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Filtered Split-Path Nonlinear Integrator (F-SPANI) for improved
transient performance

A. van der Maas, N. van de Wouw, W.P.M.H. Heemels

Abstract— The recently introduced Split-Path Nonlinear In-
tegrator (SPANI) is designed to improve the transient perfor-
mance of linear (motion) systems in terms of overshoot. The
SPANI was shown to be an effective nonlinear controller to
improve transient performance by enforcing the same sign in
the integrator action and the error. However, to avoid (fast)
switching in the control input in steady-state, conservatism
had to be introduced in the SPANI design, thereby limiting
the performance. In this paper, this conservatism is removed
by introducing a new design, called the Filtered Split-Path
Nonlinear Integrator (F-SPANI). This design is based on the
inclusion of an additional filter in the phase path, which enables
the full potential behind the main idea of the SPANI. The ease of
the design and implementation and the potential of the proposed
controller are illustrated both in simulation and in experiments
on a motion system.

I. INTRODUCTION

The Bode gain-phase relationship reveals a hard limitation
on the achievable transient performance using classical linear
controllers, see, e.g., [1], [2]. As a result, a trade-off exists
between (transient) performance and disturbance suppression
in linear time-invariant (LTI) feedback control [3]. A typical
example is the use of an integrator in feedback control, which
results in a zero steady-state error at the cost of overshoot due
to the 90 degrees phase lag of the integrator, which serves
as a buffer.

Since the Bode gain-phase relation is a widely known
limitation for linear control techniques, nonlinear and hybrid
control strategies have been designed to improve (amongst
others) the transient performance of LTI systems, see, e.g.,
[4]. Reset control is a typical example, where (a subset of)
the states are reset if certain conditions are met to reduce
the overshoot, see, e.g., the Clegg integrator [5]. Over the
last two decades, reset control strategies have regained the
attention, both in research, [6], [7], [8], and in applications,
[9]. Other examples to improve transient performance are,
amongst others, variable-gain integrators [10], [11], and
sliding mode controllers with saturated integrators [12].
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In this paper, we are interested in the line of nonlinear
controllers based on the Split-Path Nonlinear (SPAN) filter,
which has been introduced in [13] and facilitates independent
tuning of the phase and the amplitude characteristics. In
[14], the so-called Split-Path Nonlinear Integrator (SPANI)
is proposed by adopting an integrator in the SPAN filter. The
main benefit of the SPANI in [14] is the combination of an
increased transient performance and the ease of verification
of stability of the switching closed-loop system. The SPANI
is easily tunable using the standard tools for controller design
based on, for instance, loop-shaping, enabling straightfor-
ward adoption in industrial practice. In fact, without complex
optimizations, the transient performance can be improved
significantly. The SPANI switches the sign of the integrator
depending on the sign of the tracking error of the feedback
loop. Since the system is in equilibrium for a zero error,
any slight disturbance will cause the controller to switch.
To avoid the undesirable switching while the system already
reached the final position, the switching rule was changed
to include the equilibrium in the interior of the region
corresponding to one of the modes of the switched system,
which causes a slight phase lag. The drawback of this
changed switching rule is that the SPANI does not reach the
full potential for performance improvement, since the phase
lag results in delayed switching compared to the SPANI,
which in turn induces a larger overshoot.

The purpose of this paper is to overcome the conservatism
in the SPANI by introducing a Filtered Split-Path Nonlinear
Integrator (F-SPANI) as a novel hybrid controller. The F-
SPANI extends the SPANI structure by introducing a well-
designed filter in the phase path. It is shown that addition
of a filter providing a phase lead, such as a lead filter,
results in a significant improvement in transient performance.
Moreover, it is shown that the stability analysis of the SPANI
remains valid for the F-SPANI. The potential benefits of the
novel F-SPANI design are shown in both simulations and
experiments on a motion system, thereby also illustrating the
ease of the design. For both the SPANI and the F-SPANI,
the experimental validation has never been shown before.

In Sec. II, the SPANI of [14] is briefly recalled. In
particular, a sketch of the stability proof is given in Sec. II-
B, and the main limitation of the SPANI is highlighted in
Sec. II-C. In Sec. III, the filtered SPANI is introduced, and it
is shown that the stability analysis from II-B can be extended
to the F-SPANI. In Sec. IV, the benefits of the proposed
approach are shown in simulations. In Sec. V, measurement
results are shown for an experimental motion system. In
Sec. VI, the conclusions of the paper are given.
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Fig. 1: Block diagram of the SPAN filter.
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Fig. 2: Closed-loop SPANI with tilting parameter ε.

