 1 year ahead. In 85

this research, the discharge time series itself is not part of the
input variable set. It can be said that the discharge is not pre-
dicted, but simulated on day i based on other hydrological
time series on day i.

To conclude, the 5 different model setups (as described in 90

subsection 3.1.2) will be used by applying four different ma-
chine learning algorithms: decision tree regression (DTR),
random forest regression (RFR), gradient boosting
regression (GBR) and support vector regression (SVR).
DTR, RFR, GBR and SVR, as the name already suggests, 95

are based on a form of regression. The different algorithms
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are explained below. For simplicity reasons, each single
algorithm is explained with only 2 input variables X10(t)
& P (t) and the target Qobs(t). Furthermore, the simulated
discharge is defined as Qsim and the observed target as
Qobs. The goal of these machine learning algorithms is to5

find the hyper- and model parameters such that the difference
between Qsim and Qobs is minimized.

Decision Tree Regression (DTR)
DTR consists of one single regression tree. The general idea10

of regression trees is to (a) split the input variables space into
nested rectangular regions (Ri), and (b) within each region,
the target Qobs is simulated with a constant value (Qsimi =
ci) (Bhatnagar, 2018). This constant value is the average of
all the correspondingQobs in that region. The input variables15

space splitted in regions is visualised in Figure 38, according
to an example of the corresponding regression tree (Figure
39).

Figure 38. A visualisation of the input variables divided in multiple
nested rectangular regions, used for DTR

Figure 39. The corresponding regression tree of Figure 38

This method is called a tree, because the rectangular regions
are created by using a branching structure in which each20

branch is a binary split obtained by applying a threshold to
the value of one of the input variables (Mishra and Datta-
Gupta, 2018). Each tree starts with the root node where the

binary splitting starts and the internal nodes where the split-
ting process continues until a terminal node is reached. The 25

terminal nodes are also called the leaves of the tree. Each
regression tree has a certain tree depth, which is equal to
the number of splits. These definitions are also visualised in
Figure 39.

The question arises how the input variables space can be 30

splitted into the best regions, and therefore regression trees
make use of the so-called CART algorithm, consisting of 3
important components (Bhatnagar, 2018):

1. Selecting the best partition: defining a criterion to select
the best partition/split among all input variables. This 35

component is set in the hyperparameter "criterion".

2. Stopping rule: a rule to decide when a node is terminal,
such that it becomes a leaf.

3. Setting the tree depth: to avoid overfitting.

Note that these components are defined in different hyperpa- 40

rameters of the regression tree. These components and their
corresponding hyperparameters are shortly explained below,
starting with the first one. The objective of the regression tree
is to find the regions R1, ..,Rj that minimize the squared er-
ror loss (defined in the hyperparameter "criterion" = mean 45

squared error):

j∑
j=1

∑
i∈Rj

(Qobsi−QobsRj
)2 (16)

with Qobsi is the observed discharge of each sample i and
QobsRj is the mean observed discharge for the samples
within the jth box R (Bhatnagar, 2018). The solution is 50

found by the top-down "greedy" approach. It begins at the
top of the tree at which point all samples belong to a single
region (top-down), followed by binary splitting: each split
creates exactly two internal nodes R1 & R2 which leads to
the greatest possible reduction in the residual sum of squares. 55

R1(j,s) = {x|xj < s}, R2(j,s) = {x|xj ≥ s} (17)

The values j and s can then be found, that minimize the fol-
lowing equation:

∑
i:xi∈R1(j,s)

(Qobsi−QobsR1
)2+

∑
i:xi∈R2(j,s)

(Qobsi−QobsR2
)2

(18) 60

This algorithm is called "greedy", because at each step of the
tree-building process, the best split is made at that particular
step, rather than looking ahead and picking a split that will
lead to a better tree in some future step (Mishra and Datta-
Gupta, 2018; Bhatnagar, 2018). This process is continued un- 65

til the leaves of the tree are reached. The second component
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of the algorithm determines when the leaves are reached, and
hence the end of the tree-building process (the stopping rule).
This is determined by two hyperparameters: " the minimum
number of observations that must exist in a node in order
for a split to be attempted", and "the minimum number of5

observations in any leaf". Furthermore, the last step of the al-
gorithm is to set the hyperparameter "tree depth", in order to
avoid a very complex regression tree resulting in overfitting
(Bhatnagar, 2018). In the example of Figure 39 the tree depth
is set at 3, equal to the number of splits in the regression tree.10

This algorithm is trained based on the training data. In other
words, the rectangular regions Rj are defined by only using
the training data. When Qsimi from the input variables of
the test data for a specific sample i needs to be derived, it can
be found out in which region Rj the sample i fits within. For15

example, if sample i fits within region R1, it will get a Qsim
of the mean Qobs of the training data within that region.

Let’s assume now only having one variable X10 and the
regression tree is only the first split of Figure 39. To visualize
and understand this binary split a bit more, this split is visu-20

alised in Figure 40. Apparently if a groundwater head lower
than 8.0m, theQsimwill be 0.062m3/sec, while a ground-
water head equal to or larger than 8.0mwill result in aQsim
of 0.407 m3/sec. Equation 17 is solved with a cutoff point s
of 8.0 m for the variable X10.25

Figure 40. The first split in the regression tree of Figure 38: ground-
water heads of well X10 smaller than 8.0 m will get a Qsim of
0.062 m3/sec and groundwater heads equal to/larger than 8.0 m
will get a Qsim of 0.407 m3/sec, when using DTR.

Note that in the examples above the "mean squared error" is
used as the partition criteria. However, other partition criteria
can also be used within the first step of the CART algorithm.
Another popular partition criteria in addition to the "mean
squared error (MSE)" is the "mean absolute error (MAE)":30

j∑
j=1

∑
i∈Rj

|Qobsi−QobsRj
| (19)

The algorithm DTR is applied for the 5 different model
setups by using 5-folds grid search cross validation with
the following grids for the hyperparameters (often used for
DTR)(Mishra and Datta-Gupta, 2018): 35

Hyperparameters DTR Grid

partition criteria [’mse’, ’mae’]
max tree depth [2,4,6,8,10]
min samples leaf [1,2,4]
min samples split [2,5,10]
Table 9. The hyperparameters set used for the 5-folds grid search
cross validation for DTR

This results in 2*5*3*3=90 different hyperparameter sets
and taking 5-folds into account, in total 5*90=450 loops are
performed for the DTR algorithm, for each model setup.

Random forest Regression (RFR) & Gradient Boosting 40

Regression (GBR)
Random forest regression (RFR) and gradient boosting re-
gression (GBR) are both built from an ensemble of multiple
regression trees to increase the performance of a single
regression tree. However, the ensembling of the regression 45

trees is different in RFR and GBR (Mishra and Datta-Gupta,
2018).

Random Forest Regression (RFR)
RFR is ensembling the regression trees by using bootstap 50

aggregation or "bagging" (Mishra and Datta-Gupta, 2018):
build a model n times and take for each model a different set
of samples (approximately 60%) from the training set. For
each model, the same set of input variables is used, while
the samples are different in each model. So, in total n dif- 55

ferent subsets are extracted from the training data, resulting
in n models. Note that for RFR a model is equal to one sin-
gle regression tree. The samples are chosen randomly with
replacement. Replacement means that a certain sample from
the training set can be picked multiple times for choosing a 60

subset. For example, sample i can be present in subset n four
times. Each model with its own subset will result in a sin-
gle Qsim, according to the principle of DTR. In the end, we
take the mean of all the Qsim from each single model to get
our final desired output Qsim. The process of "bagging" is 65

visualised in Figure 41 and Figure 42.
For RFR, using the entire training set in building a regres-
sion tree will eventually always result in the same regression
tree. Therefore, the principle of "bagging" is used (Mishra
and Datta-Gupta, 2018). In this way, each regression tree fo- 70

cuses on subtly different aspects of the input variable-target
relationship. Aggregating these regression trees is expected
to combine the information of the relationships into a power-
ful simulation tool of the discharge.
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Figure 41. An example of the "bagging" process with 3 models
(n= 3), used for RFR with each model visualising another regres-
sion tree

Figure 42. An example of RFR with 3 different regression trees

RFR has the same hyperparameter set as the regression
tree, but in addition the number of regression trees is also an
important hyperparameter for random forests. Normally, the
more regression trees used in a random forest, the better the
performance of the random forest and the longer the running5

time of the model. However, this can also result in overfitting
(Mishra and Datta-Gupta, 2018) and needs to be checked on
the test set. The hyperparameters used for the 5-folds grid
search cross validation used for RFR for each model setup
are depicted in Table 10.10

Hyperparameters RFR Grid

partition criteria [’mse’, ’mae’]
max tree depth [2,4,6,8,10]
min samples leaf [1,2,4]
min samples split [2,5,10]
number of trees [10,25,50,100,250]
Table 10. The hyperparameters set used for the 5-folds grid search
cross validation for RFR

This results in 2*5*3*3*5=450 different hyperparameter
sets and taking 5-folds into account, in total 5*450=2250
loops are performed for the RFR algorithm.

A small example of an RFR containing 2 regression trees15

with only input variable X10 is explained step by step with
visualisations below.

Step 1: create 2 random subsets from the training set
In this example, the hyperparameter "number of trees" is set 20

as two. This means that 2 different random sample sets (60%)
are extracted from the total sample set (see Figure 43).

Figure 43. 2 random subsets with replacement, from the original
training set with a fraction of 60%. The number of subsets is equal
to the number of regression trees in the RFR.

Step 2: for each subset a regression tree is built according
the theory of the DTR explained above
The regression trees of each subset are depicted in Figure 44. 25

Figure 44. Each subset of Figure 43 has a specific regression tree,
according to the theory of DTR

Step 3: calculate the mean Qobs in each region R for each
regression tree
The regression tree of subset 1 resulting in the regions R is
depicted in Figure 45, and for subset 2 in Figure 46.
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Figure 45. Visualisation of the regression tree of subset 1 with their
regions R

Figure 46. Visualisation of the regression tree of subset 2 with their
regions R

Step 4: Derive Qsim by averaging the Qobs of each R
For example, a groundwater head of 8.6 meters will result
in 0.424 m3/sec for the first regression tree in the RFR, and
in 0.243 m3/sec for the second regression tree. Overall, the
Qsim will be the average of the 2:5

Qsim=
0.424 + 0.243

2
= 0.334m3/sec (20)

Gradient Boosting Regression (GBR)
Where RFR is able to built regression trees in parallel,
GBR can not. During GBR regression trees are built sequen-
tially (Mishra and Datta-Gupta, 2018). Each new tree is con-10

structed in such a way to compensate for the shortcomings
of the previous tree (Li, 2018). GBR can be divided into 3
important steps, explained with one input variable X10 (Li,
2018):

– start with a base model F1(X10) (one regression tree)15

where the model is fitted to the training data Qobs:

F1(X10)∼=Qobs (21)

With this model Qsim can be calculated resulting in
residuals h1(X10), calculated as the difference between
the simulated and observed discharge. 20

h1(X10) =Qsim−Qobs (22)

– fit a model to these residuals:

h1(X10) =Qsim−Qobs=Qsim−F1(X10) (23)

– create a new model (new tree) where the residuals of the
previous step are taken into account: 25

F2(X10) = F1(X10)+h1(X10) = F1(X10)+Qsim−F1(X10)

(24)

which results in:

F2(X10) = F1(X10) +h1(X10)∼=Qsim (25)

This last step shows that the second regression tree is a com-
bination of the first regression tree and a model of the resid- 30

uals of the first regression tree, and this needs to be fitted
to Qsim. In the end, a combination of multiple regression
trees is derived where the residuals need to be minimized
(Li, 2018). This prinicple is also visualised in Figure 47.

Figure 47. The principle of gradient boosting

The residuals as a function of Qsim and F (X10) can be 35

minimized by defining a certain loss function L, such that
they are equal to the negative gradient of the loss function
(Li, 2018):

−(
δL(Qsim,F1(X10)

F1(X10)
) =−(F1(X10)−Qsim) = h1(X10)

(26)

So, in each stage a regression tree is fit on the negative gra- 40

dient of the given loss function. To decrease the calculation
time of the GBR model, the hyperparameter "loss function"
is fixed to the most common one: least squares regression, in-
stead of using the hyperparameter within 5-folds grid search
cross validation. This means that other loss functions are ig- 45

nored within this research. With this given, the hyperparam-
eters set is similar to the set for RFR (see Table 11.
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Hyperparameters GBR Grid

partition criteria [’mse’, ’mae’]
max tree depth [2,4,6,8,10]
min samples leaf [1,2,4]
min samples split [2,5,10]
number of trees [10,25,50,100,250]
Table 11. The hyperparameters set used for the 5-folds grid search
cross validation for GBR

In common practice, GBR is a slower process than RFR
since the trees are built dependently (Raschka and Mirjalli,
2017). GBR is also more sensitive to overfitting since it uses
the residuals itself in the algorithm (Li, 2018).