II. SPLIT-PATH NONLINEAR INTEGRATOR

A. Description of the SPANI

The original idea behind the SPAN filter [13], as shown
in Fig. 1, is to separately tune the amplitude and phase in
the controller design. The SPANI and the proposed filtered
SPANI (F-SPANI) are specific cases of the SPAN filter. In
general, the SPAN filter is schematically represented as in
Fig. 1, where H1 and H2 can be chosen to be any filter. In
the SPANI, H1 is selected to be an integrator and H2 as a
gain of 1. By combining this with a nominal controller Cnom,
the full control structure results as in Fig. 2 for ε = 0. The
SPANI results in a switched system, where the integrator
action us has the same sign as the error e at any time. It can
be written in state-space form as

SPANI :

 ẋI = ωie,

us =

{
+xI if exI ≥ 0,
−xI if exI < 0,

(1)

with xI ∈ R the integrator state and us the output of the
SPANI. The other system dynamics in Fig. 2 can also be
written in state-space form. Hereto, let the plant be defined
by

P :

{
ẋp = Apxp +Bpu+Bpd
yp = Cpxp

(2)

with state xp ∈ Rnp , u = uc+us ∈ R the total control input
of the system P , d ∈ R the disturbance, and yp ∈ R the
output. The nominal LTI controller for this system is given
by

Cnom :

{
ẋc = Acxc +Bce,
uc = Ccxc +Dce,

(3)

where e = r − yp ∈ R is the error of the feedback loop,
xc ∈ Rnc the state of the controller and uc ∈ R the output
of the nominal controller.

The overall closed-loop system is now given by

ẋ =

{
A1x+Brr +Bdd if exI ≥ 0, (4a)
A2x+Brr +Bdd if exI < 0 (4b)

where A1, A2, Br, and Bd can directly be derived from (1)-
(3), with x =

[
x>p x>c xI

]>
. The linear parts of the

xI

e

1

1 2

2

(a) ϕ = exI

xI

e

1

1 2

2

(b) ϕ = xI(xIε+ e)

Fig. 3: (e, xI)-plane with and without tilting parameter ε. In
mode 1, ϕ > 0; in mode 2, ϕ < 0.

controller, i.e., Cnom(s) and CI(s) =
ωi

s , define the dynamics
in (4a), i.e., for xIe > 0. Here, it is assumed that the user-
designed closed-loop dynamics are asymptotically stable,
such that the eigenvalues of A1 have all a strictly negative
real part, i.e., A1 is Hurwitz. Due to a minus-sign in A2, it
typically holds that mode 2 in (4b) is unstable. The output
of the total system is identical to the output of the open-loop
plant P , i.e., yp = Cpxp =

[
Cp O1×nc

0
]
x.

The equilibrium state for a constant reference rc and
constant disturbance dc satisfies

x∗ = −A−11 (Brrc +Bddc) , (5)

where x∗ represents the equilibrium state, which corresponds
to e = 0 according to (1). This equilibrium introduces a
non steady-state control effort, even though the system is
in steady-state. The (e, xI)-plane is shown in Fig. 3a, and
is a valuable tool in understanding the working principle of
the SPANI. This figure shows that the projected equilibrium
point (e∗, x∗I) = (0, x∗I) is located exactly at the switching
boundary ϕ := exI = 0. Due to the position of the
equilibrium point, any deviation from e = 0 will cause the
SPANI output us to switch sign, see (1). Switching at e = 0
is undesired since it causes oscillatory behavior around the
equilibrium, see [14] for more details.

To avoid such switching around an equilibrium, the
switching rule in [14] was changed to include a tilting
parameter ε, resulting in the extended SPANI

SPANI :

 ẋI = ωie,

us =

{
+xI if xI(εxI + e) ≥ 0,
−xI if xI(εxI + e) < 0.

(6)

The effect of the tilting parameter is schematically shown in
the (e, xI)-plane in Fig. 3b. Using the tilting parameter, the
full model of the SPANI changes to

ẋ =

{
A1x+Brr +Bdd if xI(εxI + e) ≥ 0, (7a)
A2x+Brr +Bdd if xI(εxI + e) < 0. (7b)

The inclusion of the tilting parameter guarantees that the
equilibrium x∗ corresponding to e = 0 always lies in the
stable mode 1, as defined in (7a). In Sec. II-B, a sketch of
the stability proof of the SPANI is provided.