5

Support Vector Regression
Support vector regression (SVR) is an extension of lin-
ear regression or polynomial regression (Paisitkriangkrai,
2012). When applying polynomial regression, a line is drawn
through the predictor space such that the sum of the mean10

squared error of all the samples with this line is minimized
(Figure 48).

Figure 48. The principle of polynomial regression applied in the
relation between input variable X10 and the stream discharge Qobs

For SVR a hyperplane is considered such that most of the
samples fall within this hyperplane (Figure 49). The hyper-
plane is constructed by a line (y = wx+ b) and adding an er-15

ror ε and −ε to this line. The equations of the two boundary
lines of the hyperplane become:

wx+ b= +ε & wx+ b=−ε (27)

The goal of SVR is a tradeoff between a minimization of the
margin ε and as much of the samples inside the hyperplane20

as possible. In formula form:

−ε≤ y−wx− b≥+ε (28)

Or as Paisitkriangkrai (2012) stated: "We don’t care about the
error, as long as the errors are less than ε". As can be seen in

Figure 49. The principle of SVR applied in the relation between
input variable X10 and the stream discharge Qobs

Figure 49, this problem is a non-linear case and therefore, the 25

data is mapped into a higher dimensional space by using the
Kernel trick. A common used kernel function is the Radial
Basis Function (RBF) (Paisitkriangkrai, 2012), which is also
used in this research:

K(X1,X2) = exponent(−γ||X1−X2||2) (29) 30

Finding the hyperplane for a specific problem is solved by us-
ing an optimization function including a cost function. These
functions require a lot of of mathematics and the in-depth
description of this algorithm is outside the scope of this re-
search. 35

The hyperparameters chosen to be tuned are the kernel co-
efficient γ of the Radial Basis function and a penalty error
parameter C (as part of the optimization function). The grids
for these hyperparameters used for the 5-folds grid search
cross validation are depicted in Table 12. 40

Hyperparameters SVR Grid

kernel coefficient of RBF (γ) [0.001, 0.01, 0.1, 1]
Penalty error parameter (C) [0.001, 0.01, 0.1, 1, 10]
Table 12. The hyperparameters set used for the 5-folds grid search
cross validation for SVR

3.2 Method 2: Conceptual hydrological modelling

To answer the question if machine learning algorithms can
be used in future researches for simulating stream discharge
with groundwater heads, the outputs of these algorithms are
compared with the output of an already existing model within 45

literature: a conceptual hydrological model. A conceptual hy-
drological model is a precipitation-runoff model built on the
observed or assumed empirical relations among different hy-
drological variables (Liu et al., 2017). The model conceptu-
alises the catchment as consisting of several reservoirs with 50
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mathematical equations describing the movement of water
into and out of the reservoirs (Chiew et al., 2018). A huge
difference with the machine learning models is the fact that
mostly groundwater head measurements are not regarded as
input variables.5

3.2.1 Chosen conceptual hydrological model

The conceptual hydrological model is used in this research
as a baseline for the other machine learning algorithms. In
other words: "can machine learning algorithms outperform
a conceptual hydrological model"? A large set of these con-10

ceptual models exist and are used within different researches,
for example: Sacramento, HBV and GR4J. A very popular
and simple model is the GR4J (Genie Rural a 4 parametres
Journalier) model, which has only 4 parameters and 2 water
reservoirs instead of for example 16 parameters and 5 reser-15

voirs for the more complicated Sacramento model. More-
over, in various researches the GR4J model showed an output
as good as the output of the Sacramento model (Kunnath-
Poovakka and Eldho, 2019). The GR4J model also accounts
for a lot of groundwater infiltration instead of direct runoff20

(overland flow), and hence fits the characteristics of the sub-
catchment Chaamse Beken as it is a catchment mostly de-
pendent on groundwater flow. In addition, the HBV model
showed in previous research (Van Loon et al., 2009) concep-
tual weaknesses in simulating stream discharge during dry25

periods , and is therefore not a good model for subcatchment
Chaamse Beken. Taken all this into account, the simple GR4J
model is chosen as the baseline for this study.

3.2.2 GR4J model

The GR4J model is as said before one of the simplest lumped30

conceptual hydrological models with a very good perfor-
mance in multiple researches (Kunnath-Poovakka and El-
dho, 2019). It has been used a lot for small and large catch-
ments worldwide with a different climate: from catchments
with a size of 10 km2 in France (Le Moine et al., 2007) to35

6200 km2 in India (Kunnath-Poovakka and Eldho, 2019).
The model simulates daily stream discharge data from the
daily inputs rainfall and potential evaporation, all in mm/day.
GR4J has two water reservoirs: the production reservoir and
the routing reservoir. The production reservoir accounts for40

storage in the surface soil which can store rainfall and is in-
fluenced by percolation and evaporation. The second reser-
voir is the routing reservoir, accounting for the amount of
water that can be stored in the deeper porous soil (Harlan
et al., 2010). Moreover, the model accounts for groundwater45

exchange with surrounding catchments (Perrin et al., 2003).
The model itself has only four parameters to optimize during
calibration (Harlan et al., 2010):

• X1: the production reservoir maximal capacity [mm]
• X2: the catchment water exchange coefficient [mm/day]50

Figure 50. The conceptual hydrological GR4J model

• X3: the one-day maximal capacity of the routing reser-
voir [mm]

• X4: the HU1 unit hydrograph time base [days]
The schematic version of the GR4J model is depicted in
Figure 50, whereas the above-mentioned parameters are also 55

visualised within. The working principle of this conceptual
model is explained below in detail (Harlan et al., 2010),
followed by the model calibration consisting of the chosen
objective function and optimization algorithm.

60
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Working principle of GR4J
The first step within the model determines either a net rainfall
Pn or a net potential evaporation capacity of En. This com-
putation is performed as if there were an interception reser-
voir of zero capacity, as the model does not account for an5

interception reservoir:

ifP ≥ E : Pn = P −E and En = 0 (30a)
ifP < E : Pn = 0 and En = E−P (30b)

In the case P > E, a fraction of P (Ps) goes to the produc-
tion reservoir, calculated by:10

Ps=
X1(1− ( S

X1 )2)tanh(PnX1 )

1 + ( S
X1 )tanh(PnX1 )

(31)

in whichX1 is the first parameter to calibrate (the production
reservoir maximal capacity) and S is the production reser-
voir level in mm. In the second case when P < E, a part
of the evaporation is removed from the production reservoir,15

defined as Es:

Es=
S(2− ( S

X1 ))tanh(EnX1 )

1 + (1− S
X1 )tanh(EnX1 )

(32)

The production reservoir level S can hence be calculated for
each time step as:

St+1 = St−Est+1 +Pst+1 (33)20

A part of the production reservoir is percolated (Perc) and is
calculated according the following equation:

Perc= S

1−

(
1 +

(
4

9

S

X1

)4
)− 1

4

 (34)

The production reservoir level is updated again via:

St+1 = St−Perct+1 (35)25

The production reservoir - part of the model stops here, and
the routing part of the model starts from here. The water
quantity that finally reaches the routing part of the model Pr
consists of the part Pn not going to the production reservoir
Pn−Ps, and the part Perc from the production reservoir,30

in equation form:

Pr = (Pn−Ps) +Perc (36)

Pr is then converted to a slow flow infiltrating into the routing
reservoir/ground (Q9) and a fast flow that flows on the soil
surface (Q1). 90% of Pr is routed by a unit hydrograph HU135

and a routing reservoir, while the remaining 10% is routed by
the unit hydrograph HU2. The hydrographs HU1 and HU2
are dependent on the same parameter X4. From the unit hy-
drographs and the hydrographs ordinates (UH1&UH2) by

using S curves, the Q9 and Q1 are calculated according the 40

following equations:

Q9(t) = 0.9 ∗
int(X4)+1∑

k=1

UH1(k) ·Pr(t− k+ 1) (37a)

Q1(t) = 0.1 ∗
int(2·X4)+1∑

k=1

UH2(k) ·Pr(t− k+ 1) (37b)

GR4J has the advantage to add a groundwater exchange term
in the form of loss or gain (F (X2)) to the routing reservoir 45

R and the fast flow Q1 dependent on parameters X2 and X3:

F =X2

(
R

X3

)7/2

(38)

with R the routing reservoir level, and X2 being positive for
a gain, negative for a loss and zero for no groundwater ex- 50

change. The routing reservoir level (R) is then determined
by Q9, X2 and X3 (in F) according the following equation:

Rt =max(0,Rt +Q9t+1 +Ft) (39)

From the routing reservoir, a part is emptied in the output
Qr, given by the following equation: 55

Qr =R

1−

(
1 +

(
R

X3

)4
)− 1

4

 (40)

After the determination of the Qr, the routing reservoir R is
then updated by:

Rt+1 =Rt−Qrt (41)

The part Q1 not going to the routing reservoir is added to a 60

certain amount of exchange with other catchments, resulting
in Qd according the following equation:

Qdt =max(0,Q1t +Ft) (42)

The total simulated stream discharge of the GR4J model
QsimGR4J is calculated by adding up Qr and Qd for each 65

day.

Model calibration
For fair comparison, the GR4J model is calibrated on the
same period as the training set used for machine learning 70

algorithms (1985-1999). Moreover, the validation period is
similar to the test set within machine learning (1999-2003).
The model is fitted by using the following two objective
functions: the Nash-Sutcliffe Efficiency (NSE) and the
mean absolute error (MAE). In addition, the optimization 75

algorithm "differential evolution" is used. The objective
functions and the optimization algorithm are explained
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below.

Objective function: NSE
The NSE function (Equation 43) has been extensively used in
hydrological applications (Krause et al., 2005) and adds nor-5

malization of the variance of Qobs (Krause et al., 2005). It
normalizes the model performance into an interpretable di-
mensionless scale (Knoben et al., 2019): NSE=1 indicates
perfect correspondence between Qsim and Qobs, NSE=0
indicates that the model simulations (Qsim) have the same10

explanatory power as the mean of the observations (Qobs)
and NSE<0 indicates that the model is a worse predictor than
Qobs.

NSE = 1−
∑n
i=1(Qobsi−Qsimi)

2∑n
i=1(Qobsi−Qobs)2

(43)

Despite the fact that the NSE is often used as a metric for15

the level of overall agreement between the observed and
simulated values, it is sensitive to peak flows due to the
use of squared deviations, making it less suited to low flow
simulation (Krause et al., 2005). In other words, it better
fits the peaks than the low flows. Therefore, the other basic20

objective function MAE is also used in this research.

Objective function: MAE
The MAE function (Equation 44) records in real units the
level of overall agreement between Qobs and Qsim (Daw-25

son et al., 2007). It is a non-negative metric that has no up-
per bound and for a perfect model the result would be zero.
Moreover, it is not weighted towards high or low flows. This
is an important difference with the NSE.

MAE =

∑n
i=1 |Qobsi−Qsimi |

n
(44)30

Note that MAE and NSE do not provide any information
about under- or overestimation (Dawson et al., 2007).

Optimization algorithm: differential evolution
To get the best set of parameters, an optimization algorithm is35

performed for each objective function. The global optimiza-
tion algorithm "differential evolution" is applied since it has
been used before for the calibration of GR4J models in pre-
vious researches (Shin and Kim, 2019). This optimization
algorithm requires two inputs, namely the objective func-40

tion to be minimized and bounds for the model parameters.
Useful bounds for the parameters are given by Perrin et al.
(2003), based on the 80% confidence intervals of the distri-
bution of model parameters obtained over a large sample of
catchments:45

Median value Bounds

X1 [mm] 350 100-1200
X2 [mm/day] 0 -5 to 3
X3 [mm] 90 20-300
X4 [days] 1.7 1.1 - 2.9
Table 13. Bounds of the GR4J model parameters used for the "dif-
ferential evolution" optimization algorithm

After optimization of the objective functions during the cal-
ibration period, the optimized parameters are used again for
the validation period to assess the model performance.

3.3 Evaluation metrics

In this section, the metrics used for model performance are 50

described. They are used for the machine learning algorithms
for the training and test set and for the GR4J model in the
calibration and validation period. The evaluation metrics are
divided into 3 categories: overall model performance, model
performance for peak flows and model performance for low 55

flows.

3.3.1 Evaluation metrics - overall model performance

The evaluation metrics used in this research for the over-
all model performance are NSE and MAE. These evaluation
metrics are already discussed in section 3.2.2 at "Model cal- 60

ibration" (Equation 43 and 44).