B. Stability

In [15], the stability proof for the overall closed-loop
system as described by (7) is given. In this section, a sketch
of the proof is given, since one of the contributions of this
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paper is to show that the stability of the F-SPANI can be
checked using similar tools as in the case of the SPANI. The
first step in the stability proof is to perform a coordinate
transformation around the equilibrium point, i.e., x̃ = x−x∗,
where x∗ is defined by (5). In terms of the new coordinates
x̃, a quadratic Lyapunov function V (x̃) = x̃>Px̃ will be
used with positive definite matrix P .

The stability of the SPANI can then be checked by
guaranteeing the decay of the Lyapunov function for three
regions, i.e., for ϕ > 0 (mode 1), for ϕ < 0 (mode 2), and for
ϕ = 0 (including the case of a possible sliding mode at the
switching boundary). To facilitate the notation, the switching
boundary can be written as

ϕ = xI(εxI + e) = x̃>a Rx̃a = 0 (8)

with augmented states x̃a =
[
x̃> rc dc

]>
and the

symmetric matrix

R =


Onp×np Onp×nc − 1

2
C>p − 1

2
γrC

>
p − 1

2
γdC

>
p

Onc×np Onc×nc Onc×1 Onc×1 Onc×1

− 1
2
Cp O1×nc ε εγr εγd

− 1
2
γrCp O1×nc εγr εγ2

r εγrγd
− 1

2
γdCp O1×nc εγd εγrγd εγ2

d

 ,
(9)

where γr and γd characterize the equilibrium point of the
integrator state, i.e., x∗I = γrrc + γddc. Based on (5),

γr = −
[
O1×np

O1×nc
1
]
A−11 Br, (10)

γd = −
[
O1×np O1×nc 1

]
A−11 Bd. (11)

To guarantee stability, the time derivative of the Lyapunov
function should be strictly negative for all x̃ 6= 0, i.e.,

V̇ (x̃) =


x̃>
(
A>1 P + PA1

)
x̃ if x̃>a Rx̃a > 0,(12a)

x̃>a Q(P )x̃a if x̃>a Rx̃a < 0,(12b)
λx̃>

(
A>1 P + PA1

)
x̃

+(1− λ)x̃>a Q(P )x̃a if x̃>a Rx̃a = 0 (12c)

should be negative for all x̃ 6= 0, with

Q(P ) =

[
A>2 P + PA2 PAdA

−1
1 Br PAdA

−1
1 Bd

B>r A
−>
1 A>d P 0 0

B>d A
−>
1 A>d P 0 0

]
, (13)

where Ad = A1 − A2. In (12c) it holds that 0 ≤ λ ≤ 1
corresponds to Fillipov’s convex definition [16]. It was
shown in [14], [15], that, for each of the cases in (12a)-
(12c), there exists a c > 0 such that for all x̃ 6= 0

V̇ (x̃) ≤ −c‖x̃‖2 (14)

if there exists an α ≥ 0 such that the Linear Matrix Inequality
(LMI) conditions{

A>1 P + PA1 ≺ 0, (15a)
M> (Q(P )− αR)M ≺ 0 (15b)

are satisfied, where

M =

 In×n On×1

O2×n

[
γr
γd

]  (16)

Cnom P+
r yuce

−

us

+

d
+

ε ×

ωi

s

F-SPANI

Cf

xI

Fig. 4: Closed-loop filtered SPANI.

for n = np + nc + 1 the number of states of the complete
system.

To guarantee stability for the SPANI, the matrix inequali-
ties in (15) have to be validated, where α ≥ 0, P = P> � 0
and ε ≥ 0 are free parameters. It is desired to find the small-
est value of ε for which the conditions are still met, since this
will result in the best transient performance while avoiding
oscillatory behavior in the steady-state. The parameters for
α and P appear linearly in the matrix inequalities; however,
this is not the case for ε, and, therefore, an iterative bi-section
algorithm is used to find the smallest value for ε such that
the LMI in α and P is feasible. The smallest value for ε
is desired to minimize the conservatism of the SPANI, i.e.,
switch as soon as possible, see [17].

C. Essential limitation of the SPANI

The essential limitation of the SPANI is the need to
introduce ε. Due to the presence of this parameter, the
switch in sign of the integrator occurs later than the error
switch, limiting the potential performance improvement of
the SPANI.