3.3.2 Evaluation metric - model performance peak
flows

A common evaluation metric to emphasize the peak flows,
is the fourth root mean quadrupled error (R4MS4E) (Daw- 65

son et al., 2007) given in Equation 45. This metric records in
real units the level of overall agreement between the observed
and simulated discharge. It is a non-negative metric that has
no upper bound and for a perfect model the result would be
zero. Due to the fourth power, more emphasis is put on the 70

peak flows, since in most cases the larger errors occur dur-
ing peak flow. Therefore, the R4MS4E is less insensitive to
errors during low flows.

R4MS4E =
4

√∑n
i=1(Qobsi−Qsimi)4

n
(45)

3.3.3 Evaluation metric - model performance low flows 75

Somewhat complementary to the R4MS4E for peak flows, is
the mean squared logarithmic error (MSLE) (Equation 46)
for low flows (Dawson et al., 2007). Due to the logarithmic
transformations involved in its computation, MSLE is a pre-
ferred measure for evaluating the model performance for low 80

flows. MSLE is non-negative and for a perfect model the re-
sult would be zero. Note that this metric can not be easily
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converted to MSE due to the logarithmic transformation, and
can therefore also not be easily made visible in the same unit
as the stream discharge (m3/sec).

MSLE =
1

n

n∑
i=1

(ln(Qobsi)− ln(Qsimi))
2 (46)

4 Results, Discussion & Limitations5

In this chapter, first of all an extensive discussion is given of
the results of the machine learning algorithms. Afterwards,
the results of the GR4J model are given. Furthermore, in the
last section the GR4J model is compared with the best ma-
chine learning algorithm(s), to determine if machine learning10

models equal the conceptual hydrological model such that it
can be used for future purposes. In addition to the results and
discussion, some limitations are given.

4.1 Results, discussion and limitations - Machine
learning15

This section covers the results of the different machine learn-
ing algorithms performed with their different model setups
for research questions 1a to 1d, as previously described in
section 3.1.2. In addition, an overall comparison is given for
all model setups and all machine learning algorithms (within20

this research) to see which combination of model setup and
algorithm results in the best model performance.

4.1.1 Results, discussion and limitations - research
question 1a

This subsection covers the results of the approach defined for25

research question 1a, in which the chosen machine learning
algorithms are performed with model setup 1 and 2, and are
compared. For a short recap, the model setups are depicted
below:
Model setup 1:30

Y (t) = F (X10(t)) (47)

Model setup 2:

Y (t) = F (X10(t),X11(t), .....X15(t)) (48)

The results itself of the algorithms by using model setup 1
are collected in Appendix C, consisting of a total dataset35

overview in C1, plots of the Qsim time series in appendix
C2, the optimal hyperparameters for each algorithm in ap-
pendix C3 and the regression trees of RFR in appendix C4.
The same applies for the results of model setup 2 in Ap-
pendix D, except for the regression trees of RFR as they be-40

come to large to visualise. Therefore, in Appendix D4 the
single regression tree of DTR is only visualised.

On the left of Figure 51, scatterplots of Qobs versus
Qsim1 for the test set for model setup 1 are visualised. The

right part of 51 shows scatterplots of Qobs versus Qsim2 45

for the test set for model setup 2. This is done for the four
different machine learning algorithms DTR, RFR, GBR
and SVR. The results are discussed in the next subsection,
followed by a subsection giving a short overview of the
limitations of this approach. 50

4.1.1.1 Results and discussion - research question 1a
The results of model setup 1 show that none of these machine
learning algorithms is able to simulateQobs. This means that
simulatingQobswith only wellX10 by using machine learn- 55

ing algorithms DTR, RFR, GBR and SVR is not possible.
However, the results of model setup 1 do show thatQobs can
be simulated better for low flows (<1 m3/sec) than for peak
flows. The evaluation metric R4MS4E for peak flows shows
values larger than 0.80 m3/sec, while a value of 0 m3/sec 60

means a perfect model performance. This is also visible in
the Qsim time series of the training and test set depicted in
Figure 52. This figure also shows worse model performance
for both the training and test set. It can hence be concluded
that underfitting occurs for all machine learning algorithms 65

by using model setup 1.
On the other hand, model setup 2 shows already much bet-

ter results when simulating Qobs. Especially the algorithms
RFR, GBR and SVR are able to simulate Qobs with a mean
absolute error of 0.15-0.17 (m3/sec)2. In terms of the NSE, 70

this means an NSE of 0.60-0.70. According to various hy-
drological models (Cheng et al., 2017) a NSE smaller than
0.5 is rated as unsatisfactory, a NSE between 0.50 and 0.65
as satisfactory, a NSE between 0.50 and 0.65 as good and a
NSE between 0.75 and 1.0 as very good. This means that us- 75

ing model setup 2 for the machine learning algorithms RFR,
GBR and SVR results in a good model performance. In other
words, the groundwater head time series of all screen-1 wells
X10-X15 can be used as input variables for machine learn-
ing algorithms RFR, GBR and SVR to simulate stream dis- 80

charge, when considering the overall model performance.
Furthermore, note that the algorithms DTR, RFR and GBR

results in a less smooth Qsim than when using the algorithm
SVR. This is due to the fact that DTR, RFR and GBR consists
of one or more regression trees where the outputs are dis- 85

continuous, whereas for SVR the output has a more smooth
output by nature. This is visible when zooming in on a part
of the test set in Figure 53. Note that using a regression tree
with a larger tree depth, results in more leaves and hence a
more smooth line (Mishra and Datta-Gupta, 2018). 90

An advantage of the algorithm RFR is its ability to give
the relative importance of each input variable. The relative
importance represents how much including a certain vari-
able improves the simulation (Raschka and Mirjalli, 2017).
Therefore, random forests are also often used to identify 95

the most important variables, especially when the number of
variables is larger than the number of samples (Behnamian
et al., 2017). In this way, the variables set can be reduced for
other machine learning algorithms.
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Figure 51. Test Results for research question 1a, including model setup 1 and model setup 2 for machine learning algorithms DTR, RFR,
GBR and SVR
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Figure 52. Qsim1 time series of the 4 different machine learning algorithms by using model setup 1, including training and test set

Figure 53. Qsim1 time series of the 4 different machine learning algorithms by using model setup 1, zooming in on a part of the test set

For model setup 1 there is only 1 input variable and hence
the relative importance for this input variable is 100%. For
model setup 2 on the other hand there are 6 input variables
(X10-X15) and the relative importance for well X14 is the
largest, followed by low values for well X11, well X10 and5

well X12, as can be seen in Figure 54. The well with the
largest relative importance has also the largest correlation
with the targetQobs as can be seen in the correlation heatmap
of the dataset for model setup 2 in Figure D3 in Appendix
D1.3. It is therefore logical that this well has the largest rel-10

ative importance, as it is able to capture the variance of the
target the most. Furthermore, note that this well is also the
well in absence of the clay layer of Stamproy in its geolog-
ical layers (see Figure 20). This could indicate that this spe-
cific well (X14) can be the one that is mostly responsible15

for the stream discharge at CBU. Note that input variables
with the largest relative importance are mostly the input vari-

Figure 54. The relative importance of the input variables of model
setup 2 when using RFR

ables at the top of the regression trees within a random forest
(Behnamian et al., 2017).
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Overall, it can be concluded that simulating Qobs is not
possible if only using well X10 as an input variable for all
four machine learning algorithms. This is as expected with
only one input variable in the machine learning algorithms.
Using all screen-1 wells (X10-X15) as input variables5

instead of just well X10, is increasing the overall model
performance a lot for especially algorithms RFR, GBR and
SVR. Peak flows however, are still drastically underesti-
mated for RFR, GBR and SVR. DTR has the worse model
performance in model setup 2, as it over- and underestimates10

peak flows.

4.1.1.2 Limitations - research question 1a
The first limitation of this approach is the number of hyper-
parameters. The to be tuned hyperparameters in this research15

are limited to a pre-defined set of 4 hyperparameters for
DTR, 5 hyperparameters for RFR, 5 hyperparameters for the
GBR and only 2 hyperparameters for SVR. Note that these
machine algorithms have more hyperparameters to tune, but
they are not taken into account in this research to avoid very20

long computation times. For the hyperparameters not taken
into account for tuning, the default value is chosen in its pro-
gramming code.

Furthermore, in model setup 1 the well X10 is chosen as
the most representative one of all the screen-1 wells, because25

of the fact that it has the largest correlations with the other
screen-1 wells. In an additional research the screen-1 well
X14 can be chosen for this model setup, since it has the
largest correlation with the targetQobs, as can be seen in Fig-
ure D3 of Appendix D2. Moreover, this well has the largest30

relative importance, so it is interesting to examine if it is pos-
sible to simulate Qobs based on only this well.

4.1.2 Results, discussion and limitations - research
question 1b

This subsection covers the results of the approach defined for35

research question 1b, in which the chosen machine learning
algorithms are performed with model setup 2 and 3, and are
compared. For a short recap, the model setups are depicted
below:
Model setup 2:40

Y (t) = F (X10(t),X11(t), .....X15(t)) (49)

Model setup 3:

Y (t) = F (X10(t), .....X15(t)&X20(t), ....X25(t)) (50)

The results itself of the algorithms by using model setup 345

are collected in Appendix E, consisting of a total dataset
overview in E1, plots of the Qsim time series in appendix
E2, the optimal hyperparameters for each algorithm in ap-
pendix E3 and the single regression tree of DTR in E4.

On the left of Figure 55, scatterplots of Qobs versus50

Qsim2 for the test set for model setup 2 are visualised. The

right part of 55 shows scatterplots of Qobs versus Qsim3

for the test set for model setup 3. This is done for the four
different machine learning algorithms DTR, RFR, GBR
and SVR. The results are discussed in the next subsection, 55

followed by a subsection giving a short overview of the
limitations of this approach.

4.1.2.1 Results and discussion - research question 1b
The results of model setup 3 show that including screen-2 60

wells in the input variables set of model setup 2 do not yield
better model performance for RFR, GBR and SVR. For RFR,
GBR and SVR the NSE does barely increase or decrease
from model setup 2 to 3. The NSE can still be seen as a satis-
factory or good overall model performance. This means that 65

screen-2 wells do not add additional variance of the Qobs in
the models. The Qsim time series of SVR of model setup 2
and model setup 3 are plotted for a part of the test set in Fig-
ure 57. It can be seen that the peaks are more underestimated
when also using screen-2 wells. 70

Figure 56. Qsim2 and Qsim3 time series of the machine learning
algorithm DTR by using model setup 2 and 3, zooming in on a part
of the test set

Figure 57. Qsim2 and Qsim3 time series of the machine learning
algorithm SVR by using model setup 2 and 3, zooming in on a part
of the test set

On the other hand, when using the machine learning algo-
rithm DTR, the overall model performance is increasing a
bit: going from a NSE of 0.42 to 0.59 m3/sec. The increas-
ing model performance of DTR is also visualised when plot-
ting theQsim time series (Figure 56) of model setup 2 and 3. 75

Adding screen-2 wells to the input variables set of algorithm
DTR results in less overestimated peak flows. For DTR it
can be stated that adding screen-2 wells will result in a bet-
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Figure 55. Test Results for research question 1b, including model setup 2 and model setup 3 for machine learning algorithms DTR, RFR,
GBR and SVR
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ter overall model performance, but the model performance is
still not that comparable with RFR, GBR and SVR.
Taking the relative importances of the input variables of
model setup 3 into account (see Figure 58, it becomes also
visible that screen-2 wells do not play an important role in5

comparison with screen-1 wells. Only well X21 has a very
small relative importance, which can be neglected. Again
well X14 has by far the largest relative importance and can
not be decreased by adding screen-2 wells.

Figure 58. The relative importance of the input variables of model
setup 3 when using RFR

As said in the introduction of this research the groundwa-10

ter flow and the interflow are responsible for the baseflow
(Bosch et al., 2017). It is expected that adding more and
deeper wells (screen-2 wells), would result in a better simula-
tion of the low flows. However, the evaluation metric MSLE
for low flows shows that the MSLE is not improving for15

all four machine learning algorithms when adding screen-2
wells to the input variables set of screen-1 wells. This could
indicate that screen-2 wells are not responsible for the base-
flow production in the Chaamse Beken.

Overall, it can be concluded that adding screen-2 wells to20

the input variables set consisting of screen-1 wells do not
or barely improve the overall model performance for RFR,
GBR and SVR. Only for DTR, the model performance is
increasing significantly, but is still not that good enough as
the model performances of RFR, GBR and SVR for model25

setup 2. Moreover, adding screen-2 wells as input variables
do not result in a better simulation of low flows. Lastly,
peak flows can not be simulated with only screen-1 and
screen-2 wells. This is as expected, since peak flows are
mostly caused by overland flow due to heavy precipitation30

(Steenbergen and Willems, 2012). Precipitation is absent in
the input variables set of model setup 2 and 3 and therefore,
peak flows can not be simulated with model setup 2 and 3.

4.1.2.2 Limitations - research question 1b35

The first limitation of this approach is again the number of
hyperparameters, which is already discussed in subsection
4.1.1.2.. The same applies for this approach again. Moreover,
in this approach only screen-1 and screen-2 wells are exam-
ined, but it would be interesting to examine what happens40

with the model performance when adding deeper wells (for
instance screen-3 wells).

4.1.3 Results, discussion and limitations - research
question 1c

This subsection covers the results of the approach defined for 45

research question 1c, in which the chosen machine learning
algorithms are performed with model setup 2 and 4, and are
compared. For a short recap, the model setups are depicted
below:
Model setup 2: 50

Y (t) = F (X10(t),X11(t), .....X15(t)) (51)

Model setup 4:

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t)) (52)

The results itself of the algorithms by using model setup 55

4 are collected in Appendix F, consisting of a total dataset
overview in F1, plots of the Qsim time series in appendix
F2, the optimal hyperparameters for each algorithm in ap-
pendix F3 and the single regression tree of DTR in appendix
F4. 60

On the left of Figure 59, scatterplots of Qobs versus
Qsim2 for the test set for model setup 2 are visualised. The
right part of 59 shows scatterplots of Qobs versus Qsim4

for the test set for model setup 4. This is done for the four
different machine learning algorithms DTR, RFR, GBR 65

and SVR. The results are discussed in the next subsection,
followed by a subsection giving a short overview of the
limitations of this approach.

4.1.3.1 Results and discussion - research question 1c 70

The results of this approach show that including P and Ep
in the input variable set of model setup 2 do not improve the
overall model performance of algorithms RFR and GBR. For
DTR and SVR on the other hand, the overall model perfor-
mance increases a bit. Especially, the overall model perfor- 75

mance of SVR increased to a level that this model can be
seen as usable for simulating Qobs. It has namely a NSE of
0.75, wich means that the model performance can be rated
as very good according to Cheng et al. (2017). Moreover,
the MAE is 0.15 m3/sec. The combination of the NSE and 80

MAE values is the best one so far for a certain model setup
and a specific algorithm. It can be seen that the peak flows for
SVR of model setup 4 are now also overestimated for some
samples. For model setup 2 by using SVR, most of the peaks
were underestimated. This is also visible in Figure 60. 85

Furthermore, it is remarkable to see that for machine learn-
ing algorithms RFR, GBR and SVR and using model setup
4, the peak flows are not better simulated than when us-
ing model setup 2. The evaluation metric R4MS4E for peak
flows increases to higher values, while lower values are 90
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Figure 59. Test Results for research question 1c, including model setup 2 and model setup 4 for machine learning algorithms DTR, RFR,
GBR and SVR
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Figure 60. Qsim2 and Qsim4 time series of the machine learning algorithm SVR by using model setup 2 and 4, zooming in on a part of
the test set

wanted. It was expected that the peak flows could be better
simulated with P and Ep in the input variables set. Hence,
this hypothesis can be refuted. Only for the algorithm DTR,
the peak flows are better simulated when using model setup
4 instead of model setup 2. A possible reason for the dis-5

ability of simulating peak flows with P and Ep in the input
variables set, is the fact that these peak flows are subject to
delays. A precipitation event at timestep t does not have to
result in a peak flow at the same timestep t. The phenomena
of delays will be examined in the next section of results.10

Lastly when taking only low flows into account, adding
P and Ep to the input variables set of model setup 2 does
not hugely change the low flow model performance (MSLE
stays approximately the same). This is due to the fact that P
is mostly absent during low flows (Bosch et al., 2017) and15

can therefore also not hugely change the low flow model per-
formance.

Taking the relative importances of the input variables of
model setup 4 into account (Figure 61), it can be seen that P
has the second largest relative importance, but is still small20

compared to the relative importance of well X14.
Apparently, P is important for simulating peak flows,

but they are still not very well simulated (still over- and
underestimation). Overall, it can be concluded that for
simulating base flow of Qobs, the models with model setup25

2 and 4 do not differ that much. However, when taking
the total time series of Qobs into account, the best model
performance is obtained for SVR with model setup 4.

4.1.3.2 Limitations - research question 1c30

The first limitation of this approach is again the number of
hyperparameters. Moreover, in this approach Qobs is not

Figure 61. The relative importance of the input variables of model
setup 4 when using RFR

simulated based on only the input variables P and Ep. It is
recommended in additional research to simulate Qobs with
only P and Ep, to see if peak flows can be better simulated. 35

It is expected however, that low flows will not be simulated
well enough, as they depend on groundwater flow.

4.1.4 Results, discussion and limitations - research
question 1d

This subsection covers the results of the approach defined for 40

research question 1d, in which the chosen machine learning
algorithms are performed with model setup 4 and 5, and are
compared. For a short recap, the model setups are depicted
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Figure 62. Test Results for research question 1d, including model setup 4 and model setup 5 for machine learning algorithms DTR, RFR,
GBR and SVR
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below:

Model setup 4:

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t)) (53)5

Model setup 5:

Y (t) = F (X10(t),X11(t), ...X15(t),P (t),Ep(t),Mand∆t)

(54)

The results itself of the algorithms by using model setup 5
are collected in Appendix G, consisting of a total dataset10

overview in G1, plots of the Qsim time series in appendix
G2, the optimal hyperparameters for each algorithm in ap-
pendix G3 and the single regression tree of DTR in Appendix
G4.

On the left of Figure 62, scatterplots of Qobs versus15

Qsim4 for the test set for model setup 4 are visualised. The
right part of 62 shows scatterplots of Qobs versus Qsim5

for the test set for model setup 5. This is done for the four
different machine learning algorithms DTR, RFR, GBR and
SVR. Note that for RFR and GBR not all the input variables20

are used, but only the 10 with the largest relative importance
(as in Figure G11) to reduce the computation time. The
results are discussed in the next subsection, followed by a
subsection giving a short overview of the limitations of this
approach.25

4.1.4.1 Results and discussion - research question 1d
The results of this approach show that adding memory
and delays to the system (model setup 5) seems not to
change a lot in the model performance for SVR and DTR, in30

comparison with model setup 4. The evaluation metrics stay
approximately equal for model setup 4 and 5. Therefore,
it can be concluded that adding memory and delays to the
input variable set, does not have an effect on the model
performance for SVR and DTR. For the algorithms RFR and35

GBR, the MAE does barely change, while the NSE shows a
slight increase. The NSE of the RFR and GBR when using
model setup 5 shows the best value so far and hence the best
overall model performance for these algorithms. Apparently,
the best overall model performance for algorithms RFR and40

GBR is with model setup 5: memory and delays are needed
in the input variables set.

4.1.4.2 Limitations - research question 1d
The first limitation of this approach is again the number of45

hyperparameters. Moreover, the number of days taken into
account for delays into the input variable set is restricted to 6
days for P andEp. Furthermore for adding theM of the sys-
tem, the rolling means are restricted to maximum 120 days
and only the values 3,7,14,30 and 120 days are taken into ac-50

count, but no values between them. Lastly, it is known that

groundwater can stay for multiple years in the groundwater
reservoir and therefore rolling means of longer than 120 days
should be considered in additional research.

4.1.5 Overall comparison machine learning algorithms 55

In this section an overview of the model performances
expressed in the evaluation metrics for DTR, RFR, GBR and
SVR is depicted in Tables 14 to 18, taking into account the
multiple model setups.

60

As can be seen in Table 14, using model setup 1 has a worse
overall model performance for all machine learning algo-
rithms. The NSE values are not larger than 0.30. Also, the
peak and low flow model performances are not optimal, when
considering the R4MS4E and MSLE values. 65

For machine learning algorithm DTR, model setup 3 to 5
can be chosen as the best model setups to simulate Qobs.
However, the other machine learning algorithms perform
clearly better when using model setup 2 to 5. Therefore, it
can be concluded that DTR is not a very good machine learn- 70

ing algorithm to simulate Qobs in this research.
For RFR, the best overall model performance is when us-

ing model setup 5 as can be seen in Table 18 (NSE of 0.70).
For GBR, the best overall model performance is when using
model setup 3 or 5 (NSE of 0.71). And for SVR, when us- 75

ing model setup 4 (Table 17). The NSE has a value of 0.75
and hence the model can be rated as very good, according to
Cheng et al. (2017). It can be concluded that the best over-
all model performance is reached when using the algorithm
SVR and model setup 4. This means an input variables set of 80

the screen-1 wells X10-X15, P and Ep.
Therefore, it would be logical to choose this algorithm and

model setup for the comparison with the conceptual GR4J
model. However, the goal of this research is to simulate
Qobs, but focused on the baseflow (low flows). When simu- 85

lating the baseflow more accurately, the ecology-improving
measures can also be more accurately, quantitatively ex-
amined. It is more important for this research to choose
the combination of algorithm and model setup that has the
lowest MSLE value. 90

The lowest MSLE value is for the combination of algorithm
GBR and model setup 2. The MSLE has the lowest rounded
value of 0.017 ln2(m3/sec). However, the MSLE value of al-
gorithm SVR and model setup 4 does not differ that much 95

from algorithm GBR and model setup 2. And since the over-
all model performance of SVR when using model setup 4 is
better, this combination is again chosen as the best machine
learning model for this research. Furthermore, note that the
SVR has a much shorter computation time than the GBR al- 100

gorithm, which is a huge advantage. Summarized, the SVR
algorithm when using model setup 4 will be compared with
the GR4J model in this research.
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Lastly, it must be stated that when peak flows are the
most important flows to model, none of these algorithms and
model setups result in a very good model performance. The
lowest R4MS4E value is 0.57 m3/sec for algorithms RFR,
GBR and SVR when using model setup 5.5

Model setup 1 DTR RFR GBR SVR

NSE 0.25 0.29 0.30 0.28
MAE 0.28 0.27 0.28 0.24

R4MS4E 0.83 0.81 0.80 0.86
MSLE 0.053 0.050 0.049 0.045

Table 14. Evaluation metrics for machine learning algorithms using
model setup 1

Model setup 2 DTR RFR GBR SVR

NSE 0.42 0.69 0.70 0.69
MAE 0.22 0.16 0.15 0.17

R4MS4E 0.71 0.59 0.57 0.59
MSLE 0.032 0.018 0.017 0.020

Table 15. Evaluation metrics for machine learning algorithms using
model setup 2

Model setup 3 DTR RFR GBR SVR

NSE 0.59 0.66 0.71 0.66
MAE 0.18 0.17 0.16 0.18

R4MS4E 0.69 0.58 0.59 0.62
MSLE 0.023 0.021 0.017 0.022

Table 16. Evaluation metrics for machine learning algorithms using
model setup 3

Model setup 4 DTR RFR GBR SVR

NSE 0.57 0.68 0.65 0.75
MAE 0.19 0.16 0.16 0.15

R4MS4E 0.64 0.59 0.65 0.60
MSLE 0.025 0.019 0.018 0.017

Table 17. Evaluation metrics for machine learning algorithms using
model setup 4

Model setup 5 DTR RFR GBR SVR

NSE 0.57 0.70 0.71 0.74
MAE 0.18 0.15 0.16 0.15

R4MS4E 0.65 0.57 0.57 0.57
MSLE 0.025 0.018 0.017 0.018

Table 18. Evaluation metrics for machine learning algorithms using
model setup 5

4.2 Results, discussion and limitations - GR4J model

This section covers the results of the GR4J model, in which
the two different objective functions are used for calibration,
as described in section 3.2.2 of the chapter "Methods". Re-
sults of the GR4J model for using each single objective func- 10

tion are more extensively visualised in Appendix H.