The Filtered Split-Path Nonlinear Integrator (F-SPANI)
proposed in Sec. III below introduces an additional filter with
phase lead in the phase branch, which tries to “compensate”
for the delay due to the presence of ε. The phase lead in the
filter “detects” when a sign switch is approaching. Including
such anticipating characteristic in the SPANI can counteract
the above performance loss due to the tilting of the switching
plane and, as a result can guarantee superior overall transient
performance.

III. FILTERED SPLIT PATH NONLINEAR
INTEGRATOR

In this section, the novel filtered SPANI (F-SPANI) design
is introduced.

A. Design of the F-SPANI

The F-SPANI is schematically represented in Fig. 4, where
a general filter Cf is included. This filter can be any filter that
introduces a phase lead, such as a lead filter. Mathematically,
the filter is described in state-space form by

Cf :

{
ẋf = Afxf +Bfe,
uf = Cfxf +Dfe

(17)

with xf ∈ Rnf×1 the state of the filter, and uf the output of
the filter.
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B. Closed-loop Model and Stability Analysis
The inclusion of this filter adds a new state variable to

the closed-loop model, but the system can still be described
in the form (7a) and (7b) with adapted switching boundary
ϕ := xI(εxI + Cfxf +Dfe). Note that tilting parameter ε
is still needed to avoid the equilibrium x∗ corresponding to
e = 0 to be on the switching boundary.

The system matrices and states for the F-SPANI are given
by

x =
[
x>p x>c xI x>f

]>
, (18)

Ai =


Ap −BpDcCp BpCc (−1)i+1Bp 0
−BcCp Ac 0 0
−ωiCp 0 0 0
−BfCp 0 0 Af

 ,
(19)

Br =


BpDc

Bc
ωi
Bf

 Bd =


Bp
0
0
0

 , (20)

for i = 1, 2 for mode 1 and 2, respectively. System matrix
A1 is assumed to be a Hurwitz matrix, which can easily be
guaranteed by appropriate design of Cnom, CI and Cf . Similar
to the SPANI, the minus sign in the entry in the first row
and third column of A2 causes the dynamics in mode 2 to
be typically unstable.

In line with the stability proof of the SPANI and using
the fact that the structure in (7) of the closed-loop dynamics
is the same for both the SPANI and F-SPANI, the F-SPANI
can be proven to result in a globally asympotically stable
closed-loop system if the same two design requirements are
met for P > 0 and α ≥ 0, i.e.,{

A>1 P + PA1 ≺ 0, (21a)
M> (Q(P )− αR)M ≺ 0. (21b)

Due to the changed switching law, the matrix R is changed
to (22) (on the next page), where again γr and γd are
included to characterize the integrator equilibrium x∗I =
γrrc + γddc, and ξr and ξd are introduced to characterize
the filter equilibrium in x∗f = ξrrc+ ξddc, which are defined
by

γr/d = −[ O1×np O1×nc 1 O1×nf ]A−11 Br/d, (23)

ξr/d = −[ Onf×np Onf×nc 0 Inf×nf ]A−11 Br/d. (24)

It can be shown that the kernel of R and the kernel of Q are
given by the same vector

ker(R) = ker(Q) = α
[
O1×n −γd γr

]>
, (25)

which is identical to the kernel of R and Q(P ) in the
SPANI. Although (25) is not immediately obvious from the
structure of the matrices, the relation between γr, γd, ξr and
ξd warrants that (25) holds. Using this relation, the stability
proof as shown for the SPANI in [15] is also valid for the
F-SPANI. Hence, also an LMI-based stability check based
on (21) for P > 0 and α ≥ 0 of the F-SPANI is supported,
with an iterative search over ε ≥ 0.

IV. SIMULATION RESULTS

To illustrate the potential of the SPANI and the additional
benefits of the F-SPANI, in the remainder of this paper the
focus will be on an illustrative simulation example and an
experimental study in Sec. V. Note that the experimental
study is new for not only the F-SPANI but also for the
SPANI.

For sake of illustration, a plant according to a second-order
motion system is used, i.e.,

P(s) = ω2
n

s2 + 2βωns+ ω2
n

(26)

with ωn the eigenfrequency of the system and β the damping
of the resonance peak. The specific values used in this section
are chosen as ωn = 3 · 2π rad/s and β = 0.07.

The first step in the application of the (F-)SPANI is the
design of a linear controller containing an integrator. The
controller for this example is designed using loop-shaping
arguments yielding

C(s) = k
τ1s+ 1

τ2s+ 1︸ ︷︷ ︸
Cld(s)

s+ ωi
s︸ ︷︷ ︸

Cwi(s)

1

τ3s+ 1︸ ︷︷ ︸
Clp(s)

, (27)

where k = 3.225 is the gain of the filter, τ1 = 1
2π10/3 and

τ2 = 1
2π·30 in the lead filter Cld(s), ωi = 2π·10/3 in the weak

integrator Cwi(s), and τ3 = 1
2π·80 in the low pass filter Clp(s).

The controller can be rewritten into a parallel structure using
Cnom(s) = C(s)− Ci(s) resulting in

Cnom(s) =
1.452e04s+ 5.644e05

s2 + 691.2s+ 9.475e04
, CI(s) =

67.54

s
. (28)

The obtained bandwidth of the controller is 10 Hz. The band-
width can easily be increased to higher frequencies, which
will decrease the rise-time of the step-response significantly,
however, then the overshoot of the linear controller will
increase.

For the controller in (27), the step response of the closed-
loop system is shown in the top figure in Fig. 5 in blue,
which shows a significant overshoot of 45%. In Fig. 5, the
simulation results of the SPANI with and without tilting
parameter ε are represented by the red-dotted and yellow-
dashed lines. Besides the step response, the corresponding
output of the SPANI (us) and the sum of the absolute errors,
cumulated over time, are shown. As shown in Table I, the
overshoot has been reduced from 45% to 35% and 39%
respectively for the SPANI with ε = 0 and ε = 0.1616.
Additionally, the absolute cumulative error, scaled to 1 for
the linear controller, has been reduced to 0.8793 and 0.8814
respectively, although the cumulative error for the SPANI
with ε = 0 is still increasing. Although the SPANI with
ε 6= 0 results in a decreased performance in terms of
overshoot, the middle graph shows that the SPANI with
ε = 0 switches many times and the control effort increases
gradually, while the system response is approaching steady-
state. This switching and gradually growing control effort
results in a residual error and is likely to be unacceptable
in practice. The value for the tilting parameter ε is found
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R =


Onp×np Onp×nc − 1

2
C>p D

>
f Onp×nf − 1

2
γrC

>
p D

>
f − 1

2
C>p D

>
f γd

Onc×np Onc×nc Onc×1 Onc×nf Onc×1 Onc×1

− 1
2
DfCp O1×nc ε 1

2
Cf

1
2
Cfξr + εγr

1
2
Cfξd + εγd

Onf×np Onf×nc
1
2
C>f Onf×nf

1
2
C>f γr

1
2
C>f γd

− 1
2
γrDfCp O1×nc εγr +

1
2
ξ>r C

>
f

1
2
γrCf

1
2
γrCfξr +

1
2
ξ>r C

>
f γr + εγ2

r
1
2
γrCfξd + 1

2
ξ>r C

>
f γd + εγrγd

− 1
2
γdDfCp O1×nc εγd + 1

2
ξ>d C

>
f

1
2
γdCf

1
2
γdCfξr +

1
2
ξ>d C

>
f γr + γdεγr

1
2
γdCfξd + 1

2
ξ>d C

>
f γd + εγ2

d


(22)

Bandwidth = 10 Hz Bandwidth = 100 Hz
Controller ε Over- Error ε Over- Error

shoot shoot
Linear - 45% 1 - 48% 1
SPANI 0 35% 0.8793 0 40% 0.7879
SPANI 0.1616 39% 0.8814 0.0012 41% 0.7979
F-SPANI 0.4295 25% 0.6613 0.0067 33% 0.7236

TABLE I: Performance overview for two different controllers
in terms of overshoot and cumulative absolute error.
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Fig. 5: Step response of the simulation example using
linear control (blue) the SPANI without (red-dotted) and
with (yellow-dashed) the tilting parameter and the F-SPANI
(purple dash-dotted).

using a bi-section algorithm [17, Sec. 5.5], which results in
the lowest feasible value for ε in the LMIs in (15). The
stability check in [15] is slightly conservative for mode
2, which implies that smaller values of ε might still yield
improved transient performance without oscillatory behavior.
The introduction of a filter with phase lead is proposed in
Sec. III in the F-SPANI to anticipate the switch of the sign
of the error. In this simulation example, a lead filter

Cf (s) =
τ4s+ 1

τ5s+ 1
(29)

is added with τ4 = 1
2π(10/3) and τ5 = 1

2π30 , which results
in a phase lead of 45 degrees around the bandwidth. In
Fig. 5, the results of the simulations with the F-SPANI are
shown. It can be seen that the lead filter indeed results
in an anticipation of the sign switch of the error. For the
F-SPANI for this example, ε = 0.4295 is found as the
lowest feasible value; however, without a formal proof for