4.2.1 Results and discussion - GR4J model

The results of the GR4J model for the two different objec-
tive functions for the validation set are depicted in Figure
63. At first glance, it seems that these models with different 15

objective functions have almost a similar output. The eval-
uation metrics of the overall model performance show also
similar values. However, when zooming in on peak flows,
the GR4J model calibrated with the objective function MAE
gives slightly higher values for Qsim than the GR4J model 20

calibrated with the NSE function. This is also visible in Fig-
ure 64 when zooming in on the Qsim time series of the val-
idation period. The model with the objective function NSE
can better simulate Qobs for peak flows. This is also as ex-
pected, since models with objective functions NSE focus 25

more on fitting peak flows than the other objective func-
tion MAE does (Buzacott et al., 2019). However, both mod-
els still do not perform optimal for simulating peak flows:
the R4MS4E values of both models are still larger than 0.5
m3/sec. 30

On the other hand, zooming in on dry periods where the
baseflow becomes more dominant (Figure 65), it becomes
obvious that the model with objective function MAE is the
one that has the best model performance in simulating Qsim
during baseflow conditions. The MSLE value of this model 35

is also the lowest: 0.0084 ln2(m3/sec). Therefore, this model
is chosen as the baseline model for this research. The opti-
mized parameters of the GR4J model are as follows: a pro-
duction store maximal capacity (X1) of 456 mm, a catch-
ment water exchange coefficient (X2) of -5 mm/day (loss 40

to other catchments), an one-day maximal capacity of the
routing reservoir (X3) of 27 mm and the HU1 unit hydro-
graph time base (X4) is 1.1 days. Especially, parameter X2
is remarkable, as it states that groundwater is exchanged to
surrounding catchments in the form of a loss. In the machine 45

learning algorithms, this is something that has not been taken
into account.
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Figure 63. Test Results of GR4J model calibrated with objective functions NSE, MSE and MAE

Figure 64. The Qsim time series of the GR4J model calibrated with the objective functions NSE and MAE - zooming in on peak flows of
the validation set

Figure 65. The Qsim time series of the GR4J model calibrated with the objective functions NSE and MAE - zooming in on baseflows of
the validation set
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4.2.2 Limitations - GR4J model

The first limitation of the GR4J model is the fact that there
is no interception store (Harlan et al., 2010): there is either
a net rainfall Pn or a net potential evaporation capacity of
En. In reality, the interception store for the Chaamse Beken5

is not equal to zero as the land uses within Chaamse Beken
show possibilities for interception. Furthermore, the model
assumes that 90% of the water that reaches the routing part
(Pr) is converted to a slow flow infiltrating into the routing
store, while only 10% is converted to a fast flow that flows10

on the soil surface. It should be examined in additional re-
search if these percentages can also be calibrated to get an
even better model performance.

Furthermore, note that the GR4J model is a lumped model.
In future researches, also distributed versions of this model15

can be used to even further improve the model performance
of this conceptual hydrological model in the Chaamse Beken.

4.3 Comparison machine learning algorithm & GR4J
model

In this section, the outputs of the best machine learning al-20

gorithm (SVR with model setup 4) are compared with the
outputs of the GR4J model (calibrated on the objective func-
tion MAE). These 2 models are chosen because of their best
performance in simulating Qobs during baseflow conditions.

In Figure 66, scatterplots of the test/validation set are25

depicted of these 2 models. Moreover, in Figure 67 the
Qsim time series of the test/validation set are visualised, also
zoomed in on a part of the set where peakflow and baseflow
are dominant. The evaluation metrics in Figure 66 show that
both models can be rated as a very good overall model. The30

NSE of the machine learning model is 0.75, whereas the NSE
for the conceptual GR4J model is slightly higher (0.80).

Moreover, the MAE is larger in the machine learning
model than in the GR4J model. Especially during low flows
(0-1 m3/sec) the errors are larger in the machine learning35

model, compared to the GR4J model. As a result, the MSLE
is higher for the machine learning model than for the GR4J
model. This means that the GR4J model has a better model
performance during baseflow conditions. It must be men-
tioned though that this difference is not that significant.40

Lastly, both models do not perform well during peakflow
conditions: the R4MS4E is for both models around 0.58-0.60
m3/sec. The machine learning model underestimates peak
flows more, while the conceptual GR4J model mostly over-
estimates peak flows.45
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Figure 66. Test results of machine learning model SVR performed with model setup 4 (left) and test results of GR4J model calibrated with
MAE as objective function (right)

Figure 67. Overall comparison, peakflow comparison and baseflow comparison of the Qsim time series of the GR4J model calibrated with
the objective function MSE and of the machine learning model SVR performed with model setup 4. The green dotted circle in the overall
comparison visualises the baseflow comparison and the black dotted circle the peakflow comparison.
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5 Recommendations and future research

In the previous chapter already some limitation and recom-
mendations are given. In this chapter, some ideas for future
researches are further elaborated.

5.1 Screen wells outside Chaamse Beken5

For the machine learning algorithms, the screen wells only
within the Chaamse Beken are considered in this research.
However, wells outside the Chaamse Beken can also play
a role in the production of the baseflow. The boundaries of
the subcatchment Chaamse Beken do not necessarily have10

to be the boundaries of the groundwater system itself of the
Chaamse Beken. For example all the groundwater head time
series of the screen-1 and screen-2 wells from the shapefile
of Dinoloket used in this research, can be used as input vari-
ables for the machine learning algorithms in future research.15

Figure 68. The screen-1 wells within Chaamse Beken used in this
research and possible other screen-1 wells outside Chaamse Beken
for future research)

Figure 68 shows that there are a lot of other wells around the
stream discharge weir CBU. The wells used in this research
are all to the right of CBU. Wells on the other side of CBU
can also play a role in the groundwater system of Chaamse
Beken. All the red marked wells in this figure that do have20

data from 1985-2003 and until now (2019) can be used for
future research. Note that the more wells are used as input
variables in the machine learning algorithms, the longer the
computation time will be (Raschka and Mirjalli, 2017). As an
advantage, by using first the relative importance of the ma-25

chine learning algorithm RFR, for example the 10 wells with
the largest relative importance can be considered for the other
algorithms. In this way the computation time is reduced and

it can be seen which wells are important for the simulation
of the stream discharge CBU. 30

5.2 Baseflow separation

In this research, the total stream discharge is simulated by
using different machine learning algorithms. As said before,
it must be noted that the simulation of the baseflow is the
most important in this research. An idea for future research 35

is to filter the baseflow from the total stream discharge (Fig-
ure 69), before it is used in the machine learning models.
Multiple baseflow separation techqniques exists according to
the paper of Duncan (2019). Examples are baseflow reces-
sion and the Eckhardt digital filter. 40

Figure 69. A division of the total stream discharge into a quick-
response runoff (overland flow and part of interflow) and the base-
flow (groundwater flow and part of interflow)

It is expected that the machine learning algorithms will re-
sult in a better model performance when only considering
the baseflow. Note that there are also conceptual hydrolog-
ical models that can simulate the baseflow part of the total
stream discharge (Pelletier and Andréassian, 2019). 45

5.3 Manual separation of low and high flows

Instead of using baseflow separation as described above, the
original time series of Qobs can be broken down manually
in low flows and high flows (Figure 70). For example, the
low flows are defined as the values of Qobs between 0 and 1 50

m3/sec (Figure 71). And the high flows are defined as flows
larger than 1 m3/sec. The methods in this research for the
machine learning algorithms can now be used for only the
low flows. The high flows can then be neglected: simulating
low flows is more important than high flows for the purpose 55

of this research. Note that this procedure can not be applied
for the GR4J model as this model can only simulate full time
series (Perrin et al., 2003). However, for the GR4J model the
evaluation metrics can be calculated for only the low flows.
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In this way, the GR4J model can be compared with the ma-
chine learning algorithm for low flows.

Figure 70. The original time series Qobs manually broken down in
high (> 1 m3/sec) and low flows (< 1 m3/sec)

Figure 71. The manually broken down time series Qobs in low
flows (0-1 m3/sec) of Figure 70

To show an example, the SVR machine learning algorithm
by using model setup 4 is applied for only these low flows. A
scatterplot showing Qobs versus Qsim4 for these low flows5

by using SVR is depicted in Figure 72. By using SVR for
these low flows, the stream discharge can also not be sim-
ulated as larger than 1 m3/sec. The very low flows up to
0.4 m3/sec are mostly overestimated, while the flows be-
tween 0.4 and 1.0 m3/sec are particularly underestimated. It10

is therefore recommended that this procedure is repeated for
taking only the flows up to 0.4 m3/sec. Nevertheless, this
machine learning model for low flows is still rated as "good"
according to the NSE of 0.72 (Cheng et al., 2017).

A scatterplot showing only the Qobs for low flows ver-15

sus the corresponding QsimMAEGR4J is depicted in Fig-
ure 73. It is visible that for some low flows the stream dis-
charge is simulated as larger than 1.0 m3/sec. For this GR4J
model and taking only the low flows into account, the model
can be rated as "very good" according to the NSE of 0.7820

(Cheng et al., 2017).
It is recommended to follow this procedure also for the

other machine learning algorithms in future research. More-
over, other manually divisions in low and high flows can be
examined.25

5.4 Logarithmic transformation of Qobs

In the machine learning algorithms of this research, a relation
is found between the input variables and the target Qobs. A
non-linear relation exists between the variables and target.
A common way to deal with this non-linearity and to make30

Figure 72. The manually broken down time series Qobs in low
flows in Figure 71 used for the machine learning algorithm SVR
with model setup 4

Figure 73. Test Results of GR4J model calibrated with objective
functions MAE. The evaluation metrics are only computed for the
low flows.

the data more interpretable is the logarithmic transformation
of the target. By applying the logarithmic transformation the
data will become less skewed. A generally known example
of applying a logarithmic transformation within hydrology
is the rating curve (Fenton, 2018). The rating curve finds a 35

relation between the stream discharge and the water stage.
By applying a logarithmic transformation to the stream dis-
charge, the rating curve becomes a straight line. With this
straight line, it is easier to find a relation and to extrapolate
the data (Fenton, 2018). 40

The logarithmic transformation of the stream discharge
can also be applied for the target Qobs in the machine
learning algorithms. The Qobs time series becomes then the
ln(Qobs) time series (Figure 74).
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Figure 75. The relation between the groundwater heads of well
X10 and the target Qobs of CBU

Figure 74. The logarithmic transformation of the target Qobs, with
a division in training and test set

Figure 74 does not immediately shows what a logarithmic
transformation of the stream discharge implies. To better vi-
sualize what the effect of the logarithmic transformation of
Qobs is, two scatterplots are visualised in respectively Fig-
ure 75 and 76. The first figure shows the relation between the5

groundwater heads of well X10 and the target Qobs of the
training set. As can be seen, a non-linear relation exist. How-
ever, when the stream discharge is transformed to ln(Qobs,
a more linear relation exist between the stream discharge and
the groundwater heads of well X10 (Figure 76). Moreover,10

the data becomes less skewed in comparison with the data of
Figure 75.

It is recommended to further examine if using ln(Qobs) as
a target in the machine learning algorithms (instead ofQobs),
is improving the model performances.15

5.5 Implement other splitting criteria in MT modelling

In the applied machine learning algorithms DTR, RFR and
GBR of this research, only two different splitting criteria are
considered: ’mse’ and ’mae’. In fact, this means that the re-
gression trees in these algorithms are calibrated on this crite-20

ria. However, for the GR4J model the NSE is also used as a
objective function. For more fair comparison with the GR4J

Figure 76. The relation between the groundwater heads of well
X10 and the target Qobs of CBU, when applying a logarithmic
transformation to Qobs

model, the splitting criterion NSE should also be considered
in the algorithms DTR, RFR and GBR.

Moreover, the evaluation metric MSLE can also be con- 25

sidered as the splitting criterion for the MT algorithms. With
this MSLE function, the model focuses more on the fit of
low flows. And since low flows are the most important in this
research, it is recommended to examine this in further re-
search. Note that for fair comparison with the GR4J model, 30

the MSLE should then also be used as objective function in
the GR4J model.

5.6 Validation of groundwater heads

The groundwater heads used in this research are validated
with Pastas TSA. These simulated heads with Pastas TSA 35

are used as an input for the machine learning algorithms.
This means that the machine learning model can only recog-
nize these simulated groundwater heads in order to simulate
stream discharge. For example, well X10 is calibrated with
Pastas TSA for the period until 2010. If groundwater heads 40

after 2010 are input for the machine learning models, the data
can not be simulated again with Pastas TSA with other model
parameters for this period. This means that the model param-
eters of the calibrated groundwater heads before 2010 need
to be used to extrapolate the groundwater heads to the period 45

after 2010. If this is not done correctly, the model can fail
to recognize the groundwater heads as inputs and the model
performance will decrease. This is known as data leakage in
machine learning (Luigi, 2019).

In order to overcome this problem of data leakage, the in- 50

terpolated groundwater head time series can also be used as
inputs for the machine learning models. Note that these in-
terpolated series can only be used if Pastas TSA showed that
the groundwater head time series can be validated.
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5.7 Validation of Qobs

Lastly, the validation of the stream discharge time series
(Qobs) of CBU should be more highlighted. In this research,
the correlation of the time series of CBU with other surround-
ing time series is examined. This is a correlation technique5

and is often used as a validation tool. However, it is recom-
mended for future research to further examine possible vali-
dation tools of stream discharge.

6 Conclusions

Three main research questions provided the basis for this10

study. These research questions are briefly discussed in this
chapter. Subsequently, an answer to these questions is formu-
lated.

6.1 Conclusions of research question 1

Can we analyze if there is/are (a) relation(s) between15

groundwater heads (X) and stream discharge (Y) in the same
subcatchment by using machine learning algorithms, such
that we can simulate the stream discharge time series from
these groundwater heads in the future, or to fill in gaps in
the historical stream discharge time series?20

To answer this research question, the subcatchment Chaamse
Beken is used for the groundwater head time series (X) and
the stream discharge gauge Chaamse Beken Ulvenhout for
the stream discharge time series (Y). In total six different25

wells within Chaamse Beken were used, that all have a
screen-1 and a screen-2. This means six screen-1 wells
(X1) and six screen-2 wells (X2). Moreover, four different
machine learning algorithms are used in this research:
decision tree regression (DTR), random forest regression30

(RFR), gradient boosting regression (GBR), and support
vector regression (SVR). For these algorithms different
combinations of input variables were used: X1, X2, precip-
itation, and potential evaporation. Note that it is attended to
find a link for inputs at day i and the output also at day i.35

The most important findings are summarized below:

• By using only the most representative screen-1 well of
the six screen-1 wells as input, no relation was found be-
tween the groundwater heads of this well and the stream40

discharge for all four algorithms. The NSE values of
these models did not reach values larger than 0.30.

• When using all six screen-1 wells, for the algorithms
RFR, GBR and SVR a relation was found. The overall
model performance when using all six screen-1 wells45

resulted in a NSE of 0.69-0.70 for these 3 algorithms.

• Addition of the six screen-2 wells to the screen-1 wells,
did not or did not significantly improve the overall
model performance of the algorithms RFR, GBR and
SVR. This means that screen-2 wells were not needed 50

for the relation between groundwater heads and stream
discharge within the Chaamse Beken. Also, the low
flow model performance (expressed in evaluation met-
ric MSLE) did not improve. In other words, the screen-2
wells are not needed for the simulation of the baseflow 55

of the stream discharge in the Chaamse Beken. Lastly,
note that the NSE value of the algorithm DTR did in-
crease, but is still very small in comparison with the
other algorithms.

• Addition of precipitation and potential evaporation to 60

the six screen-1 wells, did not result in a better overall
model performance for RFR and GBR, but the overall
model performance of DTR and SVR did increase. The
overall performance of the DTR algorithm is still poor
in comparison with the other algorithms. The overall 65

model performance of SVR significantly increased to
a NSE of 0.75, of which it can be said that the model
can be rated as good (according to Cheng et al. (2017)).

• Taking peak flow model performance into account, it 70

is expected that precipitation plays a significant role in
the simulation of peak flows. The peak flow model per-
formance is evaluated with the metric R4MS4E. It can
be said that the peak flow model performance does not
improve when also precipitation is taken into account 75

in addition to the screen-1 wells. Apparently, these ma-
chine learning models can not be used when simulation
of the peak flows is important.

• It is known that precipitation events are subject to de-
lays before they effect the stream discharge, as each hy- 80

drological system has a certain memory or state. There-
fore, also some shifts (1 to 6 days) of the precipitation
time series were added as inputs in the machine learning
models. In addition, rolling means (3,7,14,30,120 days)
of the groundwater head time series were added as input 85

series to take the memory of the system into account.
It is concluded that for the algorithms RFR and GBR
the delays and memory of the system play a small role
in the overall model performance (NSE increases from
0.69-0.70 to 0.70-0.71). For the algorithm SVR it does 90

not improve overall model performance. Moreover, the
peak flows are still not well simulated for all the algo-
rithms.
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6.2 Conclusions of research question 2

Which DDM is the most suitable for finding a relation with
the stream discharge?

The SVR algorithm is able to get the best overall model5

performance of all four algorithms: a NSE value of 0.75 can
be reached. For this model the variables X1, precipitation
and potential evaporation are needed as input variables. The
second best overall model performance is obtained when
using algorithm GBR and only the six screen-1 wells as10

inputs (a NSE of 0.70). An important difference between
these 2 algorithms is the computation time. Where the
computation time of SVR is only seconds to a few minutes,
the computation time of GBR is a couple of hours. Note that
for the subcatchment Chaamse Beken it is mostly important15

to simulate the low flows of the stream discharge. The MSLE
value of these two above-mentioned algorithms is for both
algorithms 0.017 ln2(m3/sec). This is also the best score
for the low flow model performance when considering all
algorithms and all possible input variables. Since SVR has20

the best overall model performance and has one of the best
low flow model performances, this algorithm is selected for
the final research question.

Lastly, note that the algorithm DTR is not an appropriate ma-25

chine learning algorithm for this research. It can not be used
to find an accurate relation between groundwater heads and
stream discharge.

6.3 Conclusions of research question 3

Does the best performing DDM perform as well or better30

than a conceptual hydrological model?

The GR4J model is chosen in this research as the conceptual
hydrological model. This model is calibrated with the
objective function MAE. The results of the GR4J model35

showed a very good overall model performance: a NSE
of 0.80. This means that the GR4J model outperforms the
SVR model, when considering overall model performance
of stream discharge simulation. For low flows, the GR4J
model shows slightly better model performance: a MSLE40

of 0.0084 ln2(m3/sec) instead of 0.017 ln2(m3/sec) for the
SVR algorithm. Neither model performs well for peak flow.
Overall, the conceptual model shows somewhat better results
than the machine learning model SVR.

45

It must be noted that the SVR model and the GR4J model are
completely different in their practical application:

• Where physical understanding of the hydrological sys-
tem is needed for the GR4J model, the machine learning
algorithm (a data-driven model) can be applied without50

these physics of the system.

• In the conceptual GR4J model the memory/state of the
system is included. Furthermore, delays (for example
P resulting in stream discharge) within the system are
directly included in the conceptual model. The mem- 55

ory of the system is not included in the the machine
learning model, but the delays are indirectly included
in the machine learning model. The groundwater heads
are namely a weighted moving average of recharge and
do indirectly include the delays within the system. 60

• Groundwater head time series play an important role for
the machine learning model. These groundwater heads
are not directly included in the GR4J model. It is con-
cluded that groundwater heads play an important part in
the simulation of stream discharge, especially for base- 65

flow.
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Appendix A: The performance of monitoring wells with different screens

In this Appendix, it is explained why different screens are used in monitoring wells. Different screens are needed to see if
infiltration or seepage between different layers occurs. Therefore, the screens are placed in different layers. When the water
level of a screen-1 well is higher than that of a screen-2 well, infiltration will occur to deeper layers (Figure A1). On the other
hand, when the water level of the screen-2 well is higher than the level of the screen-1 well, seepage will occur and water from 5

a deeper layer will be pushed toward the screen-1 well layer (Figure A2).

Figure A1. The phenomena infiltration between 2 layers
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Figure A2. The phenomena seepage between 2 layers
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Appendix B: TSA with Pastas

In this Appendix, first the time series of the explanatory variables used within TSA Pastas are given, followed by the results of
the simulated groundwater head time series with Pastas.

B1 Explanatory variables Chaamse Beken

The explanatory variables used for simulating the groundwater head time series of screen-1 wells (X1) and screen-2 wells 5

(X2) are: precipitation P , potential evaporation Ep, Qpumping Prinsenbosch and the Qeffluent of RWZI Chaam. The time
series are depicted below.

B1.1 Explanatory variables P and Ep

Figure B1. Time series of explanatory variables P and Ep

Figure B2. Overview time series of explanatory variable P per year

Figure B3. Overview time series of explanatory variable Ep per year
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B1.2 Explanatory variable Qpumping Prinsenbosch

Figure B4. Time series of explanatory variable Qpumping Prinsenbosch

Figure B5. Overview time series of explanatory variable Qpumping Prinsenbosch per year



V. Demetriades: Relating groundwater heads to stream discharge by using machine learning techniques 69

B1.3 Explanatory variable Qeffluent of RWZI Chaam

Figure B6. Time series of explanatory variable Qeffluent RWZI Chaam

Figure B7. Overview time series of explanatory variable Qeffluent RWZI Chaam
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B2 Simulated groundwater time series Pastas TSA - screen-1 wells

In this Appendix, the results of the simulated groundwater head time series with Pastas TSA for the screen-1 wells are depicted.

B2.1 X10 : B50B00741

Figure B8. Observed and simulated groundwater heads with a division in calibration and validation period, for well X10: B50B00741

Figure B9. Observed and simulated groundwater heads for further research period 1985-2003, for well X10: B50B00741

Figure B10. Contributions of the explanatory variables to the groundwater heads during the research period, for well X10: B50B00741
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Figure B11. Fit report Pastas TSA X10: B50B00741
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B2.2 X11 : B50B00751

Figure B12. Observed and simulated groundwater heads with a division in calibration and validation period, for well X11: B50B00751

Figure B13. Observed and simulated groundwater heads for further research period 1985-2003, for well X11: B50B00751

Figure B14. Contributions of the explanatory variables to the groundwater heads during the research period, for well X11: B50B00751
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Figure B15. Fit report Pastas TSA X11 :B50B00751
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B2.3 X12 : B50B01011

Figure B16. Observed and simulated groundwater heads with a division in calibration and validation period, for well X12: B50B001011

Figure B17. Observed and simulated groundwater heads for further research period 1985-2003, for well X12: B50B01011

Figure B18. Contributions of the explanatory variables to the groundwater heads during the research period, for well X12: B50B01011
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Figure B19. Fit report Pastas TSA X12 :B50B01011
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B2.4 X13 : B50B02161

Figure B20. Observed and simulated groundwater heads with a division in calibration and validation period, for well X13: B50B02161

Figure B21. Observed and simulated groundwater heads for further research period 1985-2003, for well X13: B50B02161

Figure B22. Contributions of the explanatory variables to the groundwater heads during the research period, for well X13: B50B02161
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Figure B23. Fit report Pastas TSA X13 :B50B02161
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B2.5 X14 : B50B03801

Figure B24. Observed and simulated groundwater heads with a division in calibration and validation period, for well X14: B50B03801

Figure B25. Observed and simulated groundwater heads for further research period 1985-2003, for well X14: B50B03801

Figure B26. Contributions of the explanatory variables to the groundwater heads during the research period, for well X14: B50B03801
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Figure B27. Fit report Pastas TSA X14 :B50B03801
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B2.6 X15 : B50E01401

Figure B28. Observed and simulated groundwater heads with a division in calibration and validation period, for well X15: B50E01401

Figure B29. Observed and simulated groundwater heads for further research period 1985-2003, for well X15: B50E01401

Figure B30. Contributions of the explanatory variables to the groundwater heads during the research period, for well X15: B50E01401
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Figure B31. Fit report Pastas TSA X15 :B50E01401
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B3 Simulated groundwater time series Pastas TSA - screen-2 wells

In this Appendix, the results of the simulated groundwater head time series with Pastas TSA for the screen-2 wells are depicted.

B3.1 X20 : B50B00742

Figure B32. Observed and simulated groundwater heads with a division in calibration and validation period, for well X20: B50B00742

Figure B33. Observed and simulated groundwater heads for further research period 1985-2003, for well X20: B50B00742

Figure B34. Contributions of the explanatory variables to the groundwater heads during the research period, for well X20: B50B00742
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Figure B35. Fit report Pastas TSA X20 :B50B00742
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B3.2 X21 : B50B00752

Figure B36. Observed and simulated groundwater heads with a division in calibration and validation period, for well X21: B50B00752

Figure B37. Observed and simulated groundwater heads for further research period 1985-2003, for well X21: B50B00752

Figure B38. Contributions of the explanatory variables to the groundwater heads during the research period, for well X21: B50B00752
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Figure B39. Fit report Pastas TSA X21 :B50B00752
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B3.3 X22 : B50B01012

Figure B40. Observed and simulated groundwater heads with a division in calibration and validation period, for well X22: B50B01012

Figure B41. Observed and simulated groundwater heads for further research period 1985-2003, for well X22: B50B01012

Figure B42. Contributions of the explanatory variables to the groundwater heads during the research period, for well X22: B50B01012
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Figure B43. Fit report Pastas TSA X22 :B50B01012
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B3.4 X23 : B50B02162

Figure B44. Observed and simulated groundwater heads with a division in calibration and validation period, for well X23: B50B02162

Figure B45. Observed and simulated groundwater heads for further research period 1985-2003, for well X23: B50B02162

Figure B46. Contributions of the explanatory variables to the groundwater heads during the research period, for well X23: B50B02162
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Figure B47. Fit report Pastas TSA X23 :B50B02162



90 V. Demetriades: Relating groundwater heads to stream discharge by using machine learning techniques

B3.5 X24 : B50B03802

and simulated
groundwater heads with a division in calibration and validation period, for well X24: B50B03802

Figure B48. Observed and simulated groundwater heads for further research period 1985-2003, for well X24: B50B03802

Figure B49. Contributions of the explanatory variables to the groundwater heads during the research period, for well X24: B50B03802
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Figure B50. Fit report Pastas TSA X24 :B50B03802
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B3.6 X25 : B50E01402

Figure B51. Observed and simulated groundwater heads with a division in calibration and validation period, for well X25: B50B01402

Figure B52. Observed and simulated groundwater heads for further research period 1985-2003, for well X25: B50E01402

Figure B53. Contributions of the explanatory variables to the groundwater heads during the research period, for well X25: B50E01402
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Figure B54. Fit report Pastas TSA X25 :B50E01402
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Appendix C: Model setup 1

C1 Dataset for model setup 1

In this Appendix, the time series of the input variable X10 and the target Qobs for model setup 1 are visualised. A division is
made between the training set and the test set.