−100

−50

0

A
m
p
li
tu
d
e
[d
B
]

Bode diagram

10 1 10 2 10 3

Frequency [Hz]

−180

−90

0

90

180

P
h
as
e
[d
eg
]

m1 m2
T

Fig. 6: Two-mass-spring-damper system, as used for the
experimental validation, including the frequency response
function of the system. In red a fourth-order model is fitted
through the data.

stability, the tilting parameter can be reduced manually to
ε = 0.17 before unstable or switching behavior was observed
in simulation. As shown in Table I, the F-SPANI has only
25% overshoot and the sum of the absolute errors over time
has reduced to 0.6613. Only two switches are observed in the
F-SPANI and the overshoot and settling time have reduced
significantly, which shows that this method indeed improves
transient performance.

For illustrative purposes, Table I shows that the relative
performance improvement is unrelated to the performance
of the controller. In this table, the overshoot and normalized
cumulative absolute error are shown for a controller with a
bandwidth of 10 Hz and of 100 Hz.

V. EXPERIMENTAL RESULTS

In this section, the SPANI including the tilting parameter
and the F-SPANI with a lead filter as in (29) are compared
to the linear controller in a practical application. The setup
under consideration is a two-mass-spring damper system, as
shown in Fig. 6. This setup can be modeled as a fourth-
order motion system. To design a controller for this system,
a frequency response function (FRF) of the plant dynamics is
identified experimentally, as shown in Fig. 6. A fourth-order
model has been fitted through the data, which is also included
in the graph. It should be noted that a second resonance
peak is present in the data around 920 Hz; however, this
is not included in the model (the controller is assumed to
be robust against such high-frequency model uncertainties).
The controller is designed for a bandwidth of around 3 Hz.
As such, the second resonance peak is not relevant and is
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Fig. 7: Experimental results using a linear controller (blue-
solid), the SPANI (red-dotted) and F-SPANI (purple dash-
dotted) with a tilting parameter.

therefore not included in the model. The designed controller
is given by

C(s) = k
τ1s+ 1

τ2s+ 1︸ ︷︷ ︸
Cld(s)

s+ τ3
s︸ ︷︷ ︸

Cwi(s)

(30)

with k = 0.083 the gain, τ1 = 1
2π(4/3) and τ2 = 1

2π12 the
zero and pole of the lead filter Cld(s) and τ3 = 1

2π(4/3) the
zero of the weak integrator Cwi(s). The resulting integrator
in the parallel structure for the SPANI is given by

Ci(s) =
ωi
s

with ωi = 0.3267 (31)

and Cf as in (29) with τ4 = 1
2π and τ5 = 1

2π·9 . Using the
same methodology as for the simulations, the results in Fig. 7
are obtained. The values for ε are significantly higher than for
the simulation example with ε = 14.6241 for the SPANI and
ε = 9.8506 for the F-SPANI, however, these are the lowest
feasible values for which the design requirements in (21) are
satisfied. Nevertheless, the results are promising. Namely,
with these values, the linear controller has an overshoot of
49%, the SPANI of 45% and the F-SPANI of 32%, which
is a significant improvement of the transient performance.
The middle figure shows that the F-SPANI does have some
switching around the equilibrium, however, this reduces
rapidly and stops 0.7 seconds after the step. A reason for
this behavior might be due to the lightly damped resonance
peak at 58 Hz, see Fig. 6, resulting in oscillations around
e = 0 even for the linear controller. The absolute cumulative
errors are, respectively, 1 (due to normalization), 0.9148
and 0.7294 for the linear controller, SPANI and F-SPANI
respectively, which is again a significant improvement. With
this experiment, it has been shown that the SPANI and the
proposed F-SPANI can provide significant improvement in
transient performance.

VI. CONCLUSIONS
The aim of this paper was to improve the transient

performance of motion systems by means of hybrid control.
The work is based on the Split-Path Nonlinear Integrator
(SPANI), introduced in [14] and the SPAN filter [13]. The
Filtered Split-Path Nonlinear Integrator (F-SPANI) is pro-
posed, where overshoot is anticipated using phase lead in
an additional filter included in the phase path of the SPANI
design. It is shown that the stability results provided for the
SPANI can be generalized towards the F-SPANI. Moreover,
we demonstrated both in simulations and experiments that
the proposed method indeed results in a significant improve-
ment in transient performance. In future work, it is of interest
to consider the optimization of the design of the filter Cf for
a further increase in transient performance.
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