C1.1 Input variable for model setup 15

Figure C1. The time series of the input variable well B50B0074_1 for model setup 1, divided into the training set (1985-1999) and the test
set (1999-2003)
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C1.2 Target for model setup 1

Figure C2. The time series of the target Qobs for model setup 1, divided into the training set (1985-1999) and the test set (1999-2003)
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C2 Results - model setup 1

In this Appendix, the results of the different machine learning algorithms of model setup 1 are separately visualised. First, the
Qsim time series is plotted for the training and test, followed by a plot of zooming in on the test set. The last figure of each
machine learning algorithm is a scatterplot of Qobs against Qsim to easlity detect over- or underfitting.

C2.1 Results DTR - model setup 15

Figure C3. The time series of Qsim and Qobs for the training and test set, for DTR - model setup 1

Figure C4. The time series of Qsim and Qobs for only the test set, for DTR - model setup 1

Figure C5. Scatterplots of Qobs versus Qsim for the training and test set, for DTR - model setup 1. Underfitting is occuring when using the
machine learning algorithm DTR for model setup 1.
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C2.2 Results RFR - model setup 1

Figure C6. The time series of Qsim and Qobs for the training and test set, for RFR - model setup 1

Figure C7. The time series of Qsim and Qobs for only the test set, for RFR - model setup 1. The results do not differ a lot from the result
of DTR.

Figure C8. Scatterplots of Qobs versus Qsim for the training and test set, for RFR - model setup 1. Underfitting is occuring.
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C2.3 Results GBR - model setup 1

Figure C9. The time series of Qsim and Qobs for the training and test set, for GBR - model setup 1

Figure C10. The time series of Qsim and Qobs for only the test set, for GBR - model setup 1.

Figure C11. Scatterplots of Qobs versus Qsim for the training and test set, for GBR - model setup 1. Underfitting is occuring.
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C2.4 Results SVR - model setup 1

Figure C12. The time series of Qsim and Qobs for the training and test set, for SVR - model setup 1

Figure C13. The time series of Qsim and Qobs for only the test set, for SVR - model setup 1

Figure C14. Scatterplots of Qobs versus Qsim for the training and test set, for SVR - model setup 1. Underfitting is occuring
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C3 Optimal hyperparameters - model setup 1

In this Appendix, the optimal hyperparameter set found with 5-folds grid search cross validation is depicted for each single
machine learning algorithm in a Table. Moreover, the computation time for the hyperparameter tuning is given in the same
table.

5-folds grid search cross validation
Hyperparameters DTR - model setup 1 Grid Optimal Hyperparameter
partition criteria MSE, MAE MSE
maximum tree depth 2, 4, 6, 8, 10 2
minimum samples in a leaf 1, 2, 4 1
minimum samples to obtain a split 2, 5, 10 2
Computation time 30.1 sec

Table C1. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 1 DTR

5-folds grid search cross validation
Hyperparameters RFR - model setup 1 Grid Optimal Hyperparameter

partition criteria MSE, MAE MSE
maximum tree depth 2, 4, 6, 8, 10 2
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 10

Computation time 44.4 min
Table C2. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 1 RFR

5-folds grid search cross validation
Hyperparameters GBR - model setup 1 Grid Optimal Hyperparameter
partition criteria MSE, MAE MSE
maximum tree depth 2, 4, 6, 8, 10 2
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 25
Computation time 138.5 min

Table C3. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 1 GBR

5-folds grid search cross validation
Hyperparameters SVR - model setup 1 Grid Optimal Hyperparameter
gamma (kernel coefficient) 0.001, 0.01, 0.1, 1 0.01
C (penalty error parameter) 0.001, 0.01, 0.1, 1, 10 10
Computation time 23.9 sec

Table C4. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 1 SVR
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C4 Regression trees RFR - model setup 1

In this Appendix, the 10 regression trees of the RFR of model setup 1 are visualised. In the end, the output for each sample of
each regression tree is averaged to get the output Qsim per sample of the model RFR.

Figure C15. Regression tree 1 of RFR model setup 1

Figure C16. Regression tree 2 of RFR model setup 1
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Figure C17. Regression tree 3 of RFR model setup 1

Figure C18. Regression tree 4 of RFR model setup 1
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Figure C19. Regression tree 5 of RFR model setup 1

Figure C20. Regression tree 6 of RFR model setup 1
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Figure C21. Regression tree 7 of RFR model setup 1

Figure C22. Regression tree 8 of RFR model setup 1
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Figure C23. Regression tree 9 of RFR model setup 1

Figure C24. Regression tree 10 of RFR model setup 1
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Appendix D: model setup 2

D1 Dataset for model setup 2

In this Appendix, the time series of the input variables X10-X15 and the target Qobs for model setup 2 are visualised. A
division is made between the training set and the test set. Also, a heatmap is depicted to visualise the correlations between the
input variables and the target.5

D1.1 Input variables for model setup 2

Figure D1. The time series of the input variables screen-1 wells X10, X11, X12, X13, X14 and X15 for model setup 2, divided into the
training set (1985-1999) and the test set (1999-2003)
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D1.2 Target for model setup 2

Figure D2. The time series of the target Qobs for model setup 2, divided into the training set (1985-1999) and the test set (1999-2003)
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D1.3 Correlation overview dataset for model setup 2

In this Appendix, a correlation heatmap is depicted of the dataset of model setup 2. This figure shows already to which input
variable the target Qobs is mostly correlated with.

Figure D3. An overview of the correlations of the datatset for model setup 2, depicted in a heatmap
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D2 Results - model setup 2

In this Appendix, the results of the different machine learning algorithms of model setup 2 are separately visualised. First, the
Qsim time series is plotted for the training and test, followed by a plot of zooming in on the test set. The last figure of each
machine learning algorithm is a scatterplot of Qobs against Qsim to easlity detect over- or underfitting.

D2.1 Results DTR - model setup 2 5

Figure D4. The time series of Qsim and Qobs for the training and test set, for DTR - model setup 2

Figure D5. The time series of Qsim and Qobs for only the test set, for DTR - model setup 2

Figure D6. Scatterplots of Qobs versus Qsim for the training and test set, for DTR - model setup 2. Underfitting is occuring when using the
machine learning algorithm DTR for model setup 2.
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D2.2 Results RFR - model setup 2

Figure D7. The time series of Qsim and Qobs for the training and test set, for RFR - model setup 2

Figure D8. The time series of Qsim and Qobs for only the test set, for RFR - model setup 2

Figure D9. Scatterplots of Qobs versus Qsim for the training and test set, for RFR - model setup 2. Slightly overfitting
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D2.3 Results GBR - model setup 2

Figure D10. The time series of Qsim and Qobs for the training and test set, for GBR - model setup 2

Figure D11. The time series of Qsim and Qobs for only the test set, for GBR - model setup 2

Figure D12. Scatterplots of Qobs versus Qsim for the training and test set, for GBR - model setup 2. Slightly overfitting.
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D2.4 Results SVR - model setup 2

Figure D13. The time series of Qsim and Qobs for the training and test set, for SVR - model setup 2

Figure D14. The time series of Qsim and Qobs for only the test set, for SVR - model setup 2

Figure D15. Scatterplots of Qobs versus Qsim for the training and test set, for SVR - model setup 2. No under- or overfitting.
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D3 Optimal hyperparameters - model setup 2

In this Appendix, the optimal hyperparameter set found with 5-folds grid search cross validation is depicted for each single
machine learning algorithm in a Table. Moreover, the computation time for the hyperparameter tuning is given in the same
table.

5-folds grid search cross validation
Hyperparameters DTR - model setup 2 Grid Optimal Hyperparameter
partition criteria MSE, MAE MSE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 1
minimum samples to obtain a split 2, 5, 10 5
Computation time 29.5 sec

Table D1. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 2 DTR

5-folds grid search cross validation
Hyperparameters RFR - model setup 2 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 6
minimum samples in a leaf 1, 2, 4 2
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 250
Computation time 169.9 min

Table D2. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 2 RFR

5-folds grid search cross validation
Hyperparameters GBR - model setup 2 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 50
Computation time 471.9 min

Table D3. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 2 GBR

5-folds grid search cross validation
Hyperparameters SVR - model setup 2 Grid Optimal Hyperparameter
gamma (kernel coefficient) 0.001, 0.01, 0.1, 1 0.1
C (penalty error parameter) 0.001, 0.01, 0.1, 1, 10 10
Computation time 16.5 sec

Table D4. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 2 SVR
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D4 Regression tree DTR - model setup 2

In this Appendix, the regression tree of the DTR of model setup 2 is visualised.

Figure D16. Left part of the regression tree of DTR model setup 2

Figure D17. Right part of the regression tree of DTR model setup 2
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Appendix E: model setup 3

E1 Dataset for model setup 3

In this Appendix, the time series of the input variables X10-X15, X20-X25 and the target Qobs for model setup 3 are
visualised. A division is made between the training set and the test set.

E1.1 Input variables for model setup 3 5

Figure E1. The time series of the input variables screen-1 & screen-2 wells X10, X11, X12, X13, X14, X15, X20, X21, X22, X23, X24
and X25 for model setup 3, divided into the training set (1985-1999) and the test set (1999-2003)
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E1.2 Target for model setup 3

Figure E2. The time series of the target Qobs for model setup 3, divided into the training set (1985-1999) and the test set (1999-2003)
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E1.3 Correlation overview dataset for model setup 3

In this Appendix, a correlation heatmap is depicted of the dataset of model setup 3. This figure shows already to which input
variable the target Qobs is mostly correlated with.

Figure E3. An overview of the correlations of the datatset for model setup 3, depicted in a heatmap
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E2 Results - model setup 3

In this Appendix, the results of the different machine learning algorithms of model setup 3 are separately visualised. First, the
Qsim time series is plotted for the training and test, followed by a plot of zooming in on the test set. The last figure of each
machine learning algorithm is a scatterplot of Qobs against Qsim to easlity detect over- or underfitting.

E2.1 Results DTR - model setup 35

Figure E4. The time series of Qsim and Qobs for the training and test set, for DTR - model setup 3

Figure E5. The time series of Qsim and Qobs for only the test set, for DTR - model setup 3

Figure E6. Scatterplots of Qobs versus Qsim for the training and test set, for DTR - model setup 3
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E2.2 Results RFR - model setup 3

Figure E7. The time series of Qsim and Qobs for the training and test set, for RFR - model setup 3

Figure E8. The time series of Qsim and Qobs for only the test set, for RFR - model setup 3

Figure E9. Scatterplots of Qobs versus Qsim for the training and test set, for RFR - model setup 3
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E2.3 Results GBR - model setup 3

Figure E10. The time series of Qsim and Qobs for the training and test set, for GBR - model setup 3

Figure E11. The time series of Qsim and Qobs for only the test set, for GBR - model setup 3

Figure E12. Scatterplots of Qobs versus Qsim for the training and test set, for GBR - model setup 3
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E2.4 Results SVR - model setup 3

Figure E13. The time series of Qsim and Qobs for the training and test set, for SVR - model setup 3

Figure E14. The time series of Qsim and Qobs for only the test set, for SVR - model setup 3

Figure E15. Scatterplots of Qobs versus Qsim for the training and test set, for SVR - model setup 3



122 V. Demetriades: Relating groundwater heads to stream discharge by using machine learning techniques

E3 Optimal hyperparameters - model setup 3

In this Appendix, the optimal hyperparameter set found with 5-folds grid search cross validation is depicted for each single
machine learning algorithm in a Table. Moreover, the computation time for the hyperparameter tuning is given in the same
table.

5-folds grid search cross validation
Hyperparameters DTR - model setup 3 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
Computation time 1.9 min

Table E1. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 3 DTR

5-folds grid search cross validation
Hyperparameters RFR - model setup 3 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 6
minimum samples in a leaf 1, 2, 4 2
minimum samples to obtain a split 2, 5, 10 5
number of regression trees 10, 25, 50, 100, 250 250
Computation time 270.4 min

Table E2. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 3 RFR

5-folds grid search cross validation
Hyperparameters GBR - model setup 3 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 25
Computation time 642.7 min

Table E3. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 3 GBR

5-folds grid search cross validation
Hyperparameters SVR - model setup 3 Grid Optimal Hyperparameter
gamma (kernel coefficient) 0.001, 0.01, 0.1, 1 0.1
C (penalty error parameter) 0.001, 0.01, 0.1, 1, 10 1
Computation time 11.7 sec

Table E4. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 3 SVR
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E4 Decision trees DTR - model setup 3

In this Appendix, the regression tree of the DTR of model setup 3 is visualised.

Figure E16. Left part of the regression tree of DTR model setup 3

Figure E17. Right part of the regression tree of DTR model setup 3
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Appendix F: model setup 4

F1 Dataset for model setup 4

In this Appendix, the time series of the input variables X10-X15, P , Ep and the target Qobs for model setup 4 are visualised.
A division is made between the training set and the test set.

F1.1 Input variables for model setup 45

Figure F1. The time series of the input variables screen-1 wells X10, X11, X12, X13, X14 and X15 for model setup 4, divided into the
training set (1985-1999) and the test set (1999-2003)
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Figure F2. The time series of the input variables P & Ep for model setup 4, divided into the training set (1985-1999) and the test set
(1999-2003)
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F1.2 Target for model setup 4

Figure F3. The time series of the target Qobs for model setup 4, divided into the training set (1985-1999) and the test set (1999-2003)
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F1.3 Correlation overview dataset for model setup 4

In this Appendix, a correlation heatmap is depicted of the dataset of model setup 4. This figure shows already to which input
variable the target Qobs is mostly correlated with.

Figure F4. An overview of the correlations of the datatset for model setup 4, depicted in a heatmap
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F2 Results - model setup 4

In this Appendix, the results of the different machine learning algorithms of model setup 4 are separately visualised. First, the
Qsim time series is plotted for the training and test, followed by a plot of zooming in on the test set. The last figure of each
machine learning algorithm is a scatterplot of Qobs against Qsim to easlity detect over- or underfitting.

F2.1 Results DTR - model setup 45

Figure F5. The time series of Qsim and Qobs for the training and test set, for DTR - model setup 4

Figure F6. The time series of Qsim and Qobs for only the test set, for DTR - model setup 4

Figure F7. Scatterplots of Qobs versus Qsim for the training and test set, for DTR - model setup 4
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F2.2 Results RFR - model setup 4

Figure F8. The time series of Qsim and Qobs for the training and test set, for RFR - model setup 4

Figure F9. The time series of Qsim and Qobs for only the test set, for RFR - model setup 4

Figure F10. Scatterplots of Qobs versus Qsim for the training and test set, for RFR - model setup 4
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F2.3 Results GBR - model setup 4

Figure F11. The time series of Qsim and Qobs for the training and test set, for GBR - model setup 4

Figure F12. The time series of Qsim and Qobs for only the test set, for GBR - model setup 4

Figure F13. Scatterplots of Qobs versus Qsim for the training and test set, for GBR - model setup 4
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F2.4 Results SVR - model setup 4

Figure F14. The time series of Qsim and Qobs for the training and test set, for SVR - model setup 4

Figure F15. The time series of Qsim and Qobs for only the test set, for SVR - model setup 4

Figure F16. Scatterplots of Qobs versus Qsim for the training and test set, for SVR - model setup 4
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F3 Optimal hyperparameters - model setup 4

In this Appendix, the optimal hyperparameter set found with 5-folds grid search cross validation is depicted for each single
machine learning algorithm in a Table. Moreover, the computation time for the hyperparameter tuning is given in the same
table.

5-folds grid search cross validation
Hyperparameters DTR - model setup 4 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 6
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
Computation time 20.6 sec

Table F1. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 4 DTR

5-folds grid search cross validation
Hyperparameters RFR - model setup 4 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 10
minimum samples in a leaf 1, 2, 4 4
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 250
Computation time 62.6 min

Table F2. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 4 RFR

5-folds grid search cross validation
Hyperparameters GBR - model setup 4 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 1
minimum samples to obtain a split 2, 5, 10 2
number of regression trees 10, 25, 50, 100, 250 100
Computation time 360.4 min

Table F3. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 4 GBR

5-folds grid search cross validation
Hyperparameters SVR - model setup 4 Grid Optimal Hyperparameter
gamma (kernel coefficient) 0.001, 0.01, 0.1, 1 0.01
C (penalty error parameter) 0.001, 0.01, 0.1, 1, 10 10
Computation time 18.0 sec

Table F4. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 4 SVR
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F4 Decision trees DTR - model setup 4

In this Appendix, the regression tree of the DTR of model setup 4 is visualised. This tree has a depth of 6, but only the tree
with depth 4 is visualised for simplicity reasons.

Figure F17. Left part of the regression tree of DTR model setup 4

Figure F18. Right part of the regression tree of DTR model setup 4
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Appendix G: model setup 5

G1 Dataset for model setup 5

In this Appendix, the time series of the input variables X10-X15, P , Ep including the rolling means (R3, R7, R14, R30, R120
days for X1 wells) and the shifts (S1, S2, S3, S4, S5, S6 days for P and Ep), and the target Qobs for model setup 5 are
visualised. A division is made between the training set and the test set.5

G1.1 Input variables for model setup 5

Figure G1. The time series of the input variables screen-1 well X10 and its rolling means X10−R3, X10−R7, X10−R14, X10−R30,
X10 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G2. The time series of the input variables screen-1 well X11 and its rolling means X11−R3, X11−R7, X11−R14, X11−R30,
X11 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G3. The time series of the input variables screen-1 well X12 and its rolling means X12−R3, X12−R7, X12−R14, X12−R30,
X12 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G4. The time series of the input variables screen-1 well X13 and its rolling means X13−R3, X13−R7, X13−R14, X13−R30,
X13 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G5. The time series of the input variables screen-1 well X14 and its rolling means X14−R3, X14−R7, X14−R14, X14−R30,
X14 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G6. The time series of the input variables screen-1 well X15 and its rolling means X15−R3, X15−R7, X15−R14, X15−R30,
X15 −R120 for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G7. The time series of the input variables P and its shifts P −S1, P −S2, P −S3, P −S4, P −S5 and P −S6 for model setup
5, divided into the training set (1985-1999) and the test set (1999-2003)
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Figure G8. The time series of the input variables Ep and its shifts Ep−S1, Ep−S2, Ep−S3, Ep−S4, Ep−S5 and Ep−S6 for model
setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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G1.2 Target for model setup 5

Figure G9. The time series of the target Qobs for model setup 5, divided into the training set (1985-1999) and the test set (1999-2003)
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G1.3 Correlation overview dataset for model setup 5 - used for DTR and SVR

In this Appendix, a horizontal barplot is depicted of the correlation of all input variables of model setup 5 with the target
Qobs. This figure shows already to which input variable the target Qsobs is mostly correlated with. There are in total 50 input
variables and 1 target. For DTR and SVR all these variables are taken into account, since these algorithms will not result in a
very long computation time. 5

Figure G10. An overview of the correlations of the target Qobs with the input variables of the datatset for model setup 5 used for DTR and
SVR, depicted in a horizontal barplot. Note that red means a negative correlation with Qobs and blue a positive correlation with Qobs.
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G1.4 Correlation overview dataset for model setup 5 - used for RFR and GBR

Taking all input variables into account for RFR and GBR, will lead to a really long computation time. Therefore, for RFR and
GBR only the 10 variables with the highest relative importance are taken into account, which are from high to low relative
importance:X14, P , P −S1, X10−R14, P −S2, X10, X11, X12, X13 and X15. A correlation heatmap of these variables
(including the target Qobs) is depicted in the Figure below.5

Figure G11. An overview of the correlations of the datatset for model setup 5 used for RFR and GBR, depicted in a heatmap.
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G2 Results - model setup 5

In this Appendix, the results of the different machine learning algorithms of model setup 5 are separately visualised. First, the
Qsim time series is plotted for the training and test, followed by a plot of zooming in on the test set. The last figure of each
machine learning algorithm is a scatterplot of Qobs against Qsim to easlity detect over- or underfitting.

G2.1 Results DTR - model setup 5 5

Figure G12. The time series of Qsim and Qobs for the training and test set, for DTR - model setup 5

Figure G13. The time series of Qsim and Qobs for only the test set, for DTR - model setup 5

Figure G14. Scatterplots of Qobs versus Qsim for the training and test set, for DTR - model setup 5
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G2.2 Results RFR - model setup 5

Figure G15. The time series of Qsim and Qobs for the training and test set, for RFR - model setup 5

Figure G16. The time series of Qsim and Qobs for only the test set, for RFR - model setup 5

Figure G17. Scatterplots of Qobs versus Qsim for the training and test set, for RFR - model setup 5
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G2.3 Results GBR - model setup 5

Figure G18. The time series of Qsim and Qobs for the training and test set, for GBR - model setup 5

Figure G19. The time series of Qsim and Qobs for only the test set, for GBR - model setup 5

Figure G20. Scatterplots of Qobs versus Qsim for the training and test set, for GBR - model setup 5
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G2.4 Results SVR - model setup 5

Figure G21. The time series of Qsim and Qobs for the training and test set, for SVR - model setup 5

Figure G22. The time series of Qsim and Qobs for only the test set, for SVR - model setup 5

Figure G23. Scatterplots of Qobs versus Qsim for the training and test set, for SVR - model setup 5
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G3 Optimal hyperparameters - model setup 5

In this Appendix, the optimal hyperparameter set found with 5-folds grid search cross validation is depicted for each single
machine learning algorithm in a Table. Moreover, the computation time for the hyperparameter tuning is given in the same
table.

5-folds grid search cross validation
Hyperparameters DTR - model setup 5 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 4
minimum samples in a leaf 1, 2, 4 1
minimum samples to obtain a split 2, 5, 10 2
Computation time 3.9 min

Table G1. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 5 DTR

5-folds grid search cross validation
Hyperparameters RFR - model setup 5 Grid Optimal Hyperparameter
partition criteria MSE, MAE MAE
maximum tree depth 2, 4, 6, 8, 10 8
minimum samples in a leaf 1, 2, 4 2
minimum samples to obtain a split 2, 5, 10 5
number of regression trees 10, 25, 50, 100, 250 25
Computation time 141.5 min

Table G2. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 5 RFR

5-folds grid search cross validation
Hyperparameters GBR - model setup 5 Grid Optimal Hyperparameter
partition criteria MSE, MAE MSE
maximum tree depth 2, 4, 6, 8, 10 2
minimum samples in a leaf 1, 2, 4 1
minimum samples to obtain a split 2, 5, 10 10
number of regression trees 10, 25, 50, 100, 250 100
Computation time 328.3 min

Table G3. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 5 GBR

5-folds grid search cross validation
Hyperparameters SVR - model setup 5 Grid Optimal Hyperparameter
gamma (kernel coefficient) 0.001, 0.01, 0.1, 1 0.001
C (penalty error parameter) 0.001, 0.01, 0.1, 1, 10 10
Computation time 9.8 sec

Table G4. Optimal hyperparameters found with 5-folds grid search cross validation - model setup 5 SVR
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G4 Decision trees DTR - model setup 5

In this Appendix, the regression tree of the DTR of model setup 5 is visualised. This tree has a depth of 4.

Figure G24. Left part of the regression tree of DTR model setup 5

Figure G25. Right part of the regression tree of DTR model setup 5
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Appendix H: Conceptual model GR4J

H1 Dataset for GR4J model

In this Appendix, the time series of the input variables and the target for this GR4J model are visualised. A division is made
between the training set and the test set. Note that for hydrological models the training set is defined as calibration period, and
the test set as validation period. The timeline of the calibration and validation set is similar to the timeline of the training and 5

test set for the machine learning models.

H1.1 Input variables for GR4J model

Figure H1. The time series of the input variables P and Ep for the GR4J model, divided into the calibration set (1985-1999) and the
validation set (1999-2003)
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H1.2 Target for GR4J model

Figure H2. The time series of the target Qobs for the GR4J model, divided into the calibration set (1985-1999) and the validation set
(1999-2003)
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H2 Results - GR4J model calibrated with different objective functions

In this Appendix, the results of the GR4J models calibrated with the objective functions NSE and MAE are separately visu-
alised. First, the Qsim time series is plotted for the calibration and validation set, followed by a plot of zooming in on only the
validation set. The last figure of each GR4J model is a scatterplot of Qobs against Qsim to easily detect over- or underfitting.

H2.1 Results GR4J model - calibrated with objective function NSE 5

Figure H3. The time series of Qsim and Qobs for the calibration and validation set, for GR4J model - calibrated with objective function
NSE

Figure H4. The time series of Qsim and Qobs for only the validation set, for GR4J model - calibrated with objective function NSE

Figure H5. Scatterplots of Qobs versus Qsim for the calibration and validation set, for GR4J model - calibrated with objective function
NSE
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H2.2 Results GR4J model - calibrated with objective function MAE

Figure H6. The time series of Qsim and Qobs for the calibration and validation set, for GR4J model - calibrated with objective function
MAE

Figure H7. The time series of Qsim and Qobs for only the validation set, for GR4J model - calibrated with objective function MAE

Figure H8. Scatterplots of Qobs versus Qsim for the calibration and validation set, for GR4J model - calibrated with objective function
MAE



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 


